
Finding Eigenvalues of Unitary Matrices

By

Peidi Gu

Submitted to the graduate degree program in Mathematics and the
Graduate Faculty of the University of Kansas

in partial fulfillment of the requirements for the degree of
Master of Art

Committee members

Hongguo Xu, Chairperson

Xuemin Tu

Erik Van Vleck

Date defended: December 17, 2013

The Dissertation Committee for Peidi Gu certifies
that this is the approved version of the following dissertation :

Finding Eigenvalues of Unitary Matrices

Hongguo Xu, Chairperson

Date approved: December 17, 2013

ii

Abstract

The study introduces methods of finding eigenvalues for unitary matrices and pencils.

Bunse-Gerstner and Elsner([2]) proposed an algorithm of using the Schur parameter

pencil to solve eigenproblems for unitary matrices and pencils. This thesis reviews the

Schur parameter pencil algorithm. The method is divided into two phases: Reducing a

unitary pencil to a Schur parameter form and QR-type shifted iteration. The algorithm

is proved to be backward stable and more efficient than the standard QR/QZ algorithm.

However, during the process of reduction, norms of vectors are frequently compared

for numerical stability, which causes a lot of extra work for computations. Based

on the idea in [8], we introduce a modified Schur parameter algorithm to avoid such

frequent comparison. The modified algorithm is still divided into two phases similar

to the one in [2]. A detailed reduction process and shifted iteration are described in

this thesis.

iii

Contents

0 Definitions and Notations 1

0.1 Notations . 1

0.2 Definitions . 2

0.2.1 Unitary Matrix . 2

0.2.2 Hermitian Matrix . 3

0.2.3 Hessenberg Matrix . 3

0.2.4 Householder Transformations . 4

0.2.5 Givens Rotation . 6

0.2.6 QR Decomposition . 8

0.2.7 Backward Stability . 8

1 Introduction 9

1.1 Overview . 9

1.2 Goal . 10

1.3 Outline . 10

2 The Eigenvalue Problem 12

2.1 Eigenvalue and Eigenvectors . 12

2.2 QR Algorithm . 13

2.3 QZ Algorithm . 17

iv

3 Schur Parameter Pencil Algorithm for Unitary Eigenproblems 19

3.1 Reduction from a Unitary Pencil to a Schur Parameter Pencil 20

3.1.1 Unitary Pencil Case . 22

3.1.2 Unitary Matrix Case . 28

3.2 Shift and Iteration . 34

3.2.1 Single Shift Iteration . 34

3.2.2 Double Shifts Iteration . 37

4 Modified Schur Parameter Pencil Method 39

4.1 Reducing from a Unitary Pencil to a Schur Parameter Pencil 41

4.1.1 Unitary Pencil Case . 41

4.1.2 Unitary Matrix Case [8] . 54

4.2 Modified Shift and Iteration . 60

4.2.1 Modified Single Shift Iteration . 60

4.2.2 Modified Double Shifts Iteration . 64

4.3 Numerical Examples . 66

5 Conclusion and Future Work 76

A Programming Codes in MATLAB 80

A.1 Package Instruction . 80

A.2 Programming Codes . 81

A.2.1 unitarypencil-single.m . 81

A.2.2 unitarymatrix-single.m . 84

A.2.3 unitarypencil-double.m . 86

A.2.4 unitarymatrix-double.m . 89

A.2.5 decomposition.m . 91

A.2.6 singledecom.m . 95

A.2.7 my2by2matrix.m . 97

v

A.2.8 myloop.m . 98

A.2.9 doubleloop.m . 100

A.2.10 chase.m . 102

A.2.11 doublechase.m . 108

A.2.12 givens.m . 114

A.2.13 houseg.m . 116

vi

Chapter 0

Definitions and Notations

0.1 Notations

Cn: n dimensional complex vector space

Cm×n: an m×n matrix in the complex field

||x||: 2-norm of a vector x

c̄: conjugate of the complex number c

e1: a column vector with 1 at the first component and 0’s at others

I: identity matrix

H∗: the complex conjugate transpose of H ∈ Cn×n

ai∗: the ith row of matrix A

a∗i: the ith column of matrix A

vT : the transpose of a vector v

v∗: the conjugate transpose of a vector v

1

A := B: assign the value of B to A

A(n : m, i : j): submatrix of A by taking the intersection of the entries from nth row to mth

row and from ith column to jth column

A(n, i : j): vector formed by entries from the intersection of the nth row and from ith column

to jth column

A(i : j,n): vector formed by entries from the intersection of the nth column and from ith row

to jth row

A(n,m): the (n,m)th entry of matrix A

0.2 Definitions

0.2.1 Unitary Matrix

A matrix U ∈ Cn×n is a unitary matrix if

U∗U = UU∗ = I

where I is the identity matrix and U∗ is the complex conjugate transpose of U.

Properties of unitary matrices:

if U ∈Cn×n is a unitary matrix, then:

1. U and U∗ are invertible,

2. U−1 = U∗ and (U∗)−1 = U,

3. U is unitary if and only if U∗ is unitary,

4. the columns of U form an orthonormal basis of Cn with respect to the standard inner product,

5. the rows of U form an orthonormal basis of Cn with respect to the standard inner product,

2

6. the eigenvalues of U lie on the unit circle in the complex plane.

0.2.2 Hermitian Matrix

A matrix H is a Hermitian matrix if H = H∗.

Example 1 a Hermitian matrix.



1 1+ i i 2− i

1− i 3 5 4i

−i 5 6 0

2+ i −4i 0 7


The diagonal entries of a Hermitian matrix are always real.

0.2.3 Hessenberg Matrix

An upper Hessenberg matrix has all zero entries below the subdiagonal and a lower Hessenberg

matrix has all zero entries above the first super-diagonal.

Example 2 An upper Hessenberg matrix:



1 2 3 4

5 6 7 8

0 9 10 11

0 0 12 13


Example 3 A lower Hessenberg matrix:



1 5 0 0

2 6 9 0

3 7 10 12

4 8 11 13


3

A matrix that is both upper and lower Hessenberg is called tridiagonal.

Example 4 A tridiagonal matrix:



1 2 0 0

3 4 5 0

0 6 7 8

0 0 9 10


0.2.4 Householder Transformations

Given a vector v ∈ Cn,v 6= 0, a Householder transformation is a linear transformation that re-

flects all the vectors in the space Cn across the hyperplane H orthogonal to v. It is also called a

Householder vector. This linear transformation is given by a Householder matrix:

P = I−2
(

vv∗

v∗v

)

Properties of a Householder matrix:

1. P is Hermitian: P = P∗

2. P is unitary: P−1 = P∗

3. P2 = I

Suppose 0 6= x = [x1,x2, · · · ,xn]
T ∈Cn. One can construct a Householder matrix P that trans-

forms x to a vector parallel to e1. The construction can be described as follows. Suppose x1 =

reiθ ,r = |x1|> 0. Define

v = x± eiθ ||x||e1, β =
2

v∗v
.

4

Then

v =



reiθ

x2

...

xn


±



||x||eiθ

0
...

0


=



(r±||x||)eiθ

x2

...

xn


, (1)

and using r = |x1|,

v∗v = ||v||2 = (r±||x||)2 + ||x2||2 + · · ·+ ||xn||2 (2)

= r2±2r||x||+ ||x||2 + ||x2||2 + · · ·+ ||xn||2 (3)

= 2||x||2±2r||x|| (4)

= 2||x||(||x||± r). (5)

Hence

β =
2

v∗v
=

2
2||x||(||x||± r)

=
1

||x||(||x||± r)
. (6)

For the corresponding Householder matrix P = I−βvv∗, we have

Px = (I−βvv∗)x = x− (βv∗x)v.

Because

v∗x =



(r±||x||)eiθ

x2

...

xn



∗

reiθ

x2

...

xn


= ||x||(||x||± r) = 1/β , (7)

one has

Px = x− v = x− (x± eiθ ||x||e1) =∓eiθ ||x||e1 (8)

For numerical stability reasons, we will always choose v = x+ eiθ ||x||e1 so that v has a bigger

norm. If x1 = 0, we choose v = x+ ||x||e1.

5

Algorithm 0.2.1 Householder Transformation

Suppose x ∈Cn, x 6= 0, x1 = reiθ with r ≥ 0. This algorithm computes the Householder vector v,

such that P = I−βvv∗ and Px =−eiθ ||x||e1

1. IF r > 0, THEN v = x+ eiθ ||x||e1; ELSE v = x+ ||x||e1

2. β = 2/(v∗v)

0.2.5 Givens Rotation

A Givens rotation is given by a matrix of the form [3]:

G(i, j,c,s) =



1 · · · 0 · · · 0 · · · 0
...

...
...

0 · · · c · · · s · · · 0
...

...
...

0 · · · −s̄ · · · c̄ · · · 0
...

...
...

0 · · · 0 · · · 0 · · · 1


where c,s satisfy |c|2 + |s|2 = 1, and c,s, c̄,−s̄ locate at the intersections of ith and jth rows

and columns.

If we multiply G(i, j,c,s) to the left of a matrix A, then only the ith and jth rows of A would

be affected, while if multiply G(i, j,c,s) to the right of A, then only the ith and jth columns of A

would be affected.

Givens rotations can be constructed to annihilate an element of a vector.

6

Example 5 Given a 2−dimensional vector

 a

b

 ∈C2, let

G(c,s) =

 c s

−s̄ c̄


with r =

√
|a|2 + |b|2, c = ā

r , s = b̄
r .

Then G(c,s)

 a

b

=

 r

0


With the current formulas, the computation of r may cause overflow or underflow. The follow-

ing algorithm provides a practical way to compute c,s.

Algorithm 0.2.2 Givens Rotation

Given x = [x(1),x(2)]T ∈C2, compute c,s for the 2×2 Givens matrix G such that Gx = re1, where

r = ||x||.

If |x(1)| ≥ |x(2)|

t = x(2)
|x(1)|;

r =
√

1+ |t|2;

c = x(1)
|x(1)|r ;

s = t
r ;

Else

t = x(1)|
|x(2)|;

r =
√

1+ |t|2;

s = x(2)
|x(2)|r ;

7

c = t
r ;

If x = 0, we simply set G = I.

0.2.6 QR Decomposition

The QR decomposition of an m×n matrix A ∈Cm×n is given by

A = QR

where Q ∈Cm×m is unitary and R ∈Cm×n is upper triangular.

0.2.7 Backward Stability

An algorithm f̃ for a problem f is backward stable if for each 0 6= x ∈ X , where X is a set on which

f and f̃ are defined,

f̃ = f (x̃) for some x̃ ∈ X with
||x̃− x||
||x||

= O(εmachine),

where εmachine is the machine epsilon ([9]). In words,

a backward stable algorithm gives the exact answer to the problem

with input data slightly perturbed from the original data.

8

Chapter 1

Introduction

1.1 Overview

Finding eigenvalues of matrices has been a popular topic in matrix computations. The QR al-

gorithm is one of the most powerful eigenvalue methods. It reduces a given matrix to an upper

Hessenberg matrix with a unitary similarity transformation, then uses a sequence of unitarily sim-

ilarity transformations, called QR iterations, to reduce it to an upper triangular matrix. In this

way, a Schur form will be computed. The QZ algorithm, a generalization of the QR algorithm,

is designed for computing a generalized Schur form of a matrix pencil A−λB. Other eigenvalue

methods include power iteration, inverse iteration and Rayleigh quotient iteration.

For the eigenvalue problem of a unitary pencil, which is a matrix pencil U−λV where both U

and V unitary, one may apply the QZ algorithm. Unfortunately, the QZ algorithm does not respect

the unitary structures. In [2], Angelika Bunse-Gerstner and Ludwig Elsner proposed a variant of

the QZ algorithm. The main difference is that, instead of using a Hessenberg-triangular pencil as

the condensed form, they proposed a sparer condensed form called the Schur parameter pencil.

With carefully designed iterations, the pencil will eventually converge to a diagonal-diagonal pen-

cil. This algorithm uses unitary structures and is more efficient and reliable. Recently, another

Schur parameter pencil reduction procedure was proposed for unitary matrices [8]. The proposed

9

procedure in [8] is different from that in [2]. The former procedure is more straightforward and

logically simpler.

1.2 Goal

We will review the methods introduced by Bunse-Gerstner and Elsner in [2] . We then modify the

algorithm by generalizing the strategy used in [8] to the pencil case.

Let us give more details about these two methods. In [2], the authors directly reduce a unitary

pencil U−λVto a Schur parameter pencil Go−λGe by finding appropriate n×n unitary matrices

P,Q, such that Go = QUP∗ and Ge = QVP∗. Then they apply implicit shifted QR-type iterations

to Go−λGe so that Go−λGe eventually converges to a diagonal pencil. In contrast to the method

in [2], we modify the Schur parameter form reduction procedure in their algorithm. We use a series

of Householder reflectors and Givens matrices to simultaneously transform both U and V into the

identity matrix, meanwhile Go and Ge are recovered from the transformation matrices. We also

apply the same idea to the QR-type iterations.

1.3 Outline

This thesis is organized as follows. In Chapter 2, we will briefly introduce the concepts and related

properties of eigenvalues and eigenvectors. We will also discuss briefly the standard QR algorithm

and QZ algorithm, which are closely related to our study.

In Chapter 3, we will review the algorithm in [2]. It starts with reducing a given unitary pencil

U−λV to a Schur parameter pencil,

Q(U−λV)P∗ = Go−λGe

where Q,P are unitary matrices and Go,Ge are block diagonal matrices. Then QR-type iterations

are performed on Go− λGe so that the pencil will converge to a diagonal pencil. We will also

10

review the algorithm provided in [2] for a single unitary matrix, or equivalently, the pencil U−λ I.

Chapter 4 contains our modified algorithm. we will provide our modified Schur parameter form

reduction method. Instead of reducing U,V directly to Go,Ge, our goal is to reduce both U,V to

the identity matrix:

G∗oQUP∗ = I

QVP∗G∗e = I

where Q,P are unitary matrices and Go−λGe is a Schur parameter pencil. Our procedure simpli-

fies the one in [2] by avoiding frequent comparison between the norms of vectors. The procedure

for the special case for a single unitary matrix U will also be provided, which can be considered as

a variant of the procedure given in [8]. We will also introduce modified QR-type iteration proce-

dures with single shift and double shifts strategies, respectively, by borrowing the idea used in the

modified Schur parameter pencil reduction process.

In Chapter 5, a conclusion is drawn about our study, and future work is discussed.

11

Chapter 2

The Eigenvalue Problem

2.1 Eigenvalue and Eigenvectors

Definition 2.1.1 Given a square matrix A ∈Cn×n, λ ∈C is an eigenvalue of A if ∃ x ∈Cn,x 6= 0,

such that

Ax = λx.

The nonzero vector x is called an eigenvector of A corresponding to the eigenvalue λ . The char-

acteristic polynomial of the matrix A is denoted by pA(x) = det(xI−A).

Theorem 2.1.1 λ is an eigenvalue of A if and only if pA(λ) = 0.

Theorem 2.1.2 If A ∈Cn×n is a triangular matrix (either upper-triangular or lower-triangular),

then the diagonal entries of A are the eigenvalues of A.

Theorem 2.1.3 If A ∈ Cn×n and B ∈ Cn×n are similar, i.e., there exists an invertible Q ∈ Cn×n

such that A = Q−1BQ, then A and B have the same eigenvalues.

Definition 2.1.2 a Schur decomposition of a matrix A is a factorization

A = QTQ∗,

12

where Q is unitary and T is upper-triangular. Note that by Theorem 2.1.2, the eigenvalues of A

appears on the diagonal of T.

Theorem 2.1.4 Every square matrix A has a Schur decomposition.

2.2 QR Algorithm

As defined in Definition 2.1.2, a Schur decomposition of a matrix A is A = QTQ∗, where Q is

unitary and T is upper-triangular. The eigenvalues of A appear on the diagonal of T. One of the

most popular methods for computing a Schur form of a matrix A is called the QR algorithm. The

QR algorithm is an iterative method, which is divided into two phases:

Phase I: Hessenberg Reduction: Compute H = U∗AU, where H is upper-Hessenberg and U is

unitary. This reduction can be done in finite steps.

Phase II: QR Iteration: Repeat the following procedure until convergance:

(a) Determine a (low degree) polynomial p(t)

(b) Compute the first column of p(H): y = p(H)e1

(c) Determine a unitary matrix V. such that V∗y = βe1 and H := V∗HV is again upper

Hessenberg.

Normally, H will converge to an upper triangular matrix T, and if all the unitary transformations

are accumulated, one has Q as well. Then a Schur form of A is computed.

In principle, QR iteration can be applied directly to a matrix for computing the Schur form,

which requires O(n3) flops in each iteration. Reducing A to a Hessenberg form before the QR iter-

ation will reduce the cost in each iteration to O(n2) flops, because of the zero pattern of Hessengerg

matrices. We will give more descriptions about the QR algorithm below.

Phase I: Hessenberg Reduction

13

The algorithm starts with a Householder reflector Q∗1 to eliminate the 3rd to nth entries the first

column of A ∈Cn×n. Since a similarity transformation is required, Q1 is applied to the right of A

as well. Because Q∗1 doesn’t touch the first row of A, then when apply Q1 to the right of A, the first

column is not touched, which preserves the zeros in the first column of A. Then we can proceed to

the second column of A to eliminate the 4th to nth entry by another householder reflector Q∗2, and

apply Q2 to the right of A at the same time. Continue with these steps until we get a Hessenberg

form H of A. The process of the reduction of a 5×5 matrix A is shown below [9]:

A

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×


→

Q∗1A

× × × × ×

××× ××× ××× ××× ×××

0 ××× ××× ××× ×××

0 ××× ××× ××× ×××

0 ××× ××× ××× ×××


→

Q∗1AQ1

× ××× ××× ××× ×××

× ××× ××× ××× ×××

××× ××× ××× ×××

××× ××× ××× ×××

××× ××× ××× ×××



→

Q∗2Q∗1AQ1

× × × × ×

× × × × ×

××× ××× ××× ×××

0 ××× ××× ×××

0 ××× ××× ×××


→

Q∗2Q∗1AQ1Q2

× × ××× ××× ×××

× × ××× ××× ×××

× ××× ××× ×××

××× ××× ×××

××× ××× ×××


→

Q∗3Q∗2Q∗1AQ1Q2

× × × × ×

× × × × ×

× × × ×

××× ××× ×××

0 ××× ×××



→

Q∗3Q∗2Q∗1AQ1Q2Q3

× × × ××× ×××

× × × ××× ×××

× × ××× ×××

× ××× ×××

××× ×××


= H

14

Algorithm 2.2.1 Householder Reduction to Hessenberg Form

Given a matrix A ∈ Cn×n, this algorithm generates a sequence of Householder reflectors Qi to

reduce A to its Hessenberg form H such that A = U∗HU, where U = Q1 . . .Qn−2 is unitary .

for i = 1, · · · ,n−2

Q̂(i) = houseg(A(i+1 : n, i)); %% generate a Householder reflector for A(i+1 : n, i)

Q(i)= diag(Ii,Q̂(i)); %% adjust the dimension of the Householder matrix for multiplication

A := Q(i)A(Q(i))∗;

end

This algorithm requires 10n3/3 flops. Additional 4n3/3 flops are needed if U is aquired.

Phase II: QR Iteration

The QR iterations are applied to H, which is a Hessenberg matrix obtained from Phase I. In

each iteration, H(i) is transformed into another Hessenberg matrix H(i+1). The iteration process is

shown below:

Algorithm 2.2.2 QR Iterations

This algorithm performs shifted QR iterations starting with H(0) := H to generate a sequence of

Hessenberg matrices {H(i)}. Normally {H(i)} converges to a triangular matrix T.

FOR i = 0,1, . . .

y = pi(H(i))e1;

%% pi(t) is a (lower degree) polynomial

Compute unitary Q(i)
0 such that Q(i)

0 y = βie1

15

H(i) := Q(i)∗
0 H(i)Q(i)

0 ;

H(i+1) = Q(i)∗H(i)Q(i) ;

%% Q(i) is a unitary matrix and H(i+1)is Hessenberg

END

When pi(t) = t for all i, the algorithm is called the zero shift QR iteration. If pi(t) = t−µi, we

call the algorithm as the single shift QR iteration. Usually, we choose µi to be equal to H(i)(n,n),

which is called the Rayleigh quotient shift; or µi to be the eigenvalue of H(i)(n− 1 : n,n− 1 : n)

that is closer to H(i)(n,n), which is called Wilkinson’s shift.

For real matrices, in order to keep the algorithm in real arithmetic, especially in the case where

the eigenvalues of H(i)(n−1 : n,n−1 : n) are complex, the double shifts QR iteration is mostly

used, that is when pi(t) = (t−σ
(i)
1)(t−σ

(i)
2). Normally, σ

(i)
1 ,σ

(i)
2 are chosen to be the eigenvalues

of H(i)(n−1 : n,n−1 : n), which are called Wilkinson’s double shifts.

During the iteration process, at a certain step, we may have some H(i)(p+ 1, p) that is suffi-

ciently small. In this case we may set it to zero and then

H(i) =

 H(i)
11 H(i)

12

0 H(i)
22


where H(i)

11 has dimension p× p, H(i)
22 has dimension (n− p)×(n− p). Then the problem decouples

into two smaller problems involving H(i)
11 and H(i)

22 . If p = n−1 or n−2, we call this is a deflation

procedure.

Normally H(i) will converge to an upper triangular matrix T. So we will have a Schur from of

A. If A is Hermitian, T will be a real diagonal matrix.

16

2.3 QZ Algorithm

The QZ algorithm is a generalized version of the QR algorithm. It is for the generalized eigenvalue

problem of a matrix pencil A−λB. Here we assume A and B are both n×n and B is invertible.

Definition 2.3.1 Suppose A and B are complex n×n matrices and B is invertible. a scalar x ∈C

is an eigenvalues of the pencil A−λB if x satisfies

det(A− xB) = 0. (2.1)

The set of all eigenvalues of A−λB is denoted by λ (A,B).

Similar to the QR algorithm, the QZ algorithm has two phases. In phase I, it computes unitary

matrices Q and Z such that H = Q∗AZ is upper Hessenberg and T = Q∗BZ is upper triangular. We

call it the Hessenberg-triangular reduction process. Phase II is the QZ iteration. Just like the QR

iteration, here one QZ iteration is transform one Hessenberg-triangular pencil H−λT to another

Hessenberg-triangular pencil with a shift strategy. Similarly, deflation is performed during the QZ

iteration process. Eventually the pencil will converge to a triangular-triangular pencil, which will

give a generalized Schur form of A−λB.

Algorithm 2.3.1 QZ Algorithm[3]

This algorithm computes a generalized Schur form for the pencil A− λB. It computes unitary

matrices Q and Z and a triangular-triangular pencil Q∗(A−λB)Z.

Phase I. Hessenberg-triangular reduction. Compute unitary Q := Q(0) and Z := Z(0), upper

Hessenberg matrix H(0) = Q∗AZ, and upper triangular matrix T(0) = Q∗AZ

Phase II. QZ iteration.

For i = 1,2, · · ·

M = H(i)(T(i))−1;

17

y = pi(M)e1;

Compute a Householder matrix P(i)
0 such that (P(i))∗y = βe1;

H̃(i) = (P(i))∗H(i), T̃(i) = (P(i))∗T(i); Q := QP(i)

Compute unitary Q(i) and Z(i) with Q(i)e1 =P(i)e1, upper Hessenberg H(i+1) :=(Q(i))∗H̃(i)Z(i),

and upper triangular T(i+1) = (Q(i))∗T̃(i)Z(i) ;

update Q := QQ(i), Z = ZZ(i)

end

In the algorithm pi(t) is the same as defined in algorithm 2.2.2 for using shifts, and the choices of

shifts are the same as well.

18

Chapter 3

Schur Parameter Pencil Algorithm for

Unitary Eigenproblems

As introduced in the previous chapter, standard QR/QZ algorithm can be applied to general matri-

ces to solve eigenvalue problems. The reduction of a matrix to a Hessenberg form needs 10n3/3

flops, and each iterative step needs O(n2) flops. We can also apply the standard QR/QZ algorithm

to unitary matrices for eigenvalue problems. However, this algorithm doesn’t respect the structure

of unitary matrices. It is observed that when a unitary matrix U is reduced to an upper Hessenberg

matrix H = Q∗0UQ0, further reduction can be performed on H to transform it to GoG∗e , where both

Go,Ge are unitary and block diagonal with block sizes being 1× 1 or 2× 2 (Precise definition

will be given below). Based on this observation, in [1, 4, 5, 6, 7] eigenvalue algorithms were

constructed and convergence analysis was done. In [2], a reduction procedure was proposed that

reduces a unitary pencil directly to Go−λGe, which is called Schur parameter pencil. Based on

this reduction, a QZ-like algorithm was developed in [2].

In this chapter, we will introduce the Schur parameter pencil algorithm given in [2]. We will

first describe their reduction of a general unitary pencil to a Schur parameter pencil. This process

requires 8n3/3 flops. We will also show how to reduce a single unitary matrix to a Schur param-

eter pencil. In the end, we will show their implicit QR-type iteration that transforms one Schur

19

parameter pencil to another. One iteration requires O(n) flops, if unitary matrices are not updated.

The algorithm introduced in [2] can be divided into two phases:

Phase I: Schur parameter pencil reduction. Reduction from a unitary pencil to a Schur param-

eter pencil: Compute QUP = Go,QVP = Ge.

Phase II: QR-type iteration with shifts. Repeat the following steps until both Go,Ge converge

to diagonal forms:

(a) Determine the shift and construct a new matrix G according to the shift.

(b) Determine the first column of G and compute a householder reflector Q0 for the column.

(c) Compute Go := Q0Go and Ge := Q0Ge.

(d) Reduce Go,Ge to a Schur parameter form again.

3.1 Reduction from a Unitary Pencil to a Schur Parameter Pen-

cil

Definition 3.1.1 [2] For k ∈ {1, · · · ,n− 1} and α,β ,η ,ξ ∈ C, such that

 α ξ

η β

 is unitary,

define

Gk(α,β ,ξ ,η) = diag(Ik−1,

 α ξ

η β

 ,In−k−1). (3.1)

For α,β ∈C such that |α|= |β |= 1 define

G0(α,1,0,0) = diag(α,In−1), Gn(1,β ,0,0) = diag(In−1,β), (3.2)

i) An n× n matrix pencil Go− λGe is called Schur parameter pencil if there exists a set of

parameters αi,βi,ηi,ξi ∈ C, i = 0,1, · · · ,n, where |β0| = |αn| = 1,η0 = ηn = ξ0 = ξn = 0

20

and

 αk ξk

ηk βk

 is unitary for k = 0, · · · ,n, such that

Go =
[n+1

2]

∏
j=1

G2 j−1(α2 j−1,β2 j−1,ξ2 j−1,η2 j−1) (3.3)

and

Ge =
[n

2]

∏
j=0

G2 j(α2 j,β2 j,ξ2 j,η2 j). (3.4)

We call the parameter pairs (α0,β0),(α1,β1), · · · ,(αn,βn) Schur parameters of Go− λGe

and the parameter pairs (ξ1,η1), · · · ,(ξn−1,ηn−1) complementary Schur parameters of Go−

λGe.

ii) We call the Schur parameter pencil Go−λGe normalized, if all complementary parameters

satisfy ξk = ηk and are real and nonnegative, and if α0 = 1,αk =−β̄k for k ∈ {1, · · · ,n−1}.

In this case there exist γ1, · · · ,γn ∈C,σ1, · · · ,σn−1 ∈R+∪{0} such that for all k = 1, · · · ,n−1

 −γk σk

σk γ̄k

=

 αk ξk

ηk βk

 (3.5)

and γn = β̄n.

γ1, · · · ,γn are called normalized Schur parameters and σ1, · · · ,σn−1 normalized complemen-

tary Schur parameters. Note in this case σk =
√

1−|γk|2 for all k, due to the fact that

Gk(−γk, γ̄k,σk,σk) is unitary.

We then define

Gk(γk) = Gk(−γk, γ̄k,σk,σk) k = 1, · · · ,n−1

Gn(γn) = Gn(1, γ̄n,0,0).

Theorem 3.1.1 [2] Let U,V ∈Cn×n be unitary.

21

There exist unitary n×n matrices Q and P, such that

QUP∗−λQVP∗ = Go−λGe

is a Schur parameter pencil. The Schur parameter pencil can be computed with a finite number of

steps. If U and V are real orthogonal matrices, then Q and P can be chosen to be real.

We now describe the reduction process. Denote

P(j, i,v) = diag(I j−1, P̂,In−i) ∈Cn×n, 1≤ j < i≤ n, v ∈Cn, (3.6)

where P̂ is a Householder reflector such that P̂v̂ = αe1 for v̂ = [v j,v j+1, · · · ,vi]
T . The matrix

P(j, i,v) is still a Householder reflector.

In [2], two cases of the reduction are introduced: reducing a unitary pencil U−λV to a Schur

parameter pencil and reducing a unitary matrix U, which can also be regarded as a unitary pencil

as U−λ I, to a Schur parameter pencil.

3.1.1 Unitary Pencil Case

Consider a pencil U−λV, where U,V ∈Cn×n are unitary.

The first step is to determine a Householder reflector P0 := P(1,n,v∗1∗) to transform the first

row of V to be parallel to eT
1 . Let

U(0) := UP0, V(0) := VP0. (3.7)

22

Then U(0) and V(0) are of the form:

U(0) =



× × ·· · ×

× × ·· · ×
...

... · · · ...

× × ·· · ×


,V(0) =



× 0 · · · 0

0 × ·· · ×
...

... · · · ...

0 × ·· · ×


, (3.8)

where × denotes possibly non-zero entries. Because V is a unitary matrix, |V(1,1)| = 1. Thus

zeros in the first column of V below V(1,1) are automatically created. If n = 2, then U(0)−λV(0)

is already a Schur parameter pencil. Otherwise, we proceed to the next step.

In order to transform U(0)−λV(0) into a Schur parameter form, we need to create the first 2×2

block in Go. First of all, let P1 = P(2,n,u∗1) which eliminates the entries from 3 to n in the first

column of U, that is

Ũ := P1U(0) = P1UP0 (3.9)

Ṽ := P1V(0) = P1VP0 (3.10)

as P1 only affect the entries from row 2 to row n, then the form of V(0) is not affected, then

Ũ =



× × ·· · ×

× × ·· · ×

0 × ·· · ×
...

... · · · ...

0 × ·· · ×


, Ṽ =



× 0 · · · 0

0 × ·· · ×

0 × ·· · ×
...

... · · · ...

0 × ·· · ×


(3.11)

Next, in order to eliminate the entries from 3rd column to nth column in the first and second

rows of Ũ, compare the norm of Ũ(1,1) and Ũ(2,1) for numerical stability reasons. As the previous

steps are associated with unitary matrix multiplications, Ũ is still unitary. Thus, |ũ∗1| = 1, which

means at least one of Ũ(1,1) and Ũ(2,1) is nonzero. If |Ũ(1,1)| ≥ |Ũ(2,1)|, then ||Ũ(1,2 : n)|| ≤

||Ũ(2,2 : n)||. We take the vector with larger norm, that is Ũ(2,2 : n) to construct a Householder

23

reflector P2 = P(2,n, ũ∗2∗). Otherwise, if |Ũ(1,1)| ≤ |Ũ(2,1)|, then ||Ũ(1,2 : n)|| ≥ ||Ũ(2,2 : n)||.

We take the vector Ũ(1,2 : n) to construct the householder reflector P2 = P(2,n, ũ∗1∗). That is

U(1) = ŨP2 =



× × 0 · · · 0

× × 0 · · · 0

0 0 × ·· · ×
...

...
... · · · ...

0 0 × ·· · ×


,V(1) = ṼP2 =



× 0 0 · · · 0

0 × × ·· · ×

0 × × ·· · ×
...

...
... · · · ...

0 × × ·· · ×


(3.12)

The additional zeros in U(1) is generated automatically because of the unitary structure of U(1). The

first column of U(1) must be orthogonal to columns from 3 to n, which can only occur if entries

from 3 to n are zeros in the 1st and 2nd rows of U(1), because after the previous transformation,

either entries in the first row or in the second row from 3 to n are zeros already . Now U(1) can be

decoupled into two blocks: one 2×2 block and one (n−2)×(n−2) block. As U(1) is unitary, then

both blocks are unitary as well. Since ||U(1)(1 : 2,2)||= 1, the rest entries in the second column of

U(1) must be zeros due to the fact that ||u(1)∗2 ||= 1.

Because P2 only affects entries from 3 to n in each row, then the form of V(0) is not changed.

Now we can apply the same procedure as constructing the 2× 2 block in Go to construct the

first 2× 2 block in Ge, which locates at Ge(2 : 3,2 : 3). As in this step, only rows and columns

from 3 to n is affected, thus the form of U(1) is not affected. We can do these steps alternatively to

U and V until the Schur parameter pencil is constructed.

The following algorithm introduced in [2] summarizes the procedure.

Algorithm 3.1.1 Reducing a Unitary Pencil to a Schur Parameter Pencil

Given unitary n× n matrices U and V, n > 1, this algorithm computes unitary n× n matrices

P,Q,Go,Ge ∈Cn×n, such that Go = QUP∗ and Ge = QVP∗ and Go−λGe is a Schur parameter

pencil. U and V are overwritten by Go and Ge, respectively.

Initialize Q = I

24

Compute Z = P(1,n,v∗1∗)

Update U = UZ∗,V = VZ∗ and set P = Z∗.

FOR k = 1, · · · ,n−2

IF k is odd THEN x = u∗k ELSE x = v∗k

Compute Z = P(k+1,n,x).

Update U = ZU,V = ZV,Q = ZQ.

IF k is odd THEN x = uk∗ and y = uk+1∗.

ELSE x = vk∗ and y = vk+1∗.

IF ||xk|| ≥ ||yk|| THEN ω = y∗ ELSE ω = x∗

Compute Z = P(k+1,n,ω).

Update U = UZ∗,V = VZ∗ and P = ZP

END

Example 6 We illustrate the procedure with an example: let U,V ∈ C5×5 be unitary matrices.

First, set P0 = P(1,5,v∗1∗), then

U(0) = UP0 =



× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×


,V(0) = VP0 =



× 0 0 0 0

0 × × × ×

0 × × × ×

0 × × × ×

0 × × × ×



25

Next, set P1 = P(2,5,u(0)∗1) such that the 3rd to 5th entries in the first column of U(0) is eliminated,

that is

Ũ(1) = P1UP0 =



× × × × ×

× × × × ×

0 × × × ×

0 × × × ×

0 × × × ×


, Ṽ(1) = P1VP0 =



× 0 0 0 0

0 × × × ×

0 × × × ×

0 × × × ×

0 × × × ×



Then compare |Ũ(1,1)| and |Ũ(1)(2,1)|. If |Ũ(1)(1,1)| ≥ |Ũ(1)(2,1)|, then take P2 =P(2,5,(ũ(1)2∗)
∗);

otherwise, take P2 = P(2,5,(ũ(1)1∗)
∗). One has

U(1) = P1UP0P2 =



× × 0 0 0

× × 0 0 0

0 0 × × ×

0 0 × × ×

0 0 × × ×


,V(1) = P1VP0P2 =



× 0 0 0 0

0 × × × ×

0 × × × ×

0 × × × ×

0 × × × ×



We start to eliminate entries V(1)(4,2) and V(1)(5,2) by setting P3 = P(3,5,v(1)∗2). Then

Ũ(2) = P3P1UP0P2 =



× × 0 0 0

× × 0 0 0

0 0 × × ×

0 0 × × ×

0 0 × × ×


, Ṽ(2) = P3P1VP0P=



× 0 0 0 0

0 × × × ×

0 × × × ×

0 0 × × ×

0 0 × × ×



Compare |Ṽ(2)(2,2)| and |Ṽ(2)(3,2)|: if |Ṽ(2)(2,2)| ≥ |Ṽ(2)(3,2)|, set P4 = P(3,5,(ṽ(2)3∗)
∗); other-

26

wise, set P4 = P(3,5,(ṽ(2)2∗)
∗). Then

U(2) = P3P1UP0P2P4 =



× × 0 0 0

× × 0 0 0

0 0 × × ×

0 0 × × ×

0 0 × × ×


,V(2) = P3P1VP0P2P4 =



× 0 0 0 0

0 × × 0 0

0 × × 0 0

0 0 0 × ×

0 0 0 × ×


Now V(2) has already had the form as defined for Ge. Next step is to finish constructing Go by

eliminating entries in U(2)(5,3 : 4) and U(2)(3 : 4,5). First, set P5 = P(4,5,u∗3) to eliminate

U(2)(5,3). We have

Ũ(3)=P5P3P1UP0P2P4 =



× × 0 0 0

× × 0 0 0

0 0 × × ×

0 0 × × ×

0 0 0 × ×


, Ṽ(3)=P5P3P1VP0P2P4 =



× 0 0 0 0

0 × × 0 0

0 × × 0 0

0 0 0 × ×

0 0 0 × ×



Compare |Ũ(3)(3,3)| and |Ũ(3)(4,3)|: if |Ũ(3)(3,3)| ≥ |Ũ(3)(4,3)|, set P6 = P(4,5,(ũ(3)4∗)
∗); other-

wise, set P6 = P(4,5,(ũ(3)3∗)
∗). Then

Go = U(3) = P5P3P1UP0P2P4P6 =



× × 0 0 0

× × 0 0 0

0 0 × × 0

0 0 × × 0

0 0 0 0 ×


,

27

Ge = V(3) = P5P3P1VP0P2P4P6 =



× 0 0 0 0

0 × × 0 0

0 × × 0 0

0 0 0 × ×

0 0 0 × ×


Finally, we find

Go = U(3),Ge = V(3),Q = P5P3P1,P = P6P4P2P0

such that

Go = QUP∗,Ge = QVP∗

According to [2], this algorithm requires essentially 8
3n3 flops.

3.1.2 Unitary Matrix Case

Algorithm 3.1.1 may apply to a single unitary matrix U by considering it as a pencil U−λ I. Since

here V = I, it is possible to use this special form to reduce the cost. In [2] a reduction process was

proposed that reduces U to the pentadiagonal matrix GoG∗e . This procedure only needs half of the

flops needed with Algorithm 3.1.1.

The main idea of this reduction is to reduce U to a pentadiagonal form with unitarily similarity

transformation. In practice U is reduced to Go, and Ge is formed during the reduction process. We

give a description of the process.

Let U ∈ Cn×n be a unitary matrix. First, we eliminate entries in u∗1 from 3 to n by P1 =

P(2,n,u∗1). Since we need to perform a similarity transformation, we multiply P∗1 to the right of

28

U at the same time to get

U(1) = P1UP∗1 =



× × × ·· · ×

× × × ·· · ×

0 × × ·· · ×
...

...
... · · · ...

0 × × ·· · ×


Next, in order to construct the pentadiagonal form, we need to eliminate entries from 4 to n in

the 1st and 2nd rows of U(1). For numerical stability, we compare |U(1)(1,1)| and |U(1)(2,1)|. If

|U(1)(1,1)| ≥ |U(1)(2,1)|, set P2 = P(3,n,(u(1)2∗)
∗); otherwise, set P2 = P(3,n,(u(1)1∗)

∗). Then

U(2) = P2U(1)P∗2 =



× × × 0 · · · 0

× × × 0 · · · 0

0 × × × ·· · ×
...

...
...

... · · · ...

0 × × × ·· · ×


Extra zeros in the 1st and 2nd rows of U(2) are generated automatically due to the orthogonality.

In order to generate the form of Go, we need to continue with the previous step to eliminate

entries U(2)(1,3) and U(2)(2,3). If |U(2)(1,1)| ≥ |U(2)(2,1)|, set P3 = P(2,3,(u(2)2∗)
∗); otherwise,

let P3 = P(2,3,(u(2)1∗)
∗), we have

U(3) = U(2)P∗3 =



× × 0 · · · 0

× × 0 · · · 0

0 0 × ·· · ×
...

...
... · · · ...

0 0 × ·· · ×



29

now we set

V(3) = P∗3 =



1 0 0 · · · 0

0 × × ·· · 0

0 × × ·· · 0
...

...
... · · · ...

0 0 0 · · · 1


Till now, we have

U(2) = U(3)V(3)∗

and the eigenvalue problem

U−λ I = 0

has been changed to a pencil problem, such as

U−λ I → U(3)V(3)∗−λ I

→ U(3)−λV(3)

= 0

Now the unitary matrix case has been translated into a unitary pencil case. To complete the

Schur parameter form construction, we continue in the same way as above for the rest of U(3) until

U is reduced to Go, and V is constructed to be Ge.

The algorithm in [2] is summarized as below:

Algorithm 3.1.2 Reduction of a Unitary Matrix to a Schur Parameter Pencil

Given a unitary n×n matrix U, n > 2, this algorithm computes unitary n×n matrices Q,Go,Ge ∈

Cn×n, such that Go−λGe is a Schur parameter pencil. U is overwritten by Go.

Initialize Q = I and Ge = I

FOR k = 1,3, · · · ,2[n+1
2]−3

30

Copmpute Z = P(k+1,n,u∗k)

Update U = ZUZ∗ and Q = ZQ

IF |ukk| ≥ |uk+1,k|, THEN K = k+1 ELSE K = k

Compute Z = P(k+2,n,u∗K∗).

U = ZUZ∗ and Q = ZQ.

N = P(k+1,k+2,u∗K∗)

Update U = UN∗ and Ge = GeN∗

We will also go through the algorithm by an example.

Example 7 Let U ∈C5×5 be a unitary matrix.

First, eliminate entries from 3 to 5 by setting P1 = P(2,5,u∗1), that is

U(1) = P1UP∗1 =



× × × × ×

× × × × ×

0 × × × ×

0 × × × ×

0 × × × ×


Then we need to eliminate entries from 4 to 5 in row 1 and row 2 of U(1). For numerical sta-

bility, compare |U(1)(1,1)| and |U(1)(2,1)|. If |U(1)(1,1)| ≥ |U(1)(2,1)|, set P2 = P(3,5,(u(1)2∗)
∗);

31

otherwise, set P2 = P(3,5,(u(1)1∗)
∗), then

U(2) = P2U(1)P∗2 =



× × × 0 0

× × × 0 0

0 × × × ×

0 × × × ×

0 × × × ×


Additional zeros in the 1st and 2nd rows of U(2) are generated automatically due to the orthogo-

nality between the columns of unitary matrices.

Then, if |U(2)(1,1)| ≥ |U(2)(2,1)|, set P3 = P(2,3,(u(2)2∗)
∗); otherwise, let P3 = P(2,3,(u(2)1∗)

∗),

we have

U(3) = U(2)P∗3 =



× × 0 0 0

× × 0 0 0

0 0 × × ×

0 0 × × ×

0 0 × × ×


now we set

V(3) = P∗3 =



1 0 0 0 0

0 × × 0 0

0 × × 0 0

0 0 0 1 0

0 0 0 0 1


To complete the Schur parameter form construction, we continue in the same way as above for the

32

rest 3×3 block of U(3). Set P4 = P(4,5,u(3)∗3) to eliminate U(3)(5,3)

U(4) = P4U(3)P∗4 =



× × 0 0 0

× × 0 0 0

0 0 × × ×

0 0 × × ×

0 0 0 × ×


At the same time, in principle we need to update V (4) = P4V(3)P∗4 to ensure that the pencil U(4)−

λV(4) has the same eigenvalues as U. However, as P4 has the leading 3× 3 principal submatrix

as identity and V(3) has the last 2× 2 principal submatrix as identity, then we have V(4) = V(3).

The last step is to eliminates either U(4)(3,5) or U(4)(4,5) by multiplying a Householder P5 to the

right of U(5). The additional zeros will be generated as U(5) is still unitary. We have

U(5) = U(4)P∗5 =



× × 0 0 0

× × 0 0 0

0 0 × × 0

0 0 × × 0

0 0 0 0 ×


Update V (5) = V(4)P∗5 = V(3)P∗5. As we can see here, the multiplication does not require any

arithmetic operation. We just need to store the essential part of P∗5 to the last 2× 2 principal

submatrix of V(3). Finally, we complete transforming a single unitary eigenvalue problem to a

Schur parameter pencil eigenvalue problem.

In [2], the transformation of a unitary pencil U−λV to a Schur parameter pencil Go−λGe =

Q(U− λV)P∗ is uniquely determined up to scaling with unitary diagonal matrices, if the first

column of Q or P is fixed and the complementary Schur parameters are nonzeros, which means

the Schur parameter pencil is unreduced. This transformation is also proved to be backward stable

33

in [2]. In [2], it also provides a shifted iterative method to converge Go,Ge to diagonal forms.

The choice of the value of shifts is similar to that in the standard shifted QR iteration. The 2× 2

diagonal block form of Go and Ge is broken by applying shifts to the original Go,Ge. Then the

bulge-chase method is applied to retain the 2× 2 diagonal block form. Now, we will use some

examples to demonstrate the bulge-chase process in both single shifted and double shifted cases.

3.2 Shift and Iteration

For Phase II of the method [2], two kinds of shifted iteration are discussed. Similar to the shift

introduced in the standard QR algorithm, Angelika Bunse-Gerstner and Ludwig Elsner([2]) de-

scribed the iteration process of how to converge Go,Ge to diagonal forms with single shift and

double shifts.

3.2.1 Single Shift Iteration

[2] introduced the single shifted iterative method to converge Go,Ge to diagonal forms. In each

iteration step, G(i−1)
o ,G(i−1)

e are transformed into G(i)
o ,G(i)

e . For simplicity, we omit the super- and

subscript i in our description below.

Let

z = (Go−µGe)e1 =



×

×

0
...

0


where µ can be chosen to be the last diagonal entry of GoG∗e . Then as described in Algorithm 2.2.2,

compute Q0 = P(1,2,z) such that Q0z = ke1. Multiply Q0 to the left of the pencil Go−λGe, then

34

the Schur parameter form is destroyed as

Q0Go =



× ×

× ×

× ×

× ×

× ×

× ×
. . .



,Q0Ge =



× + +

+ × ×

× ×

× ×

× ×
. . .



where + stands for some additional possibly nonzero entry. Now we can apply Algorithm 3.1.1 to

the newly generated unitary pencil Q0(Go−λGe). In [2], the reduction is proved to require O(n)

flops because of the additional zeros compared with the initial unitary pencil U−λV.

The process of the reduction is similar to Algorithm 3.1.1. First we need to use a Householder

reflector P0 to eliminate Ge(1,2) and Ge(1,3). In this step, only columns 1 to 3 are involved, so

the number of flops required is less than that of the full matrix. We will have Go,1 = Q0GoP0 and

Ge,1 = Q0GeP0

Go,1 =



× × +

× × +

+ + × ×

+ + × ×

× ×

× ×
. . .



,Ge,1 =



×

× ×

× ×

× ×

× ×
. . .



then we are going to eliminate the (3,1) and (4,1) entries in Go,1 by a Householder matrix Q1. In

35

this step, rows 2 to 4 are involved

Q1Go,1 =



× × +

× × +

+ × ×

+ × ×

× ×

× ×
. . .



,Q1Ge,1 =



×

× × + +

× × + +

+ + × ×

× ×
. . .



the additional zeros at (1,4) and (2,4) in Q1Go,1 are due to the orthogonality between the columns

of unitary matrices.

Next we need to zero out (1,3) and (2,3) entries in Q1Go,1 by a unitary transformation P1

where only columns 2 to 3 will be affected, then we have Go,2 = Q1Go,1P1 and Ge,2 = Q1Ge,1P1,

that is

Go,2 =



× ×

× ×

× ×

× ×

× ×

× ×
. . .



,Ge,2 =



×

× × + +

× × + +

+ + × ×

× ×
. . .



Then we will repeat to eliminate the extra zeros from Go,i and Ge,i until we regain the Schur

parameter form.

36

3.2.2 Double Shifts Iteration

As introduced in the previous chapter, the double shifts algorithm will keep the arithmetic real

for real matrices. Therefore, we assume that Go− λGe is a real Schur parameter pencil, where

Go,Ge ∈ Rn×n, and that σ1,σ2 are shifts chosen, where σ1+σ2 and σ1σ2 are real, then all matrices

in the reduction process are real.

Define

z = (Go−σ1Ge)(GT
e −σ2GT

o)e1 =



×

×

×

0
...

0


where σ1,σ2 can be chosen to be the eigenvalues of the trailing 2×2 principal submatrix of GoGT

e .

Let Q0 = P(1,3,z) such that

Q0z = βe1

Then apply Q0 to the right of Go and Ge, we have

Q0Go =



× × + +

× × + +

+ + × ×

× ×

× ×

× ×
. . .



,Q0Ge =



× + +

+ × ×

+ × ×

× ×

× ×
. . .



Then we are going to use the Algorithm 3.1.1 again to regain the Schur parameter form from

Q0(Go−λGe), which we will not specifically show here.

37

During the whole process of iteration steps, we need to monitor the values of complementary

Schur parameters. Deflation need to be considered if there is zero among the values.

38

Chapter 4

Modified Schur Parameter Pencil Method

In the previous chapter, we have introduced a Schur parameter pencil method for unitary eigen-

problems [2]. Compared with the standard QR algorithm, the Schur parameter method provides a

more efficient way to reduce a unitary pencil to diagonal forms by Schur parameter pencil reduc-

tion.

Definition 4.0.1 A matrix A ∈Cn×n is called a modified Householder reflector if

A = DP,

where

D = diag(d1,d2, · · · ,dn), |di|= 1, ∀ i ∈ N.

and P is a standard Householder reflector. It is obvious to see that A is still unitary.

For numerical stability, during the process of Schur parameter reduction, norms between vec-

tors are frequently compared, which brings up a lot of extra work in computation. To avoid the fre-

quent comparison, we use another approach as introduced in [8] to reduce a unitary pencil U−λV

to a Schur parameter form Go−λGe by reducing U and V with unitary matrices Q,P,Go,Ge to

39

identity matrices through a sequence of Householder transformations and Givens rotations, that is:

G∗oQUP∗ = I, QVP∗G∗e = I (4.1)

where

Q = QsQs−1 · · ·Q2Q1; (4.2)

P∗ = P∗1P∗2 · · ·P∗t−1P∗t ; (4.3)

where Qi,Pi are modified Hessenberg reflectors, and

G∗o = G2n−1 · · ·G3G1; (4.4)

G∗e = G0G2 · · ·G2m; (4.5)

Gi are Givens matrices affecting the intersection of ith to i+ 1th rows and columns of a k× k

matrix, such that

Gi =



. . .

gi,i gi,i+1

gi+1,i gi+1,i+1

. . .


(4.6)

and we define G0 = I.

Our modified method will still follow the steps as in [2]:

Phase I: Schur parameter pencil reduction. Compute G∗oQUP∗ = I,QVP∗G∗e = I, such that

the unitary matrix pencil U−λV can be replaced by Go−λGe for finding eigenvalues.

Phase II: QR-type iteration with shifts. Repeat the following steps until Go,Ge converge to

diagonal forms:

(a) Determine the shift and construct a new matrix G = f (Go,Ge), where f(x,y) is a lower

degree function, according to the shift.

40

(b) Determine the first column of G and compute a Householder reflector Q0 for the column.

(c) Compute Go := Q0Go and Ge := Q0Ge.

(d) Reduce Go,Ge to Schur parameter forms again.

4.1 Reducing from a Unitary Pencil to a Schur Parameter Pen-

cil

Given a unitary pencil U−λV, our goal is to find matrices Q,P,Go,Ge such that equation (4.1) is

satisfied, then

det(U−λV) = 0 → det(QUP−λQVP) = 0 (4.7)

→ det(Go−λGe) = 0 (4.8)

we will also introduce two cases of the reduction: unitary pencil case and unitary matrix case.

4.1.1 Unitary Pencil Case

In contrast with the reduction method introduced in [2], the modified reduction method aims at

reducing U and V into identity matrices at the same time by a sequence of Householder reflectors

and Givens matrices. Then Go and Ge can be recovered from the transformation matrices. The

reduction procedure is as following:

let U,V ∈Cn×n be unitary, P(j, i,v) be the same as defined in (3.6); G(v) be the Givens matrix

for the given vector v. We will use the sub-note Q≥i to symbolize that the transformation only

affect the rows below the ith row of a given matrix if Q≥i is applied to the left of the given matrix,

and the columns after the ith column of the given matrix if Q≥i is applied to the right hand side.

During the process of reducing U,V into identity matrices, we also need to find a sequence of

Givens matrices that follow the pattern of Go and Ge as defined in (3.3) and (3.4).

41

First, we need to eliminate the zeros from 2nd to nth rows of V. Define Q≥1 = H1P(1,n,v∗1),

and H1 is a diagonal matrix to keep v∗1(1) real, then we have

U(0) = Q≥1U =



× × × ·· · ×

× × × ·· · ×

× × × ·· · ×
...

...
... · · · ...

× × × ·· · ×


,V(0) = Q≥1V =



1 0 0 · · · 0

0 × × ·· · ×

0 × × ·· · ×
...

...
... · · · ...

0 × × ·· · ×


. (4.9)

The additional zeros on the first row of V(0) are generated since V(0) is still unitary. Then we turn

to U and define Q≥2 = P(2,n,u(0)∗1) to eliminate entries from 3 to n in the first column of U, we

have

Ũ(1) = Q≥2U(0) =



× × × ·· · ×

× × × ·· · ×

0 × × ·· · ×
...

...
... · · · ...

0 × × ·· · ×


, Ṽ(1) = Q≥2V(0) =



1 0 0 · · · 0

0 × × ·· · ×

0 × × ·· · ×
...

...
... · · · ...

0 × × ·· · ×


(4.10)

As Q≥2 only affect rows from 2 to 3, so the multiplication won’t change the zeros in the first row of

V(0). And because the entries from 2 to n in the first column of V(0) are all zeros, the first column

of V(0) is not affected. Next, to eliminate the (1,2)th entry of Ũ(1), let G∗1 = G(Ũ(1)(1 : 2,1)), such

that

U(1) = G∗1Ũ(1) =



1 0 0 · · · 0

0 × × ·· · ×

0 × × ·· · ×
...

...
... · · · ...

0 × × ·· · ×


,V(1) = Ṽ(1) =



1 0 0 · · · 0

0 × × ·· · ×

0 × × ·· · ×
...

...
... · · · ...

0 × × ·· · ×


(4.11)

42

The additional zeros in U(1) are generated as U(1) is still unitary. By Definition (4.4), next Givens

matrix we need to construct is G3, which only affects the 3rd and 4th rows and columns of the orig-

inal matrix. Thus, we need to reduce entry U(1)(2,2) to 1 in advance. Define P≥2 =H2P(2,n,u(1)∗2),

where H2 is diagonal and unitary, and apply its conjugate transpose to the right of U(1) and V(1),

then

U(2) = U(1)P∗≥2 =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 × ·· · ×
...

...
... · · · ...

0 0 × ·· · ×


,V(2) = V(1)P∗≥2 =



1 0 0 · · · 0

0 × × ·· · ×

0 × × ·· · ×
...

...
... · · · ...

0 × × ·· · ×


(4.12)

Because P∗≥2 only affects the columns from 2 to n, then the zeros in the first column of V(1) are

preserved. And as V(1) is still unitary, zeros in the first row of V(1) are preserved, too.

In order to construct G2, we need to eliminate entries from 4 to n on the second row of V(2) by

a Householder reflector P≥3 = P(3,n,v∗(2)2∗), that is

Ũ(3) = U(2)P∗≥3 =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 × ·· · ×
...

...
... · · · ...

0 0 × ·· · ×


, Ṽ(3) = V(2)P∗≥3 =



1 0 0 0 · · · 0

0 × × 0 · · · 0

0 × × × ·· · ×

0 × × × ·· · ×
...

...
...

... · · · ...

0 × × × ·· · ×


(4.13)

43

Then let G2 = G(Ṽ∗(3)(2,2 : 3)) and apply its conjugate transpose to the right of Ṽ(3), we get

U(3) = Ũ(3) =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 × ·· · ×
...

...
... · · · ...

0 0 × ·· · ×


,V(3) = Ṽ(3)G∗2 =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 × ·· · ×
...

...
... · · · ...

0 0 × ·· · ×


(4.14)

Then we can repeat the previous steps to find G3,G4, · · · ,Gn until both U and V are converted into

identities. The 2×2 non-identity diagonal block of each Gn can be stored directly to Go and Ge if

we can write

· · ·G∗2s−1Q≥k · · ·Q≥2G1Q≥1UP∗≥1P∗≥3 · · ·P∗≥t = I (4.15)

· · ·Q≥k · · ·Q≥2Q≥1VP∗≥1P∗≥3G∗2 · · ·P∗≥tG
∗
2m = I (4.16)

where k,m,s, t ∈ N and 2s−1,2m,k, t ≤ n, as

· · ·G∗2s−1G∗2s−3 · · ·G∗3G∗1Q≥k · · ·Q≥2Q≥1UP∗≥3 · · ·P∗≥t = I (4.17)

Q≥k · · ·Q≥2Q≥1VP∗≥3 · · ·P∗≥tG
∗
0G∗2 · · ·G∗2m−2G∗2m · · ·= I (4.18)

so that let

G∗o = · · ·G∗2s−1G∗2s−3 · · ·G∗3G∗1 G∗e = G∗0G∗2 · · ·G∗2m−2G∗2m

Q = Q≥k · · ·Q≥2Q≥1 P∗ = P∗≥3 · · ·P∗≥t

then we can rewrite (4.17) and (4.18) as

G∗oQUP∗ = I QVP∗G∗e = I

44

Then we have

QUP = Go (4.19)

QVP = Ge (4.20)

The algorithm is provided below, houseg(v) is a function that generates a modified Householder

reflector for a vector v and ensures the first entry to be real positive, givensg(v) is a function that

generates a Givens matrix for a vector v:

Algorithm 4.1.1 Reducing a Unitary Pencil to a Schur Parameter Pencil

Given unitary n× n matrices U and V, n > 1, this algorithm computes unitary n× n matrices

P,Q,Go,Ge ∈ Cn×n, such that Go = QUP∗ and Ge = QVP∗ and Go−λGe is a Schur parame-

ter pencil. U and V are overwritten by Go and Ge, respectively. H is the matrix used to store

intermediate Householder reflectors, Givens matrices or diagonal matrices.

Initialize Q = P = Go = Ge = I, G0 = I

FOR j = 1, · · · ,bn/2c

i = 2(j-1)+1;

COMPUTE H = houseg(V(i : n, i));

UPDATE Q := HQ,U := HU,V := HV;

COMPUTE H = houseg(U(i+1 : n, i));

UPDATE Q := HQ,U := HU,V := HV;

COMPUTE H = givensg(U(i : i+1, i));

UPDATE G∗o(i : i+1, i : i+1) := H(i : i+1, i : i+1),U := HU;

%% for even rows of U and V

45

COMPUTE H = houseg(U∗(i+1, i+1 : n))∗;

UPDATE P∗ := P∗H,U := UH,V := VH;

COMPUTE H = houseg(V(i+1, i+2 : n))∗;

UPDATE P∗ := P∗H,U := UH,V := VH;

COMPUTE H = givensg(V∗(i+1, i+2 : n));

UPDATE G∗e(i+1 : i+2, i+1 : i+2) = G∗(i+1 : i+2, i+1 : i+2);

COMPUTE V := VG∗;

We are going to use a 6×6 unitary matrix pencil to show how (4.15) and (4.16) can be rewritten

as (4.17) and (4.18).

Example 8 Given a 6× 6 unitary matrix pencil U− λV, where U,V ∈ C6×6 and both of them

are unitary. We are going to reduce U,V to identity matrices by a series of modified Householder

reflectors and Givens matrices. We initialize G0 = I. Let

U(0) =



× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×


,V(0) = VG0 = V =



× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×


,

First, we are going to introduce zeros from 2 to 6 in the first column of V by a modified Householder

46

reflector Q≥1 = H1P(1,6,v∗1), where H1 is a diagonal matrix, then

U(1) = Q≥1U =



× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×


,V(1) = Q≥1V =



1 0 0 0 0 0

0 × × × × ×

0 × × × × ×

0 × × × × ×

0 × × × × ×

0 × × × × ×


,

Then define Q≥2 = P(2,6,u(1)∗1) to eliminate entries from 3 to 6 in the first column of U(1), we have

Ũ(2) = Q≥2U(1) =



× × × × × ×

× × × × × ×

0 × × × × ×

0 × × × × ×

0 × × × × ×

0 × × × × ×


, Ṽ(2) = Q≥2V(1) =



1 0 0 0 0 0

0 × × × × ×

0 × × × × ×

0 × × × × ×

0 × × × × ×

0 × × × × ×


.

Next, we are going to use a givens matrix to eliminate the second entry in the first column of Ũ(2).

So define G∗1 = G(Ũ(2)(1 : 2,1), then we only apply G∗1 to the left of Ũ(2):

U(2) = G∗1Ũ(2) =



1 0 0 0 0 0

0 × × × × ×

0 × × × × ×

0 × × × × ×

0 × × × × ×

0 × × × × ×


,V(2) = Ṽ(2) =



1 0 0 0 0 0

0 × × × × ×

0 × × × × ×

0 × × × × ×

0 × × × × ×

0 × × × × ×


.

Then we need to eliminate entries from 3 to 6 in the second row of U(2). Define P≥2 =H2P(2,6,u∗(2)2∗)

47

and apply its conjugate transpose to the right of U(2) and V(2), that is:

U(3) = U(2)P∗≥2 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 × × × ×

0 0 × × × ×

0 0 × × × ×

0 0 × × × ×


,V(3) = V(2)P∗≥2 =



1 0 0 0 0 0

0 × × × × ×

0 × × × × ×

0 × × × × ×

0 × × × × ×

0 × × × × ×


.

Next, we define P≥3 = P(3,6,v∗(3)2∗) to eliminate entries from 4 to 6 in the second row of V(3):

Ũ(4) = U(3)P∗≥3 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 × × × ×

0 0 × × × ×

0 0 × × × ×

0 0 × × × ×


, Ṽ(4) = V(3)P∗≥3 =



1 0 0 0 0 0

0 × × 0 0 0

0 × × × × ×

0 × × × × ×

0 × × × × ×

0 × × × × ×


.

To zero out Ṽ(4)(2,3) and transform Ṽ(4)(2,2) into 1, we use a Givens matrix G2 = G(Ṽ(4)(2,2 :

3)) and apply its conjugate transpose only to the right of Ṽ(4), we have:

U(4) = Ũ(4) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 × × × ×

0 0 × × × ×

0 0 × × × ×

0 0 × × × ×


,V(4) = Ṽ(4)G∗2 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 × × × ×

0 0 × × × ×

0 0 × × × ×

0 0 × × × ×


.

Till now, we have reduced the first two rows and columns of U and V into identities. We are going

48

to repeat the previous steps for the rest part of U and V.

Define Q≥3 = H3P(3,6,v(4)∗3) and apply it to the left of U(4),V(4), then

U(5) = Q≥3U(4) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 × × × ×

0 0 × × × ×

0 0 × × × ×

0 0 × × × ×


,V(5) = Q≥3V(4) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 × × ×

0 0 0 × × ×

0 0 0 × × ×


Now let’s turn to U(5). Define Q≥4 = P(4,6,u(5)∗3) and apply it to the left of U(5) to eliminate entries

from 5 to 6 in the third column of U(5). Apply Q≥4 to the left of V(5) as well, then we get

Ũ(6) = Q≥4U(5) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 × × × ×

0 0 × × × ×

0 0 0 × × ×

0 0 0 × × ×


, Ṽ(6) = Q≥4V5) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 × × ×

0 0 0 × × ×

0 0 0 × × ×


.

Then use a Givens matrix G∗3 = G(Ũ(6)(3 : 4,3)) to eliminate the (4,3)th entry of Ũ(6), so

U(6) = G∗3Ũ(6) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 × × ×

0 0 0 × × ×

0 0 0 × × ×


,V(6) = Ṽ(6) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 × × ×

0 0 0 × × ×

0 0 0 × × ×


.

49

Find P≥4 = H4P(4,6,u∗(6)∗4) and apply its conjugate transpose to the right of U6 and V(6), we have

U(7) = U(6)P∗≥4 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 × ×

0 0 0 0 × ×


,V(7) = V6)P∗≥4 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 × × ×

0 0 0 × × ×

0 0 0 × × ×


,

To eliminate the (4,6)th entry of V(7), let P≥5 = P(5,6,v∗(7)4∗), we have

Ũ(8) = U(7)P∗≥5 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 × ×

0 0 0 0 × ×


, Ṽ(8) = V(7)P∗≥5 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 × × 0

0 0 0 × × ×

0 0 0 × × ×


,

then use a Givens matrix G∗4 = G(Ṽ∗(8)(4,4 : 5)) to zero out the (4,5)th entry of Ṽ(8), so that

U(8) = Ũ(8) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 × ×

0 0 0 0 × ×


,V(8) = Ṽ(8)G4 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 × ×

0 0 0 0 × ×


,

Now we have finished transforming the first 4 rows and columns of the original unitary matrices

into identities. For the last 2× 2 submatrix, we can follow the same steps as the previous ones.

50

We can use Givens matrices instead of householder reflectors as the submatrix is 2−dimensional.

Define Q≥5 = G(v(8)∗5) and apply it to the left of U(8),V(8), we have

U(9) = Q≥5U(8) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 × ×

0 0 0 0 × ×


,V(9) = Q≥5V(8) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 ×


.

Define G∗5 = G(u(9)∗5) and apply it only to the left of U(9), then

U(10) = G∗5U(9) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 ×


,V(10) = V(9) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 ×


.

The last step is very important, because now both U(10) and V(10) have the last diagonal entry that

might not be equal to 1. As the dimension of the original pencil is 6, which is an even number,

Go,Ge should have the form as defined in Definition (3.3) and (3.4):

Go =



× × 0 0 0 0

× × 0 0 0 0

0 0 × × 0 0

0 0 × × 0 0

0 0 0 0 × ×

0 0 0 0 × ×


,Ge =



1 0 0 0 0 0

0 × × 0 0 0

0 × × 0 0 0

0 0 0 × × 0

0 0 0 × × 0

0 0 0 0 0 ×


,

51

so we need to construct G6 as the last block of Ge. Define P≥6 = diag(1,1,1,1,1,U(10)(6,6)) to

turn U(10)(6,6) into 1, we have

U(11) = U(10)P≥6 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,V(11) = V(10)P≥6 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 ×


.

The last step is to construct G6 = diag(1,1,1,1,1,V(11)(6,6)) and apply it only to V(11), we have

U(12) = U(11) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,V(12) = V(11)G6 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

Now, we have finished reducing both U and V into identities. To sum up the whole process, we

have

G∗5Q≥5G∗3Q≥4Q≥3G∗1Q≥2Q≥1UP∗≥2P∗≥3P∗≥4P∗≥5P≥6 = I

Q≥5Q≥4Q≥3Q≥2Q≥1VG∗0P∗≥2P∗≥3G∗2P∗≥4P∗≥5G∗4P≥6G∗6 = I

First of all, let’s look at the left side of U, Q≥5 only affects the rows 5 and 6, but G∗3 only affects

rows 3 and 4, so the multiplication is commutative, that is

Q≥5G∗3 = G∗3Q≥5,

52

then the left side of U becomes G∗5G∗3Q≥5Q≥4Q≥3G1Q≥2Q≥1; if we look at Q≥5Q≥4Q≥3, they

only affect rows from 3 to 6, while G∗1 only deals with rows 1 and 2, thus, their place can be

exchanged, too. Then we have

G∗5G∗3G∗1Q≥5Q≥4Q≥3Q≥2Q≥1UP∗≥2P∗≥3P∗≥4P∗≥5P≥6 = I

The same idea applies to the right side of V, we can also have

Q≥5Q≥4Q≥3Q≥2Q≥1VP∗≥2P∗≥3P∗≥4P∗≥5P≥6G∗0G∗2G∗4G∗6 = I

Then we let

Q = Q≥5Q≥4Q≥3Q≥2Q≥1

P∗ = P∗≥2P∗≥3P∗≥4P∗≥5P≥6

G∗o = G∗5G∗3G∗1

G∗e = G∗0G∗2G∗4G∗6

then

G∗oQUP∗ = I, QVP∗G∗e = I

QUP∗ = Go, QVP∗ = Ge

now the original unitary pencil U−λV has been transformed into a Schur parameter pencil Go−

λGe. The multiplication in G∗o = G∗5G∗3G∗1 and G∗e = G∗0G∗2G∗4G∗6 can be replaced by directly

assigning the 2× 2 nonidentity block to an identity matrix in place, where the computation flops

will be decreased.

53

4.1.2 Unitary Matrix Case [8]

For a single unitary matrix U , we can also reduce U−λ I into a Schur parameter pencil Go−λGe

by Algorithm 4.1.1. However, as introduced in [2], we also modified the method of reducing a

single unitary eigenvalue problem into a Schur parameter eigenproblem. The reduction idea is

similar to Algorithm 4.1.1; the difference is that for a single unitary matrix , we need to consider

similarity transformation. We describe the reduction steps as below.

Given a unitary matrix U∈Cn×n, we need to find unitary matrices Q,Go,Ge such that G∗oQUQ∗Ge =

I, so that QUQ∗ = GoG∗e and the single unitary eigenproblem det(U−λ I) = 0 can be replaced by

det(Go−λGe) = 0.

First , let

U(0) = U =



× × × ·· · ×

× × × ·· · ×

× × × ·· · ×
...

...
... · · · ...

× × × ·· · ×


.

Then define Q≥2 = P(2,n,u(0)∗1) to eliminate entries from 3 to 5 in the first column of U(0), and to

keep similarity, we need to apply Q∗≥2 to the right of U(0) as well, we have

U(1) = Q≥2UQ∗≥2 =



× × × ·· · ×

× × × ·· · ×

0 × × ·· · ×
...

...
... · · · ...

0 × × ·· · ×


.

To eliminate the (1,2)th entry of U(1), let G1 = G(U(1)(1 : 2,1)) and apply it only to the left of

54

U(1), then

U(2) = G1U(1) = G1Q≥2UQ∗≥2 =



1 0 0 · · · 0

0 × × ·· · ×

0 × × ·· · ×
...

...
... · · · ...

0 × × ·· · ×


.

The additional zeros in the first row of U(2) are generated since U(2) is still unitary. Next, define

Q≥3 = P(3,n,u∗(2)2∗) to eliminate entries from 4 to n in the second row of U(2). So

U(3) = Q≥3U(2)Q∗≥3 = Q≥3G1Q≥2UQ∗≥2Q∗≥3 =



1 0 0 · · · 0

0 × × ·· · 0

0 × × ·· · ×
...

...
... · · · ...

0 × × ·· · ×


.

Then we use a Givens matrix G∗2 = G(U∗(3)(2,2 : 3)) to make the (2,3)th entry of U(3) as 0:

U(4) = U(3)G2 = Q≥3G∗1Q≥2UQ∗≥2Q∗≥3G2 =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 × ·· · ×
...

...
... · · · ...

0 0 × ·· · ×


.

Then we can repeat the previous steps until U is reduced to identity. The algorithm is shown below:

Algorithm 4.1.2 Reducing a Unitary Matrix to a Schur Parameter Pencil

Given unitary n×n matrix U, n > 1, this algorithm computes unitary n×n matrices Q,Go,Ge ∈

Cn×n, such that QUQ∗ = GoG∗e and Go−λGe is a Schur parameter pencil. H is the matrix used

55

to store intermediate Householder reflectors, Givens matrices or diagonal matrices; the function

houseg(v) generates a modified Householder reflector for the vector v ∈Cn.

Initialize Q = Go = Ge = I, G0 = I

FOR j = 1, · · · ,bn/2c

i = 2(j-1)+1;

COMPUTE H = houseg(U(i+1 : n, i));

UPDATE U := HUH∗,Q := HQ;

COMPUTE H = givensg(U(i : i+1, i));

UPDATE U := HU,G∗o := HG∗o;

COMPUTE H = houseg(U∗(i+1, i+2 : n));

UPDATE U := HUH∗,Q := HQ;

COMPUTE H = givensg(U∗(i+1, i+1 : i+2));

UPDATE U := UH∗,G∗e = G∗eH∗;

We also use a 5×5 example to illustrate the algorithm above:

Example 9 Given a unitary matrix U∈C5×5, we need to find unitary matrices Q,Go,Ge such that

G∗oQUQ∗Ge = I, so that QUQ∗ = GoG∗e and the single unitary eigenproblem det(U−λ I) = 0 can

be replaced by det(Go−λGe) = 0.

56

First of all, we initialize G∗0 = I because U is unitary. And

U(0) = UG∗0 = U =



× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×


.

Then define Q≥2 = P(2,5,u(0)∗1) to eliminate entries from 3 to 5 in the first column of U(0), we have

U(1) = Q≥2UQ∗≥2 =



× × × × ×

× × × × ×

0 × × × ×

0 × × × ×

0 × × × ×


.

To eliminate the (2,1)th entry of U(1), let G∗1 = G(U(1)(1 : 2,1)) and apply it only to the left of

U(1), then

U(2) = G∗1U(1) = G∗1Q≥2UQ∗≥2 =



1 0 0 0 0

0 × × × ×

0 × × × ×

0 × × × ×

0 × × × ×


.

57

Next, define Q≥3 = P(3,5,u∗(2)2∗) to eliminate entries from 4 to 5 in the second row of U(2). So

U(3) = Q≥3U(2)Q∗≥3 = Q≥3G∗1Q≥2UQ∗≥2Q∗≥3 =



1 0 0 0 0

0 × × 0 0

0 × × × ×

0 × × × ×

0 × × × ×


.

Then we use a Givens matrix G∗2 = G(U∗(3)(2,2 : 3)) to make the (2,3)th entry of U(3) as 0:

U(4) = U(3)G2 = Q≥3G∗1Q≥2UQ∗≥2Q∗≥3G2 =



1 0 0 0 0

0 1 0 0 0

0 0 × × ×

0 0 × × ×

0 0 × × ×


.

Now we have a 3×3 submatrix left. Define Q≥4 = P(4,5,u(4)∗3), we have

U(5) = Q≥4U(4)Q∗≥4 = Q≥4Q≥3G∗1Q≥2UQ∗≥2Q∗≥3G2Q∗≥4 =



1 0 0 0 0

0 1 0 0 0

0 0 × × ×

0 0 × × ×

0 0 0 × ×


.

58

Then let G∗3 = G(U(5)(3 : 4,3)) and apply it to the left of U(5):

U(6) = G∗3U(5) = G∗3Q≥4Q≥3G∗1Q≥2UQ∗≥2Q∗≥3G2Q∗≥4 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 × ×

0 0 0 × ×


.

As we only have a 2×2 submatrix left, we can directly let G∗4 = G(U∗(6)(4,4 : 5)) to zero out the

(4,5)th entry of U(6):

U(7) = U(6)G4 = G∗3Q≥4Q≥3G∗1Q≥2UQ∗≥2Q∗≥3G2Q∗≥4G4 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 ×


.

For the last diagonal entry, define G∗5 = diag(1,1,1,1,U(6)(5,5)), we have:

U(8) = G∗5U(7) = G∗5G∗3Q≥4Q≥3G∗1Q≥2UQ∗≥2Q∗≥3G2Q∗≥4G4 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


= I.

Now if we look at the left side of U, G∗1 can be moved to the left of Q≥4, and for the right hand side

of U, G2 can be moved to the right of Q∗≥4, then we have

G∗5G∗3G∗1Q≥4Q≥3Q≥2UQ∗≥2Q∗≥3Q∗≥4G2G4 = I,

59

let

G∗o = G∗5G∗3G∗1, Ge = G0G2G4, Q = Q≥4Q≥3Q≥2,

then we have

G∗oQUQ∗Ge = I =⇒QUQ∗ = G∗oG∗e

4.2 Modified Shift and Iteration

As introduced in [2], we adopt the same method for the choice of the single shift value for µ and

double shift values for σ1,σ2.

4.2.1 Modified Single Shift Iteration

We will also describe one such iteration step, which transforms G(i−1)
o −G(i−1)

e to G(i)
o −G(i)

e . For

simplicity, we omit the super- and subscript i and let n = size(Go).

Let

z = (Go−µGe)e1 =



×

×

0
...

0


where µ can be chosen to be the last diagonal entry of GoG∗e . Compute Q0 = P(1,2,z) such that

Q0z = ke1. Multiply Q0 to the left of the pencil Go−λGe, then the original Schur parameter form

60

becomes

Q0Go =



× ×

× ×

× ×

× ×

× ×

× ×
. . .



,Q0Ge =



× + +

+ × ×

× ×

× ×

× ×
. . .


,

where + stands for some additional possibly nonzero entry. Now we can apply Algorithm 4.1.1 to

the newly generated unitary pencil Q0(Go−λGe). Because of the condensed forms for Go,Ge, for

the first step of the reduction, instead of applying Q≥1 to the left of Go,Ge which tries to eliminate

entries from 2 to n in the first column of Q0Ge, we define P≥1 = HP(1,3,(Ge)1∗) to eliminate

entries from 2 to 3 in the first row of Q0Ge, that is

Go,1 =Q0GoP∗≥1 =



× × +

× × +

+ + × ×

+ + × ×

× ×

× ×
. . .



,Ge,1 =Q0GeP∗≥1 =



1

× ×

× ×

× ×

× ×
. . .


.

Then define Q≥2 = P(2,4,Go,1(2 : 4,1)) to eliminate the entries from 2 to 4 in the first column of

61

Go,1, we have:

G̃o,2 =Q≥2Go,1 =



× × +

× × + +

+ × ×

+ × ×

× ×

× ×
. . .



,G̃e,2 =Q≥2Ge,1 =



1

× × + +

× × + +

+ + × ×

× ×
. . .


.

Next we are going to use a Givens matrix G1 = G(G̃o,2(1 : 2,1)) to zero out the first entry in the

second row of G̃o,2, that is:

Go,2 = G1G̃o,2 =



1

× + +

+ × ×

+ × ×

× ×

× ×
. . .



,Ge,2 = G̃e,2 =



1

× × + +

× × + +

+ + × ×

× ×
. . .


.

Then define P≥2 = HP(2,4,Go,2(2,2 : 4)) to eliminate the entries from 3 to 4 in the second row of

62

Go,2, so:

Go,3 = Go,2P∗≥2 =



1

1

× ×

× ×

× ×

× ×
. . .



,Ge,3 = Ge,2P∗≥2 =



1

× × + +

× × + +

+ + × ×

+ + × ×
. . .


.

In order to eliminate entries from 4 to 5 in the second row of Ge,3, define P≥3 = P(3,5,Ge,3(2,3 :

5)) and apply its conjugate transpose to the right of Go,3,Ge,3, then

G̃o,4 = Go,3P∗≥3 =



1

1

× × +

× × +

+ + × ×

+ + × ×
. . .



,G̃e,4 = Ge,3P∗≥3 =



1

× ×

× × + +

+ + × ×

+ + × ×
. . .


.

Then we can use a Givens matrix G2 = G(G̃e,4(2,2 : 3)) to eliminate the (2,3)th entry of G̃e,4, we

63

have

Go,4 = G̃o,4 =



1

1

× × +

× × +

+ + × ×

+ + × ×
. . .



,Ge,4 = G̃e,4G∗2 =



1

1

× + +

+ × ×

+ × ×
. . .


.

Then we can follow exactly the process as in Algorithm 4.1.1 to convert G(i)
o ,G(i)

e back to identities,

where we can get a new pair of G(i+1)
o and G(i+1)

e . In each iterative step, the maximum length of

the vectors dealing with Householder reflectors is reduced to 3 because of the tridiagonal structure

of Go,Ge. After each iterative step, deflation needs to be considered if any zero complementary

Schur parameters appears. If that is the case, then we subdivide G(i)
o ,G(i)

e accordingly and apply the

algorithm separately until all complementary Schur parameters become zero. Then the diagonal

entries of Go(i),G
(i)
e provide the information for the eigenvalues of the original unitary matrix

pencil.

4.2.2 Modified Double Shifts Iteration

When Go−λGe is a real Schur parameter pencil, we can also consider double shifts iteration as

introduced in previous chapter to keep the arithmetic real. The process of the modified double shift

iteration steps are similar to the one introduced in previous chapter.

64

Define

z = (Go−σ1Ge)(G∗e−σ2G∗o)e1 =



×

×

×

0
...

0


where σ1,σ2 can be chosen to be the eigenvalues of the trailing 2×2 principal submatrix of GoG∗e .

Let Q0 = P(1,3,z) such that

Q0z = βe1

Then apply Q0 to the right of Go and Ge, we have

Q0Go =



× × + +

× × + +

+ + × ×

× ×

× ×

× ×
. . .



,Q0Ge =



× + +

+ × ×

+ × ×

× ×

× ×
. . .



Then we are going to use the algorithm 4.1.1 again to regain the Schur parameter form from

Q0(Go− λGe). The difference is that, similar to the modified single shift iteration, we need to

eliminate the entries from 2 to 3 in the first row of Q0Ge instead of the entries from 2 to 3 in the

first column of Q0Ge; and in each iteration step, we can use a vector with length at most 3 to

construct Householder reflectors. We will not specifically show the reduction process here.

During the whole process of iteration steps, we need to monitor the values of complementary

Schur parameters. Deflation may be considered if there is zero among the values as well.

65

4.3 Numerical Examples

In this section, all codes are run by MATLAB R2010a, Version 7.10.0.499, 64-bit. Unitary matrices

are generated by taking the unitary matrix of QR decomposition of a random square matrix from

MATLAB. We are going to give some examples for the modified Schur parameter pencil method.

Example 10 Given a complex unitary pencil U−λV, where U,V ∈C4×4,

U =



0.2808+0.4609i −0.0897−0.1053i 0.0696−0.3070i −0.2179−0.7369i

−0.5684+0.2176i −0.2769−0.5602i −0.0767−0.2492i −0.3431+0.2313i

0.4910−0.1601i −0.1793−0.7465i 0.0152+0.2524i 0.2812+0.0286i

0.2653+0.0355i 0.0226+0.0214i 0.6955−0.5341i 0.0298+0.3969i


,

V =



−0.1016+0.7520i 0.1092+0.2283i 0.1730+0.2537i −0.4746−0.2015i

−0.0378+0.1693i −0.4063−0.0611i 0.3537+0.5791i 0.4198+0.4054i

−0.5325−0.0157i −0.1767−0.2210i 0.4524−0.4792i −0.2934+0.3402i

−0.2848+0.1707i 0.8046−0.1991i 0.1013+0.0257i 0.4221+0.1164i


.

After Phase I, U,V are reduced to identities, and associated Go,Ge are found:

Go =



0.0479−0.1325i −0.9560−0.2572i 0 0

0.9560−0.2572i 0.0479+0.1325i 0 0

0 0 −0.1085+0.8416i 0.3617−0.3863i

0 0 −0.3617−0.3863i −0.1085−0.8416i


,

Ge =



1.0000 0 0 0

0 −0.0056−0.1983i −0.2399+0.9503i 0

0 0.2399+0.9503i −0.0056+0.1983i 0

0 0 0 −0.9992+0.0391i


.

66

Then after Phase II, both Go,Ge are converged to diagonals with single shift iteration:

Go =



−0.9124+0.4093i 0 0 0

0 0.1843−0.9829i 0 0

0 0 −0.0817+0.9967i 0

0 0 0 −0.0817−0.9967i


,

Ge =



1.0000 0 0 0

0 1.0000 0 0

0 0 0.2341+0.9722i 0

0 0 0 −0.9992+0.0391i


.

Thus, the eigenvalue problem of U−λV becomes the eigenvalue problem of Go−λGe, where the

eigenvalues appear on the diagonal of GoG∗e:

GoG∗e =



0.1843−0.9829i 0 0 0

0 0.9498+0.3128i 0 0

0 0 −0.9124+0.4093i 0

0 0 0 0.0427+0.9991i


.

Figure 4.1 is the error information provided by semilogy() between eigenvalues σ sch found with

the modified Schur parameter pencil method and those σ eig obtained by eig(UV∗) in MATLAB .

Example 11 Given a single complex unitary matrix U,where U ∈C4×4,

U =



0.0097+0.5203i −0.6294+0.2355i −0.4589−0.2055i −0.1186−0.1041i

−0.0110−0.5016i −0.3910−0.2316i −0.4087+0.4651i 0.3521−0.1858i

0.0548+0.6318i 0.2936−0.4265i −0.0625+0.4621i 0.0947−0.3214i

0.0928+0.2583i −0.2291+0.1462i 0.3773+0.0643i 0.7569+0.3625i



67

Figure 4.1: y = |σ sch
i −σ

eig
i |,x = i

68

After Phase I, U is reduced to identity, and associated Go,Ge are:

Go =



0.0097+0.5203i −0.0187+0.8537i 0 0

0.0187+0.8537i 0.0097−0.5203i 0 0

0 0 0.6460−0.0949i −0.2380+0.7190i

0 0 0.2380+0.7190i 0.6460+0.0949i


,

Ge =



1.0000 0 0 0

0 −0.3368+0.0389i −0.0465−0.9396i 0

0 0.0465−0.9396i −0.3368−0.0389i 0

0 0 0 0.8607+0.5091i


.

After Phase II, Go,Ge are reduced to diagonal matrices with single shift iteration. We found

the eigenvalues of U according to the diagonal entries of GoG∗e:

GoG′e =



−0.8158−0.5784i 0 0 0

0 0.9967+0.0810i 0 0

0 0 0.6532+0.7572i 0

0 0 0 −0.5211+0.8535i


.

Figure 4.2 is the error information provided by semilogy() between eigenvalues σ sch found with

the modified Schur parameter pencil method and those σ eig obtained by eig(UV∗) in MATLAB .

Example 12 Given a real unitary pencil U−λV, where U,V ∈ R5×5,

U =



0.8000 0.1969 0.3397 0.4537 0.0012

−0.0032 −0.1559 −0.5200 0.4608 0.7021

−0.5386 0.4191 0.1279 0.6726 −0.2561

−0.2392 0.1251 0.6971 −0.1562 0.6456

−0.1131 −0.8635 0.3344 0.3241 −0.1572


,

69

Figure 4.2: y = |σ sch
i −σ

eig
i |,x = i

70

V =



−0.5949 −0.2246 −0.3492 −0.3896 −0.5674

0.0617 0.2304 −0.3520 −0.7166 0.5529

−0.7382 0.1748 −0.1117 0.4212 0.4844

0.2978 −0.3338 −0.8122 0.3686 0.0666

−0.0928 −0.8686 0.2865 −0.1462 0.3652


.

After Phase I, U,V are reduced to identities, and associated Go,Ge are found:

Go =



−0.1393 0.9903 0 0 0

−0.9903 −0.1393 0 0 0

0 0 −0.6768 −0.7362 0

0 0 0.7362 −0.6768 0

0 0 0 0 1.0000


,

Ge =



1.0000 0 0 0 0

0 −0.1991 −0.9800 0 0

0 0.9800 −0.1991 0 0

0 0 0 0.1209 0.9927

0 0 0 −0.9927 0.1209


.

Then after Phase II, both Go,Ge are converged to diagonals with double shifts iteration:

Go =



0.4892−0.8722i 0 0 0 0

0 0.4892+0.8722i 0 0 0

0 0 −0.9581−0.2865i 0 0

0 0 0 −0.9581+0.2865i 0

0 0 0 0 1.0000


,

71

Ge =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

Thus, the eigenvalue problem of U−λV becomes the eigenvalue problem of Go−λGe, where the

eigenvalues appear on the diagonal of GoG∗e:

GoG∗e =



0.4892−0.8722i 0 0 0 0

0 0.4892+0.8722i 0 0 0

0 0 −0.9581−0.2865i 0 0

0 0 0 −0.9581+0.2865i 0

0 0 0 0 1.0000


.

Figure 4.3 is the error information provided by semilogy() between eigenvalues σ sch found with

the modified Schur parameter pencil method and those σ eig obtained by eig(UV∗) in MATLAB .

Example 13 Given a real unitary matrix U, where U ∈ R5×5,

U =



0.6683 −0.0590 −0.1033 −0.2860 0.6763

0.4695 −0.6019 −0.3716 0.1836 −0.4955

−0.1960 −0.2385 −0.1227 0.8035 0.4939

0.1898 −0.3528 0.9098 0.1026 −0.0359

−0.5085 −0.6730 −0.0920 −0.4778 0.2277


,

72

Figure 4.3: y = |σ sch
i −σ

eig
i |,x = i

73

After Phase I, U is reduced to identities, and associated Go,Ge are found:

Go =



0.6683 0.7439 0 0 0

−0.7439 0.6683 0 0 0

0 0 −0.1567 −0.9876 0

0 0 0.9876 −0.1567 0

0 0 0 0 1.0000


,

Ge =



1.0000 0 0 0 0

0 0.7330 0.6803 0 0

0 −0.6803 0.7330 0 0

0 0 0 −0.9123 0.4095

0 0 0 −0.4095 −0.9123


.

Then after Phase II, both Go,Ge are converged to diagonals with double shifts iteration:

Go =



1.0000 0 0 0 0

0 0.6036−0.7973i 0 0 0

0 0 0.6036+0.7973i 0 0

0 0 0 −0.9667−0.2560i 0

0 0 0 0 −0.9667+0.2560i


,

Ge =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

Thus, the eigenvalue problem of U−λ I becomes the eigenvalue problem of Go−λGe, where the

74

Figure 4.4: y = |σ sch
i −σ

eig
i |,x = i

eigenvalues appear on the diagonal of GoG∗e:

GoG∗e =



1.0000 0 0 0 0

0 0.6036−0.7973i 0 0 0

0 0 0.6036+0.7973i 0 0

0 0 0 −0.9667−0.2560i 0

0 0 0 0 −0.9667+0.2560


.

Figure 4.4 is the error information provided by semilogy() between eigenvalues σ sch found with

the modified Schur parameter pencil method and those σ eig obtained by eig(U) in MATLAB .

75

Chapter 5

Conclusion and Future Work

This paper reviews the method of using the Schur parameter pencil to solve eigenvalue problems

for unitary matrices introduced by [2]. The method is divided into two phases:

Phase I: Reducing a unitary pencil U− λV or unitary matrix U to a Schur parameter pencil

Go−λGe.

Phase II: Converge Go,Ge to diagonal forms with shifted iterative method.

In Phase I, [2] tries to find appropriate unitary matrices P,Q to reduce U,V simultaneously to

Go,Ge, i.e. QUP = Go,QVP = Ge. During the process of the reduction, norms between vectors

are frequently compared for the purpose of computational stability. In Phase II, both single-shifted

and double-shifted iterative methods are discussed to converge Go,Ge obtained from Phase I to

diagonal forms. In the case of the single shift iteration, µ is chosen to be the last diagonal entry

of GoG∗e in each iterative step, while in the case of the double shifts iteration, σ1,σ2 are chosen to

be the eigenvalues of the trailing 2×2 principal submatrix of GoG∗e . A new Householder reflector

Q0 is constructed according to the shift chosen. Q0 is then applied to the left of Go,Ge,which

breaks the Schur parameter form of the original Go,Ge. Then the reduction method in Phase I is

applied to Q0Go,Q0Ge to regain the Schur parameter form. This algorithm ends when both Go,Ge

converge to diagonal forms.

76

Based on the algorithm introduced in [2] and combined with the idea from [8], we modified

the method of reducing a unitary pencil to a Schur parameter pencil to avoid frequent comparison

between the norms of vectors. Our modified algorithm still can be divided into two phases similar

to [2]. In phase I, instead of directly converting U,V to Go,Ge by Q,P, we aim at converting U,V

simultaneously to identities by a sequence of modified Householder reflectors and Givens matrices.

Then we can extract Go,Ge from the sequence of Givens matrices, i.e. GoQUP = I,QVPGe = I;

in phase II, we adopt the same choice of shifts for iterative steps. The difference is that in the

process of regaining the Schur parameter form of Go,Ge,we use the reduction algorithm from our

phase I again. In each iterative step, we extract new G(n+1)
o ,G(n+1)

e from the sequence of Givens

matrices after converting G(n)
o ,G(n)

e to identities.

In the future, we need to prove the stability of our algorithm which should be backward stable.

In addition, MATLAB coding can be improved to decrease flops required in our algorithm and to

enhance stability for computation as well.

77

References

[1] G.S. Ammar, W.B. Gragg, L. Reichel, On the Eigenproblem for Orthogonal Matrices. in

Proc. 25th IEEE Conf. on Decision and Control, Athens 1986.

[2] A. Bunse-Gerstner, L. Elsner, Schur Parameter Pencils for the Solution of the Unitary Eigen-

problem. Linear Algebra and its Applications, Volumes 154-156, Pages 741-778, August -

October 1991.

[3] G. H. Golub, C. F. Van Loan. Matrix Computations, Third Edition. Baltimore, MD: The John

Hopkins University Press, 96. Print.

[4] W.B. Gragg, The QR Algorithm for Unitary Hessenberg Matrices. J. Comput. Appl. Math,

16, Pages 1-8, 1986.

[5] W.B. Gragg, L. Reichel. A Divide and Conquer Algorithm for Unitary and Orthogonal Eigen-

problems. Numer. Math, 57, Pages 695-718, 1990.

[6] W.B. Gragg, T.L. Wang. Convergence of the Shifted QR Algorithm for Unitary Hessenberg

Matrices. Report NPS-53-90-008 Naval Postgraduate School, Monterey, California, 1990.

[7] W.B. Gragg, T.L. Wang. Convergence of the Unitary Hessenberg QR Algorithm with Uni-

modular Shifts. Report NPS-53-90-008 Naval Postgraduate School, Monterey, California,

1990.

[8] L. Reichel, H. Xu. A CS decomposition method for eigenvalue problem of orthogonal matri-

ces. March, 29th, 2013.

78

[9] L. N. Trefethen, D. Bau III. Numerical Linear Algebra. Philadelphia, PA: Society for Indus-

trial and Applied Mathematics, 97. Print.

79

Appendix A

Programming Codes in MATLAB

A.1 Package Instruction

This MATLAB programming code package contains:

four main functions:

unitarypencil− single.m: main function to find eigenvalue pairs for a unitary pencil with

single shifted iteration.

unitarymatrix− single.m: main function to find eigenvalues for a unitary matrix with single

shifted iteration.

unitarypencil− double.m: main function to find eigenvalue pairs for a unitary pencil with

double shifted iteration.

unitarymatrix−double.m: main function to find eigenvalues for a unitary matrix with dou-

ble shifted iteration.

other functions:

decomposition.m: reduce unitary matrices U,V from the unitary pencil U−λV to identities.

Find Go,Ge for the Schur parameter pencil.

80

singledecom.m:reduce unitary matrixU to identy. Find Go,Ge for the Schur parameter pen-

cil.

my2by2matrix.m: directly find eigenvalues for 2×2 matrices.

myloop.m: function for single-shifted iterative method to converge Go,Ge to diagonal forms.

doubleloop.m: function for double-shifted iterative method to converge Go,Ge to diagonal

forms.

chase.m: function for a single iterative step with single-shifted method.

doublechase.m: function for a single iterative step with double-shifted method.

givensg.m: function that generates a givens matrix for a given vector.

houseg.m: function that generates a householder reflector for a given vector.

A.2 Programming Codes

A.2.1 unitarypencil-single.m

-----------------------Generating random unitary U and V -----------------

U = eye(5); % The dimension of U can be changed if needed.

X1 = (randn(n))/sqrt(2);

[Q1,R1] = qr(X1);

U = Q1;

X2 = (randn(n))/sqrt(2);

[Q2,R2] = qr(X2);

V = Q2;

------------------end of generating random unitary U and V -----------------

81

n = length(U);

myDiag_U = eye(length(U)); % Initialize the diagonal matrix G_o converges to.

myDiag_V = myDiag_U; % Initialize the diagonal matrix G_e converges to.

if n ==2 % If the dimension of U and V is 2, then find

% the eigenvalue pairs directly.

[Q,P,e1,e2] = my2by2matrix(U,V);

Q

P

myDiag_U = [e2 0;0 e1]

myDiag_V = eye(2)

elseif n >2 % If the dimension of U and V is bigger than 2,

% then do the following.

[G_o,G_e,Q,P] = decomposition(U,V); % Phase I, reduce U, V to identities

% and find G_o,G_e.

-----------------------check for deflation before iteration -----------------

j = 1;

for i = 1:n-1 % Trace from top to bottom about the zeros in

% G_o and G_e, whenever meet a zero, pick the

% submatrix with the previous block, then

% continue with the rest of the matrix.

if ((mod(i,2)==1)&&(abs(G_o(i+1,i))<10^(-14)))||

((mod(i,2)==0)&&(abs(G_e(i+1,i))<10^(-14)))

82

if j == i % If the block is 1 by 1 matrix, then

% directly assign the scalar to the

% diagonal matrix.

myDiag_U(j,j) = G_o(j,j);

myDiag_V(j,j) = G_e(j,j);

else % If the block is not a scalar matrix.

if mod(j,2)==1 % If the row starts in odd number.

G_o1 = G_o(j:i,j:i);

G_e1 = G_e(j:i.j:i);

else % If the row starts in even number, then

% switch the place of G_o and G_e.

G_o1 = G_e(j:i,j:i);

G_e1 = G_o(j:i,j:i);

end

[G_o2,G_e2,myQ,myP] = myloop(G_o1,G_e1);

% Do chase for the block found.

myDiag_U(j:i,j:i) = G_o2;

myDiag_V(j:i,j:i) = G_e2;

Q = blkdiag(eye(j-1),myQ,eye(n-i))*Q;

P = P*blkdiag(eye(j-1),myP,eye(n-1));

end

j = i+1;

elseif (i==n-1)&&(abs(G_o(n,n-1))>10^(-15)||abs(G_e(n,n-1))>10^(-15))

% If there is no zeros among complimentary

83

% Schur parameters, then directly begin the

% iteration

[G_o2,G_e2,myQ,myP] = myloop(G_o,G_e); % Do chase for the block found

myDiag_U(j:n,j:n) = G_o2 % Display the diagonal matrix converged by G_o.

myDiag_V(j:n,j:n) = G_e2 % Display the diagonal matrix converged by G_e.

Q = myQ*Q % Display the unitary matrix Q.

P = P*myP % Display the unitary matrix P.

end

end

end

A.2.2 unitarymatrix-single.m

This function is similar to ’unitarypencil-single.m’, so we omit some explaination here.

-----------------------Generating a random unitary matrix U -----------------

U = eye(2);

X1 = (randn(n))/sqrt(2);

[Q1,R1] = qr(X1);

U = Q1;

-----------------end of Generating random unitary matrix U -----------------

n = length(U);

myDiag_U = eye(length(U)); % Initialize the diagonal matrix G_o converges to.

myDiag_V = myDiag_U; % Initialize the diagonal matrix G_e converges to.

if n ==2 % If dim(U)=2, then find eigenvalues directly.

[Q,P,e1,e2] = my2by2matrix(U,V);

84

myDiag_U = [e2 0;0 e1];

myDiag_V = eye(2);

display(’Q*U*P - myDiag_U =’)

disp(Q*U*P - myDiag_U)

elseif n >2

[G_o,G_e,Q] = singledecom(U); % Reduce U to identities, find G_o,G_e.

P = eye(n); % Initialize P such that PUP^*=G_oG_e^*.

G_e = G_e’;

j = 1;

-----------------------check for deflation before iteration -----------------

for i = 1:n-1

if ((mod(i,2)==1)&&(abs(G_o(i+1,i))<10^(-15)))||

((mod(i,2)==0)&&(abs(G_e(i+1,i))<10^(-15)))

if j == i

myDiag_U(j,j) = G_o(j,j);

myDiag_V(j,j) = G_e(j,j);

else

if mod(j,2)==1

G_o1 = G_o(j:i,j:i);

G_e1 = G_e(j:i.j:i);

else

G_o1 = G_e(j:i,j:i);

85

G_e1 = G_o(j:i,j:i);

end

[G_o2,G_e2,myQ,myP] = myloop(G_o1,G_e1);

myDiag_U(j:i,j:i) = G_o2;

myDiag_V(j:i,j:i) = G_e2;

Q = blkdiag(eye(j-1),myQ,eye(n-i))*Q;

P = P*blkdiag(eye(j-1),myP,eye(n-1));

end

j = i+1;

elseif (i==n-1)&&(abs(G_o(n,n-1))>10^(-15)||abs(G_e(n,n-1))>10^(-15))

[G_o2,G_e2,myQ,myP] = myloop(G_o,G_e);

myDiag_U(j:n,j:n) = G_o2;

myDiag_V(j:n,j:n) = G_e2;

Q = myQ*Q;

end

end

end

display(’eigenvalues for the matrix U are:’)

myDiag_U*myDiag_V % Eigenvalues of U are displayed in a diagonal matrix.

A.2.3 unitarypencil-double.m

This function is similar to ’unitarypencil-single.m’, so we omit some explaination here.

-----------------------Generating random unitary U and V -------------------

U = eye(5); % The dimension of U can be changed if needed.

X1 = (randn(n))/sqrt(2);

86

[Q1,R1] = qr(X1);

U = Q1;

X2 = (randn(n))/sqrt(2);

[Q2,R2] = qr(X2);

V = Q2;

------------------end of generating random unitary U and V -----------------

n = length(U);

myDiag_U = eye(length(U));

myDiag_V = myDiag_U;

if n ==2

[Q,P,e1,e2] = my2by2matrix(U,V);

Q

P

myDiag_U = [e2 0;0 e1]

myDiag_V = eye(2)

elseif n >2

[G_o,G_e,Q,P] = decomposition(U,V);

-----------------------check for deflation before iteration -----------------

j = 1;

for i = 1:n-1

if ((mod(i,2)==1)&&(abs(G_o(i+1,i))<10^(-14)))||

((mod(i,2)==0)&&(abs(G_e(i+1,i))<10^(-14)))

87

if j == i

myDiag_U(j,j) = G_o(j,j);

myDiag_V(j,j) = G_e(j,j);

else

if mod(j,2)==1

G_o1 = G_o(j:i,j:i);

G_e1 = G_e(j:i.j:i);

else

G_o1 = G_e(j:i,j:i);

G_e1 = G_o(j:i,j:i);

end

[G_o2,G_e2,myQ,myP] = doubleloop(G_o1,G_e1);

myDiag_U(j:i,j:i) = G_o2;

myDiag_V(j:i,j:i) = G_e2;

Q = blkdiag(eye(j-1),myQ,eye(n-i))*Q;

P = P*blkdiag(eye(j-1),myP,eye(n-1));

end

j = i+1;

elseif (i==n-1)&&(abs(G_o(n,n-1))>10^(-15)||abs(G_e(n,n-1))>10^(-15))

[G_o2,G_e2,myQ,myP] = doubleloop(G_o,G_e);

myDiag_U(j:n,j:n) = G_o2

myDiag_V(j:n,j:n) = G_e2

88

Q = myQ*Q

P = P*myP

end

end

end

A.2.4 unitarymatrix-double.m

This function is similar to ’unitarymatrix-single.m’, so we omit some explaination here.

-----------------------Generating a random unitary matrix U ----------------

U = eye(2);

X1 = (randn(n))/sqrt(2);

[Q1,R1] = qr(X1);

U = Q1;

-----------------end of Generating random unitary matrix U -----------------

n = length(U);

myDiag_U = eye(length(U));

myDiag_V = myDiag_U;

if n ==2

[Q,P,e1,e2] = my2by2matrix(U,V);

myDiag_U = [e2 0;0 e1];

myDiag_V = eye(2);

display(’Q*U*P - myDiag_U =’)

disp(Q*U*P - myDiag_U)

elseif n >2

[G_o,G_e,Q] = singledecom(U);

89

P = eye(n);

G_e = G_e’;

j = 1;

-----------------------check for deflation before iteration -----------------

for i = 1:n-1

if ((mod(i,2)==1)&&(abs(G_o(i+1,i))<10^(-15)))||

((mod(i,2)==0)&&(abs(G_e(i+1,i))<10^(-15)))

if j == i

myDiag_U(j,j) = G_o(j,j);

myDiag_V(j,j) = G_e(j,j);

else

if mod(j,2)==1

G_o1 = G_o(j:i,j:i);

G_e1 = G_e(j:i.j:i);

else

G_o1 = G_e(j:i,j:i);

G_e1 = G_o(j:i,j:i);

end

[G_o2,G_e2,myQ,myP] = doubleloop(G_o1,G_e1);

myDiag_U(j:i,j:i) = G_o2;

myDiag_V(j:i,j:i) = G_e2;

Q = blkdiag(eye(j-1),myQ,eye(n-i))*Q;

P = P*blkdiag(eye(j-1),myP,eye(n-1));

90

end

j = i+1;

elseif (i==n-1)&&(abs(G_o(n,n-1))>10^(-15)||abs(G_e(n,n-1))>10^(-15))

[G_o2,G_e2,myQ,myP] = doubleloop(G_o,G_e);

myDiag_U(j:n,j:n) = G_o2;

myDiag_V(j:n,j:n) = G_e2;

Q = myQ*Q;

end

end

end

display(’eigenvalues for the matrix U are:’)

myDiag_U*myDiag_V

A.2.5 decomposition.m

function [G_o,G_e,Q,P] = decomposition(X,Y)

% X,Y are the unitary matrices in the original pencil to be reduced

% Output G_o,G_e,Q,P are as such G_oQXP=I,QYPG_e=I

U = X;

V = Y; % Both U and V are unitary matrices.

n = size(U);

Q = eye(n); % Left mult matrix

P = Q; % Right mult matrix

91

G_o = Q; % Left mult to U

G_e = Q; % Right mult to V

H = Q; % Store the householder reflector

G = Q; % Store the givens rotation matrix

for j = 1:floor(n/2)

i = 2*(j-1)+1;

if n-2*j>=1

H = houseg(V(i:n,i),n); % Find the Householder reflector of the

% vector V(i:n,i).

Q = H*Q;

U = H*U;

V = H*V;

--------------------This block is used to ensure the diagonal V(i,i) = 1-------

H = blkdiag(eye(i-1),conj(V(i,i)),eye(n-i));

Q = H*Q;

U = H*U;

V = H*V;

H = houseg(U(i+1:n,i),n); % Left mult to U such that the elements

% of U(i+2:n,i) becomes zero.

Q = H*Q;

U = H*U;

V = H*V;

G = givensg(U(i:i+1,i),n,i); % Left mult to U such that the element of

92

% U(i+1,i) becomes zero.

G_o(i:i+1,i:i+1) = G(i:i+1,i:i+1);

U = G*U;

H = (houseg(U(i+1,i+1:n)’,n))’; % Right mult to U such that the

% elements of U(i+1, i+2:n)

% becomes zero.

P = P*H;

U = U*H;

V = V*H;

H = blkdiag(eye(i), conj(U(i+1,i+1)),eye(n-i-1));

P = P*H;

U = U*H;

V = V*H;

H = (houseg(V(i+1,i+2:n)’,n))’;

P = P*H;

U = U*H;

V = V*H;

G = givensg(V(i+1,i+1:i+2)’,n,i+1);

G_e(i+1:i+2,i+1:i+2) = G(i+1:i+2,i+1:i+2)’;

V = V*G’;

% Adjusting the value of the last diag element in U and V if size of U is an odd

93

% number to guarantee they are 1.

if n-2*j == 1

H = blkdiag(eye(n-1),conj(V(2*j+1,2*j+1)));

Q = H*Q;

V = H*V;

U = H*U;

m = conj(U(2*j+1,2*j+1));

G_o(n,n) = m;

H = blkdiag(eye(n-1),m);

U = H*U;

end

% Now we finish transforming the ith and i+1th rows and coloums of U and V into I.

elseif n-2*j == 0

H = houseg(V(i:n,i),n); % Find the Householder reflector of the

% vector V(i, i:n).

Q = H*Q;

U = H*U;

V = H*V;

H = blkdiag(eye(i-1),conj(V(i,i)),1);

Q = H*Q;

U = H*U;

V = H*V;

94

G = givensg(U(i:i+1,i),n,i);

G_o(i:i+1,i:i+1) = G(i:i+1,i:i+1);

U = G*U;

H = blkdiag(eye(n-1),conj(U(2*j,2*j))); %turn U(n,n) into 1

P = P*H;

U = U*H;

V = V*H;

H = blkdiag(eye(n-1),conj(V(2*j,2*j)));

V = V*H;

G_e(2*j, 2*j) = H(2*j,2*j);

end

end

G_o = G_o’;

G_e = G_e’;

end

A.2.6 singledecom.m

function [G_o,G_e,Q] = singledecom(X)

% X is the unitary matrix to be transformed

% Output G_o,G_e,Q are as such QXQ^*=G_oG_e

H = X;

n = length(H);

Q = eye(n);

G_o = Q;

95

G_e = Q;

K = Q; %K is used to store generated householder matrix.

for i=1:floor(n/2)

j = 2*(i-1)+1;

if n-j>2 % If there are more than 3 rows left.

K = houseg(H(j+1:n,j),n); % Constructing G_o.

H = K*H*K’;

Q = K*Q;

K = givensg(H(j:j+1,j),n,j);

H = K*H;

G_o = K*G_o;

K = houseg(H(j+1,j+2:n)’,n)’; % Constructing G_e.

H = K’*H*K;

Q = K’*Q;

K = givensg(H(j+1,j+1:j+2)’,n,j+1)’;

H = H*K;

G_e = G_e*K;

elseif n-j== 2 % If there are exactly 3 rows left.

K = houseg(H(j+1:n,j),n); % Constructing G_o.

H = K*H*K’;

Q = K*Q;

K = givensg(H(j:j+1,j),n,j);

H = K*H;

G_o = K*G_o;

96

K = givensg(H(j+1,j+1:j+2)’,n,j+1)’;

H = H*K;

G_e = G_e*K;

G_o = blkdiag(eye(n-1),sign(H(n,n))*1)*G_o;

H = blkdiag(eye(n-1), sign(H(n,n))*1)*H;

elseif n-j == 1 % If there are only 2 rows left

K = givensg(H(j:j+1,j),n,j);

G_o = K*G_o;

H = K*H;

G_e = G_e*blkdiag(eye(n-1), conj(H(n,n)));

H = H*blkdiag(eye(n-1), conj(H(n,n)));

end

end

G_o = G_o’;

G_e = G_e’;

end

A.2.7 my2by2matrix.m

function [Q,P,e1,e2] = my2by2matrix(X,Y)

% Directly find the decomposition of 2 by 2 unitary matrices.

% Output Q,P,e1,e2 are as such QXP = diag[e1,e2], QYP=I.

U = X;

V = Y;

W = V’*U;

97

a = W(1,1);

b = W(1,2);

c = W(2,1);

d = W(2,2);

eigen1 = (a+d+sqrt((a-d)^2+4*b*c))/2; % First eigenvalue of W

eigen2 = (4*a*d-4*b*c)/(2*(a+d+sqrt((a-d)^2+4*b*c)));% Second eigenvalue of W

A = W-eigen1*eye(2);

if norm(A(:,1))>=norm(A(:,2)) % choose the column with bigger norm.

v = A(:,1);

else

v = A(:,2);

end

P = givensg(v,2,1);

Q = P*V’;

P = P’;

e1 = eigen1;

e2 = eigen2;

end

A.2.8 myloop.m

function [G_o2,G_e2,Q,P] = myloop(X1,Y1)

% X1,Y1 are the G_o,G_e from phase I

% Output G_o2,G_e2,Q,P are as such QX1P=G_o2,QX2P=G_e2.

% G_o2,G_e2 are diagonal matrices

98

G_o = X1;

G_e = Y1;

n = length(G_o);

Q = eye(n);

P = Q;

G_o2 = Q;

G_e2 = Q;

i = n;

while i>2 % If the dimension of the matrix is bigger than 2,

% then we do chase.

[subG_o1,subG_e1,subG_o2,subG_e2,myQ,myP] = chase(G_o,G_e);

% One iteration step.

Q = blkdiag(myQ,eye(n-i))*Q;

P = P*blkdiag(myP, eye(n-i));

k = length(subG_o2);

if k == 2

[Q1,P1,e1,e2] = my2by2matrix(subG_o2,subG_e2);

Q = blkdiag(eye(i-2),Q1,eye(n-i))*Q;

P = P*blkdiag(eye(i-2),P1,eye(n-i));

G_o2(i-1,i-1) = e2;

G_o2(i,i) = e1;

elseif k == 1

99

G_o2(i,i) = subG_o2(1,1);

G_e2(i,i) = subG_e2(1,1);

end

G_o = subG_o1;

G_e = subG_e1;

i = i -k;

end

if i == 2 % If after the chase, the dimension is 2, the we

% directly find the eigenvalues .

[Q1,P1,e1,e2] = my2by2matrix(G_o,G_e);

Q = blkdiag(Q1, eye(n-2))*Q;

P = P*blkdiag(P1, eye(n-2));

G_o2(1,1) = e2;

G_o2(2,2) = e1;

elseif i ==1 % If after the chase, the dimension is 1, then we

% directly assign the value to G_o2, G_e2

G_o2(1,1) = G_o(1,1);

G_e2(1,1) = G_e(1,1);

end

end

A.2.9 doubleloop.m

This function is similar to ’myloop.m’, so we omit some explaination here.

function [G_o2,G_e2,Q,P] = doubleloop(X1,Y1)

100

G_o = X1;

G_e = Y1;

n = length(G_o);

Q = eye(n);

P = Q;

G_o2 = Q;

G_e2 = Q;

i = n;

while i>2

[subG_o1,subG_e1,subG_o2,subG_e2,myQ,myP] = doublechase(G_o,G_e);

Q = blkdiag(myQ,eye(n-i))*Q;

P = P*blkdiag(myP, eye(n-i));

k = length(subG_o2);

if k == 2

[Q1,P1,e1,e2] = my2by2matrix(subG_o2,subG_e2);

Q = blkdiag(eye(i-2),Q1,eye(n-i))*Q;

P = P*blkdiag(eye(i-2),P1,eye(n-i));

G_o2(i-1,i-1) = e2;

G_o2(i,i) = e1;

elseif k == 1

G_o2(i,i) = subG_o2(1,1);

G_e2(i,i) = subG_e2(1,1);

101

end

G_o = subG_o1;

G_e = subG_e1;

i = i -k;

end

if i == 2

[Q1,P1,e1,e2] = my2by2matrix(G_o,G_e);

Q = blkdiag(Q1, eye(n-2))*Q;

P = P*blkdiag(P1, eye(n-2));

G_o2(1,1) = e2;

G_o2(2,2) = e1;

elseif i ==1

G_o2(1,1) = G_o(1,1);

G_e2(1,1) = G_e(1,1);

end

end

A.2.10 chase.m

function [subG_o1,subG_e1,subG_o2,subG_e2,myQ,myP] = chase(X,Y)

% X is G_o

% Y is G_e

% m is the first row of the matrix located in the originl matrix

G_o = X;

G_e = Y;

102

G_o2 = X;

G_e2 = Y;

minRow = 0; % The smaller number between a and b.

n = length(G_o);

m = 0;

i = 0;

myflag = 0;

G_o1 = eye(n);

G_e1 = G_o1;

myQ = G_o1;

myP = G_o1;

while (myflag == 0)

G = G_o*G_e’;

s = G(n,n);

G1 = G_o-s*G_e;

Q0 = houseg(G1(:,1),n);

G_o = Q0*G_o;

G_e = Q0*G_e;

H = eye(n);

Q = H;

P = H;

G_o1 = H;

G_e1 = H;

103

for j = 1:floor(n/2)

row = 2*(j-1)+1;

if row+2<=n % If there are at least 3 rows left, then we

% can transform the first two diagonal

% elements into 1 through this block.

if row == 1 % If it is the first transformation, then

% start with the right multi of G_e,

% otherwise, start with left multi of G_e.

H = (blkdiag(houseg((G_e(1,1:3))’,3),eye(n-3)))’;

G_e = G_e*H;

G_o = G_o*H;

P = P*H;

H = blkdiag(conj(G_e(1,1)), eye(n-1));

G_e = G_e*H;

G_o = G_o*H;

P = P*H;

else

H = blkdiag(houseg(G_e(row:row+2,row),row+2),eye(n-row-2));

G_e = H*G_e;

G_o = H*G_o;

Q = H*Q;

104

H = blkdiag(eye(row-1),conj(G_e(row,row)), eye(n-row));

G_e = H*G_e;

G_o = H*G_o;

Q = H*Q;

end

minRow = min([n row+3]);

H = blkdiag(houseg(G_o(row+1:minRow,row),minRow),eye(n-minRow));

G_o = H*G_o;

G_e = H*G_e;

Q = H*Q;

H = givensg(G_o(row:row+1,row),n,row);

G_o1(row:row+1,row:row+1) = H(row:row+1,row:row+1);

G_o = H*G_o;

H = blkdiag(houseg((G_o(row+1,row+1:minRow))’,minRow),eye(n-minRow))’;

P = P*H;

G_o = G_o*H;

G_e = G_e*H;

H = blkdiag(eye(row),conj(G_o(row+1,row+1)), eye(n-row-1));

G_e = G_e*H;

G_o = G_o*H;

P = P*H;

if row+2<n

105

minRow = min([n row+4]);

H = (blkdiag(houseg((G_e(row+1,row+2:minRow))’,minRow),

eye(n-minRow)))’;

P = P*H;

G_o = G_o*H;

G_e = G_e*H;

end

H = (givensg((G_e(row+1,row+1:row+2))’,n,row+1))’;

G_e1(row+1:row+2,row+1:row+2) = H(row+1:row+2,row+1:row+2);

G_e = G_e*H;

if row+2 == n

H = blkdiag(eye(n-1),conj(G_e(n,n))) ;

Q = H*Q;

G_o = H*G_o;

G_e = H*G_e;

H = blkdiag(eye(n-1),conj(G_o(n,n)));

G_o = H*G_o;

G_o1(n,n) = H(n,n);

end

elseif row+1 == n % If there are only 2 rows and 2 columns left.

H = houseg(G_e(row:row+1,row),n);

G_e = H*G_e;

G_o = H*G_o;

Q = H*Q;

106

H = blkdiag(eye(row-1),conj(G_e(row,row)), 1);

G_e = H*G_e;

G_o = H*G_o;

Q = H*Q;

H = givensg(G_o(row:row+1,row),n,row);

G_o1(row:row+1,row:row+1) = H(row:row+1,row:row+1);

G_o = H*G_o;

H = blkdiag(eye(n-1),conj(G_o(n,n)));

G_o = G_o*H;

G_e = G_e*H;

P = P*H;

H = blkdiag(eye(n-1),conj(G_e(n,n)));

G_e = G_e*H;

G_e1(n,n) = H(n,n);

end

end

G_o = G_o1’;

G_e = G_e1’;

myQ = Q*Q0*myQ;

myP = myP*P;

i = i+1;

107

k = 0;

while (k<n-1) % check for deflation

k = k+1;

if (mod(k,2)==1)&&(abs(G_o(k+1,k))<10^(-16))

m = k;

myflag = 1;

k = n-1;

elseif (mod(k,2)==0)&&(abs(G_e(k+1,k))<10^(-16))

m = k;

myflag = 1;

k = n-1;

end

end

end

subG_o1 = G_o(1:m,1:m);

subG_o2 = G_o(m+1:n,m+1:n);

subG_e1 = G_e(1:m,1:m);

subG_e2 = G_e(m+1:n,m+1:n);

end

A.2.11 doublechase.m

This function is similar to ’chase.m’, so we omit some explaination here.

function [subG_o1,subG_e1,subG_o2,subG_e2,myQ,myP] = doublechase(X,Y)

108

G_o = X;

G_e = Y;

G_o2 = X;

G_e2 = Y;

minRow = 0;

n = length(G_o);

m = 0;

i = 0;

myflag = 0;

G_o1 = eye(n);

G_e1 = G_o1;

myQ = G_o1;

myP = G_o1;

while (myflag == 0)

G = G_o*G_e’;

a = G(n-1,n-1);

b = G(n-1,n);

c = G(n,n-1);

d = G(n,n);

G1 = G_o*G_e’+(a*d-b*c)*G_e*G_o’-(a+d)*eye(n);

Q0 = houseg(G1(:,1),n);

G_o = Q0*G_o;

G_e = Q0*G_e;

109

H = eye(n);

Q = H;

P = H;

G_o1 = H;

G_e1 = H;

for j = 1:floor(n/2)

row = 2*(j-1)+1;

if row+2<=n

if row == 1

H = (blkdiag(houseg((G_e(1,1:3))’,3),eye(n-3)))’;

G_e = G_e*H;

G_o = G_o*H;

P = P*H;

H = blkdiag(conj(G_e(1,1)), eye(n-1));

G_e = G_e*H;

G_o = G_o*H;

P = P*H;

else

H = blkdiag(houseg(G_e(row:row+2,row),row+2),eye(n-row-2));

G_e = H*G_e;

G_o = H*G_o;

Q = H*Q;

110

H = blkdiag(eye(row-1),conj(G_e(row,row)), eye(n-row));

G_e = H*G_e;

G_o = H*G_o;

Q = H*Q;

end

minRow = min([n row+3]);

H = blkdiag(houseg(G_o(row+1:minRow,row),minRow),eye(n-minRow));

G_o = H*G_o;

G_e = H*G_e;

Q = H*Q;

H = givensg(G_o(row:row+1,row),n,row);

G_o1(row:row+1,row:row+1) = H(row:row+1,row:row+1);

G_o = H*G_o;

H = blkdiag(houseg((G_o(row+1,row+1:minRow))’,minRow),eye(n-minRow))’;

P = P*H;

G_o = G_o*H;

G_e = G_e*H;

H = blkdiag(eye(row),conj(G_o(row+1,row+1)), eye(n-row-1));

G_e = G_e*H;

G_o = G_o*H;

P = P*H;

if row+2<n

111

minRow = min([n row+4]);

H = (blkdiag(houseg((G_e(row+1,row+2:minRow))’,minRow),

eye(n-minRow)))’;

P = P*H;

G_o = G_o*H;

G_e = G_e*H;

end

H = (givensg((G_e(row+1,row+1:row+2))’,n,row+1))’;

G_e1(row+1:row+2,row+1:row+2) = H(row+1:row+2,row+1:row+2);

G_e = G_e*H;

if row+2 == n

H = blkdiag(eye(n-1),conj(G_e(n,n))) ;

Q = H*Q;

G_o = H*G_o;

G_e = H*G_e;

H = blkdiag(eye(n-1),conj(G_o(n,n)));

G_o = H*G_o;

G_o1(n,n) = H(n,n);

end

elseif row+1 == n

H = houseg(G_e(row:row+1,row),n);

G_e = H*G_e;

G_o = H*G_o;

Q = H*Q;

112

H = blkdiag(eye(row-1),conj(G_e(row,row)), 1);

G_e = H*G_e;

G_o = H*G_o;

Q = H*Q;

H = givensg(G_o(row:row+1,row),n,row);

G_o1(row:row+1,row:row+1) = H(row:row+1,row:row+1);

G_o = H*G_o;

H = blkdiag(eye(n-1),conj(G_o(n,n)));

G_o = G_o*H;

G_e = G_e*H;

P = P*H;

H = blkdiag(eye(n-1),conj(G_e(n,n)));

G_e = G_e*H;

G_e1(n,n) = H(n,n);

end

end

G_o = G_o1’;

G_e = G_e1’;

myQ = Q*Q0*myQ;

myP = myP*P;

i = i+1;

113

k = 0;

while (k<n-1)

k = k+1;

if (mod(k,2)==1)&&(abs(G_o(k+1,k))<10^(-16))

m = k;

myflag = 1;

k = n-1;

elseif (mod(k,2)==0)&&(abs(G_e(k+1,k))<10^(-16))

m = k;

myflag = 1;

k = n-1;

end

end

end

subG_o1 = G_o(1:m,1:m);

subG_o2 = G_o(m+1:n,m+1:n);

subG_e1 = G_e(1:m,1:m);

subG_e2 = G_e(m+1:n,m+1:n);

end

A.2.12 givens.m

function givens = givensg(x,n,m)

% Function to generate a Givens rotation matrix

% x is the vector to be transformed, n is the dimension of the orginal

114

% matrix, m is the starting position of the x located in the original

% matrix

G = zeros(2); % Initialize Givens matrix

if x(2,1)== 0

givens = eye(n); % If x is a multiple of e1, then givens = I.

else

if norm(x(1,1))>=norm(x(2,1))

t = norm(x(2,1))/norm(x(1,1));

r = sqrt(1+(t)^2);

c = conj(x(1,1))/(norm(x(1,1))*r);

s =(x(1,1)/(norm(x(1,1)))^2)*c*conj(x(2,1));

else

t = norm(x(1,1))/norm(x(2,1));

r = sqrt(1+(t)^2);

s =conj(x(2,1))/(norm(x(2,1))*r);

c = (x(2,1)/(norm(x(2,1)))^2)*s*conj(x(1,1));

end

G(1,1)= c;

G(2,2) = conj(c);

G(1,2) = s;

G(2,1) = -conj(s);

givens = blkdiag(eye(m-1),G,eye(n-m-1));

115

end

end

A.2.13 houseg.m

function householder = houseg(x,n)

% function to generate a Householder reflector such that householder*v =

% norm(v)e1

% x is the vector to be transformed, n is the dimension of the original

% matrix

i = length(x);

j = n - i; % Determine the dimension of the identity matrix

% such that subI direct sum with the Householder

% reflector is what we want

I = eye(i);

subI = eye(j);

if norm(x)<= 10^(-15)

householder = eye(n); % If x is 0, then householder = I

else

if abs(x(1,1))<=10^(-15)

a = norm(x);

else

a = x(1,1)/abs(x(1,1))*norm(x);

end

116

b = a*I(:,1);

v = b+x;

beta = 2/(v’*v);

housereflector = I - beta*(v*v’);

householder =blkdiag(subI, housereflector);

end

end

117

