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Abstract

This paper presents the Bioinformatics Computational Journal (BCJ), a framework for conducting
and managing computational experiments in bioinformatics and computational biology. These
experiments often involve series of computations, data searches, filters, and annotations which can
benefit from a structured environment. Systems to manage computational experiments exist,
ranging from libraries with standard data models to elaborate schemes to chain together input and
output between applications. Yet, although such frameworks are available, their use is not
widespread—ad hoc scripts are often required to bind applications together. The BC| explores
another solution to this problem through a computer based environment suitable for on-site use,
which builds on the traditional laboratory notebook paradigm. It provides an intuitive, extensible
paradigm designed for expressive composition of applications. Extensive features facilitate sharing
data, computational methods, and entire experiments. By focusing on the bioinformatics and
computational biology domain, the scope of the computational framework was narrowed,
permitting us to implement a capable set of features for this domain. This report discusses the
features determined critical by our system and other projects, along with design issues. We
illustrate the use of our implementation of the BCJ on two domain-specific examples.

Introduction

The Bioinformatics Computational Journal (BCJ) is an
extensible environment that integrates computational
resources, methods, and data. Bioinformatics and compu-
tational biology span a wide variety of applications rang-
ing from interpretation of gene expression data to protein
structure prediction (For brevity, in this report we often
describe bioinformatics and computational biology as bioin-

formatics.). However, within this range of applications
there is considerable common ground that is pivotal to a
domain-oriented approach. Many bioinformatics applica-
tions are centered on the rapidly growing sequence data
archived at national centers [1]. These data can be seen as
enablers of bioinformatics approaches. As a result, stand-
ard approaches to process these data have appeared, but
specifics of the applications can vary widely. Foremost in
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common is sequence alignment [2]. Many other applica-
tions are widely used (for example, see EMBOSS [3]) and
more are under development.

The BC]J is designed around characteristics of bioinformat-
ics research, which often involves: (1) stepwise applica-
tion of a series of methods, (2) re-application of the series
of methods in search and retry iterations using different
parameters, (3) development of new procedures and com-
binations in the rapidly growing discipline, (4) an open
environment crucially dependent on web-based applica-
tion servers and public databases, and (5) rapidly growing
data collections and evolving vocabularies. The volume of
data and the number of computational experiments create
significant processing and management complications.

The BCJ framework reported here addresses these prob-
lems through data and process management, with mech-
anisms for experiment specification and composing
computations, tracking data provenance and retaining the
context of computations. Activities such as entering and
locating data, applications, and results are facilitated by
the framework. The BCJ fosters collaboration among
project teams through structured privacy mechanisms and
naming constructs, increasing productivity in computa-
tional experiments for both computationally expert and
non-expert researchers.

Background

A computational environment is a coherent interface to a
set of applications that integrates them under a single par-
adigm. The design goal is to simplify the use and manage-
ment of applications and their output. Here, we are
concerned about bioinformatics applications. Many bio-
informatics applications are based on scanning sequences
for features relative to some database. This activity is a sig-
nificant application in the field spurred by an exponen-
tially growing sequence collection archived at national
centers, now at around 65 billion bases at the National
Center for Biotechnology Information (NCBI) [1].
Numerous applications are standard in these studies, for
example, BLAST for sequence alignment [4], Markov
models for profiling related sequences [5], and GrailEXP
for searching for predicting genome features [6]. These
and other programs are often integrated together in differ-
ent ways, raising the challenge in bioinformatics of man-
aging trails of data and methods applied to them. Often
programs are composed together in ad hoc ways. This can
lead to errors in interpreting results, lost time in rewriting
the software glue to compose the programs, and overall
poor solutions. The problem is not insignificant, and
includes scientists from numerous disciplines involved in
the interdisciplinary bioinformatics field. There are inter-
mediate solutions to unified approaches to using bioin-
formatics software such as the somewhat standardized
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interfaces and data models provided by Bioperl and Bio-
java [4], but these appropriately do not attempt a user par-
adigm.

The BCJ is geared for bioinformatics applications where
computations are often organized as workflows. A work-
flow consists of a series of computations connected by a
flow of information between them (cf. task/control-based
workflows [5]). Computational experiments are com-
posed of workflows. As in the laboratory, computations
are often repeated or modified to create new experiments
to test additional hypotheses. When considering compu-
tational environments, there are several distinct factors to
be considered: the execution environment, computation
design, and the management of experiments and data.

A number of execution environment issues need to be
considered. First, the target computing platform may be a
standalone workstation, a local-area cluster, or a wide-
area grid. In the wide-area grid scenario, integration of
resources may be difficult because of decentralized secu-
rity and administrative tasks. Second, the native execution
environment may support simple, linear execution pipe-
lines where the output of each stage drives only one input,
or more complicated execution graphs where one output
can branch to provide multiple inputs. Iteration and con-
ditional branching are challenging execution features to
include because there are many iteration and conditional
branching strategies to choose from. Third, extension of
the environment may be done with internal tools that are
part of the (target) execution environment, or with exter-
nal tools that a user runs on his/her local workstation sep-
arately from the execution environment. Fourth, web
services can form the basis for an execution environment.

The graphical user interface paradigm for specifying the
experiment design is central to the usability of the envi-
ronment. Ease of use is achieved with an intuitive and
consistent interface to applications, data, and results.
Experiment-management issues including archiving,
searching, modifying and retrieving existing workflows,
searching stored data, searching annotated workflows/
experiments, and the ability to export data to and import
data from external sources impact the usability of the
environment. Finally, other miscellaneous features, such
as access controls on data, data provenance, experiment
repeatability, collaboration, and annotation of experi-
ments are important.

Computational journal overview

The BCJ documents the entire computational experiment.
The BCJ has mechanisms to record the complete context
of the experiment to enable its review and re-execution.
Furthermore, by recording this information, the ability to
interpret results is enhanced. Although the range of com-

Page 2 of 15

(page number not for citation purposes)



Source Code for Biology and Medicine 2007, 2:9

putational experiments in bioinformatics research is
extensive, the experimental processes have much in com-
mon. We leveraged the similarities to arrive at our frame-
work for this domain. We chose the traditional laboratory
notebook, long used by biologists to record wet lab exper-
iments, as the base paradigm. However, the BCJ is distinct
from a lab notebook. The BC]J's task is limited to provid-
ing support for managing and performing computational
experiments with a complete electronic record to enable
advanced functions like searching and collaboration.
From the user perspective, the top-level structure of the
computational journal is a collection of journal entries
and relationships among these entries. More formally, an
entry is the basic unit of information provided by the end
user for the BCJ. Each entry is characterized by a single con-
tent type that identifies the format of this information. The
number of content types is user extensible, allowing the
BCJ to support new data formats and programs. Relations
among entries provide an organizational structure to ena-
ble tracking entry dependencies, e.g., entry A "is an execu-
tion input" for entry B. These relationships are defined
automatically as the entries are created and then they are
maintained by the BCJ environment.

Our implementation of the BCJ uses the Eclipse infra-
structure [7]. The Eclipse project is an open source soft-
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ware framework that provides a development platform for
building applications. Eclipse is based on a plug-in frame-
work that supports the requirementsdiscussed above.
Eclipse provides a rigorously tested, refined, and docu-
mented infrastructure for the management of plug-ins. In
addition, we were able touse several Eclipse sub-projects,
such as the Graphical Editor Framework (GEF), to provide
infrastructure for BCJ - specific editors. By using Eclipse,
we have been able to focus directly on the development of
a set of plug-ins and functionality particular to theBC].

The BCJ is composed of a two-tier architecture with a sin-
gle server and multiple clients. The server is located on a
cluster while clients run a multi-platform application sup-
ported on Windows, Linux, or OS X. The security model
provides encryption between the client's computer, the
BCJ database, and the cluster, as well as the concept of
group-based access control. Workflows are defined graph-
ically with the client, and the requested computations are
loaded into the computational resources for execution.
Tools can be added using XML and an execution wrapper
script (for example, specific bioinformatics applications
like BLAST). The BCJ, similar to Wildfire (see Appendix),
offers a drag-and-drop interface for workflow creation
(Figure 1). The BCJ does not provide iterations and condi-
tional branches, but these are planned.
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In addition to providing program integration, the BCJ
manages workflows, data, and experiment definitions.
Data that are input to and output from workflows are
stored and linked with the corresponding execution spec-
ification, thus tracking all information related to a com-
putational experiment. For example, users can search for
experiments that used specific data as an input or created
specific data as an output. Each execution of a workflow
can be identified, along with the input, output, and
parameters. There are also options to search based on con-
tent type, owner, journal, and user annotations of work-
flows and experiments to facilitate experiment creation
and management. The BCJ can import data from external
sources such as local files, program output, or web
resources; and it can export data to a file, for other use.

The BCJ provides four of the five types of provenance
described in the taxonomy of data provenance techniques
developed in [8]. These four types are: (1) audit trail
(complete traces of the execution can be stored); (2) rep-
lication recipes (the steps, parameters, and other transfor-
mations are recorded in experiments); (3) attribution
(authentication and database control over ownership
metadata ensures proper pedigree can be established);
and (4) informational (annotations of varying types along
with indexing of data). (The fifth type of provenance is
data quality, i.e., fitness of the data for an application.)
Data, workflows, and experiments can be shared through
group-level access control lists. Scientists working on the
same project can publish their work to other users
through the BCJ]. Annotation of experiments, workflow,
and data can be textual or may be of other types, for
instance, a Microsoft Word® document or a picture of a
plot related to an experiment.

Comparisons

Four aspects were used to analyze the environments dis-
cussed above: execution environment, workflow design,
data management, and additional features. A comparison
based on these aspects with other computations is dis-
cussed below. (See the appendix for introductions to the

Table I: Execution capabilities of analyzed systems
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systems discussed in this section: PathPort, Pegasys, PISE,
BioCoRE, MIGenAS, Taverna, and Wildfire.)

Execution

Most surveyed solutions were designed to be run locally
or on the grid-few were designed for cluster-based sys-
tems. Neither PathPort nor PISE were implemented for
cluster-based execution. MIGenAS was written to be run
on only one specific cluster. BloCoRE, Pegasys, Wildfire,
Taverna, and BCJ allowed execution on a local cluster.
Only Pegasys, Wildfire, Taverna, and the BCJ offer work-
flow capabilities. PISE and MIGenAS allow for linking
program input and output, but neither goes beyond a
serial pipeline. Furthermore, BioCoRE, MIGenAS, and
Wildfire do not offer the ability to add tools to the server's
execution environment, while only PathPort, Wildfire,
and the BCJ allow client-side, external tools to be added.
Only the BCJ and PathPort allow for both internal and
external extensibility. Table 1 summarizes the execution
capabilities of the environments.

Workflow Design

All of the surveyed solutions provide a GUI, however only
Pegasys, Wildfire, and the BCJ provide an interactive,
drag-and-drop interface. Unlike the BCJ, all surveyed solu-
tions use input forms that are loosely coupled to the work-
flow on a separate page from the workflow specification.
The input of parameters for each element in the BCJ is
closely coupled to the associated workflow, as is discussed
below. Wildfire and Taverna provide iterations and
branching based on user specifications. Wildfire iterations
are essentially while loops based on user-supplied imper-
ative programs; Taverna iterations are defined graphically.
Table 2 summarizes the workflow design capabilities of
these environments.

Data Management

PathPort, BioCoRE, and the BCJ are the only environ-
ments that provide data management. Additionally, only
Pegasys, Wildfire, Taverna, and the BCJ provide workflow
management. The combination of workflow and data

Tool Cluster-Based Execution Workflow/Pipeline Web Services Internal Tool External Tool

Extensibility Extensibility
PathPort No No Yes Yes (Web Services) Yes
BioCoRE Yes No No No No
PISE No Pipelines No Yes (XML) No
MIGenAS Not locally Pipelines No No No
Pegasys Yes Workflow No Yes (XML) No
Wildfire Yes Workflow Yes No Yes
Taverna Yes (Grid Based) Workflow Yes Yes (Web Services) No
BCJ Yes Workflow No Yes (XML) Yes
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Table 2: Workflow design of analyzed systems

Tool Web Interface Drag-and-Drop Iteration/
Capabilities Creation Conditional
Branching
PathPort No No No
BioCoRE Yes No No
PISE Yes No No
MIGenAS Yes No No
Pegasys No No No
Wildfire Yes (Client Applet) Yes Yes
Taverna No No Yes
BC) No Yes No

management increases the usefulness of the environment.
Table 3 summarizes the data management capabilities.

Additional Features

Of the systems reviewed, only the BC] and Taverna pro-
vided the ability to track the provenance of data created
within it and provided the ability to repeat an experiment
under the same conditions. Note that for the BCJ to sup-
port experiment repeatability, program versioning needs
to be implemented. This provides the ability to re-run
computational experiments. The BC] and BioCoRE
encrypt information exchanges between the client and the
server. Additionally, the collaborative features in several
reviewed systems consisted of data sharing by exporting
data/workflows to a shared file and sharing the file
directly. Collaboration at the system level is offered by the
BCJ. BioCoRE offered many collaborative features, includ-
ing message boards and chatting, while the BCJ natively
handled collaboration through the sharing of data, work-
flows, and experiment journals. Annotation of data and
experiments, like in BioCoRE, Wildfire, Taverna, and the
BC]J, is a valuable feature and is an integral part of work-
flow and data management. Table 4 summarizes these
features.

Table 3: Data management properties of analyzed systems

http://www.scfbm.org/content/2/1/9

Design and implementation of the BC]J

Abstract data interface

There has been a proliferation of specialized tools, inter-
faces, and ad hoc scripts to handle specific, repetitive tasks
in narrow domains. The generality of these tools is some-
times limited by implicit data formatting, organization,
and naming conventions. The presence of these low-level
details can impede a system's usefulness. In the BCJ envi-
ronment, the interface has been designed to shield the
user from these details; every data element is simply an
entry, regardless of its specific content type, providing a
uniform, high-level abstraction to the user. Users are insu-
lated from tedious low-level abstractions such as files sys-
tems and their computational hardware resources.

The BCJ environment maintains every entry created by
every user. An entry can be a bioinformatics application, a
workflow, an experiment, or a data set. The underlying
framework collects and maintains a set of meta-data for
each entry, including its name, author, creation and mod-
ification dates, and content type. Every application that
plugs into the BCJ environment is an entry and is accessi-
ble through the standard entry interface. Many BC]J func-
tions manipulate only meta-data fields of an entry, other
BCJ functions are designed to manipulate only a specific
content type, and are enabled only when an entry contain-
ing this content type is selected.

The BCJ environment provides a variety of navigators.
These are functions that provide a hierarchical view of a
collection of entries. Navigators establish a virtual organi-
zation of the entries. This allows the user to see the data
organized to match a specific activity, by selecting the nav-
igator most appropriate for the task. The most basic navi-
gator, the Journal navigator, displays entries according to
the journal in which entries are created. This navigator
provides a view of entries, similar to a common file hier-
archy with journals corresponding to file directories.
Other navigators display entries related to a specific entry.

Searching
Tool Data Management Workflow Data Workflows Data Export/Import to/
(Experiment) from Other Tools
Management
PathPort VBI Curated Data No Yes No Yes
BioCoRE Yes (BioFS) No No No Yes
PISE No No No No Yes
MIGenAS No No No No Yes
Pegasys No Yes No No Yes
Wildfire No Yes No No Yes
Taverna No Yes No No Yes
BC) Yes Yes Yes Yes Yes
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Table 4: Additional features of analyzed systems
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Tool Data Provenance Experiment Group Access Encryption Collaboration Annotation
Repeatability

PathPort No No No No Yes (Exporting Data) No
BioCoRE No No Yes Yes Yes Yes
PISE No No No No Yes (Exporting Workflows) No
MIGenAS No No No No No No
Pegasys No No No No No No
Wildfire No No No No Yes (Exporting Workflows) Yes
Taverna Yes No No No Yes (Exporting Workflows) Yes
BC) Yes Yes Yes Yes Yes (Natively) Yes

For example, the dependency navigator displays entries
that depend on the selected entry.

The BCJ can be extended through the addition of naviga-
tors. As new tools and techniques are incorporated into
the environment, it is likely that some will implement
novel data organization schemes requiring a new naviga-
tor.

Shared access to all entries must be balanced with the
individual's need for security and privacy. The BCJ security
model only allows the creator of an entry to modify it.
This simple model is consistent with the larger computa-
tional journal paradigm. The journal is primarily a record
of experimental steps. Once completed, a step may no
longer be modified, however, it may be followed by addi-
tional experimental steps to refine results and investigate
variations on the base experiment. This characteristic aids
in maintaining the replication recipe provenance. If another
user wants to make changes to data or an experiment cre-
ated by another user, the user may create a new entry as a
copy of the original one using the SaveAs operation,
thereby maintaining data pedigree.

Read access to every entry is controlled by the group access
attribute of the entry, where a group is a set of users. Only
members of the associated group are able to view an entry
and its contents. All manner of access to an entry is con-
trolled by this attribute. Search results will only contain
entries for which the initiator has group access. The BCJ
environment provides administrative tools to manage
groups.

The BCJ environment provides another form of access
control. Every entry contains a committed attribute. Once
set, the content of the entry may no longer be modified by
any user, including the entry's creator. The committed
attribute of an entry can never be reset. The committed
attribute is fundamental both to encourage sharing
among users and to ensure reproducibility of experimen-
tal results.

Single framework for diverse programs

A key feature of bioinformatics research is the breadth of
programs that are being used by team members to address
a shared goal. Frequently, specialized user interfaces are
constructed around a set of closely related programs to
facilitate their usage and to help perform repetitive tasks.
However, integration of the process and results among
these specialized interfaces is often difficult. The BCJ fun-
damental paradigm leverages the similar structures of
computational experiments in biological experiments.
These often are chained computations where the output
of one is the input of another. However, the program's
data formats and graphical interfaces can vary widely.
Thus, within its common framework, the BC] provides the
flexibility for the problem - specific components. The BC]J
environment provides common support for the experi-
mental process, and flexibility and extensibility in the frame-
work in these three key areas.

Designing a database schema broad enough to handle all
forms of biological data can be a daunting undertaking.
Specialized systems such as the Genomic Unified Schema
(GUS) are designed for this [9]. For the BC] role in per-
forming and recording computational experiments, this
generality is not a critical requirement. We have chosen a
data model that simply stores the content of an entry as an
uninterpreted stream of bytes. The BC] domain does not
attempt a structured biological database schema. Other
systems exist for managing this problem with issues dis-
cussed elsewhere [9]. Instead, the BC] uses a simple
generic entry. Every entry is stored in the same table with
a very simple schema. This schema consists of a fixed
number of fields such as name, author, creation time, data
type information, and a pointer to actual content which is
stored as a vector of bytes. With this simple structure, sup-
port for a new data format simply requires the definition
of a new content type.

No update or extension of a database schema is required.
All BCJ environment functions that operate on the
abstract entry interface, such as navigators and search
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tools, implicitly handle entries with content in the new
format.

The BCJ supports a wide variety of raw data types. This is
achieved in the storage architecture through an extensible
set of content types. There are several parallels between
requirements for Internet browsers and the BCJ environ-
ment:

1. The number of content types will grow after the product
is delivered; and reissuing the product to handle new con-
tent type(s) is undesirable;

2. Each user does not require handlers for all content
types;

3. There may be multiple handlers for the same content
type;

4. Tt is desirable to distribute development of content
type-specific handlers to external groups with specific
interest and knowledge related to the content type.

The content types are presented and manipulated through
a plug-in framework that has become ubiquitous in Inter-
net browsers. Although a BCJ environment may contain
many plug-ins, the user sees a relatively simple, coherent
interface (Figure 1). The functionality that a user interface
plug-in provides fits into one of four categories where
each member of a category adheres to a common inter-
face: entry navigation, entry editing, auxiliary views, and
experiment execution.

From the user perspective, the BCJ provides a mechanism
to navigate among the potentially large number of entries.
Each navigator provides a virtual organization of the
entries, based on one or more relations among the entries.
This allows the user to see the data organized to match a
specific activity, by selecting the navigator most appropri-
ate for the task. At creation time, each entry is assigned a
parent journal. This provides an immediate and natural
hierarchical view of all entries. This journal relationship
provides a view of the entries that closely resembles the
file directory hierarchy familiar to all computer users. This
is the most basic of the BC] navigators. Graphically, it uses
a tree-list display that is widely used on computers to
present such hierarchies, but with annotations that pro-
vide more detail than a basic hierarchical file system inter-
face.

When an entry is selected, a plug-in associated with the
entry's content type is selected to edit or view the content.
Graphical editors are provided for workflow definitions
and experiment definitions. When a new content type is
defined in the BCJ environment, it is natural to incorpo-

http://www.scfbm.org/content/2/1/9

rate a new editor plug-in tailored for the type. Many of the
program inputs and outputs in the bioinformatics
domain are textual. For these types, a generic text editor
plug-in can be used. The editing area in the BC] environ-
ment is subdivided into multiple panes so that the user
can conveniently compare the content of two or more
entries.

Some data formats, particularly binary data formats, are
supported by sophisticated and optimized viewer pro-
grams. For example, three-dimensional graphical viewers
are available for molecular dynamics simulation outputs.
It is not practical to convert these programs to operate
directly inside the framework. The BCJ environment pro-
vides an interface that allows a user to associate an exter-
nal viewer, a program installed on his/her client machine,
as the default viewer for a specified content type. When-
ever an entry of one of these content types is selected for
viewing, the BCJ environment automatically generates a
local copy of the data on the client machine and invokes
the associated program with this input.

In addition to editors and navigators, the BC] environ-
ment provides a variety of additional views that present
auxiliary information to support these primary tasks, such
as the Queue Manager view, which displays the progress
of currently executing experiments.

Precise descriptions of BC] programs are kept in XML doc-
uments. This description is called a resource definition in
the BCJ environment. The Document Type Definition
(DTD) for the XML data can be found in [10]. The BC]
environment currently contains about sixty programs/
resource definitions (see Table 5). Many resource defini-
tions were derived from the XML descriptions for the cor-
responding programs in PISE [11].

Graphical interface for experiment definition
Experiments are defined with simple block diagrams in a
hierarchical fashion. Each block represents a program, or
sequence of programs, to be executed. Input and output
connections are made between blocks. In the BCJ environ-
ment, a block diagram is called a workflow. Figure 2 is an
example of a simple workflow. Workflows provide a con-
venient and intuitive way for any user to define a custom-
ized task. Users are not required to be familiar with
programming languages to define complex tasks. Once
defined, a workflow may be reused. Workflows are just
another entry content type, so they can be shared among
all BCJ users. Experiments can be joined by connecting
resources to form workflows. A data source can be used as
an input to one BC]J resource with the output directed to
another resource. The BCJ also provides a mechanism to
annotate workflows. Figure 3 provides an example of a
simple workflow definition.
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Table 5: Resources currently defined in BC)
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Suite/Class

Resource Definitions

Sequence search and alignment
HMMER (biosequence analysis using hidden Markov models)
GROMACS (a molecular dynamics package)
GLIMMER (a system for finding genes in microbial DNA)
GrailEXP (predicts exons, genes, repeats, and CpG islands)
EMBOSS (The European Molecular Biology Open Software Suite)

SimpleBlastall, blastn, blastp, ClustalWV, extractSequences

hmmAlign, hmmBuild, hmmCalibrate, hmmSearch, hmmit, hmmer2sam

editconf, genbox, grompp, mdrun, pdb2gmx
glimmer
grailAlign, grailCPG, grailExon, grailGeneAssembly, grailRepeats

backtranseq, banana, bl2seq, btwisted, cai, chips, codemp, coderet, compseq,

cpgreport, distmat, einverted, equicktandem, fuzznuc, garnier, geecee, iep,
marscan, msbar, newcoils, newcpgseek, octanol, palindrome, pepcoil, pepinfo,
pepstats, primersearch, profit, prophecy, prophet, recoder, redata, shuffleseq,

silent, water

Management of data provenance

The details of the experimental process are nearly as
important as the experimental results themselves. The BCJ
environment collects and maintains this information
transparently, providing organizational views of data and
experiments that focus on data provenance. With the
provenance data maintained in the BCJ environment
users can:

1. Review all the details of an experiment at anytime,
2. Regenerate the results by re-executing the experiment,

3. Run similar experiments and compare with the original
results.

When reviewing an experiment, the dependency navigator
in the BCJ environment is particularly useful. The depend-
ency navigator collects the set of entries upon which a
selected entry is dependent, in a concise hierarchical view.
The first level of the hierarchy contains the immediate
dependencies of the selected entry. The second level of the

hierarchy contains the dependencies for each of these
entries, and so on. Figure 4 displays a sample dependency
view.

Computational journal experiment examples

In this section we describe two computational experi-
ments performed in the BC] environment, highlighting
many of the features described above. The two examples
were chosen from significantly different domains in order
to demonstrate that the BC] environment is sufficiently
flexible to support a wide variety of applications. A user
manual for the BCJ can be found in [12].

Sequence-based investigation

To demonstrate sequence analysis in the BCJ environ-
ment, a simple example experiment was implemented
that tries to identify a protein that may be a potential tar-
get for drug therapy in treating malaria. If there is suffi-
cient divergence between some protein of the parasite and
the host, then inhibition of the parasite protein is a poten-
tial target for drug therapy. In this experiment, we are
interested in the divergence between the mosquito Plas-

[*] Casein Comparison 53 [M Tutorial Example | [f MD Sim YP Tutorial Example Run i =5 (]
1
blastp “
P—=P Query ExtractSeq i
Amino Acid g1, ot Matches Br—=P BLAST Report clustalw MA H
- Sequences Pr—=P Seq E
[> guideTree “
Align b HMMER Flow
Tree > Multiple Align
B »P Search DB
Search DB Related Proteins pr—»p
Related Proteins
Figure 2
Complete Experimental Workflow.
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[¥] HMMER Flow 53 [€] Tutorial Example ¥ Tutorial Example Run g =]
4
hmmbuild
p—P Align hmmecalibrate “
Multiple Align HMM B Alignment hmmsearch g
_Calibrated B{——+P HMM z
B » SeqDB “
Search DB Matches pi—+P
~—  Related Proteins

Figure 3
HMMER Workflow.

modium falciparum casein kinase and its vertebrate hosts.
There are three applications used by the experiment:
BLAST, CLUSTALW, and HMMER. The experiment
involves the following computations: (1) identify similar
proteins to the human casein kinase enzyme using BLAST,
(2) create a global alignment using the sequences of the
similar proteins that were extracted from the BLAST report
using CLUSTALW, (3) construct a hidden Markov model
(HMM) based on this multiple alignment, using compo-
nents of the HMMER program suite, (4) run the model
against the proteins in the Plasmodium falciparum genomic
database (PlasmoDB) to identify proteins that may be
functionally equivalent to human casein kinase.

In this experiment, we build two workflows. The first
workflow contains the HMMER components. The second
workflow, which will contain the complete experiment,
will incorporate the HMMER workflow and the BLAST
and CLUSTALW components.

Dependencies

B Tutorial Example Run ~
@ Lysozyme Min Params
[1 Lysozyme/1AKI (pdh)
[ fullmd_sol.mdp
[] spc2l6.gro
¥ Tutorial Example

¥ Energy Min
[] SINK
1
Figure 4
Dependency View.

The HMMER [9] program suite for biosequence analysis
using profile HMM contains several components that are
frequently used in a fixed order. In this workflow, we
define a reusable component that may find value in other
studies involving HMM. This workflow will construct an
HMM based on the multiple alignment input, calibrate
the model, and finally search a sequence database using
this model.

To increase the flexibility of this computational compo-
nent, the database is provided as a second input. As a
design alternative, we could have chosen to specifically
include PlasmoDB in this workflow (as a data source
block) and have a single input to this workflow. A picture
of the final workflow can be seen in Figure 3.

This workflow could be useful to a wide variety of
researchers and does not contain any sensitive data or
novel computation techniques, thus we set the group
access control for this entry to ALL, so any user in the BCJ]
environment will have access to this workflow. To make
the entry easier for others to find we could place the entry
in a journal designated for shared workflows, and/or add
an annotation briefly describing its functionality, so that
other users can locate it with a search query.

In the complete workflow, we use the previously defined
HMMER workflow as a resource. It also includes BLAST, to
find proteins similar to the input protein, and CLUS-
TALW, to perform a multiple alignment of these similar
proteins. The CLUSTALW program does not accept input
in the format generated by the BLAST program, so the
block, Extract Sequence, was inserted between them to
perform the appropriate data conversion. Resource defini-
tions include type information for each of their ports; the
Workflow Editor does not permit connections between
ports with incompatible types. These constraints help
users construct only meaningful and valid workflows.
Resources such as Extract Sequences serve the necessary
role of automatic resolution of data reformatting. In addi-
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tion, users can define new resource definitions that per-
form data format conversions to meet their specific
requirements. The completed workflow is shown in Fig-
ure 2.

To define an experiment based on this workflow, the user
provides a protein sequence input and a database to be
searched with HMMER. For this example, Amino Acid
Sequence was used, for the input is human casein kinase.
The Search DB input is PlasmoDB. The output file, Related
Proteins, will contain the sequences from PlasmoDB that
are most similar to the profile HMM built from the
human casein kinase related proteins. Figure 5 shows the
completed experiment definition.

When defining the experiment, the user is queried to spec-
ify access control for the experiment definition. For exam-
ple, the user may want to restrict any other access to the
experiment and results, by setting the access control to
NONE, pending validation of results. Later, the owner can
modify access control to allow access by a wider range of
users. At the completion of the experiment definition, a
collection of jobs to perform the tasks defined by the
workflow are submitted to the computational cluster for
execution. The user tracks the progress of the experiment
using the Queue Manager view.

The output entry generated by the experiment contains
the top sequences from PlasmoDB that match the profile
created by HMMER. From the results (Figure 6), we see
that the top result has the gene ID of PF11_0377. This
gene happens to encode P. falciparum's casein kinase 1.
Based on these results, we see that this kinase would not
be a good candidate for drug therapy.

The user can summarize what has been learned and anno-
tate the experiment as shown in Figure 7. These annota-
tions communicate reviews to other users and provide a
log for the author. Annotations also enable search capa-

http://www.scfbm.org/content/2/1/9

bilities, since neither the experiment definition nor the
output entry directly contain the lessons learned from the
experiment.

If the researcher has other candidate proteins to study,
another experiment can reuse this workflow definition.
Here, the user simply repeats the experiment definition
step, and supplies another protein for the Amino Acid
Sequence input. The BC] environment emphasizes that
providing a different sequence input is a new experiment
definition, rather than a modification of the original
experiment. It will be useful to keep the original experi-
ment, even though it was not successful in locating a
promising drug target. These results may be helpful
months later if someone asks, "Have you considered
casein kinase as a possible target for malaria?" The BCJ
environment provides three alternatives to find an answer
for this question:

1. The dependent viewer in the BC] environment is partic-
ularly helpful for answering such questions. The
researcher could select the casein kinase sequence entry,
and find all experiments in which it is used as an input;

2. Alternatively, the researcher could use the dependency
viewer, which is effectively the inverse of the dependent
viewer. With this viewer, the user can select the workflow
definition and immediately find all experiments, based
on the workflow, that have been executed;

3. Perform a content-based search to locate an annotation
that summarizes the result of a previous experiment.

Molecular dynamics experiment

Typically, molecular dynamics (MD) simulations involve
a large number of simulations, where each varies from the
previous only in the input data. The organization of the
computations is often tailored to some specific applica-
tion such as drug design or methodology development.

',"'P' Lasemn Lompa

... & ™. [¥ Casein Comparison

| [f] Tutorial Example

£ l:l[

4

| [E MD Sim ¥P Tutorial Example Run

PfalciparumAnnotatedPns

Casein Comparison

human casein kinase lL_//» Amino Acid Sequence
Data P Search DB

Related Proteins P

Casein Kinase Related Proteins.1
Data

Data P

Figure 5
Experiment Definition.
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HMMER 2.3.2 (CQect Z003)
Copyright (C)
Freely distributed under the GNU Gensral Public License

HNM file:
Jequence datsbase:

per—-sequence score cutoff: [none)
per—domalin score cutoff: [nane]
per—-sequence Eval cutoff: <= 10
per—domain Eval cutoff: [nane]

Query HMHM: trpl
Locession: [none]
Description: [none]

Scores for complete sequences

<l

Figure 6
Experiment Results.

o pe e —— amaa—.

1992-2003 HHMI/Washington University School of Medicine

/biofdata/ journal/experiments/2013/ tpd [tmpl]
fbio/data/ journal/experiments/ 201371917

[HHM has heen calibrated; E-walues are empirical estimates]

(score includes all domains):

Sequence Description Soore E-valuse N
Plasmodium falciparwn 3D7|MALL1|PF11 0377|PL Annotation| 454.3 §.7e-146 1
Plasmodiuwn falociparwm 3D7|MALE|PFFOS20w| PL Annotation| 4.6 2.5e-10 1
Plasmodiuwm faleciparwn 3D7|MALL1|PF11 0242|PL Annotation| 27.5 7.3e-10 1
Plasmodiuwm falciparwn 3D7|MAL7?|PFOY_007Z|PL Annotation| 25,6 9.5e-10 1
Plasmodium faleiparum 3D7|MALL1Z [PFL18S5c|PL Annotation| 23.8 1.3e-09 1
Plasmodium faleiparuw 3D7|MALI |PFCO420w|PL Annotation| 22.5 1.6e-09 1
Plasmodium faleiparum 3D7|MALLZ [PFL1370w|PE Annotation| 22.2 1.6e-09 1
Plasmodium faleiparum 3D7|MALL1Z [PFL2250c|PL Annotation| 15.4 2.8e-09 1
Plasmodium faleiparum 3D7|MALL1|PF11 0239|PL Annotation| 17.6 3.2e-09 1
Plasmodium falciparum 3D7|MAL14|PF14 0294 PE Annotation| 9.9 le-05 1

http://www.scfbm.org/content/2/1/9
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Analysis of the simulation results will vary widely between
simulation goal and investigators' styles. In addition,
although the simulations are repetitive, there are numer-
ous places during the study where interactions with the
process and output are needed. Here, we demonstrate the
use of the BCJ on such a representative MD simulation.
For this experiment, we use the GROMACS package [13]
and an example based on a tutorial [14].

B Navigator Shell & [ Casein Comparison

There are five major steps in this experiment: (1) convert-
ing the protein structure from a common database format,
PDB (Protein Data Bank), into a format suitable for
GROMACS, (2) minimizing the energy of the system, (3)
solvating the protein in a simulation box with water, (4)
performing an MD simulation from the initial state, and
(5) analyzing the simulation results. (Often, proteins are
solvated then minimized, but for purposes of demonstra-
tion, the protein is minimized first.)

I Casein Comparison-Run.1 (E] Casten poor candidate ES\

Bl Amino Acid Sequences
B demo
B Example Experiment
[¥ Casein Comparison
ﬂ Casein Comparison-Run. L

Figure 7
Adding an Annotation to the Experiment.

In this experiment the top match from PlasmoDE was

gene 10 PF11_8377 which encodes P, falciparums cesein kinase 1.

So, we don't believe that

=g1123199991 |ref INP_6E9487.1| cosein kinase 1 epsilon [Homo sapiens]
would be @ good candidate for a malaria drug therapy.
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Each step can be run as an independent experiment with
the outputs of each step appearing as entries in the user's
journal. This stepwise procedure is useful for reviewing
intermediate results. Alternatively, the steps can be incor-
porated into a single workflow, which is useful for a tested
simulation procedure. The current example represents an
intermediate approach in order to demonstrate aspects of
the BCJ environment; two sub-workflows are combined
into another workflow to perform the end-to-end experi-
ment.

The workflow "Energy Min" shown in Figure 1 combines
the first two steps of the procedure, since these two steps
are standard initialization steps. This workflow has been
designed with reuse in mind. The precise parameter set-
tings for minimization may depend on the simulated
molecule (one of the inputs); thus, a second input is
defined for this workflow "MD params," which will trans-
late the simulation parameters into GROMACS format. In
addition, several output ports are defined for this work-
flow that are not specifically required in the example here.
However, these additional outputs may be of use in
another application that chooses to reuse this workflow.

The workflow "MD Sim" shown in Figure 8 combines
steps three through five of the procedure outlined above.

http://www.scfbm.org/content/2/1/9

As with the previous workflow, care was taken so that the
workflow could be reused. The "Solvent" input for the
resource "genbox" is provided by the data source labeled
"spc216.gro." An entry for this data in the BCJ environ-
ment was created by using the "Create New Entry" inter-
face to import this information. It contains a GROMACS-
specific description of "Simple Point Charge water" that is
often used as the solvent in GROMACS experiments.

The workflow "Tutorial Example" shown in Figure 9 rep-
resents the complete process from the GROMACS tutorial.
It makes use of the two supporting workflows described in
the previous sections, demonstrating the hierarchical
workflow definition integral to the BCJ environment. As
described above, the supporting workflows were not
designed only for this example tutorial. Each was
designed generally, so that it could be used as a compo-
nent in other molecular dynamics studies. Outputs not
needed can be discarded by connecting each of them to a
"Sink" block. The Workflow Editor requires these explicit
connections since the ports to which they are connected
were required. This consistency check by the Workflow
Editor helps to ensure workflow correctness.

The workflow "Tutorial Example" defines only the process
abstracted from the GROMACS tutorial. To begin a new

[ Tutorial Example (@ MD Sim 23 [ Energy Min | B Lysozyme Min Params | [ casien poor candi... e =0
1
editconf fullmd_sol.mdp — ”
p——— P Struct In DataPp minim_waterStruct .
struct In [> Indexes @
[ B-factors genbox grompp &
Struct Out Solute MDparams In “
spc2lé.gro Solvent P Coordinates
Data b [> Extra Molecules [> Restraints
p_________—-—bb In Topology P> Indexes
Topology Output Topology
Out Topology B> [> Trajectory final_grompp
MDparams Qut P
MDrun spec B \.’Simple mdrun
MDrun spec /fi’r:ai’_lraj
Trajectory B
Structure P> final_struct
Energy pr——rb
Log final_ener
final_log
Figure 8

MD Simulation Workflow.
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PDB:TL_/_,[) MD params M %
MD Params min Trajectory B JE{?LZ . L

min Structure P
min Energy B>

min Log B>
min grompp P SINK
Input Top B Discard

SINK

Discard

SINK
Discard

Figure 9
Tutorial Experiment Workflow.

Topology —/’/b'
final_traj P Trajectory
final_struct b —-—'—'_'_'_'_'_';::mre
final_enerpp—————» P
final_log | SINK Energy
final_grompp B \" Discard

minim_waterStruct B \:‘NK

Structure w/water

project (or experiment), the user must import the original
input data from an external source such as a public data-
base. When data is imported to the BCJ, an entry is created
and its content is initialized to that of a file provided by
the user. The BCJ physically copies the data into the envi-
ronment with subsequent references to the data in the BCJ
through the entry. Thus, this experiment began by having
the user import a number of files into the BCJ. Conse-
quently, the workflow, Tutorial Example, allows one to
perform this experiment for any protein from the PDB.
Figure 10 displays the specific experiment definition cor-
responding to the example in the tutorial. The protein
supplied as input is lysozyme, a serine protease. The MD

parameters for the energy minimization are those sup-
plied in the tutorial.

Numerous specialized programs have been developed for
molecular visualization and interaction with molecular
dynamics simulation. Rather than attempt to develop
another molecular visualization subsystem directly in the
BCJ environment (and then require BCJ users to become
familiar with a new user interface), the BCJ environment
invokes an existing tool, integrated as an external viewer,
to display these results. For example, VMD, Visual Molec-
ular Dynamics [15], can be used to display the output
structure.

[#] Tutorial Example | [ MD Sim

| [{] Casein Comparison

3

(fi Tutorial Example Run £3 5

I
]|

Lysozyme/1AKI (pdb)

Tutorial Example

Datapr—————»P PDE Input

MD Params
Lysozyme Min Params
Data P _4__—————"'_» Data
Structure B>

Energy b\\_\:nergv
Structure w/water P> Daty

Trajectory B

_—

Palette

Trajectory
Data
Structure

\‘:"ucture w/water
Data

Figure 10
Experiment Definition.
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Conclusion

Bioinformatics research involves computational process-
ing of multi faceted biological data at scales from atomic
level to cellular. Sophisticated environments are needed
to support the diverse and expanding range of computa-
tional methods, scales, models, and data. The inherently
collaborative work requires managing data and methods
between colleagues and public-domain databases. Com-
plex experiments are often involved, which need to be
checked, altered, and documented. The Bioinformatics
Computational Journal (BCJ) reported here provides sup-
port for these activities. The BCJ] handles data manage-
ment and process specification in a single framework,
demonstrated here with two representative bioinformat-
ics problems. The system was founded on Eclipse, provid-
ing a rigorously tested and maintained software
infrastructure. The user paradigm was designed to resem-
ble a laboratory notebook, inline with the target users. We
found this paradigm a natural basis for describing compu-
tational experiments. Features are provided in the BCJ to
authenticate and establish pedigree of experiments. This is
a crucial feature toward verifying and documenting com-
putational results. Future efforts include adding iteration
and branching functionality and enabling for grid collab-
orations.
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Appendix of computational environments
PathPort [16], developed by the Virginia Bioinformatics
Institute (VBI), is designed to combine information about
pathogens with analysis and visualization tools. It uses
web services to provide remote execution of independent,
single process jobs in a non-cluster environment (it is
grid-based, hence designed for execution over a heteroge-
neous, geographically distributed network of individual
computers shared by users).

http://www.scfbm.org/content/2/1/9

BioCoRE [17], developed by the Theoretical and Compu-
tational Biophysics Group at the University of Illinois at
Urbana-Champlain, is designed as a biological collabora-
tive environment. Through a combination of web pages
and Java applets, BioCoRE combines the capabilities of
project management, instant message, message board, lab
notebook, and file sharing software with several specific
applications, all designed for the simulation and visuali-
zation of molecular dynamics experiments, including
NAMD [18], VMD (Visual Molecular Dynamics) [19], and
MDTools [11]. BioCoRE also allows the submission of
jobs to a cluster through a web page.

PISE [11], developed by the Pasteur Institute, is designed
to offer a web interface to bioinformatics programs
described in XML. The tools in PISE were not designed for
execution on a cluster. (However, as part of this work
some of the PISE applications have been modified to facil-
itate cluster computing.) The basic functionality of PISE is
designed to execute programs sequentially. However,
there is a plug-in called G-Pipe, which allows pipelines to
be defined.

MIGenAS [20], the Max-Planck Integrated Gene Analysis
System, is similar to PISE in that it offers a web page pro-
viding the ability to graphically enter program parameters
and execute linear pipelines. Unlike PISE, which can be
downloaded and run locally, MIGenAS performs all oper-
ations on servers at the Max-Planck Institute. It comes
with a set of tools, and at this time does not provide a
mechanism to add external or internal tools.

Pegasys [21], developed by the University of British
Columbia's Bioinformatics Center, is designed to graphi-
cally create and execute bioinformatics workflows for
high-throughput analysis. It offers clients for Linux, Win-
dows, and Macintosh. It comes with a set of analysis pro-
grams, but allows internal tool expansion through the
creation of XML tool definitions.

Wildfire [22], like Pegasys, is developed to create and exe-
cute bioinformatics workflows. Wildfire is available as
both a standalone and a web-based workflow application
that runs on a local machine, on the Grid, or on a cluster.
It allows drag-and-drop creation of both simple linear
pipelines and complex branching workflows. Wildfire
provides some forms of iteration and conditional branch-
ing.

Taverna [23], a commonly used standalone workflow sys-
tem, was developed to provide language and software
tools for workflows as a component of the myGrid
project. Taverna provides the ability to create complex
workflows including iteration and conditional branching,
as well as a scripting language.
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Other systems include the commercial software Pipeline
Pilot [24], Ergatis [25] (which is still in development),
and Biopipe [26] (which is no longer actively supported).
The SciRun software has capabilities that are conceptually
relevant to this work (workflow editing, procedure repli-
cation, job control, data management, etc.), but is
designed for imaging rather than molecular computa-
tional biology [27]. A commercial data mining work-
bench from SPSS that includes a workflow editor has also
been developed[28].
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