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Abstract

Synchronization is a critical operation in digital communication systems, which establishes

and maintains an operational link between transmitter and the receiver. As the advancement of

digital modulation and coding schemes continues, the synchronization task becomes more and

more challenging since the new standards require high-throughput functionality at low signal-

to-noise ratios (SNRs). In this work, we address feedforward synchronization of continuous

phase modulations (CPMs) using data-aided (DA) methods, which are best suited for burst-

mode communications. In our transmission model, a known training sequence is appended to

the beginning of each burst, which is then affected by additive white Gaussian noise (AWGN),

and unknown frequency, phase, and timing offsets.

Based on our transmission model, we derive the Cramér-Rao bound (CRB) for DA joint

estimation of synchronization parameters. Using the CRB expressions, the optimum training

sequence for CPM signals is proposed. It is shown that the proposed sequence minimizes the

CRB for all three synchronization parameters asymptotically, and can be applied to the entire

CPM family.

We take advantage of the simple structure of the optimized training sequence in order to

design a practical synchronization algorithm based on the maximum likelihood (ML) princi-

ples. The proposed DA algorithm jointly estimates frequency offset, carrier phase and symbol

timing in a feedforward manner. The frequency offset estimate is first found by means of max-

imizing a one dimensional function. It is then followed by symbol timing and carrier phase

estimation, which are carried out using simple closed-form expressions. We show that the pro-
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posed algorithm attains the theoretical CRBs for all synchronization parameters for moderate

training sequence lengths and all SNR regions. Moreover, a frame synchronization algorithm is

developed, which detects the training sequence boundaries in burst-mode CPM signals.

The proposed training sequence and synchronization algorithm are extended to shaped-offset

quadrature phase-shift keying (SOQPSK) modulation, which is considered for next generation

aeronautical telemetry systems. Here, it is shown that the optimized training sequence out-

performs the one that is defined in the draft telemetry standard as long as estimation error

variances are considered. The overall bit error rate (BER) plots suggest that the optimized

preamble with a shorter length can be utilized such that the performance loss is less than 0.5

dB of an ideal synchronization scenario.
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Chapter 1

Introduction

1.1 Background

As the title of this dissertation suggests, three areas of digital communications are covered

in this effort, which are: burst-mode transmissions, CPM schemes, and synchronization algo-

rithms. Thus, we opt to provide a brief introduction to each of these topics in order to establish

the basic concepts, notation and terminology. Interested readers may refer to textbooks such

as [1, 2, 3] for an in-depth discussion of the aforementioned topics.

1.1.1 Burst-Mode Communications

Transmission of digital data can be performed in two different fashions: continuous trans-

mission and burst-mode transmission. In the former case a data stream is established between

the receiver and the transmitter for a long period of time, while in the latter case, the transmis-

sion consists of abrupt disjoint short packets, also known as bursts. Burst-mode transmission

is in close association with time-division multiple-access (TDMA) networks, which break the

transmission into multiple time slots, each one is dedicated to a different user.

A simplified example of burst-mode transmission is depicted in Figure 1.1. Each burst

consists of two main parts: Training sequence and payload. The training sequence (also known

as the preamble, pilot symbols or sync. word) is used to estimate and correct defects that

1



Training 
Sequence

Payload

Burst #1 Burst #2 Burst #K

Figure 1.1. Structure of a burst-mode transmission

occur during the transmission. The payload is simply the information bits that construct

the transmitted message. A unique word (UW) may also be placed in the burst for burst

identification, i.e. if a burst is actually received. Finally, one can place a header part prior to

the payload in order to distinguish the intended user. In this work, we assume the training

sequence is located at the beginning of each burst, and hence, training sequence and preamble

are used interchangeably.

1.1.2 Continuous Phase Modulation

Continuous phase modulation (CPM) [4] is a constant envelope modulation that exhibits

power and bandwidth efficiency. Due to its constant envelope feature, CPM modulators do not

require linear amplifiers, reducing the cost of the transmitter. However, CPM is a non-linear

modulation with memory, which results in high complexity at the receiver compared to linear

modulations such as phase-shift keying (PSK) and quadrature amplitude modulation (QAM).

The complex baseband CPM signal is

s(t) =

√
Es
Ts

exp{jφ(t;α)} (1.1)

where Es is the energy per transmitted symbol and Ts is the symbol duration. The phase of

the signal φ(t;α) during the transmission is represented as

φ(t;α) = 2πh

∞∑
i=−∞

αiq(t− iTs) (1.2)

where {αi} is the sequence of M -ary data symbols selected from the set of {±1,±3, . . . ,±(M −

2



+1

+1 +1

+1
-1

-1 -1

-1

Figure 1.2. State diagram for binary h = 1/2 full-response CPM. The dashed
lines show the phase variations based on the incoming data symbols.

1)}. The variable h is called the modulation index. It can be a constant in single-h CPM or

a variable in multi-h CPM waveforms. The waveform q(t) is called the phase response and in

general is represented as the integral of the frequency pulse g(t), whose duration is LTs. If

L = 1 the signal is called full-response CPM, and for L > 1, it is called partial-response CPM.

Based on CPM conventions, q(t) = 0 for t < 0, and q(t) = 1/2 for t ≥ LTs.

Three well-known frequency pulse shapes [3] and their phase responses are illustrated in

Figure 1.3. LREC refers to a rectangular pulse with a duration of LTs. LRC corresponds

to a raised-cosine pulse of duration LTs. Finally, the Gaussian pulse is used in Gaussian

minimum shift-keying (GMSK), and has a bandwidth parameter of BTs. We have illustrated

the Gaussian pulse with BTs = 0.3 that is used in the European cellular system called GSM. For

this particular bandwidth parameter we have L ≈ 4. Additionally, GMSK is a binary CPM with

h = 1/2, which is closely related to the full response minimum shift-keying (MSK) modulation.

In fact, binary CPMs with h = 1/2 are classified as MSK-type modulations, regardless of their

frequency pulses.

Generally speaking, a CPM signal cannot be represented on the signal space using discrete

points since the phase of the signal is constantly varying. However, a QPSK-like constellation

3
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CPMs.
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diagram is presented in Figure 1.2 for a better understanding of full-response binary h = 1/2

CPM and other CPMs in general. It can be seen that at exact time instances equal to multiples

of Ts the signal’s phase is one of [0, π/2, π, 3π/2] values. Upon arrival of a new data symbol, the

phase starts traveling to another adjacent constellation point continuously during Ts seconds.

Additionally, the phase trajectory of the CPM signal can be expressed on a trellis which is used

for optimal detection of CPM signals using the Viterbi [5] algorithm.

1.1.3 Synchronization Techniques

In digital transmissions, one is always interested in correct estimation of the data symbols

regardless of what happens during the transmission. However, this cannot be achieved unless

a reliable knowledge of the parameters that describe the transmission exists. A major class of

such parameters are synchronization parameters, which can be viewed as reference points in the

transmission.

Two of the main synchronization tasks are timing synchronization and carrier synchroniza-

tion. Timing synchronization has to be performed in order to determine the correct sampling

time of the received analog signal. The timing ambiguity is caused by the unknown delay be-

tween the transmitter and the receiver, which is also referred to as the symbol timing. Carrier

synchronization consists of the estimation of both carrier frequency offset and its phase. The

frequency offset occurs in passband transmissions due to the mismatch between oscillators at

the receiver and transmitter and also because of the Doppler effect, i.e. frequency shifts due

to the movement of the transmitter and/or receiver. It should be mentioned that carrier phase

estimation is not always needed and one can use noncoherent techniques. However, noncoher-

ent detection results in a performance degradation. The transmitted signal s(t) affected by the

aforementioned impairments can be formalized at the receiver as

r(t) = ej(2πfd+θ)s(t− τ) (1.3)

where fd is the frequency offset, θ is the carrier phase and τ is the symbol timing. Note

5



that the channel noise is ignored in the above notation. Therefore, synchronization consists

of estimating [fd, θ, τ ] from the received signal r(t). In the above notation, we have assumed

τ is a fraction of the symbol duration, and hence, it is referred to as the symbol timing. In

burst-mode communications, it is necessary to estimate the boundaries of each frame in order

to satisfy that assumption. We refer to the latter task as the frame synchronization.

In the following sections, we encounter several terms regarding the classification of a given

synchronization algorithm. Here, a short description of these terms is provided.

• Feedback vs. Feedforward; Feedback synchronizer refers to a closed-loop estimator

in which the estimation is carried out based on partially synchronized r(t) in a closed-

loop fashion. The synchronization parameters are updated with the arrival of every new

symbol. In a feedforward structure, a one-time estimate of the synchronization parameters

is generated using the original received signal.

• Data-Aided (DA) vs. Non-data-aided (NDA); DA synchronizers take advantage of

the prior knowledge of transmitted data symbols, whereas NDA synchronizers work on

the statistical properties of the transmitted signal.

• Decision-directed (DD). This class of synchronizers is designed based on DA estimation

algorithms. However, they use estimated data symbols (decisions) rather than prior known

symbols. In fact, synchronization and detection are combined in this class of synchronizers.

As mentioned earlier, synchronization mainly involves the estimation of reference parameters

which is a problem in estimation theory [2]. Here, we touch on a couple of concepts in estimation

theory that will be used frequently in our discussions.

A classical and widely-used approach in estimation theory and particularly in synchroniza-

tion algorithms is Maximum Likelihood (ML) estimation. ML estimation is asymptotically, i.e.

for large data records, optimal and unbiased [2, Theorem 7.1], which makes it attractive for

researchers. The ML estimate of an unknown parameter λ from the observed received signal r

6



is the value for which the likelihood function is maximized. This can be expressed as

λ̂(r) = argmax
λ
{Λ(r;λ)} (1.4)

where λ̂ is the estimated value of λ and Λ(r;λ) is the likelihood function, i.e. the probability

density function (pdf) of r, which is also a function of λ. According to (1.4), ML estima-

tion requires first the computation of the likelihood function and then its maximization. The

maximization process can be done either analytically or numerically, e.g. via a grid search.

Another important concept in estimation theory, which is related to ML estimation, is

the Cramér-Rao bound (CRB) [2], which is a lower bound on the estimation performance

on any unbiased estimator in terms of mean-square error (MSE). The CRB is often used in

synchronization studies as a benchmark to demonstrate how well a synchronizer performs, i.e.

how close its actual MSE is to the CRB. Another application of the CRB in synchronization

is the design of optimum training sequences for DA algorithms, because the CRB becomes a

function of the transmitted data symbols in synchronization algorithms. Finally, it should be

mentioned that the CRB is attained asymptotically, i.e. high signal-to-noise ratio (SNR) and

large number of samples, in the case of ML algorithms.

1.2 Related Work

In this section, we provide an overview of the existing work regarding synchronization of

burst-mode communications with an emphasis on CPM. Due to the scale and complexity of this

problem, researchers have generally addressed it in three categories: training sequence design,

carrier and symbol timing synchronization, and frame synchronization. Here, we present the

related work using the same categories.

1.2.1 Training Sequence Design

The problem of deriving the optimum training sequence for DA estimation has been ex-

tensively studied [6, 7, 8, 9, 10, 11, 12, 13, 14], which can be categorized in terms of target
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application, optimization criteria and optimization method.

The CRB has been widely used for design and study of training sequences. Jiang et al. [7, 8]

have derived the CRB for DA estimation of symbol timing and carrier phase for linearly modu-

lated signals in the additive white Gaussian noise (AWGN) channels. Their method presents the

CRB as a function of the autocorrelation of the data symbols by which they have compared the

estimation performance of several sequences, including a continuous wave (CW), alternating-

ones-and-zeros sequence, and pseudo-random sequences. However, they have not provided the

optimization of the training sequence. In a more recent work [15], Tavares et al. have developed

a method for training sequence design for DA estimation of synchronization parameters based

on the CRB criteria. They have assumed linearly modulated signals in an AWGN channel

and considered two main estimation scenarios: joint estimation of symbol timing and carrier

phase with a known frequency offset, and, joint estimation of carrier phase and frequency offset

assuming the time delay is known. Accordingly, the CRB expressions are derived and shown to

have a similar form, i.e. the inverse of quadratic forms. The authors have introduced a transmit

power constraint on the data symbols and performed the optimization such that the data sym-

bols are treated as real numbers rather than M -ary symbols. The optimum data vectors are

then quantized according to the modulation. It is shown that the optimum training sequence

for symbol timing has an alternating structure while it turns out to be as a rather constant

vector for carrier phase and frequency offset estimation. An important conclusion is that the

optimum training sequence differs for each of the synchronization parameters in the case of

linear modulations. In a similar effort for linear modulations [13], the authors have computed

the training sequence that minimizes the CRB for joint estimation of symbol timing, carrier

phase and frequency offset. In [13], the symbol timing CRB is minimized analytically while the

training sequences which minimize the frequency offset and carrier phase CRBs are derived via

numerical optimization techniques. Moreover, Rice and Perrins [12] have numerically identified

the best training sequence for synchronization of offset QPSK (OQPSK) modulation and using

the CRB method. It is reported that the best sequence for all three synchronization parameters
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is basically repeating the same OQPSK constellation point. Dabora et al. [6] have derived a

high SNR expression for the symbol timing CRB of CPM signals in fast fading channels, which

they used to obtain the best sequence for MSK signals. It should be mentioned that MSK is a

specific and the simplest form of CPM signals, and hence, the results may not be generalized to

the whole CPM family. Finally, there has also been works [16, 17] regarding designing training

sequences for channel estimation based on the CRB.

Besides the CRB approach, a few ad hoc methods have been published for the design of

training sequences. For example, [10] presents the optimum training sequence for symbol timing

estimation of MSK modulation by first presenting the timing estimator and then investigating

the effect of the sequence on its performance. In another work for synchronization of MSK

[11], the authors have proposed repeating “1100” as the best preamble based on the spectral

properties of this particular sequence. Finally, the authors in [9] have proposed an algorithmic

approach for training sequence design for PSK modulations. They have defined an error function

based on the autocorrelation of the symbols, which is minimized iteratively using a gradient

descent algorithm. This method has two main drawbacks. First, its performance depends on

the definition of the error function, i.e. there is no guarantee that the chosen function is the

best candidate. Additionally, the optimization suffers from a large number of local minima,

and hence, one has to run the algorithm multiple times with different initial seeds in order to

possibly find the optimum sequence.

1.2.2 Symbol Timing and Carrier Recovery

Various synchronization algorithms for CPM have been presented in [1] with regard to each

of the synchronization parameters, i.e. symbol timing, carrier phase and frequency offset. In

this section, we provide an in-depth survey of more relevant works which are DA estimators

that utilize a training sequence and/or feedforward algorithms that are suitable for burst-mode

communications. We are also interested in joint estimation algorithms since we have assumed

all three synchronization parameters are unknown.
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One of the earliest yet important contributions on the DA synchronization of CPM signals

was presented by Huber and Liu in [18]. They have proposed transformation of the CPM

signal into the frequency domain using non-orthogonal basis functions. As a result, the timing

delay is transformed into a phase offset that is estimated along with the carrier phase using a

ML algorithm. However, the proposed algorithm works only for timing delays which are much

smaller than the symbol duration, i.e. τ � Ts, and hence, can only be used in a phased-

locked loop (PLL) structure, which may also encounter false locks as mentioned by the authors.

In a similar approach, Tang and Shwedyk [19] have used the Walsh transform for DA ML

estimation of symbol timing and carrier phase for CPM signals. However, it still assumes small

time delays, and hence, cannot be implemented in an open-loop structure. More recently, Zhao

and Stüber [20] have presented a robust timing and phase estimation for CPM signals using

minimum MSE (MMSE) criteria. Despite its robustness, the resulted MSE of the estimation is

about an order of magnitude higher than the CRB, which means one has to utilize quite large

training sequences in order to achieve a good estimation performance at low SNRs. Another

interesting DA design for CPM is reported in [21], which addresses ML estimation of the symbol

timing irrespective of the carrier phase in Rayleigh fading channels. In a more recent and novel

approach, Maoilo [22] et al. have studied estimation of synchronization parameters in CPM

signals based on the trellis representation and BCJR algorithm [23]. Although their discussion

involves all three synchronization parameters, they were only able to derive a phase estimation

algorithm due to the high complexity of the equations. Finally, it should be mentioned that all

the aforementioned works assume perfect frequency offset estimation.

A significant amount of research has been dedicated to synchronization algorithms for a

specific class of CPM known as MSK-type signals. This popularity is due to their approximation

as OQPSK signals, which enables one to employ well-known detection and synchronization

techniques for linear modulations. Nezami [24] has proposed a simple synchronization method

for MSK modulation based on the discrete Fourier transform (DFT) of the received preamble.

This method uses an alternating training sequence and estimates all three synchronization
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parameters. Despite its simplicity, its reported performance is quite poor in the low SNR

region. An NDA feedforward ad hoc estimator for MSK has been presented in [25] that is

capable of frequency offset estimation. Another NDA feedforward frequency estimator for

MSK-type signals is presented in [26] and is based on a quadratic non-linear transformation of

the signal. Morelli and Vitetta [27] have presented an NDA joint ML estimation algorithm for

symbol timing and carrier phase that can be employed in feedforward schemes. This algorithm

outperforms [25] at low SNR regions in terms of the MSE, however, it does not provide carrier

frequency estimation. A feedforward DA frequency estimator for GSM standard with GMSK

modulation is presented in [28]. Despite its relatively simple implementation, this algorithm is

only applicable to small frequency offsets compared to the symbol rate.

Although the scope of this work is CPM signals, it is helpful to study some of the major

contributions for synchronization of linear modulations in burst-mode transmissions. Morelli

and D’Amico [29] have proposed a joint ML estimator for symbol timing, carrier phase and

frequency offset estimation in AWGN channels. The main idea behind their work is employing

alternating BPSK symbols as the training sequence which simplifies the likelihood function

significantly leading to a rather simple estimation algorithm. Therefore, we can conclude that

the training sequence not only affects the estimation performance but it may also affect the

complexity of the estimation algorithm. Gunther and Moon [30] have presented a complete

synchronization algorithm for burst-mode QPSK signals, which includes frame synchronization

in addition to three conventional parameters. This algorithm is based on a statistical measure

named kurtosis, which is related to fourth and second order moments of a random variable.

This work highlights the importance of accurate frequency estimation in low SNR regions in

terms of bit error rate (BER). It is shown through simulations that the errors in frequency offset

estimation leads to errors in symbol timing and carrier phase estimation resulting in elevated

BERs.
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1.2.3 Frame Synchronization

An important task for the synchronization in burst-mode communications is determining

the boundaries of a packet, i.e. the beginning of bursts in the time domain. This task is referred

to as frame synchronization in the published work. In fact, almost all of the work reviewed in

the previous section assumes that frame synchronization has been already accomplished prior

to carrier and symbol timing recovery. The only exceptions are [11] and [30], which employ

matched filter (MF) based frame synchronization structures for linear and MSK modulations,

respectively. In this section, we review the published works regarding frame synchronization

and their relation to the synchronization algorithms that were studied in the previous section.

Similar to other estimation and detection problems, ML estimation is a widely-used tech-

nique in frame synchronization methods. Perhaps the earliest analytical work on frame synchro-

nization is Massey’s paper [31], which derives a ML rule for locating a sync word embedded in

the beginning of each frame for PSK modulations. The rule is basically a correlation operation

with a correction term that accounts for the random data adjacent to the sync word. Despite its

simplicity and optimality, it assumes perfect knowledge of frequency and phase offsets. Addi-

tionally, the symbols must be sampled at the correct time. More recently, Lee [32] has proposed

a ML algorithm for frame synchronization of PSK signals in the presence of frequency offsets.

This work treats the frequency offset and carrier phase as unwanted uniformly distributed pa-

rameters in the derivation of the likelihood function. Another ML algorithm [33] has been

proposed for PSK modulations which jointly estimates the carrier phase, frequency offset and

the start of frame. It should be mentioned that all of these works require a known training

sequence, and hence, are well-suited with DA techniques reviewed in the previous section in

order to estimate the fractional timing delay.

Another approach for frame synchronization is the likelihood ratio test (LRT), which is

a fundamental concept in detection theory. Chiani and Martini [34] have derived LRT and

generalized LRT (GLRT) metrics for detection of the sync. word in AWGN channels where they

have shown these tests perform significantly better than correlations. However, they assume
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both carrier and symbol timing are recovered prior to frame synchronization. In a more recent

work by Chiani [35], carrier phase is included in the analysis as a random variable, however,

frequency offset and symbol timing are neglected. It should be noted that the LRT methods

in [34, 35] can only be applied to linear modulations. There are also a few works [32, 36] that

address frame synchronization of PSK signals in frequency uncertainty. However, they consider

continuous transmissions where the training sequence is surrounded by data symbols.

In recent years, code-aided frame synchronization techniques have gained attention in the

literature [37, 38, 39]. These techniques take advantage of embedded coding structure in the

signal for improving the synchronization at low SNRs. For example, [39] reviews several code-

aided techniques when linear modulations are combined with iterative coding schemes such as

turbo codes. The main drawback of these techniques is that they require perfect sampling time

and carrier knowledge. Herzet et al. [37] have proposed a ML estimation technique which

works on the factor graphs representing error correction codes such as low-density parity check

(LDPC) and convolutional codes. Despite its good performance at low SNRs, it is still limited

to linear modulations and any frequency offset has to be resolved in advance. Finally, a code-

aided frame synchronization algorithm which can be applied to CPM signals was proposed by

Huh and Krogmeier [38] which exploits the inherent trellis of CPM signals. Unfortunately, this

algorithm needs perfect carrier and symbol timing recovery prior to frame synchronization.

From an implementation standpoint, current standards have adopted algorithms with min-

imum complexity. For example, the second generation digital video broadcasting (DVB-S2)

standard [40] employs a correlator and a peak detector for frame synchronization. Similarly,

the authors in [11] design a start-of-message (SOM) word for the UHF MILSATCOM standard

such that it has minimum correlation side-lobes, suggesting correlators for the frame synchro-

nization task.

Despite the novel works about frame synchronization in recent years, there are still some

major issues which need to be addressed. We can summarize them as follows.

1. Many of the techniques such as [31, 32, 39] require carrier and/or symbol timing recov-
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ery. On the other hand, DA synchronization algorithms require a coarse estimate of the

training sequence location.

2. Almost all the published work address the frame synchronization problem in the context of

linear modulations. This leaves the frame synchronization of the CPM signals unanswered

despite the demand. Only exceptions are [38, 41] which model CPM signals as a Markov

chain and orthogonal frequency division multiplexing (OFDM) respectively.

3. The computational complexity of a frame synchronization algorithm should allow real-

time operation with a reasonable amount of utilized resources.

1.3 Problem Statement

As the rapid growth of digital communication systems continues, more stringent require-

ments are imposed during the development phase. One of the main challenges in current systems

design is the tight constraint on the available RF spectrum. Due to the exponential growth

of commercial systems, many other applications have seen spectrum loss as more bandwidth

is allocated to commercial wireless systems. Therefore, bandwidth efficient schemes such as

OFDM and CPM have become attractive to developers in recent years despite their complexi-

ties. Another challenge is the ever-increasing data rates as the number of users increases while

they demand access to large data sources such as video streams. These factors have led to

implementation of more complex modulation and coding schemes that are capable of reliable

operation at low SNRs. However, these modern techniques are computationally complex and

the implementation cost is high. In fact, a state-of-the-art receiver is complex in its all three

major blocks: synchronization, detection and error correction.

As the title of this work suggests, this research effort is positioned at the intersection of

three concepts in digital communications, which are CPM, synchronization and burst-mode

communications. Below, we briefly discuss the motivation behind the selection of each of these

areas in this effort.
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• CPM

This modulation scheme has been selected for this work due to its attractive features

which are spectrum and power efficiency. Additionally, less research has been dedicated

to CPM compared to linear modulations due its complexity. Thus, it is an interesting

research topic where one can tackle these complexities and make CPM an attractive choice

for current and future applications.

• Synchronization

Among a receiver’s primary functions, synchronization can be seen as the front-end of the

receiver, which needs to function reliably. Otherwise, degradations in synchronization will

have a ripple effect on the performance of the subsequent blocks and in turn results in

poor BER. Therefore, in this work, we focus our attention on synchronization methods.

As we saw in the previous chapter, synchronization of CPM signals has not been studied

adequately compared to other modulations, which is another reason for choosing it in this

research.

• Burst-mode Communication

Burst-mode transmission enables one transmitter to communicate with multiple users on

demand. However, as its name suggests, this type of communication brings uncertainty to

the receiver since the packets arrive abruptly and the warm-up time has to be minimized

in order to save bandwidth. Consequently, a burst-mode receiver must be able to perform

the synchronization task reliably in a short period of time. Hence, the synchronization of

burst-mode communications is more demanding compared to continuous transmissions.

We are now in a position to express our research problem formally. Assume transmission of

Lpay data symbols, which are selected from an M -ary alphabet set, i.e. {±1,±3, · · · ,±(M−1)}

using CPM signaling in a burst fashion. Additionally, each burst is assumed to be preceded with

L0 training symbols in order to facilitate the synchronization task. Therefore, the baseband
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transmitted burst using CPM signaling can be written as

s(t) =

√
Es
Ts

exp

j2πh
L0+Lpay−1∑

i=0

αiq(t− iTs)

 (1.5)

where Es, Ts, h and q(t) are the symbol energy, symbol duration, modulation index, and the

CPM phase response respectively. Moreover, [α0, α1, · · · , αL0−1] is the set of training sequence

symbols and [αL0 , αL0+1, · · · , αL0+Lpay−1] is the information symbols in the burst. It is assumed

that s(t) is transmitted over an AWGN channel and the receiver has no knowledge regarding

the carrier phase, frequency offset and propagation delay. Therefore, the received baseband

signal is expressed as

r(t) = ej(θ+2πfdt)s(t− τ) + w(t) (1.6)

where θ is the unknown carrier phase, fd is the frequency offset, τ is the timing offset (delay),

and w(t) is complex baseband AWGN with zero mean and power spectral density of N0.

According to (1.5) and (1.6), two major questions arise with regard to the synchronization

task. These questions are:

1. What is the best choice for the training sequence [α0, α1, · · · , αL0−1]?

2. How can one estimate fd, θ and τ reliably according to the chosen training sequence?

The above questions form the essence of this dissertation. In the following, we elaborate on the

above questions with regard to the existing work reviewed in the previous section.

1.3.1 Training Sequence Design

The training sequence design is an optimization problem in which the optimum α =

[α0, α1, · · · , αL0−1] has to be selected from ML0 possible sequences. Similar to any other opti-

mization problem, the first yet most important task is to define the optimization’s objective.

Since we are investigating the synchronization problem, we can define the optimum training
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Optimum
Training Sequence

Tavares et al. (2007)
Shaw & Rice (2010)
Linear Modulations
-Frequency Offset
-Carrier Phase
-Symbol Timing
-AWGN Channels

Dabora et al. (2002)
MSK
-Symbol Timing
-Fast Fading Channels
-High SNR 

Rice & Perrins (2009)
OQPSK 
-Frequency Offset
-Carrier Phase
-Symbol Timing
-AWGN Channels

This Work
CPM 
-Frequency Offset
-Carrier Phase
-Symbol Timing
-AWGN Channels

Figure 1.4. Development of the training sequence in different scenarios.

sequence according to

α∗ = argmin
α

{
Er|α[(λ̂(r)− λ)2]

}
(1.7)

where λ represents any of the three synchronization parameters, and λ̂(r) is its estimated value

based on the channel observation r. The expectation is performed with respect to the received

signal conditioned on the underlying training sequence. In other words, the optimum training

sequence is the sequence for which the MSE of an estimator is minimized. Since λ corresponds

to three estimation parameters, i.e. λ ∈ {θ, fd, τ}, (1.7) in fact represents three separate

optimization problems, which can have similar or different solutions. Another challenge is that

(1.7) does not convey any information about the estimation algorithm, and hence, its solution is

algorithm dependent in general. Thus, the optimum training sequence should be derived with

respect to a given estimation algorithm.
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Figure 1.4 illustrates the proposed training sequence design problem with respect to the

most related works in the literature. It is seen that our scenario is similar to [13] and [14]

(top-left corner) where all three synchronization parameters are to be estimated in an AWGN

channel. However, both of those works address linear modulations such as PSK while this work

focuses on the more complex non-linear CPM modulation. The two other works by Debora [6]

and Rice [12] investigate two instances of CPM in different types of channels. We also note that

[6] considers only symbol timing estimation. In this work, we do not impose any conditions

on the CPM signal and consider the estimation of frequency offset, carrier phase and symbol

timing. Clearly, this attempt is distinguished from what has been performed by the research

community, which addresses the broad area of synchronization for CPM signals.

1.3.2 Synchronization of Burst-Mode CPM

Once the optimum training sequence is designed, one has to design practical synchronization

algorithms that are able to ideally approach the theoretical limits in terms of estimation MSE

and/or BER performance. Based on our discussion so far, the synchronization problem can be

stated as the DA estimation of [θ, fd, τ ] from the received signal r(t) given L0 data symbols

corresponding to the optimum training sequence. In the design of such algorithms, two key

goals have to be considered. The first goal is synchronization capability at low SNRs. This

is a result of existing powerful error correction codes such as LDPC and turbo codes, which

have guaranteed reliable performance at very low SNRs, if the synchronization is carried out

perfectly. Similar to any other communications algorithm, the computational complexity has

a direct impact on the implementation cost and power consumption of the target hardware.

Therefore, another goal is to design algorithms with minimum complexity.

Although several major contributions have been made toward the synchronization of CPM

signals such as [18, 19, 42], they only address continuous-mode transmissions and assume there is

no frequency offset. Thus, the joint estimation of all synchronization parameters in burst-mode

transmissions is still an open question and requires further research. Our work is compared
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Burst-Mode
Synchronization

Morelli & D'Amico (2007)
PSK 
-Frequency Offset
-Carrier Phase
-Symbol Timing

Gunther & Moon (2009)
QPSK
-Frequency Offset
-Carrier Phase
-Symbol Timing
-Frame Synchronization

Zhao & Stuber (2006)
CPM
-Carrier Phase
-Symbol Timing
-Fading Channels

This Work
CPM 
-Frequency Offset
-Carrier Phase
-Symbol Timing
-Frame Synchronization
-AWGN Channels

Figure 1.5. Development of synchronization algorithms for burst-mode commu-
nications.

to some of the most related and recent published works in the field of synchronization for

burst-mode communications in Figure 1.5. It is again seen that the most comprehensive efforts

[29, 30] are devoted to linear modulations (PSK here) due to their simplicity. From the CPM

standpoint, Zhao and Stuber [20] have proposed a robust timing and phase synchronization

algorithm which can be applied to all CPM schemes in burst-mode communications. Despite

its good performance in fading channels, it is computationally complex and the frequency

ambiguity has to be resolved prior to the synchronization. Furthermore, we have included frame

synchronization problem in our work, which is quite necessary in burst-mode communications.

As a final note, the majority of published work treats each element of the burst-mode

synchronization problem ,i.e. training sequence design and estimation algorithm, individually

and with certain assumptions. However, we have combined each of these two elements such

that the estimation algorithm is derived based on the optimized training sequence. To the best

of our knowledge, this work is the first of its kind, which proposes a complete synchronization
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scheme for general CPM signals in burst-mode transmissions over AWGN channels.
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Chapter 2

The Cramér-Rao Bound for Training

Sequence Design for Burst-Mode

CPM

2.1 Key Points of the Chapter

In this chapter, we study the CRB for CPM signals where frequency offset, carrier phase,

and symbol timing are jointly estimated when transmitted over an AWGN channel. We consider

a DA estimation scenario in which the estimator takes advantage of a known training sequence

at the start of each burst. Thus, we first derive the joint CRBs as functions of a known training

sequence and CPM parameters. By analyzing the CRB expressions, we propose the training

sequence for which the CRB is minimized. We show that the proposed training sequence is

asymptotically optimum for all three estimation parameters. Additionally, we compare the

performance of the optimum training sequence with a random one by providing a closed-form

expression for the unconditional CRB (UCRB) for symbol timing estimation of CPM signals.

Comparing the UCRB and the CRB for the optimum training sequence reveals that a DA

estimator with the optimum training sequence leads to significant gains in terms of the MSE
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of the estimation parameter when the underlying CPM scheme is non-binary and/or partial

response.

2.2 Introduction

In burst-mode transmissions, one usually embeds a fixed data sequence to each burst for

the purpose of fast and accurate receiver synchronization. This data sequence is known a priori

to the receiver and is referred to as a training sequence or preamble. It is called a training

sequence because DA synchronization algorithms take advantage of it in order to estimate

synchronization parameters such as frequency offset, carrier phase, and symbol timing [1]. The

performance of an arbitrary DA estimator may depend on the training sequence being used.

Hence, a design challenge in dealing with DA estimators is choosing the best training sequence

for a given length. Another question that arises in the design of the preamble is the performance

gain that is achieved in comparison with a preamble-less design in which NDA estimators are

employed. The latter technique does not have a priori knowledge of the transmitted symbols

and is also known as blind estimation.

In this chapter, we use the CRB [2] as a tool in designing a training sequence that is asymp-

totically optimum for DA synchronization of burst-mode CPM signals. The CRB provides a

performance limit (bound) on any unbiased estimator that is a function of the training sequence,

and hence, we identify the optimum training sequence as the one that minimizes the CRB. Addi-

tionally, we consider the joint estimation of three synchronization parameters—frequency offset,

carrier phase, and symbol timing. Therefore, the first step of our approach is computing the

CRB for joint estimation of these three parameters for a known data sequence. It should be

noted that the optimum training sequence can be algorithm-dependent and the CRB is only a

lower bound on the MSE of an unbiased estimator. Nevertheless, it is known [2, Theorem 7.1]

that ML estimators asymptotically achieve the CRB, making it a suitable criterion for designing

the training sequence.

As mentioned earlier, the focus of this work is CPM due to the lack of analytical work

22



on preamble design for this class of modulations. To the best of our knowledge, there is no

analytical work on the design of training sequences for CPM in general. For instance, [11]

introduces the “1100” repeating data pattern for UHF MILSATCOM standards solely based on

its frequency spectrum. Mehlan and Meyr [10] have studied preamble design for symbol timing

and frequency offset estimation in burst-mode MSK modulation, which is a very specific case

of CPM. However, there is a demand for finding the best training sequence to be employed in

current and future standards —especially in burst-mode communications. As an example, the

integrated network enhanced telemetry (iNET) standard [43], which is currently being developed

for telemetry applications, utilizes CPM schemes for transmitting burst packets, which indeed

requires fast and precise synchronization based on a training sequence.

Unlike CPM, a few publications have addressed derivation of CRBs and training sequence

design for linear modulations [8, 16, 14, 13, 12]. Jiang et al. in [8] have studied the CRB

for joint DA estimation of carrier phase and symbol timing based on samples of the matched

filter output. Although they present closed-form expressions for the CRB as a function of the

data symbols, they do not find the best training sequence; they only compare the performance

bounds for the alternating data sequence and a random sequence. The authors in [16] have

addressed training sequence design for frequency-selective channels. They average the CRB

for frequency estimation over the channel response and find the sequence that minimizes the

CRB via a computer search. In independent and recent works [14, 13], the authors design

the optimum training sequence for linearly modulated signals using the CRB approach. They

confirm that the widely-used alternating sequence minimizes the symbol timing CRB in a joint

estimation scenario. In [12], the best training sequence for burst-mode OQPSK is found via

CRB simulations.

Using the CRB criterion, we make the following contributions. We derive the closed-form

expressions for symbol timing, carrier phase, and frequency offset CRBs for joint DA estimation

from CPM signals when transmitted over AWGN channels. The optimum training sequence for

the symbol timing CRB is found analytically using a two-step optimization approach. Since our
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optimization problem is defined over a discrete set, i.e., M -ary data symbols, we make certain

assumptions in our analysis. In order to validate these assumptions and the proposed training

sequence, we resort to a computer search method known as a genetic algorithm (GA) [44], which

will be shown to be suitable in this type of discrete optimization problem as a substitute for

lengthy exhaustive searches. The GA is used for the optimization of the training sequence in

other applications such as OFDM [45] and spatial multiplexing transmissions [46]. We show that

the GA search either finds our proposed sequence or finds one that is similar yet suboptimum to

our proposed sequence; in no case is a sequence found that is superior to our proposed sequence,

which confirms our optimization method. Furthermore, we analytically derive the optimum

sequence for carrier phase and frequency offset and this conveniently turns out to be the same

sequence as the one proposed for symbol timing. This is in contrast to linear modulations

(i.e., [13]) in which different sequences prove to be optimal for different estimation parameters.

Moreover, we compare the performance of DA estimators with the proposed optimized training

sequence and a randomly chosen training sequence. The true CRB for a random (unknown)

data sequence in linear modulations has been presented in the literature [47, 15]. However, the

nonlinear nature of CPM signals makes it almost impossible to present similar results herein.

We tackle this problem by averaging the CRB over the probability density function (pdf) of

the data sequence, as suggested in [48]. We derive a closed-form expression for the CRB for

symbol timing estimation, which we are able to use in evaluating estimators with a random

data sequence. We observe the performance gain that the optimized training sequence delivers

compared to a random data sequence as a function of sequence length, alphabet-size and CPM

phase response length.

The rest of this chapter is organized as follows. Section 2.3 presents the derivation of the

joint CRB for CPM signals for a known data sequence. In Section 2.4, we derive the optimum

training sequence via analysis and computer search. Section 2.5 discusses the CRB when the

data sequence is random. The CRB results for some CPM scenarios are outlined and compared

in Section 2.6. Finally, conclusions are drawn in Section 2.7.
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2.3 CRB for CPM

Let us recall the complex baseband CPM signal as

s(t) =

√
Es
Ts

exp{jφ(t;α)}, (2.1)

where Es is the energy per transmitted symbol and Ts is the symbol duration. The phase of

the signal φ(t;α) during the transmission of the preamble in each burst is represented as

φ(t;α) = 2πh

L0−1∑
i=0

αiq(t− iTs), (2.2)

where {αi} is the sequence of M -ary data symbols selected from the set {±1,±3, . . . ,±(M−1)}.

Assuming transmission over an AWGN channel, the complex baseband representation of

the received signal is

r(t) =

√
Es
Ts
ej(2πfdt+θ)ejφ(t−τ ;α) + w(t), (2.3)

where θ is the unknown carrier phase, fd is the frequency offset, τ is the timing offset, and w(t)

is complex baseband AWGN with zero mean and power spectral density N0. The transmitted

data symbols are denoted by α = [α0, α1, · · · , αL0−1]. In the following, we denote the first term

in (2.3) as the signal component of r(t), i.e., s(t,u,α) where u = [fd, θ, τ ]T is the vector of

unknown but deterministic parameters which are to be jointly estimated at the receiver.

Let us refer to an unbiased estimate of the unknown parameters by û. Regardless of the

estimation method, one is generally interested in a lower bound on the variance of the estimation

error as a performance metric. The CRB is a lower bound on the error covariance matrix Cû

for the joint estimation of the ui’s,

E{(ûi − ui)2} = [Cû]i,i ≥
[
I(u)−1

]
i,i

= CRB(ui|α), (2.4)
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where I(u) is the Fisher information matrix (FIM) with elements defined as

Ii,j(u) = −E
[

∂2

∂ui∂uj
ln(Λ(r; u,α))

]
. (2.5)

Our known training sequence α is implicit in the definition of I(u). Additionally, the expectation

is performed with respect to the received signal given α and u. In (2.4), the conditional CRB

for estimation of ui is denoted as CRB(ui|α) in order to emphasize the knowledge of the

training sequence. We note that the FIM is a symmetric matrix and is a function of the

log-likelihood function (LLF) ln(Λ(r; u,α)). The above LLF is defined based on a sampled

version of r(t), namely r; However, one can easily derive a continuous time version based on the

series representation of r(t) as discussed in [49, Section 4.2.3]. Accordingly, the FIM elements

corresponding to a CPM signal embedded in AWGN can be written as

Ii,j(u) = − 2

N0

∫ T0

0
Re

[
s(t,u,α)

∂2s∗(t,u,α)

∂ui∂uj

]
dt. (2.6)

where T0 is the observation length, Re[·] is the real part operator and ∗ represents the complex

conjugate operation. Note that T0 = L0Ts, which is equal to the preamble duration.

The nine partial derivatives required for the computation of the FIM are

∂2s∗(t,u,α)

∂fd ∂fd
= −4π2t2

√
Es
Ts
e−j(2πfdt+θ)e−jφ(t−τ ;α) (2.7)

∂2s∗(t,u,α)

∂fd ∂θ
=
∂2s∗(t,u,α)

∂θ ∂fd
= −2πt

√
Es
Ts
e−j(2πfdt+θ)e−jφ(t−τ ;α) (2.8)

∂2s∗(t,u,α)

∂fd ∂τ
=
∂2s∗(t,u,α)

∂τ ∂fd
= −2πt

∂φ(t− τ ;α)

∂τ

√
Es
Ts
e−j(2πfdt+θ)e−jφ(t−τ ;α) (2.9)

∂2s∗(t,u,α)

∂θ ∂θ
= −

√
Es
Ts
e−j(2πfdt+θ)e−jφ(t−τ ;α) (2.10)

∂2s∗(t,u,α)

∂θ ∂τ
=
∂2s∗(t,u,α)

∂τ ∂θ
= −∂φ(t− τ ;α)

∂τ

√
Es
Ts
e−j(2πfdt+θ)e−jφ(t−τ ;α) (2.11)
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∂2s∗(t,u,α)

∂τ ∂τ
=

{
−j ∂

2φ(t− τ ;α)

∂τ2
−
[
∂φ(t− τ ;α)

∂τ

]2}√Es
Ts
e−j(2πfdt+θ)e−jφ(t−τ ;α). (2.12)

Substituting the above equations and s(t,u,α) of (2.3) in (2.6) cancels out the exponential

terms. After taking the integral, we obtain the simplified FIM elements for the CPM as

I11(u) =
8π2T 3

0

3Ts

(
Es
N0

)
(2.13)

I12(u) = I21(u) =
2πT 2

0

Ts

(
Es
N0

)
(2.14)

I22(u) =
2T0
Ts

(
Es
N0

)
(2.15)

I13(u) = I31(u) =
4π
(
Es
N0

)
Ts

∫ T0

0
t
∂φ(t− τ ;α)

∂τ
dt (2.16)

I23(u) = I32(u) =
2
(
Es
N0

)
Ts

∫ T0

0

∂φ(t− τ ;α)

∂τ
dt (2.17)

I33(u) =
2
(
Es
N0

)
Ts

∫ T0

0

[
∂φ(t− τ ;α)

∂τ

]2
dt. (2.18)

It is observed that the FIM elements for the frequency offset and carrier phase estimation

when the timing is assumed to be perfectly known, i.e., I11, I12, I21, I22, do not depend on

either the data sequence or the CPM characteristics [namely, M , h, L, and q(t)]. In fact,

they only depend on the SNR, observation length and symbol duration. On the other hand,

I13, I31, I23, I32, and I33 do depend on various modulated signal properties such as α, M , h, L,

and q(t) due to the presence of φ(t;α) in the corresponding equations.

The derivative of the CPM phase for the data sequence α and symbol timing τ is

∂φ(t− τ ;α)

∂τ
= −2πh

L0−1∑
i=0

αig(t− iTs − τ), (2.19)

where g(t) , ∂q(t)/∂t is the frequency pulse. After substituting (2.19) in (2.16) to (2.18), the
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five FIM elements which are related to the symbol timing become

I13(u) = I31(u) = −
8π2h

(
Es
N0

)
Ts

L0−1∑
i=0

αi

∫ T0

0
tg(t− iTs − τ) dt (2.20)

I23(u) = I32(u) = −
4πh

(
Es
N0

)
Ts

L0−1∑
i=0

αi

∫ T0

0
g(t− iTs − τ) dt (2.21)

I33(u) =
8π2h2

(
Es
N0

)
Ts

L0−1∑
i=0

L0−1∑
j=0

αiαj

∫ T0

0
g(t− iTs − τ)g(t− jTs − τ) dt, (2.22)

where we have changed the order of integration and summation in each of the above derivations.

Finally, we can summarize the FIM as

I(u) =
1

Ts

(
Es
N0

)


8π2T 3
0

3 2πT 2
0 −8π2hA

2πT 2
0 2T0 −2πhB

−8π2hA −2πhB 8π2h2C

 . (2.23)

where the variables A, B and C are

A =

L0−1∑
i=0

αi

∫ T0

0
tg(t− iTs − τ) dt (2.24)

B =

L0−1∑
i=0

αi

∫ T0

0
g(t− iTs − τ) dt (2.25)

C =

L0−1∑
i=0

L0−1∑
j=0

αiαj

∫ T0

0
g(t− iTs − τ)g(t− jTs − τ) dt. (2.26)

Note that each of these variables is a function of only τ and not fd or θ.

Although the integrals required in the computation of A, B and C can be computed nu-

merically, we can exploit the properties of the CPM phase response and simplify/approximate

the computations. We begin the approximation of A by changing the integration variable to
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u = t− iTs − τ

A =

L0−1∑
i=0

αi

∫ T0−iTs−τ

−iTs−τ
(u+ iTs + τ)g(u) du

=

L0−1∑
i=0

αi

[∫ T0−iTs−τ

−iTs−τ
ug(u) du + (iTs + τ)

∫ T0−iTs−τ

−iTs−τ
g(u) du

]

≈
L0−1∑
i=0

αi

(
Γ +

τ

2
+ i

Ts
2

)
, (2.27)

where the first integral is denoted as Γ and is approximated by Γ =
∫∞
−∞ tg(t)dt. The value

of Γ depends on the frequency pulse of the particular CPM signal. The second integral is

basically the area under the frequency pulse which is equal to 1/2 according to the CPM

definition. In both of the aforementioned approximations, we have assumed that the integral

limits cover the entire non-zero area under g(t). However, this is not true for the last αi’s

in the sequence when we are dealing with partial response CPM. In fact, the value of those

integrals becomes smaller than Γ and 1/2 for the last few symbols. Hence, we propose a better

approximation by truncating the last bL/2c symbols, which makes the effective length of the

sequence approximated by L1 = L0 − bL/2c where bxc is the largest integer not greater than

x. By using the same method, B is approximated according to

B ≈ 1

2

L1−1∑
i=0

αi. (2.28)

Let us introduce the correlation function of g(t) as

Rg(t) =

∫ ∞
−∞

g(u)g(u+ t) du, (2.29)

where Rg(t) is an even function of t. Therefore, we approximate C as

C ≈
L0−1∑
i=0

L0−1∑
j=0

αiαjRg((i− j)Ts). (2.30)
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Table 2.1. The correlation function Rg(t) for some commonly used CPM pulse
shapes.

Pulse Shape Rg(0) Rg(±Ts) Rg(±2Ts)

1REC 0.25 0 0
2REC 0.125 0.0625 0
3REC 0.0833 0.0556 0.0278
1RC 0.375 0 0
2RC 0.1875 0.0312 0
3RC 0.125 0.0589 ≈ 0

GMSK (BTs = 0.3) 0.1597 0.0443 ≈ 0

The correlation function Rg(t) is tabulated in Table 2.1 at t = nTs for some commonly used

CPM pulse shapes.

The dependency of the CRBs on τ is examined via simulation. In this set of simulations, we

randomly generated one million 32-bit data sequences and computed their CRBs for LRC and

LREC schemes where h = 1/2 and M = 2. For each data sequence, the symbol timing CRB is

computed for different values of τ in [−Ts/2, Ts/2] and the normalized deviation is computed

via

δ =
max {|CRB(τ)− CRB(τ = 0)|}

CRB(τ = 0)
. (2.31)

Accordingly, the empirical cumulative distribution function (CDF) of δ is presented in Fig-

ure 2.1. We can see for more than 90% of the sequences the deviation is less than 6%. Hence,

we may conclude that the CRB is weakly dependent on τ , and thus, we assume τ = 0 for the

computation of CRBs in the following section. Therefore, the FIM becomes independent of all

of the estimation parameters and is simply denoted by I in the rest of our discussion.

2.4 Best Sequence Design

Since the FIM is a function of the data sequence α, the performance bound of a DA estimator

can be optimized by choosing the sequence that minimizes the CRB. In general, the best training

sequence might be different for each of the synchronization parameters. We first address the

optimum sequence for symbol timing. The optimum sequence design for frequency offset and
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Figure 2.1. The CDF showing the effect of τ variations on symbol timing CRB
for several CPM schemes.

carrier phase are discussed later.

2.4.1 Symbol Timing

In this section, we derive the symbol sequence α, which minimizes the entry in I(u)−1

corresponding to the error variance of symbol timing estimation. Here, we fix the SNR value

to Es/N0 = 1 and symbol duration to Ts = 1 as they are scaling factors for the FIM and the

resulting solution is independent of them. The FIM can be partitioned into four submatrices

such that its inverse can be computed easily using the Lemma in [2, p. 572]. Taking the inverse

of the FIM based on (2.23), the (3, 3)-th element of I−1 becomes

CRB(τ |α) =
[
I(u)−1

]
33

=

8π2h2C −
[
−8π2hA− 2πhB

]  I11 I12

I21 I22


−1 −8π2hA

−2πhB



−1

,

(2.32)

where the variables A, B, and C are replaced by their approximated values. Our goal is to

minimize (2.32) or equivalently maximize its denominator. It is seen that the second term in
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(2.32) is expressed in a quadratic form, i.e., p = vTJv, where v and J are

v =
[
−8π2hA− 2πhB

]T
, (2.33)

J =

 I11 I12

I21 I22


−1

. (2.34)

It is trivial to show that the above quadratic term is non-negative. This is due to the fact

that J−1 is in the form of the FIM which is positive-definite [2]. Thus, its inverse J exists and

is positive-definite itself. Therefore, p is positive for all the values of v 6= 0 according to the

definition of positive-definite matrices. In order to maximize the denominator of (2.32), one has

to maximize C and minimize p simultaneously. Based on the above discussion, (A,B) = (0, 0)

is the only solution which makes p = 0, and hence, it minimizes p. However, it might not be

the same sequence for which C is maximized. On the other hand, the discrete values of α,

i.e., αi ∈ {±1,±3, . . . ,±(M − 1)}, prevent us from using well-known continuous optimization

techniques. Thus, we initially assume C is independent of A and B. Therefore, the data

sequence that minimizes the CRB for symbol timing is the solution to

argmax
α

C subject to A = B = 0. (2.35)

We continue our analysis by assuming a binary CPM signal where αi = ±1. Higher order

constellations will be discussed later on. This gives us a better understanding of the sequences

that make A = B = 0. Moreover, we define the variables A′ and B′

A′ =

L1∑
i=1

iαi−1 (2.36)

B′ =

L1∑
i=1

αi−1, (2.37)

which are closely related to A and B respectively. It is easily seen that A = B = 0 if and only

if A′ = B′ = 0. For a given L1, there exist several binary sequences that satisfy both of these
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conditions from which the sequence that maximizes C has to be found via a search algorithm

or analytically. Let us first examine C and see how it is affected by α elements. According to

(2.30), C can be expanded as

C = Rg(0)

L0−1∑
i=0

α2
i + 2Rg(Ts)

L0−2∑
i=0

αiαi+1 + · · · . (2.38)

We observe that the value of C does not depend on the data sequence in the case of full response

CPM because Rg(nTs) = 0 for n > 0 where n is an arbitrary integer number. Thus, we can

select any sequence which satisfies conditions A′ = B′ = 0 as the optimum sequence. Partial

response CPM requires more investigation. First, we notice that the first term in the above

expansion is constant for all the sequences. Additionally, we assume that Rg(nTs) ≥ 0, which

is true for the widely-used CPM schemes listed in Table 2.1. Therefore, we can state that C

is maximized when all the symbol pairs, i.e., αiαi+n, have the same sign. In our discussion,

we emphasize on the adjacent symbols, i.e., αiαi+1, due to the fact that the remaining factors,

Rg(nTs) for n > 1, are very small according to Table 2.1.

Based on the above discussion, we propose the optimum training sequence as illustrated in

Figure 2.2 that satisfies A′ = B′ = 0 while having a minimum number of sign transitions. The

first L1/4 symbols in the sequence are all −1 followed by +1 symbols having a number of L1/2.

The remainder of the sequence consists of all −1 symbols, which might be longer than L1/4

because L1 < L0 for partial response CPM. It is trivial to show that our proposed sequence

satisfies A′ = B′ = 0. Additionally, it only has two sign transitions which results in a near

maximum value of C according to (2.38). The only competitors are the sequences with zero or

one transition. However, they cannot satisfy our conditions on A′ and B′.

Although our discussion has been limited to binary CPM, we can easily extend the results to

M -ary CPM. Similar to the binary case, our goal is maximizing C while satisfying A′ = B′ = 0

because (2.32) is valid regardless of the alphabet size. If we re-examine the expanded form of C

in (2.38), we notice that by selecting αi’s to be ±(M − 1) instead of ±1 in the proposed binary

sequence, one is able to set C to its maximum possible value when αi ∈ {±1,±3, · · · ,±(M−1)}.
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Figure 2.2. The proposed sequence for the joint estimation of frequency offset,
carrier phase and symbol timing in CPM signals. This sequence and its negative
are asymptotically optimum.

This procedure scales C by a factor of (M−1)2. Moreover, scaling of the symbols in our proposed

sequence by a constant factor does not affect the validity of A′ = B′ = 0 according to (2.36)

and (2.37).

The proposed training sequence minimizes the symbol timing CRB which can be expressed

as

CRBmin(τ) ≈ Ts(
Es
N0

)
8π2h2(M − 1)2 [L0Rg(0) + 2(L0 − 5)Rg(Ts)]

. (2.39)

The approximation in the above expression is due to the approximations in computation of

A, B and C as well as the optimization process. The effect of these approximations will be

discussed in Section 2.4.4.

2.4.2 Frequency Offset and Carrier Phase

Using a similar approach, we derive the inverse of the FIM elements I−111 and I−122 corre-

sponding to frequency offset and carrier phase respectively. After some rearrangement, they

can be written in the form of

CRB(fd|α) =
[
I(u)−1

]
11

=
3

2π2L3
0

×
CL0 − B2

4

CL0 − B2

4 −
3

4L2
0
(BL0 − 4A)2︸ ︷︷ ︸

γ1

(2.40)

CRB(θ|α) =
[
I(u)−1

]
22

=
2

L0
× CL3

0 − 3A2

CL3
0 − 3A2 − (BL0 − 3A)2︸ ︷︷ ︸

γ2

, (2.41)
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where we can prove that γ1 and γ2 are variables greater than or equal to one. This is due

to the fact that both of them are in the form of a/(a − b). In both cases, a − b is basically

the determinant of the FIM which is non-negative since the FIM is a positive definite matrix.

Moreover, b is non-negative which makes a ≥ b ≥ 0. Consequently, γ1 and γ2 are minimized

when the term which corresponds to b becomes equal to zero. This implies that the CRB

for the frequency offset is minimized when BL0 = 4A and the CRB for the carrier phase is

minimized when BL0 = 3A. Theoretically, there exist several combinations of A and B which

make either of these conditions satisfied. However, we opt for A = B = 0 such that it minimizes

the CRBs for frequency offset and carrier phase simultaneously regardless of L0. This result

is very convenient because we have already considered it for designing the best sequence for

symbol timing estimation. Hence, our proposed sequence minimizes the CRB for all of the three

estimation parameters at the same time.

Recalling the original FIM in (2.23), the minimum value of the CRB for frequency offset

estimation is

CRBmin(fd) ≈
3Ts

2π2T 3
0

(
Es
N0

) (2.42)

and the minimum CRB for carrier phase estimation becomes

CRBmin(θ) ≈ 2Ts

T0

(
Es
N0

) . (2.43)

Unlike CRBmin(τ), CRBmin(fd) and CRBmin(θ) do not depend on any of the CPM parameters

while they are inversely proportional to the sequence length and its cubed version, respectively,

for a given SNR.

As a final remark, we note that the optimum sequence forces I13, I23, I31 and I32 to become

zero. Thus, one can say that the optimum training sequence decouples the estimation of symbol

timing from carrier phase and frequency offset. Moreover, it is seen that the FIM 2 × 2 sub-

matrix that corresponds to the joint estimation of fd and θ is not a function of α and leads

to (2.42) and (2.43). From the symbol timing point of view, the optimum training sequence
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not only decouples τ but also maximizes I33 so that CRB(τ |α) is minimized. This justifies our

two-step optimization approach in which we first set A and B to zeros (decoupling) and then

find the sequence that maximizes C.

2.4.3 Genetic Algorithm Search

So far, we have ignored the dependency of C and (A,B) in deriving the optimum sequence.

In this section, we take advantage of computer search methods in order to confirm our proposed

sequence as the best sequence. Clearly, an exhaustive search is quite time consuming even for

moderate length sequences because of the vast search space. An alternative way is using system-

atic (guided) computer search algorithms which are frequently used in optimization problems.

In this work, we resort to the GA search technique which is a type of heuristic search algorithm.

The GA mimics the laws of natural selection (evolution) in the search process. GAs represent

the potential solutions of a specific problem, i.e., our optimization problem, in chromosome-like

data structures. The most commonly used data structure is binary vectors (bit-strings). This in

fact motivates us to employ GAs in our optimization since our candidate solutions are already

in the form of binary vectors and thus require no further encoding.

Due to the scope of this work, we refrain from explaining the GA operation. Interested

readers may refer to [44] for further discussion. The GA parameters such as population size,

crossover probability pc and mutation probability pm interact nonlinearly with each other.

Therefore, the optimum settings may not be determined analytically and one should find the

best combination for a specific problem experimentally. Here, we chose population size to be

50, pc = 0.8, pm = 0.02 and maximum number of generations equal to 200. Additionally, we

ran each optimization scenario for 200 times with different initial populations to ensure that

the GA results in a global minimum rather than a local one. Finally, we use the exact values

of A, B and C in our GA implementation.

Using the GA as discussed above, we found the optimum training sequence for three well-

known CPM schemes when L0 = 36, which are depicted in Figure 2.3. These plots correspond
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Figure 2.3. The optimum sequence for symbol timing estimation in CPM signals
generated via genetic algorithm for L0 = 36.

to binary h=1/2 1REC (MSK), GMSK with L = 4 and 4-ary h = 1/4 2RC, which are examples

of binary full response, binary partial response and M -ary partial response CPM respectively.

Despite all these differences, the optimum sequences follow a pattern similar to the proposed

sequence in Figure 2.2. It is observed that the 4-ary 2RC sequence is basically a scaled version

of the optimum binary sequence. Also, the GMSK sequence has a different transition point

compared to others since its effective length is smaller (L1 = 30 < L0 = 32). More importantly,

these plots confirm our proposed sequence and the effectiveness of the GA in such a large search

space (M36 possibilities). Finally, we ran the GA search for the same schemes with sequence

lengths of 16 to 128. The ratio of the resulted minimum CRB to our proposed sequence’s CRB

is plotted in Figure 2.4. It can be seen that this ratio is greater than or equal to one, which

means that the GA is not able to find a sequence better than the proposed one. In the case

of MSK, the GA is successful in all cases and thus the ratio is always unity. In other CPM

examples, this ratio becomes slightly larger than one as the sequence length increases because

the search space becomes so large that the GA converges to a local minimum. This issue is

more obvious for the 4-ary case since the size of the search space is squared relative to the

binary case. Nevertheless, the GA results validate the accuracy of the assumptions we made in

our analysis for deriving the optimum training sequence.
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Figure 2.4. The ratio of symbol timing CRB obtained from GA search to the
proposed sequence for different training sequence lengths and CPM schemes. The
proposed sequence has an equal or lower CRB in all cases.

2.4.4 Remarks

The derivation of the optimum training sequence involved certain approximations and as-

sumptions. The effect and importance of these approximations can be summarized as follows.

• Approximating A, B and C as in (2.27) and (2.30) introduces an edge-effect in the com-

putations since we assumed the integrals cover the entire non-zero area of the integrands.

It should be noted that this is only present in the integrals corresponding to the edges of

the training sequence. Therefore, it becomes less significant as the length of the sequence

is increased. Moreover, we introduced the effective length for partial response signals in

order to reduce the edge-effect. The edge-effect does not exist in the case of full response

signals assuming τ = 0.

• It can be argued that there might be a sequence for which the symbol timing CRB, (2.32),

is less than for the proposed one, which would violate our assumptions. Here, we consider

a worst case scenario, in which a hypothetical sequence α̃ makes (A,B) = 0 while it
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maximizes C. The maximum possible value of C is C̃ ≈ L0Rg(0) + 2(L0 − 1)Rg(Ts)

based on (2.38) and knowing that Rg(nTs) ≈ 0 for n > 1 in practical CPM schemes. The

proposed sequence α∗ will result in C∗ = C̃−8Rg(Ts) because it has two sign transitions.

Thus, we can write the ratio of resulting CRBs using (2.32) as

CRB(α̃|τ)

CRB(α∗|τ)
=
C̃ − 8Rg(Ts)

C̃
= 1− 8Rg(Ts)

L0Rg(0) + 2(L0 − 1)Rg(Ts)
, (2.44)

which approaches to 1 as L0 increases and the fact that Rg(0)� Rg(Ts). Therefore, the

proposed training sequence is shown to be asymptotically optimum in terms of minimizing

the symbol timing CRB. Note that this issue is not present in the carrier frequency and

phase CRB optimization.

To be precise, there is no guarantee that the proposed sequence is optimum in general due

to the above approximations, i.e. there might be sequences for which the CRB is smaller

than the proposed one. However, we observed that these approximations become minimal as

the sequence length is increased, and hence, the proposed training sequence is asymptotically

optimum. Furthermore, the GA search results follows the proposed sequence for short and

moderate sequence lengths. Thus, we refer to the proposed sequence as the optimum sequence

for the sake of simplicity while we bear in mind that it might be near-optimum for shorter

lengths.

2.5 CRB for Random Data Sequence

2.5.1 True CRB

After finding the optimum sequence, it is interesting to compare the estimation performance

of the optimum sequence and a random (unknown) data sequence in terms of the CRB. This

requires the computation of the true CRBs considering the data sequence α as an unwanted

or nuisance parameter. The computation of the CRB in this scenario is known to be quite

challenging [1], especially for CPM signals due to their nonlinear nature. In this section, we
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briefly present the true CRB for a special case of CPM (binary and full-response).

We take advantage of the PAM representation of CPM signals [50] for computing the like-

lihood function. When the CPM signal is binary and full-response, it can be expressed as

s(t) =
∑
i

aic0(t− iTs) (2.45)

where ai’s are pseudo symbols and c0(t) is a pulse with duration of 2Ts. When h = 1/2, the

pseudo symbols become uncorrelated and can be detected according to:

ãn =


∫
2Ts

Re[r(t)c0(t− nTs − τ)e−j(2πfdt+θ)]dt n− even∫
2Ts

Im[r(t)c0(t− nTs − τ)e−j(2πfdt+θ)]dt n− odd

. (2.46)

It should be noted that the imaginary unit j is ignored so that both even and odd time symbols

are treated the same way. Therefore, the likelihood function can be written as

Λ[r(t); u,a] =

L0−1∏
i=0

exp

(
2Es
N0

ãiai

)
(2.47)

Because the transmitted symbols are assumed to be random, they can be taken out of the

equation by averaging the likelihood function, i.e.

Λ[r(t); u] = Ea{Λ[r(t); u,a]} =

L0−1∏
i=0

Ea

{
exp

(
2Es
N0

ãiai

)}
(2.48)

where ai = ±1 with equal probability of 1/2 for binary modulation. After averaging over the

pseudo symbols and mathematical simplifications, the partial derivatives of the LLF are found

as

∂ ln Λ[r(t); u]

∂uk
=

L0−1∑
i=0

(
2Es
N0

)
∂ãi
∂uk

tanh

(
2Es
N0

ãi

)
. (2.49)
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Finally, the FIM elements are computed using

I(u)k,l =

(
2Es
N0

)2 L0−1∑
i=0

L0−1∑
j=0

E

{
∂ãi
∂uk

∂ãj
∂ul

tanh

(
2Es
N0

ãi

)
tanh

(
2Es
N0

ãj

)}
(2.50)

where the expectation is performed over the received waveform.

Although it is possible to further simply (2.50) for a given pulse shape c0(t), we proceed

using Monte Carlo simulations. In this fashion, we generate random binary data sequences

which are modulated using the given CPM scheme and sent over an AWGN channel. The

pseudo symbols are estimated by two matched filters (MFs) defined in (2.46). Additionally, the

partial derivatives ∂ãi/∂uk are found by another group of MFs, which are basically the partial

derivatives of (2.46) with respect to appropriate parameter.

2.5.2 UCRB

The previous section showed us the challenges of computation of true CRB for CPM signals

as it was only feasible for the simplest form of CPM. In this section, we resort to a different

method such that the conditional CRB of Section 2.3 is averaged over α, and hence, it becomes

independent of the data sequence.

As presented in [48], averaging both sides of (2.4) with respect to α results in a lower bound

on the unconditional estimation of τ (or any other parameter) from the received signal,

Er

[
(τ̂ − τ)2

]
≥ Eα [CRB(τ |α)] . (2.51)

We refer to the right hand side of (2.51) as the UCRB, which should not be confused with

the true CRB or the modified CRB (MCRB) [51]. The true CRB is different in the way that

averaging takes place on the likelihood function of the received signal such that it is no longer

a function of any nuisance parameters, i.e., α in our problem. On the other hand, the MCRB

is computed by averaging the FIM elements over the nuisance parameter.

In this section, we derive a closed-form expression for the symbol timing UCRB in the same
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scenario as previously, i.e., joint estimation of the synchronization parameters from CPM signals

in AWGN. Let us first rearrange the symbol timing CRB according to (2.32)

CRB(τ |α) =
Ts

Es/N0

1

αTGα−αTDJDTα
=

Ts
Es/N0

1

αTQα
, (2.52)

where Q is an L0 ×L0 matrix defined as Q = G−DJDT . G is an L0 ×L0 correlation matrix

defined as

G = 8π2h2



Rg(0) Rg(Ts) . . . Rg((L0 − 1)Ts)

Rg(−Ts) Rg(0) Rg(Ts) . . .

...
...

. . . . . .

Rg((1− L0)Ts) . . . Rg(−Ts) Rg(0)


, (2.53)

and D is an L0 × 2 matrix representing A and B with a form of

D =



−8π2h(Γ + τ/2) −πh

−8π2h(Γ + τ/2 + Ts/2) −πh
...

...

−8π2h(Γ + τ/2 + (L0 − 1)Ts/2) −πh


. (2.54)

Finally, J is defined in (2.34). We note that QT = GT −DJTDT = Q because G and J are

symmetric matrices. Thus, Q is also a symmetric (Hermitian) matrix. Additionally, Q appears

in a quadratic form in the denominator of (2.52). Because the CRB cannot be negative, the

term αTQα is positive for all non-zero values of α, and hence, Q is a positive definite matrix.

The above quadratic form can also be viewed as a random variable in which the random vector

α is transformed by Q, i.e., Z = αTQα.

In order to derive the UCRB, one has to take the expectation of (2.52) with respect to

α. This requires the computation of E{1/Z} where Z is a discrete random variable with a

non-trivial probability mass function (pmf). In order to tackle this problem, we can express
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1/Z in the vicinity of µZ = E{Z} using the Taylor series, i.e.,

1

Z
=

1

µz
− Z − µz

µ2z
+

(Z − µz)2

µ3z
+ · · · . (2.55)

The above series expansion allows us to obtain E{1/Z} using moments of Z itself rather than

its reciprocal. Additionally, we approximate (2.55) by using the first three terms of its Taylor

series. This requires us to compute only the first two moments. Based on the above discussion,

we take the expectation of (2.55) and apply it to (2.52). Hence, the UCRB can be approximated

as

UCRB(τ) = Eα{CRB(τ |α)} ≈ Ts
Es/N0

E{Z2}
µ3z

. (2.56)

The only part left is the computation of µz and E{Z2}. Due to the symmetry of Q one can

decompose it such that [52, Theorem 6.2] Q = VTΛV where V = [v1,v2, . . . ,vL0 ]T is a unitary

matrix consisting of eigenvectors of Q. Λ = diag(λ1, λ2, . . . , λL0) is also a diagonal matrix with

diagonal elements that correspond to eigenvalues of Q. Using the eigen-decomposition, we can

decompose Z such that

Z = αT (VTΛV)α = xTΛx =

L0∑
i=1

λiX
2
i , (2.57)

where x = Vα = [X1, X2, · · · , XL0 ]T . We observe that x is a vector of random variables

each of which is a transformation of α via one of the eigenvectors of Q. The importance

of eigen-decomposition of Z is apparent in (2.57), where it becomes a linear combination of

random variables X2
i . Furthermore, the Xi’s are uncorrelated because of the orthogonality of

eigenvectors. These properties enable us to investigate statistical properties of Z. Following

(2.57), the expected value of Z is computed by

E{Z} =

L0∑
i=1

λiE{X2
i } =

L0∑
i=1

λiv
T
i E{ααT }vi =

M2 − 1

3

L0∑
i=1

λi, (2.58)

where the last equality holds, first because E{ααT } is a diagonal matrix with diagonal elements
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of (M2 − 1)/3 when dealing with M -ary modulation, and second, ‖vi‖ = 1. Therefore, we are

able to compute the mean of Z by summing the eigenvalues of Q. The second moment of Z

can be derived as

E{Z2} = λTE{x2xT
2 }λ = λTCx2λ, (2.59)

where λ = [λ1, λ2, . . . , λL0 ]T and x2 = [X2
1 , X

2
2 , . . . , X

2
L0

]T . The computation of the covariance

matrix of x2, i.e., Cx2 = E{x2xT
2 }, is not straightforward and requires computing E{X4

i }

and E{X2
iX

2
j }. However, we can make an approximation by assuming the Xi’s are Gaussian

random variables with zero mean and variance of (M2 − 1)/3. This is a good approximation

due to the central limit theorem because Xi is a linear combination of independent random

variables αj ’s, i.e., Xi = v
(i)
1 α1 + v

(i)
2 α1 + · · · + v

(i)
L0
αL0 where v

(i)
k is the k-th element of vi.

The Gaussian approximation becomes more accurate as the sequence length grows and the

eigenvector constructing Xi does not have large variations. The latter is because the central

limit theorem requires summation of identically distributed random variables. Based on this

assumption, Cx2 becomes

[Cx2 ]ij ≈


(M2 − 1)2

3
i = j

(M2 − 1)2

9
i 6= j.

(2.60)

The second case is true because uncorrelated Gaussian random variables are independent as

well, and hence, E{X2
iX

2
j } = E{X2

i }E{X2
j }. In Appendix A, we have computed the exact

value of Cx2 where we show that the above approximation is valid even without Gaussian

approximation.

Based on the above discussion, the first step in computing UCRB(τ) is deriving eigenvalues

of Q and employing them in (2.58) and (2.59). Although eigen-decomposition can be performed

using widely-available numerical analysis software, it is still a computationally complex task.

Examining (2.58) and (2.59) reveals that we do not have to compute the individual eigenvalues.

According to (2.58), one only needs to calculate sum of the eigenvalues of Q which is equal to
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the trace of that matrix, i.e., µz = M2−1
3 trace(Q). Furthermore, using (2.60) in (2.59) leads to

E{Z2} ≈ (M2 − 1)2

9

[∑
i

λi

]2
+

2(M2 − 1)2

9

∑
i

λ2i

=
(M2 − 1)2

9
trace(Q)2 +

2(M2 − 1)2

9
trace(Q2).

(2.61)

Thus, we conclude that the computation of UCRB(τ) based on (2.56) can be achieved by

calculating the trace of the matrix Q and its square rather than its eigen-decomposition.

The computation of UCRB(fd) and UCRB(θ) requires further investigation because each of

them is expressed in the form of the expected value of the ratio of two quadratic forms [see (2.40)

and (2.41)], i.e., UCRB = E{αTPα/αTQα}. As a first degree approximation, they can be

calculated by taking the ratio of two expected values, that is UCRB ≈ E{αTPα}/E{αTQα}.

Nonetheless, more accurate values can be obtained numerically via Monte Carlo simulations.

2.6 Discussion and Results

The results for the symbol timing CRB using our optimum sequence for different CPM

schemes and L0 = 32 are shown in Figure 2.5. As we mentioned earlier, the effective length of a

sequence is less than L0 for partial-response schemes, which may violate our implicit assumption

that L1 is a multiple of 4. We approached this problem by rounding the values shown in Figure

2.2 to the nearest integer and building the optimum sequence upon those values. For instance,

the effective length for GMSK case, assuming L = 4, is L1 = 32− b4/2c = 30, which is clearly

not a multiple of 4. However, one can construct the optimum sequence for GMSK scheme such

that it consists of eight −1’s, followed by fifteen +1’s, followed by nine −1’s according to Figure

2.2. The same discussion applies to the 4-ary 2RC example in which L1 = 31 except for that

we should use ±3 symbols instead of ±1 ones.

Based on (2.39), the symbol timing CRB for optimum training sequence is affected by

modulation parameters for a given sequence length. These effects are depicted in Figure 2.5

for four CPM examples. The lowest CRB shown is attained using 4-ary symbols and a 2RC
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Figure 2.5. The CRB for symbol timing estimation of different CPM schemes for
training sequence shown in Figure 2.2 and L0 = 32.

frequency pulse, mainly because the symbol timing CRB is inversely proportional to h2(M−1)2

according to (2.39). This metric is 9/4 times larger for this scheme than the other three binary

schemes. Among binary schemes, 1RC results in the lowest CRB. The reason is that 1RC has

the largest value for Rg(0) based on Table I, and hence, the smallest CRBmin(τ) value. The

GMSK frequency pulse has the smallest Rg(0), which results in the highest CRB value. It

should be noted that these schemes have different bandwidths for a fixed symbol rate. Thus,

an investigation should be carried out based on the CRB, signal bandwidth and symbol rate

in order to make a fair decision on the scheme to be deployed in a particular application.

This is beyond the scope of the current work and is a topic for future research. As mentioned

earlier, the optimum frequency offset and carrier phase CRBs do not depend on any of the

CPM parameters including the frequency pulse. Thus, we do not show plots similar to Figure

2.5 for frequency offset and carrier phase because they do not provide any useful comparison in

terms of frequency pulse, phase response length and alphabet size.

The performance of the optimum training sequence versus a random sequence can be ob-

tained in terms of the ratio of the UCRB to the optimum training sequence’s CRB for any given
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Figure 2.6. The ratio of the UCRB to the optimum training sequence’s CRB for
symbol timing estimation of different CPM schemes.

modulation. This ratio is plotted in Figure 2.6 as a function of sequence length for several CPM

schemes. Additionally, the ratio is presented in terms of dB which can be interpreted as the

performance gain that one can expect when a DA estimator with optimum training sequence is

utilized rather than a random training sequence. It is seen that the CRB ratio decreases with

a non-uniform rate as the sequence length increases, i.e., it has a high decline rate for shorter

sequence lengths and converges to a limit at longer sequences. This is because as the sequence

length increases, a random data sequence becomes less likely to be one of the worst sequences.

In other words, a randomly selected data sequence would exhibit, to some extent, the statis-

tical properties of data symbols for sufficiently large sequences. This causes the CRB(τ |α)

to converge to CRB(τ |ᾱ) in which ᾱ is a hypothetical sequence which possesses the average

statistics of αi. Despite the convergence for all the schemes, the limit to which the ratio is

converging differs greatly. First, we note that for binary and full-response CPM signals such

as 1REC and 1RC, the UCRB converges to the optimum CRB for longer sequences. This is

due to the fact that E{α2
i } = α2

i = 1 in binary signals, which makes C [defined in (2.30)] a

constant for full-response signals. On the other hand, the CRBs for partial response and/or
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Figure 2.7. The ratio of the UCRB to the optimum training sequence’s CRB for
frequency (a) and phase (b) estimation of different CPM schemes.

non-binary schemes exhibit a performance gap even for long sequences. For example, the UCRB

is almost 4 dB larger than the optimum CRB when a 4-ary partial-response CPM with the 2RC

frequency pulse is used. This suggests the importance of employing a DA estimator based on

the optimum training sequence when using partial-response or non-binary CPMs. Moreover, we

computed the UCRB for frequency and phase estimations via simulations and it turned out to

be weakly dependent on the underlying CPM–similar to the optimum training sequence CRB.

For instance, UCRB(fd)/CRBmin(fd) and UCRB(θ)/CRBmin(θ) with respect to L0 are plotted

in Figures 2.7 (a) and 2.7 (b) respectively for the aforementioned CPMs. It can be observed that

the frequency and phase estimations are less sensitive to the selection of the training sequence

especially for longer training sequences. Finally, it should be mentioned that the CRB ratios

in Figures 2.6 and 2.7 do not depend on the SNR as both CRBmin and UCRB are inversely

proportional to Es/N0.

It is interesting to investigate the relation between the UCRB, MCRB and the true CRB

in our joint estimation problem since they all treat the training sequence as a random nuisance

parameter. The MCRB for symbol timing estimation of CPM signals in additive noise is
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presented in [1, p. 68]. Based on our definitions, we can write

UCRB(τ) = Eα{I−133 } ≥ Eα

{
1

I33

}
≥ 1

Eα{I33}
= MCRB(τ), (2.62)

where the first inequality holds because I−133 ≥ 1/I33 for a positive definite matrix [53, p. 81]

and the second one is due to Jensen’s inequality [52, p. 861]. Thus, the UCRB in this joint

estimation case is expected to be higher than the MCRB. Unfortunately, there is no explicit

relation between the UCRB and the true CRB in general. Additionally, the computation of the

true CRB for general CPM signals has not been accomplished yet. Using the method of Section

2.5.1, we have computed the true CRB and compared it with the other two CRB bounds for

binary CPM with 1REC and 1RC frequency pulses when the sequence length is 32. It can be

seen in Figure 2.8 that the UCRB is higher than the MCRB regardless of the SNR as expected

in (2.62). On the other hand, the true CRB is higher than both MCRB and UCRB at low

SNRs while it converges to the MCRB at high SNRs. This convergence is mathematically

shown in [48, Eq. 14] and is called the asymptotic CRB (ACRB), which is the true CRB for

high Es/N0. The counter-intuitive behavior of the UCRB at high SNR, i.e., UCRB>CRB,

is caused by different types of underlying estimators. The true CRB assumes an estimator

which is unbiased on average with respect to α while the UCRB applies to estimators that

are unbiased for all α. Two examples of similar situations are presented in [54] in which the

nuisance parameters are continuous random scalars. Furthermore, Figure 2.8 highlights the

importance of DA estimation at low SNRs since UCRB can also be interpreted as an averaged

lower bound for DA estimators.

As a final note, it is instructive to discuss the structure and spectral properties of the

proposed sequence to provide some insights into its optimal performance. The main property

of the optimum sequence is that the transmitted symbols are constant for a long duration

which forces the CPM phase to increase (decrease) with a relatively constant rate in that

interval. This results in two dominant frequency components at ±h(M − 1)/2Ts Hz. In a

sense, this is similar to the “1100” repeating pattern for the full-response MILSATCOM scheme
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Figure 2.8. The comparison between different CRB bounds for symbol timing
estimation of binary full-response CPM schemes. These bounds correspond to a
random data sequence with a length of 32.

presented in [11] because it has a period of 4 resulting into ±1/4Ts frequencies. However, the

MILSATCOM sequence generates rather strong harmonic frequencies as well while the optimum

training sequence does not produce such harmonics because it only has two transition points in

terms of the direction that the signal phase is changing. Hence, the proposed sequence prevents

leakage to the adjacent bands. As another example, the results in [12] suggest that the same

constellation point should be repeated as a training sequence for OQPSK with a half-sine pulse

shape. We note that this particular scheme is basically binary 1REC CPM (MSK) where their

proposed sequence is the alternating sequence in terms of the CPM symbols. This sequence

differs from our proposed sequence because the OQPSK representation causes the signal to not

have a constant envelope at the very beginning and end. Our computations reveal that the

alternating sequence is still a good choice and its CRB is only 1% higher than our sequence for

this specific scheme. However, unlike our proposed sequence, the alternating sequence is not a

good choice for partial response CPM. For instance, the alternating sequence results in a CRB

seven times higher than our optimum sequence in the case of binary 3REC CPM signal.
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2.7 Conclusions

We presented the derivation of the CRB for joint estimation of frequency offset, carrier phase,

and symbol timing for a known data sequence in CPM signals. We explored the CRB expressions

to find the data sequence for which the CRB is minimized. Our analysis in deriving the optimum

training sequence involved certain assumptions and approximations, which were later validated

via a computer search. Furthermore, we proved that the effect of these approximations are

reduced for longer sequences, and hence, it is asymptotically optimum in a strict sense. We were

able to show that the optimum training sequence is the same for all three estimation parameters

for CPM signals. Additionally, the performance of the optimum training sequence was compared

against a random sequence by providing a closed-form expression for the symbol timing UCRB.

It was shown that the optimum training sequence brings about significant estimation gains when

one is dealing with short training sequences, low SNR operation, partial response or non-binary

CPM schemes.
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Chapter 3

Timing, Carrier, and Frame

Synchronization of Burst-Mode

CPM

3.1 Key Points of the Chapter

In this chapter, we propose a complete synchronization algorithm for CPM signals in burst-

mode transmission over AWGN channels. The timing and carrier recovery are performed

through a DA maximum likelihood algorithm, which jointly estimates symbol timing, carrier

phase, and frequency offsets based on the optimized synchronization preamble found in Chapter

2. Our algorithm estimates the frequency offset via a one dimensional grid search, after which

symbol timing and carrier phase are computed via simple closed-form expressions. The MSE of

the algorithm’s estimates reveals that it performs very close to the theoretical CRB for various

CPMs at SNRs as low as 0 dB. Furthermore, we present a frame synchronization algorithm that

detects the arrival of bursts and estimates the start-of-signal. We simulate the performance of

the frame synchronization algorithm along with the timing and carrier recovery algorithm. The

bit error rate results demonstrate near ideal synchronization performance for low SNRs and
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short preambles.

3.2 Introduction

A major source of receiver complexity is the synchronization task, especially in burst-mode

transmissions where the warm-up or acquisition time must be kept as small as possible. This

task has become even more challenging due to the introduction of powerful error correction

codes such as LDPC codes, which require accurate synchronization at low SNRs in order to

achieve the full coding gain. Feedforward synchronization is a common approach in this type

of application since it requires a shorter acquisition time compared to closed-loop methods [1].

Moreover, a known synchronization preamble is usually appended to the beginning of each

burst, which assists the synchronization via DA algorithms.

The majority of works on synchronization of CPM in burst-mode transmissions have ad-

dressed MSK-type modulations using NDA algorithms, e.g. [25, 26, 27]. In addition to their

limited application, these methods do not perform as well as DA algorithms in low SNRs. Huang

et al. [55] have proposed a feedforward DA joint symbol timing and frequency offset estimation

algorithm for GMSK signals. The performance of this ad hoc method relies on the amount of

frequency offset and symbol timing error. A few DA synchronization algorithms have been pre-

sented in the literature for general CPM signals in different environments [18, 19, 20, 56]. Huber

and Liu [18] proposed an ML joint timing and phase synchronization algorithm for AWGN chan-

nels. In a related work [19], the Walsh transform is used in order to derive the synchronization

algorithm. Both of these algorithms assume the timing offset is much smaller than the symbol

duration in order to function properly. This limits their application in burst-mode feedforward

receivers as the timing offset in practice can have any arbitrary value. Another DA joint phase

and timing estimation algorithm is proposed in [20], which is based on the MMSE and Kalman

filter criteria. Despite its robustness in time-variant channels and short preambles, this method

is implemented in a closed-loop manner that requires multiple initialization steps. Moreover,

its MSE is shown to be significantly larger than the CRB even at high SNRs. Another DA algo-
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rithm is proposed in [56] for space-time coded CPM over Rayleigh channels, which only tackles

the symbol timing estimation. One important issue with all the aforementioned DA algorithms

is that the carrier frequency offset has not been taken into account. Blind frequency estimators

such as [57, 58] can be employed prior to symbol timing and phase estimations. However, the

accuracy of these frequency estimators is away from the CRB [57] especially in low to moderate

SNRs [58]. Residual frequency offsets result in poor timing and phase estimates as well as poor

signal demodulation.

Another challenge in synchronization of burst-mode signals is estimation of the burst start

point, i.e. start-of-signal (SoS). This task, which is referred to as frame synchronization, is

crucial in DA algorithms where the boundaries of the known preamble have to be identified.

Several sophisticated frame synchronization algorithms [32, 36, 59] have been proposed for

PSK signals in AWGN where a frequency offset is present. The performance of the algorithm

in [36] depends on the amount of frequency offset, which has to be much smaller than the

symbol rate. Choi and Lee [32] have assumed continuous transmissions, where the preamble

is surrounded by random data. Although burst-mode transmission is introduced in [59], the

authors have assumed there is no guard interval between bursts and the preamble is preceded

by random data (similar to the continuous mode). Moreover, it assumes the tentative location

of the preamble is known within an uncertainty window. Such a knowledge might not be always

available, particularly when the receiver is just powered on.

In this chapter, we present a feedforward DA ML algorithm for joint estimation of frequency

offset, symbol timing, and carrier phase in burst-mode CPM signals. The proposed approach

takes advantage of the optimized preamble of Chapter 2, which jointly minimizes the CRBs

for all three synchronization parameters. We show that the proposed algorithm is capable of

performing quite close to the CRB for various CPMs and SNRs. Although we consider an

AWGN channel, the results can be applied to time-varying channels too since practical wireless

channels can be assumed to be static during the preamble period. In such environments,

the estimation results should be used in conjunction with tracking algorithms such as [42].
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Figure 3.1. The Burst-Mode Transmission Model.

Additionally, we present a frame synchronization algorithm that detects the arrival of bursts

and estimates the SoS within ideally one sample time. We discuss how our approach extends

the frame synchronization algorithms in [32, 36] to our problem, i.e. CPM signals and burst-

mode transmissions. We note that the order in which these two problems are addressed in this

chapter is the reverse of their implementation in practice where frame synchronization must be

applied prior to timing and carrier recovery.

The remainder of this chapter is organized as follows. Section 3.3 introduces our burst-mode

transmission model. In Section 3.4, the joint ML timing and carrier estimation is proposed.

Section 3.5 describes the frame synchronization algorithm. Simulation results of the synchro-

nization algorithm are reported in Section 3.6, and Section 3.7 concludes the chapter.

3.3 Burst-Mode Transmission Model

In our model, we consider transmission of disjoint packets of data, i.e. bursts. The trans-

mitter is assumed to be turned on at an unknown time in order to transmit a single burst after

which it is turned off again. Each burst has a known duration and structure at the receiver,

which is depicted in Figure 3.1 and consists of three parts. The first part is the synchronization

preamble or training sequence. It consists of L0 known and optimized data symbols, which are

used to estimate synchronization parameters. Although the preamble can be used for channel

estimation too, we only focus on the synchronization task. The next section in the burst is

denoted as the unique word (UW), which is utilized to identify the bursts and determine the

location of data symbols within a burst. It is assumed to be a pseudo-random sequence of LUW

symbols. The last part is the payload, which carries Lpay information symbols.

By applying the aforementioned model to our CPM notation, the phase of the signal during
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transmission of each burst is represented as

φ(t;α) = 2πh

Lb−1∑
i=0

αiq(t− iTs) (3.1)

where αi is the sequence of M -ary data symbols selected from the set of {±1,±3, . . . ,±(M−1)}.

Lb is the total number of such symbols in a burst, that is Lb = L0 + Luw + Lpay.

Let us recall our synchronization problem. The complex baseband representation of the

received signal is

r(t) = ej(2πfdt+θ)s(t− τ) + w(t) (3.2)

where θ is the unknown carrier phase, fd is the frequency offset, τ is the timing offset, and

w(t) is complex baseband AWGN with zero mean and power spectral density N0. We denote

the transmitted data symbols during the preamble by α = [α0, α1, · · · , αL0−1]. Our goal is

to determine the synchronization parameters, i.e. u = [fd, θ, τ ]T , by observing the preamble

portion of the burst, which corresponds to α. Here, it is assumed that u is a vector of unknown

but deterministic parameters which are to be jointly estimated at the receiver. Note that α is

implicit in the definition of s(t).

Since data arrives in bursts at the receiver, τ can assume any value. However, a DA estimator

requires the approximate knowledge of τ in order to perform the estimation algorithm on the

received preamble. Therefore, we decompose τ into two parts based on

τ = µTs + εTs (3.3)

where µ ≥ 0 is an integer that represents the integer delay and −0.5 < ε < 0.5 represents the

fractional delay. In this work, we address these two components separately. First we assume µ

is known and the goal is to estimate ε, fd and θ. Later in Section 3.5, we consider estimation

of µ, i.e. the SoS location, regardless of fd and θ values.

The last item we need to specify is the synchronization preamble. In Chapter 2, we intro-

duced the optimum training sequence for joint estimation of u based on the CRB criterion. This
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Figure 3.2. The optimum synchronization preamble (training sequence) for M -
ary CPM signals containing L0 symbols.

sequence, which is depicted in Figure 3.2, minimizes the CRBs for fd, θ and ε simultaneously.

It also has a similar pattern for the entire CPM family. We emphasize that the optimality of

the above sequence is subject to certain approximations in general, which were discussed in

Chapter 2. In spite of this, we refer to this particular sequence as the optimum sequence so

that its main property is highlighted. We exploit the structure of the preamble in order to

facilitate the algorithm design process and then to reduce its complexity. Note that there is a

slight difference in transition points of the preamble compared to the sequence of Chapter 2,

i.e. Figure 2.2. In this Chapter, we assume the same preamble regardless of the phase response

length for the sake of clarity. Nevertheless, the results can easily be applied to partial-response

CPMs. Moreover, we will consider partial-response examples in the rest of our discussion.

3.4 Maximum Likelihood Timing and Carrier Synchronization

3.4.1 Derivation of the Algorithm

Reliable detection of CPM signals depends on accurate timing and carrier synchronization,

which requires knowledge of fd, θ and τ . These parameters can be estimated via various

techniques. In this work, we apply joint ML estimation in which α is known to the receiver.

The likelihood function for the estimation of a set of parameters from a waveform in AWGN

is given in [3]. It can be easily shown that in our problem, i.e. when the signal is complex

and constant envelope, the joint LLF for the synchronization parameters is expressed within a
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constant factor of

Λ[r(t); f̃d, θ̃, ε̃] = Re

[∫ T0+ε̃Ts

ε̃Ts

e−j(2πf̃dt+θ̃)r(t)s∗(t− ε̃Ts)dt
]

(3.4)

where f̃d, θ̃ and ε̃ are hypothetical values for fd, θ and ε respectively, and T0 = L0Ts is the

preamble duration. Note that we disregard µ in this section for the sake of clarity. According

to the ML criterion, we choose the trial values that maximize (3.4) as the best estimates for

the unknown parameters u. We denote the ML estimates as û = [f̂d, θ̂, τ̂ ]T .

In practice, r(t) is sampled N times per symbol. This results in a discrete-time version of

the LLF as

Λ(r; ν̃, θ̃, ε̃) ≈ Re

[
NL0−1∑
n=0

e−j(2πnν̃+θ̃)r[n]s∗ε̃[n]

]
(3.5)

where ν = fdN/Ts, i.e. the normalized frequency offset with respect to the sampling frequency.

r[n] and sε[n] are the sampled versions of r(t) and s(t− εTs) at t = nTs/N respectively. Note

that ε̃ is assumed to be zero in the integral limits of (3.4) in order to derive (3.5). This is the

main contributor to the approximation in the above given that the sampling frequency is large

enough to avoid aliasing.

Based on (3.5), the maximization of the LLF requires at least a two dimensional grid search

on (ν̃, ε̃) in general because both of these parameters are embedded inside the above summation.

Therefore, we are interested in a method that decouples ε and ν. We note that the preamble

of Figure 3.2, regardless of its underlying CPM, can be divided into three parts, each of which

having the same data symbols. This distinct pattern causes the CPM phase to change with a

uniform rate of approximately πh(M−1) radians per symbol in the same direction for each part.

We have illustrated this fact in Figure 3.3 by plotting the unwrapped phase response of three

different CPMs when preamble of Figure 3.2 with L0 = 16 is utilized. The first signal phase

corresponds to the 1RC frequency pulse with binary data symbols and h = 1/2. Additionally,

the partial-sresponse 4-ary 2RC CPM is provided in which h = 1/4. The GMSK scheme with

BTs = 0.3 is also included, which is binary, L = 4 and h = 1/2. We have compared each case
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Figure 3.3. The phase response of different CPMs to the optimum training se-
quence (shown in solid lines). The dashed lines show the response of the same
sequence to the 1REC CPM with the same h.
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with the phase response of 1REC frequency pulse to the same α and h. It is observed that

despite the fundamental differences between their frequency pulses, the overall phase response

of all CPM signals are approximately similar. More detailed observations can be made as the

following:

1. GMSK and 2RC phase responses follow a straight line within each part similar to the

1REC pulse shape in spite of their bell-shaped pulses. This is due to the overlap of the

frequency pulses when the subsequent data symbols are the same, which leads to uniform

phase variations.

2. The overall phase response is delayed when partial-response CPMs such as 2RC and

GMSK are employed. We denote this lag time by Tl which is equivalent to Nl samples.

3. 1RC CPM shows the largest deviations from the 1REC phase response because its fre-

quency pulse is full-response (non-overlapping) and has the highest peak.

Based on the above discussion, we approximate the phase response of any given CPM signal

to the optimum preamble α∗ with a delayed version of 1REC CPM to α∗ and the same h .

In fact, the optimum preamble enables us to accurately apply a piecewise linear approximation

to the phase of CPM. Therefore, the approximated phase response can be mathematically

expressed as

φ(t,α∗) ≈



−(M − 1)πh t−TlTs
Tl ≤ t < T0

4 + Tl

(M − 1)πh t−T0/2−TlTs
T0
4 + Tl ≤ t < 3T0

4 + Tl

−(M − 1)πh t−T0−TlTs
3T0
4 + Tl ≤ t < T0 + Tl

0 otherwise,

(3.6)

where Tl is fixed for a given CPM and is known to the receiver. In Appendix B, it is shown that

Tl = (L−1)
2 Ts for symmetric g(t), which is the case for rectangular, raised-cosine and Gaussian

pulse shapes. In the rest of our discussion, we assume the channel observation starts from

t = Tl, and hence, we ignore Tl. In practice, we can append dTl/Tse “−(M − 1) symbols” to the
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end of the preamble for partial-response CPMs in order to avoid unwanted variations at the

end of the observation interval, which is now shifted by Tl. Thus, we use (3.6) to express sε[n]

during the preamble transmission as

sε[n] ≈


exp[−j(M − 1)πh( nN − ε)] 0 ≤ n < NL0

4

exp[+j(M − 1)πh( nN −
L0
2 − ε)]

NL0
4 ≤ n < 3NL0

4

exp[−j(M − 1)πh( nN − L0 − ε)] 3NL0
4 ≤ n < NL0.

(3.7)

We take advantage of the above approximation in order to simplify the LLF and its maxi-

mization algorithm. Using (3.7) in (3.5) results in

Λ∗(r; ν̃, θ̃, ε̃) ≈ Re

{
e−jθ̃

[NL0/4−1∑
n=0

e−j2πνnr[n]ej(M−1)πh(n/N−ε)

+

3NL0/4−1∑
n=NL0/4

e−j2πνnr[n]e−j(M−1)πh(n/N−L0/2−ε)

+

NL0−1∑
n=3NL0/4

e−j2πνnr[n]ej(M−1)πh(n/N−L0−ε)
]}
, (3.8)

where Λ∗(·) represents the joint LLF given α∗. It is evident from (3.8) that the symbol timing

is now decoupled from the frequency offset and can be moved outside the summations of the

LLF. Hence, (3.8) can be simplified as

Λ∗(r; ν̃, θ̃, ε̃) ≈ Re

{
e−jθ̃

[
e−j(M−1)πhε̃λ1(ν̃) + ej(M−1)πhε̃λ2(ν̃)

]}
, (3.9)

where

λ1(ν̃) =

NL0/4−1∑
n=0

e−j2πν̃nr[n]ej(M−1)πhn/N + e−j(M−1)πhL0

NL0−1∑
n=3NL0/4

e−j2πν̃nr[n]ej(M−1)πhn/N ,

(3.10)
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and

λ2(ν̃)= ej(M−1)πhL0/2

3NL0/4−1∑
n=NL0/4

e−j2πν̃nr[n]e−j(M−1)πhn/N . (3.11)

As the estimation parameters are now decoupled, the maximization of the LLF becomes

straightforward. Let us proceed by denoting the term in (3.9) which corresponds to symbol

timing and frequency offset as

Γ(ν̃, ε̃) = e−j(M−1)πhε̃λ1(ν̃) + ej(M−1)πhε̃λ2(ν̃). (3.12)

It is easily seen that for any value of (ν̃, ε̃), Λ∗(·) is maximized by choosing θ̃ such that it rotates

Γ(ν̃, ε̃) towards the real axis, i.e.,

θ̃ = arg{Γ(ν̃, ε̃)}. (3.13)

which reduces the LLF to |Γ(ν̃, ε̃)|. Thus, the ML estimates of ν̃ and ε̃ are found by maximizing

|Γ(ν̃, ε̃)|2 = |λ1(ν̃)|2 + |λ2(ν̃)|2 + 2Re[e−j2(M−1)πhε̃λ1(ν̃)λ∗2(ν̃)] (3.14)

with respect to (ν̃, ε̃). The first two terms on the right-hand side of (3.14) do not depend on ε̃.

Using a similar argument as θ̃, the third term is maximized by selecting ε̃ according to

ε̃ =
arg{λ1(ν̃)λ∗2(ν̃)}

2(M − 1)πh
(3.15)

so that the term inside the real part operator in (3.14) becomes purely real and equal to

|λ1(ν̃)λ∗2(ν̃)|. Therefore, the maximization of the LLF is now a one dimensional problem that

results in the ML estimate of ν. This can be expressed mathematically in the form of

ν̂ = argmax
ν̃

{X(ν̃) = |λ1(ν̃)|+ |λ2(ν̃)|} , (3.16)
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which in turn leads to the ML estimates of the normalized symbol timing and phase offset via

ε̂ =
arg{λ1(ν̂)λ∗2(ν̂)}

2(M − 1)πh
, (3.17)

and

θ̂ = arg
{
e−j(M−1)πhε̂λ1(ν̂) + ej(M−1)πhε̂λ2(ν̂)

}
, (3.18)

respectively.

3.4.2 Implementation of the Frequency Offset Estimator

In the previous section, we derived simple closed-form expressions for estimation of phase

and symbol timing. However, the frequency offset estimation requires computing the maximum

of a one-dimensional function as defined in (3.16). λ1(ν) and λ2(ν) have the form of Fourier

transforms of r(t) and should be expected to have fluctuations due to the presence of noise,

which results in several local maxima. Thus, a grid search is inevitable in order to find the

correct frequency offset with confidence.

According to (3.10) and (3.11), computations of λ1(ν) and λ2(ν) require a different number

of summations with different limits. In order to make both of them consistent, we define two

new signals, i.e. r1[n] and r2[n], such that

r1[n] =


r[n] 0 ≤ n < NL0/4

exp[−j(M − 1)πhL0]r[n] 3NL0/4 ≤ n < NL0

0 otherwise

(3.19)

and

r2[n] =


exp[j(M − 1)πhL0/2]r[n] NL0/4 ≤ n < 3NL0/4

0 otherwise.

(3.20)

The above modifications to r[n] leads to similar forms for λ1(ν) and λ2(ν), where each one
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requires computation of one summation with NL0 terms, i.e.,

λ1(ν̃) =

NL0−1∑
n=0

r1[n]ej(M−1)πhn/Ne−j2πnν̃ (3.21)

and

λ2(ν̃) =

NL0−1∑
n=0

r2[n]e−j(M−1)πhn/Ne−j2πnν̃. (3.22)

The computations of (3.21) and (3.22) for different ν̃ values resemble the discrete Fourier

transform (DFT) operation, where ν̃ is replaced by trial discrete frequencies. These operations

can be performed efficiently using the fast Fourier transform (FFT). The FFT size will be equal

to the summation length assuming NL0 is a power of two. This process results in trial values

for λ1(ν̃) and λ2(ν̃) such that ν̃ ∈ [0, 1/NL0, . . . , (NL0 − 1)/NL0], which are then inserted in

(3.16) in order to find ν̂. Therefore, the frequency offset estimate requires two FFTs of the

same size.

The frequency estimation performance is limited by the resolution of the FFT operations,

i.e. the distance between the discrete frequency components. A low resolution estimate may

cause a ripple effect on the estimation performance of other parameters. In order to increase

the accuracy of the frequency estimate, two approaches are considered. The first approach

is to zero pad the FFT operands in (3.21) and (3.22) such that both FFTs have a size of

Nf = KfNL0 where Kf is a power of two. This procedure results in a frequency resolution of

1/KfL0 with respect to the symbol rate. The second approach is to employ an interpolator in

order to estimate the true maximum of (3.16) between the discrete frequency values. In [60], it

was shown that the Gaussian interpolator is superior to a parabolic one in terms of improving

FFT resolution. The only added complexity is an extra look-up table for computation of the

logarithm function. The Gaussian interpolation can be expressed as

ν̂ = ν̂0 +
1

2KfNL0

logX(ν̂−1)− logX(ν̂1)

logX(ν̂−1) + logX(ν̂1)− 2 logX(ν̂0)
, (3.23)

where ν̂0 represents the maximizing frequency resulting from (3.16). ν̂−1 and ν̂1 denote the
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Figure 3.4. Block diagram of the feedforward joint frequency offset, symbol tim-
ing and carrier phase estimator.

discrete frequency components immediately before and after ν̂0 respectively in terms of the

FFT operation. The above operation can be regarded as a fine search while FFTs perform a

course search on the frequency offset.

Based on DFT properties, FFT operations are periodic with a period of NL0. Therefore,

values of 1/2 ≤ ν̂ < 1 represent negative frequency offsets, and hence, ν̂ is estimated over

[−1/2, 1/2). This limits the frequency estimation range to

− N

2Ts
≤ f̂d <

N

2Ts
, (3.24)
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which can be increased by increasing the sampling frequency. Therefore, the proposed algorithm

can easily handle applications in which the frequency offset is greater than the symbol rate.

The final design for our feedforward joint frequency offset, symbol timing and carrier phase

estimator is illustrated in Figure 3.4. Based on (3.19) and (3.20), r1[n] and r2[n] should be

multiplied by exp[−j(M − 1)πhL0] and exp[j(M − 1)πhL0/2] respectively. However, we have

not shown this in Figure 3.4 for the sake of simplicity, and because the aforementioned factors

are basically equal to one in our examples.

3.5 Frame Synchronization

So far, we have assumed the carrier and timing synchronization algorithm have the knowl-

edge of the SoS within ±Ts/2, which has to be carried out by the frame synchronization algo-

rithm. In this work, we decompose the frame synchronization into two tasks: SoS detection and

SoS Estimation. The SoS detector determines the arrival of a new burst such that the preamble

is located within an observation or uncertainty window. The SoS estimation algorithm then

tries to find the exact location of the SoS within that window. Using a reverse approach, we

initially derive the SoS estimation algorithm. Based on its results, we propose a simple SoS

detection algorithm.

3.5.1 SoS Estimation Algorithm

The framework for the SoS estimation algorithm is depicted in Figure 3.5 where an obser-

vation window of Nw samples is considered. The first δ samples contains only WGN, which

correspond to the guard interval prior to the beginning of signal transmission. It is followed by

Np samples of the preamble. Finally, there are Nw − δ −Np samples, which are assumed to be

generated from a random CPM signal, and are associated with the UW and/or payload portion

of the burst. The SoS estimation algorithm attempts to find the best estimate of δ according

to the above observation window.
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Figure 3.5. The observation window for the SoS estimation algorithm.

The received and sampled signal within the observation window can be expressed as

r[n] =


w[n] 0 ≤ n < δ

ej(2πνn+θ)s[n− δ] + w[n] δ ≤ n < Nw,

(3.25)

where w[n] is complex white Gaussian random sequence with a variance of σ2 = N(Es/N0)
−1.

Additionally, we have assumed Ts = 1 and |s[n]| = 1. It should be noted that θ in (3.25)

is different from its value in (3.2) due to the frequency offset and different reference points.

Finally, we denote the values of r[n] within the observation window by r.

Based on the ML rules, the best estimate of δ is the value which maximizes the likelihood

function p(r; δ). However, let us first consider the likelihood function as a function of all

unknown parameters, i.e.,

p(r; δ, ν, θ,αd) =
1

(πσ2)Nw
exp

(
− 1

σ2

δ−1∑
n=0

|r[n]|2
)

exp

(
− 1

σ2

Nw−1∑
n=δ

|r[n]− s[n− δ]ej(2πνn+θ)|2
)
,

(3.26)

where αd represents the random data sequence in the non-preamble portion of s[n]. If we omit

constant factors in the likelihood function, it becomes

p(r; δ, ν, θ,αd) = exp

(
δ −Nw

σ2

)
exp

(
2

σ2

Nw−1∑
n=δ

Re
{
r∗[n]s[n− δ]ej(2πνn+θ)

})
. (3.27)

In order to compute p(r; δ) from (3.27), we must either estimate or average out the nuisance

parameters, i.e. ν, θ and αd, which is not trivial due to the form of the above function. Instead,

we initially approximate the exponential function with its second degree Taylor’s series in the
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neighborhood of zero, i.e.,

p(r; δ, ν, θ,αd) ≈ C(δ)

(
1 +

2

σ2

Nw−1∑
n=δ

Re
{
r∗[n]s[n− δ]ej(2πνn+θ)

}
+

1

σ4

Nw−1∑
n=δ

Nw−1∑
m=δ

Re
{
r∗[n]r∗[m]s[n− δ]s[m− δ]ej(2πν(m+n)+2θ)

}
+

1

σ4

Nw−1∑
n=δ

Nw−1∑
m=δ

Re
{
r∗[n]r[m]s[n− δ]s∗[m− δ]ej(2πν(n−m))

})
,

(3.28)

where C(δ) represents exp( δ−Nw
σ2 ) in (3.27), which is not a function of the nuisance parameters.

However, we avoid using it in its original form because it can be very small and adversely affect

the approximated likelihood function. Nevertheless, we will propose an approximation for C(δ)

once the final form of the likelihood function becomes available.

Assuming θ is uniformly distributed over [−π, π], it can be eliminated from the likelihood

function by averaging (3.28) over θ, i.e.,

p(r; δ, ν,αd) =
1

2π

∫ π

−π
p(r; δ, ν, θ,αd) dθ

≈ C(δ)
1

σ4

Nw−1∑
n=δ

Nw−1∑
m=δ

Re
{
r∗[n]r[m]s[n− δ]s∗[m− δ]ej(2πν(n−m))

}
.

(3.29)

Note that we have neglected 1 in (3.28) because it is much smaller than the forth term especially

when noise variance is small. We also omit 1/σ4 from the above as it is a constant factor. If

we denote d = m− n in (3.29), it can be rearranged as

p(r; δ, ν,αd) ≈ C(δ)

(
Nw−1∑
n=δ

|r[n]|2

+2

Nw−δ−1∑
d=1

Re

{
e−j2πdν

Nw−d−1∑
n=δ

r∗[n]r[n+ d]s[n− δ]s∗[n+ d− δ]

})
,

(3.30)

which allows us to investigate signal correlation due to the presence of random αd. The com-
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putation of Eαd{p(r; δ, ν,αd)} leads us to compute Eαd{s[n − δ]s∗[n + d − δ]}, which, in our

problem, is

Eαd{s[n− δ]s
∗[n+ d− δ]} =


s[n− δ]s∗[n+ d− δ] δ ≤ n < Np + δ − d

0 Np + δ − d ≤ n < Np + δ

Rss(d) n ≥ Np + δ,

(3.31)

where Rss(d) is the autocorrelation function of the CPM signal normalized to the sample du-

ration. Rss(d) can be computed numerically as described in [3, p. 208]. The first case in (3.31)

corresponds to the preamble, which has no randomness. The second case is zero because s[n−δ]

is deterministic whereas s∗[n + d − δ] is generated by the random data and its expected value

is zero. Therefore, taking the expected value of (3.30) with respect to αd results in

p(r; δ, ν) ≈ C(δ)

(
Nw−1∑
n=δ

|r[n]|2 + 2

Np−1∑
d=1

Re

{
e−j2πdν

(Np+δ−d−1∑
n=δ

r∗[n]r[n+ d]s[n− δ]s∗[n+ d− δ]

+Rss(d)

Nw−d−1∑
n=Np+δ

r∗[n]r[n+ d]

)})
.

(3.32)

In general, CPM autocorrelation function becomes zero for lag times greater than LTs. There-

fore, Rss(d) is zero except for its first few values.

The last step to obtain p(r; δ) is removing ν from (3.32). It can be verified that averaging

(3.32) with respect to ν, uniformly distributed over [-0.5,0.5], completely eliminates the second

summation. This indeed results in a poor ML estimate for δ because it ignores the knowledge of

the known preamble. A better approach is to estimate ν by maximizing the second summation

in the above. However, a closed-form solution seems to be unavailable due to the range of d.
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Instead, we can derive different estimates ν̂d based on single terms inside the summation via

ν̂d =
1

2πd
arg


Np+δ−d−1∑

n=δ

r∗[n]r[n+ d]s[n− δ]s∗[n+ d− δ] +Rss(d)

Nw−d−1∑
n=Np+δ

r∗[n]r[n+ d]

 .

(3.33)

The above method is the basis for some well-known carrier frequency estimation algorithms,

such as [61]. If we use ν̂d values and plug them back into (3.32), the likelihood function becomes

independent of the frequency offset. Thus,

p(r; δ) ≈ C(δ)

(
Nw−1∑
n=δ

|r[n]|2 + 2

Np−1∑
d=1

∣∣∣∣∣
Np+δ−d−1∑

n=δ

r∗[n]r[n+ d]s[n− δ]s∗[n+ d− δ]

+Rss(d)

Nw−d−1∑
n=Np+δ

r∗[n]r[n+ d]

∣∣∣∣∣
)
,

(3.34)

which must be maximized with respect to δ in order to derive δ̂.

The computational complexity of (3.34) can be reduced by truncating the summation over

d. This results in a sub-optimum, reduced-complexity estimator, i.e.

δ̂ = argmax
δ̃

{
C(δ̃)

(
Nw−1∑
n=δ̃

|r[n]|2 + 2

D∑
d=1

∣∣∣∣∣
Np+δ̃−d−1∑

n=δ̃

r∗[n]r[n+ d]s[n− δ̃]s∗[n+ d− δ̃]

+Rss(d)

Nw−d−1∑
n=Np+δ̃

r∗[n]r[n+ d]

∣∣∣∣∣
)}

,

(3.35)

where 1 ≤ D < Np is a design parameter, which allows a trade-off between complexity and

performance.

As mentioned earlier, C(δ) needs to be adjusted based on the final form of the likelihood

function. We note that (3.34) is dominated by the summation over d. If we ignore Rss(d) due to

its short length, the computations inside the absolute value are performed over a sliding window

that covers the hypothetical preamble. If this window is shifted to the left by one sample, one

signal-plus-noise sample will be replace by one noise-only sample, which has a smaller energy

compared to the former one. However, shifting the window to the right replaces it with a
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different signal-plus-noise sample. Therefore, we expect p(r; δ + 1) > p(r; δ − 1), if δ is its true

value. This makes the likelihood test biased, i.e. δ̂ is more likely to tend towards δ + 1 than

δ − 1. We introduce a simple solution to this issue by proposing

C(δ) , (Nw − δ)q (3.36)

where q ≥ 0 is another design parameter, which has to be chosen according to D. As we

will see in the simulation results, q = 1 is a good choice for the full-complexity estimator, i.e.

D = Np − 1, while it has to be reduced for smaller values of D.

Choi and Lee [32] have presented a ML frame synchronization algorithm through a different

path for PSK signals where the preamble is surrounded by random data. Despite similarities

to (3.35), our estimator addresses a different scenario in which the preamble is preceded by the

noise-only samples so that C(δ) was introduced. Additionally, the memory of CPM signals is

handled via the presence of Rss(d). Finally, it should be mentioned that each of the summations∑
n r
∗[n]r[n+ d]s[n− δ̃]s∗[n+ d− δ̃] in (3.35) is referred to as a double-correlation in [32].

3.5.2 SoS Detection Algorithm

As the last piece of our synchronization algorithm, we present a simple ML detection al-

gorithm, which is closely related to our previous discussion. Let us assume a receiver which

collects vectors of Np samples using a sliding window. We denote this vector by rp. Addi-

tionally, consider two hypotheses H0 and H1. H0 is the hypothesis where the entire vector of

samples in rp are noise-only samples, which happens when no burst is received. On the other

hand, H1 is the hypothesis where rp is perfectly aligned with the preamble. We can distinguish

these two hypotheses by performing a likelihood ratio test (LRT) according to

L(rp) =
p(rp;H1)

p(rp,H0)

H1

≷
H0

γ, (3.37)

72



where p(rp;Hi) is the likelihood function under Hi. Based on the above test, H1 is selected

when L(rp) is greater than a threshold γ. Otherwise, we select H0, i.e. no preamble is present.

Obviously, several other hypotheses also occur in between these two in which rp contains

only a fraction of the preamble, i.e. a mixed-signal scenario. However, all those scenarios can be

considered as irrelevant hypotheses since we have already established a mechanism to estimate

the exact location of the SoS. For instance, if we decide H1 while rp covers only a portion of

the preamble, it is still considered a successful detection because the SoS estimation algorithm

is able to find the exact location of preamble given Nw is large enough, i.e. Nw ≥ 2Np. On the

other hand, if H0 is selected under such circumstances, it is not a missed detection since H1

has not happened yet. Thus, we neglect mixed-signal scenarios in designing our LRT.

The LRT can be easily obtained from (3.34). In fact, p(rp;H1) becomes equal to p(r; δ) when

δ = 0 and Nw = Np. We also note that we can multiply p(rp; δ = 0) by exp(− 1
σ2

∑Np−1
n=0 |r[n]2|)

because it is not a function of δ. The latter factor is basically equal to p(rp;H0). Thus, the

LRT can be approximated by

L(rp) =
p(rp; δ = 0)p(rp;H0)

p(rp;H0)
≈

Np−1∑
n=0

|r[n]|2 + 2

Np−1∑
d=1

∣∣∣∣∣
Np−d−1∑
n=0

r∗[n]r[n+ d]s[n]s∗[n+ d]

∣∣∣∣∣ ≷ γ′.

(3.38)

Similar to (3.35), we propose a reduced-complexity test, i.e.,

LD′(rp) ,
D′∑
d=1

∣∣∣∣∣
Np−d−1∑
n=0

r∗[n]r[n+ d]s[n]s∗[n+ d]

∣∣∣∣∣ ≷ γD′ , (3.39)

where 1 ≤ D′ < Np is a design parameter and γD′ represents the test threshold for a given D′.

The threshold γD′ can be chosen based on the Neyman-Pearson criterion [62] in which the

probability of false alarm is fixed. Here, the probability of false alarm is defined as PFA =

Pr{LD′(rp) > γD′ |H0}. Once the threshold is chosen, the probability of missed detection

can be calculated via PMD = Pr{LD′(rp) < γD′ |H1}. The probability of correct detection

is PD = 1 − PMD. Exact closed-form expressions for PFA and PD may not be realized due to

the magnitude operators and multiplications in (3.39). For instance, if we denote the output of
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each double-correlation as a random variable, i.e., Xd =
∑Np−d−1

n=0 r∗[n]r[n + d]s[n]s∗[n + d], a

simple yet acceptable (for large Np−d) approximation is to consider Xd as a complex Gaussian

random variable (RV). This forces |Xd| to become a Rayleigh RV underH0 and Rician RV under

H1 due to the presence of signal. Thus, LD′(rp) can be approximated as sum of Rayleigh or

Rician RVs depending on the hypothesis. In [63, 64], approximate CDFs are provided for such

RVs. However, our investigations show that the approximation error is considerable because

we are interested in regions where PFA and PMD are very low. Therefore, we resort to Monte-

Carlo simulations with a large sample size in order to compute these probabilities, γD′ , and the

receiver operating characteristic (ROC).

3.6 Results and Discussion

3.6.1 Timing and Carrier Recovery Performance

In this section, we compute the error variances of frequency offset, carrier phase, and symbol

timing for the proposed ML estimation algorithm using simulations. We have considered the

three examples of Figure 3.3 along with MSK. In all examples, the optimum preamble with

L0 = 64 is deployed. In addition to AWGN, we apply ν, θ and ε that are uniformly distributed

over [−0.5, 0.5], [0, 2π], and [−0.5, 0.5] respectively.

The effect of the interpolation and FFT size on the estimator performance is demonstrated

in Figure 3.6 via simulations. The GMSK (BTs = 0.3) modulation is considered in this set

of simulations in which L0 = 64 and N = 2. The error variance for normalized frequency

offset–with respect to symbol rate–is plotted for three different Kf values of 1, 2 and 4. Addi-

tionally, three scenarios of no interpolation, parabolic interpolation and Gaussian interpolation

are studied. It can be seen that the error variance does not improve with respect to the SNR

regardless of the zero padding factor when there is no interpolation. In fact, as Kf is increased,

the variance is improved, however, the error due to the grid search, i.e. the FFT operation, still

dominates the additive noise. This suggests that one has to carry out a very large FFT when no

interpolation is utilized. On the other hand, the interpolation does not deliver any gains when
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Figure 3.6. The effect of interpolation and zero padding on the frequency esti-
mation for GMSK when L0 = 64.

Kf = 1, i.e., there is no zero padding. When Kf = 2, both parabolic and Gaussian interpolators

show their effect. The improvement is quite significant for the Gaussian interpolator where the

error variance almost attains the CRB. Therefore, we have chosen the Gaussian interpolator

with Kf = 2 for our estimator. It can be observed that both interpolators perform slightly

better than the former case when Kf = 4, however, the increased FFT overhead prevents us

from utilizing them.

The estimation error variances corresponding to the normalized frequency offset and carrier

phase are depicted in Figures 3.7 (a) and 3.7 (b) respectively for different CPM schemes. The

frequency estimation plots demonstrate that the proposed estimator performs with almost the

same accuracy for all the schemes, that is less than 0.5 dB away from the CRB for low to

moderate SNRs. As it was shown in Section 2.4, the frequency and phase estimation CRBs for

the optimum training sequence are independent of the particular CPM scheme. Hence, only

one CRB plot is shown in each Figure. Moreover, it is observed that the 1RC scheme performs

slightly worse than the other schemes because it has the largest deviations from the 1REC

template (refer to Figure 3.3). For the remaining schemes, the gap between the error variances
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Figure 3.7. The error variance of frequency offset (a) and carrier phase (b) es-
timations for different CPM schemes when L0 = 64. The frequency is normalized
with respect to the symbol rate.

and the CRB is mostly due to the FFT precision and can be reduced by increasing Kf . This

gap becomes more visible at high SNRs because errors due to the thermal noise are smaller

than the FFT and interpolation precision.

The normalized timing error variances are plotted in Figure 3.8. It reveals that the proposed

estimator reaches the CRB for the majority of the examples. The only exception is again the

1RC scheme as discussed above. For all other CPMs, the ML estimator attains the lower

limit of the CRB despite the visible loss in the frequency estimation. This is because the

optimum training sequence decouples timing from frequency in terms of the Fisher information

matrix, which means that small errors in the frequency estimate do not affect the symbol

timing estimate. The optimum training sequence does not decouple frequency and phase, and

hence, errors in the frequency estimate leak into the phase estimator, which results in a slight

performance degradation that is visible in Figure 3.7 (b).

It should be mentioned that the FFT operations will be replaced by simple correlations

when fd = 0. In such applications, (3.21) and (3.22) are computed for ν̃ = 0 without any

need to perform the maximization of (3.16) and the interpolation. This leads to a joint symbol
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Figure 3.8. The variance of symbol timing estimation for different CPM schemes
when L0 = 64. The symbol timing is normalized with respect to the symbol dura-
tion.

timing and carrier phase estimator, which is efficient yet less complex compared to other DA

works such as [18, 19, 20]. This simplicity is a direct result of unique structure of the optimized

preamble.

3.6.2 Frame Synchronization Performance

The performance of the SoS estimation algorithm is characterized by the probability of false

lock, which is PFL = Pr{δ̂ 6= δ}. This probability is computed given that the preamble is

correctly detected and fully resides within the observation window.

The effect of the C(δ) as a function of q on PFL are studied in Figure 3.9 using simulations.

The GMSK scheme is used where L0 = Np = 64, Nw = 96 and Es/N0 = 1 dB. Additionally, we

have varied q over the range of [0, 2] and computed PFL for several values of D. It is observed

that the introduction of C(δ) reduces PFL given that q is carefully selected. We observe that

a value of q = 1 is suitable for D = 63, while it needs to be decreased for smaller values of D.

In fact, C(δ) becomes less important for small values of D such as D = 2 and can simply be
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Figure 3.9. The effect of correction term C(δ) (Equation (3.36)) and its exponent
q on PFL. GMSK signaling is used when Np = 64 and Es/N0 = 1 dB.

ignored, i.e. q = 0. Nevertheless, it visibly improves the performance for D = 63 such that it

becomes superior to D = 8 only in the presence of C(δ). Our simulations also confirm that the

SoS estimator becomes unbiased only for the optimized q, which was the main motivation for

introduction of C(δ) as in (3.36).

The SoS estimator’s performance with respect to SNR is shown in Figure 3.10 for two

different preamble lengths and multiple values of D. We note that the proposed parameter

of D allows us to avoid unwieldy complexity of D = Np − 1. For instance, choosing D = 4

results in only a loss of 0.7 dB for L0 = 64 in comparison with D = 63. Yet, the computational

complexity is reduced by a factor of approximately 16. Another important observation that can

be made is that increasing L0 from 32 to 64 yields a gain of only a fraction of dB in terms of

the SNR.

The performance of the SoS detection algorithm can be examined through the ROC plots.

A few examples of the ROC are plotted in Figure 3.11 where PFA and PD are calculated using

simulations by varying γD′ . These ROCs are obtained for the GMSK scheme when Es/N0 = 1

dB, and N = 1 (Np = L0). It is observed that we are able to attain a very low PFA at low SNR
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Figure 3.10. The probability of false lock versus SNR for different preamble
lengths. The values of q are optimized for each case. The signal is sampled at
N = 1, which results in Np = L0.

even with a relatively short preamble of L0 = 32. It is also seen the improvement becomes less

significant when D′ is changed from 4 to 8. Therefore, a small value of D′ looks sufficient to

achieve a PD that is close to the full-complexity detector, i.e. D′ = Np − 1. This is similar to

the performance improvement of the SoS estimation algorithm versus D (Figures 3.9 and 3.10).

On the other hand, the performance is improved substantially when L0 = 64. For instance,

PD = 1− 5× 10−7 ≈ 1 and PFA = 4.86× 10−6 for γ2 = 40. Comparing these metrics with PFL

in Figure 3.10 reveals that the performance of the frame synchronization algorithm is limited

by the false locks rather than false alarms or missed detections.

3.6.3 BER Performance

In this section, we evaluate the overall BER performance of the proposed synchronization

scheme using simulations. We have considered two examples of GMSK and 4-ary, h = 1/4 CPM

with 2RC frequency pulse. Each burst consists of a preamble of L0 symbols, a UW of 64 random

but known bits and 4096 information bits. The UW is used in order to adjust the beginning
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Figure 3.11. Receiver operating characteristics for the proposed detector. The
optimum preamble is transmitted over an AWGN channel when Es/N0 = 1 dB and
GMSK modulation is used.

of each burst by correlating it with the demodulated bits. In our simulations, the transmitter

sends individual bursts that are preceded by a fixed but unknown amount of guard time. The

AWGN is then added to the waveform along with random frequency and phase offsets. The

received signal is sampled at N = 2 samples per symbol. The MLSD CPM demodulator is

designed according to [65], which uses the Viterbi algorithm (VA). We have also employed a

decision-directed phase and timing tracking loop [42] in which phase and timing error signals

are generated according the decisions made inside the VA. The phase tracking loop is essential

because even very small residual frequency offsets, after the DA synchronization, result in large

phase rotations as the burst is being demodulated. The phase and timing loop bandwidths

are both set to 10−3/Ts. Finally, we have set D′ = D = 4 and Nw = 2NL0 for the frame

synchronization.

The BER performance of the burst-mode receiver for the GMSK scheme with two different

preamble lengths is depicted in Figure 3.12 (a). It is observed that the receiver operates within

less than 0.1 dB of the ideal synchronization for L0 = 64 over the whole range of Eb/N0.
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Figure 3.12. BER for the burst-mode CPM receiver. L0 is the preamble length
in terms of data symbols.

However, there is a substantial BER degradation at the low SNR region for the short preamble

of L0 = 32. Our simulation results show that this is mainly due to the SoS false locks that are

more likely to happen at low SNRs and short preamble lengths. False locks reduce the accuracy

of the timing and carrier recovery algorithm, which impact the BER. At higher SNRs, there is

about 0.2 dB gap that is caused by estimation errors, which are increased when L0 is reduced.

The BER performance for the 2RC scheme is reported in Figure 3.12 (b). Similar to GMSK,

L0 = 64 performs almost ideal and within about 0.1 dB of perfect synchronization. However,

the preamble of L0 = 32 shows slightly different behavior than that of GMSK, where no BER

degradation at low SNRs is visible. This is because Es = 2Eb for the 4-ary scheme and both

Figures 3.12 (a) and 3.12 (b) are expressed in Eb/N0. In other words, Es/N0 for GMSK is 3

dB less than for the 2RC, and hence, PFL becomes larger. In fact, 2RC with L0 = 32 should

be compared to GMSK with L0 = 64 in order to have a fair comparison where both preambles

contain 64 bits. We also note there is no visible difference between the two preambles in terms

of the BER, and hence, L0 = 32 is an adequate length in practice. Finally, this scheme,
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i.e. non-binary and partial-response, is known to be prone to false locks when DD timing

estimation algorithms such as [18] or [42] are implemented. Here, we showed that our proposed

DA algorithm with a short preamble can be another method to solve the false lock problem

while it significantly reduces the acquisition time.

3.7 Conclusions

In this Chapter, we addressed the synchronization problem for CPM signals in burst-mode

transmissions. Thanks to the unique structure of the optimized synchronization preamble,

we developed a DA ML algorithm, which jointly estimates the frequency offset, carrier phase

and symbol timing. The proposed algorithm, which is implemented in a feedforward manner,

estimates the frequency offset via two FFT operations. Once the frequency estimate is available,

the carrier phase and symbol timing are easily computed via simple closed-form expressions. Our

method can be applied to the whole range of CPM signals. The computed MSEs demonstrate

that its performance is within 0.5 dB of the CRB for all three synchronization parameters for

various examples. Moreover, it operates at frequency offsets as large as half of the sampling

frequency without sacrificing the estimation accuracy.

In the second part of this chapter, we addressed the frame synchronization issue in burst-

mode CPM transmissions using ML principles. We developed a simple test for detection of the

SoS after which the exact location of the SoS is estimated via a one dimensional search. We

numerically computed the ROCs for the SoS detector along with the false lock probabilities

for the SoS estimator. The frame synchronization allowed us to implement a realistic burst-

mode CPM receiver. The simulated BER curves demonstrated an almost ideal performance for

preambles as short as 64 bits and SNRs as low as 0 dB.
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Chapter 4

Applications to SOQPSK

4.1 Key Points of the Chapter

In this chapter, we introduce a complete synchronization strategy for burst-mode SOQPSK

signals in AWGN channels. Due to the similarity of SOQPSK and CPM, we extensively use

our techniques in the previous chapters by tailoring them the SOQPSK’s characteristics. We

first derive the optimum training sequence such that it minimizes the CRBs for frequency offset,

carrier phase and symbol timing estimations. Our optimization method of the training sequence

is ad hoc, however, it is validated by exhaustive computer search. Additionally, we propose a ML

DA algorithm for joint estimation of the synchronization parameters for SOQPSK signals. We

show that the proposed algorithm for the optimum training sequence can easily be extended to

the preamble defined in the iNET standard [43]. This demonstrates one immediate application

of this work as the first feedforward ML synchronization algorithm for the iNET standard. We

compute and compare the MSE of the proposed algorithm for the optimum and iNET preambles,

and for different synchronization parameters. Finally, we compare the overall performance of

our proposed training sequence and synchronization algorithm for different sequence lengths by

simulating a burst-mode SOQPSK receiver. This allows us to employ the right preamble length

based on the desired complexity and BER performance.
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4.2 Introduction

SOQPSK is a physical-layer waveform that has seen extensive use in serial streaming teleme-

try (SST), and has been selected for future use in the iNET system. A key difference between

SST and iNET is that iNET uses burst-mode transmission. The synchronization task becomes

more challenging in burst-mode transmissions because there is little time for acquiring and

locking onto the signal. SOQPSK waveform can be viewed as a CPM modulation signal, and

hence, we extend our techniques in the previous chapters to this type of modulation.

The burst-mode synchronization problem for CPM signals in general and SOQPSK in par-

ticular have not been studied well in the published literature. For example, [66] and [67]

present timing recovery algorithms specifically designed for SOQSPK signals. However, these

methods are designed based on a PLL structure, which typically needs a rather long acquisition

time. Therefore, they are not suitable for a burst-mode receiver. As the name of SOQPSK

suggests, it shares important similarities with OQPSK modulation, which belongs to the MSK-

type modulations, i.e. binary CPMs with a modulation index of 1/2. A few published works

have addressed burst-mode synchronization of MSK-type modulations using DA [24] or (NDA)

algorithms [25, 26, 27]. For instance, [24] presents a DA ad hoc feedforward synchronization

algorithm based on an MSK preamble of repeating “1100” data symbols. Although MSK syn-

chronization techniques may be applied to SOQPSK, this approach is suboptimal due to the

approximations, and hence, it would result in a poor performance.

In this chapter, we introduce a ML algorithm for feedforwrd synchronization of SOQPSK

signals based on an optimized training sequence. We consider the burst-mode transmission

over an AWGN channel where frequency offset, carrier phase and symbol timing are to be

jointly estimated. The optimization of the training sequence is based on the CRB method

for CPM signals where SOQPSK’s properties are taken into the consideration. Moreover, we

apply our joint estimation algorithm of Chapter 3 to the SOQPSK synchronization problem.

This is explained in more details for the iNET’s proposed preamble, which differs from our

optimized one. Therefore, we show that our synchronization algorithm is applicable to a wider
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group of preambles, although it becomes suboptimum. Finally, we compare these two candidate

preambles in terms of estimation error variances and BER performance using simulations.

The remainder of this chapter is organized as follows. Section 4.3 introduces the transmission

model using SOQPSK signaling. In Section 4.4, we address the optimum training sequence

design based on the CRB criteria for CPM signals. Section 4.5 explains the joint ML algorithm

for both the optimum and iNET preambles. Section 4.6 illustrates the performance of the

studied training sequences and the synchronization algorithm via simulations. Finally, the

conclusions are drawn in Section 4.7.

4.3 SOQPSK Signal Representation

The SOQPSK signal can be viewed as a CPM signal with the baseband representation

s(t;α) =

√
Es
Ts

exp {jφ(t;α)}, (4.1)

where Es is the energy per transmitted symbol and Ts is the symbol duration. The phase signal

is defined as

φ(t;α) = 2πh
∑
i

αiq(t− iTs), (4.2)

where αi ∈ {−1, 0, 1} is the transmitted ternary symbol and h = 1/2 is called the modulation

index. The waveform q(t) is the phase response of SOQPSK and in general is represented

as the integral of the frequency pulse g(t) with a duration of LTs. There are currently two

different versions of SOQPSK defined by their own frequency pulses. The first one known as

the SOQPSK-MIL [68] is a full-response (L = 1) scheme with a rectangular-shaped frequency

pulse. The second form is the telemetry group version [69], i.e. SOQPSK-TG, which is partial-

response (L = 8) with a custom frequency pulse. The latter version of SOQPSK has been

adopted in the iNET standard. According to the CPM definition, q(t) is zero for t < 0 and

becomes equal to 1/2 for t > LTs. The phase responses of the aforementioned SOQPSKs are

illustrated in Figure 4.1.
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Figure 4.1. Phase response q(t) for SOQPSK-MIL (L = 1) and SOQPSK-TG
(L = 8).

The complexity in detection of CPM signals in general and SOQPSK in particular is expo-

nentially related to L, which makes optimum detection of SOQPSK-TG quite complex. How-

ever, we can take advantage of a simplified model for SOQSPK-TG [70], which truncates the

phase response into one symbol duration at the receiver. Therefore, the phase can be approxi-

mated as

φ(t;α) ≈ παnqpt(t− nTs) +
π

2

n−1∑
i=0

αi (4.3)

for nTs ≤ t < (n+1)Ts. The truncated phase response is denoted by qpt(t) for which L = 1. The

second term in Equation (4.3) is viewed as the phase state θn−1 ∈ {0, π/2, π, 3π/2} when taken

modulo-2π. It should be mentioned that the phase of SOQPSK-MIL can also be represented by

(4.3) in which qpt(t) is simply replaced by the original phase response of SOQPSK-MIL. Unlike

SOQPSK-TG, there is no approximation in the latter case.

The SOQPSK modulator can be characterized as a precoder connected to a CPM modulator.

The precoder converts binary information bits an ∈ {0, 1} to ternary symbols by means of

αn = (−1)n+1(2an−1 − 1)(an − an−2) (4.4)
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Figure 4.2. Four state time varying trellis. The labels on the branches indicate
the input bit/output symbol based on the precoder of (4.4).

in order to impose OQPSK-like characteristics on the CPM signal. This important role can be

identified as αn−1 = 1 cannot be immediately followed by αn = −1 and vice versa. In other

words, αn is selected from either of {0, 1} or {0,−1} depending on αn−1. This restriction on

the sequence of data symbols increases the bandwidth efficiency of SOQPSK signals compared

to binary CPMs with h = 1/2.

One can interpret the output of the precoder as a function of current bit an and three state

variables: an−1, an−2 and n-even/n-odd, which leaves us with an eight state trellis diagram.

However, we can remove the time index from state variables and represent its function as a

time-varying four state trellis as shown in Figure 4.2. The state variables, labeled as Sn ∈

{00, 01, 10, 11}, have a one-to-one mapping with the CPM phase state θn−1 [70, Fig. 4].

4.4 Best Training Sequence

In this section we derive the optimum training sequence for joint estimation of carrier

phase, frequency offset, and symbol timing of SOQPSK signals based on the CRB criterion.

Since SOQPSK waveform is a special case of CPM, the CRB computations in Section 2.3

can be directly applied to SOQPSK. We only need to work with ternary symbols rather than

information bits as the known training sequence α. The same discussion applies to the optimum

training sequence for which the CRBs are minimized.

Let us recall our optimization method in Section 2.4. The data sequence, which minimizes
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the symbol timing CRB, is the solution to

argmax
α

C subject to A = B = 0, (4.5)

where A, B, and C are defined in (2.27), (2.28), and (2.38) respectively. Additionally, setting

A = B = 0 automatically minimizes the frequency and phase CRBs. The ternary symbol set

can be viewed as the union of ±1 symbols (binary) and zero symbols. Therefore, we consider

the optimum training sequence for binary CPM as a candidate for SOQPSK. This sequence

satisfies A = B = 0, and hence, we must only check whether it maximizes C among all ternary

candidates as well. Based on (2.38), C is the summation of αiαi+n terms when 0 ≤ i < L0 and

n ∈ {0, 1}. Thus, we need to avoid αi = 0 in maximizing C as long as a ternary α is concerned.

Therefore, the optimum binary training sequence is also the solution to (4.5) for the ternary

α because it does not contain any zero symbols. However, an issue arises with the proposed

sequence due to the constraints on SOQPSK symbols where a −1 symbol cannot be immediately

followed by a +1 symbol and vice versa. We can approach this problem in two different ways.

The first solution is to bypass the SOQPSK’s pre-coder during the transmission of the training

sequence such that the exact sequence of Figure 4.3 (a) is fed to the CPM modulator. Another

approach is to insert zero symbols in the locations that there is a sign transition. The second

approach violates our condition on A. However, we opt for the second approach due to the ease

of implementation and the fact that there are only two transitions. This results in a sequence

which is only different by two symbols from the optimum sequence. The optimized ternary

sequence is shown in Figure 4.3 (b). We note that the optimality of this sequence is subject to

certain assumptions and approximations. However, it can be shown that the above sequence

is asymptotically optimum following CPM methods in Chapter 2. In order to be consistent in

the rest of our discussion, we refer to the sequence of Figure 4.3 (b) as the optimum training

sequence whether it is optimum or near-optimum.

Finally, we have derived the optimum training sequence via a computer brute force search

when L0 = 20. The results are shown for SOQPSK-TG and SOQPSK-MIL standards in
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(a)

(b)

Figure 4.3. The optimum sequence for symbol timing estimation in binary CPM
signals (a) and the modified version for SOQSPK signals (b). The negative of this
sequence is also optimum.

Figures 4.4 and 4.5 respectively. It can be seen that the computer search results follow our

proposed sequence of Figure 4.3 (b), which validate the accuracy of our approximations for

short sequences. Careful reader may notice that the transition points are shifted by one symbol

for the SOQPSK-TG, which is caused by its long phase response. Although we can adjust the

transition points for a given L0 using the method of Figure 2.2 for partial-response CPMs, we

assume the training sequence of Figure 4.3 (b) for all versions of SOQPSK. This makes the

following discussion consistent and simple. Moreover, we have presented the actual information

bits which are fed to the SOQPSK modulator. It is interesting to interpret the optimum training

sequence in terms of the QPSK constellation points. It can be seen that the optimum training

sequence alternates between two QPSK constellation points that are 180◦ apart for the first

quarter of the sequence. In the next half, it alternates between two other points, which are

again 180◦ apart. Finally, it alternates between the initial points for the remaining quarter of

the sequence.
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(a) Information Bits (b) Ternary symbols

Figure 4.4. The computer search results for optimum training sequence for
SOQPSK-TG when L0 = 20.

(a) Information Bits (b) Ternary symbols

Figure 4.5. The computer search results for optimum training sequence for
SOQPSK-MIL when L0 = 20.

4.5 Timing and Carrier Recovery

In this section, we derive an ML algorithm for joint estimation of frequency offset, carrier

phase and symbol timing for SOQPSK signals using the training sequence of Figure 4.3 (b). Due

to the similarities with CPM in terms of waveform and training sequence, we only highlight the

differences. Later in Section 4.5.2, we will extend our algorithm to the iNET preamble in more

details.

4.5.1 ML Estimation for Optimum Training Sequence

We begin by studying the phase response of SOQSPK schemes to our optimized training

sequence, which is shown in Figure 4.6 for L0 = 32. It is observed that the phase response

consists of three major parts in which φ(t;α) varies with a constant rate of ±π/2 radians

90



0 4 8 12 16 20 24 28 32

0

Normalized Time (t/Ts)

U
nw

ra
p
p
ed

P
h
as
e
(r
ad
)

 

 

SOQPSK−MIL

SOQPSK−TG

4π

2π

−2π

−4π

Tl

Figure 4.6. The unwrapped phase response of SOQPSK-MIL and SOQPSK-TG
schemes to the optimum training sequence when L0 = 32.

per symbol. Each of these parts corresponds to consequent +1 or −1 symbols in the training

sequence. More importantly, the phase response of SOQPSK-TG varies with a fixed rate within

each part despite its non linear phase response (see Figure 4.1). This is resulted by the overlap

of frequency pulses when adjacent symbols are the same. We also note that the overall response

of SOQPSK-TG is delayed by Tl = 3.5Ts, which is caused by its partial response behavior.

Another difference is that SOQPSK-TG exhibits smoother transitions because of its phase

response shape, which also makes it more bandwidth efficient. Therefore, we use the phase

response of SOQPSK-MIL as the template and approximate other versions of SOQPSK with a

delayed version of it. This is the main idea of the proposed estimation algorithm.

Based on the above discussion, we can mathematically express the phase response of SO-

QPSK to the optimum training sequence α∗, i.e.,

φ(t,α∗) ≈



− πt
2Ts

Tl < t ≤ T0
4 + Tl

π(t−T0/2+Ts)
2Ts

T0
4 + Tl < t ≤ 3T0

4 + Tl

−π(t−T0)
2Ts

3T0
4 + Tl < t ≤ T0 + Tl

0 otherwise,

(4.6)
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where Tl is the lag time in the phase response present in partial response SOQPSK such as

SOQPSK-TG. We proved in Appendix ?? that Tl = (L − 1)/2. We can easily recognize the

similarities between (4.6) and its CPM counterpart in (3.6) when h = 1/2 and M = 2. The

only difference is that φ(t,α∗) in the second case of (4.6) is advanced by π/2 radians, which

is equal to Ts seconds. This is explained according to Figure 4.6 and SOQPSK-MIL template

as follows. It is seen that the phase response has in fact five parts while (4.6) expresses it in

three segments. This is another approximation we make in which the phase response during the

two transitions (constant-phase) intervals is approximated by the same function as its previous

part, i.e. we assume φ(t,α∗) is reduced by π/2 during 7Ts < t < 8Ts. However, the phase of

the signal during the transition interval does not change in reality because it corresponds to

transmission of a zero symbol. We compensate this by adding π/2 radians to the second case

of (4.6). The third case is left unchanged as the second transition cancels the first one. This

assumption simplifies our derivations in the following discussion. We do not expect a noticeable

loss in the performance of the proposed estimator as each of these transition intervals last only

for one symbol time, which is much smaller than the sequence duration especially for longer

training sequences. Our simulation results in Section 4.6 confirm this prediction.

We take advantage the above representation to derive the joint LLF and its maximization,

which is similar to the CPM’s in Chapter 3. The modification of (4.6) shows its effect on the

pre-processing of the received and sampled signal r[n], i.e.,

r1[n] =


r[n] 0 ≤ n < NL0/4

exp[−jπL0/2]r[n] 3NL0/4 ≤ n < NL0

0 otherwise,

(4.7)

and

r2[n] =


exp[jπ(L0/4− 1/2)]r[n] NL0/4 ≤ n < 3NL0/4

0 otherwise.

(4.8)
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After computing above signals, they are used in (3.21) and (3.22) to compute λ1(ν̂) and λ2(ν̂),

respectively, when h = 1/2 and M = 2. The results are then applied to (3.16), (3.17), and

(3.18) in order to estimate frequency offset, symbol timing and carrier phase respectively.

4.5.2 ML Estimation for iNET Preamble

The proposed preamble for iNET [71] has a length of L0 = 128. This preamble is periodic

and it consists of repeating a sequence of 16 information bits 8 times as follows,

a2k = 1, 0, 1, 0, 1, 0, 1, 0

a2k+1 = 1, 0, 1, 1, 0, 1, 0, 0

 for k = 0, . . . , 7 (4.9)

where {ai} is fed into a precoder in which a−2 = a−1 = 0. This results in a sequence of ternary

symbols which is depicted in Figure 4.7 for one period of the preamble. We denote this preamble

by α̊ in the rest of our discussion.

Let us investigate α̊ and its phase response more carefully. We notice that α̊, within each

period, can be divided into two segments, each of which having the same symbols of either +1 or

−1. This pattern causes the signal’s phase to change with a uniform rate of approximately π/2

radians per symbol in the same direction within each segment. This behavior is illustrated in

Figure 4.8 by plotting the unwrapped phase response of SOQPSK-MIL and SOQPSK-TG when

α̊ for its first 32 symbols is utilized. More importantly, SOQPSK-TG’s phase response follows a

straight line within each part, similar to SOQPSK-MIL, despite the short length of each period.

This is indeed the same behavior as we observed for α∗ and SOSPKS-TG. Therefore, we can

apply a similar method for timing and carrier synchronization using the iNET preamble.

Based on the above discussion, we approximate the phase response of SOQPSK-TG to

α̊ with a delayed version of SOQPSK-MIL’s response to the same preamble sequence. Its
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Figure 4.8. The unwrapped phase response of SOQPSK-MIL and SOQPSK-TG
schemes for the first 32 symbols of the iNET preamble.

approximated phase response φ(t, α̊) can be mathematically expressed as

φ(t; α̊) ≈



π(t−16kTs−Tl)
2Ts

16kTs + Tl < t ≤ (16k + 8)Ts + Tl

−π(t−(16k+15)Ts−Tl)
2Ts

(16k + 8)Ts + Tl < t ≤ (16k + 16)Ts + Tl

0 otherwise

(4.10)

for k = 0, . . . , 7. Tl = 3.5Ts is the lag time in the phase response of SOQPSK-TG, which is fixed

and known to the receiver. Unlike our discussion on CPM signals, we continue using continuous
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time representations, and apply the sampling to the final results. We use (4.10) to express the

baseband SOQPSK-TG signal s(t) during the training sequence transmission as

s(t) ≈


exp[+j πt

2Ts
] 16kTs < t ≤ (16k + 8)Ts

exp[−j( πt
2Ts

+ π
2 )] (16k + 8)Ts < t ≤ (16k + 16)Ts.

(4.11)

We take advantage of the above approximation in order to simplify the LLF and its max-

imization algorithm. Using (4.11) in (3.4) results in a simplified form for the LLF when α̊ is

transmitted, i.e.,

Λ̊[r(t); f̃d, θ̃, τ̃ ] ≈ Re

{
e−jθ̃

7∑
k=0

[ ∫ (16k+8)Ts

16kTs

e−j2πfdtr(t)e−jπ(t−τ)/2Tsdt

+

∫ (16k+16)Ts

(16k+8)Ts

e−j2πfdtr(t)ejπ(t−τ)/2Tsejπ/2dt
]}
,

(4.12)

where Λ̊[·] represents the joint LLF given α̊. It is evident from (4.12) that the symbol timing

is now decoupled from the frequency offset and can be moved outside the integrals of the LLF.

Hence, the joint LLF can be summarized as

Λ̊[r(t); f̃d, θ̃, τ̃ ] ≈ Re
{
e−jθ̃

[
ejπτ̃/2Tsλ1(f̃d) + e−jπτ̃/2Tsλ2(f̃d)

]}
, (4.13)

where

λ1(f̃d) =

7∑
k=0

∫ (16k+8)Ts

16kTs

e−j2πfdtr(t)e−jπt/2Ts dt, (4.14)

and

λ2(f̃d) = ejπ/2
7∑

k=0

∫ (16k+16)Ts

(16k+8)Ts

e−j2πfdtr(t)ejπt/2Ts dt. (4.15)

Because the estimation parameters are now decoupled, the maximization of the LLF becomes

straightforward. Based on (4.13), we define the normalized symbol timing with respect to the

symbol duration as ε = τ/Ts, which is used in the rest of our discussion. Let us proceed by
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denoting the term in (4.13) that corresponds to symbol timing and frequency offset as

Γ(f̃d, ε̃) = ej(π/2)ε̃λ1(f̃d) + e−j(π/2)ε̃λ2(f̃d). (4.16)

It is observed that for any trial value of (f̃d, ε̃), Λ̊(·) is maximized by choosing θ̃ such that it

rotates Γ(f̃d, ε̃) towards the real axis, i.e.,

θ̃ = arg{Γ(f̃d, ε̃)}, (4.17)

which reduces the LLF to |Γ(f̃d, ε̃)|. Thus, the ML estimates of f̃d and τ̃ are found by maximizing

|Γ(f̃d, ε̃)|2 = |λ1(f̃d)|2 + |λ2(f̃d)|2 + 2Re
[
e−jπε̃λ∗1(f̃d)λ2(f̃d)

]
(4.18)

with respect to (f̃d, ε̃). The first two terms on the right-hand side of (4.18) do not depend on

ε̃. Using a similar argument as θ̃, the third term is maximized by selecting ε̃ according to

ε̃ =
arg{λ∗1(f̃d)λ2(f̃d)}

π
(4.19)

such that the term inside the real part operator of (4.18) becomes purely real and equal to

|λ∗1(f̃d)λ2(f̃d)|. Therefore, the maximization of the LLF is now a one dimensional problem that

results in the ML estimate of frequency offset, i.e. f̂d. This can be expressed mathematically

in the form of

f̂d = argmax
f̃d

{
X(f̃d) = |λ1(f̃d)|+ |λ2(f̃d)|

}
, (4.20)

which leads to the ML estimates of the normalized symbol timing ε̂ and phase offset θ̂ via

ε̂ =
arg{λ∗1(f̂d)λ2(f̂d)}

π
, (4.21)

and

θ̂ = arg
{
ej(π/2)ε̂λ1(f̂d) + e−j(π/2)ε̂λ2(f̂d)

}
, (4.22)
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respectively.

According to (4.14) and (4.15), each of λ1(fd) and λ2(fd) requires computation of 8 integrals

with different limits. In order to make them consistent, we define two new signals, i.e. r1(t)

and r2(t), such that

r1(t) =


r(t) 16kTs < t ≤ (16k + 8)Ts

0 otherwise,

(4.23)

and

r2(t) =


ejπ/2r(t) (16k + 8)Ts < t ≤ (16k + 16)Ts

0 otherwise.

(4.24)

for 0 ≤ k ≤ 7. The above modifications to r(t) lead to similar forms for λ1(fd) and λ2(fd),

where each one requires computation of one integral with a duration of [0, T0].

In practice, r(t) is sampled at N times per symbol time. This results in r1[n] and r2[n], which

are discrete versions of (4.23) and (4.24) respectively. These signals are then phase rotated and

sent to the FFT modules, i.e.

λ1(ν̃) =

NL0−1∑
n=0

r1[n]e−j
πn
2N e−j2πnν̃ , (4.25)

and

λ2(ν̃) =

NL0−1∑
n=0

r2[n]ej
πn
2N e−j2πnν̃ , (4.26)

which are then used in (4.21) in order to estimate the frequency offset. Similar to the CPM,

we zero pad r1[n] and r2[n] with a factor of Kf , and perform the Gaussian interpolation on the

FFT results. Once a fine estimate of ν is available, we recompute λ1(ν̂) and λ2(ν̂), which are

inserted in (4.21) and (4.22) for estimation of ε and θ respectively.
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4.6 Discussion and Results

The estimation error variances of frequency offset, carrier phase, and symbol timing are

depicted in Figures 4.9 (a), 4.9 (b), and 4.10 respectively. These set of plots are computed using

Monte Carlo simulations in which L0 = 128, Kf = 2, and N = 2. Moreover, we have compared

the variances with their corresponding CRB for both optimum and iNET training sequences.

Figure 4.9 (a) shows that SOQPSK-MIL and SOQPSK-TG with the optimum training se-

quence perform the same in terms of frequency estimation as their CRBs are equal too. However,

there is a performance gap between the variance and its CRB, which is due to the FFT and

interpolation resolution. This gap becomes larger at high SNRs where the errors due to ther-

mal noise become smaller than the FFT precision. In terms of phase estimation, it is seen that

SOQPSK-MIL exhibit lower error variance compared to the SOQPSK-TG, which follows their

CRBs. This in fact demonstrates the close relation between the CRB and ML estimation error

variances. The phase estimation error variance degrades at high SNRs because of the close

relation between frequency and phase, i.e. errors in frequency estimation leads to undesirable

phase rotations. Finally, timing error variances show that both versions of SOQPSK perform

the same as each other, and the CRB is reached. This situation is similar to the CPM where the

errors in frequency estimation does not impact symbol timing estimates as far as the optimum

training sequence is utilized.

Comparison of the optimum and iNET preambles for SOQPSK-TG reveals the superiority

of our proposed preamble in terms of the estimation error variance. It is seen that the optimum

training sequence delivers an approximate SNR gain of 0.5 dB for frequency and phase esti-

mations despite the fact that both sequences have the same CRB. Figure 4.10 shows that the

iNET preamble’s symbol timing CRB is approximately 1 dB worse than that of the optimum

preamble. However, its estimation error variance demonstrates a dramatic loss especially at

high SNRs. This can be explained based on the approximations we made in representing the

LLF (4.12). Following the piecewise linear representation of signal phase, we separated the

integral involved in computation of the LLF. In a strict sense, each of these integrals must be
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Figure 4.9. The error variance of frequency offset (a) and carrier phase (b) esti-
mations for different SOQPSK schemes when L0 = 128. The frequency is normalized
with respect to the symbol rate.
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Figure 4.10. The error variance of symbol timing estimation for different SO-
QPSK schemes. The symbol timing is normalized to the symbol duration.

perfectly aligned the received signal, i.e. the integral limits should be adjusted based on τ̃ .

However, we ignored τ̃ in the integral limits to be able to proceed with our method. This is

indeed a very good approximation for the optimum preamble because |τ̃ | is much smaller than

the integral limits for the optimum preamble and for moderate to large values of L0. However,

it becomes comparable to the integral duration in the LLF of the iNET preamble, which is 8Ts.

Our simulation results in Figure 4.11 also confirms that the estimation error is increased for

larger values of |τ | in case of the iNET preamble. A similar behavior has also been reported

in [19], where a DA ML algorithm was developed for joint estimation of symbol timing and

phase. The authors assume an arbitrary training sequence in their work and separated the

LLF for every single symbol. That is a worst case scenario, and as reported, its timing esti-

mation performance is only good for small |τ |. On the contrary, our work takes into account

the structure of the optimized method, and hence, it works perfectly for all possible values of

τ . Finally, it should be mentioned that the performance of our joint estimation algorithm for

the iNET preamble is still acceptable as CPM detection is less sensitive to timing errors rather

than errors in the phase [1].
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Figure 4.11. The comparison of error variance of normalized symbol timing es-
timation for SOQPSK-TG with iNET preamble for different variations of symbol
timing error.

Based on our discussion in this chapter and frame synchronization of Section 3.5, we im-

plemented a burst-mode SOQPSK-TG receiver in MATLAB in order to evaluate the overall

performance of our synchronization method. A high-level block diagram of this receiver is de-

picted in Figure 4.12. The channel observation is first sent to an anti-aliasing filter (AAF) after

which it is sampled at N = 2 samples per symbol. The frame synchronization module observes

r[n] using a sliding window such that it detects the arrival of new bursts, and then estimates

the location of the SoS. The parameters for this module are D = D′ = 4 and Nw = 2NL0. Once

the SoS is identified, a vector of NL0 samples, which correspond to the preamble, are used for

timing and carrier recovery. The frequency estimator works at Kf = 2 and utilizes a Gauassian

interpolator. After estimation of the synchronization parameters, the phase of received signal is

corrected according to ν̂ and θ̂. Next, a parabolic interpolator [72] corrects the sample timing

error based on ε̂. Unlike CPM, the synchronized signal cannot be directly used by the Viterbi

demodulator because the SOQPSK-TG trellis is time-varying, which results in ambiguity. Thus,

we use a symbol-by-symbol detection filter (DF) [73] over an uncertainty region where the UW
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Figure 4.12. The block diagram of the burst-mode SOQPSK-TG receiver.
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Figure 4.13. The BER performance of the burst-mode SOQPSK-TG receiver for
different preambles.

is supposedly located. The resulted symbols are correlated with the known UW symbols so

that its exact location is identified. This resolves the even/odd timing ambiguity and allows the

Vitrebi algorithm to correctly demodulate the received burst according to the trellis of Figure

4.2. Finally, we have employed a phase tracking loop inside the Viterbi demodulator using a

method known as the per-survivor-processing (PSP) [1, Section 6.5.2]. The PSP corrects the

phase of each branch in the trellis prior to making the decisions by the Viterbi algorithm. The

PSP allows the receiver to handle any residual frequency offset as well as fading channels.

The BER performance of the SOQPSK-TG burst-mode receiver is shown in Figure 4.13 for
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different preambles using simulations. Each burst consists of 6144 information bits, a UW of 64

pseudo-random bits, and a preamble of L0 bits. Since SOQPSK is inherently binary, one bit is

equivalent to one symbol. Comparison of the iNET and optimum preambles shows that both of

them perform quite closely despite considerable loss in symbol timing estimation of the iNET’s

in Figure 4.10. This can be viewed as SOQPSK’s demodulation (similar to CPM’s) is rather

robust to small timing errors, i.e. both preambles are able to attain an error variance that is

well below 10−2 at all SNRs. Nevertheless, we can still observe that the optimum preamble

outperforms the iNET preamble at the high SNR region in which the iNET’s symbol timing

error variance levels off. We also note that both these preambles result in only 0.25 dB SNR

loss at the BER of 10−3 when they are compared to the perfect synchronization scenario. This

shows the effectiveness of our proposed synchronization algorithm. We have also studied the

BER performance of the optimum preamble for L0 = 64 and L0 = 32. It is observed that the

preamble of L0 = 64 makes an additional SNR loss of about 0.2 dB, which is still quite acceptable

recalling the complexity reduction that it delivers. The performance loss is more significant in

the case of L0 = 32, that is slightly less than 1 dB away from the perfect synchronization

scenario. There are two reasons for the performance loss when L0 is reduced. The first one is

the increase of initial estimation error variances as the CRBs are inversely proportional to L0

(L3
0 for frequency). Additionally, we have to increase the phase tracking loop’s bandwidth for

smaller values of L0 in order to cope with the increased residual frequency offset. This in turn

introduces more noise to the phase loop, which impacts the demodulation quality. Finally, we

note that the BER loss is larger for L0 = 32 at very low SNRs. This behavior is resulted by

false locks at the frame synchronization level, which are more likely to happen for small values

of L0.

4.7 Conclusions

In this chapter, we studied the training sequence design and feedforward DA synchroniza-

tion of burst-mode SOQPSK transmissions over AWGN channels. We presented a systematic

103



technique for the design of optimum or near-optimum training sequences for joint estimation of

frequency offset, carrier phase and symbol timing based on the CRB computations, which we

had derived for CPM in Chapter 2. We showed that the SOQPSK’s optimum training sequence

is very similar to the CPM’s, and hence, the same method of piecewise linear phase approxi-

mation can be applied to obtain the synchronization algorithm. We extended this idea to the

iNET’s preamble, which has more variations compared to the optimum one. Using simulations,

we calculated the MSE of the joint estimation algorithm for both preambles, which revealed

that the optimum preamble attains the CRB at all SNRs while the iNET’s timing MSE levels

off at high SNRs. However, the estimation errors for both preambles are such that they both

deliver very close BERs at low to moderate SNRs. We also investigated the BER performance

of SOQPSK-TG for the optimum preamble with shorter lengths. It was observed that a pream-

ble of 64 bits is quite reasonable in which the SNR loss is less than 0.5 dB away from the ideal

synchronization case.
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Chapter 5

Conclusions

This work addresses feedforward synchronization of CPM signals for burst-mode commu-

nications. This area had not been studied adequately before, due to the complexities in CPM

signals. In order to assist the synchronization task, we analytically derived the optimum train-

ing sequence for CPM, which had been previously available only for linear modulations such

as PSK. We utilized the structure of our optimized training sequence for joint timing and

carrier recovery. Moreover, we developed a frame synchronization scheme for CPM signals in

burst-mode transmissions and frequency uncertainty. Thus, it can be stated that a complete

feedforward DA synchronization scheme for general CPM signals in burst-mode transmission

was developed in this work. This is the essence of this work, however, this contribution can be

divided into separate parts as follows.

5.1 Contributions

1. The best training sequence for synchronization of CPM signals was proposed. We com-

puted the CRB for joint estimation of frequency offset, carrier phase, and symbol timing

for CPM signals in AWGN. We developed the asymptotically optimum training sequence

such that it minimizes the CRB for all three estimation parameters simultaneously. We

also presented closed-form expressions for the UCRB, which enabled us to compare the
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theoretical performance of the optimum training sequence and a randomly selected one.

2. Based on the optimized training sequence, we designed a DA ML synchronization scheme,

which jointly estimates frequency offset, carrier phase and symbol timing. To the best

of our knowledge, all previous publications in this field had either ignored one of the

synchronization parameters or they were limited to a specific class of CPM such as MSK

modulation. We computed the MSE of the proposed algorithm for different CPM examples

including M -ary and/or partial-response ones using simulations. It was observed that

our algorithm is capable of performing quite close to the theoretical CRB for all three

synchronization parameters and SNRs as low as 0 dB.

3. We also extended the frame synchronization work of Choi & Lee to our scenario by

considering the CPM autocorrelation as well as the guard interval prior to the preamble

in burst-mode transmissions. This enabled us to simulate a burst-mode CPM receiver by

which we derived BER plots. It was observed that the proposed synchronization scheme–

including the training sequence, timing & carrier recovery, and frame synchronization–

performs within 0.1 dB of a perfectly synchronized receiver at all SNRs with a relatively

short preamble of 64 bits.

4. Finally, we extended our techniques to SOQPSK signals, which are practical ternary

CPMs. As an immediate application, we applied our synchronization algorithm to the

preamble defined in the iNET standard. We showed that this preamble along with our

algorithm can perform as well as the optimum one in terms of the delivered BER. However,

we suggested a half-sized preamble of 64 bits in order to save bandwidth and computations

while its SNR loss is only 0.2 dB compared to the standard one.

5.2 Areas of Future Study

The optimum training sequence design can be investigated for other transmission environ-

ments such as frequency selective channels. In such applications, the CRB becomes a function
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of the channel response as well as the training sequence and/or synchronization parameters.

Due to the increased complexity of the optimization problem, we may use computer search

methods such as the GA, which was touched on in this work.

Additionally, work can be done on DA synchronization of CPM signals in frequency selective

channels where multiple replicas of the preamble can arrive at the receiver. An interesting

research direction will be a joint synchronization and channel estimation algorithm such that

channel coefficients are estimated along with frequency offset and symbol timing.
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Appendix A

Exact Computation of Cx2

Let us begin by recalling Xi according to (2.57),

Xi = α1v
(i)
1 + α2v

(i)
2 + · · ·+ αL0v

(i)
L0
, (A.1)

where v
(i)
k is the k-th element of the i-th eigenvector vi. For the sake of simplicity we assume

binary modulation, i.e., αk = ±1 with equal probabilities. Therefore,

X2
i =

∑
k=l

αkαlv
(i)
k v

(i)
l +

∑
k 6=l

αkαlv
(i)
k v

(i)
l = 1 +

∑
k 6=l

αkαlv
(i)
k v

(i)
l (A.2)

because α2
k = 1 and ‖vi‖ = 1. Similarly,

X4
i = 1 +

∑
k 6=l

αkαlv
(i)
k v

(i)
l +

∑
m 6=n

αmαnv
(i)
m v(i)n +

∑
k 6=l

∑
m6=n

αkαlαmαnv
(i)
k v

(i)
l v(i)m v(i)n . (A.3)

If we take the expectation of (A.3), the second and third terms on the right hand side become

equal to zero because data symbols are assumed to be uncorrelated and have a zero mean.

Thus,

E{X4
i } = 1 +

∑
k 6=l

∑
m 6=n

E{αkαlαmαn}v
(i)
k v

(i)
l v(i)m v(i)n (A.4)
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in which the expectation term is non-zero only when (k, l) = (m,n) or (k, l) = (n,m) so that

E{αkαlαmαn} = E{α2
kα

2
l } = 1. Finally, one can obtain

E{X4
i } = 1 + 2

∑
k 6=l

[
v
(i)
k

]2 [
v
(i)
l

]2
. (A.5)

The above expression is the exact value for E{X4
i }. However, we note that the summation in

(A.5) increases only slightly if we include l = k terms. This is due to the fact the summa-

tion of the latter terms are proportional (approximately) to L0 while the whole summation is

proportional to L2
0. Hence, one can make the following approximation

E{X4
i } ≈ 1 + 2

∑
k,l

[
v
(i)
k

]2 [
v
(i)
l

]2
= 1 + 2

(∑
k

[
v
(i)
k

]2)(∑
l

[
v
(i)
l

]2)
= 3. (A.6)

Following a similar approach as of (A.2) to (A.5), one can obtain

E{X2
iX

2
j } = 1 + 2

∑
k 6=l

v
(i)
k v

(j)
k v

(i)
l v

(j)
l , (A.7)

which can be approximated by

E{X2
iX

2
j } ≈ 1 + 2

∑
k,l

v
(i)
k v

(j)
k v

(i)
l v

(j)
l = 1 + 2

(∑
k

v
(i)
k v

(j)
k

)(∑
l

v
(i)
l v

(j)
l

)
= 1 (A.8)

because the eigenvectors are orthogonal to each other. It is seen that the approximated values of

(A.6) and (A.8) match with (2.60) in which we used a Gaussian random variable approximation.

Nonetheless, one is able to obtain the exact entries of Cx2 based on (A.5) and (A.7).
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Appendix B

Derivation of Tl

We start by assuming transmission of K “M − 1 symbols” when the phase response length

is L. The CPM phase at t = KTs when K > L can be written as

φ(KTs) = 2πh

K−1∑
i=0

(M−1)q(KTs−iTs) = πh(M−1)(K−L+1)+2πh(M−1)

L−1∑
l=1

q(lTs), (B.1)

where the second equality holds since q(mTs) = 1/2 for m ≥ L. Without loss of generality we

assume L is odd. Additionally, we consider frequency pulses which have even symmetry around

LTs/2. Therefore, the second term on the right hand side of (B.1) can be expressed as

L−1∑
l=1

q(lTs) =

(L−1)/2∑
k=1

q(kTs) + q((L− k)Ts)

=

(L−1)/2∑
k=1

∫ (L/2)Ts

0
g(t)dt−

∫ (L/2)Ts

kTs

g(t)dt+

∫ (L/2)Ts

0
g(t)dt+

∫ (L−k)Ts

(L/2)Ts

g(t)dt

=

(L−1)/2∑
k=1

1

2
=
L− 1

4
. (B.2)
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The last equality is true due to the following equalities for symmetric g(t),

∫ (L/2)Ts

0
g(t)dt =

1

2

∫ LTs

0
g(t)dt =

1

4
, (B.3)∫ (L/2)Ts

kTs

g(t)dt =

∫ (L−k)Ts

(L/2)Ts

g(t)dt, (B.4)

where k < L/2. Thus, (B.1) is simplified to

φ(KTs) = πh(M − 1)[K − L− 1

2
]. (B.5)

It can be shown that the above results hold for even values of L as well. It is observed that

the signal phase in (B.5) is equal to the phase of a CPM signal with 1REC pulse shape, same

h and data sequence at t = (K− L−1
2 )Ts. The latter signal is basically the approximated phase

response, and hence,

Tl = KTs − (K − L− 1

2
)Ts =

L− 1

2
Ts. (B.6)
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