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Abstract

The field of pharmaceutical chemistry is currently struggling with the question

of how to relate changes in the physical form of a macromolecular biopharma-

ceutical, such as a therapeutic protein, to changes in the drug’s efficacy, safety,

and long term stability (ESS). A great number of experimental methods are typ-

ically utilized to investigate the differences between forms of a macromolecule,

yet conclusions regarding changes in ESS are frequently tentative.

An opportunity exists, however, to relate changes in form to changes in ESS.

At least once during the development of a new drug, a study is undertaken (at

great expense) of the ESS of the drug upon perturbation by multiple manufac-

turing, formulation, storage and transportation variables. The data acquired

is then used to build a model that relates changes in ESS to manufacturing,

formulation, storage and transportation variables. It is not common in the phar-

maceutical industry, however, to relate changes in comprehensive ESS data sets

to comprehensive measurements of changes in macromolecular form.

We bridge the gap between physical measurements of a macromolecule’s form

and measurements of its long term stability, utilizing two data sets collected in a

collaboration between our group at the University of Kansas and a group at the

Ludwig Maximilians University in Munich, Germany. The long term stability

data, collected by the team in Germany, contains measurements of the chemical

and conformation stability of Granulocyte Colony Stimulating Factor (GCSF)

over a period of two years in 16 different liquid formulations. The short term
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physical data, collected in our lab, is comprised of spectroscopic characterization

of the response of GCSF to thermal unfolding.

The same 16 liquid formulations of GCSF were used in each study, allowing us

to fit models predicting the long term stability of GCSF from short term mea-

surements. We first apply a novel data reduction method to the short term data.

This method selects data in the neighborhood of thermal unfolding transitions,

and automates traditional comparative analyses. We then model the long term

stability measurements using a linear technique, least squares fits, and a non-

linear one, radial basis function networks (RBFN). Using a Pearson correlation

coefficient permutation test, we find that many of the fitted results have less than

a 1% probability of occurring by chance.
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List of Figures

2.1 An empirical phase diagram (EPD) assists in the visualization of data set re-

sulting from the methods listed in Table 1. Figures A-F show measurements

of an IgG1 monoclonal antibody collected at pH 3 (black), 4 (red), 5 (green),

6 (yellow), 7 (blue), and 8 (magenta). (A) CD molar ellipticity at 218 nm,

(B) UV intrinsic fluorescence (UV-IF) peak position and (C) intensity, (D)

tryptophan fluorescence lifetime, (E) static light scattering (SLS), and (F)

ANS extrinsic fluorescence (ANS-EF) intensity. Error bars in (A-C and E-F)

are from three independent experiments.4 Figure (G) shows an EPD based on

the above data. Figure (H) shows an EPD based on protein dynamics mea-

surements (data not shown, see the applications section for more information). 20

2.2 Empirical phase diagrams have found many uses in the optimization of various

types of formulations. Many case studies have been published concerning

their application to various systems and their extension by the addition of

measurement techniques and search space variables. Refer to Table 2.2 for

more information concerning each EPD. All EPDs have temperature (◦C) as

the vertical axis. Diagrams 1-35 use pH on the horizontal axis, and diagrams

36-40 have the indicated variables on the horizontal axis. . . . . . . . . . . . 21
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2.3 An illustration of three types of spaces, using simulated data. In Figure (A),

four pH values define a one dimensional search grid in search space, and ratios

of secondary structure type illustrate a protein phase space. Figure (B) shows

how two measurement types define ameasurement phase space. The transition

pH values disagree when we plot measurements separately, as in Figures (C)

and (D). A plot in measurement phase space (B) synthesizes the information,

but will not work as a visual aid for high dimensional data. . . . . . . . . . 24

2.4 Principal Components Analysis can be used to project two dimensions into

one. The procedure works the same way for high dimensional data (see Figure

2.5 and 2.6). We will use the simulated data shown in Figure 2.3B. (A): First

we center the measurements at the origin, since we are interested in transitions,

not average values. (B): Next we normalize each measurement so that they

have equal influence on the result. (C): Finally, we use the Singular Value

Decomposition (SVD) to find the optimal line for projection (shown in blue).

(D): If we plot the position along the blue line, we see that the difference is

greatest between pH values 5 and 6. . . . . . . . . . . . . . . . . . . . . . . 27
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2.5 An example of the Singular Value Decomposition (SVD) using simulated data.

(A) is a plot of three simulated peak shifts ∆λ1, ∆λ2, and ∆λ3 as a function of

temperature. If we could perceive two dimensions but not three, the transition

between 50◦C and 70◦C might be difficult to see. Therefore, we would want

to reduce the data to two dimensions in a way that optimally retains the

information in the original data set. (B) shows the plane (in pink) which

gives the optimum 2D projection. This plane is determined by SVD, and is

defined by the vectors X1 and X2 (in blue). The projection error is shown as

red lines. (C) is a 2 dimensional plot of the same data, using the positions

within the pink plane. This is a plot of matrix A (see text). (D) shows the

optimal one dimensional projection, demonstrating that the error is larger.

This plot uses the first column of matrix A (see text) . . . . . . . . . . . . . 33

2.6 Illustration of the steps in the Empirical Phase Diagram method, using sim-

ulated data. (A): Choose a search space and a search grid. In this case, the

search space is 2 dimensional, varying temperature and pH in this case. In

each dimension, two values have been chosen, forming a grid. (B): Collect

data at each point of the search grid. The data in this example is 5 dimen-

sional. (C): Standardize the data and project it into 3 dimensions. (D):

Rescale to the range (0, 1), and express as a color. (E): Transform the colors

into an image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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2.7 Empirical phase diagrams (EPDs) of the peptide drug pramlintide at low and

high concentration,7 and concentration dependence at pH 4. Low concen-

trations (0.088 mg/ml) are represented in A-C. The experimental techniques

used to construct A-C were as follows: (A) second derivative UV absorbance

peak shift and OD350, (B) same as (A), adding fluorescence intensity and peak

shift, (C) same as (B), adding the CD change at 204 nm. The peptide at high

concentration (8.8 mg/mL) is represented in (D), using the same experimental

techniques as (B). An EPD at pH 4 as a function of peptide concentration is

shown in (E), using the same experimental techniques as (B). . . . . . . . . 43

2.8 An empirical phase diagram for two toxins and toxoids of Clostridium difficile,

created using OD350, UV-IF, ANS-EF, and CD data.16 Data were normalized

simultaneously for the corresponding toxin and toxoid. (A) Toxin A; (B)

Toxin B; (C) Toxoid A; (D) Toxoid B . . . . . . . . . . . . . . . . . . . . . 45

2.9 Empirical phase diagram for Norwalk virus-like particles (NV-VLPs) based

on UV absorbance, intrinsic and extrinsic fluorescence and CD results.23 Four

distinct phases (P) of the NV-VLP were observed: P1, native, intact form;

P2, disassembled; P3, soluble VP1 oligomers; P4, aggregated. The nature

of the protein in the various phases was confirmed by transmission electron

microscopy studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.10 Empirical phase diagram of attenuated Measles virus.24 Data used to generate

the EPD were measurements of mean effective diameter by DLS, intensity of
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at 322 nm, ANS peak position, ANS fluorescence intensity at 469 nm and
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2.11 Ionic strength-pH empirical phase diagrams of various nonviral gene delivery
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Chapter 1

Introduction and Motivation

1.1 Brief review of formulation of macromolecular bio-

pharmaceuticals

Proteins, plasmid DNA and macromolecular complexes such as viruses, virus-like particles

and adjuvanted antigens are used to treat or prevent conditions as diverse as growth defi-

ciencies (Humatrope), cancer (Avastin), hemophilia (NovoSeven), viral illnesses (Recombivax

HB), stroke (Activase) and cystic fibrosis (Pulmozyme).1 Since approval of recombinant hu-

man insulin in 1982, over 100 protein drugs have been introduced into clinical practice.1

Annual sales of biopharmaceutical proteins in 2009 totaled $99 billion,2 and future growth

has been estimated at 7 to 15% annually for the next several years.3

Determining and preserving the structural integrity and conformational stability of macro-

molecular biopharmaceuticals is frequently a significant barrier to the successful stabilization

and formulation of a biopharmaceutical drug or vaccine. The core question being asked in

such studies is easily stated: will a particular form of a macromolecular biopharmaceutical

provide required levels of efficacy, safety and stability?

During the course of manufacturing and formulating a biopharmaceutical drug, the need

to compare forms of the drug occurs hundreds of times. Consequently it is too costly and

slow to perform full efficacy, safety and stability tests each time, including storage for 2-3
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years in clinically relevant storage conditions, followed by animal and possibly human testing.

The comparison of biopharmaceuticals thus generally proceeds by use of fast, inexpensive

substitute measurements: forced degradation in place of long term storage at clinically rele-

vant conditions, animal testing in place of human testing, or blood derived assays in place of

human testing. The experimental techniques may include spectroscopic measurements of the

system’s resistance to thermal degradation, chromatographic investigation of aggregated and

cleaved forms of the macromolecule after forced degradation by exposure to light, shaking,

or elevated temperature, or the molecule’s biological activity as measured by blood derived

assays. Specific experimental techniques include spectroscopic techniques such as circular

dichroism, absorbance, raman scattering and fluorescence spectroscopy. Also included are

chromatographic techniques such as size exclusion high performance liquid chromatography

(SE-HPLC), reverse phase high performance liquid chromatography (RP-HPLC), mass spec-

trometry, or gel electrophoresis. These measurements yield information concerning a great

number of physical and biological phenomena. In addition, a biopharmaceutical’s response

to a large variety of perturbations must be tested. These include manufacturing process

variables, storage and transportation conditions and the effects of various formulation ad-

ditives (called excipients) and their combinations. The resulting parameter spaces are vast

and thus usually only explored sparsely.

1.2 Overview of the dissertation

Due to the size and complexity of data sets acquired during the testing of biopharmaceu-

ticals, it is often difficult to extract, interpret and summarize the information obtained. In

Chapter Two we review a method developed in our lab that represents the state of the

art in visualization and comparative analysis of measurements of biopharmaceutical drugs.

The Empirical Phase Diagram (EPD) technique is a vector-based multidimensional analysis

method for summarizing large data sets resulting from a variety of biophysical techniques. It
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can be used to provide comprehensive preformulation characterization of a macromolecule’s

higher-order structural integrity and conformational stability. In its most common mode, it

represents a type of stimulus-response diagram using environmental variables such as temper-

ature, pH, and ionic strength as the stimulus, with alterations in macromolecular structure

being the response.

In Chapter Three we describe a new programming language for processing and visualizing

arrays that is suitable for use by non-experts yet covers the range of capabilities necessary

for complex analysis of array data. Data processing techniques of considerable flexibility

and complexity are required to perform comparative analyses of macromolecules using mul-

tiple experimental techniques to investigate the influence of multiple perturbing factors.

Analyzing these data sets requires operations such as mapping filenames to dimension posi-

tions, discarding noisy or corrupt data, handling data that is non-existent due to instrument

glitches and operator error, subtracting reference spectra, performing statistical and signal

processing operations, generating complex plots, and performing original data analysis re-

search. These tasks are typically performed using a combination of many programs such

as Excel, Origin, instrument software, Matlab, Mathematica and custom scripts. Even for

modest size data sets, the data analysis is tedious and requires much labor. Data analysis

is often the bottleneck in high throughput pharmaceutical experiments. Furthermore, the

unstructured nature of the process make it difficult to document.

Thus the increasing size and complexity of pharmaceutical formulation data sets has

created the need for a tool to simplify, automate and document the processing of data. This

tool should be capable of advanced multidimensional data processing, yet remain simple

enough to be used by non-programmers. It should also provide built in support for almost

any math operation that might be desired, provide a record of changes to data, and ease the

task of regularizing data sets filled with inconsistent array shapes and missing data.

We call our solution the Declarative Array Transformation language, or DART. Various

novel techniques allow it to approach a natural language, and scripts written with it tend
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to be lists of one liners without control structures. Literate programming facilities help

ensure that persons other than the authors of an analysis can reproduce computations in

that analysis. The resulting language has broad applicability and a high level of versatility.

In Chapter Four we apply DART to the generation of EPDs using data from a new robotic

instrument. Until now EPD analysis has not been available in a high throughput mode be-

cause of the large number of experimental techniques and environmental stressor/stabilizer

variables typically employed. A new instrument has been developed that combines circular

dichroism, UV-absorbance, fluorescence spectroscopy and light scattering in a single unit

with a 6-position temperature controlled cuvette turret. Using this multifunctional instru-

ment and DART we have generated EPDs for four model proteins. Results confirm the re-

producibility of the apparent phase boundaries and protein behavior within the boundaries.

This new approach permits two EPDs to be generated per day using only 0.5 mg of pro-

tein per EPD. Thus, the new methodology generates reproducible EPDs in high-throughput

mode, and represents the next step in making such determinations more routine.

In Chapter Five we face the original question head on using the tools developed in this

project. We ask: will a particular form of a macromolecular biopharmaceutical provide

required levels of efficacy, safety and stability? Although much effort has been expended

by the pharmaceutical chemistry community in pursuit of an answer to this question, it

has been difficult to answer definitively using inexpensive substitute measurements alone, as

these are only loosely related to the information derived from full testing.

We proceed with an interpretation of the question in which general rules regarding re-

lationships between direct and indirect measurements of efficacy, safety and stability are

replaced by mathematical models developed and validated from measurements. Thus the

form of a macromolecular biopharmaceutical is defined by physical measurements of the

drug, and the drug’s levels of efficacy, safety and stability are defined by measurements of

those properties. The question then becomes: how does one relate physical measurements

of a macromolecule’s form to measurements of the drug’s efficacy, safety and stability?
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We apply a new data reduction technique that is based on the idea that the behavior

of proteins near thermal transitions, in particular the relative behavior of different types of

protein structure, provides information about unfolding mechanisms. The technique is a way

of automating traditional comparative short term structural analyses.

We then apply a linear technique and a nonlinear technique to predict the long term

stability measurements of 16 formulations of a protein drug. A data set of this size or larger

is commonly generated once during the formulation of a protein drug. Traditionally, however,

the long term stability of a drug is modeled from formulation parameters. We instead model

long term behavior from short term form and behavior, allowing us to develop predictive

models that answer the core question of the thesis.
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Chapter 2

Review of the Empirical Phase Diagram (EPD) technique

2.1 Introduction

We now review a method that represents the state of the art in visualization and comparative

analysis of measurements of biopharmaceutical drugs. It was developed from scratch by the

collaborators on this project and is used in the interpretation of multidimensional data aris-

ing in the pharmaceutical formulation of proteins and other macromolecules. This chapter

contains a review of the experimental methods commonly used in the optimization of formu-

lations, a discussion of the challenges of interpreting multidimensional data, an overview of

the EPD technique, and discussions of common applications of the technique and extensions

to the technique.

The pharmaceutical uses of proteins, nucleic acids and higher order macromolecular com-

plexes such as viruses, virus-like particles, plasmid DNA and polymer associations, and ad-

juvanted antigens represent the major advance in the biotechnology and vaccine industries

in the last 30 years. Due to their more natural biological character, macromolecules offer a

degree of safety and efficacy that has resulted in their continuously increased use for a wide

variety of therapeutic and prophylactic applications.

Traditional analytical methods of ensuring the structural integrity and conformational

Reprinted from J. Pharm. Sci. (100), Nathaniel R. Maddux, et al., “Multidimensional methods for the
formulation of biopharmaceuticals and vaccines”, pp. 4171-4197, c©2011 Wiley-Liss, Inc. and the American
Pharmacists Association
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stability of these macromolecules have not, however, kept up with this progress. For exam-

ple, due to the inability of individual experimental methods to monitor all aspects of the

structural integrity of macromolecules, biological potency assays are required to ensure over-

all structural properties have been maintained. Moreover, in the case of protein-based drugs

including monoclonal antibodies, loss of conformational integrity leading to aggregation dur-

ing manufacturing and storage has raised potential safety concerns due to immunogenicity.1,2

This problem has become especially acute not only in terms of defining shelf life and en-

suring proper administration, but it arises frequently as a comparability issue during the

biopharmaceutical drug development process. For example, some of the challenges of es-

tablishing analytical comparability for different monoclonal antibodies during early and late

stage development have recently been highlighted.3 With the advent of biosimilars, the abil-

ity to better define the higher order structure of proteins, nucleic acids, and macromolecular

complexes in pharmaceutical dosage forms over time will most likely emerge as a critical

analytical challenge.

Because the more complex three dimensional structures of macromolecules (typically in-

volving tens of thousands of atoms or more) often play the key role in defining their biologi-

cal activity and efficacy, characterization of higher order secondary, tertiary and quaternary

structures remains a significant barrier to their pharmaceutical development. The problem is

simple enough to state, although it is remains difficult to address experimentally: How does

one demonstrate that pharmaceutical macromolecular systems are sufficiently structurally

similar (at the beginning and end of shelf life or in comparison to an analogous macromolec-

ular system) that they can for all intents and purposes be considered sufficiently identical

for therapeutic use in terms of their safety, efficacy, and stability?

A number of standard methods currently exist with the ability to obtain high resolution

structural information for proteins, nucleic acids and their complexes, resulting in commonly

used representations such as stick and ball models, ribbon diagrams and van der Waals

and electrostatic surface maps. Such three dimensional images of structure are the most
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common way to think of macromolecular systems. Among the experimental methods used to

generate these images are X-Ray crystallography, nuclear magnetic resonance (NMR), cryo-

electron microscopy and molecular mechanics calculations based on detailed force potentials.

At present, however, these approaches are seldom directly applicable to biopharmaceutical

dosage forms due to practical limitations. For example, X-Ray crystallography requires

crystallization, while NMR spectroscopy requires isotopic labeling and high concentrations.

Moreover, complete structural characterization is most appropriate when it serves the overall

goal of developing formulations. For these reasons, lower resolution biophysical methods are

commonly employed to monitor structural integrity and hydrodynamic properties. These

techniques include circular dichroism (CD), fluorescence, differential scanning calorimetry

(DSC), chromatography, and light scattering, among others (see Table 2.1).

Unfortunately, no one method provides sufficient information to establish the identity and

integrity of complex macromolecular systems. Therefore, the use of more than one of these

methods is generally preferred to better characterize these entities. The multidimensional

nature of such data sets makes adequate characterization of higher order structural integrity

problematic. To develop stable dosage forms, formulation scientists typically analyze stress-

induced transitions in macromolecular structure under varying solution conditions in the

presence of different excipients by using techniques that look at the data locally, using,

for example, visual inspection and/or mathematical fitting of thermal unfolding curves to

sigmoidal functions. Unfortunately, the global features of high-dimensional data spaces are

not always revealed by such local data inspection. A more comprehensive analysis of the

complex behavior typically observed is clearly desirable.

We review here the use of a newly formulated global mathematical analysis technique

developed for evaluation of large data sets generated from the biophysical analysis of bio-

pharmaceuticals and vaccines. The mathematical methodology finds and quantifies multidi-

mensional regularities in the data sets that often are difficult to detect with local inspection.

The mathematical information is converted into a visual map that serves to better define

9



and investigate structural integrity and conformational stability of biomolecules and macro-

molecular complexes.

From the dozens of test cases to date, we find that these maps tend to be segmented into

regions of distinct structural behavior. We call areas of a single contiguous color on these

maps “apparent” phases, and the related diagram an empirical phase diagram (EPD). The

word “empirical” serves to distinguish the diagrams from thermodynamic phase diagrams,

in which the phase transformations are necessarily reversible. In spite of a common lack

of reversibility in many protein transformations, the word “phase” to describe a physically

distinctive form of a substance reasonably applies to a pharmaceutical usage, as described

in more detail below.

An example is shown in Figure 2.1 of a representative data set generated for a mono-

clonal antibody (IgG1), along with the resulting empirical phase diagram. Various analytical

methods were used to monitor both the structural integrity as well as the dynamic properties

of the immunoglobulin as a function of temperature and solution pH.4 These data sets are

then summarized for analysis in the form of an empirical phase diagram. This approach has

been applied widely by our laboratory to different proteins, plasmid DNA-lipid complexes,

virus like particles and viruses. As shown in Figure 2.2, dozens of empirical phase diagrams

have been generated and published over the past 7-8 years. Refer to Table 2.2 for references

and more detailed information concerning each empirical phase diagram.

Our group’s EPD method has found many uses in the development and optimization

of various types of biopharmaceutical and vaccine formulations. Empirical phase diagrams

serve as guides to the interpretation of multidimensional data, determining regularities that

may be difficult to visualize otherwise. These data sets are presented in an easy to inspect

format, assisting in the determination of protein state and transition points as a function of

environmental conditions such as temperature and solution pH. Many case studies have been

published concerning not only the application of EPDs to various macromolecular systems,

but also their extension by the addition of new biophysical measurement techniques and
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search space variables. Common pharmaceutical applications have been to aid in selecting

stress conditions for excipient screening, finding optimal ranges of stabilizing solution con-

ditions, and investigating the overall physical behavior of large macromolecular complexes.

EPDs have been applied to the characterization, stabilization and formulation of proteins,4–21

virus like particles,22,23 viruses,24–27 and nucleic acids and their complexes with lipid delivery

vehicles,28 as well as whole bacterial cells.29 In principle, one can incorporate almost any

kind of information into EPDs, including measurements of structural dynamics, chemical

integrity or biological function. Empirical phase diagrams have also been shown to contain

information concerning the functional and evolutionary relationships of proteins.10–12,16,17

These applications will be discussed in more detail below.

2.2 Review of experimental methods

2.2.1 X-Ray Crystallography (XRC) and Nuclear Magnetic Reso-

nance (NMR)

Since XRC and NMR have the potential to determine the full three dimensional structure

of macromolecules, they would be ideal were it not for confounding factors. Both methods

require costly instrumentation and highly trained support staff. XRC requires the prepara-

tion of crystals, which cannot always be grown, and do not necessarily represent structure

in the solution state. The experimental procedure typically takes at least days to weeks to

optimize and perform. Full structure determination by NMR currently takes a similar length

of time, but only works for small to medium size proteins (thus not including monoclonal

antibodies). Furthermore, isotopic labeling is necessary for full structural determination.

These limiting aspects of NMR may, however, be reduced in the future.61,62 Both method-

ologies are also difficult to apply to pharmaceutical dosage forms due to interfering effects

of excipients. The goal in the work described here is primarily to find transitions in higher

order structure as a function of environmental conditions (e.g. temperature and pH in the
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presence of different excipients), which requires far less information than that required for

full structure determination.

A wide variety of lower resolution biophysical techniques are available for characteriza-

tion of biomolecules and their macromolecular complexes. In general, these methods can be

employed over a wide range of concentrations (from a few micrograms to hundreds of mil-

ligrams per milliliter), although interference by factors such as light scattering, absorbance

flattening and solute interference can sometimes be a problem.

Very brief descriptions of many of these techniques now follow. References and a summary

of the capabilities of each method are shown in Table 2.1.

2.2.2 Near and Far Ultraviolet Absorbance Spectroscopy (UVAS)

Both proteins and nucleic acids contain a number of environmentally sensitive chromophores

which absorb in the UV region. While the peptide bonds of proteins display intense ab-

sorbance in the far UV (180-220nm) region, thus yielding secondary structure information,

analysis in this region is normally done by circular dichroism or FTIR due to their better

resolution (see below). In contrast, derivative analysis of protein spectra in the near UV

typically provides 5 to 6 well resolved peaks from the three aromatic residues (Trp,Tyr,Phe),

which are quite sensitive to structural changes. Nucleic acids also produce distinct spectra

from the bases in the same spectral region, which can be used to follow structural alter-

ations. Conveniently, when a macromolecular system aggregates, optical density (OD) in

non-absorbing regions (>340nm) can be used to monitor this phenomenon simultaneously

with near UV spectral analysis.

2.2.3 Near and Far Ultraviolet Circular Dichroism (CD)

Due to the high optical activity of helical structures, CD can be used to detect changes in

both nucleic acid and protein secondary structure in the far-UV region for proteins and mid-

UV region for nucleic acids. The optical asymmetry of the environment of the aromatic side
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chains in proteins also produces distinct signals typically of some complexity in the near-

UV region. Thus by monitoring both regions, structural changes in secondary and tertiary

structure can be detected. Deconvolution analysis of CD spectral shape in the far UV region

also allows fairly accurate estimates (within 2-3%) of actual secondary structure content. The

induced CD of certain dyes can also be used to determine structural information, especially

with nucleic acids and polysaccharides.

2.2.4 Intrinsic and Extrinsic Fluorescence

The intrinsic UV fluorescence (UV-IF) of proteins is dominated by emission from indole side

chains when Trp residues are present and not endogenously quenched. Such fluorescence is

very environmentally sensitive, making the peak position and intensity of Trp fluorescence

a particularly useful probe of protein structural change. The use of extrinsic fluorescence

(EF) probes is applicable to virtually all forms of macromolecules and their complexes,

including proteins, nucleic acids, and membranes. For example, dyes are available which are

particularly attracted to apolar regions in proteins as well as the characteristic intermolecular

β-structures which often form when proteins associate. A wide variety of fluorophores bind

both within nucleic acid grooves as well as between bases (intercalation). In addition, there

exist a large number of dyes that interact with lipid bilayers such as those present in some

viruses and virus-like particles as well as bacterial cells. Some of the most commonly used

dyes are 8-anilino-1-naphthalenesulfonate (ANS), used in protein studies; laurdan, used for

lipid bilayers; and YOYO-1, used for DNA. In all of the above cases, large changes in

fluorescence intensity, peak position, and polarization often occur as these dyes bind to their

various targets. Thus, they can be used to probe a plethora of aspects of macromolecular

structure and associated changes.
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2.2.5 Infrared and Raman Spectroscopy

Both infrared and Raman spectroscopy can be used to obtain structural information about

the complex series of vibrational transitions present in macromolecules. Infrared spec-

troscopy is performed almost exclusively in a Fourier transform mode (FTIR). While FTIR

is an absorptive technique and Raman is a scattering measurement, both have significant

although sometimes different utility. Each can be used to examine the secondary structure of

both proteins and nucleic acids (as well as complexes such as viruses) through deconvolution

of constituent amide bands (signals from peptide bonds and various nucleic acid base sig-

nals). FTIR is the more widely used technique due to instrument availability and sensitivity.

In contrast, signals from side-chains tend to be much better detected in Raman spectra.

2.2.6 Static and Dynamic Light Scattering (SLS, DLS)

The size and shape of macromolecules both in their monomeric and associated forms can

be characterized by static and dynamic light scattering. In the former, the intensity of the

scattered light is measured (often as a function of angle), while in the latter, fluctuations in

intensity of scattered light due to Brownian motion are analyzed. Size and shape informa-

tion obtained are model dependent and complicated by the presence of non-homogeneous

scatterers, although various data analysis methods exist to produce useful numerical values

from both methods. Imposition of an external electromagnetic field can be used to obtain

zeta-potential values. A method we do not discuss here is analytical ultra-centrifugation

(AUC). Although AUC is very information rich in terms of evaluating hydrodynamic prop-

erties of biomolecules and macromolecular complexes, this methodology is not available in a

high throughput mode, unlike the scattering based methods.
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2.2.7 Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry is a technique based on measuring differential heat capac-

ities in macromolecules, from which transitions in state can be detected. Virtually every

biomolecule from proteins and nucleic acids to membranes and viral particles undergo ther-

mally induced transitions that can be detected by this method and used as indicators of ther-

mal stability. Like the methods described above, DSC is now available in a high throughput

mode making it useful for the formulation and stability purposes discussed below.

2.2.8 High Performance Liquid Chromatography (HPLC)

High Performance Liquid Chromatography is a technique which passes a solution at high

pressure through a filter column. Depending on physical traits of the filter media, different

molecules in the solution pass through the media at different speeds. Thus a chromatogram

can be constructed by measuring the time-varying absorbance of the solution exiting the filter

column. Although not generally adaptable to a high throughput mode in the sense of the

above methods (i.e. one cannot easily and rapidly perform measurements over a wide range

of pH and temperatures), the use of auto-samplers does permit a variety of chromatographic

methods to be used after exposure to a wide range of conditions. Probably the three most

useful to the formulation scientist are size-exclusion (SEC), ion-exchange (IE), and reversed

phase (RP) chromatography. All three methods will be well known to most readers so

we just mention their applicability to size, charge, and polarity changes, respectively. To

characterize chemical degradation (oxidation, deamidation, hydrolysis, etc.), RP-HPLC is

commonly used in combination with fragmentation and mass spectrometry to characterize

sites of covalent alteration. Methods such as capillary isoelectric focusing are also commonly

used for this purpose.
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2.2.9 Measurements sensitive to intramolecular dynamics

It has become increasingly apparent that macromolecular stability is dependent on the var-

ious types of internal molecular motions present in macromolecular systems, such as side-

chain movements, breathing modes, domain motions, etc. Thus, measurements of such

motions should ultimately be included in a thorough analysis of stability. A number of high-

throughput methods are available, including ultrasonic spectroscopy (to measure compress-

ibility), pressure perturbation DSC (to measure coefficients of thermal expansion), as well

spectral approaches such as temperature induced pre-transition peak shifts in second deriva-

tive UV absorbance spectra, fluorescence anisotropy (rotational correlation times), red-edge

fluorescence excitation, and fluorescence and UV absorbance solute-induced spectral shifts.

Methods specifically designed for this purpose such as isotope exchange and various forms

of NMR are not generally applicable to high-throughput applications, although this may

change in the future.

2.2.10 Multi-mode Machines (“Protein Machines”)

Instruments are currently being developed by several vendors that simultaneously collect

data using several of the above methods. For example, the Chirascan from Applied Photo-

physics collects near and far UV CD and near and far UV absorbance. Fluorescence emission

spectra can also be collected, although not simultaneously with the other techniques. The

Protein Machine from Olis Instruments collects far UV CD, near UV absorbance, fluores-

cence emission and excitation spectra, and red-edge excitation spectra. Both instruments

can also acquire light scattering signals during several of these measurements.

Difficulty of simultaneously measuring near and far UV signals

Simultaneous near and far UV measurements require intermediate path lengths and con-

centrations. Longer path lengths or higher concentrations yield excess absorbance, causing

absorbance flattening in far UV measurements. Shorter path lengths or lower concentrations
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yield too little signal, resulting in a significant amount of noise in near UV measurements. It

is not possible in principle to find an optimum trade off between path length and concentra-

tion, because both have the same effect on absorbance. Changing slit widths can overcome

these problems to only a very limited extent. Thus, the existence of conflicting requirements

makes it technically difficult, but not impossible, to simultaneously collect data in the near

and far UV regions. In the far UV region, peptide bonds yield very strong absorbance. To

avoid absorbance flattening in this region one must use short path lengths or low concen-

trations. The near UV absorbance spectra of aromatic residues are comparatively weak, so

short path lengths or low concentrations result in noisy measurements. Nevertheless, these

instruments do permit simultaneous collection of data from multiple techniques with good

to excellent resolution. In combination with multiple sample holders, EPDs can be obtained

directly from such instruments over periods of 3-12 hours.

Currently, the only way to simultaneously collect data in the near and far UV is to use

very long integration times in the near UV, to reduce excessive noise. These long integration

times offset the time saved by simultaneous collection. Short of waiting for instruments with

lower noise to be developed, there is at least one possible option to be considered: vari-

able path length cells would permit automatic adjusting of absorbance for each wavelength

range. This feature is available in a few UV-Vis absorbance instruments built for measuring

concentrations, and could potentially be applied to multi-modal spectrometers.
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Table 2.1: Lower resolution biophysical techniques commonly used to characterize and mon-
itor higher order structure as well as aggregates of biomolecules and macromolecular com-
plexes.
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References

Neara UV Absorbance (UVAS) ◦ • • • 4,6,18,30–33

Farb UV Absorbance • • • 30

Neara UV Circular Dichroism (CD) • 34,35

Farb UV Circular Dichroism • • ◦ 33–36

Intrinsic Fluorescence (IF) ◦ • • 37

Extrinsicc Fluorescence (EF) • • 38–43

Red Edge Excitation (REES) • 44,45

Time Resolved Fluorescence (TRFS) • 46,47

Fourier Transform Infrared (FTIR) • • • 48–50

Raman spectroscopy (RS) • • • 51

Differential Scanning Calorimetry (DSC) • • • • 52,53

Pressure Perturbation Calorimetry (PPC) • 53–55

High Res. Ultrasonic Velocimetry (HRUS) • 53,56

Dynamic Light Scattering (DLS) • • • • 57

Static Light Scattering (SLS) • • • 58

Optical Density (OD) • • 58

High Perf. Liquid Chromatography (HPLC) • • • • • • 59,60

a240-320nm. b190-260nm. cDie conjugated. dSize distribution profile. ◦ Limited data.
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2.3 Data Interpretation Challenges

A wealth of data tends to be generated when several of the above methods are employed

under varying environmental conditions. Figure 2.1A-F shows one of these data sets for an

IgG molecule.4 Data were collected as a function of temperature and pH, from pH 3 to 8 at

one pH unit increments (6 different conditions), and temperatures from 20 to 90◦C at 2.5◦C

intervals (29 different conditions), resulting in a 6×29 assay grid. At each point on this grid,

measurements were taken of CD molar ellipticity at 218 nm (Panel A), intrinsic fluorescence

peak position and intensity (Panels B and C), tryptophan fluorescence lifetime (Panel D),

static light scattering (Panel E), and ANS fluorescence intensity (Panel F).

The data set shown in Figure 2.1A-F presents challenges as well as opportunities. Tra-

ditionally, we look for evidence of conformational changes, unfolding, and aggregation, then

estimate transition temperatures. This approach suffers three major drawbacks. First, exper-

imental methods sometimes disagree on transition temperatures and protein state. Second,

plots like Figure 2.1A do not convey much information to the non-expert. Third, important

variations and/or regularities in the data may not carry through to the final analysis when

they are unexplained, too complex to easily observe, or partially hidden by noise.

Each experimental technique provides a picture of one or more different aspects of a

protein or other macromolecular system. The formulation scientist must assemble this infor-

mation into an overall picture of the behavior of the protein. The situation is similar to the

tale of the “blind men and the elephant”, where the macromolecular drug is the elephant,

and the experimental methods are the blind men touching different parts of the elephant

(tusk, trunk, ear, tail, etc). The formulation scientist is the one who must assemble the

information from the others and decide what the elephant looks like. When experimen-

tal methods disagree, the formulation scientist must make an educated guess. Sometimes

even a single method will report conflicting information, as when transition temperatures

between folded and unfolded conformations of a biomolecule differ for measurements from

two different wavelengths during the same circular dichroism temperature melt experiment.

19



3 4 5 6 7 8

20

30

40

50

60

70

80

pH

T
e

m
p

e
ra

tu
re

HCL

G

4 5 6 7 8

20

30

40

50

60

70

80

pH

T
e

m
p

e
ra

tu
re

HCL

H

Figure 2.1: An empirical phase diagram (EPD) assists in the visualization of data set resulting from the
methods listed in Table 1. Figures A-F show measurements of an IgG1 monoclonal antibody collected at
pH 3 (black), 4 (red), 5 (green), 6 (yellow), 7 (blue), and 8 (magenta). (A) CD molar ellipticity at 218
nm, (B) UV intrinsic fluorescence (UV-IF) peak position and (C) intensity, (D) tryptophan fluorescence
lifetime, (E) static light scattering (SLS), and (F) ANS extrinsic fluorescence (ANS-EF) intensity. Error
bars in (A-C and E-F) are from three independent experiments.4 Figure (G) shows an EPD based on the
above data. Figure (H) shows an EPD based on protein dynamics measurements (data not shown, see the

applications section for more information).
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Figure 2.2: Empirical phase diagrams have found many uses in the optimization of various types of
formulations. Many case studies have been published concerning their application to various systems and
their extension by the addition of measurement techniques and search space variables. Refer to Table
2.2 for more information concerning each EPD. All EPDs have temperature (◦C) as the vertical axis.
Diagrams 1-35 use pH on the horizontal axis, and diagrams 36-40 have the indicated variables on the

horizontal axis.
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Although each experimental method is sensitive to different aspects of protein behavior,

different methods often provide overlapping information as well. This manifests itself as

regularities in the combined data sets. One would not expect these regularities to always be

easily visible in data such as that shown in Figure 2.1A-F. In these plots we show the results

from six biophysical methods to monitor the higher order structure of an IgG molecule as

a function of pH and temperature. Similar experiments can generate even larger data sets

with many more instruments and/or environmental conditions. To find the regularities, we

would need to find patterns in a high dimensional space. This is not possible in the simple

plots of Figure 2.1A-F. An empirical phase diagram of the data in Figure 2.1A-F is shown

in Figure 2.1G (Figure 2.1H will be discussed in the applications section). The red region

of Figure 2.1G tells us that high temperature behavior is clearly different between low and

high pH (pH values above 4). Inspecting the data, the distinction appears to be subtle

and complex, but the EPD shows us that in the multidimensional space, the difference is

actually pronounced. Furthermore, focusing on measurements at pH 3 (shown in black), we

see that the positions of transitions near 40◦C are not well defined. On the phase diagram,

the transition is sharper and positioned near 40◦C.

Formulation scientists must often resort to educated guesses when further information

is hidden in the complex data sets generated from a series of measurements. EPDs use

the results of a global analysis, increasing the use of information and reducing the role of

guesswork. Such plots present the results in a simple format, so the eye of a non-expert can

pick out regularities and transitions with little difficulty.

2.4 Search space, protein phase space, and measurement

phase space

To better understand the mathematical aspects of generating empirical phase diagrams, we

first review terms and concepts that arise naturally from the quantitative characterization of
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large data sets. Each mathematical term can be made as formal as desired, which we avoid

here. Instead, our emphasis is on conveying relevant concepts by using precise mathematical

terms in a manner as informal and pictorial as possible.

2.4.1 Search space

The search space is defined by the experimental control variables. One may use virtually

anything as a control variable, such as concentrations of excipients, temperature, pH, or

variables describing protein history. We cannot test every point in the space, so one usually

forms a grid of points to test. We will call this the “search grid”. The terms “search space”

and “search grid” are borrowed from the field of protein crystallization. In Figure 2.3A, a one

dimensional grid has been chosen consisting of 4 pH values. If we had varied both solution

pH and temperature, we would have needed two variables to define the solvent state, and

we would have tested points in a two dimensional grid (as will be discussed later in Figure

2.6A).

2.4.2 Macromolecule phase space

The state of a target biomolecule or macromolecular complex can be described by a list of

numbers. For example, we can use a long list of the positions of all the atoms in a protein.63

If we consider each list as a point in a high dimensional phase space, then changes in protein

shape equate to movement of the corresponding point in phase space. In Figure 2.3A we

have illustrated a protein phase space with ratios of secondary structure. An exhaustively

complete protein phase space would require thousands of variables to completely describe a

protein state.

Preferred molecule states correspond to equilibrium points caused by energy minima in

phase space. Due to thermal vibrations, the molecular states fluctuate around these energy

minima, and can be visualized as a cloud of points around each minimum, usually described

by a Boltzmann distribution.54,63,64
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Figure 2.3: An illustration of three types of spaces, using simulated data. In Figure (A), four pH values
define a one dimensional search grid in search space, and ratios of secondary structure type illustrate a
protein phase space. Figure (B) shows how two measurement types define a measurement phase space.
The transition pH values disagree when we plot measurements separately, as in Figures (C) and (D). A
plot in measurement phase space (B) synthesizes the information, but will not work as a visual aid for

high dimensional data.

For a given solvent condition, there can also be more than one accessible stable protein

state, due to the existence of multiple minima in the protein energy landscape.63 Instead of a

single cloud of points for the given solvent condition, there may be several (see Figure 2.3A,

pH 5 and 6). When we collect spectroscopic data, we see the average of the contributions

from all the protein states.

2.4.3 Measurement phase space

This space is defined by all of the measurements used to probe a macromolecular state. For

example, in Figure 2.3B we show how 2 measurements define a 2 dimensional measurement

space. If we collect CD data at 3 wavelengths and UVAS data at 2 wavelengths, we can join

these into a single 5 dimensional vector (as will be discussed in more detail later; see Figure

2.6B).

The measurements in a data set contain information generated by multiple physical
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processes. The types of information derived from these physical processes possess varying

levels of prominence in the data. Some stand out on their own, while others require extensive

processing to isolate.

We also attribute varying levels of significance to the different types of information. For

example, for formulation purposes, information concerning aggregation is highly significant,

while information concerning protonation may be less so.

Since the data are generated by physical processes, one cannot expect prominence to be

related to significance. Thus, types of data usually require a certain amount of preprocessing.

2.5 Data preprocessing and standardization

2.5.1 Data preprocessing

Data preprocessing steps are designed to extract significant information from data in which

it may be hidden in complex ways amid less important information. Preprocessing usually

consists of finding the position, width, or intensity of spectral or calorimetric peaks, using

methods such as second derivative processing, Fourier self deconvolution, or determination

of the spectral center of mass. Another preprocessing practice is the hand-selection of data

that is deemed to be pertinent, information rich, and sufficiently free of noise.

For example, the simulated data in Figure 2.3B is similar to preprocessed data from near

UVAS second derivative peak position analysis. A spectrum would have been collected and

preprocessed for each pH value, yielding the positions of several peaks. Selection of two of

the peaks would have resulted in a data set like the one plotted in Figure 2.3B.

Typically, on the order of ten measurements remain after preprocessing. It is best to

not overdo preprocessing, which may erase information about transitions. Preprocessing

constitutes a bias concerning the significance of types of information, so it must be applied

judiciously. An example of extreme preprocessing would be to take an FTIR absorbance

spectrum measured at 3000 frequencies and reduce it to a single frequency. The global
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analysis we will describe is capable of finding optimal low-dimensional representations of

high dimensional data, and tends to perform better when a large number of measurements

are used.

2.5.2 Data standardization

Preprocessing results in a collection of numbers that cannot be expected to have appropri-

ate units, scales, or dimensions. The units of most data are standardized by scientific and

engineering conventions that have no relation to their significance for formulation develop-

ment. For example, fluorescence emission photon peak counts of proteins tend to range

from 104 to 106, but absorbance values tend to be kept below 1 AU. The scale of data must

be adjusted so that artificial unit conventions do not cause one type of data to overwhelm

another. Furthermore, mathematics alone does not contain knowledge of formulation, so it

cannot in principle determine the scale choices, preprocessing, and standardization that will

lead to useful summaries. Perhaps surprisingly, once these choices are made by the user,

mathematics can determine optimal low dimensional representations of data. Fortunately,

the adjustment of scale variables is straightforward as described below and rather robust

outcomes are not difficult to obtain.

We now discuss an example of the influence of scales on estimates of transition values.

Figures 2.3C and 2.3D illustrate how measurements can disagree on the position of transi-

tions. Plotting the measurements separately, measurement 1 (Figure 2.3C) shows a transition

between pH 5 and 6, but measurement 2 (Figure 2.3D) shows a transition between pH 6

and 7. The two dimensional plot (2.3B) shows the largest transition between pH 6 and 7.

Measurement 2 dominates the two dimensional plot since that peak’s variation stretches over

a larger range.

Our current approach to resolving the conflict is to resize the variation in each measure-

ment so that they have equal magnitude. There are many ways to do this, and we show

only one of them. Since we are only interested in transitions, we begin by centering the mea-
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Figure 2.4: Principal Components Analysis can be used to project two dimensions into one. The
procedure works the same way for high dimensional data (see Figure 2.5 and 2.6). We will use the
simulated data shown in Figure 2.3B. (A): First we center the measurements at the origin, since we are
interested in transitions, not average values. (B): Next we normalize each measurement so that they have
equal influence on the result. (C): Finally, we use the Singular Value Decomposition (SVD) to find the
optimal line for projection (shown in blue). (D): If we plot the position along the blue line, we see that

the difference is greatest between pH values 5 and 6.

surements at the origin by subtracting the mean measurement from all the measurements

(Figure 2.4A). Then we can normalize each measurement to equalize their variation (Figure

2.4B). We see in this figure that the largest transition occurs between pH 5 and 6.

Hypothetically speaking, if humans could only perceive one dimension, we would want

to represent the data in one dimension while preserving the information content as much

as possible. Figure 2.4C conceptually illustrates the process. We begin with points in a 2

dimensional space (the black dots), and seek to project the data onto an optimal 1 dimen-

sional space. The term “optimal” is defined by minimizing the projection error, indicated by

the red lines. Once the optimal 1 dimensional space has been found, data can be plotted

within that space, giving a 1 dimensional plot. This is shown in Figure 2.4D.
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2.6 The Singular Value Decomposition (SVD)

Many natural phenomena are poorly understood and currently impossible to model com-

pletely. This is the case, for instance, for the behavior of proteins in solution upon pertur-

bation by changes in solution variables such as pH and temperature. When confronted with

poorly understood phenomena, it’s useful to have a method to help get analysis started.

Perhaps the most natural thing to do in such a situation is to consider the shape of the data.

In fact, modeling can be described as the attempt to find the least complex summary of the

shape of a data set.

The shape of a complex high dimensional data set is usually not perceivable by human

visualization capabilities. Attempting to fit different models to such a data set is therefore

the only way we have to investigate its shape. In the beginning stages of analysis, it can

be useful to use models that corresponding to intuitive notions of shape. In this section we

discuss one such model.

2.6.1 Notation

A typical phase diagram utilizes a search grid in temperature and pH, covering pH values

from 3 to 8 and temperatures from 10◦ to 85◦C. Collecting a measurement at each search

grid point results in data Di1i2 , where

i1 = 1→ pH 3, i1 = 2→ pH 4, ..., i1 = 6→ pH 8

i2 = 1→ 10◦C, i2 = 2→ 12.5◦C, ..., i2 = 31→ 85◦C

(The search grid points need not be evenly spaced.) Collecting m different types of mea-

surements at each search grid point gives data Dj
i1i2

, where j = 1...m. Generalizing from a

search grid with 2 variables to one with n variables, we have data

Dj
i1i2...in

, (2.1)
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where ik = 1...sk.

In typical applications of the EPD technique, m has typically been around 10, includ-

ing measurements such as intrinsic and extrinsic fluorescence peak intensity and position,

percentages of secondary structure types as determined by circular dichroism, and positions

of ultraviolet absorbance peaks as determined by second derivative analysis. When entire

spectra are used, m can be several thousand. Since the data set is high dimensional, the

human eye cannot easily find its patterns. Humans prefer two-dimensional diagrams. Thus,

a method is required to find optimal low dimensional representations of data for visual

depiction.

2.6.2 Optimal low dimensional representation

We begin by making the tensor D into a list of vectors:

Dj
i1i2...iN

→ Dij, (2.2)

where the indexes i1...iN have been combined, or flattened, into one index i of dimension

l =
∑n

k=1 sk. As before, j = 1...m indexes measurement types.

The matrix Dij is a list of data points j taken at control variables i. We wish to find a

projector

P = ATA (2.3)

which projects the row vectors Di into a subspace of a desired number of dimensions , while

minimizing some yet to be defined matrix norm:

∥∥∥DP −D∥∥∥ ≈ 0 (2.4)

The singular value decomposition is a way of easily finding such a projector. The singular
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value decomposition of D is

Dij =
d∑

α=1

UiαWαVαj, (2.5)

where d = Min(l, m). The decomposition exists for any matrix, whether real or complex,

square or rectangular. The matrices Uiα and Vαj are calculated by solving for the eigenvectors

of the covariance matrices DDT and DTD:

DDT · Uα = W 2
αUα, (2.6)

Vα ·DTD = W 2
αVα, (2.7)

where Uα is a column of the matrix Uiα and Vα is a row of the matrix Vαj. For complex

matrices replace the transpose DT by the adjoint D†.

Both DDT and DTD are real symmetric, or complex self-adjoint, and positive definite.

The numbers Wα, called singular values, are by convention real and positive by a choice

of sign (or complex phase) of the eigenvectors. Also by convention, the singular values are

sorted in order of decreasing size, and the eigenvectors are sorted accordingly.

The rows of Vαj are normalized. Since they are eigenvectors, they are orthogonal to one

another:

V V T = Id×d. (2.8)

Likewise for the columns of Uiα:

UTU = Id×d. (2.9)

The rows of V and the columns of U are called singular vectors. When D is real, U and V

are also real.
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The decomposition is unique up to a complex factor chosen for each pair of eigenvectors:

Dij =
d∑

α=1

(Uiαe
−iθα)Wα(eiθαVαj), (2.10)

Even when D is real, the signs of the singular vectors are not uniquely determined by the

decomposition.

2.6.3 The relationship between singular values and data reconstruc-

tion error

The norm of each summand in Equation 2.5 is Wα:

‖UiαWαVαj‖ =

√√√√ l∑
i=1

m∑
j=1

|UiαWαVαj|2 (2.11)

=

√√√√|Wα|2
l∑

i=1

m∑
j=1

|Uiα|2 |Vαj|2 (2.12)

= Wα. (2.13)

Since the numbersWα are sorted in decreasing order, Equation 2.5 is a series of corrections

decreasing in size. For many data sets, the most common result is that the data can be

approximated well by a sum over just the top few summands α, since the largest singular

values tend to be much larger than the rest. If we use the top t singular values, where

1 ≤ t < d, Equation 2.5 becomes

D̃ij =
t∑

α=1

UiαWαVαj, (2.14)

where D̃ is the approximated data.
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In the vector space of l ×m matrices, the summands are orthogonal:

l∑
i=1

m∑
j=1

(UiαVαj)(UiβVβj) =
l∑

i=1

m∑
j=1

(UiαUiβ)(VαjVβj) (2.15)

= δαβδαβ (2.16)

= δαβ. (2.17)

Since the summands in Equation 2.5 are orthogonal and their individual norms are Wα,

the norm of the partial sum D̃ is the same as the ordinary vector norm of the Wα included

in the sum:

∥∥∥D̃∥∥∥ =

√√√√ t∑
α=1

W 2
α, (2.18)

The RMS reconstruction error, directly expressed as

∥∥∥D − D̃∥∥∥ =

∥∥∥∥∥D −
t∑

α=1

UiαWαVαj

∥∥∥∥∥ , (2.19)

can also be expressed as

∥∥∥D − D̃∥∥∥ =

√√√√ d∑
α=t+1

W 2
α. (2.20)

2.6.4 Example

We now illustrate SVD with a simple example (Figure 2.5). Some familiarity with linear

algebra will assist the reader, but the following discussion should also be accessible to a

general audience. Suppose we are given the following measurements of a protein at different
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Figure 2.5: An example of the Singular Value Decomposition (SVD) using simulated data. (A) is a plot
of three simulated peak shifts ∆λ1, ∆λ2, and ∆λ3 as a function of temperature. If we could perceive two
dimensions but not three, the transition between 50◦C and 70◦C might be difficult to see. Therefore, we
would want to reduce the data to two dimensions in a way that optimally retains the information in the
original data set. (B) shows the plane (in pink) which gives the optimum 2D projection. This plane is
determined by SVD, and is defined by the vectors X1 and X2 (in blue). The projection error is shown as
red lines. (C) is a 2 dimensional plot of the same data, using the positions within the pink plane. This is
a plot of matrix A (see text). (D) shows the optimal one dimensional projection, demonstrating that the

error is larger. This plot uses the first column of matrix A (see text) .

temperatures.

∆λ1 ∆λ2 ∆λ3

10◦C 3 -2 -1

30◦C 2 -1 -3

50◦C 0 -1 -1

70◦C -3 1 2

90◦C -2 3 3

(2.21)

For instance, the data might represent second derivative ultraviolet absorbance peak shifts

in hundredths of a nanometer.

A plot of this data is shown in Figure 2.5A. Each row is plotted as a point in three dimen-

sions, and each point corresponds to a different temperature. The data is three dimensional

in the sense that at each temperature we have three numbers, ∆λ1,∆λ2, and ∆λ3, which

represent the state of the target molecule.

If we could perceive two dimensions but not three, the transition between 50◦C and 70◦C

might be difficult to see. So we would want to reduce the data to two dimensions in a way
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that optimally retains the information in the original data set. To see how to do this, refer

to Figure 2.5B. The black points are the data points, and the pink area represents a plane.

The red points are the positions within the plane that are nearest to the data points. They

are two dimensional approximations to the data points. The red lines represent the error in

the approximation. We seek the plane which minimizes the total error, defined as the sum

of the squares of the lengths of all of the red lines.

To show how this works, we first express the data as a matrix:

D =



3 -2 -1

2 -1 -3

0 -1 -1

-3 1 2

-2 3 3


. (2.22)

SVD finds an optimal, unique two dimensional approximation, which we will call D̃.

D̃ = AX (2.23)

=



-3.5 -1.2

-3.6 0.46

-1.1 0.85

3.6 0.88

4.5 -1.0



 -0.63 0.48 0.61

-0.77 -0.28 -0.57

 (2.24)

The matrix A consists of the left singular vector matrix multiplied by the singular value

matrix, and retains only the top 2 singular vectors. We have done this to simplify the

presentation.

The two rows of the matrix X are perpendicular to each other. In Figure 2.5B, the two

rows of X are represented as blue vectors. They are axes in a two dimensional plane (shown
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in pink), and serve to define that plane. This plane is the unique plane that minimizes

the total error. When we perform the matrix multiplication AX, each row of A specifies

a linear combination of the rows of X. The matrix multiplication places the approximated

data points within the plane defined by the row vectors of X.

In this example, SVD actually returned three optimal axii and we have chosen and shown

only the two most important ones (the two rows of X, shown as blue vectors in Figure 2.5B).

When we choose optimal axii to define the lower dimensional space, we generally discard the

other axii returned by linear algebra. If we had used only the first row of X, we would have

approximated the data within a one dimensional space (Figure 2.5D). In that case, the error

would have been larger. (On the other hand, the optimal one dimensional axis may well

encompass most of the data, depending on the relative magnitude of the singular values.)

When we use all of the axii given by SVD, there is no error, and the approximation D̃

is equal to the original matrix D. Error results from excluding axii, as we have done in

Figures 2.5D and 2.5B. If we exclude axii that only result in a small increase in error, the

approximation D̃ can be very close to the original matrix D.

For many data sets, the most common result is that only a few of the axii are important,

resulting in a large increase in error when they are dropped. The rest of the axii can usually

be eliminated with very little effect on the approximation. We can choose in advance the

number of axii to use. In this example, we have three dimensional data that we want to

reduce to two dimensions. We can minimize the error for a two dimensional projection by

using the two most important axii returned by SVD.

Since we want a true two dimensional representation of D, it is self-consistent to use

the positions within the optimal plane instead of the three dimensional positions. The two

dimensional positions within the plane are given by the matrix A, and are plotted in Figure

2.5C. Each point in Figure 2.5C represents a row of A. The error in the approximation from

D to D̃ is the sum of the squares of the lengths of all the error vectors (the red lines in

Figure 2.5B). This is the error that SVD minimizes.

35



The entire procedure we use to project data is known as Principal Components Analysis

(PCA). PCA consists of subtracting the mean from a data set and applying SVD. These

steps are shown in Figure 2.4A and 2.4C. The extra step of normalizing the measurements,

shown in 2.4B, is a known extension to PCA.

It is important to note that the procedure gains its power from the fact that it works the

same way in higher dimensions. Instead of three peak shifts, as in the previous example, we

might be given 5 measurements at each temperature. These are vectors in a five dimensional

space. After standardization, we apply SVD to the matrix of data, returning up to 5 axii.

The most significant axii are then used to define a lower dimensional space. The projection

onto that space is the best possible approximation to the data that can be made based on

the number of dimensions retained. Just as in the example above, the approximated matrix

still appears high dimensional. Yet we can get a true low dimensional view of the data by

using the data point positions within the space defined by the retained axii (as illustrated

for two dimensional projections in Figure 2.5C).

2.6.5 History

The singular value decomposition is attributed to the mathematicians Beltrami and Jordan,

who discovered a version in the 1870’s. The physicist Carl Eckhart is credited with extending

the procedure to non-square matrices. It seems to have been re-discovered many times, and

is sometimes associated with Householder and Karhunen-Loeve.65

2.7 The Empirical Phase Diagram

We begin by choosing a search grid (Figure 2.6A). The most common search grid previously

used for protein phase diagrams covers pH values from 3 to 8 in one pH unit increments

and temperatures from 10◦C to 85◦C in 2.5◦C increments. Measurements typically include a

series of biophysical techniques such as CD, fluorescence, and UV absorbance spectroscopy
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Figure 2.6: Illustration of the steps in the Empirical Phase Diagram method, using simulated data.
(A): Choose a search space and a search grid. In this case, the search space is 2 dimensional, varying
temperature and pH in this case. In each dimension, two values have been chosen, forming a grid. (B):
Collect data at each point of the search grid. The data in this example is 5 dimensional. (C): Standardize
the data and project it into 3 dimensions. (D): Rescale to the range (0, 1), and express as a color. (E):

Transform the colors into an image.

as well as light scattering. In this simulated example, we choose a simpler case of two pH

values (5 and 6) and two temperature values (10◦C and 50◦C) as measured by CD (at 3

wavelengths) and UVAS (at two wavelengths).

After collecting and preprocessing the data, a matrix is created in which the rows corre-

spond to all search grid positions and the columns correspond to all measurement types (Fig-

ure 2.6B). The matrix is standardized as described in the previous section, then projected

down to 3 dimensions using the singular value decomposition. The result of standardization

and projection is shown in Figure 2.6C. The number of rows remains the same but the

number of columns has been reduced to 3.

To provide a convenient visual image, the resulting 3 dimensional positions are converted

into ratios of red, green and blue color. First the data is shifted and resized so that all the

numbers fit in the range (0,1) (Figure 2.6D). Then the 3 dimensional positions are expressed
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as colors. To create the phase diagram, the colors are reorganized into a grid and plotted

(Figure 2.6E).

2.7.1 History

A technique similar to EPDs was used in 1989 to merge satellite imagery.66 It is called

“PCA based image fusion”, is widely employed in geo-sensing and in-vivo imaging,67,68 and is

spreading to other areas such as art conservation and astronomy.69,70 Unaware of this history,

we first applied PCA in 2003 to characterize transitions in higher order protein structure

under different environmental stresses.6

2.7.2 Interpretation of Empirical Phase Diagrams

Once the empirical phase diagram has been generated, the mathematical work is done. What

remains is interpretation. The first step is to inspect the phase diagram to determine regions

of conserved structure. Areas of search space that produce similar measurements in the

abstract 3-dimensional space manifest themselves on the phase diagram as areas of a single

contiguous color. Transitions are then manifested as changes in color, with noise showing as

irregular and often quite subtle color variation.

The color of an area is itself a “code”, not universally meaningful information. To get

an idea of why this is, refer to Figures 2.5B and 2.5C. PCA gave the two vectors X1 and

X2, defining a plane for the optimal two dimensional projection. An entirely different data

set projected into 2 dimensions will also give an optimal plane whose absolute orientation

relative to the first cannot be known without comparing the sets with each other. Thus,

two different meanings can (and generally will) be applied to a given color code. This is

not a matter of much concern, because the color code is not actually used in a quantitative

analysis. The colors serve no purpose other than to identify areas of different behavior. One

might just as well have labeled contiguous regions with names or numbers, as in traditional

thermodynamic phase diagrams.
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While the results of PCA are unique for any given data set, small changes in a data set can

sometimes result in rotation of the principal axii. That will occur when two large, important

singular values are nearly equal. Then distinguishing them by size-ordering can hinge on

small variations. The result of swapping the order of axes is a swap of two colors. The

shapes of the regions and transitions will, however, remain the same, because the projection

plane in question is an absolute concept that does not depend on the labeling. Notice in

Figure 2.5C that a deliberate rotation of X1 and X2 does not alter any information about

the transition.

In a study of Clostridium difficile toxins and toxoids, discussed below, phase diagrams

were generated jointly to achieve uniform meaning of their colors.16 In such an analysis,

the target macromolecule becomes one of the control variables. For example, if the control

variables had been pH and temperature, they will now also include the target macromolecule.

The matrix shown in Figure 2.6B will contain additional rows to incorporate the increased

number of combinations of control variable positions. The matrix is then standardized,

projected into 3 dimensions, rescaled, and interpreted as colors, as shown in Figures 2.6C

and 2.6D. Finally, the colors are made into multiple phase diagrams, one for each target

macromolecule.

After the EPDs are inspected to determine regions of conserved structure, one tries to

determine as much as possible about the actual physical state of the protein or macromolec-

ular complex within those regions. To do this, one must refer to the original measurements

and consider the physical processes that generated them. To reiterate, the best one can hope

from quantitative analysis is optimal projection, which still needs expert scientific evaluation

of the original biophysical data, and perhaps further targeted experimentation. By referring

back to the source data, empirical phase diagrams can usually be segmented into the fol-

lowing types of structure: low temperature inactive, active form, molten globule states, high

temperature or acidic pH unfolded forms, and forms which are aggregated or dissociated to

various extents. Sometimes, however, a region of an EPD may have no ready interpretation,
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indicating that the data and mathematics have found something the expert does not readily

recognize.

2.8 Applications and case studies

Here we summarize some applications and case studies using empirical phase diagrams to

formulate and stabilize various biomolecules and larger macromolecular complexes. As high-

lighted earlier, common pharmaceutical applications have been to select stress conditions

Table 2.2: Biomolecules and larger macromolecular complexes, analytical techniques and
environmental stress conditions evaluated by empirical phase diagrams. See Table 2.1 for
definitions of the technique abbreviations.

Target Techniques Search Space Figure Ref.

Measles virus CD, DLS, SLS, EF pH, Ta 2.10 24

Human respiratory syncytial virus CD, UVAS, OD350, UV-IF pH, T 25

Live att. Ty21a bacterial typhoid vaccine CD, EF pH, T 29

Adenovirus type 5 (Ad5) UVAS, DLS, UV-IF, EF pH, T 2.2.32, 2.2.33 26

Recombinant ricin toxin A-Chain vaccine CD, UF-IF, EF pH, T 2.2.20, 2.2.31 71

Adenovirus type 2 (Ad2) CD, UVAS, OD350, DLS... pH, T 2.2.34 27

Hep. C virus envelope glycoprotein E1 CD, DLS, UV-IF, EF pH, T, Sa 2.2.37 - 2.2.40 21

Clostridium difficile toxins and toxoids CD, OD350, UV-IF, EF pH, T 2.8 16

Type III secretion system tip proteins CD, UVAS, UV-IF, EF pH, T 14

Type III secretion system needle proteins CD, UVAS, EF pH, T 17

Malaria antigen EBA-175 RII-NG CD, UV-IF, EF pH, T 15

H1N1 influenza virus-like particles CD, DLS, EF pH, T 2.2.25 22

Norwalk virus-like particles CD, UVAS, UV-IF, EF pH, T 2.9 23

Nonviral gene delivery complexes CD, DLS, EF pH, Ia 2.11 28

Human Inteferon-β-1a CD, UVAS, UV-IF, EF pH, T 2.2.12, 2.2.19 5

Bovine granulocyte colony stim. factor UVAS pH, T 2.2.26 6

Immunoglobulin-G (IgG) CD, EF, PPC, HRUS, TRFS pH, T 2.1 4

Pramlintide (antihyperglycemic peptide) CD, UVAS, OD350, UV-IF pH, T, Ca 2.7 7

Monoclonal antibodies CD, UVAS, OD350, UV-IF T, C 2.2.36 8

Clostridium botulinum A neurotoxin CD, UV-IF, EF pH, T 9

Molecular chaperones Hsc70 and gp96 CD, UVAS pH, T 10

Human fibroblast growth factor 1 CD, UVAS, UV-IF, EF pH, T, S 2.2.6 - 2.2.11 11

Fibroblast growth factor 20 (FGF-20) CD, UVAS, UV-IF pH, T 12

rPA of B. anthracis CD, UV-IF, EF pH, T 2.2.31, 2.2.35 13

Recombinant vault particles CD, UV-IF, EF pH, T 2.2.30 18

Recombinant human gelatins CD, UV-IF, UVAS pH, T 2.2.21 - 2.2.24 19

EC5 domain of E-Cadherin CD, UV-IF, UVAS pH, T, N/R a 2.2.27 - 2.2.29 20

a T = Temperature, I = Ionic Strength, C = Concentration, S = Stabilizer, N/R = Native/Reduced
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for high throughput excipient screening, to find ranges of solution conditions resulting in

optimized stability, and to investigate the overall structural integrity and conformational

stability behavior of large macromolecular complexes.

2.8.1 Selection of stress conditions for excipient screening

Screening compounds and polymers for stabilization of a liquid formulation of a biomolecule

or macromolecular complex is a time consuming process due to both the large number of

excipients that should be tested, and the time it takes to complete each test. The latter can

be reduced by selecting conditions which accelerate degradation processes. (Although the

danger always exists that the degradation reactions induced may not be directly relevant

to actual storage conditions.) The EPD approach can be used to select these accelerated

conditions. Since each region of color in an EPD represents a different state of the system,

it is presumably related to a local minimum in the energy landscape. Thus, at transitions

between these regions, the system may have a somewhat higher energy and be farther from

equilibrium. This makes it more likely (but not guaranteed) that the system can access

other minima in the energy landscape under these conditions. By selecting transition condi-

tions within pharmaceutically accessible regions, it seems probable that relevant degradation

mechanisms during real time storage will be enhanced under these accelerated conditions.

This basic concept has been applied to many formulation projects with significant success

as described below, and is a commonly used general assumption in pharmaceutical prefor-

mulation and formulation efforts.

2.8.2 Finding stabilizing conditions

By the same argument, we can also find stabilizing solution conditions (e.g. pH and ionic

strength) for a liquid formulation by selecting conditions distant from EPD boundaries. More

routinely, EPDs have assisted in the more standard stabilization and formulation process,

in which one finds solution conditions that increase stability as measured by the elevation of
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thermal unfolding/melting temperatures or reduction of aggregation.24,71

2.8.3 Using EPDs to investigate the similarity of two proteins

In the construction of EPDs, we perturb the system by varying solution conditions such as

temperature, pH, and ionic strength, while measuring the system’s response. Rather than

focusing on transitions, we can also use an EPD in its entirety to gain additional information

about the identity of the system’s native form. We have found that EPDs of proteins of

similar function do indeed appear similar.10–12,16,17 For example, the two heat shock proteins

Hsc70 and gp96 have very little sequence homology, but demonstrate apparent phase changes

in their EPDs which are nearly identical.10

2.8.4 Investigating protein dynamics

The intramolecular mobility of large molecular systems is a critical factor in their behavior,

and a role in molecular recognition and enzymatic catalysis is now generally recognized.72

The relationship of the dynamic behavior of such systems to their stability remains, how-

ever, poorly understood.53 In this regard, EPDs have been employed to characterize the

intramolecular dynamics of an IgG1 monoclonal antibody on a temperature-pH perturba-

tion grid.4 This study employed measurements sensitive to protein dynamic motions such as

molecular tumbling, domain movement, and the degree of solvation. A combination of the

following measurements was used: adiabatic compressibility determined from PPC, coeffi-

cient of thermal expansion determined from HRUS, REES, and rotational correlation times

determined by TRFS anisotropy. (See Table 2.1 for instrument abbreviations.) An EPD was

also generated based on the following time averaged methods: steady-state UV-IF, far-UV

CD, light scattering, and ANS-EF. The latter methods are sensitive to alterations in protein

secondary and tertiary structure. The EPDs from the dynamic and static measurements are

shown in Figures 2.1G and 2.1H, respectively. In both EPDs, a very different conformational

state was observed at pH values 3 and 4. The EPD based on the dynamics measurements
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Figure 2.7: Empirical phase diagrams (EPDs) of the peptide drug pramlintide at low and high concentra-
tion,7 and concentration dependence at pH 4. Low concentrations (0.088 mg/ml) are represented in A-C.
The experimental techniques used to construct A-C were as follows: (A) second derivative UV absorbance
peak shift and OD350, (B) same as (A), adding fluorescence intensity and peak shift, (C) same as (B),
adding the CD change at 204 nm. The peptide at high concentration (8.8 mg/mL) is represented in (D),
using the same experimental techniques as (B). An EPD at pH 4 as a function of peptide concentration

is shown in (E), using the same experimental techniques as (B).

is more complex overall, with low temperature events seen that are not present in the static

EPD. This study indicates that measurements of protein dynamics potentially provide a more

sensitive probe of protein stability and the effect of potential stabilizers. Related approaches

are under further development in our laboratories.

2.8.5 Evaluating a peptide drug (Pramlintide)

The EPD method has not yet been used with small molecule pharmaceutical drugs, but it

has been employed to characterize peptides. An analogue of amylin, the 37-residue peptide

Pramlintide is currently used as an antihyperglycemic agent to treat diabetes. This peptide

was characterized using a combination of CD, intrinsic Tyr fluorescence, second derivative UV

absorbance, and optical density as a function of pH, temperature, and peptide concentration.7

Despite the fact that the data shows that the peptide is primarily unstructured at low
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concentration (confirmed by isotope exchange NMR), the EPDs are still surprisingly complex

with distinct pH and temperature dependence reflecting very gradual structural alterations

and some limited aggregation (Figure 2.7A-C). When the characterization was conducted

over a wide range of Pramlintide concentrations, much more distinctive changes in color were

observed with transitions shifted to much lower temperatures and a narrower range of pH

(Figure 2.7D-E).

2.8.6 Investigating the behavior of larger macromolecular complexes

The EPD approach enables visualization of high dimensional data, assisting in the deter-

mination of regularities and transition points. For the EPD approach to work, only two

conditions are necessary, including that the system under study possess a well-defined struc-

tural identity, and that transitions in this identity are manifested in the data. A complete

physical understanding of the processes governing the transitions is not necessary.

For example, viruses, virus like particles (VLPs), carbohydrate-conjugates, gene deliv-

ery vehicles, and other related macromolecular complexes have defined shapes, sizes, struc-

tural features and stability profiles. With selection of appropriate techniques, transitions

in structure will be manifested in the data as multidimensional transitions in the measured

values. These transitions can reflect significant structural changes that may be associated

with changes in biological activity.

Signals obtained from such large systems, however, are the sum of signals from many sub-

systems and these subsystems are themselves large. Thus, unlike smaller biomolecules such

as purified proteins, it is unlikely that one will be able to directly relate the changes seen to

actual molecular events in these larger macromolecular complexes. It may well be, however,

that the experimental signals observed are due to subsystems that are present in multiple

copies, and therefore reflect stress induced changes in key components of the complexes (for

example, many copies of a viral coat protein within an intact virus.) Thus, such EPD data

may still be quite useful in characterization studies. The EPD approach has, in fact, been
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Figure 2.8: An empirical phase diagram for two toxins and toxoids of Clostridium difficile, created using
OD350, UV-IF, ANS-EF, and CD data.16 Data were normalized simultaneously for the corresponding toxin

and toxoid. (A) Toxin A; (B) Toxin B; (C) Toxoid A; (D) Toxoid B

applied successfully to the development and stabilization of numerous vaccines, including live

attenuated bacterial vaccines,24 inactivated and live viruses and VLPs,21–23,25–27,29 as well as

gene deliver complexes.28,33

2.8.7 Formulation of Clostridium difficile toxins and toxoids

To further describe the EPD approach, we present a few representative examples of applica-

tions to biopharmaceutical drugs and vaccines based on proteins and larger macromolecular

complexes. For example, studies using the EPD method were conducted of the A and B

toxoids of Clostridium difficile, which are in clinical trials as a diarrheal vaccine.16 The pro-
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teins were characterized with CD, intrinsic and extrinsic (ANS) fluorescence, optical density,

UV absorbance, and DLS. Clearly defined regions corresponding to folded protein, partially

unfolded states as well as both soluble and unsoluble aggregates are observed (Figure 2.8A-

B).16 Differences in EPDs are seen when the two toxins are cross-linked with formaldehyde

to produce toxoids for use as vaccines (Figure 2.8C-D) including enhanced thermal stability.

Further utility of EPDs is illustrated by their use in pre-formulation characterization studies

of the toxoid. Based on the apparent phase boundaries observed in the initial studies, a

high throughput screening study was developed based on thermally induced aggregation of

the proteins at low pH. A collection of 30 GRAS compounds was then screened and a num-

ber were identified which inhibited aggregation. To differentiate effects on conformational

stability and aggregation, the proteins were also studied with spectroscopic methods in the

presence of presumptive stabilizers. Finally, stabilization studies of the toxoids on the surface

of an aluminum salt adjuvant were conducted using DSC. Thus, a series of stabilizers were

identified which were successfully employed in final formulations of a candidate C. difficile

vaccine.

2.8.8 Preformulation screening of norwalk virus-like particles

Multimeric biocomplexes can also be analyzed by use of EPDs. The most successful recom-

binant protein vaccines are, in fact, of the virus-like particle (VLP) type (i.e. Hepatitis B

vaccine, HBV, and the human papillomavirus vaccine, HPV). One recent example of a can-

didate vaccine based on VLP technology is that of the Norwalk virus. This VLP consists of

an icosahedral assembly of 180 copies of the VP1 capsid protein of the native virus with only

a few copies of the VP2 protein also present. The resultant 38 nm particle was characterized

by a combination of CD, DSC, intrinsic and extrinsic fluorescence, near UV absorbance and

DLS, as a function of pH and temperature.23 A series of apparent phases could be identified

in the EPD corresponding to a variety of conformational and aggregative states (Figure 2.9),

including various states of dissociation of the particles. The precise nature of the latter was
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Figure 2.9: Empirical phase diagram for Norwalk virus-like particles (NV-VLPs) based on UV ab-
sorbance, intrinsic and extrinsic fluorescence and CD results.23 Four distinct phases (P) of the NV-VLP
were observed: P1, native, intact form; P2, disassembled; P3, soluble VP1 oligomers; P4, aggregated. The
nature of the protein in the various phases was confirmed by transmission electron microscopy studies.

established by complementary transmission electron microscopy (EM) experiments. Again,

the EPD was used as a basis to select conditions to analyze the aggregation state of, in this

case, the virus like particles. Compounds which were found to inhibit aggregation were also

examined for their effects on ANS-EF, DSC and CD, with sucrose, trehalose, glutamate, and

chitosan all found to both inhibit aggregation and conformationally stabilize the Norwalk

VLP’s.24 This study led to formulation of a candidate vaccine which has been successful in

Phase II trials.75,76

2.8.9 Stabilization of measles virus

Larger macromolecular complexes such as killed and live viruses have also been characterized

by the EPD approach. For example, the relatively unstable attenuated measles virus which

is the basis for the important live virus measles vaccine has been examined using EPDs.24

This enveloped attenuated virus contains multiple copies of six different proteins as well as

a ssRNA genome. Analysis is further complicated by the fact that the vast majority of viral

particles have been inactivated during large scale preparation of the virus. Thus, the poten-

tial utility of biophysical studies is based on the assumptions that any change that affects

the biological activity (immunogenicity in this case) of immediate interest is still detectable
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Figure 2.10: Empirical phase diagram of attenuated Measles virus.24 Data used to generate the EPD
were measurements of mean effective diameter by DLS, intensity of 562 nm light scattered at 90◦, CD at
222 nm, intrinsic fluorescence intensity at 322 nm, ANS peak position, ANS fluorescence intensity at 469

nm and generalized polarization of laurdan fluorescence.

in a significant number of the remaining complexes and that individual measurements de-

tect significant amounts of altered components (presumably due to their presence in multiple

copies). While this is no doubt not always true, we have found such assumptions in most cases

to be reliable. The measles virus was first purified from its crude vaccine preparation and

then examined by the usual combination of spectroscopic and light scattering techniques.24

One additional EPD method not previously described involved the use of the fluorescent

dye laurdan, a probe of membrane fluidity. The resulting EPD displays at least 6 regions of

differing structure (Figure 2.10). An excipient screening method based on aggregation of the

virus was used to identify potential stabilizers as determined by melting temperatures with

the generalized polarization of laurdan fluorescence used as a confirmatory method. The

compounds identified were then examined in cellular infectivity assays and served as a basis

for a significant improvement in the thermal stability of the vaccine.
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Figure 2.11: Ionic strength-pH empirical phase diagrams of various nonviral gene delivery complexes
formed between plasmid DNA and four cationic carriers.28 Each EPDhas pH as the horizontal axis and
ionic strength (mM) as the vertical axis. The experimental techniques used were DLS, CD, and YOYO-1

EF.

2.8.10 Investigation of polymeric and liposomal gene delivery sys-

tems

As a final example, polyplexes and lipoplexes containing plasmid DNA molecules complexed

to various polymers and cationic lipids, respectively, were examined by the EPD method.

Because of the high thermal stability of the DNA component, pH and ionic strength (rather

than temperature) were used as the stress variables. Due to the electrostatic nature of the

complexes, they were characterized over a wide range of positive and negative nitrogen to

phosphate ratios using circular dichroism, extrinsic fluorescence with a DNA intercalating

dye (YOYO-1) and dynamic light scattering.28 The EPDs derived for the polyplexes and

lipoplexes lacked the sharp definition of those obtained in the proteinaceous systems de-

scribed above, but still manifested distinct structural phases which were more complex than

plasmid DNA alone (Figure 2.11). Application of EPD analyses to plasmid DNA and their

delivery vehicle systems is still in its infancy, but appears to be a promising approach.
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Figure 2.12: When the projection error is large it can be reduced by incorporating more dimensions. In
(A)-(C), we show the primary color images (red, green and blue) of an empirical phase diagram. They are
ordered by descending significance from left to right. For axis information, see (E) and (F). After solid
red, green, and blue, we can use images containing structure that is smaller than the individual phase
diagram blocks. This will represent high dimensional information as changes in texture. Such an image
is shown in (D). (E) is a 3 dimensional empirical phase diagram of IgG, using FTIR spectra which have
been preprocessed with a Fourier filter to emphasize mid-size spectral features. (F) is a 4 dimensional
empirical phase diagram of the same data as (E), showing fourth dimensional information as changes in
texture. Notice that the reconstruction error has decreased. The diagram has also been automatically

segmented into 5 parts (see text).

2.9 Extensions of the technique

The development and use of EPDs has provided a high throughput method to quickly deter-

mine relative higher order conformational states of biomolecules and larger macromolecular

complexes over a large “search space” using multiple biophysical techniques. The optimal

determination of regions of conserved structure in the EPD can, however, be hindered by

the presence of important structural information from multiple measurements that cannot

be readily reduced to 3 dimensions for display in the EPD.

The EPD method’s speed of data collection can also be hindered by the size of the
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search space. Its practicality can be further limited by the complexity of data processing.

In addition, in the absence of reliable automated pattern recognition, the need for an expert

scientist to interpret the biophysical data to assign structural meaning to the various phases

observed in the EPD, often on the basis of limited information, can also inhibit the method’s

speed, accuracy, and utility. Here we report on tactics under investigation in our laboratory

to tackle and diminish such current limitations of the EPD approach.

A number of new pharmaceutical applications of EPDs are also being explored. These

areas include extensions of the current approach to different stresses and a variety of phar-

maceutical and vaccine dosage forms. In addition, possible applications of EPDs to describe

the chemical stability of macromolecules will also be discussed. Finally, the ability of the

EPD methodology to generate and analyze a large amount of biophysical data assessing

the overall higher-order (secondary, tertiary and quaternary) structure of biomolecules as a

function of solution conditions could potentially be applied to analytical comparability.

2.9.1 Maximum use of data

One typically provides the EPD method with a limited selection of peak positions, widths, or

intensities, obtained from various experimental techniques. This results in a drastic reduction

of the potential data set that precedes any global analysis. Data reduction in advance

of processing is undesirable, since the excluded data may contain significant information

concerning individual structural states and the transitions between them. More information

would also allow the mathematical steps (PCA) to better distinguish signal from noise. To

address these issues, one seeks a way to pass all of the data through a global analysis first,

using minimal preprocessing. The first approach one might consider is to pass unprocessed

spectra directly to the empirical phase diagram method. We have attempted this with FTIR

and UV absorbance spectra, but the results do not resemble EPDs obtained by using the

usual peak parameters (data not shown). Instead, the pH columns in the diagram show very

large color differences from each other, dominating much smaller transitions in temperature
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or pH. The very large pH dependent signal is presumably due to changes in the charge state

of amino acids.

We might also apply preprocessing methods that are known to highlight useful infor-

mation without explicitly dropping data. The second derivative of a spectrum contains

information on peak position and width. We can therefore use it it to highlight informa-

tion involving peak parameters. Another method is the use of a mid-pass Fourier filter to

emphasize mid-size spectral features, while suppressing offsets and noise. To apply these

methods, one simply filters spectra and passes them to the EPD method. A preliminary

result is shown in Figure 2.12E, in which the Fourier mid-pass method has been applied to

the FTIR spectra of an IgG molecule. The spectra covered the 900 to 4000cm−1 range, and

were measured over the temperature-pH search grid shown in the EPD.

2.9.2 Representing more than three dimensions

The error resulting from truncating the singular value decomposition to the top 3 singular

values can sometimes be large. Some criterion for what is too large, such as an error of 20%

or greater, must be assigned and validated by the user. Large errors signal the presence of

information that cannot be reduced to 3 dimensions. The color-coded EPD are limited by

the colors the eye can perceive, given as ratios of red, green, and blue intensities. This is

not due to a limitation in PCA or SVD: data can just as easily by projected into more than

3 dimensions. The challenge is to represent the extra dimensions. To represent more than 3

dimensions in each pixel, we can use the eye’s ability to recognize shapes, textures, or other

signals.

This is not to say that the number of phases that can be shown on an EPD is limited

by the number of primary colors used to generate the EPD. Different ratios of red, green,

and blue can generate a multitude of colors. Therefore a color coded EPD can display a

multitude of phases. The goal of displaying more than 3 dimensions in each pixel of an EPD

is to reduce the role of projection and the accompanying error.
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We show an example of 4-dimensional visualization in Figure 2.12F. In Figures 2.12A-C,

we show the primary color images (red, green and blue) of an empirical phase diagram. They

are ordered by descending significance from left to right. For axis information, see Figures

2.12E and F. After solid red, green, and blue, we can use images containing structure that is

smaller than the EPD pixels. This will represent information as changes in texture. Perhaps

the easiest way to generate these images with small scale structure is through the use of

different 2 dimensional harmonic modes, which is what we have done here. The projection

error of the example in Figure 2.12 is significantly smaller for the four dimensional EPD than

for the 3-dimensional one. In this case, the fourth principal component shows an additional

transition between low and mid range temperatures.

The main reason for expressing information from the EPD method with three colors or

selected textures is to exploit the visual processing power of the human eye and brain to

segment the EPD into different phases. The traditional "black and white" representation of

different regions in a phase diagram is also perfectly acceptable. It amounts to assigning a

name, or number, for each distinctly observed and coherent region of the system’s physical

properties. The 15 known phases of ice are conventionally represented by 15 numbers labeling

regions of the pressure-temperature diagram.

Machine learning techniques exist and are being developed to perform the task of seg-

menting an image. Among the techniques are clustering, support vector machines (SVM’s),

and Kohonen networks. The main advantage of these techniques is that they can operate

on high dimensional data, reducing the role of projection and its accompanying error. In

Figure 2.12F we show the results of a simple image segmentation. We have selected 5 char-

acteristic points on the phase diagram to represent the 5 visible phases. Then, the remaining

temperature-pH points have been categorized by their euclidean distance from the charac-

teristic points, where the distance is calculated in measurement space. This is one example;

mathematics and computer science possess an abundance of methods designed to recognize

and organize information.
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2.9.3 Information management

After an EPD is generated, the colors must be assigned meaning based on the information

in the experimental data. The standard approach is for a scientist to assign meaning to the

colors based on inspection of the original experimental data and the principal components

given by PCA. As discussed earlier, however, local inspection of multidimensional data is

difficult and does not maximize its utility. It should be better to pursue the assignment

of meaning within a mathematical framework, allowing data to be automatically correlated

with observables of interest, such as aggregation pathways and known protein conformational

states.

The main difficulty in getting started with an automated approach is that raw multi-

instrument digital data sets from different instruments and different experiments tend to

be organizationally very complex. They involve multiple data formats and missing data

points due to instrument malfunctions and differing experimental protocols. The interpre-

tation of an archived data set often requires additional information that must be located.

Without an organizing software framework it is difficult to enforce uniform, comprehensive

documentation and organization of different biophysical data from diverse sources.

We have developed such an automated approach to the assignment of meaning to spectral

differences. Our approach is described in the remaining chapters of this thesis.

2.9.4 New pharmaceutical applications of EPDs

Several new pharmaceutical applications for EPDs are currently being explored in our labo-

ratories. One straightforward new application is the extension of the current EPD approach

to different stresses and different dosage forms. As shown in Table 2.2, most EPDs generated

to date have evaluated liquid formulations using temperature, solution pH, ionic strength

and macromolecular concentration as the primary stresses to perturb the structure of a

biomolecule or macromolecular complex. Additional environmental stresses that could eas-

ily be adapted to EPD analysis include freeze-thaw, lyophilization and shaking/agitation.
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For example, in terms of development of a frozen liquid or lyophilized dosage form, the effect

of multiple freeze/thaw steps as well as the effect of freeze-drying cycles and reconstitution

could be evaluated using the same biophysical techniques described above. Measurements of

protein conformational integrity and stability in the solid state itself could also be explored

by EPDs using FTIR and Raman spectroscopies, as well as DSC. Identification of phase

transition regions could then be used to setup an excipient screening approach for these

stresses.

The EPD approach could also be applied to develop a better understanding of different

degradation pathways as a function of environmental conditions. In the case of shaking or

agitation stress, different shaking speeds, or rotations per minute, could replace temperature

as a stress factor. Moreover, new biophysical analytical approaches could be added including

detection of protein particles by multiflow digital imaging (MFI) or Nanosight technology.

If combined with SE HPLC and OD350 measurements, an EPD could be generated to better

characterize protein aggregation and subvisible particle formation. In addition, the EPD

approach could also be used to examine chemical stability of macromolecules. For example,

the rate and extent of specific Asn deamidations or Met oxidations in a protein could be

mapped as a function of temperature and solution pH. These “chemical” EPDs could also be

overlaid with conformational EPDs to better understand the inter-relationships(s) between

chemical and physical stability.

Finally, the unique ability of the EPD method to use a wide variety of biophysical

techniques to generate and analyze a large amount of data assessing overall structural in-

tegrity and conformational stability of biomolecules could potentially be applied to analytical

comparability during development of different biopharmaceutical drugs and vaccines. For

example, since the EPD method does not require much protein (1-10 mg), and since avail-

ability of protein is often a limiting factor in early formulation development, the generation of

EPDs for different candidate molecules could be used as a tool to select the best candidate

in terms of “developability” properties such as stability and solubility profiles. Moreover,
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during later development, process and product changes are usually required to scale up the

process for commercial use. These changes often lead to subtle or more dramatic changes in

the biomolecules post-translational modifications or degradation profiles (e.g., glycosylation

pattern or extent of oxidation of a specific Met residue). The ability to monitor the effect of

these changes on the overall structural integrity and conformational stability of biomolecules

remains an area of ongoing interest, especially as a possible surrogate for more complex

assessments of conformation such as biological assays. The ability of the EPD approach

to compare the same biomolecule with differing glycosylation patterns and/or chemically

altered amino acid residues is currently being evaluated.

An application of the EPD method that could potentially have great impact may be to

drastically reduce the size of high throughput screening searches to identify stabilizing excip-

ients. The accelerated time-lines of modern drug formulation efforts, and the complexity and

size of the search spaces involved, typically result in suboptimal screening.5,77 The limited

procedures available to screen a wide formulation design space can often result in suboptimal

formulations or potentially even product failure during long term storage. A brute-force ap-

proach would test conformational and chemical stability at every relevant solvent condition.

This approach is, however, cost prohibitive because of the exponentially large number of

variables. For example, if one tested 5 different excipients at 4 different concentrations each,

the number of combinations to test would be 45, or 1024 experiments. The use of empirical

phase diagrams permits the size of these high throughput screening search spaces to be re-

duced in a very natural and pragmatic way. Using EPDs, macromolecule identity has been

found to be conserved over contiguous regions of search space. The identification of unique

and/or consistent conformational states reduces the search space from an exponentially large

and unexplorable one to one that is much smaller yet adapted to the system of interest. More

time consuming and extensive excipient screening and analytical characterization tests can

then subsequently be performed on the smaller set of conditions to better design and develop

optimized formulation conditions.
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2.10 Conclusion

Modern biopharmaceutical drug development time-lines, combined with limited availability

of sufficient material, can result in a variety of challenges for the formulation scientist at-

tempting to rapidly design and develop stable dosage forms for clinical use. Our goal in the

development of the EPD technique has been to enable faster and more thorough screening

searches of stabilizing agents and solution conditions by more fully utilizing the information

contained in data sets from experimental methods which examine the structural integrity

and conformational stability of macromolecules and their complexes. We strive to explore

as much of the available search space as possible, using mathematical techniques to obtain

the maximum amount of information from the data.

The optimal way to reduce the dimensionality of data is by use of the singular value

decomposition (SVD). SVD returns a number of spatial axii, defining spaces on which the

data can be approximated. The approximation error can be minimized by using a space

defined by the most important spatial axii. The projection onto that space is the best possi-

ble approximation to the data that can be made on the number of dimensions retained. To

provide a convenient visual image, the resulting low-dimensional positions can be converted

into colors or textures and presented as an image. Such an image is called an empirical phase

diagram (EPD). The empirical phase diagram method guides the formulation scientist by

assisting in the visualization of high dimensional information, the determination of macro-

molecule identity and transition points, and a reduction of the size of search spaces. This

approach is quite different from that of the commonly used “Design of Experiment” approach

which lacks high density data and produces holes in the picture produced.

The EPD method has found many uses in the optimization of various types of formu-

lations, and many case studies have been published concerning their application to various

macromolecular complexes such as viruses and lipoplexes. The EPD approach has been ex-

tended over time to include the addition of multiple biophysical measurement techniques and

different search space variables. The use of empirical phase diagrams is not limited to proteins
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and plasmid DNA molecules, but includes larger macromolecular complexes such as viruses

and whole cells. One can potentially incorporate almost any kind of information, including

measurements of structural dynamics, aggregation kinetics, chemical stability or biological

function as well as other common pharmaceutical variables of stress such as agitation and

freeze/thaw cycles. Empirical phase diagrams have also been demonstrated to contain infor-

mation concerning the functional and evolutionary relationships of proteins.10–12,16,17 Using

EPDs, macromolecule identity has been found to be conserved over contiguous regions of

search space.

The use of EPDs has brought us to a vantage point where we see clear evidence for

a previously unrealized treasure trove of hidden information concerning the higher order

structural integrity and conformational stability of biomolecules and larger macromolecular

complexes such as viruses and lipoplexes. Much work remains, however. Data consists of

combinations of different types of information. Each type is mixed with other types in

complex ways, and has its own meaning, prominence in the data, and significance for the

task at hand. The inter-relationships between these factors is complex, requiring systematic

study within a mathematical framework.
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Chapter 3

DART: a new programming language for declarative

array transformation

3.1 Introduction

The project discussed in this chapter was motivated by the need to regularize, analyze,

and plot the high dimensional, multiple instrument data sets that are encountered in the

formulation of biopharmaceuticals.

The field of pharmaceutical formulation commonly uses spectroscopic instruments due to

their sensitivity, appropriate information content, availability, reliability, and high through-

put. A large formulation data set may cover 32 x 6 x 30 x 2 combinations of formulation

and perturbation conditions.1 At each combination a measurement is collected, which might

employ 3 instruments that return spectra of dimensions 40, 1024, and 100 x 100. Processing

these data sets involves operations such as mapping filenames to dimension positions, discard-

ing noisy or corrupt data, handling data that is non-existent due to instrument malfunctions

and operator error, subtracting reference spectra, performing statistical and signal process-

ing operations, generating complex plots, and performing original data analysis research.

These tasks are typically performed by hand and by human judgment using a combination

of many programs such as Excel, Origin, instrument software, Matlab, Mathematica, and

custom scripts. Even for data sets of modest size, a generous amount of labor is needed to
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perform the processing steps. In addition, the unstructured nature of the process makes it

difficult to document.

Thus the increasing size and complexity of pharmaceutical formulation data sets has

created the need for a tool to simplify, automate, and document the processing of data. This

tool should be capable of advanced multidimensional data processing, yet remain simple

enough to be used by non-programmers. It should also provide built in support for almost

any math operation that might be desired, provide a record of changes to data, and ease the

task of regularizing data sets filled with inconsistent array shapes and missing data.

The challenges above are shared by other fields that generate large multidimensional,

multi-instrument data sets, and solutions are being studied in astronomy, microarray data

analysis, and high-throughput biology and chemistry.2–4 As science explores the universe

utilizing scientific instruments that incorporate a growing number and variety of sensors,

experimental data sets become larger and more complex. This results in greater difficulty of

developing data analysis solutions that are verifiably correct, well documented and efficiently

maintainable. This difficulty affects all users of data, from the least to the most technical.

Users without programming experience often face data analysis tasks that are too complex to

perform efficiently using conventional tools. The productivity of expert analysts is reduced

by the need to write code connecting subsystems that ideally would inter-operate automati-

cally. Users of all types must communicate increasingly complex methods and results to one

another. Since there is no end in sight for the trend toward more complex instruments and

corresponding data, the existing ecosystem of information management and data analysis

tools is destined to become inadequate.

One approach to the problem is the development of declarative languages for array manip-

ulation.2,4 These languages define more complete array data types than traditional languages,

including dimension names, units, and dimension scale positions, along with processing meth-

ods that hide procedural details. This allows the development of intuitive languages with

easier learning curves, while still enabling complex data processing.
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Another approach to conquering large and complex data analysis projects is the devel-

opment of methods and frameworks for enhancing the communication and reproducibility of

data analysis methods. Computational data analyses in scholarly work are often not repro-

ducible due to missing parameter values, codes, proofs, high-level descriptions or implemen-

tation details.(Vandewalle et al., 2009) The study of solutions to this problem is known as

the field of computational reproducibility, and has the goal of ensuring that persons other

than the authors of a scholarly work can reproduce computations used in that work.5–11 It

was largely initiated by Jon Claerbout and Donald Knuth, who separately developed systems

capable of automatically regenerating text, computations, and figures for published works,

a strategy known as literate programming.8,12 Other strategies include publishing code on

websites and using open source software, high level languages, and frameworks that allow

tracking the history of data manipulation steps. The benefits of reproducibility are better

work habits, improved teamwork, greater impact on the scientific community, and increased

continuity of research.(Donoho, 2010) Low reproducibility of computations can obscure er-

rors. In the medical field these errors can potentially lead to unsafe activities.7

The general strategy chosen here was to combine the two approaches just described.

We have created a declarative array transformation language (DART) overlying mathemat-

ics software that already possesses built-in support for literate programming and high level

mathematics. DART is a language in the sense that one can use it to express data anal-

ysis projects in their entirety. Furthermore, its data types and functions are partitioned

into orthogonal areas of functionality and are designed to be used in unforeseen creative

combinations. Nearly all functions in the DART language accept and return arrays while

handling dimensions and units automatically, making it easy to synthesize new operations

by combining existing ones. To facilitate the processing of heterogeneous data sets, functions

of arrays also accept lists of arrays of differing shapes, as long as the function’s operation is

well defined for each array shape. A comprehensive set of commands for merging, splitting,

and renaming dimensions and dimension positions assist with regularization of data. Array
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functions are also provided for importing, exporting, and plotting data, constructing tables,

and interactively browsing arrays.

This chapter presents the architecture of DART, including its data types, command set,

and strategies for achieving general data processing goals. DART is not only a specifica-

tion, but a working prototype consisting of around 100 documented functions, a help index,

tutorials, and several complex examples.

3.2 Design Strategies

3.2.1 Declarative array transformation syntax

A declarative language is one that expresses programs without using control flow constructs

such as looping and if/then commands. In order to create a declarative array transformation

syntax, it was necessary to create data types corresponding to the properties of arrays so

that these properties could be referred to by name in array manipulation commands.

Data types

The array data type found in conventional languages is a minimalist implementation that

leaves out much of the labeling information that must typically be associated to arrays. As

implemented in conventional languages, an array is a multidimensional grid containing an

object in each cell of the grid. In practice, however, arrays must be related to many types

of subsidiary data, including labels for the dimensions, labels for the positions along each

dimension, and units for the dimension positions and the data. In standard practice, the use

of these properties is not automated. Methods must typically be coded to handle dimensions

and units when importing, exporting, processing, and plotting.

DART defines three data types to support automatic handling of array metadata and

provide an efficient declarative syntax. The first data type is the dimension, which is a data

structure consisting of a name for the dimension, stored as a string, the unit for its scale, also
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stored as a string, and a scale. The scale of a dimension is an ordered list of values indexing

that dimension of the array. The values in the scale must all be of the same data type, and

the data type must be a string, integer, real number, or other data type that has a defined

ordering relation. The second data type is the array, which is a data structure consisting

of an ordered list of dimensions and a conventional array of data. The order of dimensions

in the list of dimensions must match the order of dimensions in the array. The length and

ordering of the scale in each dimension must match the array’s respective dimension. The

values in the array can be of any type, including strings, plots, or even further DART arrays.

Zero dimensional arrays are allowed, in which case the list of dimensions is empty and the

data array is a single value. The third and final data structure is simply a list of DART

arrays.

Mechanisms

An efficient declarative syntax has been achieved in primarily three ways. First, dimensions

are inherent to the array data type. This enables an increase in syntactical parsimony over

comparable languages such as SciDB and OLAP. (In this section we will sometimes compare

DART to certain other languages known as SciDB and OLAP. It is impossible to describe

them in full detail here, but we hope that the comparisons will be clear on general grounds.)

In a call to a DART array operation, dimensions can simply be referred to by name. In SciDB

and OLAP, a join must be specified between an array and a dimension whenever dimension

information is needed. This more general behavior is useful when multiple dimensions may

be related to one dimension of an array, or when multiple arrays share a dimension and care

must be taken that there is only one version of the dimension. DART architecture, however,

would allow such ad-hoc joining of dimensions to arrays, since in DART the dimensions that

are inherent to arrays are required to be unique indexes.

The second manner in which efficient declarative syntax has been achieved is by ensuring

that full array structure, including dimensions, passes through most DART functions. In
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other words, functions that operate on DART arrays usually return DART arrays. This

allows functions of arrays to be strung together without glue functions.

The combination of the two strategies above permits code that is similar to natural

language. For example, let a be an array with dimensions named “Temperature”, “pH”, and

“Wavelength”. In the following code snippet

a = operate[gaussianFilter[#, {5, 3}]&, a, {‘‘Wavelength’’, ‘‘Temperature’’}];

a = operate[listPlot, a, {‘‘Wavelength’’}];

a = operate[table, a, ‘‘pH’’];

browse[a]

three subsystems inter-operate seamlessly: mathematical operations, plotting, and inter-

active browsing. (A note on Mathematica syntax: functions use the syntax function[arguments]

, lists use the syntax element 1, element 2, ... and are nestable. The syntax (expression using

a # symbol)& creates an anonymous function.)

• In the first step of the above code, a gaussian filter is applied to every (wavelength

x temperature) subarray and threaded over the remaining dimensions. The function

gaussianFilter takes and returns DART arrays. The DART arrays supplied to gaussian-

Filter contain dimension unit information, which is used to interpret the filter widths

as 5nm and 3C.

• The second line of code takes each wavelength subarray and makes a line plot for that

subarray. Wavelength dimension axis information is used to automatically label the

x-axis, and the y-axis is the numerical value in the array. The listPlot function returns

a zero dimensional array containing a single plot, with the result that the second

line of code drops the wavelength dimension, giving a DART array with dimensions

“Temperature” and “pH”.

• The third line takes the subarray of plots for each pH and makes a table of plots.

The table function takes an array of up to 2 dimensions, draws a table, and returns a
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zero dimensional array. Rows and columns are automatically labeled with dimension

information. When one dimensional arrays are passed to the table function (as above),

the default behavior is to draw a table with a single row. The table elements can be

of any type that Mathematica can display, including plots, numbers or strings. In the

third line of code above the pH dimension is used in the tables and dropped, so the

result is an array with a “Temperature” dimension.

• The browse function in the fourth line takes a DART array and constructs an interactive

GUI element with sliders for each dimension in the array and a display area for the

array element selected by the sliders. In this case only one slider is constructed for the

temperature dimension.

Small modifications to the code above can produce highly varying outputs. For example,

if tables of numerical values are desired, the second line could be deleted and the wavelength

dimension added to the third line. The table function could be used twice in a row to

construct nested tables. It is also significant that the above code snippet would not be

different for an array with many more dimensions. Instead of one slider for temperature,

additional sliders would be shown, one for each additional dimension.

The third manner in which DART achieves efficient declarative syntax is by making

functions of DART arrays capable of operating on a list of arrays of differing shapes. For

example, let a be defined as above, and let b have dimensions named “Temperature”, “pH”,

“Excitation Wavelength”, and “Emission Wavelength”. Furthermore, let x be a list comprised

of a and b (in Mathematica notation x=a,b). In DART the following operation is well

defined.

x = operate[gaussianFilter[#, 3]&, x, ‘‘Temperature’’];

Even though a and b have different shapes, they both have the temperature dimension,

so the filtering operation is defined for both a and b.
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3.2.2 Generality and Extendability

The goal of making DART capable of general processing yet extendable by expert users has

been supported by designing the system in tiered fashion, with each tier open for use by pro-

grammers. At the lowest tier are constructors, getters and setters for arrays and dimensions.

In the next tier are functions for dimension management. The next tier contains array trans-

formation operations such as flattening arrays along specified dimensions, merging arrays,

selecting subarrays, threading operations over subarrays, etc. In the highest tier are data

analysis functions for standardization, filtering, clustering, and matrix decompositions, along

with plotting, tabling, and GUI data browsing operations. Each tier uses the functionality of

the tiers below. The functions in each tier tend to be short and readable, and functionality

unfolds incrementally as one progresses through the tiers.

3.2.3 Computational reproducibility

DART supports fully documented, computationally reproducible data analyses due to it be-

ing implemented within a computer algebra system (CAS) possessing built-in support for

literate programming and high level mathematics. DART uses Mathematica, but a similar

system such as Maple or Sage would also have been suitable. A program or script written

in one of these systems can be laid out typographically with full font freedom and display

of images, drawings, tables, plots, and typeset equations. In addition to supporting sym-

bolic mathematics and literate programming, these systems interface with standard numeric

libraries for linear algebra, signal processing, and more, as well as providing extensive high

level scripting primitives for importing and exporting data.

A scripting environment promotes computational reproducibility by providing a record

of changes to data. This record of changes can be brought about by modifying data exclu-

sively within scripts and saving scripts along with input and output data. In a medical or

pharmaceutical research setting, administration of file use privileges would serve to maintain

data authenticity and auditability (i.e. maintain a trail of information that allows the final
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data to be audited).

A different strategy for maintaining the auditability of data is to never overwrite data,

but rather to maintain an automatic record of changes. In this manner data modifications

are tracked involuntarily. SciDB, for instance, stores a fine-grained record of changes to

individual elements of arrays. This is a very storage efficient strategy in applications where

small parts of an array are changed while most of the array remains unchanged. Data

analyses, however, commonly modify entire arrays during standardization, filtering, and

analysis operations. In this situation it is more storage efficient to track changes by storing

scripts. Intermediate results do not need to be stored, because in order to understand

changes to data one has only to read the script that produced the changes. Storing scripts

also promotes greater reproducibility: knowing the operation that changed an array allows

one to deduce the resulting numerical change in the array. Knowing the numerical change,

however, may not tell one what the operation was.

Scripting also reduces labor relative to traditional point-and-click data analyses. Entire

analyses can be customized and run in minutes, as opposed to days or weeks. This is useful

in high throughput experiments when one may need to know the results of an experiment

prior to initiating the next experiment. It is also useful in the development of new methods

of data analysis, since the result of modifying an analysis method can be evaluated quickly.

3.3 Feature Set

We now discuss the functions available in DART, which cover the full range of capabili-

ties necessary for complex multidimensional analysis. In addition to basic language features

enabling declarative array transformation, DART also has functions for reshaping arrays,

performing statistical and signal processing operations, and tabling, plotting, and interac-

tively browsing data. These features will be discussed in the order in which they appear in

a typical data processing script. For an example of a script written using DART, see the
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appendices to this dissertation.

3.3.1 Importing and collating data

Before DART can operate on an array it must be made into a DART array. Functions are

provided for importing from a few formats such as Excel files and various instrument formats.

Import functions for other formats can easily be coded. Internally, these functions read data

using Mathematica’s import functions, then use the DART functions newDimension[] and

newArray[] to construct a DART array. Importing single arrays is thus a simple matter.

Much more, however, is required to collate complex data sets.

The essential problem in collating data sets is that of assigning arrays in a set of files to

the correct portions of a larger array or set of arrays. A file’s position in the larger set of

arrays may be found in filenames or folder names, inside files, or come from another source

such as a laboratory notebook. The subarrays can sometimes be out of order and grouped

in the wrong folders. For instance, a spectroscopic instrument with 6 optical cell holders

may be used to collect data of length 9 in the cell dimension. Or, at the end of such an

experiment some cells that gave corrupt data may be rerun. Files can also be missing due

to instrument glitches. The best collating solution will vary from instrument to instrument

and application to application. DART therefore provides a few elementary functions that

can be used to build custom collating functionality.

In bookbinding, collating involves 4 steps: labeling items, separating them into groups

by their labels, combining them within the groups, then combining the groups. The same

four steps are found in data analysis. A useful technique for the first step, that of labeling

data sets, goes as follows. Suppose we are importing a data set consisting of a set of files,

each file containing an array of the same dimensions as all the others. Further assume that

each file corresponds to an experiment at a different temperature. To import this data set,

we import each file into a different DART array, and as we create each array we add to it

a temperature dimension containing only 1 position: the temperature for that experiment.
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In DART this is performed using the addSingletons[] function, which accepts a DART array

and a list of singleton dimensions, and returns a DART array with the singleton dimensions

added. These singleton dimensions then function as labels in the rest of the collating process.

The second step of collating, that of separating items into groups by their labels, is

accomplished in DART with the select[] function. The syntax for the function is

select[dartArray, dimName1, anonFunc1, dimName2, anonFunc2, ...],

where dimName1 is the name of a dimension in dartArray, and anonFunc1 is a boolean valued

anonymous function applied to the positions in dimension dimName1 to determine whether

those positions will be included in the output array. When no positions in a dimension are

selected, the select[] function returns a single Null for the entire array. The select[] function

also takes a list of DART arrays, in which case it is applied separately to each array in the

list.

The third step of collating, that of combining items within groups, is done by use of the

merge[] function, which accepts a list of DART arrays and returns a single array containing

the data from all of the arrays passed to it. It works in the following manner. First it verifies

that all the arrays in the list share the same dimension names. Then, for each dimension

name, it finds the set of all positions used in that dimension in all the arrays passed to it.

It then initializes a single large array containing those dimension names and positions, and

copies the data from the sub arrays into the single large array.

The final step of collating, that of combining groups into a single package, is done simply

by storing multiple DART arrays in a single variable as a Mathematica list. This variable

can then be passed to DART functions that accept lists of DART arrays.

3.3.2 Analysis

Once data has been imported and collated into a list of regular arrays, analysis can begin.

The most frequently used DART analysis function is the operate[] function, with the syntax
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operate[dartArray, operation[], dimNames]. The function operation[] is threaded over the

array dartArray, taking subarrays of dimensions dimNames and threading over the remaining

dimensions in dartArray. If operation[] is a function that accepts a DART array, operation[]

is allowed to return an array of different dimensions than the array passed to it, but must

return an array of the same dimensions on every call. If operation[] is a function that does

not accept DART arrays but traditional arrays instead, operation[] is not allowed to change

the dimensions of the arrays passed to it. This is not allowed because if operation[] changed

the dimensions of the arrays without returning dimensional information, operate[] would not

have the information required to construct the output array. The function operate[] can

also optionally be given a list of dimensions that are both threaded over and operated on.

These dimensions are passed to operation[] as singletons, and can be used by operation[] as

an index of the current position in the larger array.

DART overloads the arithmetic operations +, -, ×, ÷ and ∧ so that they can be used

on DART arrays and combinations of DART arrays and numbers. Dimension names that

are in one array but not the other are broadcast before the operation is applied. When

both operands are DART arrays, any dimension names in common between the arrays are

required to have the same dimension positions.

A variety of statistical and signal processing functions are available within DART, such as

noise estimation, Fourier filtering, multidimensional kernel filtering, Finite Impulse Response

(FIR) filtering (including Gaussian and Savitzky-Golay filters), singular value decomposition

(SVD) based filtering, interpolation, and more. More functionality is easy to develop, as

Mathematica functions can be repackaged to take advantage of dimension information.

Several functions are available for reshaping arrays. The fuse/unfuse combination is

useful for performing principal components analysis (PCA) or partial least squares regression

(PLS) on multi-way data. The fuse[] function flattens an array along specified dimensions,

combining those dimensions into one. The unfuse[] function does the opposite, restoring

the original dimensions from the flattened dimension. When the shapes of arrays differ,
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they can be joined using the concatenate/unconcatenate pair of functions. These functions

are useful for performing PCA or PLS on multi-instrument data. The functions fuse[] and

concatenate[] can be combined to analyze multi-instrument, multi-way data. For details on

how these functions work, see the examples in the help index in the supplementary material.

3.3.3 Visualization

DART also provides several data visualization functions that automatically use array dimen-

sion information in advanced ways. For example, when the listPlot[] function is given an

array possessing two dimensions, multiple lines are drawn on the same plot in different colors,

and a legend is drawn next to the plot using the scale of the second dimension. This legend

can optionally be suppressed, for example when multiple plots are arranged in a grid. If the

array passed to listPlot[] includes a dimension named “moments”, listPlot[] automatically

uses the second moment (the standard deviation) to construct error bars. All the standard

options for the Mathematica ListPlot[] functions, such as whether to join points with a line

or not, are also available.

The plot[] function is a one-liner for quick plotting, tabling, and browsing of data. It

performs listPlot[], table[], and browse[] on an array, in that order. Dimension names specified

by the user determine what dimensions are plotted, tabled, and browsed. The plot[] function

outputs an interactive browsing pane showing a table of plots for the array position given

by the sliders.

3.3.4 Comparison with other data processing tools

Table 3.1 shows a comparison of DART with other tools often used in the processing of

scientific data. Table 3.1 compares array processing solutions based on whether they provide

the features that have been necessary or could foreseeably be necessary in the first appli-

cations of DART. Many of these array processing solutions possess features not listed in

this table. SciDB, for example, was designed to process extremely large data sets generated
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by astronomical sky surveys, and possesses features not listed here that assist in processing

such data sets. DART wasn’t designed to handle arrays of this size, but its capabilities are

sufficient for many scientific data sets.

DART does not currently include two potentially useful features that are provided by

SciDB. It does not have the ability to store fine grained tracking of data revision history,

and it does not provide in-situ access to pieces of very large arrays. These disadvantages

could be overcome by reworking DART to use a data storage technology that possesses these

features. As noted above, however, for most applications computational reproducibility is

more effectively supported by modifying data within scripts.

DART also does not have a point and click GUI interface, but a GUI wizard for editing

script commands could be built. Parallel processing of arrays may be supported in future

versions by using the parallelization features of Mathematica.

DART currently requires the Mathematica shell to run, but it could easily be rewritten

to be independent of Mathematica and usable from a great variety of platforms.

80



Table 3.1: A comparison of the capabilities of various array processing solutions.
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Advanced array processing

Storage of arbitrarily high dimensional arrays • • • • • • •
Built-in interop. with most numerical libraries • • • • •
Merging arrays • • •
Nesting arrays • • • •
Comprehensive plotting • • • •
Comprehensive exporting and importing • • • •
Storage of dimension units and position labels ◦ • ◦ • • •
Dimensions referred to by name • • • • •
Declarative array manipulation • • •
Automatic use of dimensional information • •
Automatic propagation of statistical error • • •
Simplified multidimensional threading • ◦ • •
Point and click interface • • •

Support for reproducible research

High level scripting • • • • • •
Storage of data revision history •
Literate programming interface ◦ • •
Open source code • • • ◦ • ◦ • ◦

Performance

Compact storage of regular arrays • • • • • • • •
Fast access to subarrays • • • • • • •
Parallelism ◦ • • • ◦
In-situ access to parts of very large arrays • •

aEg: Origin, SigmaPlot, QtiPlot, LabPlot
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3.4 Summary

This chapter has presented DART, a language for declarative processing of arrays. Vari-

ous novel mechanisms in DART grant it a high level of syntactical parsimony. Scripts tend

to be lists of one-liners, and are about as close to natural language as possible given the

subject matter. It includes the full range of capabilities required for complex array anal-

ysis, including functions for importing, collating, and regularizing data, reshaping arrays,

threading operations over subarrays, signal processing, performing arithmetic with arrays,

plotting data, constructing tables, and interactively browsing arrays. Implementation within

Mathematica allows immediate access to high level mathematics, and the literate program-

ming features of Mathematica support computational reproducibility. DART will be useful

for analysis of data in any field that requires complex processing of multidimensional ar-

rays, such as finance, astronomy, physics, geography, geology, pharmaceutical formulation,

behavioral sciences or government.
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Chapter 4

High throughput generation of Empirical Phase

Diagrams

4.1 Introduction

The time and effort required to generate empirical phase diagrams for individual proteins

have somewhat limited the method’s general applicability. It typically takes several days or

up to 1-2 weeks to collect individual data sets with multiple biophysical techniques, process

the large combined data set, and generate an EPD. Reducing the total time to a day or less

would allow EPDs to be more routinely used during formulation development as a tool for

excipient screening and to enable more reliable comparisons of the stability of higher-order

macromolecular states.

Multimode instruments have recently become available that could significantly reduce the

time to collect the experimental data used to generate an EPD. The Olis Multiscan (Bog-

art, GA) (also referred to as “The Protein Machine”) is a cuvette-based spectrophotometer

that measures circular dichroism, UV-absorbance, fluorescence, turbidity, and light scatter-

ing with high level photometric and wavelength accuracy and repeatability. In contrast to

most plate readers, this instrument measures full spectra, in addition to incorporating a

Reprinted from J. Pharm. Sci. (101), Nathaniel R. Maddux, et al., “An Improved Methodology for
Multidimensional High-Throughput Preformulation Characterization of Protein Conformational Stability”,
pp. 2017-2024, c©2012 Wiley-Liss, Inc. and the American Pharmacists Association
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temperature controlled sample chamber capable of performing temperature studies from 0

to 100◦C.

In this chapter we describe the Olis Multiscan (OM) and its use to generate EPDs for

four model proteins including aldolase, bovine serum albumin (BSA), a-chymotrypsin, and

lysozyme. These proteins cover a range of molecular weights ( 14 to 160 kDa), secondary

structures (10-67% alpha helical and 10-49% beta sheet), and thermal stabilities (Tm values

from 44 to 74◦C).1–6 These model proteins were characterized over a grid of environmental

conditions consisting of solution pH values from 3 to 8 and temperatures from 10◦C to 85◦C.

The characterization of each protein was performed over a 12 hour period. At each combina-

tion of temperature and pH, the following biophysical measurements were taken: CD at 217,

222, and 235 nm, absorbance from 238 to 343 nm (including optical density measurements

from 320 to 340 nm), and intrinsic Trp fluorescence between 255 and 420 nm with 295 nm

excitation. DART (described in the previous chapter) was then used to import and regular-

ize the data, filter it, and generate EPDs. The resulting empirical phase diagrams have been

interpreted in light of the original raw data, and the phase boundaries and protein behavior

were found to be reproducible and similar to those obtained by independent measurements

using separate instruments.

4.2 Methods

4.2.1 Materials

Albumin (from bovine serum), aldolase (from rabbit muscle), α-chymotrypsin (from bovine

pancreas), and lysozyme (from chicken egg white) were obtained in the form of lyophilized

powder from Sigma Life Sciences (St. Louis, MO). All chemicals were of reagent grade and

purchased from Fisher Scientific (Pittsburg, PA).

Citrate-phosphate buffer was prepared at 20 mM at pH 3.0, 4.0, 5.0, 6.0, 7.0, and 8.0

from citric acid anhydrous and sodium phosphate dibasic anhydrous. The ionic strength of
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each buffer was controlled to I = 0.15 (dimensionless) by the addition of NaCl. For each pH,

the lyophilized protein samples were dissolved into 2 mL of H2O and all protein solutions

were dialyzed into between 1 and 2 L of citrate-phosphate buffer in Thermo Scientific Slide-

a-Lyzer 0.5-3 mL 3500 Da MWCO dialysis cassettes (Waltham, MA). The concentration

of each sample was obtained by absorbance spectroscopy with 1 cm path length at 280

nm using an Agilent Technologies 8453 spectrophotometer (Santa Clara, CA) and known

extinction coefficients for each model protein. Samples were diluted to 0.2 mg/mL. The

citrate-phosphate buffers used for protein dilution and as instrument controls were filtered

with a Millipore Millex 0.45 µm syringe filter (Billerica, MA). Samples were stored at 4oC,

and measurements were taken within two weeks of reconstituting the lyophilized protein

powders with the citrate-phosphate buffers (except for lysozyme which was used within 3

weeks).

4.2.2 High Throughput Spectroscopy

High throughput spectroscopy was performed with an OM equipped with a Quantum North-

west peltier temperature controlled 6-position cuvette turret (Liberty Lake, WA). The Olis

Multiscan uses a 150 W xenon arc lamp and dual grating Rapid Scanning Monochromators

(RSM-1000) for circular dichroism (CD) and fluorescence excitation (see Figure 4.1). The

RSM was set up in slow scanning mode, using a fixed 1.24 mm slit (corresponding to 1.6

nm band pass) and moveable gratings. (For rapid scanning, the gratings would be fixed

and a scan disk would be used instead of the fixed slit.) Fluorescence signals are read at 90

degrees from the excitation source through a single grating RSM, using a rotating 1 mm slit

(corresponding to a 6.3 nm band pass). The fluorescence monochromator collects a spec-

trum every 10 ms, and can measure an emission spectrum at each CD excitation wavelength.

Absorbance is measured using a separate Avantes system (Eerbeek, The Netherlands) con-

sisting of an Avalamp-DS deuterium light source and an AvaSpec-1024 photodiode array

spectrometer that is built directly into the spectrometer system.
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Samples were placed in 6Q Spectrosil cuvettes with a 2 mm path length in one direction

and 1 cm path length in the other. The cuvettes were positioned so that the 2 mm path was

parallel to the excitation beam and Avalamp absorbance beam (see Figure 4.1). Thermal

stress was performed from 10-85oC in steps of 2.5oC. Excitation monochromator exit slit

width and emission monochromator entrance slit width were both maximized to provide

robust signals. These slits control light throughput and have no effect on band passes.

Integration times were chosen to yield a cycle of 12 hours per experiment, for the convenience

of experimenters. In those 12 hours, equal time was allotted to each of the 3 techniques.

The OM was operated in the following manner during temperature ramp experiments.

After temperature equilibration of the sample chamber, the 6-position turret rotates to place

one of the sample containing cuvettes into the excitation beam path. For each cuvette, the

excitation monochromator scans through a series of excitation wavelengths, spending a user

specified time at each wavelength while collecting one CD measurement and a full fluores-

cence spectrum. After scanning the excitation wavelengths, the next cuvette is rotated into

the excitation beam, and this process repeats until each cuvette has been measured. The

cuvettes are then scanned again, but this time they are placed into the beam path of the

Avantes absorbance subsystem and UV absorbance spectra are measured. Finally, the tem-

perature is raised to the next set point and the entire cycle is repeated. One might ask

whether the order of the operations could change the outcome, since the various measure-

ments occur at different time delays after the temperature is increased. For example, CD

and fluorescence are measured for the first cuvette shortly after the temperature is raised,

whereas the absorbance spectrum of the last cuvette is measured roughly 20 minutes later.

At all times, however, each cuvette has had ample time to equilibrate to the temperature

before the current one. So the measured conformational state of the protein is somewhere

between the equilibrated states at the last temperature and the current temperature. Thus,

the order of operations can potentially affect the protein’s observed state and transition

temperatures, but the effect is limited to an uncertainty equal to the size of the temperature
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step.

4.2.3 Circular Dichroism

Circular dichroism (CD) was used to measure molar ellipticity at the wavelengths of 217, 222,

and 235 nm, chosen to correspond to typical peaks seen for alpha-helix and beta-structure

secondary structures.7,8 Although Chymotrypsin has no CD peak at 222 nm, Chymotrypsin

melting trends were similar for all 3 of the wavelengths chosen. Due to absorbance by the

20 mM citrate-phosphate buffer, far UV CD signals could not be monitored successfully

at wavelengths below 215 nm for the majority of protein and pH combinations. Although

shorter path lengths would have reduced absorbance by the buffer, they would result in a

proportionally diminished fluorescence emission signal. Furthermore, the fluorescence emis-

sion measurements are taken parallel to the 1cm cuvette path length, making it difficult

to use very short excitation beam path lengths due to reflection and alignment issues. To

decrease noise in the data resulting from increased absorbance, CD data was integrated for

19 seconds at each wavelength.

4.2.4 Steady State Intrinsic Trp Fluorescence

The tertiary structure of all proteins was screened using intrinsic fluorescence. Proteins were

excited at 295 nm to exclusively (>95%) excite tryptophan residues, as well as 300 nm to

investigate red-edge shifts. Emission spectra were recorded between 255 and 420 nm with

18 seconds of integration time per excitation wavelength.

Each (temperature x wavelength) spectral melt matrix was filtered as follows. The ma-

trix was first reconstructed using the top 5 singular vectors given by the Singular Value

Decomposition. Each spectrum was then filtered with a third order, 4 nm radius Savitzky-

Golay filter followed by a 4 nm radius Gaussian smooth. Then the temperature dimension

of the matrix (i.e., the melt at each wavelength) was filtered with a third order, 6◦C radius

Savitzky-Golay filter followed by a 2.5◦C radius Gaussian smooth.
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Peak positions were determined from the filtered data using the spectral center of mass

method. A red edge shift at each temperature and pH was determined by subtracting the

emission peak position with 295 nm excitation from the peak position with 300 nm excitation.

4.2.5 Absorbance and Optical Density Measurements

Absorbance spectra were recorded between 238 and 343 nm with 46 seconds of integration

time. The long integration time was required due to the low concentration and path length

that were required for compatibility with far-UV CD measurements. The peak near-UV

absorbance of BSA for instance, was approximately 0.029 absorbance units. Each (tempera-

ture x wavelength) spectral melt matrix was filtered in the same manner as the fluorescence

measurements. Second derivative spectra were then calculated with a third order, 4 nm

radius, second derivative Savitzky-Golay filter. The mean optical density from 320 to 340

nm was calculated from unfiltered spectra by averaging the optical density values in that

range.

4.2.6 Construction of EPDs

EPDs were constructed from each run and were generated separately for each of the four

model proteins. The EPDs resulting from the first 12 hour run of each protein are shown

in Figure 3. The EPDs from further runs are virtually identical (data not shown). The

following biophysical measurements were used: the second derivative near UV absorbance

from 275 to 295 nm, mean optical density from 320 to 340 nm, far UV CD at 217, 222,

and 235 nm, and fluorescence spectra from 315 to 370 nm. It should be noted that full

UV absorbance and fluorescence spectra were used rather than selected peak positions and

intensities. Before applying the EPD method, the data was interpolated in the temperature

dimension from the original 2.5◦C increments to smaller 0.5◦C increments. For a detailed

description of the EPD method, see Maddux et al.9
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4.2.7 EPD segmentation

The EPD method assists in the determination of regions of conserved behavior, but does

not itself determine transition regions. Instead, human visual assessments have traditionally

been used to perform the task of separating regions of the same color on an EPD. A similar

classification can also be performed mathematically by the use of cluster analysis. Since it

is automatic, cluster analysis may be a valuable tool for high-throughput protein stability

characterization using EPDs.

Cluster analysis was performed on the average of 3 runs, separately for each protein,

using the same combination of measurements used to generate EPDs. The standardization

step in the EPD method results in a list of multidimensional vectors, with one vector for each

combination of temperature and pH. K-means clustering was applied to these vectors to find

a natural categorization in the high dimensional space, thus dividing the temperature-pH

plane into regions of similar measurements. For a description of clustering in general and

the K-means algorithm in particular, see Jain 2006.10

The phases and transitions temperatures given by K-means clustering did not, however,

always match the phases and transitions perceived by visual assessments of the EPDs. To

address this issue, the EPDs were segmented using a different method. For each phase in an

EPD, a characteristic point in the temperature-pH plane was visually selected to represent

that phase. Then for each point in the EPD the nearest characteristic point was determined,

where the distance utilized was the Euclidean distance between measurement vectors. The

boundaries in the resulting segmented EPD were used to find transition temperatures by

averaging the temperature above and below a boundary. These were then averaged over

the 3 runs to determine the transition temperatures given below. The error in a transition

temperature was calculated by adding (in quadrature) the standard deviation over 3 runs

and the quantization error of 2.5◦C.
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Figure 4.1: Overhead line drawing of the Olis Multiscan (OM), a cuvette-based spectrophotometer that
measures circular dichroism, absorbance, and fluorescence with high level photometric and wavelength

accuracy and repeatability.
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4.3 Results and Discussion

Each EPD (containing data from triplicate runs) required approximately only 1.8 mg of

protein, about 8 hours of sample preparation time, about 72 hours of instrument time, and

minutes of data analysis time. (The 1.8 mg of protein is the amount used in 3 spectroscopic

runs, not including planned overages. In practice the amount of protein required may vary,

depending on the cost of the analyte and skill of the experimentalist.) The instrument time

could be further reduced since data was collected in triplicate and buffers were measured

for every pH and run. The buffer spectra could be measured for only one pH condition

using one of the six turret positions. With this experimental setup, an EPD across 5 pH

values could be generated using all 3 experimental techniques with only about 12 hours of

instrument time and about 0.5 mg of protein. If CD measurements were not used as part

of the EPD analysis, the protein concentration and cuvette path length could be increased

and instrument integration times could be decreased, allowing perhaps up to 4 EPDs to be

generated per day.

If separate instruments had been used, the data collection run described in this chapter

would have required 3 times as much protein, because new samples would be needed for each

instrument (absorbance, fluorescence, and circular dichroism spectrophotometers). Prepa-

ration time would also increase due to the need to prepare more samples and cuvettes for

multiple experimental runs. Total instrument time, however, would not increase due to the

use of separate instruments, since the OM collects data from the 3 experimental measure-

ments separately. (I.e., the Far UV CD measurements use wavelengths in the 200 to 240

nm range, the fluorescence measurements use excitation wavelengths of 295 and 300 nm,

and the absorbance measurements are not simultaneous with CD or fluorescence.) In fact,

total instrument time would probably be reduced somewhat by using separate instruments,

because path lengths and concentrations could be optimized separately for each instrument.

Representative examples of measurements as a function of pH and temperature from each

of the biophysical measurements for the four model proteins are shown in Figure 2. These
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results are averaged over 3 runs as a function of temperature and solution pH. For error bars

associated with these measurements, see Figures 4.4 - 4.7. Figure 3 shows EPDs summarizing

the biophysical data presented in Figure 2. Note that the EPD’s were generated using data

collected from all wavelengths, not just the representative wavelengths shown in Figure 2. As

explained elsewhere, in an EPD the colors themselves have no absolute meaning.9 Instead,

differences in color alone assist in the determination of protein behavior and behavioral

transitions.

The EPD for aldolase displays 4 structural states as a function of pH and temperature

stress (Figure 3a). At pH 3 and pH 4, the protein was unfolded, as shown by a lack of

transitions (color changes) in the EPD and by inspection of the biophysical data itself. At

pH 5 to 8, the protein manifested structural changes near 50◦C. This apparent phase change

is characterized by the melting of secondary and tertiary structure as shown by transitions in

absorbance, CD and fluorescence.7,8,11–17 A few degrees after the onset of melting, the protein

self-associated, as shown by increases in optical density. The protein initiated structural

changes again at pH values 5 to 8 near 60◦C. Although this phase may be partially unfolded,

some structure remains, as indicated by the slight recovery in the red shift between 60◦C

and 80◦C.18,19 The EPD in Figure 3a for aldolase is lacking a structural transition near 30◦C

at pH 3 and 4, which was found by Hu et al.20 This difference is probably due to the fact

that the EPD in this work does not include near-UV CD data.

The EPD for BSA also displays multiple structural states as a function of pH and tem-

perature stress (Figure 3b). At pH 3, BSA is partially unfolded by the acidic conditions, as

indicated by the weak transitions visible in both the EPD and biophysical data. At pH 4,

the same phenomenon is observed, though to a lesser extent. The protein had the highest

melting temperature at pH 6, with a structural transition observed in the EPD near 65.6 ±

2.6◦C. From pH 5 to 8, the first transition is characterized by melting of the secondary struc-

ture as indicated by CD, melting of the tertiary structure indicated by fluorescence changes,

and protein association reflected by a slight blue shift in the fluorescence peak position and a
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Figure 4.3: Empirical phase diagrams of 4 model proteins: (a) aldolase, (b) BSA, (c) chymotrypsin, and
(d) lysozyme. These EPDs summarize the representative biophysical data from Figure 2 (in conjunction
with wavelength measurements using the full spectra; see text) and display protein structural responses
to temperature and pH perturbations. The experimental techniques used were second derivative near UV
absorbance from 275 to 295 nm (full spectra), fluorescence spectra from 315 to 370 nm (full spectra), far

UV CD at 217, 222, and 235 nm, and the mean optical density from 320 to 340 nm.
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rising red edge shift. At pH 5 the protein undergoes a transition near 68.9 ± 2.6◦C in which

secondary structure melts more completely, as seen in CD measurements, and the protein

more strongly self-associates, as indicated by increases in optical density.

The EPD for chymotrypsin also displays multiple structural states as a function of pH and

temperature stress (Figure 3c). Unlike aldolase and BSA, however, chymotrypsin exhibits the

same structural state across the entire pH range of 3 to 8 at lower temperatures. At pH 3, the

protein’s tertiary structure begins to change near 35◦C, as shown in the UV second derivative

absorbance plot. The secondary structure then begins to change to a more helical state with

an onset near 42.8 ± 2.5◦C, as suggested by the CD measurements and the EPD. Although

chymotrypsin does not display a CD peak at the wavelength of 222 nm used for the plots in

Figure 2, the melting trends are the same at all CD wavelengths monitored (data not shown).

At pH 4 to 8, the protein’s secondary and tertiary structure alter simultaneously near 42.5◦C,

as shown by CD and fluorescence peak position measurements. During the transition, the

red edge shift increases temporarily, consistent with protein association. At pH 4 near 65.6

± 2.9◦C, the protein changes to a state characterized by strong association behavior, as

indicated by OD measurements. The color variations visible at lower temperatures (20 to

40◦C) result from noise in the data, as they were different for each run. (EPDs for each run

are not shown.)

The EPD for lysozyme (Figure 3d), exhibits a single apparent phase from pH 3-8 and

10-60◦C. The protein is most stable at pH 4 to 6, undergoing a transition in secondary

and tertiary structure near 73◦C. The color variations visible at lower temperatures (20 to

60◦C) result from a constant slope in the data, visible in Figure 2. At pH 8, the protein

begins to strongly self-associate with an onset near 75 ± 2.7◦C, as indicated by OD mea-

surements. Analysis of the same four model proteins was conducted by measurements in

separate biophysical instruments and virtually identical results were obtained.
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4.4 Conclusion

A combined multifunctional spectrometer (the Olis Multiscan) is capable of collecting a

variety of protein biophysical data with a single instrument for the construction of EPDs

at a much higher throughput than has previously been possible, while maintaining repro-

ducibility and good signal to noise levels. A newly developed software analysis package was

combined with the OM instrument to rapidly produce EPDs in a high throughput fashion

with minimal sample requirements. The utility of this new methodology was demonstrated

by evaluating the conformational stability of four model proteins as a function of solution

pH and temperature. The major result of this work is the direct demonstration of the small

amount of protein sample needed and short period of time required to generate high resolu-

tion EPDs for biophysical characterization of protein conformational stability as a function

of solution pH and temperature.
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Chapter 5

Modeling of long term GCSF stability from short term

physical data

In this chapter we establish the long-sought connection between the long-term pharmaceu-

tical stability of a protein and short-term data characterizing the protein’s physical form.

The novelty of our approach comes in using mathematical methods well-suited to bring these

broad themes together. Our proof-of-principle analysis will show that features of long-term

pharmaceutical stability can indeed be predicted from short-term measurements.

Before explaining the prediction process, we need to review some background facts about

the field as it stands now.

5.1 The Expensive Process of Developing Useful Drugs

The development process for new drugs uses experimental methods covering a wide range in

cost, from techniques that are expensive, time consuming and difficult to perform, such as

those that assess drug safety, efficacy, and long term stability, to techniques that are inexpen-

sive, fast, and easy to perform, such as those that primarily use spectroscopic instruments.

Slower, more expensive techniques typically produce information that is more directly

relevant to the optimization of drug designs, formulations, and manufacturing processes.

Determining the long term stability of protein drugs is an example of a slow, laborious, and
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expensive drug development process. Protein stabilization studies are typically performed

with a factorial design of experiments. In this mode, one chooses several variables to explore

(these are called factors), such as the concentrations of various excipients and a number of

levels for each factor. For instance, a factorial design with 4 factors at 3 levels each results

in 34 = 81 formulations to test. One stores these formulations in clinically relevant storage

conditions (for example, 2 years at 4◦C). At the end of the storage period the formulations

are tested to determine the amount of active component remaining, the presence of degraded

forms, and the biological activity of the altered drug. One then fits a polynomial model that

predicts the end-point measurements from the formulation variables.

The information obtained by faster, less expensive techniques is typically only loosely

indicative of the differences observed in more costly studies. Examples of fast techniques

include immunological assays to study vaccine efficacy, the use of forced degradation to es-

timate drug stability and the use of circular dichroism (CD) measurements to determine

whether two protein variants are sufficiently similar for therapeutic use. Fast, inexpensive

methods allow one to explore design spaces more completely and with greater freedom. More

rapid experiments are also necessary during the development and maintenance of manufac-

turing processes: when an issue or a question arises, one can’t wait years for an answer.

Spectroscopy and calorimetry are two commonly employed fast, inexpensive method

methods of obtaining information concerning a formulation. These methods have found wide

use in the evaluation of protein stability due to the rich information they provide regarding

the structural state of proteins and their degradation behavior. Transition temperatures

determined by dynamic scanning calorimetry have occasionally been found to be roughly

predictive of a protein’s long term stability.1 Spectral similarity methods are frequently ap-

plied during the development and maintenance of manufacturing processes, to determine

whether a protein is sufficiently similar to its native form.

In this dissertation we have been focused on fast multidimensional methods. Multi-

dimensional analyses incorporating data from many spectroscopic instruments are gaining
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popularity due to their ability to simultaneously investigate protein behavior at multiple

structure levels. An example of a multidimensional analysis method is the empirical phase

diagram (EPD) method, which assists in finding regions in formulation space with con-

served protein structure and boundaries between those regions.2–5 Although spectroscopic

and calorimetric methods are fast and they assist in determining protein state and behavior,

inference of long term behavior and activity has been somewhat speculative.

5.1.1 Combining Two Strengths

Since both fast and slow methods have their own strengths, it would be desirable to develop

techniques that combine speed, low cost, and ease of use with reliable assessment of drug

safety, efficacy, and long term stability. Here is where our new approach provides the door-

way to a combined approach, in which fast and slow degradation assays are performed on the

same factorial design of protein formulations. We will describe new automated mathematical

models that use inexpensive data to predict more costly data that possesses direct relevance

to drug development. Predictive techniques can be applied in many ways, and great oppor-

tunity for creativity exists by varying the predictive method, the data being predicted, and

the data being predicted from. In this paper we focus on automated modeling of the long

term stability of proteins based on short term spectroscopic measurements.

In more detail, prediction techniques based on least squares methods are applied to

generate a model that predicts slow degradation data from fast thermal unfolding data.

The approach has three main differences from traditional long-term stability studies. First,

the new method is fast, once a predictive model has been determined. With the predictive

model in hand, one must only collect fast unfolding data to estimate long term stability

information. Second, in the new approach one infers behavior from behavior: a protein’s

long term behavior for a given formulation from its short term behavior. Traditionally one

infers long term behavior by interpolating (via a polynomial model) between long term data

points. Interpolation is problematic when applied to the inference of long term protein
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behavior, because formulation spaces happen to have high dimensionality. Finally, the main

difference between the new approach and traditional short term studies is that the new

method is predictive and incorporates a consistent backbone of testability. Traditional testing

uses transition temperatures as no more than a rough indication of differences in stability

between different formulations. That imprecise knowledge is then used to determine the

focus and extent of long term studies. In the new approach, a fully validated, predictive

model is developed. The scope and errors of the model are quantified. A strong validation

method allows one to extract more information from fast techniques, potentially eliminating

a portion of the cost (and waste) of long-term studies.

The idea of predicting properties is not new to the pharmaceutical field.6–11 For example,

Quantitative Structure Activity Relationship (QSAR) models are used to predict the biolog-

ical activity of drugs from physicochemical descriptor variables. In reference [6], the blood-

brain concentration ratio and blood-brain barrier permeability of 61 molecules were modeled

using partial least squares and topological and constitutive descriptors of the molecules.

Linear regression models are used frequently in the formulation development process. In

reference [7], linear regression was used to model pharmaceutical tablet disintegration time

and crushing strength from powder properties along with process and composition variables.

In reference [8], linear regression was used to develop a method for the simultaneous spec-

troscopic quantification of caffeine, acetylsalicylic acid and acetaminophen in solution.

Since least-squares analysis is a standard and well-established way of quantifying rela-

tionships we employ it here as well. The first feature that is new here is the reduction of high

dimensional data to empirically meaningful summaries at an early stage. The self-consistent

nature of short-term data summaries such as EPD’s is one thing: the real proof of principle

comes when that short-term synthesis confronts an independent universe of long-term data.

In principle the two might have little relation to one another. We will show, however, that

remarkable and indisputable regularities do occur. The application we describe uses spec-

troscopic measurements for the short-term data, which will be compared to the response
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variables of long-term stability measurements.

5.2 Materials and Methods

5.2.1 Long Term Stability Studies

This part of the experiment is quickly summarized here. For details see reference [1]. Gran-

ulocyte Colony stimulating factor (GCSF) was studied in a factorial experimental design of

formulations, alternating Acetate and Citrate buffer systems and varying buffer concentra-

tions, pH values, and concentrations of Tween80 and HP-β-CD. The factorial design included

24 formulations, but the long term measurements for only 16 of those have been provided.

Formulations were numbered 11-26. Parameter values for each formulation are shown in

Table 5.1.

Shortly after formulation, thermal unfolding transition midpoints (Tm) were obtained by

differential scanning calorimetry (DSC) with a 90 K/hr heating rate.

Isothermal stability studies were then performed by storing the formulations at 40 ◦C for

3 months, 25 ◦C for 10 months, and 4 ◦C for 20-24 months.

Loss of monomeric form, primarily via aggregation, was monitored by size exclusion high

performance liquid chromatography (SE-HPLC). The formulations were analyzed at 0, 1, 3,

6, 9, 12, and 20-24 months. A monomer loss rate constant (MLRC) was determined for each

formulation by fitting exponential decay to the SE-HPLC data, and is expressed in units of

%/month.

Turbidity was measured at the end of the storage period, and is expressed in Formazin

Nephelometric Units (FNU).

Chemical stability was assessed at the end of the storage period by use of reverse-phase

high performance liquid chromatography (RP-HPLC). The chemical stability is expressed as

as a percentage: the area under the chromatogram peak corresponding to intact GCSF in

comparison to the total area under the chromatogram.
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Table 5.1: Formulation parameters for 16 formulations of GCSF in a factorial design of
experiment.

Parameter

Buffer pH Buffer concentration HmML Tween 80 H%L HP-Beta-CD H%L

F
o

rm
u

la
ti
o

n

11 None 4.5 0. 0.05 0.

12 None 4.5 0. 0.005 0.

13 None 5. 0. 0.005 0.

14 None 5. 0. 0.05 0.

15 Citrate 4.5 20. 0.005 0.

16 Citrate 4.5 50. 0.05 0.

17 Citrate 5. 20. 0.05 0.

18 Citrate 5. 50. 0.005 0.

19 None 4. 0. 0. 5.

20 None 4. 0. 0. 1.

21 None 4.5 0. 0. 1.

22 None 4.5 0. 0. 5.

23 Acetate 4. 20. 0. 1.

24 Acetate 4. 100. 0. 5.

25 Acetate 4.5 20. 0. 5.

26 Acetate 4.5 100. 0. 1.

Particle counts (PC) were obtained at the end of the storage period by automated particle

counting.

The long term results for each formulation are shown in Table 5.2.

Differential scanning calorimetry’s effectiveness at predicting long term stability mea-

surements was then evaluated. This was performed for each long term storage condition

separately. Here we discuss the long term stability of the formulations stored at 4 ◦C for

20-24 months. Long term measurements were ranked 1-24 by stability. The resulting rank

numbers were averaged and the averages were ranked 1 to 24 to generate a single measure of

long term stability. The ranking procedure just described was performed in two passes: first

on groups of measurements, then repeated to combine the resulting rankings. DSC transition

temperatures were also ranked 1 to 24. A correlation plot of the long term stability ranking

versus the DSC ranking was shown in paper [1] and is reproduced here in Figure 5.1.
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Table 5.2: Long term stability measurements for 16 formulations of GCSF. Measurements
are shown with 2 digits of precision. See text for details.

Measurement
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P
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0
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R
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,
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3
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T
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it
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,
0

3
m

o

F
o

rm
u
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ti
o

n

11 62 52 2 2 -3E-4 1 99 2 1 -1.6E-2 0.48 56 1 0 -0.1 1.9

12 1E2 49 4 2 -1E-4 0.7 1.6E2 3 1 1E-3 0.55 1.4E2 2 1 -2.1E-2 0.61

13 1E2 1.8E2 3 0 -7E-4 0.6 2.7E2 2 0 -5E-3 0.52 1E3 14 1 -4E-2 1.2

14 74 91 9 1 -1.1E-3 0.8 3.1E2 18 1 -1.5E-2 0.49 3.5E2 6 2 -0.14 1.2

15 1E2 2E4 1.7E2 12 -9E-4 1.6 1.5E4 3.2E2 26 -3E-3 2.9 1.2E4 3.3E2 1.7E2 -0.16 1.8

16 67 4E3 1.7E2 17 -6E-4 1 2E3 3.4E2 94 -2.7E-2 1.3 1.2E4 3.5E3 2E3 -0.72 14

17 74 3E3 12 3 -1.7E-3 0.8 1.6E4 40 3 -1.7E-2 1.3 3.9E2 18 11 -0.61 0.61

18 1E2 1.4E4 2.9E2 12 -1.1E-3 1.2 9.1E3 9.5E2 1E2 -3E-3 2.9 6.7E3 57 2 -0.16 3.7

19 1E2 7E2 6 2 -3.9E-2 0.7 5.7E2 20 7 -1.5E-2 0.65 1.5E3 14 1 -3.8E-2 0.69

20 1E2 8.3E2 8 1 -5E-4 1.1 7.3E2 3 1 -1.1E-2 0.62 1.3E3 4 0 -3.5E-2 1

21 1E2 1E3 13 3 4E-5 0.9 8.6E2 18 2 -3E-3 0.52 1.8E3 12 0 -2.8E-2 0.94

22 1E2 7.9E2 7 0 -3.8E-2 0.7 1.2E3 10 2 -9E-3 0.76 9.9E2 12 0 -3.9E-2 0.82

23 1E2 8.5E2 63 10 -1.1E-3 1.1 3.7E2 10 3 -6E-3 0.51 2.6E2 9 0 -2E-2 1.5

24 1E2 4.9E3 1E2 10 -3.8E-2 2.9 2.6E3 90 10 -1.8E-2 1.2 8.4E3 1.2E2 26 -4.5E-2 1.2

25 1E2 3.2E3 37 8 -4E-2 1.6 4.6E3 47 12 -1.4E-2 1.8 1.6E3 29 7 -3.7E-2 9.9

26 1E2 1.2E4 2.7E2 23 -2.1E-3 5.2 3.5E3 4.4E2 28 -1.4E-2 3.3 4.7E3 93 12 -6.9E-2 1

5.2.2 Accelerated Stability Studies

Sample preparation

GCSF in 16 different formulation conditions was provided by the authors of [1]. These formu-

lations are numbered GCSF011 thru GCSF026. The protein was thawed and diluted using

the respective buffer to obtain the required concentration for each technique.

Far-UV Circular Dichroism (CD) Spectroscopy

CD spectra were acquired using a Jasco J-810 spectropolarimeter (Jasco Inc, Easton, MD)

equipped with a 6-position peltier temperature controlled sample cell holder. CD spectra

were obtained from 260-200 nm. CD spectra were collected every 2.5 ◦C over a range of 10

to 87.5 ◦C .
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Figure 5.1: Correlation plot of the long term stability of 24 GCSF formulations versus thermal transition
midpoints measured by dynamic scanning calorimetry (DSC). The long term stability and DSC measure-
ments of the formulations were each ranked 1 to 24 by a procedure described in the text. The horizontal
and vertical axii of the plot are, respectively, the long term stability and DSC rankings.(Reprinted from
the European Journal of Pharmaceutics, Ahmed M K Youssef and Gerhard Winter, “A critical evaluation
of microcalorimetry as a predictive tool for long term stability of liquid protein formulations: Granulocyte

Colony Stimulating Factor (GCSF)”, In Press, Copyright 2013, with permission from Elsevier)

Intrinsic Tryptophan (Trp) Fluorescence Spectroscopy and Static light scattering

Intrinsic fluorescence spectra were acquired using a Photon Technology International (PTI)

spectrofluorometer (Lawrenceville, NJ) equipped with a turreted 4-position peltier-controlled

cell holder. The Trp residues in the protein were excited at 295 nm, and the emission spectra

were collected from 310 to 400 nm. Light scattering in the 290-300 nm range was collected

simultaneously with fluorescence by use of a second photomultiplier. Fluorescence and light

scattering were collected every 2.5 ◦C over a range of 10 to 87.5 ◦C .
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ANS Fluorescence Spectroscopy

Unfolding of the protein with increasing temperature was also monitored by fluorescence

emission of the extrinsic probe 8-Anilino-1-naphthalene sulfonate (ANS). An optimized 15

fold molar excess of ANS was added to the protein solution. The ANS die was excited at

375 nm and the emission spectrum was collected from 400-600 nm every 2.5 ◦C over the

temperature range of 10 to 87.5 ◦C . Peak intensity of the emission spectra was monitored

at 475 nm.

5.3 Analysis

5.3.1 Subtraction of buffer spectra

As shown in Figure 5.2, the buffers for light scattering, intrinsic fluorescence, and ANS flu-

orescence presented a relatively large spectral signal. In this figure the buffer and sample

spectra are plotted for each technique and for formulation 11. Each plot shows the measure-

ment for the technique in question as a function of temperature and wavelength. (The band

near 60 ◦C in ANS fluorescence will be discussed in the subsection on filtering.) A small part

of the signal in the buffers is certainly due to the buffer itself. The signal is much larger than

what would usually be attributable to buffer alone, however, and may be partly due to a

protein contaminate. To avoid introducing this artifact into the sample spectra, subtraction

of buffer spectra could have been skipped. Instead, buffer subtraction was performed to

ensure that buffer information was not included in the data sets that were used to predict

long term behavior.

5.3.2 Filtering

A buffer dependent signal was removed from the ANS spectra prior to filtering. As can be

observed in the ANS spectrum plots of Figure 5.2, the spectrum drops to near zero at some
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Figure 5.2: Plots of short term spectroscopic measurements for formulation 11. The buffers presented a
relatively large spectral signal. A small part of the signal in the buffers is presumably due to the buffer
itself. The signal is much larger than what would usually be attributable to buffer alone, however, and may
be partly due to protein contamination. The band near 60 ◦C in the ANS fluorescence plot is discussed

in the text.
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temperatures. We don’t know the cause of this transient behavior. It occurs in both the

buffer and sample spectra, so is assumed to originate in the buffer. This artifact was removed

to ensure that buffer information was not included in the data sets that were used to predict

long term behavior. It was removed by replacing the spectrum of an affected temperature

by the average of the two spectra at neighboring temperatures.

The spectra were then filtered with a Savitzky-Golay filter of radius 4nm, order 3, followed

by a Gaussian smooth of radius 4nm. The melts at each wavelength (i.e., the temperature

dimension) were filtered with a Savitzky-Golay filter of radius 3 ◦C , order 3, followed by a

Gaussian smooth of radius 3 ◦C .

Spectral regions of large peaks were then selected to lessen the effect of noise on later

analysis steps. Circular dichroism was restricted to the 205-260nm range, intrinsic fluores-

cence to the 310-365nm range and light scattering to the 290-300nm range. Entire ANS

fluorescence spectra were left alone.

5.3.3 Determination of transition temperatures

Transition temperatures were determined automatically using the derivative method. First,

each spectral melt (possessing wavelength and temperature dimensions) was reduced to a

one dimensional melt by averaging over wavelengths. The melt was then filtered with a

3rd derivative Savitzky-Golay filter of radius 5 ◦C , order 3. As illustrated in Figure 5.3,

this operation results in peaks corresponding to the transition onset, midpoint, and endset.

This figure shows the zeroth, first, second, and third derivatives of intrinsic fluorescence

melts for formulations 13 and 14. The zero derivative melts are the fluorescence intensity

averaged over wavelength. A peak finding algorithm was applied to the third derivative

melts, finding peaks greater than a predetermined size relative to the standard deviation of

the 3rd derivative melt. The peak finder chooses the lowest temperature such peak, then

finds the two neighboring peaks of opposite sign. Transition onset, midpoints, and endsets

were found in this manner for all formulations and measurement techniques, and are shown
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Table 5.3: Transition temperatures that were determined automatically using the derivative
method. See Figure 5.3 for a summary of the method.

Transition type HCL

Endset Midpoint Onset

Technique

ANS Fl. CD Intr. Fl. LS

F
o

rm
u

la
ti
o

n

11 51 52 52 53

12 65 68 66 66

13 62 64 61 58

14 48 52 48 66

15 62 64 63 63

16 58 57 60 58

17 60 60 60 59

18 61 61 61 60

19 78 76 76 79

20 78 77 78 80

21 70 70 68 68

22 72 73 70 71

23 68 69 68 68

24 64 66 64 64

25 71 67 66 67

26 63 66 63 62

Technique

ANS Fl. CD Intr. Fl. LS

F
o

rm
u

la
ti
o

n

11 44 45 45 46

12 58 62 60 59

13 52 57 53 51

14 40 44 40 58

15 55 56 56 56

16 47 48 48 46

17 50 49 50 49

18 54 54 54 54

19 71 69 69 71

20 70 70 70 72

21 62 64 62 62

22 64 66 64 64

23 62 62 62 62

24 58 59 58 58

25 60 60 60 60

26 57 60 56 56

Technique

ANS Fl. CD Intr. Fl. LS

F
o

rm
u

la
ti
o

n

11 36 36 36 38

12 52 54 51 52

13 43 48 46 44

14 32 34 34 51

15 48 49 49 49

16 40 39 40 39

17 42 42 42 41

18 47 48 48 47

19 64 61 61 64

20 64 62 62 66

21 56 56 56 56

22 58 60 57 57

23 56 56 55 56

24 52 52 51 51

25 54 54 53 53

26 51 52 50 50

in Table 5.3

5.3.4 Construction of data set to predict

The data to predict consisted of the long term measurements. As will be seen, many of these

measurements could not be modeled well. Two adjustments were made to improve modeling.

First, the particle count measurements were distributed over several orders of magnitude,

yet we attempted to model them from short term spectral measurements, which were dis-

tributed more evenly on a linear scale. To aid in predicting particle counts from spectra, the

base 10 logarithm of the particle counts was used.

Second, we averaged several long term measurements to reduce the influence of error.

The effect of error could not be investigated quantitatively since the data in this project

was only measured once. Log particle counts were averaged over storage conditions and
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Figure 5.3: Derivatives of intrinsic fluorescence melts for formulations 13 and 14. The melts with no
derivative are the fluorescence intensity averaged over wavelength. The third derivative of a melt results
in peaks corresponding to the transition onset, midpoint, and endset. The positions of these peaks were
determined with a peak finding algorithm, and the resulting transition temperatures are shown in Table

5.3.
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size ranges, obtaining a single mean particle count. The separate particle counts were kept

in the data set to be predicted. Turbidities and MLRC’s were also averaged over storage

conditions, and the mean values inserted in the data set to be predicted.

5.3.5 Construction of data sets from which to predict stability

Long term measurements were predicted from several types of short term data and the

quality of the resulting predictions were compared. The short term data sets from which

predictions are made will be called predictor data sets. Five of them were constructed, and

are described below.

Before discussing the construction of various predictor data sets, two operations must

be defined that will be referred to repeatedly. The first operation, which we call flattening,

consists of combining dimensions in an array to make a single dimension. For instance, we will

have a 16× 32× 11 dimensional array of light scattering measurements (16 formulations, 32

temperatures, and 11 wavelengths). Flattening the wavelength and temperature dimensions

results in a 16 × 352 dimensional array, where the second dimension contains positions for

each combination of temperature and wavelength.

The second operation we call standardization. The experimental techniques used in

this work (circular dichroism, intrinsic fluorescence, ANS fluorescence, and light scattering)

return data with differing scales and number of wavelengths. Circular dichroism measure-

ments, for instance, were approximately in the range 0 to −50 millidegrees of ellipticity,

whereas light scattering data ranged from 0 to approximately 106 photons/s. If prediction

techniques were applied to the raw data, CD data would have much less influence on the

resulting models than light scattering data, since peak CD measurements are approximately

104 times smaller than peak light scattering measurements. Even if the measurements from

all experimental techniques were rescaled to be in the same range, an experimental tech-

nique that returns very few measurements compared to another technique would have less

influence on the resulting models. To account for the influence of scales and numbers of
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measurements, the data was rescaled as follows. The result of a preprocessing method is a

list of arrays, one array for each measurement technique. Each array is two dimensional,

possessing a formulation dimension and a “measurement” dimension resulting from flattening

other dimensions returned by the preprocessing method. Each array was standardized by

dividing by its Frobenius norm:

Dstandardized
ij =

Dij√∑
ij |Dij|2

, (5.1)

whereDij is data resulting from a preprocessing method, i indexes formulations and j indexes

measurements for a given formulation.

The third operation we call concatenation. Preprocessing, flattening, and standardiza-

tion steps result in a list of 2 dimensional arrays, one array for each experimental technique.

What is desired for a given preprocessing method is a single array with formulation and

measurement dimensions. To achieve this, for each formulation the data from all the mea-

surement techniques are combined along the measurement dimension. For instance, we will

have a 16 × 71 array of circular dichroism measurements (16 formulation, 71 wavelengths),

a 16 × 11 light scattering array, a 16 × 95 intrinsic fluorescence array, and a 16 × 201 ANS

fluorescence array. Concatenating these arrays along the wavelength dimension results in a

single array with dimensions 16× (71 + 11 + 95 + 201), or 16× 378.

Low temperature spectra

Good long term predictions from low temperature spectra would be particularly interesting,

since such measurements are both convenient and inexpensive. A protein’s low temperature

spectrum can be measured in minutes or less, whereas a full thermal unfolding study requires

at least an hour to perform. In addition, if the protein has not undergone major structural

alteration, then it can be recovered by dialysis and reused. This can be useful in the beginning

stage of the development of a new protein drug, when there is often very little of the protein
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available.

The spectra of GCSF at low temperature were obtained by averaging thermal melt spectra

over the temperature range 10 - 35 ◦C . An average was used instead of the spectrum at 10

◦C in order to increase the signal to noise ratio. Averaging over temperatures resulted in

a list of arrays, one array for each measurement technique (CD, intrinsic fluorescence, and

ANS fluorescence), each array possessing formulation and wavelength dimensions. These

arrays were standardized, and then concatenated along the wavelength dimension.

Light scattering data was not used, since the low temperature, non-aggregated form of

GCSF did not present a large light scattering signal. Inclusion of light scattering data was

found to lower the quality of predictions from low temperature spectra.

Thermal melts

Each spectral melt (possessing wavelength and temperature dimensions) was reduced to a

one dimensional melt by averaging over wavelengths. The resulting arrays were standardized,

and then concatenated along the temperature dimension.

Transition temperatures

Transition temperatures were determined by the derivative method, as described above.

Arrays were standardized, and then concatenated along the “Transition type” dimension.

Concatenation resulted in a single two dimensional array with a formulation dimension and

a dimension containing the transition onset, midpoint, and endset for each measurement

technique.

Transition regions

Spectral melts were restricted to a range of temperatures around the thermal transition tem-

peratures. The thermal transition temperatures used were the thermal transition midpoints

averaged over the spectroscopic measurement techniques. A single transition temperature
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was thus used for each formulation. For a given formulation, spectra were restricted to within

±10 ◦C of that formulation’s transition temperature. Plots of the resulting data are shown

in Figure 5.4. The temperature and wavelength dimension of the arrays were then flattened,

and the arrays were then standardized and concatenated along the measurement dimension,

yielding a single 2 dimensional array with measurement and temperature dimensions.

This manner of preprocessing the data is based on the accepted idea that the behavior

of proteins near thermal transitions, in particular the relative behavior of different types of

protein structure, provides information about unfolding mechanisms. Extracting transition

regions for use in prediction algorithms is therefore a way of automating traditional com-

parative structural analyses. It is a “registering” operation, where one takes data sets that

do not match up when overlaid, and modifies them so that critical points do match up. For

example, facial recognition algorithms begin by rotating, shifting, and resizing images so

that facial features of different images match up when overlaid.

All predictors

A predictor data set was made by combining into a single array all of the predictor data sets

defined above. This was done by standardizing the arrays, and then concatenating them

along their measurement dimension.

5.3.6 Prediction methods

An input predictor matrix Xij, where i = 1...m indexes formulations and j = 1..n indexes

predictor measurements, was centered so that each column had zero mean:

M
(X)
j =

1

m

∑
i

Xij (5.2)

X ij = Xij −M (X)
j . (5.3)
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Figure 5.4: Plots of spectral melts that have been restricted to a range of temperatures around the
thermal transition temperatures. Each temperature axis zero value corresponds to the thermal transition

temperature for the associated formulation.
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The input long term observation matrix Yik, where i = 1...m indexes formulations and

k = 1...r indexes long term observations, was centered so that each column had zero mean:

M
(Y )
k =

1

m

∑
i

Yij (5.4)

Y ij = Yik −M (Y )
k (5.5)

Least squares fits

The linear model

∑
j

X ijTjk = Y ik (5.6)

was fit to the data using least squares (LSQ, to distinguish it from Light Scattering). X is

the standardized predictor matrix, Y is the matrix of standardized long term measurements,

T is the model determined by least squares, i indexes formulations, j indexes predictor

measurements, and k indexes long term measurements.

The fitted least squares model was applied to test data X(test)
j in the following manner.

The data was first centered using the mean values found previously:

X
(test)

j = X
(test)
j −M (X)

j . (5.7)

The predicted observations were then found with

Y
(test)
k =

∑
j

X
(test)

j Tjk +M
(Y )
k (5.8)
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Radial Basis Function Network (RBFN) fits

A standardized predictor matrix X ik was first transformed via

X̃ij = e−
∑
k(Xik−Xjk)

2

mλ2 , (5.9)

where i and j index formulations and k indexes predictor measurements. Roughly speaking,

the effect of this transformation is to make locations in X correspond to directions in X̃. The

width parameter λ was set at 1.0, chosen manually by checking fit results for all predictors

and long term measurements (as shown in Table 5.4).

The linear model

∑
j

X̃ijUjk = Y ik (5.10)

was then fit to the data using least squares. U is the model determined by least squares, i

and j index formulations, and k indexes long term measurements.

The fitted RBFN model was applied to test data X(test)
j in the following manner. The

test data was first centered using the mean values found previously, as shown in Equation

5.7. X(test)

j was then transformed via

X̃
(test)
j = e−

∑
k(X

(test)
k

−Xjk)
2

mλ2 , (5.11)

where j and k index formulations. The predicted observations were then found with

Y
(test)
k =

∑
j

X̃
(test)
j Ujk +M

(Y )
k . (5.12)

5.3.7 Leave one out cross validation

Cross validation was performed for each combination of predictor matrix and prediction

method. The model was fitted with one of the formulations omitted. The model was then
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tested on this formulation, giving long term predictions Y(test)
k , where k indexes predictor

measurements. This was repeated for each formulation, yielding a matrix Y (test)
ik of long term

predictions, where i = 1...m indexes formulations.

5.3.8 Estimate of fit likelihood

We compared predictions Y (test)
il to observations Yil. In this subsection, i is variable and

indexes formulations, whereas l is constant and corresponds to a specific long term obser-

vation such as chemical stability. Correlation plots of the best 16 fits are shown in Figure

5.6. The plot labels indicate the measurement predicted, the data used to predict from, and

the prediction method. Each point is a formulation, its horizontal position is the observed

long term measurement, its vertical position is the predicted long term measurement and

the horizontal and vertical axii extend over the same range.

The likelihood of all the fits was estimated using the Pearson correlation coefficient per-

mutation (PCC) test. The Pearson correlation coefficient PCC(Y
(test)
il , Y

(observed)
il ) of two

vectors is defined as:

PCC(Y
(test)
il , Y

(observed)
il ) =

1

m− 1

∑
i

(
Y

(test)
il −M (test)

S(test)

)(
Y

(observed)
il −M (observed)

S(observed)

)
(5.13)

where

M (test) =
1

m

∑
i

Y
(test)
il , (5.14)

S(test) =

√∑
i(Y

(test)
il −M (test))2

m− 1
, (5.15)

and likewise for M (observed) and S(observed).
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A null distribution for the observations was constructed by generating 5000 random

permutations of Y (observed)
il , permuting in the formulation index i. A null distribution for the

PCC was then computed by finding the PCC of Y (test)
il with each of the 5000 permutations of

Y
(observed)
il . Fit likelihoods are reported as σ values, found by dividing PCC(Y

(test)
il , Y

(observed)
il )

by the standard deviation of the null distribution for the PCC. Negative σ values correspond

to predictions that are anti-correlated with observations.

Figure 5.5 shows the histogram of a PCC null distribution constructed for the chemical

stability of GCSF (as predicted from thermal melts using a least squares fit). The red line is

the Pearson correlation coefficient of predictions and observations, PCC(Y
(test)
il , Y

(observed)
il ).
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Figure 5.5: A measure of goodness of fit, the Pearson correlation coefficient, compared to a null distri-
bution constructed for the measure. The histogram shows a null distribution for the Pearson correlation
coefficient between predictions and observations of chemical stability of GCSF. Chemical stability was
predicted from thermal melts using a least squares fit. The null distribution was generated using 5000
permutations of observations of the chemical stability. The red line is the Pearson correlation coefficient
between predictions and observations, showing a fit likelihood of 2.7 sigma. See the text for a more

complete description.

5.4 Results and Discussion

Leave one out cross validation was performed on each combination of prediction method

(LSQ and RBFN), predictor data set (low temperature spectra, thermal melts, transition

temperatures, transition regions, and all data sets together), and long term measurement.

The likelihood of the resulting fits was determined with the Pearson correlation coefficient
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Table 5.4: Fit likelihood values of fits resulting from leave-one-out cross validation for the
least squares prediction method. Refer to Figure 5.5 and the text for information on how the
fit likelihoods were determined. Significance values greater than 2 are highlighted in yellow,
and those greater than 3 are highlighted in green.

Predictor

All predictors Low T spectra Melts Transition T's Trans. Regions
M

e
a

s
u

re
m

e
n

t

Chemical Stability H%L 3.2 3.4 3.2 1.6 2.4

Log PC, 03 mo, >01um -0.5 2.3 -0.2 0.2 0.

Log PC, 03 mo, >10um 0.2 2.1 0.5 -0.1 2.3

Log PC, 03 mo, >25um 1.2 2.5 1.5 -0.2 2.6

Log PC, 10 mo, >01um 1.6 0. 0. 0.1 1.6

Log PC, 10 mo, >10um 1.2 0.3 1.7 0.7 3.3

Log PC, 10 mo, >25um 0.4 1.4 1.2 0.8 1.7

Log PC, 20 mo, >01um 2.7 0.4 2.5 0.4 2.3

Log PC, 20 mo, >10um 0.9 0.1 1.3 1.3 2.8

Log PC, 20 mo, >25um 1.5 0.2 1.6 1.2 0.8

Log PC, mean 1.5 1.1 2. 0.7 3.1

MLRC, 03 mo 3.5 2.1 3. 2.9 2.2

MLRC, 10 mo 2.8 1.5 2.6 -0.1 3.3

MLRC, 20 mo 1.6 -1.5 -0.6 1. 2.4

MLRC, mean 3.4 2.3 2.6 3.1 2.3

Turbidity, 03 mo -0.9 -1.6 -0.6 0.3 -1.1

Turbidity, 10 mo 1.3 -0.3 1.6 -1.3 1.6

Turbidity, 20 mo 1.4 0.5 1.3 -0.1 1.4

Turbidity, mean -0.3 1.1 -0.2 -0.3 0.4

permutation test. The fit likelihoods are shown in Tables 5.6 and 5.6. The fit likelihoods

in these tables are measured in units of the standard deviation of the null distributions

constructed for each permutation test. Correlation plots of the top 16 best fits are shown in

Figure 5.6.

Of all the separate predictors, transition regions provided the largest number of fit like-

lihoods greater than 2 sigma. This was true for both LSQ and RBFN prediction. For LSQ

prediction, combining all predictors into one gave improved results. For RBFN prediction,

combining all predictors into one yielded results similar to prediction from transition regions.

Standardization of the the predictors will need to be refined so that they contribute more

equally when combined. RBFN and LSQ prediction gave similar results for prediction using
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60. 105.

Chemical Stability H%L
Transition T's; RBFN

A

-0.8 0.1

MLRC, 03 mo

All predictors; LSQ

B

-0.25 0.05

MLRC, mean

All predictors; LSQ

C

40. 120.

Chemical Stability H%L
Low T spectra; LSQ

D

-0.03 0.005

MLRC, 10 mo

Trans. Regions; LSQ

E

0. 3.

Log PC, 10 mo, >10um

Trans. Regions; LSQ

F

-0.25 0.

MLRC, mean

Transition T's; RBFN

G

1.5 4.5

Log PC, 20 mo, >01um

Trans. Regions; RBFN

H

1.5 4.5

Log PC, 20 mo, >01um

All predictors; RBFN

I

60. 110.

Chemical Stability H%L
Melts; LSQ

J

60. 110.

Chemical Stability H%L
All predictors; LSQ

K

0. 3.5

Turbidity, 10 mo

Melts; RBFN

L

-0.3 0.15

MLRC, mean

Transition T's; LSQ

M

-0.8 0.1

MLRC, 03 mo

Transition T's; RBFN

N

0.5 3.

Log PC, mean

Trans. Regions; LSQ

O

-0.8 0.2

MLRC, 03 mo

Melts; LSQ

P

Figure 5.6: Correlation plots of fits resulting from leave-one-out cross validation. The plot labels indi-
cate the measurement predicted, the data used to predict from, and the prediction method. Each point
corresponds to a formulation. The horizontal and vertical axii correspond to observed and predicted mea-
surements, respectively, and extend over the same range. The likelihood of each fit was estimated using

the Pearson coefficient permutation test, and the 16 best fits are shown here in descending order.
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Table 5.5: Fit likelihood values of fits resulting from leave-one-out cross validation for the
radial basis function network prediction method. Refer to Figure 5.5 and the text for infor-
mation on how the fit likelihoods were determined. Significance values greater than 2 are
highlighted in yellow, and those greater than 3 are highlighted in green.

Predictor

All predictors Low T spectra Melts Transition T's Trans. Regions
M

e
a

s
u

re
m

e
n

t

Chemical Stability H%L 2.5 2.7 2.7 3.8 2.4

Log PC, 03 mo, >01um 0.6 1.5 1.2 -0.6 0.6

Log PC, 03 mo, >10um 1.5 1.7 1.4 -0.7 1.5

Log PC, 03 mo, >25um 1.6 1.6 1.5 0.5 1.6

Log PC, 10 mo, >01um 3. 0.4 2.6 1.8 3.

Log PC, 10 mo, >10um 2.4 0.6 2.1 0.4 2.4

Log PC, 10 mo, >25um 1.3 1.2 1.9 -0.4 1.3

Log PC, 20 mo, >01um 3.2 1.3 2.6 1.2 3.2

Log PC, 20 mo, >10um 1.9 0.6 2. -0.1 1.9

Log PC, 20 mo, >25um 1.5 0.8 2.4 -0.1 1.5

Log PC, mean 2.3 1.5 2.5 0.4 2.3

MLRC, 03 mo 2.5 0.1 1.6 3.1 2.5

MLRC, 10 mo 1.1 1. 2. 1.8 1.

MLRC, 20 mo 2.6 -1.8 0.7 0.5 2.6

MLRC, mean 2.5 0.5 1.5 3.2 2.4

Turbidity, 03 mo -1.5 -0.1 -0.6 -0.5 -1.5

Turbidity, 10 mo 2.4 0.3 3.1 -0.2 2.4

Turbidity, 20 mo 1.2 1.7 2.2 1.3 1.2

Turbidity, mean 0.1 1.5 1. -0.9 0.

the combined predictor.

Least squares prediction from low temperature spectra performed nearly as well as pre-

diction from transition regions. This is somewhat surprising, since low temperature spec-

tra consist of conformational information primarily concerning only the non-degraded form,

whereas the transition region data contains information on the susceptibility of various levels

of protein structure to alteration by temperature.

What would the fit results look like for a larger factorial design of formulations? Including

more formulations could improve the fits by inclusion of phenomena easily predicted by the

short term measurements. On the other hand, inclusion of phenomena not easily predicted

by the short therm measurements would worsen the fits. It’s likely that both situations will
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occur simultaneously. The former situation may occur in the following manner. Extremes in

formulation parameters were avoided in the factorial design of formulations, since the long

term behavior might be more easily predictable for those conditions.1 Inclusion of those ex-

tremes may improve the fits. The latter situation (worsening of fits with added formulations)

could occur if the factorial design of formulations investigated compounds that strongly af-

fect the chemical stability of proteins. In such a study, short term measurements of chemical

stability would be useful, such as measurements of protein spectral changes during titration

of destabilizing agents.

Not all determinants of protein stability will be accessible in a factorial design of for-

mulations. For example, pharmaceutical proteins are the product of variable manufacturing

processes. Will the methodology being proposed still work if it is developed using protein

from one manufacturing process, and then used on protein from another manufacturing pro-

cess? This question is not answerable using the data in this chapter. We note, however,

that the proposed methodology employs a super set of traditional methods, using predictive

modeling to join the strengths of short term and long term assessments of protein stabil-

ity. Thus, it need not perform worse than traditional methods of assessing comparability,

since these use short term and long term assessments separately and do not typically employ

predictive modeling.

One might be concerned that prediction mistakes will only be minimized with respect

to the training data set. This is, however, the case with modeling in general and science

itself. Models predict the results of experiments that have already been performed, provide

insight into mechanisms, and are replaced when conflicting data arrives. The prevalence

of prediction errors can be investigated by cross validation, wherein a model is first fitted

to a subset of a data set and then tested on a subset of the data disjoint from the subset

it was trained on. (Cross validation is analogous to generating and testing hypotheses,

as found in the scientific method.) Formulation errors resulting from application of this

new methodology can be managed in the same manner as formulation errors are currently
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managed: by comprehensive testing of final candidate formulations.

5.5 Conclusion

Based on results shown for the small data set described here, it appears that the long term

stability of proteins can at least in some cases be modeled from short term spectroscopic

measurements. The best predictions of long term behavior were obtained from spectroscopic

measurements in the neighborhood of thermal transitions. (Such neighborhoods are shown

in Figure 5.4.) This agrees with the accepted idea that the behavior of proteins near thermal

transitions provides information on unfolding mechanisms. This manner of extracting tran-

sition regions for use in prediction algorithms is a way of automating traditional comparative

structural analyses, and appears to be effective.

The method could be used either before or after a 2-3 year isothermal stability study. In

both cases, at the beginning of the study one would perform comprehensive spectroscopic

characterization of all formulations used in the long term study. After performing a 2-3 year

isothermal stability study of a protein or vaccine, the resulting predictive models could be

used to explore the formulation space more fully. For example, since the method predicts

behavior from behavior, one could investigate the effect of new combinations of formulation

parameters. This can be difficult to do with polynomial modeling of long term behavior

from formulation parameters.

If applied prior to a full 2-3 year isothermal stability study, the method would be used to

direct and focus the long term study. One would perform a shorter long term study lasting

several months and obtain the predictive models. Spectroscopic techniques would then be

used to explore large regions of formulation space for promising candidates to be included

in a 2-3 year study.

The method can be extended to include measurements of biological activity. For example,

various assays of biological activity after long term storage could be modeled from similar
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assays before storage.
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Appendix A

DART script used in Chapter 5

A.1   Import short term data

A.1.1   Import circular dichroism (CD) data

First we import all the CD files without any modifications.  The function scanFolder[] recurses through

a specified  folder,  importing instrument  files  of  the specified  type (Jasco in  this  case)  into DART

arrays.  It returns a list of DART arrays, one for each file found in the folder.  It would recurse through

folders and subfolders if they existed, but in this case the folder only contains files.

cd = scanFolder@

importPath <> "shortTerm\\exported\\CD\\", "∗.txt",

importJasco

D;

The function dimInfo[] prints out the dimensions in an array, which helps make the scripts more read-

able and easier to debug.

dimInfo@cd@@1DDD

Name Unit Length Scale

fileLocation 1 "GCSF 11−12−13 04302009A10.txt"

Wavelength nm 71 260.,259., ... ,191.,190.

Some filenames did not follow the same format as others, and were missing a space.  Inserting the

missing space will help simplify the regular expressions used later on.

cd = operateDimension@

StringReplace@�, "14−15−1604" −> "14−15−16 04"D&,
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cd,

"fileLocation"

D;

The “fileLocation” dimension only has 1 position, and is used as a label for each array.  We now parse

it with a regular expression, returning the formulation, cell, and temperature information found in the

file location.  Note that parse is automatically applied separately to each DART array in the variable

“cd”.

cd = parse@cd, "fileLocation", "GCSF H\\S+L \\d+H@A−FDLH\\d+L\\.txt", 3D;

Rename the dimensions just extracted.  These functions also are automatically applied to each DART

array in the list.

cd = renameDimension@cd, "parsedDim1", "Formulation"D;

cd = renameDimension@cd, "parsedDim2", "Cell"D;

cd = renameDimension@cd, "parsedDim3", "Temperature"D;

cd = makeNumericDims@cd, 8"Temperature"<D;

cd = dropSingletons@cd, 8"fileLocation"<D;

Replace dimensions found in the filenames with their meanings.  This operation is data entry, and can’t

be avoided since the information being applied is only in lab notebooks and nowhere in the files.  First,

set it up.

fromDimNames = 8"Formulation", "Cell"<;

toDimNames = 8"Formulation", "BufferêSample"<;

toDimUnits = 8"", ""<;

fromToPositions = 8

8"11−12−13", "A", 11, "B"<, 8"11−12−13", "B", 11, "S"<,

8"11−12−13", "C", 12, "B"<, 8"11−12−13", "D", 12, "S"<,

8"11−12−13", "E", 13, "B"<, 8"11−12−13", "F", 13, "S"<,

8"14−15−16", "A", 14, "B"<, 8"14−15−16", "B", 14, "S"<,

8"14−15−16", "C", 15, "B"<, 8"14−15−16", "D", 15, "S"<,

8"14−15−16", "E", 16, "B"<, 8"14−15−16", "F", 16, "S"<,

8"17−18−19", "A", 17, "B"<, 8"17−18−19", "B", 17, "S"<,

8"17−18−19", "C", 18, "B"<, 8"17−18−19", "D", 18, "S"<,

8"17−18−19", "E", 19, "B"<, 8"17−18−19", "F", 19, "S"<,

8"20−21−22", "A", 20, "B"<, 8"20−21−22", "B", 20, "S"<,

8"20−21−22", "C", 21, "B"<, 8"20−21−22", "D", 21, "S"<,

8"20−21−22", "E", 22, "B"<, 8"20−21−22", "F", 22, "S"<,

8"23−24−25", "A", 23, "B"<, 8"23−24−25", "B", 23, "S"<,

8"23−24−25", "C", 24, "B"<, 8"23−24−25", "D", 24, "S"<,

8"23−24−25", "E", 25, "B"<, 8"23−24−25", "F", 25, "S"<,
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8"26", "A", 26, "B"<, 8"26", "B", 26, "S"<

<;

fromToPositions = Map@Take@�,2D−>Take@�, −2D&, fromToPositionsD

8811−12−13, A< → 811, B<, 811−12−13, B< → 811, S<,

811−12−13, C< → 812, B<, 811−12−13, D< → 812, S<, 811−12−13, E< → 813, B<,

811−12−13, F< → 813, S<, 814−15−16, A< → 814, B<, 814−15−16, B< → 814, S<,

814−15−16, C< → 815, B<, 814−15−16, D< → 815, S<, 814−15−16, E< → 816, B<,

814−15−16, F< → 816, S<, 817−18−19, A< → 817, B<, 817−18−19, B< → 817, S<,

817−18−19, C< → 818, B<, 817−18−19, D< → 818, S<, 817−18−19, E< → 819, B<,

817−18−19, F< → 819, S<, 820−21−22, A< → 820, B<, 820−21−22, B< → 820, S<,

820−21−22, C< → 821, B<, 820−21−22, D< → 821, S<, 820−21−22, E< → 822, B<,

820−21−22, F< → 822, S<, 823−24−25, A< → 823, B<, 823−24−25, B< → 823, S<,

823−24−25, C< → 824, B<, 823−24−25, D< → 824, S<, 823−24−25, E< → 825, B<,

823−24−25, F< → 825, S<, 826, A< → 826, B<, 826, B< → 826, S<<

Now we replace the dimensions.

cd = replaceDimensions@

cd, fromDimNames, toDimNames, toDimUnits, fromToPositions

D;

cd = makeNumericDims@cd, 8"Formulation"<D;

dimInfo@cdD

array

Name Unit Length Scale

Formulation 1 11

BufferêSample 1 "B"

Temperature 1 10

Wavelength nm 71 260.,259., ... ,191.,190.

Now that all the arrays are labeled properly, they can be merged into a single array.

cd = merge@cdD;
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Add a label for later

cd = addSingletons@cd, 8newDimension@"Technique", "", "CD"D<D;

dimInfo@cdD

Name Unit Length Scale

Technique 1 "CD"

Formulation 16 11,12, ... ,25,26

BufferêSample 2 "B","S"

Temperature 32 1,2, ... ,31,32

Wavelength nm 71 190.,191., ... ,259.,260.

cd0 = cd;

A.1.2   Import ANS fluorescence data

See comments in the first subsection.

ans = scanFolder@

importPath <> "shortTerm\\exported\\ANS\\",

"∗.xls",

importPTI

D;

ans = parse@ans, "fileLocation", "H\\d+LH@SBDL\\.xls", 2D;

ans = renameDimension@ans, "parsedDim1", "Formulation", ""D;

ans = renameDimension@ans, "parsedDim2", "BufferêSample", ""D;

ans = makeNumericDims@ans, 8"Formulation", "Temperature"<D;

ans = dropSingletons@ans, 8"fileLocation"<D;

ans = merge@ansD;

ans = addSingletons@ans, 8newDimension@"Technique", "", "ANS Fl."D<D;
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dimInfo@ansD

Name Unit Length Scale

Technique 1 "ANS Fl."

Formulation 16 11,12, ... ,25,26

BufferêSample 2 "B","S"

Temperature 32 1,2, ... ,31,32

Wavelength 201 399.95,400.95, ... ,598.95,599.95

ans0 = ans;

A.1.3   Import intrinsic fluorescence and light scattering data

See comments in the first subsection.

ils = scanFolder@

importPath <> "shortTerm\\exported\\Intrinsic, Light Scattering\\",

"∗.xls",

importPTI

D;

ils = parse@ils, "fileLocation", "H\\d+LH@SBDLH@ILDL\\.xls", 3D;

ils = renameDimension@ils, "parsedDim1", "Formulation"D;

ils = renameDimension@ils, "parsedDim2", "BufferêSample"D;

ils = makeNumericDims@ils, 8"Formulation", "Temperature"<D;

ils = dropSingletons@ils, 8"fileLocation"<D;

intr = select@ils, "parsedDim3", "I"D;

intr = dropSingletons@intr, 8"parsedDim3"<D;

intr = merge@intrD;

intr = select@intr, "Wavelength", �>=305&D;

intr = addSingletons@

intr,

8newDimension@"Technique", "", "Intr. Fl."D<

D;

ls = select@ils, "parsedDim3", "L"D;

ls = dropSingletons@ls, 8"parsedDim3"<D;
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ls = merge@lsD;

ls = select@ls, "Wavelength", �<=300&D;

ls = addSingletons@

ls,

8newDimension@"Technique", "", "LS"D<

D;

dimInfo@lsD

Name Unit Length Scale

Technique 1 "LS"

Formulation 16 11,12, ... ,25,26

BufferêSample 2 "B","S"

Temperature 32 1,2, ... ,31,32

Wavelength 11 290.,291., ... ,299.,300.

intr0 = intr;

ls0 = ls;

A.1.4   Import DSC data

Note: Even though DSC is short term data, it’s in the long term data folder because it was measured by

our collaborators in Germany.

rowRange = 82,17<;

colRange = 83,3<;

rowHeaderPos = 2;

colHeaderPos = 1;

dsc = importExcel@

importPath <> "longTerm\\all.xls",

rowRange, colRange, rowHeaderPos, colHeaderPos

D;

dsc = renameDimension@dsc, "row", "Formulation"D;

dsc = renameDimension@dsc, "column", "Measurement"D;

Get the formulation numbers

dsc = operateDimension@

ToExpression@StringTake@�, −3DD&,
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dsc,

"Formulation"

D;

dsc0 = dsc;

A.2   Import long term data

A.2.1   Import formulation parameters

rowRange = 82,17<;

colRange = 84,8<;

rowHeaderPos = 2;

colHeaderPos = 1;

formulations = importExcel@

importPath <> "longTerm\\all.xls",

rowRange, colRange, rowHeaderPos, colHeaderPos

D;

formulations = renameDimension@formulations, "row", "Formulation"D;

formulations = renameDimension@formulations, "column", "Parameter"D;

Get the formulation numbers

formulations = operateDimension@

ToExpression@StringTake@�, −3DD&,

formulations,

"Formulation"

D;
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dimInfo@formulationsD

Name Unit Length Scale

Formulation 16 11,12, ... ,25,26

Parameter 5 "Buffer","pH","Buffer concentration

HmML","Tween 80 H%L","HP−Beta−CD H%L"

A.2.2   Export table of formulation parameters 

tab = elementFunction@Style@�, FontFamily−>"Times"D&, formulationsD;

tab = operate@

table,

tab,

8"Formulation", "Parameter"<

D;

p = data@tabD;

exportPlot@"formulations", pD;

A.2.3   Import stability measurements

rowRange = 82,17<;

colRange = 89,24<;

rowHeaderPos = 2;

colHeaderPos = 1;

longTerm = importExcel@

importPath <> "longTerm\\all.xls",

rowRange, colRange, rowHeaderPos, colHeaderPos

D;

longTerm = renameDimension@longTerm, "row", "Formulation"D;

longTerm = renameDimension@longTerm, "column", "Measurement"D;

Get the formulation numbers

longTerm = operateDimension@

ToExpression@StringTake@�, −3DD&,
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longTerm,

"Formulation"

D;

dimInfo@longTermD

Name Unit Length Scale

Formulation 16 11,12, ... ,25,26

Measurement 16 "Chemical Stability

H%L","PC, 20 mo, >01um ", ...

,"MLRC, 03 mo","Turbidity, 03 mo"

longTerm0 = longTerm;

A.2.4   Export table of measurements

tab = elementFunction@

Style@niceNumber@�D, FontFamily−>"Times",10D&,

longTerm

D;

tab = operate@

table@�, False, False, TrueD&,

tab,

8"Formulation","Measurement"<

D;

H∗ browse@tabD ∗L

p = data@tabD;

exportPlot@"longTermMeas", pD;

A.3   Process short term data

A.3.1   Correct temperature dimension scale and add units to scales
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Note: right after merge[], the temperature scale is guaranteed to be ordered 1-32, and buffer/sample is

guaranteed to be ordered A-B.

temperatureScale = Range@10, 87.5, 2.5D;

arrays = 8ans0, intr0, ls0, cd0<;

arrays = replaceScale@arrays, "Temperature", temperatureScaleD;

arrays = renameDimension@arrays, "Temperature", "Temperature", "C"D;

arrays = renameDimension@arrays, "Wavelength", "Wavelength", "nm"D;

8ans, intr, ls, cd< = arrays;

shortTerm = arrays;

A.3.2   Subtract the buffer

The buffer spectra have a signal that we don't understand.  It could be protein contaminate.

Plot the buffer and sample spectra side by side

p = 8ans, intr, ls, cd<;

p = operate@arrayPlot, p, 8"Wavelength","Temperature"<D;

p = merge@pD;

p = operate@table@�, False, TrueD&, p, 8"Technique", "BufferêSample"<D;

H∗ browse@pD ∗L

Export plot of buffer/sample comparison for a single formulation

p = select@p, "Formulation", 11D;

p = dropSingletons@p, 8"Formulation"<D;

p = data@pD;

H∗ Export the plot ∗L

exportPlot@"compareBufferSample", pD;

I'm going to subtract the buffer, so that the claim can't be made that the prediction is directly influenced

by the buffer formulation.  The information to predict from needs to be coming strictly from the pro-

tein's state.

arrays = 8ans, intr, ls, cd<;

arrays = subtractPosition@arrays, "BufferêSample", "B"D;

arrays = dropSingletons@arrays, 8"BufferêSample"<D;
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8ans, intr, ls, cd< = arrays;

A.3.3   Make sure formulation dimensions are the same, short term vs. long 

term

This is to check that they have the same formulations.  They are certainly  sorted, because of the use of

merge during the imports.  

x1 = scale@dimension@longTerm, "Formulation"DD

x2 = scale@dimension@shortTerm@@1DD, "Formulation"DD

x1==x2

811, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26<

811, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26<

True

p = 8ans, intr, ls, cd<;

p = operate@arrayPlot, p, 8"Wavelength","Temperature"<D;

p = merge@pD;

H∗ browse@pD ∗L

A.3.4   For ANS fluorescence, remove an instrument artifact where the 

recorded spectra goes to zero at some temperatures.

trigger = 2;

ans = operate@

removeJumps@�, triggerD&,

ans,

8"Temperature", "Wavelength"<

D;

A.3.5   Filter the thermal denaturation spectral melts

tr = 3; H∗ temperature radius ∗L
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wr = 4; H∗ wavelength radius ∗L

cdFiltered = filterMelt@cd, tr, wrD;

ansFiltered = filterMelt@ans, tr, wrD;

intrFiltered = filterMelt@intr, tr, wrD;

lsFiltered = filterMelt@ls, tr, wrD;

A.3.6   Select regions of spectra that contain peaks and are not noisy

cdFiltered = select@cdFiltered, "Wavelength", � >= 205&D;

intrFiltered = select@intrFiltered, "Wavelength", � >= 310&D;

lsFiltered = select@lsFiltered, "Wavelength", � <= 300&D;

A.3.7   Get the spectra of the native form

The spectra are very noisy, so will be averaging over low temperatures.  The protein denatures after

about 40C.

cdSpectrum = select@cdFiltered, "Temperature", �<=35&D;

cdSpectrum = operate@mean, cdSpectrum, 8"Temperature"<D;

ansSpectrum = select@ansFiltered, "Temperature", �<=35&D;

ansSpectrum = operate@mean, ansSpectrum, 8"Temperature"<D;

The ANS spectrum for formulation 19 appears to be flipped at low temperatures.  We don't know why.

Flip it back.

ansSpectrum = merge@

8

ansSpectrum,

−select@ansSpectrum, "Formulation", 19D

<
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<

D;

intrSpectrum = select@intrFiltered, "Temperature", �<=35&D;

intrSpectrum = operate@mean, intrSpectrum, 8"Temperature"<D;

lsSpectrum = operate@mean, lsFiltered, 8"Temperature"<D;

A.3.8   Get the melt curves, using the mean of the spectra over wavelength.

cdMelt = select@cdFiltered, "Wavelength", �>=210 && �<=225&D;

cdMelt = operate@mean, cdMelt, 8"Wavelength"<D;

ansMelt = operate@mean, ansFiltered, 8"Wavelength"<D;

intrMelt = operate@mean, intrFiltered, 8"Wavelength"<D;

For intrinsic fluorescence, we could also get the peak position.  It  won't  be used, though, since the

results look almost the same as intrMelt.

intrPeakPositionMelt = operate[centerOfMass, intrFiltered, {"Wavelength"}];

lsMelt = operate@mean, lsFiltered, 8"Wavelength"<D;

melts = merge@8cdMelt, ansMelt, intrMelt, lsMelt<D;

A.4   Get transition temperatures

A.4.1   Function to get transition temperatures

getTransitionT@

melt_dartArray, minTransitionTemp_, triggerSTDEV_, peakPosNeg_:−1

D :=

Module@8x, ts, minT, tx, sgn,stdev,i,j,tmidpoint,tonset,tendset,out<,

H∗ Get the 3rd derivative. ∗L

H∗ This makes transitions look like a large negative peak with small

L
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positive peaks on either side ∗L

x = sgFilter@melt, "Temperature", 3, 5, 3D;

H∗ Drop the low temp data, since it's messed up by the FIR filter. ∗L

x = select@x, "Temperature", �>=minTransitionTemp&D;

H∗ Interpolate to .5C increment ∗L

minT = scale@dimension@x, "Temperature"DD@@1DD;

x = interpolate@x, minT, .5D;

H∗ Get the raw array and scale positions ∗L

ts = scale@dimension@x, "Temperature"DD;

x = data@xD;

H∗ Make the largest peak always be positive ∗L

x = x ∗ peakPosNeg;

H∗ Get the first peak in x that has magnitude > trigger ∗L

stdev = StandardDeviation@xD;

For@i=1, i<= Length@xD−1, i++,

If@x@@iDD > triggerSTDEV ∗ stdev && x@@i+1DD < x@@iDD, Break@DD;

D;

tmidpoint = ts@@iDD;

H∗ Get the negative peak just before the positive peak ∗L

For@j=i, j>2, j−−,

If@x@@j−1DD > x@@jDD, Break@DD;

D;

tonset = ts@@jDD;

H∗ Get the negative peak just after the positive peak ∗L

For@j=i, j<Length@xD−1, j++

If@x@@j+1DD > x@@jDD, Break@DD;

D;

tendset = ts@@jDD;

out = newArray@

8

newDimension@

"Transition type",

"C",

8"Onset", "Midpoint", "Endset"<

D

<,

8tonset, tmidpoint, tendset<

D
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D;

Return@outD;

D;

Taking the third derivative of a melt makes peaks corresponding to the transition onset, 

midpoint and endset

x = addSingletons@intrMelt, 8newDimension@"Number of derivatives", "", 0D<D;

x = operate@interpolate@�, 10, .5D &, x, "Temperature"D;

ders = 8x<;

For@i=1, i<=3, i++,

xd = sgFilter@x, "Temperature", 3, 5, iD;

xd = replaceScale@xd, "Number of derivatives", 8i<D;

ders = Append@ders, xdD;

D;

p = merge@dersD;

A.4.2   Export plot of melt derivatives for a single formulation

p = operate@listPlot@�, ImageSize−>halfD&, p, "Temperature"D;

p = operate@table@�, TrueD&, p, "Number of derivatives"D;

p = select@p, "Formulation", �==13 »» �==14&D;

p = operate@table, p, "Formulation"D;

H∗ browse@pD ∗L

p = dropSingletons@p, 8"Technique"<D;

p = data@pD;

H∗ Set figuresPath, a variable used in plotExport.m ∗L

figuresPath = NotebookDirectory@D <> "figures\\";

exportPlot@"meltDerivatives", pD;
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A.4.3   Get the transition temperatures

discardBelowT = 30;

trigger = .4;

cdTT = operate@

getTransitionT@�, discardBelowT, triggerD&,

cdMelt, "Temperature"

D;

ansTT = operate@

getTransitionT@�, discardBelowT, triggerD&,

ansMelt, "Temperature"

D;

intrTT = operate@

getTransitionT@�, discardBelowT, triggerD&,

intrMelt, "Temperature"

D;

lsTT = operate@

getTransitionT@�, discardBelowT, .3D&,

lsMelt, "Temperature"

D;

Join them into 1 array

tts = merge@8cdTT, ansTT, intrTT, lsTT<D;

Round the transition temperatures to integer values

tts = dataFunction@Round, ttsD;

A.4.4   Make a table of results and export

tab = elementFunction@Style@�, FontFamily−>"Times"D&, ttsD;

tab = operate@table, tab, 8"Formulation", "Technique"<D;
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tab = operate@table, tab, 8"Transition type"<D;

H∗ browse@tabD ∗L

p = data@tabD;

exportPlot@"transitionTs", pD;

A.5   Process long term data

A.5.1   Get log particle counts from the long term data

The particle counts vary over several orders of magnitude, so the log particle count is more appropriate

for linear prediction.

log = select@longTerm0, "Measurement", StringCount@�, "PC"D > 0 &D;

others = select@longTerm0, "Measurement", StringCount@�, "PC"D == 0 &D;

log = elementFunction@If@� > 0, Log@10, �D, 0D&, logD;

log = operateDimension@"Log " <> �&, log, 8"Measurement"<D;

longTerm = merge@8others, log<D;

A.5.2   Get mean of some of the long term measurements

We will get the mean of some of the measurement types because the separate measurements can't be

predicted well.  I think the data is probably noisy.  It didn't come with error bars.

Get mean of log particle counts.

m = select@longTerm, "Measurement", StringCount@�, "PC"D>0&D;

m = operate@mean, m, "Measurement"D;

m = addSingletons@

m,

8newDimension@"Measurement", "", 8"Log PC, mean"<D<

D;

longTerm = merge@8longTerm, m<D;

Get mean of MLRC's

m = select@longTerm, "Measurement", StringCount@�, "MLRC"D>0&D;
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m = operate@mean, m, "Measurement"D;

m = addSingletons@m, 8newDimension@"Measurement", "", 8"MLRC, mean"<D<D;

longTerm = merge@8longTerm, m<D;

Get mean of turbidities

m = select@longTerm, "Measurement", StringCount@�, "Turbidity"D>0&D;

m = operate@mean, m, "Measurement"D;

m = addSingletons@

m,

8newDimension@"Measurement", "", 8"Turbidity, mean"<D<

D;

longTerm = merge@8longTerm, m<D;

A.6   Make datasets from which to predict stability

A.6.1   Function to combine arrays into a single 2 dimensional array

combineSpectra@arrays_, predictorName_D := Module@8x<,

H∗ In each array, combine dimensions other then "Formulation"

into a single dimension named "Measurement". ∗L

x = fuseOtherDimensions@

arrays,

8"Formulation"<, "Measurement"

D;

H∗ Divide each technique's matrix by its Frobenius norm ∗L

x = operate@

�êNorm@Flatten@�DD&,

x,

8"Formulation", "Measurement"<

D;

H∗ Combine the arrays by concatenating them

along the "Measurement" dimension ∗L

x = concatenate@x, "Measurement"D;

H∗ Label the data ∗L

x = addSingletons@

x,
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8newDimension@"Predictor", "", predictorNameD<

D;

Return@xD;

D;

A.6.2   Set up prediction from spectra at low temperature

fromSpectra = combineSpectra@

8cdSpectrum, intrSpectrum, ansSpectrum<,

"Low T spectra"

D;

dimInfo@fromSpectraD

Name Unit Length Scale

Predictor 1 "Low T spectra"

Measurement 347 1,2, ... ,346,347

Formulation 16 11,12, ... ,25,26

A.6.3   Set up prediction from melt curves

fromMelts = combineSpectra@

8cdMelt, intrMelt, ansMelt, lsMelt<,

"Melts"

D;

A.6.4   Set up prediction from transition temperatures

In this dataset, standardize as usual.

fromTTs = combineSpectra@

8tts<,

"Transition T's"

D;
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A.6.5   Set up prediction from transition regions (TR's)

Interpolate the spectra along the temperature dimension

startT = 10;

incrementT = .5;

spectra = 8cdFiltered, ansFiltered, intrFiltered, lsFiltered<;

spectra = operate@

interpolate@�, startT, incrementTD&,

spectra,

8"Temperature"<

D;

The dimensions  of  all  of  these  arrays  are  Wavelength  x Temperature  x  Formulation,  and  only the

wavelength dimension varies between arrays.

dimInfo@spectra@@1DDD

Name Unit Length Scale

Technique 1 "CD"

Formulation 16 11,12, ... ,25,26

Wavelength nm 56 205.,206., ... ,259.,260.

Temperature C 156 10.,10.5, ... ,87.,87.5

dimInfo@ttsD

Name Unit Length Scale

Technique 4 "ANS Fl.","CD","Intr. Fl.","LS"

Formulation 16 11,12, ... ,25,26

Transition type C 3 "Endset","Midpoint","Onset"

Pick out the transition regions using transition temperatures

getRegions@spectra_dartArray, temperatures_dartArray, range_D :=

Module@

8

formulation, transitionT, minT, maxT, incrementT,
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newTempScale, out

<,

formulation = position@dimension@spectra, "Formulation"DD;

transitionT = select@temperatures, "Formulation", formulationD;

transitionT = data@transitionTD@@1DD;

8minT, maxT< = transitionT + range;

incrementT = startStopIncrement@dimension@spectra, "Temperature"DD@@3DD;

newTempScale = Range@range@@1DD, range@@2DD, incrementTD;

out = select@spectra, "Temperature", � >= minT&D;

maxT = scale@dimension@out, "Temperature"DD@@Length@newTempScaleDDD;

out = select@out, "Temperature", � <= maxT&D;

out = replaceScale@out, "Temperature", newTempScaleD;

Return@outD;

D;

transitionTs = select@tts, "Transition type", "Midpoint"D;

transitionTs = dropSingletons@transitionTs, "Transition type"D;

transitionTs = operate@mean, transitionTs, "Technique"D;

range = 8−10, 10<;

TRs = operate@

getRegions@�, transitionTs, rangeD&,

spectra, 8"Temperature", "Wavelength", "Formulation"<,

threadDimensions−>8"Formulation"<

D;

Export a plot of the transition regions

p = operate@arrayPlot, TRs, 8"Wavelength","Temperature"<D;

p = merge@pD;

p = select@p, "Formulation", 811,12,13<D;

p = operate@table@�, False, TrueD&, p, 8"Technique", "Formulation"<D;

H∗ browse@pD ∗L

exportPlot@"transitionRegions", data@pDD;
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Make predictor dataset

fromTransitionRegions = combineSpectra@

TRs,

"Trans. Regions"

D;

A.6.6   Set up prediction from all the techniques

fromAll =

8

fromSpectra, fromMelts, fromTTs,

fromTransitionRegions

<;

fromAll = dropSingletons@fromAll, 8"Predictor"<D;

fromAll = combineSpectra@fromAll, "All predictors"D;

A.7   Leave-one-out cross validation

A.7.1   Make lists of prediction methods and predictors

predictionMethods = 88leastSquares, "LSQ"<, 8rbfn, "RBFN"<<;

predictors = 8

fromSpectra, fromMelts,

fromTTs, fromTransitionRegions,fromAll

<;

A.7.2   Do cross validation, for each predictor and each prediction method

t0 = AbsoluteTime@D;

allResults = 8<;

forEach@method, predictionMethods,

8methodFunction, methodName< = method;

forEach@predictor, predictors,
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H∗ Thread cross validation over the data,

even though the only dimension in the dataset other than Formulation

Measurement is Predictor, and it's singleton for each array. Effectively

operate@D is only used here in order to ignore the singleton dimension

testResult = operate@

leaveOneOut@�, longTerm, methodFunctionD&,

predictor,

8"Formulation", "Measurement"<

D;

H∗ Add a label for the prediction method ∗L

testResult = addSingletons@

testResult,

8newDimension@"Method", "", methodNameD<

D;

allResults = Append@allResults, testResultD;

D;

D;

t1 = AbsoluteTime@D;

Print@t1−t0, "s"D;

334.1089036s

A.7.3   Merge cross validation results

allResults = merge@allResultsD;
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dimInfo@allResultsD

Name Unit Length Scale

Method 2 "LSQ","RBFN"

Predictor 5 "All predictors","Low T

spectra","Melts","Transition

T's","Trans. Regions"

Formulation 16 11,12, ... ,25,26

originalêpredicted 2 "Leave one out

prediction","Observed"

Measurement 19 "Chemical Stability H%L","Log PC,

03 mo, >01um", ... ,"Turbidity,

20 mo","Turbidity, mean"

A.7.4   Get the likelihood of each cross validation run, using the Pearson 

correlation coefficient permutation test

pccSigma = operate@

correlationSigma@�, 5000D&,

allResults,

8"Formulation", "originalêpredicted"<

D;

Round to 2 digits of precision

pccSigma = dataFunction@Round@�, .1D&, pccSigmaD;

A.8   Plot results

A.8.1   Plot a histogram of the Pearson correlation coefficients for a 

prediction

x = select@allResults,

"Method", "LSQ",
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"Predictor", "Melts",

"Measurement", "Chemical Stability H%L"

D;

p = data@correlationSigma@x, 5000, TrueDD;

sig = data@correlationSigma@x, 5000, FalseDD;

sig = Round@sig, .1D;

p=Show@p,

Frame−>True,

ImageSize−>half,

FrameStyle−>Directive@FontFamily−>"Arial", fontSize, thickLineD,

FrameLabel−>8"Pearson correlation coefficient H"

<> ToString@sigD <> " sigmaL","Count"

<

D;

exportPlot@"pccHistogram", pD;

A.8.2   Make a table of the likelihoods, highlighting likelihoods > 3 sigma

tab = elementFunction@

Style@

ToString@�D,

FontFamily−>"Times",

Background−> If@�≥3,

Green

,

If@�≥2,

Yellow

,

White

D

D

D&,

pccSigma

D;

tab = operate@

table,
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tab,

8"Measurement", "Predictor"<

D;

H∗ browse@tabD ∗L

Export tables of likelihoods

p = data@select@tab, "Method", "LSQ"DD@@1DD;

exportPlot@"LSLikelihoods", pD;

p = data@select@tab, "Method", "RBFN"DD@@1DD;

exportPlot@"RBFNLikelihoods", pD;

A.8.3   Make correlation plots

makePlotLabel@array_D :=

position@dimension@array, "Measurement"DD <> "\n" <>

position@dimension@array, "Predictor"DD <> "; " <>

position@dimension@array, "Method"DD

threadDims = 8"Measurement","Predictor","Method"<;

plots = operate@

plotCorrelation@�, makePlotLabel@�D, NoneD&,

allResults,

Join@8"originalêpredicted", "Formulation"<, threadDimsD,

threadDimensions−>threadDims

D;
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browse@plotsD

Measurement

Predictor

Method

Measurement: Chemical Stability H%L

Predictor: All predictors

Method: LSQ

60. 110.

Chemical Stability H%L

All predictors; LSQ

A.8.4   Export correlation plots of best 16 fits

Make sure that the dimensions and dimension scale positions are in the same order in the array of plots

and the array of correlation significances.  This only needs to be done since we're taking raw data from

the arrays.

p = merge@plotsD; H∗ This sorts the dimension scale positions ∗L

p = transpose@p, 8"Measurement", "Predictor", "Method"<D;

c = merge@pccSigmaD;

c = transpose@c, 8"Measurement", "Predictor", "Method"<D;

p = Flatten@data@pDD;

c = Flatten@data@cDD;

ord = Reverse@Ordering@cDD;

c = c@@ordDD;
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p = p@@ordDD;

p = Take@p, 16D;

cplots = p;

Export correlation plots

For@i=1, i<=Length@cplotsD, i++,

p = cplots@@iDD;

letter = CharacterRange@"A", "Z"D@@iDD;

p = Show@p, ImageSize−>72H∗pointsêinch∗L∗1.35H∗inches∗L,

FrameStyle−>Directive@FontFamily−>"Arial", 9, thickLineD

D;

p = inset@p, letter, 8.08, .92<, BlackD;

exportPlot@"bestFit" <> letter, pD;

D;
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Appendix B

Functions used in Appendix A

B.1   Functions for performing regression analysis

B.1.1   Least squares fit

leastSquares@fromIn_, toIn_D := Module@

8fromMean, from, scale, rescale, toMean, to,t, function, n<,

H∗ Get the mean row of the "from" training dataset, and

subtract it from the training and test data ∗L

fromMean = Mean@fromInD; H∗ A row ∗L

from = Map@�−fromMean&, fromInD;

H∗ Get the mean value of the "to" training dataset,

and subtract it from the training and test data ∗L

toMean = Mean@toInD;

H∗ toMean is either a row or a numerical value, depending on whether

toIn is a matrix or column vector ∗L

to = Map@�−toMean&, toInD;

H∗ from.t = to ∗L

t = PseudoInverse@fromD.to;

function = With@

8a = fromMean, b = toMean, c = t<,

H�−aL.c + b&

D;

Return@functionD;

D;
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Arguments of leastSquares[] function

fromIn is a matrix with dimensions 

(sample x input observable)

toIn is a matrix with dimensions 

(sample x output observable) 

or a column vector of dimension (sample)

leastSquares[] returns a function that transforms input vectors to output vectors.

B.1.2   Radial basis function network

This function externally works the same as the leastSquares[]  function above.   I.e.  it  has  the same

arguments and the same type of return value.

rbfn@fromIn_, toIn_, width_:1D := Module@

8fromMean, toMean, from, scale, rescale, exp,

expMean, to, diffs, n, transform, function<,

H∗ Center columns around their mean ∗L

fromMean = Mean@fromInD;

from = N@Map@�−fromMean&, fromInDD;

H∗ Rescale columns to have RMS 1 ∗L

scale = Map@StandardDeviation, Transpose@fromInDD;

rescale = 1êscale;

from = Map@�∗rescale&, fromD;

H∗ Center the measurements to predict around their mean ∗L

toMean = Mean@toInD;

to = Map@�−toMean&, toInD;

H∗ Get gaussian similarity matrix ∗L

diffs = Table@

Norm@from@@iDD−from@@jDDD,

8i,1,Length@fromD<,

8j,1,Length@fromD<

D;

n = Length@from@@1DDD;

H∗ The rows in "from" have stdev 1.

Need to divide overlaps by n. ∗L

exp = Exp@−diffs^2êHn width^2LD;

H∗ Solving: from.t = to ∗L

transform = PseudoInverse@expD.to;
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function = With@

8a=fromMean,b=rescale,c=from,d=width,e=transform,f=toMean<,

rbfnPredict@�,a,b,c,d,e,fD&

D;

Return@functionD;

D;

The next function, rbfnPredict[] , is used inside rbfn[] to make the function that rbfn[] returns.

rbfnPredict@

from_, fromMean_, rescale_, refPoints_,

width_, transform_, toMean_

D :=

Module@

8rescaled,diffs,n,exp,out<,

rescaled = Hfrom−fromMeanL ∗ rescale;

diffs = Table@

Norm@rescaled−refPoints@@jDDD,

8j,1,Length@refPointsD<

D;

n = Length@fromD;

exp = Exp@−diffs^2êHn width^2LD;

out = exp.transform + toMean;

Return@outD;

D;

B.1.3   Function to perform leave one out cross validation

leaveOneOut@fromIn_dartArray, toIn_dartArray, predictionFunction_D :=

Module@

8

sampleDim, obsDim, dimOrder, from, to, inOut, i,

fromTrain, toTrain, fromTest, toTest, meas,

measToTrain, measToTest, f, out

<,

H∗ Get the dimension scales.

There should be just two in each array. ∗L

sampleDim = otherDimensions@fromIn, "Measurement"D@@1DD;

obsDim = dimension@toIn, "Measurement"D;

H∗ Transpose so that samples are associated to the

left matrix dimension, measurements to the right ∗L

dimOrder = 8sampleDim, obsDim<;
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from = transpose@fromIn, dimOrderD;

to = transpose@toIn, dimOrderD;

H∗ Get the data ∗L

from = N@data@fromDD;

to = N@data@toDD;

H∗ Do prediction ∗L

inOut = 8<;

For@i=1, i<=Length@fromD, i++,

fromTrain = Drop@from, 8i<D;

toTrain = Drop@to, 8i<D;

fromTest = from@@iDD;

toTest = to@@iDD;

f = predictionFunction@fromTrain, toTrainD;

inOut = Append@inOut, 8toTest, f@fromTestD<D;

D;

out = newArray@

8

sampleDim,

newDimension@

"originalêpredicted",

"",

8"Observed", "Leave one out prediction"<

D,

obsDim

<,

inOut

D;

Return@outD;

D;

B.2   Pearson correlation coefficient permutation test

B.2.1   A correlation function that avoids dividing by zero

correlation@vec1_, vec2_D := Module@8v1,v2,n1,n2<,

v1 = vec1 − Mean@vec1D;

v2 = vec2 − Mean@vec2D;
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n1 = Norm@v1D;

n2 = Norm@v2D;

H∗ Return zero correlation if one of the vectors has zero variance. ∗L

H∗ This is to avoid dividing by zero. ∗L

H∗ Would use Mathematica's Correlation@D if it weren't for this. ∗L

If@n1<10^−10 »» n2<10^−10, Return@0DD;

Return@v1.v2êHn1 n2LD;

D;

B.2.2   Pearson correlation coefficient permutation test for two lists of 

numbers

correlationSigma@

predicted_List, original_List,

nPermutations_, returnPlot_:False

D :=

Module@

8permutedCorrelations,pccStd,pccObs,plotRange,out<,

permutedCorrelations = Table@

correlation@RandomSample@predictedD, originalD,

8nPermutations<

D;

pccStd = StandardDeviation@permutedCorrelationsD;

pccObs = Correlation@predicted, originalD;

plotRange = Max@8pccStd,pccObs<D∗1.3;

If@returnPlot,

out = Histogram@

permutedCorrelations,

PlotRange−>88Automatic, plotRange<, 8All,All<<

D;

out = Show@out,

Epilog−>8

Thickness@MediumD, Dashed, Red,

Line@88pccObs, 0<, 8pccObs, 5000<<D

<

D;

,

out = If@pccStd == 0, 0, pccObsêpccStdD;

D;

Return@outD;

D;
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B.2.3   Pearson correlation coefficient permutation test for a DART array 

containing two lists of numbers

correlationSigma@array_dartArray, nPermutations_, returnPlot_:FalseD :=

Module@8arr,dat,out<,

arr = transpose@array,

Join@

8"originalêpredicted"<,

otherDimensions@array, "originalêpredicted"D

D

D;

dat = data@arrD;

out = correlationSigma@

Flatten@dat@@1DDD,

Flatten@dat@@2DDD,

nPermutations,

returnPlot

D;

out = newArray@8<, outD;

Return@outD;

D;

169


