
Small Molecule Hsp90 Modulator and Neuregulin-induced 

Peripheral Demyelination 

By 

Chengyuan (Chanel) Li 

 

Submitted to the graduate degree program in  

Pharmacology and Toxicology and the Graduate Faculty of the 

University of Kansas in partial fulfillment of the requirements for 

the degree of Doctor of Philosophy. 

                                                                                

                                                          ______________ _____________________________ 
                                                          Rick T. Dobrowsky, Ph.D., Chairperson  
 

                                                          ______________ _____________________________ 
                                                          Nancy A. Muma, Ph.D. 
 

                                                          ______________ _____________________________ 
                                                          Alex R. Moise, Ph.D. 
 

                                                          ______________ _____________________________ 
                                                          Erik A. Lundquist, Ph.D. 
 

                                                          ______________ _____________________________ 
                                                          Kristi L. Neufeld, Ph.D. 
 

 

Date Defended: June 27th 2012 



ii 
 

The Dissertation Committee for Chengyuan Li 

certifies that this is the approved version of the following 

dissertation: 

 

 

Small Molecule Hsp90 Modulator and Neuregulin-induced 

Peripheral Demyelination 

By 

Chengyuan (Chanel) Li 

                                                                                

                                                          ______________ _____________________________ 
                                                          Rick T. Dobrowsky, Ph.D., Chairperson  
 

 

 

 

 

 

Date Approved: June 27th 2012 

 

 

 

 

 

 

 



iii 
 

Table of Contents 

Table of Contents .................................................................................................... iii 

Acknowledgements ........................................................................................................................... vi 

List of Tables and Figures ............................................................................................................. ix 

List of Abbreviations ........................................................................................................... xiii 

 

Chapter 1: Myelin, Neuregulin-induced Demyelination and  

Diabetic Peripheral Neuropathy ................................................................................................. 1 

Abstract ................................................................................................................................................ 1 

1.1 The History of Myelin Discovery ........................................................................................3 

1.2 Structural and Functional Significance of Peripheral Nerve Myelination .....................4 

   1.2.1 Molecular Structure and Composition of Myelinated Fibers ...........................................7 

   1.2.1a Internodes .......................................................................................................................7 

   1.2.1b Juxtaparanodes .............................................................................................................14 

   1.2.1c Paranodes ......................................................................................................................15 

   1.2.1d Nodes of Ranvier ..........................................................................................................16 

1.3 The Regulation of Peripheral Nerve Myelination and Demyelination by  

      Neuregulin-ErbB Signaling ...............................................................................................18 

   1.3.1 NRG1 and ErbB Receptors ............................................................................................19 

   1.3.2 Regulation of SC Myelination by NRG1 in Developing Nerves ...................................21 

   1.3.3 Regulation of SC Myelination by NRG1 in Mature Nerves ..........................................23 

   1.4 Myelin-related Disorders....................................................................................................26 

       1.4.1 Charcot-Marie-Tooth Disease ........................................................................................27 

       1.4.2 Guillain-Barré Syndrome ...............................................................................................28 

       1.4.3 Diabetic Peripheral Neuropathy and Segmental Demyelination ...................................29 

       1.4.4 Clinical Features and Pathology ....................................................................................29 

       1.4.5 Pathogenesis and Treatment ..........................................................................................31 

   1.5 Heat Shock Proteins and Stress Response ........................................................................35 

       1.5.1 Hsp70 - Potent “Neuroprotectant”  ................................................................................37 

        1.5.2 HSP Expression and DPN: An Impaired Defense Against Stress?  .............................39 



iv 
 

        1.5.3 Hsp90 - Seeking Effective Pharmacological “Heat-shock Therapy”  ..........................41 

Chapter 2: Materials and Methods ......................................................................................... 45 

2.1 Materials .............................................................................................................................45 

    2.1.1 Animals .........................................................................................................................45 

    2.1.2 Antibodies .....................................................................................................................46 

2.2 Methods ...............................................................................................................................47 

    2.2.1 Preparation of Purified DRG Neurons, Unmyelinated and  

Myelinated DRG/SC Explants ...................................................................................................47 

    2.2.2 Heat Shock Treatment ..................................................................................................48 

    2.2.3 Biochemical Analysis ...................................................................................................48 

       2.2.3a Immunoblotting ........................................................................................................48 

       2.2.3b Immunoprecipitation ................................................................................................49 

       2.2.3c Nuclear Fractionation ...............................................................................................49 

    2.2.4 siRNA knockdown ........................................................................................................50 

    2.2.5 Immunoflourescence Analysis ......................................................................................51 

       2.2.5a Immunocytochemistry .............................................................................................51 

    2.2.6 Sciatic Nerve Cross/longitudinal sections ....................................................................54 

    2.2.7 Hsp70 Adenovirus Preparation and Infection ...............................................................54 

    2.2.8 Calcein AM Cell Viability Assay .................................................................................55 

    2.2.9 Statistical Analysis ........................................................................................................57 

Chapter 3: Inhibition of NRG1-induced Peripheral Demyelination  

by Small Molecule Hsp90 Modulator ..............................................................................58 

3.1 KU-32 induces HSP expression in an Hsp90-dependent manner ..................................58 

3.2 KU-32 Selectively Induces Hsp70 Expression in Myelinating Sensory Nerves ............60 

3.3 Hsp70 is necessary for KU-32 to protect against NRG1-induced demyelination ........69 

3.4 Hsp70 is required by KU-32 to inhibit NRG1-induced c-jun  

      expression and activation ..................................................................................................73 

3.5 Hsp70 is sufficient to prevent NRG1-induced demyelination and c-jun induction .....75 

3.6 Neither JNK nor Erk was responsible for c-jun induction or inhibition .....................78 

3.7 Reduction of c-jun expression by KU-32 is proteasomal-dependent ............................81 

3.8 Hsp70 interacts with MBP in peripheral myelin ............................................................84 



v 
 

3.9 Discussion ...........................................................................................................................86 

3.10 Concluding Remarks .......................................................................................................94 

Chapter 4: Estrogen, GPR30 and Peripheral Myelination ......................................96 

   Abstract .............................................................................................................................................. 96 

4.1 Estrogen as a neurohormone and myelinotrophic Factor..............................................97 

    4.2 Caveolin-1, Estrogen Receptor and Myelination ..........................................................100 

    4.3 Estrogen is sufficient to induce moderate SC myelination ...........................................101 

4.4 Estrogen induces myelination in DRG-SC explants in the presence  

      but not absence of GPR30 ...............................................................................................102 

4.5 GPR30 is necessary for estrogen-induced myelination ................................................103 

4.6 Adenoviral-mediated Cav-1 expression rescues GPR30 expression 

      but not myelination in Cav-1-/- explants .......................................................................105 

4.7 GPR30 activation was not sufficient to induce myelination ........................................106 

4.8 Summary and Discussion ................................................................................................107 

Chapter 5: Outlook ..............................................................................................................113 

Appendix: PARP-1 and Hsp70 induction  ............................................................................116 

Reference ..................................................................................................................................121 

 

 

 

 

 

 

 

 

 



vi 
 

Acknowledgements 

This work was supported by the Juvenile Diabetes Research Foundation [1-

2008-280, 17-2010-760]; and The National Institutes of Health National Institute 

of Neurologic Disorders and Stroke [NS054847, NS075311] to RTD. 

I would like to start out by saying that I am lucky. I was lucky to be given 

the chance to receive a graduate education in the Department of Pharmacology and 

Toxicology at the University of Kansas. For the past five years, I have had the best 

mentor I could ever find, Dr. Rick T.Dobrowsky, who is also one of the most 

intelligent and fair-minded scientists I know. I am deeply grateful and forever 

indebted to him for more than just the knowledge he imparted, but also the 

inspiration, belief, and numerous opportunities he offered in order for me to push 

myself and discover my very best potential. I wouldn’t have achieved half of the 

work in this dissertation without his support.  He allowed me to pursue questions 

and projects with freedom in areas where my interests led me, and from time to 

time “poked” me with sharp sarcasms, “intimidations” and jokes, which have all 

been great motivation for me to get the work done. The knowledge, insights and 

abilities you have helped develop in me during my graduate training will for sure 

resonate profoundly throughout the rest of my career and life. 

My committee members have been a great source of help for my past 

curriculum and experimental endeavors. I am thankful that Dr. Erik Lundquist 



vii 
 

gave his valuable time and expertise for the past journal club I presided in PTX. Dr. 

Kristi Neufeld provided helpful suggestions and encouragement for finalizing my 

study after the last committee meeting. Dr. Alex Moise has always been a great 

source of spiritual support through his “in-hallway” advice, support and 

encouragements. Special thanks also go to Dr. Nancy Muma, who has been 

extremely generous and helpful by offering valuable scientific advice and insight 

for my study on estrogen and the qualifying exam. I am particularly indebted to the 

Muma lab for allowing me to “steal” reagents and materials without chasing me 

down. Thank you, I am lucky to have had all of you in my committee. 

My immunofluorescence analysis would never have been finished without 

the patient instruction and assistance from Dr. David Moore and Heather Shinogle 

from the Microscopy lab. Dr. Brian Blagg had generously provided the compound, 

KU-32, which constituted an essential part of my study and dissertation. I also 

want to thank Dr. Qian Li, who I sincerely admire as an excellent female scientist 

and leader in her field. She has been so instrumental to me in every way one could 

ask for from a mentor, a teacher, and a friend. 

One of the most essential pieces of equipment you must have to survive all 

the hardships in graduate school (experiments not working, car breaking down, 

getting sick, being yelled at, etc.) is friendship. I am lucky to have a gang of them: 

all the current and previous Dobrowsky lab members and PTX folks! Thanks to 



viii 
 

Thila who helped so much with the DRG-prep. Thanks to Melanie, Mac, Liang, 

Pan, Vicky, Michael and Kevin for being there to share my problems and listen to 

my complaints as well as offer priceless help whenever I needed it. Heather 

Menchen has been a great friend and her encouragement and emotional support 

has helped me to stay sane in graduate school. I would also never forget the 

countless help from Neil Barnes during the time of my settling and adjustment to 

the life in an entirely new country. It is impossible to mention everyone to whom I 

owe so many thanks, but almost everyone I encountered as a graduate student in 

KU have collectively made the past five years such a great memory! 

 Last but never the least, I am lucky to have the most wonderful and loving 

family in the world. My parents, Haiwu Li and Yongcui Shen, have always 

believed in my ability, given me strength to pursue my dreams and so selflessly 

supported me with every possible resource they can find. My aunt, Sally Sobek, 

has provided tremendous financial and spiritual support throughout my course of 

graduate education. Finally, I feel like being the luckiest person because I have 

Daniel Press in my life, from whom I can always find love and support. Thank you 

for your unconditional faith in me, both academically and personally. 

 

 

 

 

 

 



ix 
 

List of Tables and Figures 

Table 1.2: List of Mammalian CNS and PNS Neuron Fiber Type  5 

Table 2.1.3: List of Primary and Secondary Antibodies Utilized in  48 

the Study 

 

Figure 1.2.1: Schematic representation of the domain structure and  7 

composition of a myelinated PNS fiber. 

Figure1.2.1a: Electromicrographic and schematic depiction of compact 8 

myelin. 

Figure 1.3.1: Differential proteolytic cleavage of NRG1 isoforms and  21 

concentration-dependent regulation of SC myelination by NRG1 

isoforms. 

 

Figure 1.3.3: Regulation of SC myelination and demyelinaton by  26 

NRG1/ErbB signaling in developing and mature nerve. 

Figure 1.5: Heat shock proteins perform both regular “housekeeping”  37 

duty and regulation of signal transduction. 

Figure 1.5.2a: Inducing heat shock response through inhibiting Hsp90.  44 

Figure 1.5.2b: Structure-activity relationships of Novobiocin analogs in 46 

cytotoxicity vs. cytoprotectoin. 

 

Figure 2.2.5a: Identification of MBP segments by CellProfiler.   53 

Figure 2.2.8: Hydrolysis of Calcein AM to Calcein.    57 

 

Figure 3.1.1: Hsp90 silencing mitigates KU-32-induced Hsp70   59   

and Hsp40 expression. 

 

Figure 3.1.2: Hsp90 knockdown does not alter steady-state HSP   60 

expression.        



x 
 

Figure 3.2.1: The steady state protein expression of the inducible   62 

Hsp70 is minimal in sensory explants but is increased by KU-32. 

 

Figure 3.2.2: KU-32 specifically induces Hsp70 but not other HSP   63 

expression in DRG explants. 

 

Figure 3.2.3: Inducible Hsp70 is primarily localized to neuronal cell  65 

Bodies and SCs but not axons in peripheral nerves. 

 

Figure 3.2.4: KU-32 or HS enhances Hsp70 expression in SC processes. 66 

 

Figure 3.2.5: SC depletion attenuates basal and KU-32-induced Hsp70  67 

expression in DRG explants. 

 

Figure 3.2.6: Hsp70 co-localizes with S100β in mice sciatic nerves.  68 

 

Figure 3.3.1: Absence of the inducible Hsp70 but not Hsc70 in    69 

Hsp70.1/70.3 double knockout mice. 

 

Figure 3.3.2: KU-32 prevents NRG1-induced myelin degeneration in  70 

myelinated sensory nerves. 

 

Figure 3.3.3: KU-32 is unable to prevent myelinated cultures from  71 

NRG1-induced demyelination in the absence of Hsp70. 

 

Figure 3.4: KU-32 inhibits NRG1-induced expression and activation   74 

of c-jun in WT but not Hsp70 deficient nerves. 

 

Figure 3.5.1: Adenoviral overexpression of Hsp70 ameliorates    75 

NRG1-caused internode degeneration in WT cultures. 

 

Figure 3.5.2: Adenoviral overexpression of Hsp70 ameliorates   76 

NRG1-caused internode degeneration in Hsp70-deficient cultures. 

 

Figure 3.5.3: Hsp70 overexpression is sufficient to block c-jun    78 

expression and phosphorylation. 

 

Figure 3.6: Neither NRG1 or KU-32 altered expression and activity   79 

of JNK and Erk. 

 



xi 
 

Figure 3.7: KU-32 reduces c-jun in a proteasome-dependent manner.  82 

 

Figure 3.8.1: Hsp70 physically associates with MBP but not P0 and   84 

c-jun in normal peripheral nerves. 

 

Figure 3.8.2: Hsp70 colocalizes with MBP in myelinating SCs of   85 

peripheral sensory nerves. 

 

Figure 3.9: Possible mechanisms underlying KU-32/Hsp70-mediated   90 

counteraction of c-jun induction and NRG1-asscociated SC  

demyelination. 

 

 

Figure 4.1: Estrogen stimulates both genomic and nongenomic    98 

signaling transduction in regulating cell survival, proliferation  

and differentiation. 

 

Figure 4.2: Estrogen induces moderate myelination in DRG-SC explants. 102 

 

Figure 4.3: Estrogen selectively increases myelination in DRG-SC   103 

explants with GPR30 expression. 

 

Figure 4.4: GPR30 downregulation inhibited estrogen-induced    105 

myelination in DRG-SC explants. 

 

Figure 4.5: Adenoviral expression of Cav-1 in Cav-1-/- explants   106 

restored GPR30 expression but not myelination. 

 

Figure 4.6: GPR30-specific agonist did not induce myelination.   107 

 

Figure 4.7.1 Potential mechanisms underlying estrogen-stimulated   109 

SC myelination. 

 

Figure 4.7.2 Cav-1 regulates estrogen-mediated peripheral    111 

myelination through membrane targeting of GPR30. 

 

Figure A1: KU-32 promotes PARP-1 degradation      117 

in HEK-293 cells. 



xii 
 

 

Figure A2: PARP-1 deficiency abolishes Hsp70 induction by KU-32.  118 

 

Figure A3: PARP-1 is required by KU-32 to protect unmyelinated   119 

sensory nerves against glucose neurotoxicity. 

 

Figure A4: Genetic deletion of PARP-1 abolishes sensory nerve   120 

myelination in vitro. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiii 
 

List of Abbreviations 

 

ADP Adenosine Diphosphate 

AIDP Acute Inflammatory Demyelinating 

Polyneuropathy 

ANOVA Analysis of Variances 

AP-1 Activator Protein 1  

Akt      Protein Kinase B 

ARIA      Acetylcholine Receptor-inducing Activity 

ATP      Adenosine Triphosphate 

BDNF     Brain-derived Neurotrophic Factor 

BB/Wor     Biobreeding/Worcester 

cAMP     Cyclic AMP 

Cav-1      Caveolin-1 

CAM      Cell Adhesion Molecule 

Caspr      Contactin Associated Protein 

CHIP carboxyl terminus of Hsp70-interacting 

protein 

CMT      Charcot-Marie-Tooth disease type 

CNS      Central Nervous System 

IP      Immunoprecipitation 

CRD      Cystein Rick Domain 

CsCl      Caesium chloride  

DAPI      4’,6-diamidino-2-phenylindole 

DF      Degree of Freedom 

DMED     Dulbecco’s modified Eagle’s medium 

DMSO     Dimethyl sulfoxide 

DNA      Deoxyribonucleic Acid 

DPN      Diabetic Peripheral Neuropathy 

DN-ErbB     Dominant Negative ErbB Receptor 

DRG      Dorsal Root Ganglia 

EGF      Epidermal Growth Factor 

ER      Endoplasmic Reticulum 

ER-α/β     Estrogen Receptor-α/β 

E2      β-estradiol 

FDA      Food and Drug Administration 

GBS      Guillain-Barré syndrome 

GGF      Glial Growth Factor 

GPCR     G-protein-coupled Receptor 

GPI      Glycosyl Phosphatidylinositol 



xiv 
 

GPR30     G-protein-coupled Receptor 30 

GRP75/mMortalin/mtHSP70  Mitochondrial Glucose-regulated Protein75 

GRP78/BiP     Glucose-regulated Protein 78 

HOP      HSP-organizing Protein 

HRP      Horseradish Peroxidase 

HSC70/HSP73    Heat Shock Cognate Protein73 

HSF-1     Heat Shock Factor-1 

HSP      Heat Shock Protein 

HSR      Heat Shock Response 

Ig      Immunoglobulin 

JNK      C-jun N-terminal Kinase 

Kv      Voltage-gated Potassium Channel 

KO/-/-     Knockout 

LM1      IV
3
NeuAc-nLcOse4Cer 

MAPK     Mitogen-activated Protein Kinases 

MBP/P1     Myelin Basic Protein 

Mek/Erk Mitogen-activated Protein 

Kinase/Extracellular Signal-Regulated 

Kinase Kinase 

MS Multiple Sclerosis 

Nav      Voltage-gated Sodium Channel 

NCV      Nerve Conduction Velocity 

NF-κB      Nuclear Factor-κB 

NGF      Nerve Growth Factor 

NH      Non-Heatshock 

NIH      National Institute of Health 

NRG1     Neuregulin-1 

NT-3      Neurotrophin-3 

OLG      Oligodendrocyte 

Parp-1     Poly [ADP-ribose] polymerase 1 

PBS      Phosphate-buffered Saline 

PCR      Polymerase Chain Reaction 

PKC      Protein Kinase C 

P-TEFb      Positive Transcription Elongation Factor b 

PGP-9.5     Protein Gene Product 9.5 

PI3K      Phosphatidylinositol 3-Kinase 

PMP-22     Peripheral Protein 22 

PNS      Peripheral Nervous System 

polyQ      Polyglutamine 

MPZ/P0     Myelin Protein Zero 



xv 
 

NF155     Neurofascin155 

RNA      Ribonucleic Acid 

SC      Schwann Cell 

siRNA/RNAi    silencing RNA 

STZ      Streptozotocin 

SUMO     Small Ubiquitin-like Modifier 

TEM      Transmission Electron Microscopy 

UDP      Uridine DiPhosphate 

WT      Wildtype



1 
 

Abstract 

Modulating molecular chaperones is emerging as an attractive approach to treat 

neurodegenerative diseases associated with protein aggregation, diabetic peripheral neuropathy 

(DPN) and possibly, demyelinating neuropathies. KU-32 is a small molecule inhibitor of heat 

shock protein 90 (Hsp90) and reverses sensory deficits associated with myelinated fiber 

dysfunction in DPN. Additionally, KU-32 prevented the loss of myelinated internodes induced 

by treating myelinated Schwann cell-dorsal root ganglia sensory neuron co-cultures with 

neuregulin-1 Type 1 (NRG1). Since KU-32 decreased NRG1-induced demyelination in an 

Hsp70-dependent manner, the goal of the current study was to clarify how Hsp70 may be 

mechanistically linked to preventing demyelination. The activation of p42/p44 MAPK and 

induction of the transcription factor c-jun function as negative regulators of myelination. NRG1 

activated MAPK, induced c-jun expression and promoted a loss of myelin segments in DRG 

explants isolated from both wild type and Hsp70 KO mice. Although KU-32 did not block the 

activation of MAPK, it blocked c-jun induction and protected against a loss of myelinated 

segments in wildtype (WT) mice. KU-32 did not prevent the NRG1-dependent induction of c-jun 

and loss of myelin segments in explants from Hsp70 KO mice. Over-expression of Hsp70 in 

myelinated DRG explants prepared from WT or Hsp70 KO mice was sufficient to block the 

induction of c-jun and the loss of myelin segments induced by NRG1. Lastly, inhibiting the 

proteasome prevented KU-32 from decreasing c-jun levels. Collectively, these data support that 

Hsp70 induction is sufficient to prevent NRG1-induced demyelination by enhancing the 

proteasomal degradation of c-jun.  
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Chapter 1: Myelin, Neuregulin-induced Demyelination and Diabetic 

Peripheral Neuropathy 

1.1 The History of Myelin Discovery 

The emergence of microscopic and dissection techniques in the eighteenth’ century 

accelerated the development of our knowledge of vertebrate anatomy, including the nervous 

system. The earliest documentation of nerve myelin can be traced back to the year 1717, when 

Dutch scientist Leeuwenhoek described a microscopic observation of “nervules surrounded by 

fatty parts”  (Rosenbluth, 1999). More than a century later, Ehrenberg, Remak and Schwann 

further identified the medullary appearance of myelin, the relative transparency of unmyelinated 

fibers versus myelinated fibers, and Schwann cells (SCs), respectively (Ehrenberg, 1837; 

Rosenbluth, 1999). Using hematoxylin stain, Dieters was able to distinguish neuroglia as another 

component of nervous tissue from neurons, although at this stage these interstitial plexi were 

predominantly regarded as connective substance (Pasik and Pasik, 2004). Based on the white 

medulla appearance  and early misinterpretation of myelin as an inner deposition of axon, Rudolf 

Virchow coined the term “myeline” from “myelos”, the Greek term of marrow (Virchow, 1854). 

By then myelin was still regarded as a continuous sheath resulting from syncytial network until 

in 1871 when Louis Antoine Ranvier observed gaps, or “nodes” in the myelin that periodically 

interrupted the sheath. Soon after that the “Schmidt–Lantermann incisures” were discovered, 

which mark the spiraling slits traversing the thickness of myelin sheath (Rosenbluth, 1999). 

After Italian physician and physicist Galvani first described the electroconductive and insulating 

properties of nerves in 1791 (Clarke and O'Malley, 1968), the role of myelin and nodes of 

Ranvier in enabling saltatory impulse conduction was first demonstrated by Tasaki in 1939. 

However, whether myelin derived from axons or glial cells remained a debate until more than 

two decades later.  With the advent of electron microscopy, Betty Ben Geren demonstrated 
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unequivocally in her study of developing chick peripheral nerve that myelin is a spiral wrapping 

of SC plasma membrane around the axon (Geren, 1954). Her finding was then confirmed by two 

independent investigators who showed that similar to SCs in the peripheral nervous system 

(PNS), the central nervous system (CNS) glia oligodendrocytes synthesize the myelin in the 

optic nerves (Maturana, 1960; Peters, 1960). Functional and morphological differences between 

CNS and PNS glia were soon revealed by later studies which suggested that oligodendrocytes 

myelinate multiple axons simultaneously and rarely form Schmidt-Lantermann incisures, 

whereas SCs commonly do and give rise to only one myelin segment of an axon (Bunge et al., 

1962; Maturana, 1960). Following these discoveries, improvement in fixation techniques and 

ultrastructural analysis further boosted the characterization of other fine features of myelin, 

including its domain organization and molecular composition. 

1.2 Structural and Functional Significance of Peripheral Nerve Myelination 

The above landmark studies led to the unexpected realization that glial cells and myelin are not 

just sticky accessories of neurons, but instead form an intimate cellular interaction and are 

perhaps the most spectacular step in the evolution of the vertebrate nervous system architecture. 

At a topological level, myelin formation initiates with the association and laying of the axon 

trunk in an invagination of glial cells, namely, SCs in the PNS and interfasicular 

oligodendrocytes in the CNS. These cells then progressively and repeatedly wrap long axonal 

segments with a lamellar stack of their extended plasma membrane, which in this case has 

acquired the name “mesaxon”. Depending on the diameter of the axon being myelinated, the 

number of myelin wrappings can range from 10-160 (Arbuthnott et al., 1980). Such multilayered 

sheath of glial membrane is tightly compacted and sealed, defining the structure of myelin 

internodes that are gapped at regular intervals along an axon by the nodes of Ranvier, where the 
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axonal membrane is “naked” and comes into contact with extracellular milieu. From an 

electrophysiological perspective, vertebrate myelin is evolved to perform two tasks: to insulate 

the axon and to enable saltatory nerve impulse conduction. The latter allows the “jumping” of 

action potentials from node to node such that the speed of impulse propagation is dramatically 

increased without the need to expand axon diameter and increase the energy required for 

depolarizing an entire length of axon membrane, as is necessary for impulse propagation in 

unmyelinated fibers. This space and energy saving had a tremendous impact on the evolution of 

larger body size, which in turn allowed the development of complex motion coordination and 

cognitive abilities of gnathostomata vertebrates (Nave, 2010a). To better appreciate this, in order 

to transmit an electrical potential for a given length and speed, an unmyelinated squid axon 

would take 15,000 times more volume and 5,000 times more energy than a myelinated frog axon. 

Such an extreme example is also exemplified in humans: an unmyelinated axon has a 

conductivity as low as 0.1 m/s whereas the nerve conduction speed of the thickest myelinated 

axon can reach as fast as 120 m/s (Trapp and Kidd, 2004). 

Most efferent motor nerves in the periphery and projection tracts in brain white matter are 

myelinated, while somatosensory and autonomic nerves usually contain a mixture of myelinated 

and unmyelinated axons. Typically, voluntary motor fibers are myelinated; Aα, Aβ sensory 

fibers that associate with proprioceptors, mechanoreceptors and thermoreceptors as well as 

preganglionic autonomic fibers. In most cases, sciatic nerves in the PNS and optic nerves in the 

CNS are studied to characterize the ultrastructure of myelin (Quarles et al., 2006). On the other 

hand, many fibers are also unmyelinated and include nociceptive C fibers, postganglionic 

autonomic nerves that are responsible for visceral sensation and involuntary functions, and axons 

extended from granule cells in hippocampus and cerebellum are unmyelinated. 
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Table 1.2 List of Mammalian CNS and PNS Neuron Fiber Types 

CNS 

Distribution Neuron Type Myelin 

Retina/Optic Nerve Ganglion Yes 

Cortex L5 Pyramidal Cell (Principal Axon) Yes 

Cerebellum Purkinje Cell (Principal Axon) Yes 

Hippocampus CA1/CA3 Pyramidal Neurons (Alveus/Fimbria) Yes 

Hippocampus Dentate Gyrus/Granule Cell (Mossy Fiber) No 

Hippocampus CA3 Pyramidal Cell (Schaffer Collaterals) No 

Cerebellum Granule Cell (Parallel Fiber) No 

PNS 

Type/ 

Erlanger-

Gasser 

Classification 

Neuron 

Type/Distribution 
Diameter 

Function/Associated 

Receptor/Fiber 

Conduction 

Velocity 
Myelin 

α/Aα 
Motor/Sciatic 

Nerve 
13-22 μm Extrafusal Muscle Fibers 70-120 m/s Yes 

γ/Aγ 
Motor/Sciatic 

Nerve 
4-8 μm Intrafusal Muscle Fibers 4-24 m/s Yes 

Ia/Aα 
Sensory/Dorsal 

Root Ganglion 
12-20 μm 

Muscle Spindle Primary 

Receptors 
70-120 m/s Yes 

Ib/Aα 
Sensory/Dorsal 

Root Ganglion 
11-19 μm Golgi Tendon Organ 66-114 m/s Yes 

II/Aβ 
Sensory/Dorsal 

Root Ganglion 
5-6 μm 

Muscle Spindle Secondary 

Receptors; All Cutaneous 

Mechanoreceptors 

33-75 m/s Yes 

III/Aδ 
Sensory/Dorsal 

Root Ganglion 
1-5 μm 

Crude touch; Pressure; 

Nociceptors of 

Neospinothalamic Tract; 

Cold Thermoreceptors 

5-30 m/s Thin 

IV/C 
Sensory/Dorsal 

Root Ganglion 
0.4-2 μm 

Nociceptors of 

Paleospinothalamic Tract; 

Warmth Thermoreceptors 

0.5-2 m/s No 

B 
Preganglionic 

Fibers 
1-5 μm - 3-15 m/s Thin 

C 
Postganglionic 

Fibers 
0.2-1.5 μm - 0.5-2.0 m/s No 

Adapted from (Debanne et al., 2011; Narhi, 2010) 

In the PNS, these unmyelinated axons are loosely engulfed by a SC with multiple other small-

caliber axons in a Remak bundle. Most nerve fascicles in the periphery contain a mixture of 

myelinated and unmyelinated axons and may bifurcate upon reaching the spinal cord. For 

example, in dorsal sensory roots, unmyelinated fibers enter through the lateral division while 

http://en.wikipedia.org/wiki/Extrafusal_muscle_fibers
http://en.wikipedia.org/wiki/Intrafusal_muscle_fibers
http://en.wikipedia.org/wiki/Nociceptors
http://en.wikipedia.org/wiki/Paleospinothalamic_tract
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myelinated fibers enter through the medial division (Crosby et al., 1962). Table 1.2 summarizes 

the classifications and properties of mammalian myelinated and unmyelinated fibers. Since CNS 

myelination is beyond the scope of the present study, this dissertation will focus on summarizing 

our current understanding of myelinated nerves in the PNS. The term “myelin” therefore will 

only refer to peripheral myelin unless otherwise specified. 

1.2.1 Molecular Structure and Composition of Myelinated Fibers 

Function is built on structure. The evolution of fast saltatory conduction developed from an 

appropriate structural support. Since the major task of myelination is to maximize the speed of 

conduction velocity, a polarized organization would be preferred over a single uniform 

compartment. Indeed, myelinated fibers display a remarkable longitudinal polarity that is 

elaborated by a series of structurally distinct domains: the internodes, the paranodal junctions, 

the juxtaparanodes and the nodes of Ranvier (Fig.1.2.1). In addition to cellular interaction and 

organization, these domains further differ in their molecular composition and repertoire of 

organelles (Salzer, 2003; Salzer et al., 2008).  

1.2.1a Internodes 

The internodal region is where the lamellar layers of myelin are deposited and comprise the 

largest domain along a myelinated axon. The length of the axon covered by an internode is 

closely proportional to axon diameter, ranging from 150 μm to 1.5 mm (Geuna et al., 2009; 

Trapp and Kidd, 2004). As a result of the tight wrapping of the myelin membrane , the intra- and 

extracellular space of the SC mesaxon becomes so condensed that it appears as a periodic 

alternating between electron dense lines corresponding to the two fused cytoplasmic surfaces, 

and the light or intraperiod lines formed by the close apposition of external surfaces. The latter is  
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Figure 1.2.1 Schematic representation of the domain structure and composition of a 

myelinated PNS fiber.  Myelinating SCs are in blue. The SC microvillar processes contacting 

nodal region are not shown. The node of Ranvier (in red dots) is flanked on either side by 

paranodal (PN) region (in green dashed lines), which are immediately apposed by 

juxtaparanodes (JP) and internodes (IN). Key components mediating axoglial interaction in each 

domain are illustrated below. (adpated from Bhat et al., 2001; Salzer, 2003) 

 

not fused and displays double lines with a separation of 2.5 nm at higher magnification of the 

electron micrograph (Figure 1.2.1aC). For this reason the intracellular fusion becomes quite 

stable whereas the outer faces remain labile (Geuna et al., 2009). Together, these overlaying 

sheets result in a repeat distance of 12 – 14 nm and makes up the compact myelin (Figure 1.2.1a) 

(Saher and Simons, 2010; Trapp and Kidd, 2004). 

Although myelin originates from the SC plasma membrane, its dehydrated mass contains 

a significantly higher amount of lipids (approximately 70-85% lipids and 15-30% proteins) 

compared to most cellular membranes, which are protein-rich. Nature makes the best selection. 

Lipids are electrically inert and therefore perfect biomolecules to build an insulating barrier of  
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Figure1.2.1a Electromicrographic and schematic depiction of compact myelin. A. Electron 

micrograph of the cross section of a single peripheral myelinated fiber. AX: axon B. Higher 

magnification of the compact myelin showing major dense line (MDL) and intraperiod line (IPL). 

C. Molecular organization of the opposing SC plasma membranes forming the MDL and IPL. 

The structure and position of major myelin lipids and proteins are schematically demonstrated 

and corresponded to the MDL and IPL under electron micrograph. modified from (Garcia-

Fresco, 2006; Quarles et al., 2006; Saher et al., 2011) 

 

myelin. The lipid sheath of myelin is a result of quantitative enrichment of certain amphipathic 

classes of lipids, including glycolipids, phospholipids and cholesterol (Figure 1.2.1aC) that are 

commonly found in biological membranes, rather than an invention of myelin-specific lipids 

(Quarles et al., 2006). More than a quarter of the total lipids are composed by cholesterol, whose 

synthesis is rate-limiting and essential during myelin assembly (Saher and Simons, 2010). This is 

suggested by the observation that mice with genetic inactivation of cholesterol biosynthesis or 

regulation in SCs showed severely delayed and hypo-myelination, correlating with peripheral 

neuropathic symptoms including tremor and abnormal gait (Saher et al., 2009; Verheijen et al., 

2009). Such low tolerance for cholesterol deficiency has been attributed to its crucial function in 
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stabilizing myelin structure as well as myelin protein trafficking and partitioning into lipid raft 

microdomains (Saher and Simons, 2010). As an integral component within the compact myelin, 

cholesterol is primarily enriched in the extracellular leaflet of the membrane. Its hydroxyl head 

binds the polarized group of glycosphingolipids and phospholipids while its planar steroid 

backbone is embedded in the membrane lipid bilayer, thereby sealing up the two adjacent 

lamellar stacks. Also preferentially localized at the extracellular membrane face are 

galactosylceramide (cerebroside) and its sulfated derivative sulfatide, the major 

glycosphingolipids that likely contribute to the insulating properties of myelin. Although  these 

galactolipids are of similar abundance to cholesterol, they do not appear to be necessary for 

myelination and maintenance since UDP-galactose/ceramide galactosyltransferase-null mice that 

synthesize no galactosylceramide and sulfatides form relatively normal myelin with subtle 

morphological and conduction abnormalities (Coetzee et al., 1996; Honke et al., 2002; Marcus 

and Popko, 2002). The most prominent phospholipids in myelin are plasmenyl 

phosphatidylethanolamine and unlike galactolipids and cholesterol, is expressed mainly at the 

cytoplasmic side of the membrane. In addition to these common lipids, a minor amount of LM1 

ganglioside (sialosyl-lactoneotetraosylceramide) is a characteristic component of peripheral 

motor and sensory myelin in certain species including humans (Ogawa-Goto et al., 1992). 

Overall, cholesterol, phospholipids and galactolipids constitute a molar ratio in between 4:3:2 

and 4:4:2 and impart a comparatively low intrinsic density to myelin that separates it from other 

membrane fractions or connective tissues during gradient subfractionation (Quarles et al., 2006). 

While there is no myelin-specific lipid, there are proteins that are uniquely expressed or 

abundant in peripheral nerve myelin. These proteins include myelin protein zero (P0), myelin 

basic protein (MBP/P1 protein), peripheral myelin protein-22 (PMP-22) and P2 protein. In accord 
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with their biochemical properties and amino acid sequence, P0 and PMP-22 are integral 

membrane proteins whereas MBP and P2 are extrinsic membrane proteins (Figure 1.2.1aC). Of 

these, the transmembrane glycoprotein P0 with an apparent molecular size of 30 kDa accounts 

for up to 70% of total myelin proteins. P0 associates with cholesterol and connects opposing 

plasma membranes within the intraperiod lines through homophilic binding of its extracellular 

domains. Loss of this association results in abnormal spacing of the extracellular leaflets in the 

compact myelin of P0-null sciatic nerves (Giese et al., 1992). The adhesive property of P0 is 

further verified in nonadherent cells in vitro where cell adhesion was apparently acquired after 

P0 transfection (D'Urso et al., 1990; Filbin et al., 1990). On the other side, the large cytoplasmic 

domain of P0 has also been suggested to play a role in maintaining the major dense line. 

However, this function may not be crucial since no apparent abnormality in intracellular 

compaction was seen in above mentioned P0-null mice. Unlike P0, MBP locates exclusively at 

the cytoplasmic face of the major dense line and thus is not detectable by surface probes. It is 

composed of a heterogeneous group of membrane-bound proteins resulting from alternative 

splicing of seven exons (Quarles et al., 2006).  The most abundant MBP in human or rodent 

myelin has a molecular weight of about 18.5 kDa. MBP is rich in basic amino acids (and hence 

the name) and is believed to mediate fusion of the major dense line of compact myelin through 

interacting with the negatively charged lipid residues, particularly phosphatidylserine. Although  

this is true in CNS myelin of MBP-deficient shiverer mice, the major dense line in PNS myelin 

appears unaffected (Privat et al., 1979). Similarly, PMP-22 deficiency in mice has minimal effect 

on the ultrastructure of PNS myelin (Adlkofer et al., 1995). The fact that significant amount of 

myelin membrane is produced even in the absence of P0, MBP and PMP-22 indicates that 

formation of the spiraling multilamellar structure does not depend on these proteins. 



11 
 

Nevertheless, expression of these myelin proteins is required for myelin compaction and 

alteration in their stoichiometry does have a chronic consequence on the structure and function of 

myelinated nerves. For example, P0-null mice develop a profound hypomyelination, with non-

compacted myelin sheaths and neuropathic symptoms including abnormal motor control 

(Quarles et al., 2006). Reduced expression of PMP-22 in humans is responsible for the 

dysmyelination and focal hypermyelination associated with hereditary neuropathy, whereas 

increased alleles of PMP-22 are a causative factor for Charcot-Marie-Tooth disease type 1A 

(CMT1A) (Wrabetz et al., 2004b). Of note, mutations in the myelin protein genes may lead to 

more severe phenotypes than simple loss of gene dosage. Point mutations in the PMP-22 gene 

that alter its transmembrane domain are causative for the hypomyelination, abnormal SC 

proliferation and limb paralysis in trembler mice, an animal model of human inherited 

neuropathies (Quarles et al., 2006). Mutations in MPZ, a gene that encodes for P0, are also 

associated with Charcot-Marie-Tooth disease (CMT)1B, CMT2, Dejerine-Sottas syndrome and 

congenital hypomyelination (Shy et al., 2004). P2 has a structural and functional role that is 

similar to MBP but is much less abundant in peripheral myelin (5% in human and less than 1% 

in rodents). Whether or not P2 is critical for PNS myelination is not known since no P2-mutants 

have been generated or identified in rodents or humans (Trapp and Kidd, 2004). Besides the 

above well-characterized myelin-specific proteins, a recent proteomic analysis identified more 

than 500 previously unrecognized proteins in purified sciatic nerve myelin, a number that is 

almost 50 fold of what was detected using conventional gel electrophoretic separation. 

Surprisingly, P0 and MBP, although still of predominant abundance, constituted only 21% and 8% 

of total myelin proteins according to mass spectrometric quantification, indicating a previous 

misestimate of their relative abundance due to technical limitations (Patzig et al., 2011). This 
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study provides evidence that the molecular composition of myelin is much more complex and 

facilitates the identification of novel protein candidates for myelin-related disease.  

Since the primary function of the compact myelin is to stably insulate the axon, most of its 

molecules are predicted to have a slow turnover rate. There might be, however, a dynamic 

metabolic exchange in the non-compact SC cytoplasmic compartments, such as the Schmidt–

Lantermann incisures. These funnel-shaped clefts or incisures are loose cytoplasmic openings 

that spiral through the compact myelin and radially channel through the inner and outer glia 

soma. It is also important to note that the inner collar (innermost layer) of myelin sheath is not in 

an immediate contact with the axon, but instead is separated from the axolemma by a 12-14 nm 

periaxonal space, which is essentially an enclosed extracellular environment (Trapp and Kidd, 

2004). The functional significance of periaxonal space is not clear but could involve providing 

metabolic support for the axon through registering with Schmidt–Lantermann incisures (Nave, 

2010b). This is made possible by the gap-junctions contained at the membranes of incisures, 

which have been documented to mediate radial diffusion of small molecules. Although gap 

junctions at Schmidt–Lantermann incisures have not been definitively confirmed by 

ultrastructural study, they do express some of the gap junction proteins including connexin-32 

and connexin-29 (Balice-Gordon et al., 1998; Li et al., 2002). Furthermore, pharmacological 

blockage of gap junctions prevented the radial diffusion across incisures, confirming the 

presence of functional gap junctions at these sites (Balice-Gordon et al., 1998). Mutations in 

connexin-32 have been linked to the inherited PNS dysmyelinating neuropathy associated with 

X-linked CMT disease. Whether the disease pathology involves altered function of Schmidt–

Lantermann incisures is unclear. In addition, microtubules, small vesicles and mitochondria may 
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also be found in this cytoplasmic conduit. They might participate in the motor transport for 

metabolites, protein or lipids during myelin synthesis or maintenance. 

1.2.1b Juxtaparanodes 

The length of a juxtaparanode is estimated to be 10-15 nm and is a continuation of the 

internode on both sides. It is ultrastructurally indistinguishable under transmission electron 

microscopy (TEM) but can be molecularly differentiated by the juxtaparanodal complex 

clustered within the axolemma after freeze fracture (Rosenbluth, 1976). Two shaker type delayed 

rectifying K
+ 

channels, Kv1.1 and Kv1.2 as well as their β subunits are enriched in this complex 

(Salzer, 2003; Wang et al., 1993). These K
+ 

channels are thought to be important in nodal 

repolarization and inhibition of membrane hyperexcitation, hence supporting fast, repetitive 

generation of action potentials (Zhou et al., 1999). K
+ 

channels clustering and juxtaparanodal 

complex formation at this site requires expression of several cell adhesion molecules (CAMs), 

including contactin associated protein 2 (Caspr2) and TAG-1. In particular, Caspr2 associates 

with Kv1.1 and Kv1.2 at its carboxyl terminus via an unknown PDZ domain scaffolding protein 

whereas its cytoplasmic FERM domain anchors Caspr2 to the axon actin cytoskeleton by 

interacting with the adaptor protein 4.1B.  (Poliak et al., 1999; Zoupi et al., 2011). Mice that are 

deficient in Caspr2 or 4.1B lose the clustering of these complexes in juxtaparanodes and have a 

diffuse localization of the K
+ 

channels across the length of internodes (Horresh et al., 2010; 

Poliak et al., 2003; Traka et al., 2003). On the axonal membrane, Caspr2 forms a cis complex 

with a glycosyl phosphatidylinositol (GPI)-anchored neuronal adhesion molecule, TAG-1, which 

in turn binds to its glial counterpart through trans homophilic interaction. The importance of this 

adhesion mediated by TAG-1 is underscored by the failure to form juxtaparanodes in TAG-1 

knockout mice. Nonetheless, neither nerve conduction deficiency nor general phenotypic 
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abnormality has been reported with the absence of Caspr2 or TAG-1 in mice (Poliak et al., 2003; 

Traka et al., 2003). Therefore, the exact role of the adhesive-junctional specializations of 

juxtaparanodes remains elusive. 

1.2.1c Paranodes 

Paranodes lie immediately adjacent to the juxtaparanodes and flank the nodal region. Here, 

the major dense lines become loose, uncompacted SC cytoplasmic pockets that touch the axonal 

surface in a fashion reminiscent of the septate junctions found in invertebrates (Salzer, 2003). In 

doing so, paranodal loops effectively but not completely isolate the periaxonal space from the 

outside milieu. The paranodal region represents the closest apposition between SC membrane 

and axolemma; a distance of 2.5-3.0 nm uniformly separates these two (Trapp and Kidd, 2004). 

Within this gap, adhesive apparatus commonly known as transverse bands are evenly spaced 

(Peters A et al., 1991). These transverse bands are intramembranous particles integrated by 

adhesive components contactin, Caspr (also known as paranodin, NCP1) and the 155 kDa 

neurofascin (NF155) (Salzer, 2003). Contactin associates with Caspr on axonal membrane where 

they form cis complexes, similar to Caspr2 and TAG-1 at juxtaparanodes (Einheber et al., 1997; 

Menegoz et al., 1997; Rios et al., 2000). Through an as yet unidentified mechanism, this 

contactin-Caspr complex interacts with NF155 on glial paranodal loops, thereby integrating the 

axoglial junction (Charles et al., 2002; Gollan et al., 2003). Genetic ablation of any of above 

components results in loss of transverse bands, disrupted paranodal junctions and 

electrophysiological deficits (Bhat et al., 2001; Boyle et al., 2001; Pillai et al., 2009; Sherman et 

al., 2005). In contactin and Caspr deficient mice with normal compact myelin, shaker type K
+ 

channels are dislocated from juxtaparanodes to paranodes in the absence of gross alteration of 

Na
+ 

channel distribution at the nodes, suggesting that paranodal junction specifically affects the 
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maintenance of juxtaparanodes and may create a lateral diffusion barrier for the spatial 

segregation of ion channels (Bhat et al., 2001; Boyle et al., 2001). A couple of studies have 

suggested that paranode  formation may be a coordinated effort of both proteins and lipids since 

gene deletion of the enzymes that make galactosylceramides and sulfatides gave rise to a 

comparatively similar junctional and conduction defects seen in the Caspr knockouts (Dupree et 

al., 1998; Honke et al., 2002). Notably, clusters of mitochondria can be found as the surfaces of 

paranodal bulbs approach the nodes, indicating a metabolic coupling between axon and SC at 

this region (Berthold, 1968; Landon and Williams, 1963). In agreement, lack of septate-like 

junctions is associated with aberrant accumulation of mitochondria in the nodal/paranodal 

regions in sciatic nerves of Caspr knockout mice (Einheber et al., 2006). 

1.2.1d Nodes of Ranvier 

If the myelin sheath was not interrupted by the nodes of Ranvier, a myelinated fiber would be 

likened to an electric wire and most likely have continuous impulse transmission, similar to that 

of an unmyelinated axon. By exposing small stretches of axonal membrane to the extracellular 

milieu at the nodes, action potentials are biologically restricted to this area, thus enabling energy-

efficient saltatory conduction. To generate and regenerate action potentials, myelinated fibers 

build a battery of ion channels at the nodes. Among these the voltage-gated Na
+ 

channels are 

most predominant and carry the ultimate task of nodal depolarization. It is estimated by freeze-

fracture electron microscopy that about 1000-1500/μm
2 

Na
+ 

channels are accumulated at the 

nodal area (Rosenbluth, 1976), a density 25-fold higher than the entire internodal region (Salzer 

et al., 2008). Specifically, Nav1.6 is the main α-subtype at mature nodes since it requires minimal 

repriming time and exhibits user-dependent kinetics,  befitting the high frequency of activity at 

this site (Boiko et al., 2001; Herzog et al., 2003). In mouse mutants with motor end plate disease, 
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depletion of Nav1.6 coincided with delayed nodal maturation and slowed nerve conduction 

velocity (NCV) (Kearney et al., 2002). Interestingly, ultrastructural studies also revealed 

apparent paranodal dysmyelination in these mice, which suggests a more complex involvement 

of Nav1.6 in the organization of myelinated fibers (Rieger et al., 1984). The gating properties of 

Nav1.6 are further modulated via associating with the transmembrane β subunits, which organize 

membrane proteins at nodal axolemma (Isom, 2002; Ratcliffe et al., 2001). In addition to sodium 

channels, Na
+
/K

+
-ATPase, Na

+
/Ca

2+
 antiporters and voltage-gated potassium channels including 

KCNQ2, KCNQ3 and Kv3.1b have also been localized to certain subsets of nodes, though in 

much less amount (Salzer, 2003; Zoupi et al., 2011). This channel heterogeneity might reflect a 

complex regulation of repetitive discharges, for instance by KCNQ2 and KCNQ3, and nodal 

excitability (Cooper and Jan, 2003). A key feature that discriminates PNS nodes from that of 

CNS is the contact of nodal axolemma by interdigitating processes projected from the outer 

collar of adjacent myelinating SCs, termed microvilli. Disorganized and blunted microvilli due to 

genetic deletion of SC laminin receptor dystroglycan correlated with a reduction in nodal sodium 

channels and nerve conduction impairment (Saito et al., 2003). Similar to paranodes and 

juxtaparanodes, establishing axoglial interaction and membrane targeting of ion channels relies 

on the molecular assembly of multiprotein complexes by adhesion molecules expressed in axonal 

and glia. Nav1.6 and KCNQs are recruited to this axonodal complex by a multivalent cytoskeletal 

protein ankyrin G (Lemaillet et al., 2003; Pan et al., 2006). Ankyrin G in turn binds to βIV-

spectrin submembranously via which it is tethered to neuronal actin cytoskeleton (Salzer, 2003). 

Disrupting βIV-spectrin or ankyrin G expression in vitro and in vivo respectively caused aberrant 

or abrogated nodal formation (Dzhashiashvili et al., 2007; Yang et al., 2004). This indicates that 

submembranous cytoskeleton is critically involved in stabilizing the nodal complex. At the 
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axonodal and microvillar interface, members of the L1-like immunoglobulin superfamily 

(IgCAMs), NrCAM and the 186 kDa isoform of neurofascin (NF186), provide a bridging 

interaction that connects axonal cytoskeleton with SC microvilli by binding to glial matrix 

protein gliomedin (Eshed et al., 2005). This interaction seems to serve as an early SC signal that 

specifies localization of Na
+ 

channel-binding CAMs since either of NrCAM, NF186 or 

gliomedin knockouts display defective clustering at heminodes (early nodal intermediates on 

each side of adjacent myelin segments) but not mature nodes in myelinated nerves (Feinberg et 

al., 2010). Based on this evidence, these CAMs are not absolutely required for mature node 

formation and might have been replaced by other CAMs in these knockouts. 

1.3 The Regulation of Peripheral Nerve Myelination and Demyelination by Neuregulin-

ErbB Signaling 

The precise spatial and functional organization of multiple cell types in the complex nervous 

system of vertebrates is achieved through ongoing reciprocal interactions between neurons and 

glia. It has long been recognized that the generation, proliferation and myelin production of SCs 

are tightly regulated by mitogenic and trophic signals from axons (Friede and Samorajski, 1967). 

It is also clear that axonal caliber directs whether or not a given axon will be myelinated as well 

as the subsequent length and thickness of internode formed. The axonal cue transducing this 

information, however, remained elusive. Recently, a series of elegant studies utilizing transgenic 

rodent models elucidated that neuregulin-1s (NRG1s), a family of axon-derived gliotrophic 

factors, are the key molecules dictating SC phenotypes at various stages of development. 

1.3.1 NRG1 and ErbB Receptors 

More than fifteen membrane-bond and secreted proteins (Esper et al., 2006; Falls, 2003) 

resulting from alternative promoter usage and RNA splicing (Falls, 2003; Law et al., 2006) 
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comprise the NRG1 family. They can be subdivided into three major isoforms (I, II, and III) 

based on their distinct amino terminal sequences (Buonanno and Fischbach, 2001; Garratt et al., 

2000a). NRG1 type I (also known as heregulin, neu differentiation factor), NRG1 type II (also 

known as glial growth factor [GGF]) and NRG1 Type III (also known as acetylcholine receptor-

inducing activity [ARIA]) are transmembrane proteins that  undergo proteolytic cleavage by 

metalloproteinases. As a consequence of this cleaving, NRG1 types I and II are shed from the 

neuronal cell surface and function as paracrine signaling molecules. In contrast, NRG1 type III 

remains tethered to the membrane through its cysteine rich domain (CRD) and provides a 

juxtacrine signal (Wang et al., 2001). These three isoforms are the most abundant forms 

expressed in many projection neurons, most notably spinal motor and dorsal root ganglia (DRG) 

neurons, but also in glia, including Schwann cells. All NRG1 isoforms contain an epidermal 

growth factor (EGF)-like signaling domain that is necessary and sufficient for activation of their 

cognate receptors, members of the ErbB family of tyrosine kinase receptors which includes 

EGFR (ErbB1), ErbB2, ErbB3 and ErbB4 (Yarden and Sliwkowski, 2001). Despite the structure 

and sequence homology between EGFR and ErbB receptors, NRG1 selectively binds to ErbB3 

and ErbB4 but shows poor affinity to EGFR (Tang and Lippman, 1998). ErbB2 lacks a ligand-

binding domain (LBD) and hence cannot bind directly to NRG1. Instead, it acts as a co-receptor 

with ErbB3, which has a LBD but lacks an active kinase activity. While ErbB2-4 express in 

various neuronal and glial cell types in the PNS (Pearson and Carroll, 2004), their roles in 

mediating axon-regulated SC biology are so far the best understood.  

NRG1 binds with high affinity to ErbB3 on the SC membrane and leads to its 

heterodimerization with ErbB2 and subsequent activation of downstream effectors. NRG1-ErbB 

signaling has a key role at essentially every developmental stage of the Schwann cell lineage 



19 
 

(Garratt et al., 2000a), including promoting gliogenic fate of neural crest cells (Leimeroth et al., 

2002; Shah et al., 1994), the migration of Schwann cell precursors and their subsequent 

proliferation, survival, and maturation (reviewed in Garratt et al., 2000a).  

Figure 1.3.1 Differential proteolytic cleavage of NRG1 isoforms and concentration-

dependent regulation of SC myelination by NRG1 isoforms. After metalloproteinase (MP) 

cleavage, type I and type II NRG1 are released from axonal membrane and act as paracrine 

molecule to ErbB receptors (not shown) on SC membrane. However, type III NRG1 remains 

tethered to the axolemma due to its cysteine-rich domain (CRD). Regardless of the isoform type, 

low concentration of soluble NRG1 promotes myelination whereas high concentrations of NRG1 

inhibit myelination. EGF: epidermal growth factor. Ig: immunoglobulin. (adapted from Nave and 

salzer, 2006) 

 

In confirmation of NRG1’s importance in SC development, mice with targeted disruption of all 

or certain NRG1 genes and its receptors demonstrate embryonic lethality with severe 
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deficiencies in multiple cell types, including SCs. (Britsch et al., 1998; Garratt et al., 2000a; 

Kramer et al., 1996; Meyer and Birchmeier, 1995; Meyer et al., 1997). 

1.3.2 Regulation of SC Myelination by NRG1 in Developing Nerves 

NRG1 type III is essential for the ensheathment and myelination of axons by SCs as SCs 

fail to either myelinate or properly ensheath NRG1 type III
-/-

 DRG neurons in vitro (Taveggia et 

al., 2005). Further, genetically enforced expression of NRG1 type III in NRG1 type III
-/-

 neurons 

substantially rescued myelination to levels similar to those observed in wildtype SC-DRG co-

cultures. As indicated previously, levels of NRG1 vary widely on different axon types in a 

manner correlated with their ensheathment fate: unmyelinated sympathetic neurons express 

minimal levels of NRG1 type III, whereas BDNF and NT-3-dependent DRG neurons which are 

more consistently and heavily myelinated express high levels of this NRG isoform (Snider and 

Wright, 1996). Notably, exogenous expression of NRG1 type III in the post-ganglionic fibers of 

sympathetic neurons converts these normally unmyelinated and ensheathed fibers to a 

myelinated fate in vitro (Taveggia et al., 2005). 

In agreement with the unusually thick myelin sheaths observed upon overexpression of 

NRG1 type III in SC-DRG co-cultures (Taveggia et al., 2005), transgenic mice overexpressing 

NRG1 type III in DRG, motor neurons or sciatic nerves become hypermyelinated, as indicated 

by a decreased g-ratio (measures the ratio between the diameter of the axon cylinder and that of 

the myelinated axon) (Michailov et al., 2004). This effect appears specific to NRG1 type III 

since transgenic mice overexpressing the secreted NRG1 type I demonstrate no difference from 

wild-type. These data suggests that the juxtacrine, but not paracrine stimulation of ErbB by the 

type III isoform is essential in regulating myelin thickness. By contrast, heterozygous NRG1 

type III mice with 50% reduction of NRG1 gene dosage express significantly reduced myelin 
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protein and transcription factors, correlating with hypomyelination (Taveggia et al., 2005) and 

decreased NCV (Michailov et al., 2004). Characterization of myelination or later aspects of 

peripheral nerve development in homozygous NRG1 type III-/- mice are not possible due to 

embryonic lethality. Despite the fact that  these results support isoform-specific effects of NRG1 

in instructing SC myelination, another study using DRG/SC co-cultures found that low 

concentrations of soluble GGF also promoted myelination and high doses of NRG1 type III 

began to suppress myelination in a MEK/Erk-dependent manner (Syed et al., 2010). Therefore, 

the binary choice of pro- and contra myelination by NRG1 is concentration-dependent rather 

than necessarily isoform-specific. 

Whereas myelin growth is clearly titrated to the amount of NRG1 available, ErbB2 and 

ErbB3 are generally expressed at saturating levels throughout development as no decrease in 

myelination was observed in ErbB2
+/-

 mice (Michailov et al., 2004). However, SC-specific 

ablation of the ErbB2 gene phenocopies myelination seen in NRG1 type III
+/-

 mice (Garratt et al., 

2000b). Likewise, conditional mouse mutants that express a dominant-negative ErbB (DN-ErbB) 

receptor in SCs had delayed onset of myelination, increased g-ratio and shorter internodal length 

(Chen et al., 2006). In line with the morphological defects, slower NCV and abnormal 

mechanical sensitivity were also observed in mice expressing DN-ErbB receptor (Chen et al., 

2006). Although NRG1 type III is necessary to induce SC myelination, it is clearly not sufficient 

since the heterologous, juxtacrine source of NRG1 type III from Chinese hamster ovarian cells 

failed to stimulate myelin protein expression in rat SCs (Taveggia et al., 2005). Thus, other 

axonally-derived signals, such as progesterone (Melcangi et al., 2003; Schumacher et al., 2004), 

BDNF (Chan et al., 2001) and insulin-like growth factor (Cheng et al., 1999), may also be 

needed to initiate the myelin phenotype. It remains to be addressed however to what extent are 
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these molecules involved in the relevant processes of myelination, including radial sorting and 

myelin gene upregulation. 

NRG1 type III predominantly activates the phosphatidylinositol 3-kinase (PI3K)-Akt 

pathway, which is required for SC survival, proliferation and the initial events of myelination 

(Nave and Salzer, 2006). Inhibition of PI3K with pharmacologic agents or dominant negative 

gene expression blocks or inhibits myelination in vitro (Maurel and Salzer, 2000b; Ogata et al., 

2004). On the contrary, overexpression of PI3K or activated Akt promotes myelin protein 

expression in SC-DRG co-cultures and augmented myelin sheath formation during regeneration 

of allogenic sciatic nerve grafts (Ogata et al., 2004). Interestingly, GGF also up-regulates PI3K 

activation in myelinated co-cultures, suggesting an involvement of PI3K in SC dedifferentiation 

induced by excessive NRG1 stimulation at a later stage (Zanazzi et al., 2001). Consistent with 

this notion, our group observed a marked elevation in the level of phosphorylated Akt in 

correlation with enhanced ErbB2 activity and myelin degeneration following heuregulin 

treatment in myelinated sensory SC-DRG co-cultures (Yu et al., 2008). However, activation of 

this signaling axis might not be functionally significant in this matter since inhibiting PI3K had 

no impact on the ability of NRG1 in promoting myelin degeneration in a same co-culture system 

(Harrisingh et al., 2004). 

1.3.3 Regulation of SC Myelination by NRG1 in Mature Nerves 

NRG1 and ErbB2 receptor are abundantly expressed in neonatal nerves but decrease in adult 

nerves (Dobrowsky et al., 2005; Huijbregts et al., 2003), indicating that NRG1-ErbB signaling 

might be dispensable for the maintenance of mature myelin. Indeed, neither continuous treatment 

in myelinated co-cultures with a PI3K inhibitor (Maurel and Salzer, 2000b) or ErbB2 gene 

deletion in adult SCs in vivo (Atanasoski et al., 2006) affected myelin integrity or SC 
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proliferation and survival after nerve injury. It is therefore highly likely that a distinct set of 

cellular and extracellular factors are employed to maintain and regulate the myelinated SC 

phenotype. On the other hand, pathological activation of NRG1 signaling in myelinated nerves, 

triggers SC dedifferentiation and proliferation. This has been repeatedly demonstrated in 

established myelinated SC-DRGs co-cultures in which addition of exogenous NRG1 such as 

GGF results in substantial demyelination that progresses from paranodes to internodes (Zanazzi 

et al., 2001). Such a phenomenon is reminiscent of Wallerian degeneration during nerve injury, 

which has been shown to display selective induction of GGF (Carroll et al., 1997). The 

involvement of ErbB2 in this response is somewhat disputable. Although some observed 

increased ErbB2 activity and blockade of SC proliferative response by ErbB2 inhibitor after 

sciatic nerve transection (Guertin et al., 2005), others reported that SC proliferation was 

unaffected in a mouse model of Wallerian degeneration with the conditional ablation of ErbB2 

expression (Atanasoski et al., 2006). By contrast, rapid and sustained phosphorylation of 

extracellular signal-regulated kinase (Erk) is consistently seen subsequent to GGF administration 

in myelinated cultures or axotomy in vivo (Harrisingh et al., 2004; Zanazzi et al., 2001). Erk is a 

common downstream signal of NRG1 that favors SC proliferation and demyelination. In support 

of this, selective activation of Raf/Erk independent of NRG1 drives SC dedifferentiation whereas 

Erk inhibition abrogated demyelination induced by a high concentration of NRG1 (Harrisingh et 

al., 2004). 

Adult SCs retain a striking ability to remodel and this remarkable plasticity is regulated 

by the transcription factor c-jun (Parkinson et al., 2008). Through a series of elegant studies, 

Parkinson et al., (2008) demonstrated that c-jun expression and activity is downregulated during 

myelin differentiation in vitro and in vivo, but is rapidly upregulated upon nerve injury. In 
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addition, myelin gene expression was facilitated in c-jun-null SCs and enforced c-jun expression 

in SCs significantly reduced the number of myelin internodes formed in SC-DRG co-cultures, 

indicating that c-jun is a negative regulator of myelination. Similarly, absence of c-jun caused a 

marked delay in the rate of myelin loss both after axon removal and nerve transection. 

Importantly, exposure of SC DRG/ co-cultures to NRG1 led to a substantial c-jun induction 

concomitant with extensive myelin fragmentation. These findings provide compelling evidence 

that c-jun contributes to NRG1-induced demyelination. While transient SC dedifferentiation and 

proliferation permits axonal regeneration after axotomy, additional or excessive NRG1 signaling 

outside this context could prolong unwanted or pathological demyelination. For example, 

transgenic mice overexpressing NRG1 type IIβ3 (GGF β3) specifically in myelinating SCs 

developed hypertrophic demyelinating peripheral neuropathies and peripheral nerve sheath 

tumors preceded by SC hyperplagia (Huijbregts et al., 2003). 

 

Figure 1.3.3 Regulation of SC myelination and demyelinaton by NRG1/ErbB signaling in 

developing and mature nerve. Stimulation of ErbB2 receptor by NRG1 during peripheral nerve 

development encourages SC myelination. In contrast, soluble NRG1 treatment in culture, nerve 

axotomy and pathological conditions such as diabetic peripheral neuropathy (DPN) deregulates 

NRG1/ErbB cassette and triggers demyelination. 
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In a clinical biopsy analysis, overexpression of ErbB2 and ErbB3 receptors in SCs was 

consistently noted in sural nerves of CMT1A patients (Massa et al., 2006). Upregulation of these 

receptors were possibly driven by events other than that initiated during axonal denervation and 

may predict a deregulated and persistent NRG-ErbB activity that contributes to impaired SC 

differentiation, SC hyperplagia and recurrent demyelination seen in this disease. Marked c-jun 

immunoreactivity in SC nuclei was also detected in sural, dorsal ulnar nerve and dermal 

myelinated nerve specimens from subjects with a variety of axonal or demyelinating 

neuropathies including vasculitic neuropathy, CMT1A and Guillain-Barré syndrome but not 

healthy controls (Hutton et al., 2011). These observations correlate with the “Wallerian-like 

degeneration” manifested in some human neuropathies (Griffin and Sheikh, 2004; Wrabetz et al., 

2004a; Zochodne et al., 2008) and provide evidence for a mechanism by which altered NRG1 

signaling and SC trophism may underlie the phenotypic demyelination in these diseases. 

1.4 Myelin-related Disorders 

Loss of myelin not only manifests as the pathological hallmark of demyelinating diseases, 

such as multiple sclerosis and CMT (Bhatheja and Field, 2006; Boyden, 2000; Halliday and 

McDonald, 1977), but also occurs as a secondary event to a variety of neuropathic and 

psychiatric disorders, including diabetic neuropathy and schizophrenia (Mitterauer, 2007; Valls-

Canals et al., 2002). Regardless of whether it is a causative or secondary event, the consequence 

of demyelination is the loss of the insulating layer and the electrical properties of the axon, 

which manifests clinically as slowed NCVs. Since demyelinated axons cannot keep up with the 

high electric and energy demand required for fast reaction speeds, they progressively lose their 

integrity. This ultimately incapacitates most motor, sensory and higher functions of the brain at 

advanced stages of above-mentioned diseases (Franklin and Ffrench-Constant, 2008). Primary 
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demyelinating neuropathies encompass a heterogeneous group of disorders and depending on the 

causes, can be subcategorized into hereditary and autoimmune neuropathies. These conditions 

are characterized by developmental or acquired myelin degeneration resulting from genetic 

defects or immune assault on various myelin components or regulatory proteins. Diabetic 

neuropathy also affects myelinated fibers and segmental demyelination has been repeatedly 

documented in patients with type 1 or type 2 diabetes (Sharma et al., 2002). Since treating 

diabetes-associated demyelinating neuropathy by inhibiting neuregulin signaling is my primary 

research interest, I will focus on discussing the clinical features, pathology, pathogenesis and 

treatment of diabetic neuropathy with a particular emphasis on segmental demyelination while 

touching briefly on two other common demyelinating disorders. 

1.4.1 Charcot-Marie-Tooth Disease 

Although myelin generation initiates prenatally in mammals, myelination predominantly occurs 

after birth and continues throughout maturation of the nervous system (Brodal, 2010). This is 

why most inherited myelin defects are not disease-causing until after infancy. The complex 

cellular adaptation of myelinating SC and axon biology predispose myelinated fibers to 

demyelinating and dysmyelinating neuropathies secondary to a number of gene mutations. Such 

neuropathologies, when other causes are excluded, are collectively known as Charcot-Marie-

Tooth disease (CMT), or hereditary motor and sensory neuropathy. CMT affects approximately 

1-8 in every 10,000 individuals and 125,000 total in the US. Because an effective, disease-

specific treatment is not available, current management of CMT is limited to symptomatic 

improvement with physical and orthopedic support. 

According to the primary lesion, CMT is further recognized as demyelinating (CMT1) or 

axonal (CMT2) forms. CMT1 is more common, has an early onset and typically presents with 
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segmental demyelination and onion bulb formation of degenerating SCs. However, these two 

forms are often difficult to differentiate by morphological diagnosis as axonal neuropathy often 

leads to myelin sheath degeneration (Griffin and Hoffman, 1993; Scherer and Salzer, 2001) 

whereas axonal atrophy may follow demyelination (Sancho et al., 1999). The most widely used 

clinical criterion, though imperfect, separates CMT1 and CMT2 at a forearm motor conduction 

velocity of less or greater than 38 m/s, respectively (Wrabetz et al., 2004a). Mutations in proteins 

of both compact and non-compact myelin are responsible for the diverse disease phenotypes in 

CMT1. As mentioned earlier, PMP22 gene deletions, duplications as well as mutations are the 

pathogenetic mechanisms underlying hereditary neuropathy with liability to pressure palsies, 

CMT1A and Dejerine-Sottas syndrome (Wrabetz et al., 2004a). Mutations in GJB1, a gene that 

encodes connexin 32, are pathogenically involved in the X-linked dominant CMT1X (Bergoffen 

et al., 1993). Connexin 32 is a gap junction protein localized to adjacent myelin membranes at 

paranodal loops and Schmidt–Lantermann incisures (Bruzzone et al., 1996; Trapp and Kidd, 

2004). Interestingly, biopsies of CMT1X patients revealed a more prominent axonal 

degeneration than demyelination (Hahn et al., 2001; Vital et al., 2001), indicating a dependency 

of axonal integrity on functional myelin. Vice versa in CMT2, axonopathy frequently induces 

Wallerian degeneration, a condition in which myelinating SCs degenerate and revert to a 

proliferating phenotype (Griffin and Hoffman, 1993; Scherer and Salzer, 2001). This 

interdependency between myelinating SC and axon physiology is further underscored by the fact 

that a few mutations identified in MPZ are linked to a CMT2-like phenotype (Frei et al., 1999). 

1.4.2 Guillain-Barré Syndrome 

Guillain-Barré syndrome (GBS) is a group of acquired demyelinating diseases that affect the 

PNS by autoimmune attack misdirected toward an antigen on nerve fibers. Clinical 
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manifestations of GBS start with an ascending paralysis from distal limbs and in severe cases 

may spread to facial and life-threatening respiratory muscles (Griffin and Sheikh, 2004). More 

than 90% of GBS occurrences are in the form of acute inflammatory demyelinating 

polyneuropathy (AIDP) (Emilia-Romagna Study Group on Clinical and Epidemiological 

Problems in Neurology, 1998); the immunogenic nature of disease pathology is evident from the 

apparent lymphocytic infiltration throughout the endoneurial space. Affected sensory or motor 

nerve fibers first demonstrate vacuolization of the myelin sheath, followed by extensive vacuolar 

myelin degeneration, and subsequently clearance of myelin debris by invading macrophages 

(Griffin and Sheikh, 2004). The target antigens of AIDP are largely unknown but thought to 

involve multiple compounds that contain ganglioside-like moieties, which are expressed in high 

abundance in peripheral nerve tissues. This is derived from the presence of high titers of anti-

ganglioside serum antibodies in GBS patients (Oomes et al., 1995; Rees et al., 1995; Sheikh et 

al., 1998) and the recapitulation  of GBS in animal models via  ganglioside immunization 

(Griffin and Sheikh, 2004; Kusunoki et al., 1999). In addition to antibody-induced myelin 

destruction, activated T-cells may also contribute to breakdown of blood nerve barrier and SC 

and myelin injury (Asbury et al., 1969; Sivieri et al., 1997). Accordingly, the treatment strategy 

for GBS is to remove and block the pathogenic antibodies by plasmapheresis and administration 

of high dose immunoglobulins. Otherwise, breathing aid and supportive care are provided during 

complications such as respiratory failure. 

1.4.3 Diabetic Peripheral Neuropathy and Segmental Demyelination 

Diabetes is estimated to affect 347 million people globally as of 2008 (Danaei et al., 2011) 

and this number is expected to double by 2030 (Wild et al., 2004). Depending on the case 

definitions used, 30-70% of patients with either type 1 or type 2 diabetes are diagnosed with 
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some form of peripheral neuropathy (NIDDK, 2009) (National Institutes of Diabetes and 

Digestive and Kidney Diseases). A distal symmetric sensorimotor polyneuropathy is the most 

frequent manifestation and affects 90% of patients with Diabetic Peripheral Neuropathy (DPN) 

(Harati, 2010). Patients with this form of DPN are predisposed to foot ulceration and increased 

risk of amputation; ulcerative complications from DPN account for approximately 87% of non-

traumatic lower extremity amputations. In addition to this traumatic medical event, DPN is also a 

major contributing factor to the development of joint deformities, limb threatening ischemia as 

well as other various neurological dysfunctions (Harati, 2010). This greatly reduces the quality 

of life in people with diabetes through increased disability and is assuming more hospitalizations 

than all other diabetic complications combined (Mahmood et al., 2009). As a consequence, 

approximately $15 billion are spent on DPN annually in the US, causing a major drain on 

healthcare expenditure (Rathmann and Ward, 2003). 

1.4.4 Clinical Features and Pathology 

DPN encompasses a wide spectrum of clinical and subclinical syndromes differing in their 

pattern of neurological involvement, anatomic distribution, specific neuropathic alterations, risk 

covariates and course of development. In distal symmetric sensorimotor polyneuropathy, damage 

to nerves initially begins with the longest axons, which accounts for the loss of sensation having 

a “stocking-glove” distribution. Degeneration continues to progress proximally in a dying-back, 

length-dependent pattern. (Boulton and Malik, 1998). Although post-mortem analysis indicates 

that all types and sizes of fibers are affected, sensory symptoms predominate over motor deficits 

at least in the early phase, likely due to the longer (and therefore more susceptible) axons needed 

to reach the epidermis of the distal limbs. Patients diagnosed with this form of neuropathy often 

display symptoms such as paradoxical association of numbness with allodynia and dysesthesia 
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associated with small fiber sensory dysfunction. As DPN advances, large sensory and motor 

fibers also become impaired. This leads to decreased NCV, loss of vibratory sensation and 

proprioception, and at advanced stages sensory deafferentation (Habib and Brannagan, 2010; 

Harati, 2010; Tahrani et al., 2010), all of which are likely to reflect progressive, irreversible loss 

of myelinated fibers. In particular, segmental demyelination has been a conspicuous finding of 

pathological change and repeatedly documented in nerve biopsies of patients with DPN (Behse 

et al., 1977; Thomas and Lascelles, 1965; Viswanath et al., 1974). When assessed in teased fiber 

preparation, it is characterized by breakdown or loss of single or few continuous myelin 

internodes (Mizisin and Powell, 2003). Other reports from electron microscopic analysis of 

diabetic sural nerves described granular and vesicular disintegration of myelin sheath as well as 

SC membrane hyperplasia (Yagihashi and Matsunaga, 1979). This patho-morphological pattern 

also manifested in peripheral motor nerves of WBN/Kob rats with spontaneous and long-lasting 

diabetes, which exhibited myelin blebbing and distention following vesicle and granule 

accumulation within myelin lamella (Ozaki et al., 1996). 

For a long time there has been considerable dispute over whether axonopathy or 

Schwannopathy is the primary lesion leading to segmental demyelination and peripheral nerve 

injury in diabetes; evidence supporting both views has been derived from clinical and 

experimental analysis of DPN. Based on sural nerve biopses, Chopra et al. reported segmental 

demyelination in the absence of significant axonal abnormality prior to the onset of DPN and 

confirmed this in teased fibers of streptozotocin-induced diabetic monkeys (Chopra et al., 1969; 

Chopra et al., 1977). In contrast Dyck et al. concluded that axon loss was predominant and the 

degenerating myelin had a clustered distribution characteristic of secondary demyelination (Dyck 

et al., 1986). The latter finding was aligned with an earlier observation that some fibers 
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underwent axonal atrophy without concordant decrease in internodal length (Lascelles and 

Thomas, 1966). Others have also suggested that the dying-back progressive fiber loss is in fact 

an initial consequence of the primary degeneration in spinal motor and dorsal sensory roots 

(Couers and Hildebrand, 1965; Greenbaum et al., 1964; Olsson et al., 1968). The majority of 

evidence, however, supports a co-existence of SC demyelination and axonal degeneration, either 

in connection or independently (Behse et al., 1977; Lascelles and Thomas, 1966). In agreement, 

both primary segmental demyelination and demyelination secondary to axon degeneration were 

identified in the same sural nerve biopsies from diabetic patients afflicted with severe sensory 

neuropathy (Said et al., 1983). Based on these findings and given the systemic metabolic 

disturbances in diabetes mellitus, it seems more plausible that a widespread pathology of diverse 

cell types would occur and contribute to DPN. 

1.4.5 Pathogenesis and Treatment 

With years of ongoing efforts, a number of biochemical events have been established as 

important mediators linking hyperglycemic stress to the development of DPN: increased 

oxidative stress, formation of advanced glycation end-products (AGEs), overflux of glucose 

through polyol and hexosamine pathways, abnormal activity of mitogen-activated protein 

kinases (MAPKs) and nuclear factor-κB (NF-κB), neuroinflammation as well as impaired 

neurotrophic support. Unfortunately, none of the compounds developed against these targets has 

shown unequivocal effectiveness in preventing, reversing, or even slowing the neuropathic 

process in humans (Mahmood et al., 2009; Obrosova, 2009; Tahrani et al., 2010). A principal 

reason to explain these failures is the complexity of the pathogenesis of DPN since this array of 

molecular targets and pathways do not contribute to its pathophysiological progression in a 

temporally and/or biochemically uniform fashion. Instead, the relative importance of these 
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biochemical insults varies upon diabetes duration, genetic heterogeneity and additional 

pathological conditions. To date, the only effective strategy and gold standard method for 

preventing and treating DPN remains aggressive glycemic control, supplemented by FDA-

approved medications providing pain relief (Tahrani et al., 2010). However, many patients 

struggle to maintain normoglycemia and the already established neuropathic syndromes 

necessitate the development of therapies that directly address the underlying nerve damage and 

repair. The difficulty in pursuing such therapies begins with the fact that we do not even know, at 

a molecular signaling level, how these metabolic disturbances are coupled to the many functional 

and morphological changes observed in clinical biopsies, such as segmental demyelination. In 

this regard, establishing or re-establishing appropriate neuron-glia phenotypes is directed by the 

molecular signals, typically growth factors, that are operative in reciprocal axoglial interplay 

(Dobrowsky et al., 2005). Although there is no doubt that impaired neurotrophic support 

pathogenically contributes to the degeneration of diabetic nerves (Anand et al., 1996; Hellweg 

and Hartung, 1990; Hellweg et al., 1994; Jakobsen et al., 1981), nerve growth factor 

supplementation failed to demonstrate definitive efficacy in improving symptoms of DPN at 

tolerated doses in clinical trials (Apfel, 2002). Among the explanations for this failure is the 

alarming possibility of altered growth factor responses and signaling in hyperglycemically-

stressed neurons and glia (Dobrowsky et al., 2005). Evidence from our group supports that this is 

likely to be the case for NRG1 signaling in demyelinated nerves in diabetes. As discussed earlier, 

increased NRG1-ErbB activity is sufficient to induce demyelination and neuropathic change in 

the peripheral nerve independent of diabetes (Huijbregts et al., 2003). Of note, the “onion bulbs” 

that are indicative of SC hyperproliferation in GGF β3-induced hypertrophic demyelinating 

neuropathies, are also frequently observed in diabetic nerve biopsies. We have previously shown 
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that hyperglycemia enhanced ErbB2 phosphorylation in sciatic nerves of streptozotocin (STZ)-

induced diabetic animals (Dobrowsky et al., 2005) and augmented neuregulin-induced 

demyelination in myelinated SC-DRG neuron co-cultures, possibly through downregulation of 

an endogenous ErbB2 tyrosine kinase inhibitor protein (Yu et al., 2008). Treatment of diabetic 

mice that had developed motor and sensory nerve deficits with an ErbB2 inhibitor corrected 

motor conduction velocity deficits and mechanical hypoalgesia, but only elicited an insignificant 

trend of improvement in unmyelinated sensory fibers, indicating that myelinated fibers are 

particularly affected by increased ErbB2 activation (McGuire et al., 2009). Indeed, expression of 

constitutively active ErbB2 specifically in myelinating SCs was sufficient to cause defects in 

motor conduction and mechanical insensitivity, which was restored by ErbB2 inhibition. More 

recently, our biochemical analysis of diabetic mice revealed that diabetes differentially affects 

the levels of NRG1 isoforms in sciatic, sural and tibial nerves, with the most notable change 

being that sural nerves exhibit significant increases in NRG1 type I and decreases in NRG1 type 

III (unpublished observation). However, similar to most other reports, we identified no 

difference in the g-ratio in sciatic nerves between diabetic and nondiabetic mice (McGuire et al., 

2009). While this could be intriguing, it has been widely recognized that rodents are notorious 

for not reproducing the segmental demyelination associated with human DPN (Mizisin et al., 

2007).  In addition, most clinical observations of segmental demyelination come from sural 

nerve biopsies (Behse et al., 1977; Dyck et al., 1986), which agree with our result. Thus, our data 

suggest a role for pathological induction of NRG1-ErbB in diabetes-induced demyelination and 

neurological dysfunction of myelinated fibers. Although ErbB2 inhibitors showed effectiveness 

against neuropathic development in myelinated nerves, diabetes-induced alterations in growth 

factor signaling can be rather heterogeneous in terms of isoform and fiber type and non-specific 
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suppression of ErbB signaling undermines survival of unmyelinated axons (Chen et al., 2003). A 

parallel approach to treat diabetic complications such as DPN is to upregulate the endogenous 

reparative potential of cells to circumvent the temporal and biochemical heterogeneity of the 

pathogenic mechanisms which underly the development of DPN. Such a therapeutic “paradigm” 

may be achieved through modulating the function of molecular chaperones.  Along this line, we 

have identified a small molecule that through inducing neuroprotective molecular chaperones, 

conferred promising therapeutic efficacy in reversing multiple phenotypes associated with the 

degeneration of unmyelinated and myelinated nerves, including NRG1-induced demyelination. 

The remainder of this chapter will review briefly the functions of heat shock proteins and their 

therapeutic implication in DPN and NRG1-induced demyelination. 

1.5 Heat Shock Proteins and Stress Response 

      Throughout phylogeny, cells have conserved a genetic program for the rapid and robust 

expression of a special set of proteins - heat shock proteins (HSPs), in response to obnoxious 

environmental stimuli. This increased synthesis of HSPs is accompanied by a marked inhibition 

of the synthesis of almost all other proteins and is crucial for cellular protection and recovery 

from “life-threatening” insults. For example, a prior mild heat exposure increased the survival of 

cells after an otherwise lethal hyperthermic stress (Li and Werb, 1982; Lindquist, 1986). As the 

name “heat shock” suggests, this phenomenon is first and best characterized in the setting of heat 

stimuli (Ritossa, 1962). However, exposure to ischemic, hypoxic, chemical, inflammatory, 

oxidative and mechanical stress have also been reported to potently elicit the protective effect of 

the heat shock response (HSR) (Jaattela and Wissing, 1992). The generality of this response can 

be explained by the fact that there is a greater demand for the chaperone function of HSPs as a  
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Figure 1.5 Heat shock proteins perform both regular “housekeeping” duty and regulation 

of signal transduction. 

 

result of an increased amount of protein damage caused by these various forms of internal and 

external cellular stresses. In fact, most HSPs are better described as molecular chaperones. With 

the aid of ATP hydrolysis, molecular chaperones perform such housekeeping functions as: aiding 

in the correct folding and transport of nascent polypeptides during protein biogenesis. Under 

conditions of stress, chaperones prevent and solubilize protein aggregates by assisting in their 

refolding or aid the proteasomal or lysosomal clearance of denatured and/or damaged proteins 

(Ellis, 1987; Muchowski and Wacker, 2005). Although much less is understood compared to 

their chaperoning function, the involvement of HSPs in signal transduction is being uncovered 

by an increasing body of evidence. For instance, HSP70 and HSP27 have been shown to inhibit 

apoptotic and inflammatory responses through suppression of c-jun N-terminal kinase (JNK) and 

inhibitor of nuclear factor κB kinase-β, respectively (Li and Dobrowsky, 2012). 
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 HSPs are classically categorized by their approximate molecular mass (in kilo-dalton, 

kDa) into families of HSP100, HSP90, HSP70, HSP60, HSP40 and the small HSPs, although 

they may also be further described based on different intracellular localization, patterns of 

expression and functions. Specific Hsps that are particularly implicated in the pharmacological 

intervention of DPN and demyelination are briefly discussed below. 

1.5.1 Hsp70 - Potent “Neuroprotectant” 

 The HSP70 family is the most abundant and evolutionarily conserved chaperone with 

human HSP70 sharing 72% and 47% sequence identity with fruit fly HSP70 and the Escherichia 

coli homologue of HSP70 - dnaK, respectively (Hunt and Morimoto, 1985). In mammalian cells, 

four members of the HSP70 family have been identified: the constitutively expressed cytosolic 

heat shock cognate 70 (HSC70/HSP73), the stress-inducible cytosolic HSP70/HSP72, the 

endoplasmic-reticulum (ER)-localized glucose-regulated protein 78 (GRP78/BiP) and the 

mitochondrial glucose-regulated protein Grp75/mortalin/mtHSP70. Chaperones rarely work 

alone, and usually associate with each other and/or other co-factors to carry out distinct functions. 

For example, binding of Hsp40 co-chaperone to Hsp70 often facilitates substrate folding and 

refolding (Michels et al., 1997; Minami et al., 1996) whereas association of Hsp70 with Hsp90 

via Hsp-organizing protein (HOP) typically targets proteins towards proteasomal degradation 

(Sajjad et al., 2010). 

Notably, while most other HSPs are abundantly distributed in the nerve, the inducible form 

of HSP70 is only weakly expressed and its induction typically represents a cellular protective 

program adopted by neurons and glia in response to stress (Manzerra et al., 1993; Pavlik and 

Aneja, 2007; Pavlik et al., 2003). Loss of this protection due to Hsp70 deficiency or dysfunction 

has been linked to susceptibility to numerous neuropathic changes (Mir et al., 2009; Muchowski 
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and Wacker, 2005). By the same token, this adaptive response apparently has great therapeutic 

utility since its recapitulation using physical or pharmacological means confers potent 

neuroprotection in a variety of pathologies including DPN. For example, increasing HSP70 has 

shown promising therapeutic effects in a number of neurodegenerative disorders, including 

Alzheimer’s, Parkinson’s and polyglutamine (polyQ) expansion diseases (Muchowski and 

Wacker, 2005). A large part of this protection was attributed to the ability of Hsp70 to decrease 

toxic protein aggregates through refolding or targeted degradation (Cuervo et al., 2004; Klucken 

et al., 2004; Shimura et al., 2004). Apart from chaperone function, both heat-shock 

preconditioning and transgenic overexpression of Hsp70 improved neuronal survival in mice 

following focal or global cerebral ischemia (Kelly and Yenari, 2002); this protection was linked 

to Hsp70 interfering with inflammatory and apoptotic signaling pathways. Indeed, virally-

directed (Bienemann et al., 2008) or compound-induced expression (Salehi et al., 2006) of 

Hsp70 suppressed JNK activity and subsequent apoptosis in cultured sympathetic neurons. 

With particular implication to DPN, the heat shock factor-1 (HSF-1, Hsp70 gene 

transcription factor) activators bimoclomol and its analogue BRX-220 improved wound healing 

and nerve conduction deficits in diabetic rats, respectively (Kurthy et al., 2002; Vigh et al., 1997). 

As the potential effectiveness of α-lipoic acid in treating DPN has already been noted, Hsp70 

levels were decreased in a cohort of type 1 diabetics with DPN and were normalized following 

α-lipoic acid therapy (Strokov et al., 2000). Studies in our laboratory demonstrated that Hsp70 

was central to the efficacy of a pharmacological correction of diabetes-induced myelinated and 

unmyelinated nerve dysfunction in STZ-mice (Urban et al., 2010). Since no obvious 

improvement in plasma glucose or insulin levels was observed in treated mice, the protection 

likely resulted from a direct chaperone effect in the nerves. Although the etiology of DPN is not 
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associated with the accumulation of a specific misfolded or aggregated protein, our study 

strongly supports that Hsp70 intersects with the molecular and cellular disturbances underlying 

nerve dysfunction. While these results do not yield much information regarding whether and how 

Hsp70 directly influences myelin, another study found improved myelination following 

pharmacological induction of SC Hsp70 in DRG explants established from a rodent model of 

hereditary demyelinating neuropathies (Rangaraju et al., 2008). An in vitro examination of 

oligodendrocyte differentiation also revealed that Hsc/Hsp70 but not Hsp25 and Grp78 are 

required for MBP synthesis (Aquino et al., 1998). In spite of these salient findings, current 

knowledge of the role of Hsp70 in myelination is rather limited and has received scant attention. 

1.5.2 HSP Expression and DPN: An Impaired Defense Against Stress? 

Chronic hyperglycemia imposes a multitude of ischemic, hypoxic, oxidative and apoptotic 

stresses leading to widespread oxidative damage to proteins, cells and tissues (Akude et al., 2010; 

Obrosova, 2009; Tomlinson and Gardiner, 2008). Neural cells and myelin are especially 

vulnerable to stress-induced protein denaturation and damage because they do not undergo cell 

division and are not able to attenuate harmful protein species through mitosis. As the majority of 

myelin proteins have a slow turnover rate, any glycative and oxidative modifications of myelin 

proteins and/or lipids would have prolonged and accumulating biochemical consequences 

towards irreversible damage of myelinated nerves (Brown et al., 1979; Spritz et al., 1975; 

Sugimoto et al., 2008). Therefore, survival of highly-differentiated neural tissues would rely 

largely on the endogenous protective and reparative potential of molecular chaperones. Indeed, 

diabetic nerves that exhibit neuropathological changes often have a reduced expression of HSPs. 

In spontaneous diabetic Biobreeding/Worcester (BB/Wor) rats, a close model of human type 1 

diabetes, 10 months of hyperglycemia markedly reduced HSP70 level in dorsal root ganglia 
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(DRG), which correlated with a development of advanced polyneuropathy characterized by loss 

of neurotrophic components and myelinated and unmyelinated fibers (Kamiya et al., 2006). It is 

difficult to extract from the current limited data on this topic whether diabetes-associated 

segmental demyelination is directly linked to altered HSP expression. However, decreased HSP 

function, if it indeed occurs in diabetic nerves, would impair the cytoprotective response and 

accelerate the pathogenetic insults that lead to myelin degeneration in DPN. Inversely, physically 

or pharmacologically increasing HSP expression could and has been shown to confer protection 

against neuropathic changes associated with diabetes. For example, patients with non-insulin-

dependent diabetes reduced their blood glucose concentration and symptomatic neuropathy after 

receiving regular hot-tub hyperthermic treatment (Hooper, 1999; 2003). In diabetic rats, the 

effectiveness of the HSP co-inducers bimoclomol and its analogue BRX-220 in DPN has already 

been mentioned (Kurthy et al., 2002; Vigh et al., 1997). The effectiveness of α-lipoic acid in 

preventing and treating DPN in a cohort of type 1 diabetics with  polyneuropathy correlated with 

the normalization of HSP70 level, which had dropped significantly in these patients (Strokov et 

al., 2000). While these studies provide tantalizing correlations, they do not differentiate whether 

the therapeutic benefits are afforded through a systemic influence or a nerve-specific protection 

or both by HSP induction. Studies in our laboratory address this question and provide evidence 

that the therapeutic benefits of Hsp70 induction in DPN do not seem to hinge on a metabolic 

correction and may be relatively nerve-specific (Urban et al., 2010; Urban et al., 2012). 

Furthermore, we show in the present data that enhanced Hsp70 expression also prevents NRG1-

induced demyelination in an Hsp70-dependent fashion. 

1.5.3 Hsp90 - Seeking Effective Pharmacological “Heat-shock Therapy” 
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Notwithstanding its prominent neuroprotective action, direct targeting of Hsp70 as a 

pharmacological objective has been complicated by its high conservation and ubiquitous 

expression patterns. On the other hand, Hsp90 has emerged as attractive target for the induction 

of chaperone protection. Similar to HSP70, HSP90 is highly conserved in its structure and 

function among species and is plentifully expressed in eukaryotes (comprises up to 2% of total 

cellular proteins). HSP90 also has different paralogs distributed in several subcellular 

compartments including cytosol (HSP90α and HSP90β), ER (GRP94) and mitochondria 

(Hsp75/TRAP-1) of which HSP90β is particularly important for cell survival since mice lacking 

this isoform die embryonically (Voss et al., 2000). All Hsp90s are highly conserved 

evolutionarily in their structures and share an N-terminal ATPase domain, a connective linker 

region and a middle domain involved in binding substrates (client proteins). Hsp90 also has a C-

terminal domain that is responsible for interactions with various partner proteins and co-

chaperones which provide a coordinate regulation over its diversified functions (Peterson and 

Blagg, 2009; Soti et al., 2002). Because numerous Hsp90 client proteins are involved in cell 

growth, differentiation, and survival, inhibitors directed against the Hsp90 N-terminal ATP 

binding domain induce simultaneous degradation of a wide variety of client proteins and are 

potent chemotherapeutic agents in cancer (Peterson and Blagg, 2009; Soti et al., 2005). An 

important aspect of N-terminal Hsp90 inhibitors in treating malignant phenotypes is that the 

drugs preferentially inhibit Hsp90 and induce client protein degradation in malignant versus 

normal cells (Luo et al., 2008). This selectivity may be due to the upregulation of Hsp90 to 

accommodate the malignant cell’s dependency on overexpressed oncogenic client proteins 

(Chiosis et al., 2003) and/or an increased affinity of N-terminal inhibitors for Hsp90-oncoprotein 

complexes in cancer cells (Kamal et al., 2003). Although this selectivity aids in the clinical 
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efficacy of N-terminal Hsp90 inhibitors, enthusiasm for their use has been hampered since 

induction of client protein degradation and cytotoxicity occurs at drug concentrations that also 

activate an antagonistic aspect of Hsp90 biology, the promotion of the cytoprotective HSR. This 

is because as a core chaperone in the autoregulatory loop, Hsp90 also represses HSP expression 

through sequestration of HSF-1 in the cytosol and preventing it from being activated unless 

being competitively occupied by stress-induced misfolded proteins. This opens possibilities of 

inducing HSR with limited toxicity through compounds that exhibit mild inhibition or 

modulation of Hsp90 in cells where increased chaperone expression is needed to confer cellular 

protection and repair. For instance, since N-terminal Hsp90 inhibitors promote the HSR and 

decrease protein aggregation, they also have been used in experimental studies to treat 

neurodegenerative diseases associated with protein misfolding. In this regard, N-terminal Hsp90 

inhibitors decrease tau protein aggregation in Alzheimer disease models (Dickey et al., 2007; 

Luo et al., 2007) and improve motor function in spinal and bulbar muscular atrophy (Waza et al., 

2005). Although a similar selectivity exists for the use of N-terminal inhibitors in treating 

neurodegeneration (Dickey et al., 2007), this selectivity does not circumvent the issue related to 

dissociating client protein degradation from induction of the HSR. Now, the inverse caveat exists; 

despite being neuroprotective, induction of client protein degradation may produce cytotoxicity. 

Thus, developing a highly effective Hsp90 inhibitor for treating neurodegeneration requires 

establishing a sufficient therapeutic window that avoids increased  
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Figure 1.5.2a Inducing heat shock response through inhibiting Hsp90. In non-stressed cells, 

Hsp90 binds to HSF-1 and this interaction keeps HSF-1 in an inact state in the cytosol. Cellular 

stress (such as heat shock, not shown) or drug inhibition of Hsp90 can disrupt this association 

and release HSF-1 from Hsp90-HSF-1 complex. Freed HSF-1 will then undergo trimerization, 

phosphorylation and subsequent translocation into the nucleus wherein it activates HSE and HSP 

gene transcription. Upregulation of HSP in nerves executes cytoprotective response and hence 

neuroprotection. 

 

client protein degradation that may antagonize a cytoprotective HSR. Using a synthetic small 

molecule Hsp90 N-terminal inhibitor, Rangaraju et al. (2010) induced significant Hsp70, Hsp27 

and αB-crystallin expression and ameliorated defects in SC myelin formation in a PMP22 mutant 

mouse model of CMT1A with limited toxicity. The improved myelination was attributed to 

chaperone-mediated inhibition of the pathological mis-folding and aggregation of PMP22. 

Hsp90 also contains a C-terminus ATP binding domain that weakly binds the antibiotic 

novobiocin. Similar to N-terminal inhibitors, novobiocin can promote client protein degradation 

and induce a HSR. Through systematic modification of the coumarin ring pharmacophore of 
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novobiocin, KU-32 was identified as a lead compound that exhibits at least a 500-fold 

divergence of client protein degradation from induction of Hsp70 (Urban et al., 2010). This 

divergence provides an excellent therapeutic window to promote neuroprotection in the absence 

of toxicity. Thus, non-selective uptake and off-target toxicity is not a confounding issue as 

discussed above. In support of this safety, administering 400 mg/kg of KU-32 to mice (20X > 

our typical dose) did not induce overt toxicity or histopathological changes on any of the organs 

examined. Moreover, weekly administration of KU-32 to STZ-diabetic mice rescued pre-existing 

mechanical and thermal hypoalgesia in addition to an improved motor and sensory nerve 

conduction velocity (NCV). However, mice with genetic ablation of the inducible HSP70 that 

developed similar diabetes-associated neurodysfunction failed to respond to KU-32. This 

suggests that HSP70 is essential in the mechanism of action of this compound. Of note, the 

neuroprotection in wild type mice occurred without a significant metabolic correction. Instead, in 

vitro assessments demonstrated that KU-32 directly protects unmyelinated and myelinated 

nerves against DPN-associated neuropathic changes. In particular, KU-32 dose-dependently 

prevented NRG1-induced myelin degeneration in myelinated sensory neuron/SC co-cultures, 

indicating a chaperone-mediated intervention of aberrant growth factor signaling (Urban et al., 

2010). Since altered neuregulinism contributes to DPN in myelinated nerves, we sought to 

determine whether the requirement of Hsp70 in motor and sensory recovery by KU-32 correlates 

with the necessity of Hsp70 in protecting against NRG1-induced demyelination. To further test 

the hypothesis that Hsp70 may help tolerate and/or counteract otherwise pathogenic 

consequences of growth factor signaling, the present study also investigated the sufficiency of 

Hsp70 in inhibiting demyelination and the signaling events downstream of NRG1. In addition, 

the mechanism of Hsp70 induction by KU-32 is also explored. 
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Figure 1.5.2b Structure-activity relationships of Novobiocin analogs in cytotoxicity vs. 

cytoprotection. Chemical structure of novobiocin compounds and schematic demonstration of 

dose effects in client protein degradation (dotted lines) and chaperone induction (solid lines) for 

novobiocin (black), KU-32 (blue) and KU-174. 
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Chapter 2: Materials and Methods 

2.1 Materials 

2.1.1 Animals 

Breeding colonies of wildtype C57Bl/6 (WT) and Hsp70.1/70.3 double knockout (Hsp70 KO) 

mice on a C57Bl/6 background (B6;129S7-Hspa1a/Hspa1btm1Dix/Mmcd) (Hunt et al., 2004) 

were maintained with mice initially purchased from Harlan Laboratories (Indianapolis, IN) and 

the Mutant Mouse Resource Center (San Diego, CA), respectively.  Absence of Hsp70.1 and 

70.3 was confirmed by genotyping of genomic DNA and corroborated by lack of inducible 

Hsp70 protein expression as determined by immunoblot analysis. WT primers (forward-

GTACACTTTAAACTCCCTCC; reverse-CTGCTTCTCTTGTCTTCG) amplified a 450 bp 

band while primers against the neo cassette (forward-ATGGGATCGGCCATTGA-ACAAG; 

reverse-ACTCGTCAAGAAGGCGATAGAAGG) amplified a 650bp band. The PCR conditions 

were (94
o
C-5 min; 35 cycles of 94

o
C-40 sec; 65

o
C-1 min; 72

o
C-40 sec; 72

o
C- 5min) using 

KlenTaq polymerase (DNA Polymerase Technology, St Louis, MO) and 200-300 ng DNA 

template. Cav-1 double knockout mice were obtained from Jackson Laboratories (Bar Harbor, 

ME). Genetic deletion of Cav-1 and other phenotypic presentations in this strain have been 

characterized elsewhere by Razani et al.(2001). 

All animals were housed at the Animal Care Unit at the University of Kansas in a 12hr 

light/dark cycle at 70ºF and 70% humidity, and given ad libitum access to Purina Diet 5001 

Rodent Chow and water. Tissue isolation and animal euthanasia procedures were performed in 

accordance with protocols approved by the Institutional Animal Care and Use Committee in the 

University of Kansas and conformed to standards and regulations for the care and use of 

laboratory rodents set by the National Institutes of Health. 
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2.1.2 Antibodies 

Table 2.1.3 List of Primary and Secondary Antibodies Utilized in the Study 

Name Provider Catalog No. 

Hsp70 (C92F3A-5) 

Stressgen (now Enzo Life Sciences), Ann Arbor, 

MI, U.S.A. 

SPA-810 

Hsc70 SPA-815 

Hsp90 SPA-830 

Hsp40  

Hsp27 (C-20) 

Santa Cruz Biotechnology, Santa Cruz, CA, U.S.A. 

sc-1048 

JNK (FL) sc-571 

phospho-JNK (G-7) sc-6254 

c-jun (N) sc-45 

phospho-c-jun Cell Signaling Technology, Beverly, MA, U.S.A. 54B3 

Erk Cell Signaling Technology, Beverly, MA, U.S.A.  

phosphor-Erk Cell Signaling Technology, Beverly, MA, U.S.A.  

S100β DakoCytomation, Glostrup, Denmark  

MBP Covance, Princeton, NJ, U.S.A. SMI-94R 

PGP9.5 Chemicon, Temecula, CA, U.S.A. AB1761 

Grp78 (H-129) 
Santa Cruz Biotechnology, Santa Cruz, CA, U.S.A. 

sc-13968 

Grp94 (H-212) sc-11402 

Parp-1 (C-20) Trevigen, Gaithersburg, MD, U.S.A. 4338-MC-50 

GPR30 Novus Biologicals, Littleton, CO, U.S.A. NLS4271 

Cav-1 (N-20) Santa Cruz Biotechnology, Santa Cruz, CA, U.S.A. Sc-894 

P0 Chemicon, Temecula, CA, U.S.A. AB9352 

FLAG (M2) Stratagene 200472 

Lamin A/C Cell Signaling Technology, Beverly, MA, U.S.A. 2032 

LDH Abcam®, Cambridge, MA, U.S.A. AB7639-1 

sumo-2/3 (18H8) Cell Signaling Technology, Beverly, MA, U.S.A. 49715 

normal mouse IgG Santa Cruz Biotechnology, Santa Cruz, CA, U.S.A. sc-2025 

horseradish peroxidase 

(HRP)-conjugated goat 

secondary antibodies 

Santa Cruz Biotechnology, Santa Cruz, CA, U.S.A. 

sc-2004; sc-

2005 

Alexa Fluor  -

conjugated goat/donkey 

secondary antibodies 

Molecular Probes, Eugene, OR, U.S.A. 

A11008;  

 

2.1.3 Reagents 

The synthesis and structural property of KU-32 was described previously (Burlison et al., 2006; 

Donnelly et al., 2008). For in vitro pharmacological treatment, KU-32 was dissolved in DMSO 

and diluted in cell medium to a working concentration of 1μM (0.05% DMSO as vehicle 

correspondingly). Dulbecco’s modified Eagle’s medium (DMEM) was obtained from Mediatech 
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(Manassas, VA). MG132 was purchased from Tocris (Ellisville, MO, U.S.A.). Ascorbic acid and 

collagen were both from Sigma (St.Louis, MO, U.S.A.). Neurobasal medium was obtained from 

GIBCO (Grand Island, NY, U.S.A.). Nuclear extract kit was purchased from Active Motif 

(Carlsbad, CA, U.S.A.). Two compounds, 17β-estradiol 3-benzoate and G-1, used in estrogen 

study were obtained from Sigma-Aldrich (St.Louis, MO, U.S.A.) and TOCRIS (Elliesville, MO, 

U.S.A.), respectively. 

2.2 Methods 

2.2.1 Preparation of Purified DRG Neurons, Unmyelinated and Myelinated DRG/SC Explants 

DRG neurons were removed from C57Bl/6, Hsp70.1/70.3 double knockout or caveolin-1 double 

knockout mice (pups born at day 0 (P0) into L15 medium (Yu et al., 2008). Following 

dissociation of tissues using 0.25% trypsin and 0.5% collagenase at 37ºC for 30min, cells were 

collected by centrifugation for 5 min at 1,000 g and resuspended in DMEM containing 25mM 

glucose, 10% fetal calf serum (Atlas Biologicals, Fort Collins, CO, U.S.A.), triturated, counted 

with hematocytometer and seeded onto collagen-coated glass coverslips or dishes at a density of 

6-7 10
4
. The cultures were maintained in DMEM maintenance medium containing 100 U/mL 

penicillin, 100μg/mL streptomycin (Thermoscientific, Logan, UT, U.S.A.), 50μM gentamycin 

(MP Biologicals, Solon, OH, U.S.A.) and 50ng/mL nerve growth factor (Harlan Biosciences, 

Indianapolis, IN, U.S.A.). Fast-growing fibroblasts were removed by treating the cells with 

10μM cytosine β-D-arabinoside for 2 days and cultures were maintained in regular medium for 

one week to allow SC proliferation and association with axons. Myelination was then initiated by 

addition of 50μg/ml ascorbic acid (to induce basal lamina formation) and allowed to myelinate 

for 18-21 days in culture with medium replenished every 2-3 days. 150-200ng/ml NRG1 (R&D 

Systems, Minneapolis, MN, U.S.A.) were administered to induce demyelination. To examine the 
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effect of KU-32 on preventing demyelination, the cells were incubated for 16hr with 0.05% 

DMSO (vehicle) or 1μM KU-32 prior to adding NRG1; demyelination was assessed 48 hr after 

adding NRG1. In instances where purified DRG sensory neurons were desired, the cells were 

treated with 10μM each of cytosine β-D-arabinoside and fluorodeoxyuridine for 2-3 days to 

eliminate proliferating cells in the culture. For the estrogen studies, cultures were allowed to 

myelinate for 14 days with the treatment of ascorbic acid, β-estradiol or G1 at the indicated 

concentrations. 

2.2.2 Heat Shock Treatment 

For heat-shock treatment, cell culture plates were sealed and floated in an enclosed water bath 

chamber with the temperature stabilized at 43-44ºC for 30min. Depending on the treatment 

paradigm, cells were either immediately collected or returned to the tissue culture incubator for 

additional treatments or recovery before cell lysis. 

2.2.3 Biochemical Analysis 

2.2.3a Immunoblotting 

In preparing for immunoblot assessment, cells were rinsed with PBS, scraped off from plates 

with lysis buffer containing 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% NP-40, 

1% deoxycholate, 0.1% SDS, 0.5 mM sodium orthovandate, 40 mM NaF, 10 mM b-

glycerophosphate, and 1  Complete Protease Inhibitors (Roche Diagnostics) and homogenized 

by sonication. Soluble proteins were collected in the supernatant after centrifuging the crude cell 

lysates at 10,000g for 10 min at 4ºC; total protein concentration was determined using the Bio-

Rad protein assay. Approximately 30-35μg of proteins were mixed with deionized water and 

loading buffer for separation by SDS-PAGE and transferred to nitrocellulose membrane (Bio-

Rad Laboratories, Germany). Membranes were then incubated with 5% non-fat dry milk in 
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phosphate buffered saline for 1-2hr at room temperature (RT, 25ºC) and probed with primary 

antibodies recognizing Hsp70, Hsc70, Hsp90, Hsp40, Hsp27, c-jun, phosphor-c-jun, JNK or 

phospho-JNK at 4ºC overnight. β-actin was also probed as a loading control. For detection of 

phosphorylated protein, 5% non-fat dry milk was substituted with 5% bovine serum albumin to 

avoid non-specific blocking of the phosphoepitope. After primary antibody incubation, 

membranes were washed and further incubated with HRP-conjugated anti-mouse, anti-rabbit, 

anti-chicken or anti-goat secondary antibodies. Immunoreactivity for each protein was visualized 

using an enhanced chemiluminescence detection kit (GE Healthcare Life Sciences, Little 

Chalfont, Buckinghamshire, U.K.) and exposed to X-ray film, which was then digitally scanned 

and densitometrically analyzed using ImageJ (NIH) software. 

2.2.3b Immunoprecipitation 

In certain studies, coimmunoprecipitation assay was performed in order to determine specific 

protein-protein binding or post-translational protein modification. Briefly, cell or tissue lysates 

were pre-incubated with Protein G/A agarose beads to minimize non-specific interactions prior 

to antibody incubation at 4ºC overnight. Immune complexes were then collected via reincubation 

for 3hr at 4ºC with Protein G (Invitrogen, Carlsbad, CA, U.S.A.) or A (RepliGEn Corporation, 

Waltham, MA, U.S.A.) agarose beads. Beads were chosen according to the primary antibody 

species. After centrifugation, supernatant was removed and beads were washed 5 times with lysis 

buffer (NP40 or mRIPA buffer). Bound-proteins were then eluted with sample buffer and 

prepared for western blotting. In some cases the antibody was replaced by IgG to examine non-

specific reaction of antibody with the protein of interest. 

2.2.3c Nuclear Fractionation 



50 
 

HEK-293 cells were grown to confluence, rinsed and resuspended in PBS/phosphatase inhibitors. 

Cell pellets were then collected by centrifuging the cell suspension for 5min at 500 rpm 4ºC. 

After discarding the supernatant, pellets were resuspended in and incubated with hypotonic 

buffer on ice for 15min. Cells were fractionated by intensive vortexing with detergent for 10sec, 

followed by centrifugation at 14,000 g for 30sec at 4ºC. The supernatant was then collected as 

the cytoplasmic fraction. Nuclear pellets were resuspended in complete lysis buffer, vortexed and 

incubated for 30min on ice while rocking on a platform at 150rpm. After incubation, the 

suspension was vortex again for 30sec and centrifuged for 10min at 14,000 g at 4ºC. The 

solubilized nuclear fraction was then obtained by collecting the supernatant. 

2.2.4 siRNA knockdown 

MCF-7 cells were plated in 12-well plates at a density of 4  10
4
 in complete medium (DMEM 

containing serum and antibiotics) and subjected to either of the following treatments: 

untransected, non-targeting siRNA (negative control) (Non-targeting #2) and Hsp90 siRNA 

(desired) (Hsp90AA1 3320, Hsp90AB1 3326, Dharmacon RNAi technologies, Thermo 

Scientific, Lafayette, CO, U.S.A.). Each treatment group was prepared in triplicate. 2hr prior to 

siRNA transection, cells were placed into OPTI-MEM®I reduced serum medium (antibiotic-free) 

(GIBCO, Grand Island, NY, U.S.A.) 20μM siRNA (stocking solution, in 1  siRNA buffer) was 

diluted into 1  siRNA buffer to obtain 5μM siRNA solution. To prepare for the transfection 

medium, 5μM siRNA and DharmaFECT®3 (Thermoscientific Dharmacon, Lafayette, CO, 

U.S.A.) transfection reagent were mixed with OPTI-MEM®I reduced serum medium in separate 

tubes and incubated for 5min at room temperature. siRNA were then mixed and incubated with 

DharmaFECT (in OPTI-MEM®I reduced serum medium) for 20min at room temperature. The 

mix was then combined with additional OPTI-MEM®I reduced serum medium to obtain the 
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transfection medium with a final siRNA concentration of 75nM. Previous cell media was 

removed and replaced with the transfection medium. Cells were then returned to tissue culture 

incubator (37ºC, 5% CO2) and incubated for 72hr. If subsequent pharmacological treatments 

were desired, transfection medium was then replaced with complete medium containing 

treatments. Otherwise, cells were scraped and lysed for biochemical analysis. The specificity and 

efficiency of Hsp90 siRNA knockdown was assessed via immunoblotting for Hsp90 protein. 

2.2.5 Immunoflourescence Analysis 

2.2.5a Immunocytochemistry 

After the indicated treatment, promyelinating or myelinated DRG/SC explants grown on glass 

coverslips were rinsed with PBS and fixed in 4% paraformaldehyde for 20 min at RT. The cells 

were permeabilized by incubating with cold methanol at -20ºC for 15 min, then blocked with 10% 

normal goat serum (Invitrogen, Carlsbad, CA) containing 0.3% Triton X-100 (Fisher Sientific, 

Fair Lawn, NJ, U.S.A.) for 15 min at RT. Primary antibodies against MBP (1:500), PGP9.5 

(1:500), Hsp70 (1:80) and/or S100β (1:1000) were diluted in blocking buffer and incubated with 

cells overnight at 4ºC in a humidified chamber. The next day the cells were washed with PBS 

and incubated with the secondary antibody: Alexa Fluor 568, Alexa Fluor 488 or Alexa Fluor 

647-conjugated goat anti-mouse IgG, goat anti-rabbit IgG, goat anti-donkey IgG or goat anti-

chicken IgG. Coverslips were mounted on microscope slides (Fisher Scientific) with the aid of 

Prolong Antifade kit with or without DAPI (4’,6-diamidino-2-phenylindole) counterstain. Slides 

were imaged using an Olympus/3I Spinning Disk Confocal/TIRF Inverted Microscope and 6-8 

random fields per coverslip were captured using the imaging software, SlideBook 5.0 (Intelligent 

Imaging Innovations, Inc., Denver, CO, U.S.A.). 

javascript:%20reserve('r','sc1443d28e8ce68e','1333170000','',%20'sc1423642970aa9f',%20'0',%20'0');
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For demyelination assessment, MBP-positive segments were counted as internodes and 

the percent of broken versus total internodes was calculated and expressed as a percent of 

degenerated segments for each picture frame. Changes in internodal length were quantified 

utilizing an open source imaging software-CellProfiler (http://www.cellprofiler.org). Individual 

myelin internodes with a length within the range of 20-200 microns were identified through 

Otsu’s method (Otsu, 1979) for thresholding and segmentation (Figure 2.2.5a). Throughout 

image processing, visual inspection and manual editing were performed during internode 

identification in cases of errors or regions where segments intersect or touch the border. Major 

axis length for each identified segment were then computed to represent length of the internodes 

and included in the average of the population of segments surveyed. For immunofluorescent 

quantification of Hsp70 expression in premyelinating cultures, intensity was set as the 

thresholding factor for subject identification instead of length. Hsp70 expression was computed 

as area  intensity in fluorescence units and normalized to PGP9.5 immunoreactivity. 

Colocalization of fluorescent channels was achieved using ImageJ (NIH). 

In the estrogen studies, a random microscope area of 24x10
6 

micron² in each coverslip 

was selected and montage image generated using SlideBook 4.0. Myelinated segments were 

visually identified and manually selected. Total number of segments in each montage image was 

manually counted whereas the internodal length was automatically computed by SlideBook 4.0 

for each segment and expressed as the longest cord length. 

http://www.cellprofiler.org/
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Figure 2.2.5a Identification of MBP segments by CellProfiler. A) An example showing how 

MBP segments were identified through a combination of automatic identification and manual 

editing using CellProfiler. In a given input image (e.g., MBP-stained internodes), fluorescent 

fragments with a major axis length between 20-200μM were identified by CellProfiler and 

treated as individual objects. Segments touching the borders (arrows) or crossing were 

automatically excluded from the surveying pool. Some of the MBP-positive cells that are not 

internodes (arrowheads) were visually inspected and manually edited out if identified by the 

program. B) Following object identification, CellProfiler computed the major axis length and 

area occupied by each segment identified in each image. Values for average length and area of 

internodes (delineated in green) were normalized to the corresponding PGP9.5 area after 

matching the MBP and PGP9.5 fluorescent channels (aritificially assigned green and blue during 

image processing). 

2.2.6 Sciatic Nerve Cross/longitudinal sections 

Sciatic nerves were dissected from approximately one month old C57Bl6 mice immediately after 

euthanasia and fixed in Zamboni’s fixative (3% paraformaldehyde, 15% picric acid) (Newcomer 

Supply, Middleton, WI) RT for 1hr. Tissues were then washed 5 min with PBS containing 

sodium azide for 3 times before placed into 30% sucrose (in PBS) overnight for cryoprotection. 

Upon sectioning, nerves were embedded in Tissue-Tek optimal cutting temperature compound 

(OCT) on dry ice (Sakura USA, Torrence, CA). Frozen nerves were kept at -20ºC in cryostat 

while sectioned transversely or longitudinally at 10 or 8 micron onto Fisherbrand Superfrost Plus 

microscope slides (Fisher Scientific, Pittsburgh, PA), respectively. Slides were allowed to warm 

up to RT prior to immunolabeling as described above. 

2.2.7 Recombinant Adenovirus Preparation and Infection 

2.2.7a Hsp70 Sense Adenovirus 

The cDNA sequence of Homo sapiens heat shock 70kDa protein 1A (HSPA1A) in pcDNA5 

vector was amplified by PCR reaction with a forward primer containing a BamHI site 

(AGCTTGGATCCGAATTCACCATGGCC), and a reverse primer containing a SalI site 

(GACAAGTCGACATCTACCTCCTCAAT). The PCR product was subsequently digested and 

cloned into the p-Shuttle-IRES-hrGFP-1 vector between the Bgl II and Sal I site to add an in-
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frame C-terminal FLAG tag. The integrity of the sequence was verified by DNA sequencing. 

The p-Shuttle-IRES-hrGFP-1 plasmid containing the Hsp70 insert was linearized with PmeI. The 

DNA was phenol-chloroform extracted after digestion. The PmeI digested plasmid was then 

transformed into electrocompetent E. coli BJ5183 cells containing the pAdEasy-1 adenovirus 

backbone vector using the pAdEasy kit as per the manufacturer’s directions (Agilent 

Technologies, LaJolla, CA). Recombinant adenoviral plasmid was digested with PacI, ethanol 

precipitated and resuspended in sterile water. 12μg digested plasmid was tranfected into one T-

75 flask of 293 cells with standard transfection using Lipofectamine 2000. Cells were collected 

14 days after transfection and lysed through four freeze/thaw/vortex cycles; the supernatants 

were used to infect ten more confluent T-75 flask of 293 cells.  The cells were collected 5 days 

post infection, and lysed as described above. The virus supernatant was concentrated by a CsCl 

gradient ultracentrifuge. Virus fraction was collected and mixed with equal volume 2X storage 

buffer (10mM Tris, pH8.0, 100mM NaCl, 0.1% BSA, and 50% glycerol, filter sterilized), and 

stored at -80ºC in aliquots. To infect myelinated neuronal cultures, concentrated viral particles 

were diluted in cell medium to appropriate concentration. 16hr after infection, cell medium was 

replaced by fresh non-viral medium for NRG1 treatment. Recombinant expression of Hsp70 was 

confirmed by antibodies against Hsp70 and the C-terminal FLAG epitope. 

2.2.7b GPR30 siRNA adenovirus 

GPR30 siRNA adenovirus was generated and evaluated as described previously (McAllister et 

al., 2012). In brief, GPR30 siRNA sequences were: GPR30-737 (sense: 

AGCCTGTGCTATTCCCTCATTTTT, antisense: AATGAGGGAATAGCACAGGCTTTT); 

GPR30-1135 (sense: AACGGAGCAGTCAGATGTCAAGTTCATTTT, antisense: 

ATGAACTTGACATCTGACTGCTCCGTTTTT); GPR30-402 (sense: 
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AGGACGAGCAGTATTACGATTTTT, antisense: AATCGTAATACTGCTCGTCCTTTT); 

and GPR30-272 (sense: AGCAACATCCTCATCTTGGTGGTGAATTTT, antisense: 

ATTCACCACCAAGATGAGGATGTTGCTTTT). The mismatch sequences were GPR30-

1135mis (sense: AACGGACGGACTTGTAGAACTAGTCATTTT, antisense: 

ATGACTAGTTCTACAAGTCCGTCCGTTTTT) and GPR30-402mis (sense: 

AGGAACGATATGCATGCGATTTTT, antisense: AATCGCATGCATATCGTTCCTTTT). 

Target sequences were cloned into pSES-HUS vector, which is a shuttle vector for adenovirus 

and contains a red fluorescent protein (RFP). Expression of RFP was used to indicate the level of 

GPR30 siRNA expression. 

2.2.8 Calcein AM Cell Viability Assay 

Fresh isolated DRG explants were seeded at a density of 25,000-30,000/well in Neurobasal 

medium with 1  B-27 supplements, 2mM glutamate, 100 U/mL penicillin, 100μg/mL 

streptomycin and 50ng/ml NGF in black-walled 96-well microplates. The next day, 10μM 

cytosine β-D-arabinoside was added to the medium for 24hr to remove fibroblasts. The cells 

were then switched to the maintenance medium (Neurobasal medium, 50ng/ml NGF, 1 B-27 

supplements) and treated with 1μM KU-32 overnight. The 3-day-old cells were then stressed 

with 45mM glucose for 4hr and the media supplement was replaced with 50μl PBS plus 50μl 

freshly prepared 2X Calcein AM (2μM working concentration) (Invitrogen, Eugene, Oregon, 

U.S.A.) for a 30-min incubation at normal culture conditions. Calcein fluorescence was then 

recorded using a 490nm excitation filter and a 520nm emission filter. Since only live cells 

maintain the activity of intracellular esterase which hydrolyzes non-fluorescent Calcein AM into 

the strongly-fluorescent Calcein (Figure 2.2.8), the fluorescence intensity is proportional to the 
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number of viable cells. To control for cell population variability, results were expressed as 

fluorescence readings divided by protein concentration in each well. 

 

 
Figure 2.2.8 Hydrolysis of Calcein AM to Calcein. The acetomethoxy derivate of calcein 

(Calcein AM) is a non-fluorescent, hydrophobic compound that can easily permeate through the 

cellular membrane of intact, live cells where it is hydrolyzed to calcein through removal of 

acetomethoxy group by intracellular esterases. Calcein is a hydrophilic compound that is well-

retained in cell cytoplasm with intact plasma membranes and produces strong green fluorescence. 

 

2.2.9 Statistical Analysis 

Data sets subjected to statistical analysis were presented as arithmetic meanS.E.M unless 

otherwise specified. Equality of variances and one-way ANOVA were verified and performed 

using Systat 12 (Systat Software, Chicago, IL). Differences among treatment groups were 

considered statistically significant when p<0.05, which is determined by Tukey’s Honestly-

Significant-Difference-Test. To further denote degree of significance, * = p<0.05; ** = p <0.01; 

*** = p<0.001. 
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Chapter 3: Inhibition of NRG1-induced Peripheral Demyelination by Small 

Molecule Hsp90 Modulator 

3.1 KU-32 induces HSP expression in an Hsp90-dependent manner 

KU-32 is a novobiocin analogue that presumably binds to the nucleotide-binding site at Hsp90 

C-terminal domain, which facilitates ATP/ADP exchange at the N-terminus (Peterson and Blagg, 

2009). Occupation of this site by coumarin antibiotics such as novobiocin disrupts this function 

and inhibits Hsp90 activity. Such mechanism of inhibition is distinct from that of conventional 

N-terminal Hsp90 inhibitors but has produced similar effects in increasing HSP transcription and 

neuroprotection (Ansar et al., 2007). To verify the specific interaction of KU-32 with Hsp90 in 

inducing HSP, we examined the expression of a group of HSP after KU-32 treatment with or 

without Hsp90 silencing. If KU-32 activates chaperone induction through Hsp90 modulation, 

downregulation of Hsp90 should diminish HSP induction by KU-32. Consistent with this 

hypothesis, KU-32 led to a 30% increase in Hsp70 and Hsp40 expression in MCF-7 cells, 

whereas previous transfection of siRNAs directed against Hsp90α,β but not off-sequence control 

siRNAs mitigated this induction (Figure 3.1.1). Of note, neither Hsp90 knockdown nor non-

targeted transfection affected the steady-state levels of these HSPs (Figure 3.1.2). This indicates 

that inhibition of KU-32-induced HSR was not the result of a broad cellular HSP downregulation. 

Therefore, Hsp90 plays a central role in KU-32-mediated chaperone upregulation. Interestingly, 

siRNA-mediated knockdown of Hsp90 did not reduce Hsp27 expression in response to KU-32, 

suggesting that other molecular targets might be involved in Hsp27 induction by this compound. 
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Figure 3.1.1 Hsp90 silencing mitigates KU-32-induced Hsp70 and Hsp40 expression. MCF-7 

cells were transfected with non-targeted siRNAs or siRNAs directed against Hsp90α and β 

isoforms in the presence or absence of 1μM KU-32. Hsp90, Hsp70, Hsp40 and Hsp27 protein 

expression were then determined by immunoblotting and compared to untransfected control. β-

actin level was used to normalize the chaperone expression. 
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Figure 3.1.2 Hsp90 knockdown does not alter steady-state HSP expression. As above, MCF-

7 cells were transfected with Hsp90-specific or off-sequence siRNAs, or left untransfected. A) 

HSP protein levels were assessed using immunoblotting. B) Graph quantitation represents 

average of 3 independent experiments. One-way ANOVA indicates a significant difference for 

Hsp90 [F(2, 23)=10.902; p<0.01] but no difference for Hsp70 [F(2, 23)=0.934; p=0.771], Hsp40 [F(2, 

23)=0.763; p=0.82] and Hsp27 [F(2, 23)=1.374; p=0.369]. Tukey’s Posthoc Test indicates **p<0.01 

for Hsp90 siRNA vs. Untransfected. n=6-9. Degree of freedom (df) =2. 
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3.2 KU-32 Selectively Induces Hsp70 Expression in Myelinating Sensory Nerves 

While an array of Hsp90 inhibitors have demonstrated potent HSR induction in pure neuron or 

glial cell cultures, scant attention has been given to characterize HSP and HSR expression in a 

population of mixed neurons and glia despite the physiological relevance of this system. Indeed, 

profound changes can occur in cellular phenotype as well as the pool of gene expression upon 

axoglial association (Mitchell et al., 1990; Parkinson et al., 2008). We have previously shown 

that KU-32 inhibited NRG1-induced demyelination in an Hsp70-dependent manner but it 

remained unclear if neuroprotection may also be associated with the induction of other 

chaperones. Immunoblot analysis of unmyelinated DRG explant cultures treated with 1μM KU-

32 for 4-24 hr indicated that Hsp70 was the primary chaperone upregulated by KU-32 (Fig. 

3.1.3). Though Hsp90 and Hsp40 can be induced in response to heat shock, KU-32 did not 

significantly increase their expression. Similarly, the drug did not alter the level of the 

constitutively expressed Hsp70 paralog, Hsc70 (Figure 3.3.1B).  Although KU-32 did tend to 

increase the expression of Hsp27, a small Hsp that may be involved in transiently stabilizing 

mis-folded or damaged proteins until their interaction with Hsp70/Hsp40 (Muchowski and 

Wacker, 2005), this did not quite reach significance. Since vehicle itself did not change any of 

the protein levels within the experiment time, induction of HSP by KU-32 was compared to24 hr 

vehicle-treated cultures. Of note, the basal protein expression of inducible Hsp70 was almost 

undetectable but increased in response to KU-32 in a time-dependent manner and reached an 

approximately 4-fold induction at 24 hr of KU-32 treatment (Figure 3.2.1A,C). On the contrary, 

Hsc70 (Figure 3.3.1B), Hsp90 and Hsp40 that did not respond to KU-32 are abundantly 

expressed in the nerves. This agrees with our previous observation that KU-32 only weakly  
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Figure 3.2.1 The steady state protein expression of the inducible Hsp70 is minimal in 

sensory explants but is increased by KU-32. Primary neonatal mouse DRG explants from 

either C57Bl6 were isolated and grown in culture for 1 week while fibroblasts were eliminated 

with antimitotics (Urban et al., 2010). Cultures were treated with 1μM KU-32 or vehicle (0.05% 

DMSO in deionized water). Cell lysates were collected at 4, 8 or 24hr and immunoblotted for 

Hsp90, 70, 40 and 27 contents. HSP levels were normalized to β-actin (loading control) for each 

time point and compared to that of 24hr vehicle treatment. (n=3-6 at each time point) **p=0.02 

for KU-32 vs. veh. Blotting procedure, conditions and exposure time were kept consistent for 

each protein. Due to the stronger sensitivity of Hsp40 antibody as compared to β-actin, Hsp40 vs. 

β-actin ratio was around 200%. 
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Figure 3.2.2 KU-32 specifically induces Hsp70 but not other HSP expression in DRG 

explants. Protein expressed as fold control (vehicle treated). One-way ANOVA analysis 

indicates a significant difference for Hsp70 expression [F(3,18)= 6.970; p<0.01], but no difference 

for Hsp90 [F(3,18)=1.697; p=0.206], Hsp40 [F(3,18)= 0.581; p=0.637] and Hsp27 [F(3,18)=0.678; 

p=0.576] expression. Tukey’s post-hoc honestly-significant test indicates **p<0.01 for 24hr KU-

32 vs. veh. *p<0.05 for 24hr KU-32 vs. 4hr KU-32 for Hsp70 expression. df=3. 

 

activates heat shock elements as compared to the prototypical Hsp90 N-terminal inhibitor 

geldanamycin in an Hsp70 promoter-driven luciferase reporter assay (Farmer et al., 2012). 

Though these data indicate that Hsp70 is the primary chaperone whose expression is 

modulated by KU-32, immunoblot analysis of the unmyelinated DRG explants did not allow us 

to assess whether induction of Hsp70 was occurring within sensory neurons or Schwann cells. 

We next examined whether the induction of Hsp70 by KU-32 is a result of neuronal or glial 

influence or both. DRG explants from C57Bl/6 mice were treated with either vehicle or KU-32 

for 4hr and processed for immunostaining. A 30-min heat-shock (HS) followed by 1hr recovery 

was applied to a parallel set of cultures and served as a positive control. 
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To characterize Hsp70 expression in the mixed culture, cells were double-immunolabeled 

with antibodies against Hsp70 and neuronal (PGP9.5) or the SC marker (S100β) following. As 

shown in Fig. 3.2.2A, a low basal level of Hsp70 fluorescence co-localized with PGP9.5 but this 

was limited to the cell body and was not observed within axons. Subsequent to KU-32 treatment, 

Hsp70 staining was increased but this signal did not co-localize with PGP9.5. Short term HS also 

increased Hsp70 expression and this occurred in neurons and the glial cells. Co-staining of 

Hsp70 and S100β in the explants indicated a prominent expression of Hsp70 in cells labeled with 

the SC marker S100β, further verifying that KU-32 was increasing Hsp70 within SCs (Fig. 3.2.3). 

Notably, both 1μM KU-32 and HS plus recovery increased the localization of Hsp70 in the 

extending processes of SCs. Such increases correlated with a total of ~50% and ~150% induction 

of Hsp70 by KU-32 and HS versus vehicle, respectively. (Hsp70 fluorescence in these images 

was quantified by area intensity) (Figure 3.2.2B). Next, to corroborate this distinct Hsp70 

staining in neurons and glia by biochemical analysis, a more enriched sensory neuron culture 

was prepared by depleting the SCs from the explants using anti-mitotics (Figure 3.2.4A,B).  

Compared to explants that were not subjected to intensive anti-mitotics, Hsp70 basal expression 

was decreased in the more purified sensory neurons and its expression was not enhanced by KU-

32. In contrast, the presence of SCs in the cultures increased basal level of Hsp70 and KU-32 

treatment increased its expression.  In addition, Hsp90 also appears to preferentially express in 

SCs as purified DRGs contained significantly lower Hsp90 compared to a similar population of 

mixed cultures. On the other hand, expression of Hsp40 and Hsp27 do not seem to differ in terms 

of treatment or neuron-glial population. Diminution of SC population in DRG explants was 

verified by significantly reduced S100β immunoreactivity from DRG lysates receiving intensive 

treatment of mitotic inhibitors (Figure 3.2.5). To further confirm this differential cellular  
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Figure 3.2.3 Inducible Hsp70 is primarily localized to neuronal cell bodies and SCs but not 

axons in peripheral nerves. A) Primary neonatal mouse sensory neurons were extracted from 

C57Bl6 mice and maintained in culture for 1 week.  Cells were then treated with vehicle or 1μM 

KU-32 for 4hr, or subjected to 30min HS plus 1hr chase. Cellular localization of Hsp70 

expression or induction was achieved by double-fluorescence labeling using antibodies against 

Hsp70 (red) and PGP9.5 (green). Confocal images were taken under a 40X objective and 

colocalization of Hsp70 with either PGP9.5 or S100β was performed using ImageJ. B) Overall 

Hsp70 fluorescence was quantified using CellProfiler as an indication of the gross abundance of 

protein expression. Arrowhead indicates the neuron cell body; arrow indicates increased Hsp70 

in SCs. One-way ANOVA analysis indicates a significant difference among groups 

[F(2,6)=12.369; p<0.01]. Tukey’s post-hoc test indicates **p<0.01 for HS vs. Control, n=3, df=2. 
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Figure 3.2.4 KU-32 or HS enhances Hsp70 expression in SC processes. Similar to described 

in Figure 3.1.2, 1 week old C57Bl/6 DRG/SC mixed cultures were immunostained with S100β 

(blue) and Hsp70 (red) antibodies following exposure to vehicle, KU-32 or HS. Both drug 

treatment and HS enhanced the immunofluorescent distribution of Hsp70 in SC processes. 

Experiments were performed twice. 
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Figure 3.2.5 SC depletion attenuates basal and KU-32-induced Hsp70 expression in DRG 

explants. SC-free DRG cultures were obtained through prolonged (2-3days) treatment of excised 

sensory explants with double antimitotics (cytosine β-D-arabinoside and fluorodeoxyuridine). A) 

SC content and depletion of SCs in DRG cultures was verified and assessed using 

immunoblotting for SC-specific marker S100β. B) Phase-contrast images of SC-depleted and 

mixed DRG cultures. C) Expression of Hsp70, Hsp90, Hsp40 and Hsp27 in these purified 

neurons was examined and compared to mixed DRG/SC explants in the presence or absence of 

KU-32. Blots shown are representatives of two independent experiments. 
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Figure 3.2.6 Hsp70 co-localizes with S100β in mice sciatic nerves. Sciatic nerves were 

removed from ~1 month-old C57Bl (WT) mice and fixed using 4% paraformaldehyde and 

cryoprotected using 30% sucrose before embedded into tissue tek for freeze-sectioning (cross-

section [10-micron]: upper panel; longitudinal section [8-micron]: lower panel). Sections were 

then labeled with S100β (green) and Hsp70 (red). Arrowheads indicate co-localization of protein 

expression. BF denotes bright field. 

 

distribution of Hsp70 in vivo, cross- or longitudinal sections were prepared from sciatic nerves 

from C57Bl6 mice and immunostained for Hsp70 expression. In both longitudinal and 

crosssections, Hsp70 immunoreactivity significantly overlapped with that of S100β in tissues 

surrounding axons, indicating that Hsp70 is primarily located in axon-ensheathing SCs in the 

nerves (Figure 3.3.5). Together, these data provide evidence that KU-32 elicits a weak HSR that 

is primarily of glia origin in the peripheral nerve. 
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3.3 Hsp70 is necessary for KU-32 to protect against NRG1-induced demyelination 

To assess whether induction of Hsp70 expression by KU-32 is critical to the myelin protection 

against pathological NRG1 signaling, we prepared myelinated DRG explants from neonatal 

C57Bl/6 (wildtype) and Hsp70.1/70.3 double knockout (Hsp70
-/-

) mice as described in the 

methods. Deletion of these two genes resulted in the abrogation of the inducible Hsp70 without 

affecting the constitutively expressed Hsc70 in knockouts. This absence was verified by 

genotyping and further confirmed by the inability of heat-shock to elicit Hsp70 expression in 

cultured explants (Figure 3.3.1). 

 
Figure 3.3.1 Absence of the inducible Hsp70 but not Hsc70 in Hsp70.1/70.3 double 

knockout mice. A) 1 week old neonatal mouse DRG explants from either WT or Hsp70-/- were 

treated with vehicle or 1μM KU-32 for 24hr in the absence or presence of heat shock (HS, 30 

mins at 42
o
C) or HS plus 0-8 hr recovery time. Cell lysates were prepared and the expression of 

Hsp70 was determined by immunoblot analysis. B) Primary neonatal mouse sensory neurons 

were isolated, grown in culture for 1 week and treated for the indicated time with vehicle or 1μM 

KU-32. Cell lysates were prepared and Hsc70 levels were determined. Blots shown are 

representative of two experiments. NH: Non Heat-shock. 
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Figure 3.3.2 KU-32 prevents NRG1-induced myelin degeneration in myelinated sensory 

nerves. A) DRG/SC explants were established from P0 C57Bl/6 mice and myelination was 

permitted in vitro for 3 weeks. Cultures were incubated with 1μM KU-32 for 16hr prior to 

stimulation of demyelination by 200ng/ml NRG1 (in 0.1% BSA) for 3 days. Myelin internodes 

were labeled via MBP staining whereas PGP9.5 was used to indicate axonal integrity. ~5-8 

images were taken for each individual cultures using confocal microscopy and number of total 

and degraded myelin segments were counted per picture frame. Typical intact or degenerating 

internodes are shown in higher magnification. B) Percent damaged segments were calculated for 

each frame. NRG1 resulted in an average of 57.5% myelin breakdown compared to 8.2% in 

control, KU-32 ameliorated this damage to only 15.7% without decreasing the basal 

degeneration (7.0%). One-way ANOVA analysis indicates significance changes in percent 

damaged segments [F(3,12)=10.476; p<0.001], length [F(3,12)=24.881, p<0.001] and area of 

internodes [F(3,12)=4.489; p<0.05] among various groups. Tukey’s test indicates **p<0.01, *** 

p<0.001, *p<0.05 for NRG1 vs. Control in percent damaged segments, length and area of 

internodes, respectively ^p<0.05 for NRG1 vs. NRG1+KU-32, df=3, n=6. 
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Figure 3.3.3 KU-32 is unable to prevent myelinated cultures from NRG1-induced 

demyelination in the absence of Hsp70. A) As described for WT, Hsp70
-/-

 cultures were 

allowed to myelinate in vitro and treated with KU-32 (1μM) and NRG1 (200ng/ml) either 

separately or in combination. B) Percent degenerated segments were assessed following MBP 

immunostaining and compared to untreated controls. The level of demyelination observed in 

untreated cultures was 6.2% whereas an average of 36.5% myelin damage was obtained with 

NRG1. Neither basal degeneration (5.2%) nor NRG1-induced damage (35.2%) of myelin was 

affected by KU-32. One-way ANOVA analysis indicates significant difference among groups for 

percent damaged segments [F(3,12)=28.160; p<0.001], length [F(3,12)=13.116; p<0.01] and area of 

internodes [F(3,12)=10.239; p<0.01]. Tukey’s post-hoc test indicates ***p<0.05 for NRG1 vs. 

Control in percent damaged segments and **p<0.01 in internodal length and area. n.s indicates 

no significance for NRG1+KU-32 vs. NRG1. df=3, n=6 

 

Treating wildtype (WT) myelinated nerves with 200ng/ml NRG for 72 hr led to a marked 

degeneration of myelin membranes as indicated by the fragmented, vesicular appearances of 

MBP staining (Figure 3.3.2A), which was employed to visualize myelin internodes. Importantly, 
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this degeneration did not seem to be a consequence of impaired axonal integrity as no decrease 

or irregularity in PGP9.5 staining was seen. To quantify myelin degeneration, 

immunofluorescent images were taken at random fields in the cultures and the number of 

damaged versus total myelin segments was assessed. While there was about 8% basal 

demyelination in control cells, the number of degenerated myelin internodes in WT cultures 

treated with 200ng/ml NRG1 was ~7 fold higher. Prior incubation of some of the cultures with 

1μM KU-32 overnight (16hr) prevented this increase since the amount of damaged myelin 

segments in KU-32-pretreated NRG1 group remained close to the control level. KU-32 had no 

effect on the number of damaged myelin segments in the absence of NRG1 treatment (Figure 

3.3.2B). Since the percent of damaged myelin segments only takes into account the gross number 

of “broken” segments, it does not reflect the severity of the ongoing degeneration of the 

myelinated internodes. To further characterize the integrity of the myelin internodes, average 

internodal length from each treatment group was also assessed using Cell Profiler. Briefly, 

individual MBP segments with a pixel-length of 20-200 microns were identified through Otsu’s 

thresholding and segmentation. Major axis length for each segment was then automatically 

computed by the program to represent the internodal length (Figure 3.3.2b). Moreover, total area 

occupied by identified segments was measured to indicate overall internode diminishment. The 

result was expressed as fold of untreated control and revealed a 50-60% reduction in the average 

length and area of internodes by NRG1. Similar to its efficacy in decreasing amount damaged 

segments, KU-32 completely corrected the NRG1-induced deficits in segmental length and area 

of MBP. Although a similar degree of damaged segments was found in control Hsp70
-/-

 cultures 

(~6%), NRG1 stimulated about a 6-fold increase in degenerated segments and internode loss (20-

30% decrease in length and area) compared to WT. The reason for this modestly improved 
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resistance to NRG1 is not known, but might be due to a generally higher basal level of 

myelination in Hsp70
-/-

 cultures. Nevertheless, pretreatment of KU-32 failed to significantly 

reduce the percent of damaged myelin internodes or demonstrate any significant improvement in 

the percentage degeneration, length or area of myelin internodes against NRG1 in these Hsp70-

deficient cultures (Figure 3.3.3). This finding is consistent with our previous in vivo observation 

that Hsp70 is central to the drug efficacy in inducing neuroprotection (Urban et al., 2010). 

3.4 Hsp70 is required by KU-32 to inhibit NRG1-induced c-jun expression and activation 

C-jun has been established as a negative regulator of myelination and has been proposed to 

mediate NRG1-induced demyelination (Parkinson et al., 2008). In addition, whereas c-jun is 

minimally expressed in normal nerves, it is significantly upregulated in nerves affected by DPN 

and a number of other human demyelinating neuropathies (Hur et al., 2011; Hutton et al., 2011). 

We thus evaluated whether the efficacy of myelin protection by KU-32 correlated with inhibition 

of c-jun. Myelinated DRG/SC explants from WT or Hsp70
-/-

 mice were incubated with 1μM KU-

32 overnight prior to 16hr of NRG1 treatment and immunoblotting for phosphorylated c-jun (p-

c-jun) and total c-jun. In agreement with previous findings (Parkinson et al., 2008), exposure of 

WT explants to NRG1 resulted in a marked (2-2.5 fold) increase in both c-jun and p-c-jun 

protein level (Figure 3.4). Without affecting c-jun activity by itself, pretreatment of KU-32 

abolished NRG1-induced c-jun expression and activation in WT cultures. However, this 

inhibition was lost in myelinated cultures established from Hsp70 knockouts, suggesting that 

Hsp70 is essential in mediating c-jun inhibition by KU-32. Of note, genetic removal of Hsp70 

did not alter the basal c-jun or phospho-c-jun expression but slightly augmented the upregulation 

of c-jun following NRG1 treatment. Therefore, Hsp70 might be selectively intersecting with c-

jun induction down the NRG1 signaling axis. 
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Figure 3.4 KU-32 inhibits NRG1-induced expression and activation of c-jun in WT but not 

Hsp70 deficient nerves. A) Fully myelinated WT or Hsp70-/- DRG explants were treated with 

200ng/ml NRG for 16hr following either vehicle or 1μM KU-32 pretreatment overnight (16hr). 

Phospho-c-jun and c-jun content were then assessed based on the immunoreactivity of antibodies 

recognizing these proteins. B) Blots were quantified using ImageJ. Each treatment category 

indicated in bar graphs corresponds to individual lanes in the blots below which it is placed. 

Experiments were repeated 5 times in total and One-way ANOVA indicates significant 

difference among groups for WT p-c-jun [F(3,19)=5.910; p<0.01], WT c-jun [F(3,19)=3.550; 

p<0.05], KO p-c-jun [F(3,19)=9.857; p<0.05], KO c-jun [F(3,19)=5.086, p<0.05]. Tukey’s 

testindicates *p<0.05 **p<0.01 compared to control (vehicle), ^p<0.05 for NRG1 vs. 

NRG1+KU-32, # denotes no statistical significance. df=3, n=5-6 for each treatment group. 
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3.5 Hsp70 is sufficient to prevent NRG1-induced demyelination and c-jun induction 

While the above results support that Hsp70 is crucially involved in KU-32-mediated myelin 

protection, it is unclear whether the drug efficacy arises from a direct neuroprotective effect of 

Hsp70. Alternatively speaking, it remains to be determined whether induction of Hsp70 is 

sufficient to prevent myelin degeneration. To test this, a recombinant adenovirus carrying 

FLAG-tagged Hsp70 (ad-Hsp70FLAG) was generated to genetically overexpress Hsp70. Similar 

to KU-32 treatment, fully myelinated DRG/SC explants from WT and Hsp70 

 
Figure 3.5.1 Adenoviral overexpression of Hsp70 ameliorates NRG1-caused internode 

degeneration in WT cultures. A) WT myelinated sensory nerves were uninfected or infected 

with either blank or Hsp70FLAG-expressing adenoviruses for 16hr prior to a 72hr myelin 

degeneration stimulated by NRG1. MBP and PGP9.5 (not shown) immunostaining was 

performed, following which B) degeneration and length of MBP-marked internodes were 

quantified manually and by CellProfiler, respectively. One-way ANOVA indicates significant 

difference in the percent damaged [F(5,18)=20.928; p<0.001] and average length [F(5,18)=14.344, 

p<0.001] of internodes among groups. Tukey’s post-hoc test indicates *p<0.05, ***p<0.001 for 

treatment compared to control, ^p<0.05 for NRG1 vs. AdHsp70FLAG+NRG1, df=5, n=4 
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deficient mice were infected with ad-Hsp70FLAG for 16hr, the cells treated with NRG1 for 72 

hr and the cultures stained for MBP. In order to maintain the myelin damage at a comparable 

level between WT and Hsp70 KO cultures, WT explants were treated with 150ng/ml NRG1 

NRG1 while the Hsp70 KO counterparts were treated with 200ng/ml NRG1. This resulted in a 

similar percentage of degenerated segments in uninfected WT (~37-45%) and Hsp70
-/-

 (~40%) 

cultures (Figure 3.5.1; 3.5.2). Prior infection with ad-Hsp70FLAG led to a substantial Hsp70  

 
Figure 3.5.2 Adenoviral overexpression of Hsp70 ameliorates NRG1-caused internode 

degeneration in Hsp70-deficient cultures. A) MBP-stained internodes were examined after 

NRG1 treatment in uninfected, blank or ad-Hsp70FLAG adenovirus-infected Hsp70-/- sensory 

nerves. B) Percentage damaged segments and internodal length was measured as previously 

described. One-way ANOVA indicates significant changes in percent degenerated [F(5,18)=5.684; 

p<0.001] and average length [F(5,18)=5.960; p<0.001] of internodes. Tukey’s post-hoc test 

indicates *p<0.05, **p<0.01, ***p<0.001 for treatment compared to control, ^p<0.05 for NRG1 

vs. NRG1+Ad-Hsp70FLAG. df=5, n=4 
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Such protection is unlikely to be a result of viral infection itself since blank virus containing an 

expression in both WT and Hsp70
-/-

 cultures as demonstrated by immunoblotting with Hsp70 and 

FLAG antibodies (Figure 3.5.3). This corresponded to a respective 27% and 34% reduction in 

the amount of damaged internodes as compared to cultures treated with NRG1 (Figure 3.5.1 & 

3.5.2). empty vector did not alter the basal or NRG1-associated degeneration of myelin. 

Similarly, Hsp70 overexpression had no effect on endogenous demyelination. Analysis of 

average internodal length further revealed that NRG1 caused a 40-50% reduction in average 

length of internodes in WT and Hsp70
-/-

 nerves. Overexpression of Hsp70 attenuated this 

decrease by 30% in WT cultures, which however was still significantly decreased compared to 

the untreated. In comparison, an average 20% increase versus NRG1 in internode length was 

obtained by ad-Hsp70FLAG in Hsp70 deficient nerves. The observed improvement in myelin 

damage correlated with the ectopic expression of the epitope-tagged Hsp70 which was similar in 

both WT and Hsp70 KO cultures. In addition, induction of Hsp70 was sufficient to abrogate 

NRG1-induced c-jun expression and phosphorylation (Figure 3.5.3). Since in the earlier study an 

almost complete recovery from internodal shortening was achieved using the weak Hsp70 

activator KU-32, the fact that such potent overexpression of Hsp70 and c-jun inhibition 

substantially but not fully blocked demyelination suggest that KU-32 might act through other 

components than Hsp70-mediated c-jun inhibition in promoting myelin protection. Nonetheless, 

our results support that Hsp70 induction is sufficient to improve myelination and recapitulate the 

neuroprotection by KU-32. 
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Figure 3.5.3 Hsp70 overexpression is sufficient to block c-jun expression and 

phosphorylation. Biochemical analysis of c-jun, phosphor-c-jun and Hsp70 protein expression 

in response to NRG1 were performed after adenoviral-mediated Hsp70 induction in myelinated 

WT A) or Hsp70-depleted B) DRG/SC cultures. Results were compared to blank infection and 

uninfected control. Exogenous overexpression of Hsp70 was confirmed by immunoblotting of 

Hsp70 and FLAG. Blots quantitation were generated from two independent experiments. 
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3.6 Neither JNK nor Erk was responsible for KU-32-mediated c-jun inhibition 

JNK phosphorylates and activates c-jun at its N-terminus and is a well-established upstream 

kinase regulator of c-jun in a variety of signaling phenomena including apoptosis, inflammation 

and proliferation (Ham et al., 1995; Ip and Davis, 1998; Kaminska, 2009). Although 

overexpression of JNK can inhibit myelin gene expression, c-jun-induced demyelination does 

not appear to depend on JNK phosphorylation because N-terminus mutations that incapacitate 

JNK activation did not impair the inhibition of SC myelination by c-jun (Parkinson et al., 2008). 

In support of this, we failed to observe any increase in phosphorylated or total JNK level in 

myelinated DRG/SC explants with treatment of NRG1. Through direct or indirect interaction, 

Hsp70 has also been reported to negatively regulate JNK activity and subsequent apoptosis in 

sympathetic neurons (Bienemann et al., 2008; Salehi et al., 2006) and other contexts such as 

insulin  resistance (Chung et al., 2008; Gupte et al., 2009). However, we observed no change in 

JNK activation or expression in response to KU-32 in unmyelinated or myelinated DRG/SC 

explants as shown in Figure 3.6A,D. In light of these results, it is highly unlikely that JNK 

contributes to chaperone-mediated myelin protection or NRG1-associated demyelination. The 

increase of c-jun activation by NRG1 observed in previous results might therefore be secondary 

to the upregulation of the total level of c-jun or mediated through other kinases than JNK, such 

as Erk. 

While it is not unexpected that inhibition of NRG1-induced demyelination does not 

involve JNK modulation, it is surprising that KU-32 did not block induction of extracellular 

signal-regulated kinase (Erk) despite that this MAPK was immediately (45min) phosphorylated 

after addition of 200ng/ml NRG1 (Figure 3.6C). As mentioned earlier, SC dedifferentiation 

subsequent to high concentration of NRG1 and/or axotomy requires activation of Erk. 
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Mutational or pharmacological inactivation of Erk negated the reverse transition of SC 

phenotype driven by excessive NRG1 (Harrisingh et al., 2004). Additionally, a recent study 

suggests that NRG1-induced c-jun upregulation is Erk-dependent since Erk inhibitor blocked  

 
Figure 3.6 Neither JNK or Erk was altered by KU-32. Myelinated sensory explants from 

C57Bl/6 were treated with KU-32 for 16hr, followed by 16hr (JNK) or 45min (Erk) NRG1 at 

indicated concentration. A), C) JNK/Erk expression and activity were determined via 

immunoblotting of total and phosphorylated JNK. B) Experiments were performed for 5 

independent times and no statistical significance was found irrespective of the treatments. D) 1-

week unmyelinated DRG/SC explants were prepared from C57Bl/6 neonatal mice and treated 

with vehicle or 1μM KU-32 for 4, 8 or 24 hr. Cell lysates were then collected and 

immunoassayed for phospho-JNK and total JNK level. Graph quantitation was derived from 3 

independent experiments. One-way ANOVA was performed for p-JNK [F(3,19)=0.596; p=0.630], 

JNK p46 [F(3,19)=0.048; p=0.985] and JNK p54 [F(3,19)=0.340; p=0.797] and no statistical 

significance was detected among different treatment groups using Tukey’s post-hoc honestly-

significant test. df=3, n=5-6. 
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c-jun increase and demyelination (Syed et al., 2010). Although several previous results showed 

that Hsp70 inhibited Erk activity (Goel et al., 2010; Lee et al., 2005), our finding that increasing 

Hsp70 did not alter Erk phosphorylation suggests Erk blockage is not involved in c-jun 

downregulation. In fact, the exact role of Hsp70 in Erk regulation appears to differ in different 

cell types (Tsuji et al., 2000; Wang et al., 2009) and the present result may be specific to 

myelinating SCs. Though, it remains possible that inhibition or removal of activated Erk takes a 

prolonged period (>45min) to occur, the present data clearly indicates that KU-32-mediated 

inhibition of c-jun and demyelination is not through an early inhibition of Erk activation as 

reported by others (Goel et al., 2010; Lee et al., 2005). 

3.7 Reduction of c-jun expression by KU-32 is proteasome-dependent 

Because NRG1-induced myelin degeneration is not known to be associated with the 

accumulation of a particular protein misfolding or aggregation but rather disregulated gliotrophic 

support, chaperone-mediated assistance of protein quality control is not the likely mechanism of 

myelin protection by KU-32. However, chaperones may intervene with cellular signal 

transduction through proteasomal degradation of signaling proteins. For example, the anti-

apoptotic effect of Hsp70 and its cochaperone carboxyl terminus of Hsp70-interacting protein 

(CHIP) have been linked to their facilitating ubiquitination and proteasomal disposal of a c-jun 

upstream kinase (Hwang et al., 2005). To determine whether KU-32 reduces c-jun through 

protein degradation, we blocked proteasomal function via addition of the proteasome inhibitor 

MG132 to DRG explants in conjunction with NRG1 and examined c-jun expression. As shown 

in western blots, NRG1 increased c-jun expression to a similar extent as in earlier experiments 

and 1μM KU-32 markedly blocked this induction (Figure 3.7). However, addition of 2μM 

MG132 abrogated the block of c-jun induction by KU-32 in these cultures. As expected, 
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combination of NRG1 with MG132 led to an even greater (but not statistically significant) 

upregulation of c-jun, which can possibly be attributed to the slight increase in c-jun 

accumulation due to proteasome inhibition. This observation supports that KU-32 may reduce c-

jun through chaperone-targeted proteasomal clearance. 

In a typical model of chaperone-targeted ubiquitin-proteasome degradation, Hsp70 and 

Hsp90 chaperone complex, with the assistance of co-chaperones, mediates substrate 

polyubiquitination and sorting to the 26S proteasome through a direct chaperone-substrate 

interaction. Although available data suggests that Hsp70 transiently colocalizes with c-jun in the 

nucleus during apoptosis (Kitamura et al., 2003), it is still unclear whether Hsp70 promotes c-jun 

clearance through a direct physical association. To address this, we attempted to probe the 

Hsp70-c-jun interaction via immunoprecipitating sciatic nerve homogenates with monoclonal 

Hsp70 antibody and western blotted for c-jun. Surprisingly, despite the successful pull-down of 

Hsp70 from cell extracts (Figure 3.8.1B), no Hsp70-bound c-jun was detected in the precipitates 

(Figure 3.8.1A). This is not likely a result of disruption of native protein interaction due to the 

mechanical or chemical stress related to experimental condition as other Hsp70 binding partner 

was successfully identified by this co-IP reaction (Figure 3.8.1C). However, as the basal 

expression of c-jun is low in nerves, any low affinity or transient interaction of c-jun with Hsp70 

may have been lost during the assay. It is also possible that Hsp70 only associates with and 

eliminates increased c-jun in response to physiological or pathological stressors in peripheral 

nerves. Therefore, future immunoprecipitation assays assessing Hsp70-c-jun association may be 

carried out in cells treated with MG132. 
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Figure 3.7 KU-32 reduces c-jun in a proteasome-dependent manner. A) 1μM KU-32 was incubated 

for 16hr in myelinated DRG explants from C57Bl/6 mice, which is then subjected to additional 16hr 

treatment of 200ng/ml NRG and/or 2μM MG132. Cells lysates were then obtained and immunoblotted 

for c-jun protein level. B) Densitometry of c-jun immunoreactivity was performed using ImageJ and 

statistics were generated from 5 independent experiments. KNM: KU-32+NRG1+MG132; M+N: 

MG132+NRG1. One-way ANOVA analysis indicates significant difference [F(6,27)=3.582, p<0.01] in c-

jun expression among various groups. Tukey’s post-hoc test indicates *p<0.05 for treatment compared 

to control, # denotes no statistical significance was found for NRG1 vs. NRG1+KU-32+MG132, df=6, 

n=5 
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3.8 Hsp70 interacts with MBP in peripheral nerves 

Direct binding of Hsp70 to MBP has been identified in central myelin and proposed to facilitate 

antigen presentation in multiple sclerosis (Cwiklinska et al., 2003). However, Hsp70 also 

associates with MBP in normal white matter and regulates MBP synthesis during 

oligodendrocyte differentiation (Aquino et al., 1998; Lund et al., 2006). In mature peripheral 

nerves, we further confirmed the direct Hsp70-MBP association by reciprocal co-

immunoprecipitation using specific Hsp70 or MBP antibody (Figure 3.8.1C,D). Consistent with 

this finding, immunostaining revealed colocalization of Hsp70 with MBP in myelinating SCs of 

sensory explants (Figure 3.8.2). These observations suggest that Hsp70 also participates in 

myelin protein homeostasis. In agreement, induction of chaperones including Hsp70 aided the 

processing and trafficking of aggregation-prone PMP22, correlated with improved myelination 

in a CMT1A model (Rangaraju et al., 2008). Although it remains unclear whether metabolic 

changes of particular myelin proteins underlie NRG1-induced demyelination, the observed 

fragmentation and degradation of internode sheath in NRG1 treated cultures does indicate 

disrupted maintenance and stability of myelin proteins. As KU-32 increases Hsp70-MBP 

interaction, this may enhance myelin protein chaperoning thereby contributes to internode 

stabilization. Moreover, another major structural component of compact myelin P0 was not 

detected in Hsp70-bound proteins, suggesting that Hsp70 might selectively interact with 

molecules possessing a relatively fast turnover rate in myelin membrane (Lajtha et al., 1977; 

Quarles et al., 2006). 
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Figure 3.8.1 Hsp70 physically associates with MBP but not P0 and c-jun in normal 

peripheral nerves. Sciatic nerves lysates were obtained from ~1 month old C57Bl/6 mice and 

immunoprecipitated with Hsp70 mouse monoclonal antibody or IgG (negative control) using 

protein G sepharose beads. Western blotting precipitated fractions for c-jun A), MBP C) and P0 

D) identified MBP as direct binding partner for Hsp70. Reciprocal co-immunoprecipitation using 

MBP antibody further confirmed Hsp70-MBP interaction E). No c-jun or P0 immunoreactivity 

was detected in Hsp70-bound proteins. Hsp70 pull-down was confirmed by reblotting the lysates 

with Hsp70 antibody B). Blots are representative for two independent experiments. 
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Figure 3.8.2 Hsp70 colocalizes with MBP in myelinating SCs of peripheral sensory nerves. 

DRG/SC explants were established from C57Bl/6 mice and induced to myelinate in vitro for 2 

weeks by 50 μg/ml ascorbic acid. Cells were then fixed and triple-immunostained with 

antibodies specifically recognizing Hsp70 (green), MBP (red) and SC marker S100β (blue). 

Colocalization image of Hsp70 with MBP was composited using ImageJ channel merging. 

Immunolabeling of S100β in cultures indicates that Hsp70 largely overlaps with MBP in SCs. 

Experiments were performed twice and for each time triplicates were included in each 

experimental group. 

 

3.9 Discussion 

Altered growth factor signaling and its potential contribution to a variety of peripheral 

neuropathies such as DPN has drawn increasing awareness with the lack of success in nerve 

growth factor (NGF) therapy in eliciting the predicted protection of nerve function and 

amelioration of DPN symptoms (Apfel, 2002; Apfel et al., 2000). In db/db obese mice that 

develop features of human type 2 diabetes, upregulation of NGF and its subsequent activation of 

p38 MAP kinase was found to be responsible for the development of mechanical allodynia and 

painful diabetic neuropathy (Cheng et al., 2009; Cheng et al., 2012; Cheng et al., 2010). On the 

other hand, diabetes also modulates Neuregulin-1/ErbB signaling (Gui et al., 2012) that has been 

established to have a profound impact on the physiology of SCs (Nave and Salzer, 2006), which 

also undergo substantial degeneration in DPN (Eckersley, 2002). In particular, we showed that 

increasing ErbB2 activation deteriorated the mechanical hypoalgesia associated with myelinated 
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fiber response in diabetic nerve and recapitulated the deficits mentioned herein independent of 

diabetes (McGuire et al., 2009). Contrarily, pharmacological inhibition of ErbB2 reversed these 

indexes in mice that developed DPN. Clearly, altering Neuregulin-1/ErbB signaling is sufficient 

to affect the function of myelinated nerve. However, pathological implications of this ligand-

receptor signaling axis in SC demyelination secondary to metabolic disturbances or genetic and 

immune insults have received scant attention. Such lack of interest is baffling given that aberrant 

and excessive activation of ErbB2 by Neuregulin-1 has been repeatedly demonstrated to induce 

SC myelin degeneration (Harrisingh et al., 2004; Yu et al., 2008; Zanazzi et al., 2001) and 

peripheral demyelinating neuropathy (Huijbregts et al., 2003). Nevertheless, a couple of clinical 

investigations have provided evidence in support of the hypothesis that over-activation of 

neuregulin signaling in adult nerves contributes to SC dedifferentiation and molecular 

phenotypes of myelin pathology. For example, a sural nerve biopsy study revealed varying 

degrees of ErbB2 and ErbB3 receptor overexpression in several forms of human neuropathies 

with demyelinating features (Massa et al., 2006). We have shown in myelinated sensory 

neuron/SC cocultures that high concentration of glucose sensitized myelinated internodes to 

neuregulin-induced degeneration (Yu et al., 2008). The enhancement of ErbB2 signaling by 

hyperglycemia could be attributed to a differential alteration in the expression of neuregulin 

isoforms as significant upregulation in NRG1 type I and downregulation in NRG1 type III in 

sural nerves have been noted in our streptozotocin-induced diabetic mice (unpublished 

observation). 

Using a pharmacological Hsp90 modulator that enhances a broad cytoprotective response, 

we have previously reversed pre-existing neuropathic changes involving myelinated fiber 

function in an experimental mouse model of DPN (Urban et al., 2010). Therapeutic effectiveness 
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of this compound, KU-32, necessitates expression of the stress-inducible Hsp70 since Hsp70 KO 

diabetic mice that developed a similar neuropathy did not respond to the treatment. Hsp70 is a 

cytosolic chaperone that has demonstrated prominent neuroprotection in models of cerebral 

ischemia and a variety of neurodegenerative disorders (Kelly and Yenari, 2002; Muchowski and 

Wacker, 2005). In line with these findings, we showed that KU-32 prevented neuregulin-1-

induced demyelination in DRG/SC explants, in correlation with its in vivo antagonism to sensory 

hypoalgesia. Similar to the in vivo dependency of DPN recovery on Hsp70, the drug efficacy in 

inhibiting demyelination was mitigated by genetic deletion of Hsp70, suggesting that the 

protection is likely conferred by a nerve-specific chaperone induction. Indeed, we observed no 

systemic metabolic correction in mice administered KU-32. In further support of this notion, we 

demonstrate in the present study that KU-32 promotes Hsp70 expression in sensory nerves and 

that adenoviral-mediated overexpression of Hsp70 was sufficient to improve myelination against 

neuregulin-1. This finding might be somewhat surprising considering previous documentation 

that high Hsp70 expression favors cellular proliferation by permitting increased protein synthesis 

(Mayer and Bukau, 2005; Patton et al., 1995). The relatively weak neuron-glial expression of 

Hsp70 versus fibroblasts and increased rate of myelin differentiation in Hsp70 KO nerves 

compared to WT observed in our study do seem to agree with a negative correlation between 

Hsp70 and cell differentiation. However, Hsp70 does slightly upregulate during postnatal neural 

differentiation (Herbert et al., 2007) and preferentially increase in some differentiating tissue 

(Dix et al., 1997; Mangurten et al., 1997) including developing peripheral myelin (Patzig et al., 

2011), indicating that it might have certain utilization such as protein transport during myelin 

assembly. Such possibility is supported by an earlier report that Hsc70 and Hsp70 were required 

for MBP expression in differentiating oligodendrocytes (Aquino et al., 1998). Indirect, but 
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striking evidence came from the analysis of HSF1-/- mice which developed progressive myelin 

loss, astrogliosis, reduced white matter tracts and deficits in motor control that were exacerbated 

by aging (Homma et al., 2007). Since no changes in the steady-state levels of the constitutively 

expressed chaperones were noted, lack of the stress-responsive Hsp70 could be of potential 

relevance to this phenotype. Therefore, Hsp70 may regulate glia cell homeostasis and myelin 

stability. In agreement, a N-terminal Hsp90 inhibitor that increased Hsp70 expression in SCs 

corrected myelin defects in a CMT1A model, in association with enhanced turnover of PMP22 

(Rangaraju et al., 2008). Through reciprocal co-immunoprecipitation, we expanded previous 

findings from CNS and demonstrated for the first time a direct interaction of Hsp70 with the 

cytoplasmic-face membrane protein MBP in myelinating SCs of peripheral nerve. In contrast, no 

physical interaction between Hsp70 and P0 on the extracellular surface of myelin membrane was 

detected. Increasing Hsp70 by treating the explants with C-terminal Hsp90 inhibitor KU-32 

promoted Hsp70-MBP binding, indicating that MBP might be a frequent substrate of Hsp70 in 

myelinating SCs. Owing to its localization in the extrinsic surface of myelin membrane and 

extensive integration of protein modification, MBP tends to have a relatively dynamic metabolic 

turnover which would necessitate chaperone-mediated protein synthesis and trafficking (Lajtha 

et al., 1977; Quarles et al., 2006). Disrupting the MBP binding sequence on Hsp70 should 

facilitate elucidating the precise role of Hsp70 in MBP metabolism during myelin biogenesis 

and/or maintenance. Though the etiology of DPN-associated segmental demyelination is not 

linked to the accumulation of any specific misfolded or aggregated myelin protein or proteins, 

diabetes increases oxidative modification of amino acids and lipids (Akude et al., 2010; 

Obrosova et al., 2007) that can impair myelin protein folding (Muchowski and Wacker, 2005) 

and metabolic composition (Baynes, 2002; Brown et al., 1979; Brownlee and Cerami, 1981; 
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Cermenati et al., 2012; Spritz et al., 1975). It is also well-established that many hereditary 

neuropathies have a genetic root of myelin protein mutation which impedes correct protein 

expression and myelin sheath formation (Rangaraju et al., 2008; Wrabetz et al., 2004a). Hence, 

increasing molecular chaperones in nerves may provide an excellent endogenous protein “quality 

control” defense by assisting protein expression and folding/refolding, thereby enhancing 

myelinostasis (Figure 3.9). 

Apart from protein chaperoning, we provide the evidence that Hsp70 negatively regulates 

neuregulin signaling in differentiated SCs and preserved SC myelination through attenuating c-

jun induction. C-jun is a basic leucine zipper transcription factor of the AP-1 family and has been 

implicated in apoptosis (Bienemann et al., 2008; Bossy-Wetzel et al., 1997; Palmada et al., 2002). 

Neuregulin-1 also induces c-jun expression (Si et al., 1999) and a recent study employing Cre-

Lox conditional depletion of c-jun in SCs made a strong case that it plays a central role in 

mediating SC dedifferentiation (Parkinson et al., 2008). Our results are in keeping with this 

concept and further reveal that Hsp70 suppresses c-jun in myelinated SCs. As evidence is 

emerging that c-jun is increased in neuropathic nerves and may contribute to myelin 

degeneration (Hutton et al., 2011), such an endogenous inhibitory paradigm could be utilized to 

treat these phenotypes. Although Hsp70 is known to inhibit c-Jun N-terminal kinase (JNK) 

(Gabai et al., 1998) and has been suggested to prevent neuronal apoptosis via inactivation of 

JNK-c-jun signaling (Bienemann et al., 2008; Salehi et al., 2006), we failed to observe any 

decrease in JNK expression or activity with KU-32 at the time a significant reduction in c-jun 

was seen. Possible explanations include that since KU-32 only weakly induces Hsp70; this might 

not markedly impact on basal expression of JNK. In addition, JNK activation and deactivation 

could occur rather rapidly and transiently, and further examination of such kinetics is needed at 
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an earlier time point following neuregulin treatment. Regardless, JNK phosphorylation of c-jun 

is not required for SC dedifferentiation (Parkinson et al., 2008). Therefore, any interaction 

between Hsp70 and JNK would not be of physiological significance in this context. In fact, 

inhibition of c-jun by KU-32 does not appear to depend on the intersection of Hsp70 with the 

upstream kinase of this transcription factor since KU-32 did not prevent neuregulin-stimulated 

Erk (extracellular signal-regulated kinase) activation. Instead, our data supports that c-jun is 

channeled to the proteasome wherein it is reduced. Although the proteasomal inhibitor MG132 

has been shown to upregulate c-jun (Meriin et al., 1998; Nakayama et al., 2001), which may 

controvert our interpretation of the data as the blockage of KU-32 effect in c-jun downregulation, 

the concentration used in the present study is substantially lower and we observed minimal c-jun 

induction by MG132 alone. Our finding thus suggests a novel mechanism by which Hsp70  

 

Figure 3.9 Possible mechanisms underlying KU-32/Hsp70-mediated counteraction of c-jun 

induction and NRG1-asscociated SC demyelination. Increasing Hsp70 by KU-32 promotes c-

jun elimination via Hsp70-CHIP-mediated ubiquitin-proteosomal pathway and counteracts 

NRG1-induced demyelination. Increased Hsp70 may also help preserve myelin integrity through 

enhanced myelin protein chaperoning. 
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inactivates c-jun. Similar intervention of cell signaling by Hsp70 has been described in its 

regulation of apoptosis signal-regulating kinase 1 (Hwang et al., 2005) and transforming growth  

factor-beta (Yun et al., 2010). Intriguingly, c-jun is not commonly known to be directly regulated 

by Hsp70 and using immunoprecipitation assay we were not able to detect a physical association 

between these two in uninjuried nerves. This is not unexpected as it can be inferred from 

previous studies that interaction of Hsp70 with c-jun and other signaling proteins is rather 

transient and may occur only during certain cellular response (Hwang et al., 2005; Kitamura et 

al., 2003; Yun et al., 2010). Hence, Hsp70-c-jun interaction might only be appreciated in the 

presence of neuregulin or other known stimulators of c-jun in SCs. As carboxyl terminus of 

Hsp70-interacting protein (CHIP) has been implicated in linking chaperone substrates to 

ubiquitin proteolysis pathway (Petrucelli et al., 2004; Stankiewicz et al., 2010), future studies 

should determine whether Hsp70-CHIP-mediated ubiquitination is a prerequisite for c-jun 

elimination in proteasome (Figure 3.9). 

Of particular interest induction of the stress chaperone Hsp70 in response to heat shock 

and KU-32 is greater in SCs than neuronal cell bodies. This agrees with previous findings in 

central and peripheral nerves (Manzerra and Brown, 1992; Pavlik and Aneja, 2007) and as 

suggested by a comparison between primary hippocampal neuron and glial cultures that such 

discrepancy in Hsp70 expression might result from the absence of a classical HSF1-driven 

transcriptional induction of HSP genes in neurons (Kaarniranta et al., 2002; Marcuccilli et al., 

1996). Given that Parp-1 is important for fully activating Hsp70 promoter upon heat stress and 

KU-32 treatment (Martin et al., 2009), it is imperative to examine whether distinctive Parp-1 

distribution in neuron and glia is an underlying factor. According to an assessment of primary 

cortical neuron and astrocytes, however, this does not seem to be the case since no significant 
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differences in Parp-1 content between these two types of cells were detected (Pieper et al., 2000). 

Rather, neuronal deficiency of heat shock response has been attributed to the lack of the principal 

mediator of stress response: HSF1 (Marcuccilli et al., 1996). Because Hsp90 inhibitors induce 

HSP transcription by utilizing the autoregulatory action of Hsp90 on HSF1, missing this key 

player would render the pharmacological intervention ineffective. By the same token, 

transfecting cells with Hsp90 siRNA that silences the presumed binding target of KU-32 

abrogated the ability of the drug to elevate Hsp70. In the presence of similar SC Hsp90 and 

HSF1, we observed that specific deletion of Parp-1 blunted KU-32-induced Hsp70 increase 

(Figure A2). Whether this corresponds to abolishment of myelin protection awaits further 

investigation, perhaps with the aid of conditional Parp-1 knockout in myelinating SCs. If the 

chaperone reaction afforded through heat stress or KU-32 solely relies on cytosolic Hsp70, the 

above data would point to glia as the primary site of neuroprotection and neurons might benefit 

from absorbing exogenous Hsp70 released from adjacent glial cells in addition to gliotrophic 

support (Guzhova et al., 2001). However, KU-32 also protects pure sensory neurons from 

hyperglycemic insult (Urban et al., 2010; Urban et al., 2012), implying activation of mechanisms 

independent of cytosolic Hsp70. Indeed, we have identified through a quantitative proteomic 

screen that KU-32 translationally increased the mitochondrial paralog of Hsp70 (Grp75/mtHsp70) 

and improved mitochondrial bioenergetics in DRG neurons against glucose stress (Zhang et al., 

2012). Since myelin impairment is increasingly associated with axonal and SC mitochondrial 

dysfunction in a variety of neuropathic disorders (Andrews et al., 2006; Kalman et al., 1997; 

Nikic et al., 2011), preserving mitochondrial homeostasis via molecular chaperones may 

contribute to antagonizing myelin pathology. Interestingly, chronic treatment of neuregulin 

enhances mitochondrial biogenesis (Canto et al., 2007; Hock and Kralli, 2009) Therefore, 
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determining whether deregulated neuregulin-1/ErbB signaling contributes to aberrant 

mitochondrial fission that occur in diabetic nerves (Edwards et al., 2010) might offer valuable 

insight into the pathogenesis of DPN. 

3.10 Concluding Remarks 

 In summary, we demonstrate in the present study that a small molecule Hsp90 C-terminal 

modulator, KU-32, selectively upregulates Hsp70 in SCs and prevents neuregulin-induced 

demyelination of myelinated sensory nerves. The inducible cytosolic Hsp70 is essential to this 

myelin protection because genetic ablation of Hsp70 incapacitated the drug’s ability to preserve 

myelin internodes. Hsp70 also appears to directly mediate inhibition of demyelination since 

adenoviral-directed Hsp70 overexpression mimicked the drug’s effect in improving myelination 

against neuregulin. Importantly, inhibition of demyelination corresponded with reduction of 

neuregulin-activated c-jun, a well-characterized stimulator of SC dedifferentiation. In line with 

the dependency on Hsp70 for myelin protection, Hsp70 is both necessary and sufficient to 

suppress c-jun induction. This inhibition is not achieved through blocking signaling effectors 

upstream of c-jun, including JNK and Erk, but rather facilitating proteasomal degradation of c-

jun. Such an action is reminiscent of other growth factor and signaling protein regulation by 

Hsp70 and may represent a typical mechanism of cell signal transduction intervention by the 

chaperone machinery. In addition, increasing Hsp70 promoted its association with the 

metabolically active myelin protein MBP, suggesting a potential involvement of Hsp70 in 

myelin protein chaperoning. Reducing Hsp90 diminished Hsp70 induction by KU-32, 

corroborating the specific targeting of Hsp90-HSF1 in modulating heat shock response by C-

terminal inhibitors. The mechanism by which KU-32 upregulates Hsp70 may also involve Parp-1 

modification, as KU-32 failed to elicit Hsp70 expression in Parp-1-deficient neuroglial explants 
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(Appendix). Further characterization of the affect of Parp-1 knockout on the drug efficacy may 

resort to conditional Parp-1-null SCs. Together, our data provide evidence that Hsp70 protects 

peripheral nerve myelin from degenerating through regulation of neuregulin signaling and 

possibly maintenance of myelin proteins. Since alterations in neuregulin-1/ErbB signaling and 

myelin components contribute to pathological changes in myelinated fibers in DPN, and may 

lead to demyelination in diabetic nerves and other demyelinating disorders, increasing Hsp70 

may counteract aberrant gliotrophic signaling and protein denaturation thereby ameliorating 

myelin degeneration in these neuropathologies. With particular regard to DPN, it is important to 

note that while our model emphasizes the impact of chaperones on demyelination that arises 

from pathological activation of neuregulin-1/ErbB, our hypothesis does not necessitate altered 

gliotrophic support as the primary pathogenesis or site of chaperone protection in diabetes. There 

is no doubt that both neurons and their supporting cells are subject to diabetic insult and very 

limited success can be obtained by targeting one of the many biochemical events that contribute 

to the progression in DPN in a temporally non-uniform nature. Targeting molecular chaperones 

may circumvent this obstacle by upregulating a broad cytoprotective response and reparative 

potential in both neurons and glia that may allow nerves to tolerate otherwise pathogenic 

consequences of hyperglycemia. As degenerative changes in myelinating SCs either primary or 

secondary to axonal pathology is a substantial feature in DPN, understanding how molecular 

chaperones modulate signaling events underlying peripheral myelination and demyelination may 

open new translational avenues for clinical management of DPN and/or other human 

neuropathies. 
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Chapter 4: Estrogen, GPR30 and Peripheral Myelination 

Abstract 

As efficient remyelination primarily depends on the cellular and molecular signals that 

recapitulate developmental myelination, elucidating their molecular targets and signaling 

mechanisms will provide mechanistic insight and may help develop therapeutic approaches for 

demyelinating or demyelination-related diseases. Recent studies suggest that estrogen is 

neuroprotective and is involved in regulating myelination. Using SC/DRG neuron co-cultures, a 

well-established in vitro system that recapitulates the myelinating peripheral nerve, we hereby 

identify estrogen as a positive regulator of peripheral myelination since treatment of estradiol 

was sufficient to elicit SC myelination. Particularly, genetic knockdown supports that GPR30, a 

novel G-protein coupled estrogen receptor, is critically involved in mediating estrogen effects in 

myelination. However, a GPR30-specific agonist G-1, was not able to recapitulate estrogenic 

effect in inducing myelination at the concentrations tested. Whether or not this suggests other 

estrogen receptors are necessary to execute estrogen-stimulated myelination awaits further 

investigation. Moreover, we provided the first evidence for a molecular dependency between 

GPR30 and the membrane scaffolding protein Caveolin-1 (Cav-1) by showing that myelination-

incompetent Cav-1 KO nerves have diminished GPR30 and increasing Cav-1 expression rescued 

GPR30 expression. Based on these data, we propose the hypothesis that Cav-1 promotes 

estrogen-stimulated myelination through regulating GPR30 expression. Further elucidation of the 

molecular and cellular events underlying above observations may facilitate developing and 

refining hormone-based therapy for treating myelin pathology. 
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4.1 Estrogen as A Neurohormone and Myelinotrophic Factor 

Despite the ongoing effort of combating the myelin loss in human neuropathies, current 

treatment strategies are limited to preventive therapies. Little progress has been made towards 

pharmacologically enhancing damage repair and restoring myelin structure, which oftentimes 

fails even in the absence of active disease (Franklin and Ffrench-Constant, 2008). Owing to its 

importance in regulating myelin thickness, neuregulin-1 has received increasing attention to its 

potential utilization in treating demyelinating diseases. However, experimental analysis of this 

growth factor has yielded equivocal results in different models of demyelination (Cannella et al., 

1998; Marchionni et al., 1999; Penderis et al., 2003). Such limited success reflects the later 

discovery that neuregulin-1 is not sufficient to initiate myelination (Taveggia et al., 2005) and 

may even provoke demyelination if the ligand concentration is too high. This duality of action 

draws strict limits to the therapeutic window by which neuregulins may be used to promote 

myelination. Meanwhile, elucidating additional cellular and molecular signals that work in 

concert to drive myelination is of high scientific impact on preventing demyelination as well as 

developing approaches by which remyelination might be enhanced therapeutically. Recent 

studies suggest that estrogen is neuroprotective and is involved in regulating myelination. 

Although estrogen has long been confined to the category of “female sex hormones”, its 

involvement in glial cell myelination is now revealed by accumulating evidence. Estrogen 

belongs to a superfamily of nuclear steroid hormones that signal via nuclear estrogen receptors 

(ERs) and regulate target gene transcription. In addition to this canonical genomic mechanism, 

cytoplasmic nuclear receptors ER-α and ER-β can be targeted to the membrane surface and 

mediate rapid non-genomic actions that support important functions such as cell proliferation, 

survival and differentiation (Segars and Driggers, 2002). Apart from these ligand-activated 



98 
 

transcription receptors, it has also been uncovered that estrogen can bind directly to and activate 

a seven-transmembrane G-protein coupled receptor (GPCR) termed GPR30. GPR30 was 

identified through its ability to mediate rapid physiological response of this hormone in ER-

α/ER-β negative cells (Prossnitz et al., 2008). Due to evidence that estrogen may delay the onset 

or ameliorate the severity of several neurological disorders such as Alzheimer’s and Parkinson’s 

disease (Brann et al., 2007; Henderson, 2006), its role has been extensively studied in the brain. 

 

Figure 4.1 Estrogen stimulates both genomic and nongenomic signaling transduction in 

regulating cell survival, proliferation and differentiation. E2: estradiol. mERα/β: membrane-

bound ERα/β. MAPK: mitogen-activated protein kinase. PI3K: phosphatidylinositol 3-kinase. 

ERE: estrogen response element. Question mark indicates through unknown mechanisms. 

 

It is now becoming evident that estrogen also exerts neuroprotective and cognition-enhancing 

effects, such as reduction of stress and improvement of learning and memory (Kelly et al., 2005). 

Whereas the effect of estrogen in promoting neuronal homeostasis and synaptic plasticity has 

been well recognized, scant attention has been given to its role in the development of glial cells, 
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a major site of estrogen synthesis in neuronal tissue. The demyelinating disease multiple 

sclerosis (MS) is two times more prevalent in females than in males after puberty, but pregnancy 

has a protective effect, which implicates a role for estrogen in MS (Whitacre et al., 1999). Indeed, 

estrogen therapy ameliorated MS in humans. Animals pretreated with estradiol (E2) before 

immunization to induce experimental allergic encephalomyelitis were protected from clinical 

signs of the disease (Bebo et al., 2001; Soldan et al., 2003). Although the therapeutic efficacy of 

estrogens has long been considered as an immunomodulatory effect, direct effects of estrogen in 

neuronal tissue were recently shown and should not be dismissed. Evidence for direct actions of 

estrogen in glial cell physiology come from studies showing the stimulation of proliferation and 

expression of myelin genes following estradiol treatment in cultured oligodendrocytes (OLGs) 

which demonstrated abundant expression of ER-α and ER-β (Jung-Testas et al., 1992). This is 

consistent with a previous classical study showing estrogen administration increased brain 

myelination of neonatal rat (Curry and Heim, 1966). Of note, the presence of a membrane-

associated ER was identified in the OLG plasma membrane and myelin sheath by using Triton 

X-100 extraction, suggesting an intimate relationship between the membrane ER and CNS 

myelin (Arvanitis et al., 2004). In comparison, very limited interest has been devoted to 

estrogenic effects in the peripheral nervous system despite the fact that ER-α and ER-β 

transcripts have both been amplified from dorsal root ganglia (DRGs) (Taleghany et al., 1999). 

Similar to ER-α and ER-β, GPR30 is expressed in DRGs and has been implicated in their 

nociceptive and mechanical response to estradiol (Kuhn et al., 2008). Estrogen also induced a 

substantial increase in SC proliferation in sciatic nerve segments dissociated from rats (Fex 

Svenningsen and Kanje, 1999), but elicited mitogenic effects in primary SCs only in the presence 

of elevated intracellular cAMP level (Jung-Testas and Baulieu, 1998). However, estrogen does 
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not seem to be only a mitogenic factor to glial cells. Another group showed that addition of 

estradiol not only inhibited SC dedifferentiation, but also augmented remyelination following 

mitogen withdrawal in previously-myelinated DRG/SC co-cultures (Zhu and Glaser, 2008). 

Therefore, estrogen may exert a direct effect on peripheral myelination. To directly test this 

hypothesis, we examined the sufficiency of estrogen in inducing SC myelination and identified 

the corresponding receptor necessary for this myelinogenic effect. The overall scientific goal is 

to elucidate the molecular and cellular events underlying estrogen-regulated peripheral 

myelination, thereby providing a mechanistic basis for the development of new therapeutic 

approaches for treating demyelinating neuropathy. 

4.2 Caveolin-1, Estrogen Receptor and Myelination 

As it is evident from the amino acid sequence, Caveolin-1 (Cav-1) is best known as an integral 

membrane protein that forms the specialized vesicular lipid rafts, caveolae, at the plasma 

membrane in various cell types including the myelinated SCs (Meier et al., 2004; Mikol et al., 

1999). The significance of this function is clearly demonstrated in Cav-1-null mice which are 

deficient in plasmalemmal caveolae (Razani et al., 2001). By oligomerizing as a scaffold in 

caveolae, Cav-1 assembles and concentrates a variety of signaling complexes into distinct 

regions at the cell surface and regulates membrane-associated signaling events (Okamoto et al., 

1998). One such event has been proposed to be cell cycle control, inasmuch as the expression of 

Cav-1 is tightly linked to cellular differentiation (Mikol et al., 2002). Consistent with this 

hypothesis, Cav-1 expression in SCs was upregulated during myelination and downregulated 

following SC dedifferentiation during axotomy (Mikol et al., 2002). Although this could be 

explained through the increasing need for cholesterol shuttling by the cytosolic pool of Cav-1 in 

myelinating SCs (Dobrowsky et al., 2005), we further provided evidence that downregulation of 
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Cav-1 increased ErbB2 activation in SCs (Tan et al., 2003) and sensitized myelinated SC/DRG 

co-cultures to NRG-1-initiated demyelination (Yu et al., 2008). Therefore, Cav-1 may function 

to stabilize the myelinating phenotype of SCs by negatively modulating ErbB2 signaling. Cav-1 

also co-localizes with ER in CNS myelin (Arvanitis et al., 2004) and is essentially involved in 

rapid non-genomic estrogen signaling at neuronal membrane (Luoma et al., 2008). However, 

whether and how Cav-1 regulates ER signaling in peripheral glia and myelination remains 

unexplored. In the present study, we show that Cav-1 may play an important role in estrogen-

induced SC myelination by supporting GPR30 expression. 

4.3 Estrogen is sufficient to induce moderate SC myelination 

To test our hypothesis, mouse embryonic DRG/SC explants were established as an in vitro 

model of myelinating peripheral nerve and incubated with 0.05% DMSO (negative control), 

50nM or 100nM β-estradiol (E2), or 50μg/ml ascorbic acid (positive control) for 2 weeks. 

Immunostainning with MBP antibody was then performed to visualize myelinated axons in these 

cultures. Imaging was undertaken by confocal microscopy and the number of myelinated 

segments and average internodal length were quantified from a montage area consisting of 36 

microscopic fields (24x10
6
micron²). Whereas 50nM E2 was not able to significantly increase 

internode formation compared to vehicle-treated control, 100nM E2 increased the number of 

MBP-segments from ~12 to ~33 per montage area, albeit still ~50% lower than that from 

ascorbic acid-treated cultures. E2 promoted formation of long internodes (~70-100microns) at 

both concentrations though their average internodal length appeared shorter than the positive 

control. 
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Fig.4.2 Estrogen induces moderate myelination in DRG-SC explants. A, Embryonic DRG-

SC explants from C57Bl/6 mice were treated with vehicle, 50nME2, 100nM E2 and 50μg/ml 

ascorbic acid for 2 weeks and myelin segments were visualized by immunostaining for myelin 

basic protein (MBP) (red) (SMI-94R antibody, Covance). B, Total number of MBP-stained 

segments and average internodal length from each culture (coverslip) were quantified from 36 

montage images using SlideBook 4.0. One-way ANOVA indicates a significant difference in 

total segments [F(3,12)=4.10; p<0.05] and intermodal length [F(3,12)=3.396; p<0.05] among groups. 

Tukey’s test indicates *p<0.05 for treatment compared to control. df=3, n=4. 

4.4 Estrogen induces myelination in DRG-SC explants in the presence but not absence of 

GPR30- As shown in Fig.4.3, estradiol induced significant myelination in WT explants to a level 

that is comparable to that induced by ascorbic acid, whereas no response was observed in co-

cultures from mice with genetic deletion of Caveolin-1 (Cav-1) regardless of the treatment. This 

result was also evident in biochemical data since the expression of compact myelin protein  
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Fig.4.3. Estrogen selectively increases myelination in DRG-SC explants with GPR30 

expression. A, Embryonic DRG-SC explants from wt and Cav-1-/- were treated with vehicle, 

100nM E2 and 50μg/ml ascorbic acid for 2 weeks and myelin segments were visualized by 

immunostaining for myelin basic protein (MBP) (red) (SMI-94R antibody, Covance). B,C, 

Whole cell lysates from each sample were prepared and immunoblotted for P0, GPR30, ER-β, 

Cav-1 and β-actin. For immunofluorescence analysis 3 replicates were contained in each group. 

Data shown are representative of two independent experiments. 
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P0 was only detectable in myelinated WT cultures. Cav-1 is a membrane scaffolding protein that 

may function in the trafficking and docking nuclear ERs into plasma membrane, where ERs 

initiate rapid non-genomic signaling cascades. Interestingly, Cav-1 ablation diminished GPR30 

expression, but did not alter the expression of ER-β (Fig.4.3), suggesting an intimate relationship 

between Cav-1 and GPR30 expression in sensory neurons. Of note, WT co-cultures treated with 

E2 and ascorbic acid demonstrated an increased GPR30 expression compared to those treated 

with vehicle only, indicating an upregulation of GPR30 during myelinogenesis. In summary, the 

data support that estrogen stimulates peripheral nerve myelination in vitro and this correlates 

with an increased GPR30 expression. 

4.5 GPR30 is necessary for estrogen-induced myelination- 

We propose that GPR30 is necessary for estrogen-induced myelination. In support of this 

hypothesis, we assessed the effect of siRNA-directed GPR30 downregulation on the ability of 

estradiol to induce myelination. Results in Fig.4.4 show that compared to non-infected control 

and scrambled siRNA, GPR30-targeted siRNA caused a marked decrease in the number of 

MBP-stained (green) myelin segments in WT cultures treated with estradiol but not ascorbic acid. 

This indicates that ascorbic acid and estradiol may regulate myelination through heterogenous 

mechanisms. Of note, although GPR30 knock-down significantly reduced the number of 

myelinated fibers, no change in average internodal length was observed. This suggests that the 

regulation of the length of internodes formed is independent of GPR30 signaling. Importantly, 

the immunofluorescence data correlated with parallel studies using immunoblot which showed a 

significant decrease in P0 expression, concomitant with the reduced level of GPR30. Although 

sufficient data is yet to be obtained to address the statistical significance, the observed 
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differences were rather robust. Overall, these data support our hypothesis that estrogen stimulates 

peripheral myelination via a GPR30 dependent mechanism. 

 

Fig.4.4 GPR30 downregulation inhibited estrogen-induced myelination in DRG-SC 

explants. A, DRG-SC explants from wt were either non-infected, infected with scrambled 

siRNA or GPR30 specific siRNA-expressing adenovirus upon treatment of 100nM E2 or 

50μg/ml ascorbic acid for 2 weeks. Myelinated axons were stained with MBP (green). B, Total 

number of myelin segments and average length of internodes were quantified from 3 

independent samples per treatment. C, Immunoblot analysis was performed on lysates of co-

culture from each group and expression of P0 and GPR30 were assessed. 

4.6 Adenoviral-mediated Cav-1 expression rescues GPR30 expression but not myelination 

in Cav-1
-/-

 explants One interesting observation is that depletion of Cav-1 expression in the 

present model also diminished GPR30 protein level, suggesting that stable expression of this 
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receptor in peripheral nerves requires Cav-1. Cav-1 is a principal integral component of caveolae, 

specialized plasma membrane microdomains in which Cav-1 participates in the scaffolding and  

 

Figure 4.5 Adenoviral expression of Cav-1 in Cav-1-/- explants restored GPR30 expression 

but not myelination. A, Cav-1-/- DRG explants were established and infected with blank or 

sense Cav-1 adenovirus, or left uninfected for two weeks while receiving 100nM E2. 

Myelination was inspected via MBP staining. B, Protein expression of Cav-1 and GPR30 was 

measured with the aid of antibodies against Cav-1 and GPR30, respectively. C, Quantitation of 

GPR30 expression was derived from average of two independent experiments. One-way 

ANOVA indicates significant difference in GPR30 expression among groups [F(2,9)=3.16; 

p<0.05]. Tukey’s test indicates *p<0.05 compared to control. df=2, n=4. 

compartmentalization of various signaling molecules thereby regulating membrane-associated 

signal transduction (Liu et al., 2002; Okamoto et al., 1998). A small pool of soluble Cav-1 has 

also been found in multiple cellular compartments such as cytosol where it has been implicated 

in protein and lipid transport (Liu et al., 2002). Recent evidence suggests that Cav-1 associates 
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with and targets membrane localization of ER-α (Kim et al., 1999; Razandi et al., 2002), and is 

essential for activation and functional isolation of discrete estradiol-triggered signaling cascades 

from the membrane (Boulware et al., 2007). Based on these findings, we hypothesized that 

neuronl/glial GPR30 expression and estrogen-stimulated myelination is mediated through Cav-1. 

If this is the case, re-expression of Cav-1 in the cells should concomitantly restore GPR30 levels. 

Indeed, adenovirus-mediated expression of Cav-1 enabled GPR30 detection by immunoblotting 

(Figure 4.5). However, the amount of GPR30 induced was apparently not sufficient to rescue 

myelination in Cav-1 KO nerves as no MBP-stained compact myelin was seen. This might due to 

the low exogenous incorporation of Cav-1 into the cultures which may not support the minimal 

amount of GPR30 necessary for the initiation of internode formation. Higher expression of Cav-

1 might be needed in order to confer physiologically significant expression of GPR30. 

4.7 GPR30 activation was not sufficient to induce myelination 

While above data clearly supports that the magnitude of myelination correlates with the extent of 

GPR30 expression, an unresolved issue is whether GPR30 is sufficient for estrogen effect or are 

there additional ERs involved? To address this, we evaluated whether selective 

 

Figure 4.6 GPR30-specific agonist did not induce myelination. WT DRG explants were 

established in vitro and treated with 25, 50,100nM G1 or 50ng/ml ascorbic acid for 2 weeks. 

Immunostainning for MBP was performed for visual inspection of myelination. Data shown are 

representative of 2 independent experiments, no myelin internode formation was observed in G-

1-treated cultures regardless of the concentration tested. 
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activation of GPR30 is able to recapitulate the myelination induced by estrogen. For this purpose, 

GPR30-specific agonist G1 substituted estradiol as the myelin-inducing agent and cultures were 

immunostained for myelinated internodes after the same amount of incubation time as in 

previous experiments. Unfortunately, regardless of the concentration tested (25nM, 50nM, 

100nM), none of the cultures showed assembly of compact myelin sheath, whereas internode 

formation was readily observed in ascorbic acid-treated explants. Such an outcome yields two 

interpretations: higher concentrations of G1 are needed or GPR30 is not sufficient for 

myelination. Future study using increased concentration of G1 is justified to support and/or 

refute above possibilities. 

4.8 Summary and Discussion 

Using SC/DRG neuron co-cultures, a well-established in vitro system that recapitulates 

myelinating peripheral nerve, we hereby identify estrogen as a positive regulator of peripheral 

myelination. Particularly, genetic knockdown supports that GPR30 is critically involved in 

mediating estrogen effects in myelination. GPR30 is a GPCR that is activated by estrogen and 

induces second messenger signaling including mitogen-activated protein kinases (MAPK), 

phosphatidylinositol 3-kinase (PI3K), and Src/Shc (Revankar et al., 2005; Thomas et al., 2005). 

Treatment with estradiol elicited a significant amount of myelination in WT cultures, whereas no 

myelin segment was observed in cultures expressing little or no GPR30. In purified sensory 

neurons, the expression and activity of ERs have been described in several studies. For example, 

GPR30 was found to be expressed in DRG neurons and elicited mechanical hyperalgesia via 

PKCε activation upon stimulation by either estrogen or specific agonist G-1 (Kuhn et al., 2008). 

The above hormonal effects on myelination could therefore be regarded as a phenomenon 

secondary to neuronal influence and warrant further investigation on GPR30 action in the 
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activity of neurons, such as dependence on myelin-promoting factor-NRG1typeⅢ (Taveggia et 

al., 2005) (Figure 4.7.1). However, SCs also demonstrate abundant ER distribution and increased 

mitogenesis in response to estrogen treatment, suggesting that estrogen might directly modulate 

SCs as well. Indeed, ER expression in SCs has been confirmed by studies from immunoblot and 

immunofluorescence (Thi et al., 1998). Nevertheless, the precise localization and subtypes of 

ER(s) in the co-cultures are yet to be clarified, since both neuronal and glial, long-term nuclear 

ER and short-term membrane ER actions may contribute to the pro-myelinating effects of 

estrogen. Moreover, although the myelin-enhancing function of estrogen has been supported by  

Figure 4.7.1 Potential mechanisms underlying estrogen-stimulated SC myelination. 

Stimulation of ERs in neurons by estradiol (E2) may enhance axonal production of 

cellular/molecular signals, for instance NRG1 type III, which in turn activate ErbB2/3 receptors 

on SCs and drive SC myelination. Estrogen could also directly activate GPR30 and/or ERα/β in 

SCs, which directly or indirectly leads to upregulation of myelin-promoting signaling and/or 

transcription factors including PI3-Akt and Oct6-Krox-20. Characterizing the content and 

distribution of different ER subtypes in neurons and glia will facilitate understanding the 

molecular mechanisms underlying estrogen-regulated peripheral myelination. 
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increasing evidence, the underlying molecular mechanism is largely unexplored. Pursuing this 

gap promises to aid our development of targeted treatment regimens in clinical settings. PI3K is 

an essential signaling event that determines SC myelinating fate (Maurel and Salzer, 2000a). Of 

note, this signaling kinase has also been coupled to various cellular effects elicited by estrogen 

(Segars and Driggers, 2002). Whether or not PI3K is involved in estrogen-induced myelination 

awaits further characterization (Figure 4.7.1). In addition, expression of transcription factors 

such as Krox-20 and Oct-6 are critical components in myelin protein expression and crucial step 

in the transition from promyelinating to the myelinating stage of SCs (Kamholz et al., 1999; 

Svaren and Meijer, 2008). Given that Krox-20 and Oct-6 expression are downstream to the 

activation of fast signaling cascades, direct influences on their expression might as well explain 

the effect of estrogen on SC myelination.  

Our finding that Cav-1 deficient nerves also displayed impaired expression of GPR30 

suggests an intimate relationship between this membrane ER and Cav-1. To our knowledge, this 

is the first evidence provided for a molecular link of these two and is consistent with previous 

reports that Cav-1 associates with and regulates membrane-bound ER-α and/or ER-β signaling 

(Boulware et al., 2007; Kim et al., 1999; Razandi et al., 2002). Unlike ER-α and ER-β, GPCRs 

contain innate seven transmembrane domain and may not rely on other proteins for membrane 

anchoring. However, GPCRs and their interacting molecules are also enriched in lipid rafts and 

caveolae and may require Cav-1 in such localization and trafficking (Chini and Parenti, 2004; 

Kong et al., 2007). Therefore, lack of Cav-1-mediated membrane targeting and trafficking may 

detain GPR30 in the cytosol and subject it to degradation. Given the critical association between 

Cav-1 expression with SC GPR30 expression and degree of myelination, it is tempting to 

speculate that Cav-1 controls estrogen-stimulated myelination through targeted membrane 
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transport and scaffolding of GPR30 (Figure 4.7.2). Whether this is achieved through direct or 

indirect interaction of Cav-1 with GPR30 is yet to be determined. 

 

Figure 4.7.2 Cav-1 regulates estrogen-mediated peripheral myelination through membrane 

targeting of GPR30. Caveolin-1 may anchor and/or associate with GPR30 in caveolae at SC 

membrane, thereby regulate its activation or coupling with the downstream signaling involved in 

myelination upon ligand (estradiol) binding. E2:estradiol. 

Overall, elucidating these events will lend insight into our understanding of the cellular 

and molecular components necessary for proper remyelination and facilitate the design of 

targeted hormone therapy in demyelinating neuropathies. Along this line, estradiol and other 

steroids have proven promising efficacy in reducing demyelination and enhancing remyelination 

in numerous in vitro and in vivo models (Acs et al., 2009; Li et al., 2006; Tiwari-Woodruff et al., 

2007; Zhu and Glaser, 2008). Of particular note, administration of another neuroactive female 

hormone progesterone and its metabolite to STZ-rats ameliorated diabetes-induced myelin 

abnormalities (Veiga et al., 2006) and MBP deficiency (Pesaresi et al., 2010). It can be 
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anticipated that further definition of the biochemical mechanism underlying this protective effect 

would assist the rational identification of novel treatment towards counteracting myelin 

complications in diabetes. 
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Chapter 5: Outlook 

Myelin and myelinated fiber functions are frequently affected in DPN and other human 

neuropathies, which display a trend of climbing global prevalence. To date, little success has 

been achieved in disease arrestment and prevention, and even scarce therapeutic strategies are 

available for addressing the substantial myelin loss and nerve damage. As irreversible 

consequences often occur as a result of prolonged disease progression and unattended 

neurodegenerative change, novel approaches are needed for upregulating neuroprotective 

response and harnessing the reparative potential of demyelinating nerves. In this regard, 

molecular chaperones and neurosteroids offer promising therapeutic alternatives and may 

provide a powerful tool in improving myelin genesis and maintenance. Clearly, identifying these 

“druggable” molecular targets and endogenous mechanisms is of paramount impact on the long-

term medical management of these diseases. However, caution must be taken while developing 

pharmacological regimens to modulate these molecules as they carry multiple physiological 

functions and non-specific intervention with other pathways can undermine the therapeutic 

effectiveness. For instance, since Hsp70 facilitates the antigen presentation and autoimmune 

response directed against myelin proteins (Mycko et al., 2004), induction of Hsp70 may 

stimulate the immunogenic aspect of this chaperone and increase the risk of MS-associated 

demyelination. Although above data clearly demonstrates that Hsp70 enhances the integrity of 

mature myelin, Hsp70 may impose an inhibitory regulation on the rate and/or extent of 

developmental myelination since depletion of this chaperone in Hsp70 knockout sensory nerves 

increased the level of basal myelin formation compared to same-aged WT nerves (Figure 3.3.3). 

In line with this, Hsp70 gene transcription is significantly upregulated during early phase of 

myelination (postnatal day 5) (Patzig et al., 2011), when active transition of promyelinating SCs 



114 
 

into myelinating SCs occurs (Svaren and Meijer, 2008). Future studies should determine whether 

such postnatal, temporal elevation of Hsp70 serves to diverge the umyelinating SCs from the 

myelinating fate and/or to regulate appropriate timing and rate of myelination, as elucidating 

these events may yield insightful application of Hsp70 intervention in treating developmental 

deficits associated with peripheral myelin. Outside the nervous system, evidence is also 

accumulating that increasing Hsp70 enhances cell growth and tumorigenesis (Patton et al., 1995). 

Overstimulation of the pro-survival HSR could promote development of malignant phenotypes 

and interfere with the chemotherapeutic treatment. On the contrary, although Hsp90 inhibitors 

upregulate HSR, their utility as neuroprotective agents is antagonized by induction of Hsp90 

client protein degradation and necessitates efficient dissociation of neuroprotection from 

cytotoxicity. Owing to the above-mentioned versatility of Hsp70 funciton, the extent and 

specificity of chaperone modulation in treating demyelinating neuropathies require careful 

consideration before its translational potential can be realized. 

 While the present study supports that increasing Hsp70 inhibits altered neuregulinism-

induced peripheral demyelination and improves myelinated fiber function in diabetes, it does not 

negate nor exclude the intersection of Hsp70 with other neuropathic changes and biochemical 

insults underlying the development of DPN. In fact, we have published the findings that KU-32 

protected unmyelinated, embryonic sensory neurons from glucose-induced death, reversed the 

loss and improved the innervation of unmyelinated, plantar, intra-epidermal nerve fibers in 

diabetic mice (Urban et al., 2010; Urban et al., 2012). The decrease in neurodegenerative aspects 

of DPN by KU-32 is paralleled by increased cytosolic and mitochondrial Hsp70 paralogs, 

attenuated oxidative stress and improved mitochondrial energetics; the last two have been 

established as central pathogenetic components in DPN. Thus, chaperone induction is 
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pharmacologically beneficial in upregulating a broad neuroprotective response and protecting 

both myelinated and unmyelinated fiber function and understanding how “stress proteins” may 

antagonize these diabetes-induced biochemical and organellar stress will not only facilitate 

developing a novel mono- or conjunctional therapy for the neurodegenerative complication of 

diabetes but also reveal some of the pathogenetic aspects of DPN. 
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Appendix 

PARP-1 and Hsp70 induction 

As the master regulator of HSR, HSF-1 activates HSP gene expression by recruiting 

transcriptional coactivator complex such as P-TEFb (positive transcription elongation factor b) to 

the Hsp70 promoter (Lis et al., 2000; Park et al., 2001). Additionally, HSF-1 is necessary to 

activate poly(ADP-ribose) polymerase-1(PARP-1) enzymatic activity whereby it promotes its 

release from the promoter region and redistribution through Hsp70 loci upon HS (Petesch and 

Lis, 2012). The clearance of PARP-1 from the promoter appears to be indispensable for full 

activation of the inducible Hsp70.1 since genetic deletion of PARP-1 significantly impaired the 

ability of HS to activate Hsp70 gene expression (Martin et al., 2009). Given that Hsp90 

inhibitors are proposed to recapitulate heat stress by inducing the dissociation of HSF-1 from 

Hsp90 sequestration, we therefore investigated the involvement of PARP-1 in the 

neuroprotective effect of KU-32. Since it has been previously demonstrated that HS-induced 

removal of PARP-1 from Hsp70 promoter is mediated through PARP-1 sumoylation and 

subsequent clearance (Martin et al., 2009), we first validated that KU-32 reduced nuclear content 

of full length PARP-1 in HEK-293 cells (Figure A1B). Further, KU-32 failed to enhance Hsp70 

expression in DRG explants established from PARP-1-deficient mice at the same concentration 

to which WT cultures responded with about 4 fold induction (Figure A2). It is also worth 

mentioning that PARP-1 depletion increased the basal expression of Hsp70 and Hsp60 as 

compared to WT. This is in accordance with the notion that PARP-1 represses HSP  
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Figure Al: KU-32 promotes PARP-1 degradation in HEK-293 cells. A) HEK-293 cells were 

treated with either 0.05% DMSO or 1μM KU-32 for 24 hr. Cells were then collected and lysates 

were subfractionated to separate and obtain the nuclear and cytosolic fractions. Fractions were 

then analyzed through electrophoresis and PARP-1 protein contents were assessed by 

immunoblotting using monoclonal antibody against PARP-1. B) Data were repeated 4 times. 

One-way ANOVA indicates a significant difference in Parp-1 expression between veh and 1μM 

KU-32-treated groups [F(1,6)=4.207; p<0.05]. Tukey’s post-hoc test indicates *p<0.05 for 24hr 

KU-32 vs. Veh, df=1, n=4. 
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Figure A2 PARP-1 deficiency abolishes Hsp70 induction by KU-32. DRG/SC explants from 

PARP-1
-/-

 mice were treated with vehicle or KU-32 for 24hr, or HS for 30 min plus appropriate 

recovery time as indicated above. Hsp70 and Hsp60 expression was examined by 

immunoblotting. No statistical difference in Hsp70 expression was found between vehicle and 

KU-32-treated PARP-1
-/-

 cells. Bar graph quantification was generated from 3 independent 

experiments. One-way ANOVA detected no significant change in Hsp70 expression between veh 

and KU-32-treated groups [F(1,6)=0.901; p=0.892]. df=1, n=4 A). Basal expression of Hsp70 and 

Hsp60 in PARP-1
-/-

 DRGs were significantly higher compared to WT vehicle-treated cultures in 

the absence of HS. Top blot demonstrates shorter exposure of X-ray film to chemiluminescence 

activity conjugated to Hsp70 antibody B). β-actin was blotted as loading control. NH: no 

heatshock. 
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Figure A3 PARP-1 is required by KU-32 to protect unmyelinated sensory nerves against 

glucose neurotoxicity. DRG explants isolated from neonatal WT or PARP-1-/- mice were plated 

onto tissue culture plates at equal density and immediately treated with antimitotics to remove 

proliferating fibroblasts for 1 day. Cultures were pretreated with vehicle or KU-32 overnight 

(16hr) and maintained in medium containing 25mM glucose prior to 4hr high glucose stress 

(45mM). calcein AM (The acetomethoxy derivate of calcein) were then incubated with cells for 

30 min to label live cells. The number of viable cells is proportional to the fluorescence intensity 

reading of calcein and normalized to total protein concentration in each well. Results were 

presented in arithmetic meanSD and expressed as fold of untreated control. 45mM glucose 

caused ~50% cell death in both WT and PARP-1 KO DRGs. KU-32 improved cell survival in 

WT cultures by ~25% whereas elicited no significant change in the rate of cell survival in PARP-

1-/- DRGs. One-way ANOVA analysis indicates a significant difference in cell survival in both 

WT [F(3,32)=3.960; p<0.05] and Parp-1-/- [F(3,56)=1.012; p<0.01]. Tukey’s post-hoc test indicates 

*p<0.05 for Glucose vs. KU-32+Glucose. n.s. denotes no statistical difference. df=3. 

 

promoter activation at quiescent state. Further, pretreatment of 1μM KU-32 overnight alleviated 

hyperglycemia-induced cell death in WT DRG explants (Figure A3). However, no improvement 

in neural survival was observed in PARP-1-/- DRGs treated with KU-32. Therefore, above 

results support a critical role of PARP-1 in mediating the effect of KU-32 in protecting 

unmyelinated nerves against hyperglycemic insult in diabetes. To test directly the hypothesis that 

Parp-1 is indispensable for the drug efficacy, we sought to determine whether Parp-1 gene 
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deletion affects myelin protection. Unfortunately, this is hindered by the inate defect in myelin 

formation of DRG explants extracted from PARP-1-/- mice (Figure A4) (Plane et al., 2012). 

 
Figure A4 Genetic deletion of PARP-1 abolishes sensory nerve myelination in vitro. As with 

WT, neonatal DRG/SC explants were isolated from PARP-1-/- mice pups and induced to 

myelinate by addition of ascorbic acid after removal of fibroblasts. After 3-4 weeks, cells were 

immunostained with PGP9.5 and MBP for examination of myelin internodes. Despite the 

abundance of neurons and SCs in the culture, no compact myelin was formed. Experiments were 

performed 3 times and no myelination was observed. 
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