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I investigate an optical Nyquist-WDM Bit Error Rate (BER) detection system.  A 

transmitter and receiver system is simulated, using Matlab and Simulink, to form a working 

algorithm and to study the effects of the different processes of the data chain.  The inherent 

lack of phase information in the N-WDM scheme presents unique challenges and requires a 

precise phase recovery system to accurately decode a message.  Furthermore, resource 

constraints are applied by a cost-effective Field Programmable Gate Array (FPGA).  To 

compensate for the speed, gate, and memory constraints of a budget FPGA, several 

techniques are employed to design the best possible receiver.  I study the resource 

intensive operations and vary their resource utilization to discover the effect on the BER.  

To conclude, a full VHDL design is delineated, including peripheral initialization, input data 

sorting and storage, timing synchronization, state machine and control signal 

implementation, N-WDM demodulation, phase recovery, QAM decoding, and BER 

calculation. 
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Introduction 

Fiber Optic Communications 

The world of networking relies on a mixture of wireless, copper, and fiber optics 

communication media to transfer data from anywhere to everywhere.  No one medium can 

conquer the whole task and each provides advantages and disadvantages.  Wireless links 

provide a means to communicate without the physical infrastructure needed with copper 

or fiber, but are restricted by the structured frequency bands and suffer from extra signal 

degradation.  Copper provides a direct electrical link with ease of transmission and 

receiving, but has mediocre relative bandwidth capabilities and suffers from 

electromagnetic interference.  Fiber optics boast the most advantageous potential of them 

all, but also has its faults. 

Fiber optics are a necessity in this modern world of communications.  Their extreme 

bandwidth capabilities and electrical isolation represent their most important features.  

Telecom providers continue to push the data rate envelope to reduce the number of fibers 

needed, utilize modern networking equipment, and deliver their users the bandwidth they 

crave.  Power utilities, among others, enjoy the safety of a communication link that does not 

carry fault current.   

The process of creating and demodulating a light signal is similar, yet unique, when 

using a light source.  The complex modulation schemes require expensive equipment and 

precise considerations.  Variances in the forces laying on a fiber, for example, can alter the 

lightwave within the fiber.  Chromatic and modal dispersion inherently smear the signal 
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inside the core.  But companies around the world will continue to utilize fiber above the 

other options due to the bandwidth available. 

FPGAs in Communications Systems 

The efficiency of communication systems has rapidly improved over the years, but 

with the price of increased system more complexity.  More data can be packed into smaller 

bandwidth by clever signal processing.  Higher order systems need precision equipment to 

sample and decode these signals.  Technology is continuously striving to chase the 

requirements of the internet, cell phone usage, and other data demand. 

Networking hardware has to process a lot of data while minimizing latency.  This 

requires many repetitive and parallel processes.  All computers can accomplish repetitive 

tasks; that’s what they were made for.  But many computer architectures are not suited for 

parallel tasks.  For instance, microcontrollers (MCUs) can execute multiplication functions 

in milliseconds, but can only process one operation at a time.  Two multiplication 

operations take approximately twice as long as one multiplication.  This is where FPGAs 

excel. 

Commercial communication equipment usually employ application-specific 

integrated circuit (ASIC) for high reliability, low power consumption and miniature 

footprints. However, the cost of ASIC development is high and the design process is long, 

and therefore it is usually not used for prototyping.  In comparison, a Field Programmable 

Gate Array (FPGA) offers increased flexibility, as its a chip containing massive amounts of 

gates which can be arranged in any fashion.  Along with the embedded hardware are 
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hundreds of pins which can be programmed as inputs or outputs.  Whereas all operations 

have to process through a common core in a MCU, the logic on an FPGA can take any form, 

be completely independent of one another, and even belong to different clock domains.  

Modern FPGAs contain more than programmable AND and OR gates, built in modules help 

ease the amount of programming and generate a better product.  Most FPGAs, for instance, 

have clock controllers to ensure the sequential logic performs as expected. 

Digital signal processing (DSP) almost always consists of repetitive tasks.  Many 

times, there are separate channels which require the exact same processing.  The FPGA 

hardware and programming architecture thrive at parallel processing, and thus parallel 

pipelines can execute the required process on several channels at once, depending on gate 

availability.  Each parallel process can be seen as a multiplier to the system’s clock speed.  

The FPGA’s ability to run at already high clock speeds coupled with the parallel multiplier 

means the chip can provide a developer with the right tool to create the fastest, most 

robust systems.  
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Background 

General Properties of Fiber Optic Communications 

Optical System using Coherent Detection 

To convert an electrical signal into the optical domain and send into fiber optic 

systems, the laser itself can be modulated directly or an external modulator can act upon 

the launched light.  Only amplitude modulation (AM) can come of modulating the laser 

itself.  An external modulator can modulate a light signal a number of ways: AM, phase 

modulation (PM), or more complex modulation schemes (Kikuchi K. , 2010).   

 

Figure 1 - Comparison of External Lightwave Modulators (Kikuchi K. , 2010) 

An external modulator with a Mach-Zehnder configuration, driven in push-pull 

mode, can perform AM of a light source.  By placing two Mach-Zehnder push-pull 

modulators in parallel with a 90 degree phase shift between the arms, a complex IQ signal 

is generated (S. Shimotsu, 2001).  The in-phase and quadrature signals now exist 

independently of each other.  With no higher order modulation, the signal information is 
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doubled within the same bandwidth.  Any kind of higher order modulation is possible with 

this complex modulation setup, just as it is in RF or wireless communications (eg, 16 QAM). 

An optical receiver system performing coherent detection in the correct 

configuration can demodulate a complex signal.  The signal must be downshifted from the 

transmitter carrier frequency.  This is done, fundamentally, by taking the product of the 

electric fields of the signal and the local oscillator.  The local oscillator (LO) is a continuous 

wavelength (CW) light source.  Define the modulated optical signal and the local oscillator 

as: 

 ������� = ���(�)�������∅�(�) Equation 1 

 �������� = ������������∅��  Equation 2 

where AS and ALO are the complex amplitudes, and �� and ��� are the angular frequencies.  

Note that the complex amplitude of the LO is constant, whereas the signal’s complex 

amplitude changing with time (Kikuchi K. , 2010).  Both the amplitude and the angle of the 

signal vary with time.   

 The two outputs of a 2x2 optical coupler mixing the source and local oscillator light 

waves is given by the following transfer function: 

 �����1����2� = �√1 − 	 
√	
√	 √1 − 	� ������(�)����	
 � 
Equation 3 

The square roots describe an energy mixing equation and ε is the power-coupling 

coefficient (Hui & O'Sullivan, 2009).  In a simple setup, one output is terminated and the 

signal contained in the other fiber is 

 ������� = √1 − 	����(�) + 
√	����� Equation 4 
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A photodiode placed at the end of the output produces the current 

 ���� = 
���������2 

= � ��1 − �������	��
�

+ �������
�

+ 2
��1 − ������	� ∙ ����cos	(���	 + ∆∅(	))
 

Equation 5 

where ωIF= ωs- ωLO,  ∆∅��� = ∅���� − ∅��, and R is the responsivity of the photodiode (Hui & 

O'Sullivan, 2009).  The term ωIF, or intermediate frequency, is the difference between the 

two light source’s frequencies and ∆∅��	 is the time dependent relative phase of the two 

light waves.  Another term, the sum of the two light sources, exists but is ignored due to the 

fact that the RF circuitry will not couple this signal. 

 To reduce this equation to a compact form, a few assumptions shall be made.  

Firstly, the LO is a continuous light source with little to no intensity noise, leaving 


��� = ���� , a constant.  A DC block after the photo diode will remove this component of 

the output current.  The LO light source is assumed to have a much larger amplitude than 

the incoming signal.  Therefore, the ��������� can also be ignored as 

����	
� ≪ �������	 ∙ ����	
  

(Hui & O'Sullivan, 2009).  A 3dB coupler should be used in the coherent receiver since the 

maximum power output is achieved when ε=1/2 (Hui & O'Sullivan, 2009).  These 

assumptions produce a simplified coherent detection photocurrent of 

 ���	 ≈ ������	 ∙ ���cos	(���� + ∆∅) Equation 6 

When the LO and signal center frequencies are equal, the system is said to be in homodyne 

configuration.  Therefore, since ωIF= ωs- ωLO=0, the equation further reduces to 

 ���	 ≈ �
����	 ∙ 
���cos	(∆∅) Equation 7 

Set up in a homodyne detection scheme, the desired electrical signal from the 

photodiode exists in baseband, ready to be demodulated by an external system.  The 
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incoming light signal is often very weak.  As expressed in Equation 7, the resulting 

photocurrent benefits from a strong LO to amplify the electrical signal.  The relative phase 

of the LO and the incoming signal will shift, causing the ∆∅ term to be time dependent.  

Demodulation techniques further down the signal chain must compensate for this 

fluctuation. 
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Coherent Detection with Phase Diversity 

A coherent receiver in certain arrangements can detect the complex amplitude 

information from a modulated signal.  The setup and theory is very similar to that of 

standard coherent detection.  To achieve coherent detection with complex phase 

information, the local oscillator must mix with the signal with an in-phase and quadrature 

(90°) component.  This can be achieved with the use of a 90° hybrid.  Ideally, the 

component would be a 2x2 90° hybrid, mimicking the system above exactly, but this 

configuration is theoretically impossible (Hui & O'Sullivan, 2009).  Therefore, a real 

substitute in the 3x3 90° hybrid can be used instead.  The transfer function is as follows: 

 

�����1����2����3� = ��
��
�� √0.2 √0.4exp	(� 3�

4
) √0.4exp	(� 3�

4
)

√0.4exp	(� 3�
4

) √0.2 √0.4exp	(� 3�
4

)

√0.4exp	(� 3�
4

) √0.4exp	(� 3�
4

) √0.2 ��
��
�� ������(�)����	


0

� 

Equation 8 

where E3 has no power applied and only two outputs are used.  Essentially, the 3x3 coupler 

is being used as a 2x2 coupler. 

 Working through similar math as before: 

 ������� = √0.2����(�) + √0.4exp	(�3�
4

)����� 

������	 = √0.4exp	(� 3�
4

)����(�) + √0.2����� 

Equation 9 

  

Equation 10 
 

Continuing after photodetection and ignoring direct detection components: 

 ����	 ≈ 2�√0.08
����	 ∙ 
���cos	(∆∅��	 −
3�
4

) 

����	 ≈ 2�√0.08
����	 ∙ 
���sin	(∆∅��	 −
3�
4

) 

Equation 11 

 

Equation 12 
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Since the two current terms apply the cosine and sine of the time dependent phase 

difference, they extract perpendicular components of the light signal.  Thus, complex 

information can be demodulated. 

Digital-Subcarrier Multiplexing (DSCM) 

In order to make efficient use of the low-loss bandwidth of the optical fiber, 

wavelength division multiplexing (WDM) has been used widely.  In a WDM system, 

multiple wavelengths are used to carry independent data channels along the same fiber.  A 

frequency guard band is required such that crosstalk can be avoided when passing through 

a WDM de-multiplexing filter.  Commercial high speed optical systems with 50 GHz channel 

spacing, 10 Gb/s data rate per channel, and 0.2 bit/Hz efficiency are widely deployed.  

Increasing data rates to 40 or 100 Gb/s will improve spectral efficiency, however these 

systems are sensitive to the impact of chromatic dispersion and polarization mode 

dispersion (PMD).   

To continue to increase the spectral efficiency of fiber optic communication links 

while maintaining high quality of transmission, several techniques are being explored to 

combine several subchannels of data into a single optical signal, or wavelength.  The 

subchannels can contain independent sets of data in each channel, or they can be 

modulated such that the entire channel is a single data stream.  In the past, sub-carrier 

multiplexing schemes have been implemented in fiber-optic systems to partition a high 

data rate wavelength channel into many subchannels to significantly improve the tolerance 

to fiber chromatic dispersion and PMD.  However, these subcarrier channels were created 
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with analog techniques, and as such, frequency spacing was still needed and spectral 

efficiency was not increased compared to traditional WDM technology. 

Recent advances in high speed digital electronics enables multi-giga-sample 

operation of analog to digital converters (ADC), digital to analog converters (DAC), and 

digital signal processing (DSP).  This allows the generation and processing of subcarrier 

channels in the digital domain, utilizing advanced digital modulation formats and DSP 

algorithms to dramatically increase spectral efficiency.  We’ll call this technique Digital 

Subcarrier Multiplexing (DSCM).  Two currently popular DSCM techniques being 

implemented and studied are Nyquist-WDM (N-WDM) and Orthogonal Frequency Division 

Multiplexing (OFDM).    

 

Figure 2 - Spectrum (left) and time pulse (right) for N-WDM (Gabriella Bosco, 2010) 

 

Figure 3 - Spectrum (left) and time pulse (right) for OFDM (Gabriella Bosco, 2010) 

N-WDM and OFDM can be thought of as “opposites” in the frequency and time 

domains.  An N-WDM pulse and the spectra of an OFDM subchannel will both, ideally, take 

the shape of a sinc.  The spectra of a single N-WDM channel and an OFDM spectra will both, 

ideally, take the shape of a perfect square. 
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Figure 4 - Nyquist filter transfer function and spectrum at the output (Gabriella Bosco, 2010) 

An OFDM signal is generated using the following transmit function (Q. Yang, 2011):  

 

 

 ���� = � � �
��
(� − ���)���


��

��

����

 

Equation 13 

 

 ����	 = ���	��2���� Equation 14 

 ���� = � 1, �0 < � ≤ ���,
0, (� ≤ 0, � > ��) Equation 15 

 where cki is the ith symbol of the kth subcarrier, sk is the waveform of the kth subcarrier, 

the number of subcarriers is denoted by Nsc, fk is the subcarrier center frequency, and Ts is 

the symbol period.  The last equation, ���	, is the pulse shaping function.  Rewriting the 

expressions, sampling the signal at N/T, and normalizing the equation by 1/N yields: 

 �� =
1� � 
	 
��

	
�
�

�
�

	��

,! = 0,1, … ,� − 1 

Equation 16 

where Sn is the nth time domain sample.  Clearly, this expression is the same as an inverse 

discrete Fourier transform (IDFT) (Q. Yang, 2011).  Similarily, to demodulate, a discrete 

Fourier transform is used: 

 
	 = � �� 

�� 	
�
�

�
�

	��

, ! = 0,1, … ,� − 1 

Equation 17 
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where Rn is the received signal. 

An OFDM system requires sampling of the entire spectrum of all the subchannels to 

be able to process the data of a certain subchannel (Junyi Wang, 2012).  This is evident by 

the OFDM spectrum presented in Figure 3 as well as the IDFT modulation function.  The 

breadth of research and algorithms to implement discrete Fourier functions can optimize 

the resource usage, or throughput speed, whichever is more crucial to the project. 

The formation of a Nyquist-WDM transmit signal need only be filtered by an 

inverse-sinc filter set to the bandwidth of the subchannel, with a certain roll-off rate (such 

as 0.1).  This allows the subchannels to have a flat spectral shape while minimally 

overlapping with adjacent subchannels.  Ideally, the transmitter utilizes a filter with the 

number of taps equally that of the length of the signal (if packet based).  A time domain or 

frequency domain filtering method can be chosen by the user based on ease of 

implementation. 

The full N-WDM channel can be created several ways depending on the 

requirements of the system.  If all the signals originate in the same machine which is 

applying the digital filters,  The filters can all be applied, as well as the subchannels shifted 

into their allotted frequency range, in one operation.  If the different subchannels originate 

from several different sources, each signal can have a baseband filter applied, and the 

separate signals shifted into their slots, as completely independent operations.  See Figure 

5 for a diagram of the multiplexing scheme. 
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Figure 5 - Multiplexed N-WDM (Gabriella Bosco, 2010) 

A clear advantage of Nyquist-WDM is the fact that a single subcarrier can be a 

separate entity of the signal (Junyi Wang, 2012).  A subchannel can be added into an 

existing signal if that particular frequency slot is currently unoccupied.  Also, a single 

channel of a Nyquist-WDM system can be sampled and demodulated independently: the 

entire N-WDM channel does not need to be sampled.  Therefore, an intermediate router 

could drop one subchannel and add another to an existing N-WDM spectrum without 

disturbing adjacent subchannels.  When considering a real system, N-WDM can extract a 

single channel using lower bandwidth ADC, saving money.  This project studies the 

technique of N-DWM, the effects of the parameters in the receiver chain, and the tradeoffs 

of a realistic, cost effective build. 
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General Communications and Applicable Digital Signal Processing 

Anti-Alias Filter 

 

Figure 6 - Analog Anti-Alias Filter Example 

If high spectral power exists beyond the Nyquist sampling rate of the ADC, an analog 

anti-aliasing filter is required (Baker, 1999).    The chosen filter needs to sufficiently 

attenuate the out-of-band signals such that they will not interfere with the desired signal.  

Since the downshifted signal exists at baseband in this project, a lowpass filter is required 

for signals beyond the Nyquist frequency.  For some systems, it is reasonable to employ a 

filter which has a passband with the same bandwidth as the Nyquist rate, attenuating 

undesirable signals beyond the Nyquist rate, as seen in Figure 6.  This project, though, must 

demodulate a single subchannel from a very cluttered spectra.  There is no guard-band in a 

perfect N-WDM system.  Therefore, due to the specifications of real analog filters, the 

passband of the filter should occupy only a fractional portion of the 1st Nyquist region.  This 

allows room for the rolloff of the filter’s response from passband to Nyquist rate.   

 

 

 



23 

 

Digital Filtering 

Filtering is a fundamental aspect of communications.  Filtering can, and must, be 

done in both the analog domain and in the digital domain.  There are many advantages to 

filtering after the signal has been digitized.  Analog filters have many non-ideal qualities: 

dependent on temperature, being produced with imperfect parts, taking up physical space, 

having relatively poor frequency rolloff, etc.  Digital filters overcome these setbacks and 

add the advantage of programmability, easy integration in digital systems, ability to 

produce nearly any response, ability to adapt to incoming signals, and much more.  There 

are inherent disadvantages in digital filering: quantization, complexity, and possible 

instability.  The advantages clearly outweigh the disadvantages in this digital world and 

digital filtering is implemented everywhere it can be.  Of course, it is not always an option, 

as with anti-aliasing filter above. 

Digital systems most commonly implement linear filters.  As the name implies, a 

filter is considered linear if the output signal is a linear function of the observations applied 

to the filter input (Haykin, 2002).  The linear filter family splits into infinite impulse 

response (IIR) and finite impulse response (FIR).  Simply put, the difference between the 

two is IIR filters apply feedback, whereas FIR filters contain only a feedforward path.  

Therefore, the response of each impulse subject to the IIR filter infinitely exists, whereas 

the response of the FIR filter exists only in the set number of taps.   

The two filter types have many different features and uses.  IIR filters can produce 

much sharper responses with fewer coefficients than FIR filters.  FIR filters, though, have 

the advantage of always being stable, whereas IIR filters can have instability problems.  IIR 
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filters are based off of analog filters, and thus easier to design; FIR filters are difficult to 

design without CAD support.  A very important feature for communications is that FIR 

filters can have exactly linear phase.  

Two specific forms of FIR filters important to this research is the interpolation 

match filter and the derivative filter.  The interpolation match filter is essentially the 

combination of two separate filters to achieve an ultimate goal.  As a linear system, the 

filters can be implemented in series in either order or, if possible, as a single combination.  

An interpolation filter’s job is to remove the undesired spectral replications of the signal.   

 

Figure 7 - Interpolation Filter Example (8x) – Blue: Magnitude Response – Green: Phase Response 

Figure 7 displays an example of an 8x interpolation filter.  There are several key 

properties to notice.  Firstly, the cutoff of the filter lies at 0.125, or 1/8 (Ifeachor & Jervis, 

2001): the frequency of the signal decreased by 8 in the digital domain.  It is important to 

add, though, the frequency of the signal has not actually changed; only its digital 

representation.  A digital signal can take many forms based on the designer’s requirements.  
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Secondly, the amplitude of the passband amplifies the signal by ~18.06 dB.  This factor 

compensates for the loss of power during the interpolation process.  Assuming the input 

signal is a voltage signal, the amplification is found by: 

 
 = 20 log����	 "#$% Equation 18 

where N is the interpolation factor.  Next, the phase response is linear throughout the 

passband.  Since the phase information is equally as important as the magnitude in complex 

modulation, linear phase is required.  The phase in the stop band needs not be linear, 

because the demodulator doesn’t use the higher frequency information.   

The Matlab “filter builder” tool created this filter, and all the filters henceforth in 

this project.  This particular filter, in Figure 7, used the “Lowpass Design” with an 

“Interpolation Factor” of 8.  The passband and stopband were specified at .125 and .13, 

respectively, with a passband ripple of 1 dB and stopband attenuation of 60 dB.  The figure 

shows the stopband attenuated by 42 dB, but relative to the 18 dB amplification of the 

passband due to the interpolation, this equates to a 60 dB difference.   

The above example is a simple interpolation filter with the passband including the 

entire original signal.  A match filter is a single rate filter which selects a certain band, 

depending on the desired signal.  An interpolation match filter combines both these 

concepts.  The desired passband is scaled down and contained within the passband of the 

interpolation filter.  Simply divide the passband and stopband frequencies of the match 

filter specifications by the interpolation factor to calculate the associated frequencies in the 

interpolated match filter. 
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 Another important filter in this project is the derivative filter.  This filter can also be 

implemented by an FIR filter.  The following provides a quick proof on how the transfer 

function of the derivative is derived. 

 ���� = ��� �(�) 
Equation 19 

 ������� = 
� ∙ �(�) Equation 20 

 �(�) = 
� ∙ �(�)  

 
∴ ���� = 
� → ℎ��� = cos	(!�)�  

Equation 21 

where & is the digital frequency component and F{∘} is the Fourier transform operator.  

This function will return the derivative of the entire signal.  Although the coefficients of this 

filter have a relatively simple function in this form, it becomes much more complicated in 

application.  Usually the derivative of only a particular band is desired, as it is in this 

project.  Therefore, Matlab design tools are employed to create the derivative filter. 

 A final note on Matlab filter builder design tools; the weight vector can save the 

number of taps and better tailor the filter.  The filter design weight vector allows the user 

to specify which components of the transfer function are most important, and thus, the 

design tools should devote resources to.  This is particularly helpful when there’s a 

predefined number of taps available.  For example, consider a lowpass filter.  There are two 

critical components, outside of the frequency choices: passband ripple and stopband 

attenuation.  A user could choose to define a weight vector (in the same order) of [1, .2] if 

the passband response must be flat, but does not require a significant amount of 

attenuation in the stopband. 
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Viterbi-Viterbi Algorithm 

A 4-QAM signal is constructed with a certain, predetermined phase.  The QAM 

receiver is programmed to demodulate the signal, expecting a certain phase as well.  The 

phase can differ depending on design requirements or preference.  However, during the 

transmission and downshifting processes the received signal will suffer arbitrary phase 

shifts.  Recall Equation 7, the output current from the photodetector after homodyne 

coherent detection. 

 ���	 ≈ �
����	 ∙ 
���cos	(∆∅)  

The ∆∅ term represents this random phase shift.  Figure 8 visualizes this random phase 

shift.  The blue circles represent the transmitted QAM signal, and the green circles have 

experienced a phase change.  The constellation must be realigned to the axes for the 

demodulator circuit to effectively do its job. 

 

Figure 8 - Random Phase Shift Example – Blue symbol sent – Green symbol received 

 The Viterbi-Viterbi algorithm solves this problem.  The first step is to estimate the 

phase.  Although the equation is applied in one step, it will be explained as a series of 

operations.  First, the phase of the incoming signal must be estimated (Kikuchi K. , 2011).  

The phase modulation should be removed by applying the M-power to the incoming 
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complex signal, where M-ary is the PSK format.  The phase estimation is then averaged over 

2k+1 samples to improve SNR of the estimated phase.  Then apply the “angle” (or arg() ) 

function to the complex average.  This function is basically an arctangent function with an 

interval over [0,2π).  Finally, divide the angle by M to remove the power of M previously 

applied.  The phase has now been estimated (Equation 22).  Now subtract that phase error 

from the signal by complex multiplying the signal and the phase error, after negating the 

imaginary term.   

 '��!	 = arg( � ��! − �	��


�
�

) /* 

 Equation 22 

In this paper, the “Viterbi-Viterbi ratio” (V&V ratio) is equal to the number of 

samples to be averaged divided by the number of samples per symbol.  For instance, if the 

received signal (after interpolation) has 10 samples per symbol and the phase estimation 

algorithm averages over 51 samples (k=25), the Viterbi-Viterbi ratio is 5.1.   

The phase change also has a 2π/M ambiguity (Kikuchi K. , 2011).  Proper techniques 

must be utilized at the transmitter and receiver to combat these effects.  A discussion of the 

method to overcome this barrier takes place in the implementation section of this paper. 

Symbol Recovery 

Once the phase has been corrected the system must lock onto to the signal clock and 

perform symbol synchronization.  This process’ goal is to resample the signal at peak 

values of the received signal without the benefit of a dedicated clock signal.  Some 

communication systems forfeit some bandwidth to transmit a data clock signal in order to 

simplify the receivers.  In communication systems where bandwidth is at a premium and 
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cannot afford to sacrifice any for a clock signal, extra circuitry is required to synchronize 

the receiver with the data clock.   

  

Figure 9 - Symbol Timing Example (Rice, 2009) 

The above example shows the importance of proper clock synchronization.  A QPSK 

signal enters the circuit from the left where it is downshifted by an in-phase and 

quadrature source and match filtered.  An ideal eye diagram emerges from the filters.  The 

constellation on the left was sampled at (1) arrow, and the constellation on the right 

corresponds with the (2) arrow.  An approximate 15% symbol length shift dramatically 

deteriorates the constellation.  Even with a clean, filtered signal, a bad symbol recovery 

circuit can ruin an otherwise good receiver. 
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Figure 10 - Eye Diagram Derivatives (Rice, 2009) 

If a signal is being reclocked at the wrong time, one of the 4 following situations 

exists.  Eye diagram (a) represents the timing occurring too early on the rising portion of 

the signal, (b) shows a late timing situation on the down slope, (c) is being clocked early on 

the downslope, and (d) is late on the upslope.  The derivative of the signal clearly indicates 

the timing error, with larger magnitudes as the point drifts further from the center.  This 

fact can be exploited and used in a feedback system to align the timing circuit.  The 

indicator should have a positive sign if the timing is occurring early to increase the 

sampling time and negative when late.  As it stands, the two early and late situation 

derivatives have opposite signs.  To correct this, the sign of the signal can be multiplied to 

the derivative.  Therefore, situation (a) and (c) produce a positive error and (b) and (d) 

produce a negative.  Now these errors can be utilized to synchronize the system with the 

signal. 
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Figure 11 - Symbol Recovery Block Diagram (Rice, 2009) 

First, a quick walkthrough of the circuit, followed by a more detailed explanation of 

the some of the components.  The analog signal must be sampled by an ADC with a fixed 

clock source.  A linear interpolator adds additional data points per symbol period.  The 

interpolated signal feeds into a matched filter as well as a derivative filter.  The resampling 

process takes place at this step, as directed by the update block.  The derivative signal is 

multiplied to the sign of the match filter signal to adjust the sign of the derivative, as 

previously discussed.  The error signal is zero padded by 16, the interpolated points per 

period in this example.  This ensures the feedback loop only receives one error pulse per 

period.  The proportional-plus-integrator filter allows the circuit to be tuned to a specific 

input signal.  The processed error, v(n), is added to a constant 1/16 factor.  This term, 

unaltered by v(n), would obviously accumulate to 1 after one symbol period.  A modulo-1 

register follows another summation, which also provides feedback.  The update block 

processes the data from the modulo-1 register and the fixed summation and triggers the 

resampling process. 
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The most crucial part of this, and most, feedback systems is the loop filter.  Many 

configurations exist, but the proportional-plus-integrator filter is attractive due to its 

balance of simplicity and effectiveness, producing an a steady state error of 0 for both the 

step and ramp function.   

 

Figure 12 – Linearized Frequency Domain Phase Equivalent PLL (Rice, 2009) 

Figure 12 represents the model used to derive the gain coefficients.  The phase estimate, 

'+(,), is the output of the PLL.  Let’s being at V(s) to form the transfer function of the closed 

loop: 

 "��� = #����� $%��� − %&���' =
�#� %&��� Equation 23 

 %&��� ∗ $� + #�#�����' = #�#��(�)%��� Equation 24 

 ����� = %&���%��� = #�#��(�)� ∓ #����� 
Equation 25 

The continuous time function of a proportional-plus-integrator filter leads to the final 

closed loop transfer function: 

 -�,	 = .� +
.�,  

Equation 26 

 

 

 

∴ ����� = #�#�#�� + #�#�#��� + #�#�#�� + #�#�#� 

/��,	 =
20��, + ��

�,� + 20��, + ��
�

 

Equation 27 

 

 



33 

 

 

 

where 

( =
.1
2

)#�#�#�  

*� = +#�#�#� 

Equation 28 

 

The discrete time PLL is essentially is same as the continuous time model (Rice, 

2009).  An analog phase detector and loop filter are replaced by their discrete counterparts, 

and a direct digital synthesizer (DDS) replaces the VCO.  The design of a digital PLL 

typically begins by transforming a continuous time version PLL to produce a discrete-time 

version (Rice, 2009).  The process again starts by forming the transfer function from the 

linearized closed loop system.  The two systems can be seen below in Figure 13. 

 

 

Figure 13 - (above) discrete time PLL and DDS; (below) linearized phase equivalent 

Similarly as before, a transfer function can be derived from the system.  A more 

complete derivation can be found in Appendix A. 
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 "�,� = -���,� $%�,� − %&�,�' =
1-�

1 − ,��,�� %&�,� 
Equation 29 

 %&�,� ∗ .1 − ,��,�� + -���,�/ = -��(�)%�,� 
Equation 30 

 ���,� = %&�,�%�,� = -��(�)%�,�
1 − ,��,�� + -���,� 

Equation 31 

 ����� =
���	��
 + �����
 − ���	�
���

1 − 2(1 −
1
2
���	��
 + ���)��
 + (1 − ���	�
���)

 
Equation 32 

 

The digital gain factors, K0, K1, K2, and Kp, can be found by incorporating the continuous 

time loop filter equation (Equation 26).  Applying the bilinear transform to the continuous 

time transfer function produces a relation in the denominators that can be exploited.  The 

full transformation can be found in Appendix B, resulting in the following digital 

representation of the continuous system: 

 
 

�� �2�
1 − ���
1 + ���� =

2��	 + �	

1 + 2��	 + �	
 + 2

2�	

1 + 2��	 + �	
 �

��
+

−2��	 + �	

1 + 2��	 + �	
 �

�


1 − 2
1 − �	


1 + 2��	 + �	
 ��� +
1 − 2��	 + �	

1 + 2��	 + �	
 ��


 

Equation 33 

 

where %� = *��
2

 

Setting the coefficients of the Ha(s) (Equation 32) and Hd(z) (Equation 33) polynomials 

equal yields: 

 
1 −

1

2
-�-��-� + -�� = 1 − %��

1 + 2(%� + %�� 
Equation 34 
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1 − -�-�-� = 1 − 2(%� + %��

1 + 2(%� + %�� 
Equation 35 

Some simple algebra solves for the loop constants:  

 -�-�-� = 4(%�
1 + 2(%� + %�� 

Equation 36  

 -�-�-� =
4%��

1 + 2(%� + %�� 
Equation 37 

The previous and following equations contain these variables: dampening ratio (, natural 

frequency  ��, sampling period T, and equivalent noise bandwidth Bn.  Substituting the %� 

term for a proportional plus integrator filter produces the final result for the gain factors (Rice, 

2009): 

 %� = 0��
( + 1

4( 

 

-�-�-� =
4( 1 0��( + 1

4(2
1 + 2( 1 0��( + 1

4(2 + 1 0��( + 1
4(2

�
 

 

 

Equation 38 
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41 0��( + 1
4(2

�

1 + 2( 1 0��( + 1
4(2 + 1 0��( + 1

4(2
�

 

 

 

Equation 39 

 The K1 and K2 gain factors can now be calculated for the symbol recovery system.  The 

dampening ratio is set to critically dampening at 1/√2.  For the modulo-1 system, K0 is set to -1.  

The noise bandwidth, BnT and phase detector gain, Kp, depend on the specific application.  The 

noise bandwidth factor must be tuned to the specific signal and its expected noise power.  The value 

Kp can be extracted from the following chart: 
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Figure 14- Phase detector gain for raised cosine pulse 

Data Start Sequence 

A crucial function of a communications system is determining the start of a data 

block.  When processing the actual 1’s and 0’s being received after demodulation, the 

system must be able to identify the beginning of a string of data.  One such tactic involves 

placing a certain, known data pattern at the start of the block and constantly scanning for 

the pattern.  When the receiver detects the pattern it sets off a trigger and other digital 

components down the signal path can begin their necessary processes. 

Barker codes are commonly used as a message preamble to mark the start.  Barker 

codes are unique for their high peak to side lobe ratio.  Barker codes produce a large spike 

(equal to the length of the Barker code) surrounded by small ripples when autocorrelated.  

This presents the system with a predictable and unique response to search for.  To further 

the uniqueness and decrease the probability of a data anomaly triggering the system, a 

Barker sequence followed by a negated version can provide an even more uncommon 

response.  Barker codes of length 1, 2, 3, 4, 5, 7, 11, and 13 have been discovered.  The 

functional peak of the autocorrelated signal is equal to the length of the Barker code 
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Figure 15 displays the response of a correlation function of a random sequence with 

a regular and negated length 13 Barker codes inserted in the middle.  Note the spikes of 13 

at index 57 and 70 with values of 1 of -1 in between.  The autocorrelation function 

replicates an FIR filter with the sequence values flipped from left to right.  Therefore, any 

system with the access to FIR filters can implement the autocorrelation function, and 

therefore the Barker code start of sequence process. 

 

Figure 15 – Random signal + length 13 Barker code correlated with length 13 Barker code 

Preliminary Simulation, Simulink, and Post-Processing 

Matlab Simulink Components 

The following models were designed, created, and simulated in Matlab Simulink.  

System Generator (in Simulink) then generates the models into VHDL files.  These files 

were then connected and implemented in VHDL.  The data chain follows the order of this 

section.  The figure below shows a high level overview of the receiver system, sectioned off 

by Simulink model.    
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Figure 16 - Simulink Receiver System Configuration 

The input data stream consists of 11 subchannels.  The baseband channel is a 

pseudo-random binary data block and is consistent from trial to trial.  The baseband 

channel is surrounded by 5 channels on each side which are randomly generated preceding 

each trial.  Each data stream is individually modulated into 4QAM signals.  From there, the 

subchannel signals are up or down-shifted to their respective center frequency, filtered by 

the Nyquist filter, and finally summed together to create the full channel.  Subsequent to 

the Simulink model descriptions is further detail of the binary data generation and full 

channel transmit signal generation. 
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Normalizer 

 

Figure 17 - Normalizer Simulink Model 

The data stream must be normalized first before any digital signal processing.  The 

normalization process ensures that all data blocks will be treated equally regardless of 

input magnitude.  A signal well below the threshold voltages of the analog to digital 

converter will certainly be subject to a higher level of quantization error, and the 

normalization process cannot fix that problem.  It is still necessary for the filtering process 

to always have relatively similar data magnitudes to ensure regularity.  If the amplitude is 

too small, lesser fluctuations in the waveform can be lost in when rounding on the output. 

This normalizer system first shifts the input signal leftward (higher) 12 bits.  This is 

only necessary for the Simulink model to correctly place the decimal point in the divider 

block and does not actually take any FPGA resources.  The delay, register, and relational 

blocks work to hold the maximum data amplitude in the register.  Once the first maximum 

is found, Register1 enables the divider block.  Being a signed 12 bit system, the maximum 

amplitude possible is 2047.  The divider block creates a ratio of 2047 and the maximum 

detected point.  This ratio is then multiplied to the data stream, such that the absolute value 
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product with the highest amplitude will be 2047.  The binary number is then shifted back 

to a range of -.5:.5 and output. 
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IQ_filter 

 

Figure 18 - IQ_Filter Simulink Model 

The two channels of data require filtering to implement the Nyquist WDM 

demodulation scheme.  The inputs to this model are reinsig (the I channel data stream), 

iminsig (the Q channel data stream), and nd (set always to ‘1’ to enable the filters).  A 100 

order inverse sync, match filter shapes the response.  The normalized passband and cutoff 

frequencies are defined by: 

 ��� = ��,� ∗ 3ℎ4�567�/5�8  
Equation 40 
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 9�,!" =
�����,#$% ∗ : ∗ 3ℎ4�56 

Equation 41 

 9�,!" =
��� ∗ (2 − �1 − ;�)��,#$% ∗ :  

Equation 42 

 

where Fch is the subchannel symbol bandwidth (~702 MHz for 32 point/symbol) at 100% 

channel spacing, ChanSp is the channel spacing ratio, Fs,Tx is the Tx sampling frequency 

(~21.4 GHz), Fs,ADC ADC sampling frequency (1.6 GHz), N is the interpolation factor, and β is 

the N-WDM roll-off factor.  This filter block also performs a 4x interpolation to increase the 

samples per symbol from 2.39 to 9.5621 in the 32 point per symbol case.  The filter 

amplifies the passband region by ~12 dB to offset the 4x interpolation (20*log10(4) ~= 12 

dB).   The cutoff frequency is placed at the peak Nyquist filter point of the closest adjacent 

sub-channel.  The passband frequency is independent to the channel spacing, whereas the 

cutoff frequency is.  This allows the filter more “room” to produce a flat passband response 

and higher level of rejection of undesired signals as the channel spacing is increased. 

The following Table 1 defines some key attributes of different match filters with 

different channel spacing ratios.  All the following assume a 32 points per symbol 

transmission rate, as above, which yields a single-sideband bandwidth of 334.7 MHz.  The 

Fpass*4 and Fstop*4 columns are included to compare the true passband and stopband 

frequencies prior to interpolation.  The Fpass and Fstop column reveal the normalized 

bandwidth, assuming a sampling frequency of 2 and the interpolation has been applied.  

Passband ripple is difficult to define because inverse sinc transfer function inherently 

introduces a difference in passband response, so a difference of adjacent ripples is used.  

The following estimate is the difference from DC to Fpass.  The difference between the 
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Fpass and stopband peaks is the stopband attenuation.  The selected filter design method, 

equiripple, produces a stopband with peaks of equal height; therefore selecting any peak 

for measure is adequate.  As this is an interpolation filter, this stopband will include copies 

of the desired baseband signal as well as unwanted channels, thus a high level of relative 

rejection is required.  The desirable linear phase response is realized in all the filters. 

channel 
space 

Fpass*4 
(freq | normalized) 

Fstop*4 
(freq | normalized) 

Fpass | Fstop 
(normalized) 

Passband 
ripple (dB) 

Stopband 
attenuation (dB) 

1 334.7 MHz | .418 352 MHz | .440 .1046 | .1150 2.56 14.64 

1.1 334.7 MHz | .418 387 MHz | .484 .1046 | .1265 0.85 25.36 

1.2 334.7 MHz | .418 423 MHz | .528 .1046 | .1380 0.31 34.48 

1.3 334.7 MHz | .418 458 MHz | .572 .1046 | .1495 0.10 43.88 

Table 1 - Interpolated Match Filter Specifications vs Channel Spacing 
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Channel Spacing = 1 Channel Spacing = 1.1 

  

Channel Spacing = 1.2 Channel Spacing = 1.3 

Figure 19 - Interpolated Match Filter Responses vs Channel Spacing 
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The method of clock recovery requires the derivative of the input signal to run a 

digital PLL.  Therefore, after match filter processes the signal an FIR derivative filter 

calculates the change.  A conversion block is placed between the two filters for ease of use 

and to reduce the resources necessary in the derivative filter by truncating the output.  

Since the derivative filter is in series with the matched filter, high attenuation in the signal 

stopband has already been achieved and mustn’t be duplicated.  Thus, the weight vector of 

the filter weighed heavily on the passband shape of the derivative and put less emphasis on 

the stopband. 

Both the passband and cutoff frequencies of the derivative filter differ from the 

match filter.  The passband does not divide out the channel spacing factor, allowing all the 

transmitted phase information to be encapsulated in output of the filter.  The cutoff 

frequency is similar to the match filter’s, only the 2/1.9 factor on the beta term opens the 

main lobe further to, again, transfer the maximum phase information of the baseband 

signal. 

 

 9�,�" = �����,#$% ∗ : 
Equation 43 

 9�,�" = ��� ∗ (2 − 2
1.9

∗ �1 − ;�)��,#$% ∗ :  

Equation 44 
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Figure 20 – Derivative Filter Frequency Response 

Finally, all the signal paths are downsampled by 8 to conserve resources.  The delay 

blocks hold the match filter output value for 27 clocks to synchronize the signal with the 

correct phase of the derivative.  Without the downsampling blocks the delay would be 8 

times longer, unnecessarily wasting flip-flops.  The block parameters of the filters and 

delay must be adjusted depending on input signal bandwidth and filter order.  This is done 

automatically by inserting the appropriate variable names from the script into the prompts. 

Due to the limited resources necessary to perform the FIR filtering in the FPGA 

(namely the 48 available XtremeDSP blocks), the matched and derivative filters are 

overclocked by 32 times the FIFO read data rate.  Since the data from the matched filter is 

4x interpolated, though, the derivative filter is only overclocked 8 times its input data rate.  

Further discussion on data clock rates located below in the simulation details. 
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Phase_Recovery 

 

Figure 21 - Phase Recovery Simulink Model 

To correct the phase and align the constellation to the transmitted signal, the 

Viterbi-Viterbi algorithm was implemented.  The Simulink system is straight forward, with 

respect to the algorithm.  First the complex signal is squared twice due to the 4 points of 

the constellation.  The subsystem shown below completes this process, named “(a + jb)^4” 

in Figure 21 above.  The multiplication is a complex process as needed. 

 

Figure 22 - "(a + jb)^4" Simulink Subsystem 
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The product is independently summed over 64 points by channel.  Ideally, the 

current point being aligned is centered in the summation by using delays on the pass-

through data lines to assure proper alignment.  For instance, the bottom two derivative 

lines would be delayed in order to be temporally aligned with the phase product calculated 

by the central Viterbi-Viterbi system.  The thin linewidth of the local oscillator and 

requirement to save FPGA resources allows this process to be ignored.  Figure 23 shows 

and implements the column of z-16 delays, followed by a chain of adders to complete the 64 

point summation. Each proceeding 16 point delay is latched to the previous delay, thus the 

delay accumulates down the chain.  Each delay feeds into a block which sums the last 16 

data points.  The “SumDelay16” block internals are shown to the right.  The 4 16 point sums 

are then summed in “Sum4.” 

  

Figure 23 – Summing Simulink Subsystems 
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divide by 4 function by shifting the binary data right two places.  This is to compensate for 

the fourth power operation.  The “CORDIC SINCOS” outputs the cosine and sine of the 

current phase detected by the previous process.  The final step involves keeping the sign of 

the cosine term, negating the sine term, and complex multiplying this to the current data 

point.  The output constellation should then be corrected and rotated to the input phase, 

with the desired point means at 0, 90, 180, and 270 degrees. 
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QAM_PLL 

 

Figure 24 - QAM_PLL Simulink Model 

 

Figure 25 - Sign Alter Simulink Subsystem 
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Figure 26 - Modulo -1 Simulink Subsystem 

 The most complex system is the digital QAM PLL.  The system consists of 2 

equivalent components (the upper and lower portions of Figure 24), which come together 

into the center, feedback portion.  The top (or I) equivalent component will be referred to 

in this discussion.  The process of this system was discussed in detail in the previous 

section.  The primary role of this system is to reclock the waveform to switch from the DAC 

clock domain to the QAM signal’s clock domain.  The data is reclocked by the column of 

registers.  The ‘enabled’ source of the registers is the output of the modulo -1 subsystem, 

displayed in Figure 26. 

 Beginning at the inputs, the phase-corrected waveform and phase-corrected 

derivatives of both the I and Q channels are stored in the registers.  The registers 

themselves begin with a 1 on their enabled ports, so after a single clock, the data continues 

to the output q of the registers.  The very top register is the reclocked output of the system.  

The second register feeds into the relational input of the feedback loop and will be 

discussed shortly.  The third subsection registers the derivative.  As discussed previously, 

the sign of the derivative must be altered before being fed into the feedback system 

depending on whether the current clock approximation is in front of or behind the QAM 

peak.  The signal’s first bit, which represents the sign, and the derivative feed into the ‘Sign 

Alter’ subsystem to complete this process.  The sign altered derivative and a constant ‘0’ 

are ten muxed together.  The ‘sel’ bit is the reclocking signal, such that the approximated 

peak’s derivative passes through the mux for one clock, followed by zeroes until the next 

reclock  

 The center feedback section beings with a mux.  This mux selects between the I and 

Q sign-altered derivative signals.  The ‘sel’ bit chooses the derivative whose anti-derivative 

has a larger magnitude.  For instance, consider a moment in time with I = 0.8, Id = -.1, Q = 

0.1, and Qd = -0.3.  The derivative signal selected to drive the feedback loop in this instance 

would be from the I side.  The reason this extra layer of complexity was added is due to the 

band-limited nature of this system.  When a QAM signal is very band-limited, as in a 
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Nyquist WDM signal, the peaks tend to be flatter than the zeros of the I and Q waveforms.  

Therefore, the derivative of the peaks more accurately represent whether the reclocking 

estimate is truly ahead or behind. 

 The feedback loop begins with the two scaling multipliers for the 1st and 2nd order 

signals.  The two are summed and the ‘Modulo1_reg’ preforms the reclocking process.  First 

the scaled signal is added to 0.1046… which is the inverse of the ratio of clocks per symbol 

period of the transmitter clock and DAC clock.  The 0.1046… constant creates a correctly 

spaced reclocking signal if the input stimulus consisted of only zeros.  The summed signal 

subtracts subtracts from the feedback loop of the Modulo-1 counter.  This creates the 

downward slope of the feedback loop.  A relational block checks to see if the feedback 

difference is less than zero.  If not, nothing happens.  Once the difference is less than zero, a 

‘1’ is added into the loop to begin counting towards the next period, and a ‘1’ is output to 

the outer system.  This output signal is the reclocked signal which is the estimation of the 

input QAM clock. 
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QAMDemod 

 

Figure 27 - QAM Demod Simulink Model 
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represent the angular location of the line. First, the absolute value of the I and Q points is 
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constellation the symbol exists.  As seen in Figure 28, this decides the first binary digit of 

the symbol: I>Q = 0, Q>I = 1.  The demodulator decides on the second digit based on the 

sign of the dominant point: I>Q, sgn(I) chooses second digit.  Thus, since the decision 

engine relies only on the magnitude comparison of the two points and the sign of the larger, 

no the data requires no normalization for demodulation. 

 

Figure 28 - Transmit QAM Constellation 

The QAM Demod block simultaneously converts each QAM symbol into 2 different 

2-bit words.  One word is translated regularly from the I and Q (I/Q) symbol (the upper 

system in Figure 27).  The second negates the Q value and translates the symbol from the I 

and –Q (I/-Q) symbol (the lower system in Figure 27).  The two demodulators are 

otherwise equivalent.  These two bit streams are needed for the following blocks to 

perform their phase correction duties.   
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Ninety Degree Shift 

 

Figure 29 - Ninety Degree Shift Simulink Model 
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  Table 2 - Length 11 Barker Code 

Note, to test the correlation the zeros are represented as negative ones to create a larger, 

more accurate spike in the correlation process.  To check for 180 degree phase shifts on the 

Cartesian and constellation axes, 3 variations of the above code are checked with 1 more as 

default.  The first, the default, does not flip any bits and feeds through the I/Q bitstream by 

leaving all the select bits of the MUXs on the bottom of the model set to 0.  When this mode 

is enabled, the 00 transmitted phase is aligned with the 00 and so on.   

 The other 3 variations of the length 11 Barker code overhead will trigger one of the 

three similar paths.  First, each path translates the zeros into negative ones with the input 

mux.  The sequence of ones and negative ones are correlated with variations of the input 

Barker code using the FIR filter builder.  By entering the following filter coefficients flipped 

left-to-right, the filter operation becomes a correlation operation. 

Symbol# 1  2  3  4  5   

Input -1 1 -1 -1 1 -1 -1 -1 1 1 1 

Filt1 -1 1 -1 -1 1 -1 -1 -1 1 1 1 

Filt2 -1 -1 -1 1 1 1 -1 1 1 -1 1 

Filt3 -1 -1 -1 1 1 1 -1 1 1 -1 1 

Table 3 - Barker code and Filter Coefficient Comparison 

Note the partitioning by every 2 bits, because each QAM symbol represents 2 bits.   

 The absolute value of the output of each filter (correlator) is then taken.  To cause a 

trigger to occur, the system must detect a magnitude 11 spike twice, exactly 12 samples 

apart.  The separation between the spikes represents the length 11 Barker code, plus the 

extra bit added after each code in the data formation.  The relational blocks check if the 
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data equals 11 at 1 delay (minimum) and 13 delay, for a separation of 12.  The two outputs 

drive an AND logical block, whose output is a trigger lasting one clock length.  To extend 

the trigger longer, the trigger sets the following D flip-flop.  A reset signal is necessary to 

return the D flip-flop to 0.  A universal reset follows the end of every data set. 

 

Figure 30- Constellation Correction Subsystem  

The triggers control a system of MUXs choosing between different 90 and 180 

degree rotated data lines, as seen in Figure 30.  There are 4 MUXs in the subsystem.  The 

first (left to right), named MUX1, chooses between it’s the I/Q and I/-Q demodulated 
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Figure 31 - QAM Constellation Correction 

MUX SEL 0 SEL 1 Alteration 

MUX1 I/Q I/-Q Flip over I axis 

MUX2 MUX1 Out Not every other Flip over I&Q axes 

MUX3 MUX2 Out Not all bits Flip over Axis 3 

Table 4 - Phase Shift MUX's Alterations 

Event MUX1 Select MUX2 Select MUX3 Select Rotation 

No Trigger 0 0 0 0° 

Filt1 Trigger 1 0 1 90° 

Filt2 Trigger 1 1 1 -90° 

Filt3 Trigger 0 1 0 180° 

Table 5 - Triggers vs MUX Selections 

This whole system is 4 times overclocked with respect to the data rate to reduce the 

resources needed for the FIR components.  After the data has been processed by the filters, 

the data lines are downsampled by 4 to their native clock speed.  The blocks after the filters 

contain registers which would actually increase the resources used if the data was 

overclocked.  The I/Q and I/-Q bitstreams are also downsampled and delayed before 
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entering the phase correction subsystem.  The delays are necessary to correct the all the 

data processed by the system and not merely the data after a trigger event occurs. 
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Barker Checker & Data Checker 

 

Figure 32 - Barker Checker and Data Checker Simulink Model 

 The bit error counter system completes the Simulink receiver.  To begin counting 

and comparing the stored binary data to the received data it must be triggered.  The system 

towards the top will trigger the BER comparator circuit much like the previous component, 

except the sequence the datastream is correlated with is the length 13 Barker code: 

1 -1 1 -1 1 1 -1 -1 1 1 1 1 1 

Table 6 - Length 13 Barker Code 

The system has two triggers, one for a positive then immediate negative spike, one for the 

opposite.  The data can still be 90° out of phase depending on the phase relation of the 50 

MHz clock and the bitstream.  A negative spike first will flip every 0 to 1 and every 1 to 0.  

The overclocked triggers and received binary data are downsampled and fed into the Error 

Counter Subsystem. 
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Figure 33 - Error Counter Subsystem 
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Simulation Execution 

The above Simulink components are so useful because they can be used in 

simulation and compiled for hardware implementation.  The issues of sampling, 

synchronization, and data rates can be resolved in Matlab instead of on the FPGA in VHDL.  

The filters are verified in Matlab with full access to the data streams, as well as the phase 

and clock recovery processes, QAM demodulation, and error checking.  The following 

section explains the simulation process in Matlab.  The script ReceiverSimulink.m, located in 

Appendix C, is the top level program of the Simulink simulation system.  The 

responsibilities of the script include, but are not limited to: creating input data, combining 

task-specific functions, executing the Simulink modules, completing retiming steps, 

analyzing the module outputs, and displaying the results in plots.  The line numbers 

referenced are labeled in the Appendix.  Any referenced custom functions are also 

explained in detail below. 
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ReceiverSimulink.m 

 

Figure 34 - Integration of Simulink Models into a Matlab Simulation 

To begin, the script clears all variables from the current workspace.  Then, 

filenames.m loads data and module filenames into the workspace to make calling these files 

easier and less cumbersome.  The function establishes the Tx sampling frequency “Fs” and 

bits per symbol constants, 21.4136 GHz and 32, respectively.  The scale factor on the 

transmitter frequency was added by sampling a sinusoid being sent and adjusting the 

predicted transmit speed until it exactly matched.  The function TX_func.m (details given 

below) creates the Nyquist-WDM data stream to be loaded into the physical and simulated 

transmitter.  

To resample the simulation data from the transmitted sampling rate to the received, 

two constants “upsamprate” and “downsamprate” (U & D in the following equation): 
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 ��,& ��,� = <= 
Equation 45 

With the given 1.6 GHz received and 21.4186 GHz transmitted sampling rates, the 

upsampling and downsampling rates are 344 and 4605, a ratio of 74.7014e-003.  Due to 

memory constraints brought on by upsampling the signal 4605 times, U and D were 

reduced to 7 and 94, resulting in a ratio of 74.4681e-003, deemed sufficient in this 

simulation.  The upsampling occurs before the anti-alias filter to replicate an analog system 

and then the downsampling mimics the sampling process by the ADC. 

The file ”filter_550” loads the response of the anti-aliasing filter (BLP-550+), as 

measured by a spectrum analyzer.  The 800 MHz indicator in Figure 34 marks the ADC 

Nyquist frequency.  The filter attenuates the input signal by 34 dB or higher in the rejection 

band.  The desired signal bandwidth (500 MHz) fits well into the 2 dB passband (550 MHz). 

 

Figure 35 – Measured Analog Anti-Aliasing Filter Response 

A custom function chebysfilter.m (explained below) filters the analog signal with the anti-

aliasing filter. 
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The analog portion of the script is complete after the output of the anti-aliasing filter 

is copied to replicate the transmitter repeating the signal.  The circshift function adds an 

integer phase shift to the input signal to mimic the random time-shift the sampling would 

begin.  The signals, now “digitized”, must be demodulated with the Simulink models.  A final 

scaling factor of (20*max(abs(insig)))  divides the input signal down to replicate the 

experimental average signal peak-to-peak voltage to ADC input peak-to-peak voltage ratio, 

20%-35%.  

The inputs of the Simulink models require a time column and a data column.  The IQ 

Filter model clock is 32 times faster than the data clock to reduce FPGA resources.  

Therefore, in the simulation the time array counts in intervals of.  The “tt” variable in the 

script shows the ratio of the input data rate and the clock rate of the Simulink next model to 

run. For example:  

tt=1:4:4*length(yout)-1;   

Equation 46 

demonstrates a block whose clock rate is 4 times higher than the input data rate.  This 

process will inherently function this way in the FPGA with different blocks running on 

different clocks. 

After the match filter model executes, the outputs are downsampled by a factor of 8 

to replicate the difference in clock frequencies of the match filter block and the following 

phase recovery block: the match filter clock is 8 times faster than the phase recovery block.  

The output data of the filter block is 8 times oversampled in Matlab, as well, so the 

downsampling make the simulation easier.   
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The phase recovery box implements the Viterbi-Viterbi algorithm to shift the input 

constellation from an arbitrary phase to 0, 90, 180, or 270 degrees from transmitted phase.  

The output of the phase correction block needs no timing change to be processed by the 

QAM PLL block.  The QAM PLL block, when locked on correctly, outputs the peak (desired) 

QAM points, throwing out the extra interpolated points between the QAM constellation 

values. 

 The following section, labeled “calculate PLL clocking shift vs time” in the Matlab 

script, measures and plots out the successive sampling shifts by the PLL.  If the PLL locks 

onto the input data correctly, then the plot should have an overall linear trace per data 

block.  The input data for the entire system, as previously mentioned, is the repetition of a 

single data block.  Although measures were taken to reduce the phase shift from block to 

block, a gap realistically still exists.  Therefore, within each data block the trace stays flat if 

implemented correctly or has a non-zero slope if not locked on correctly. 

 After plotting the input and output constellations, the binary demodulation process 

begins.  The time vector for the input I and Q vectors of the QAM Demod block increment 

by 2 to account for each input QAM symbol representing 2 binary bits.  The QAM PLL block 

resampled the I and Q signals to only their peak values.  The phase of the constellation now 

matches an input QAM constellation, but could still suffer from 90, 180, or 270 degree 

phase shifts.  The Viterbi-Viterbi algorithm cannot account for 90 degree shifts.  These 90 

degree rotations are corrected with the “90 degree shift” phase correction block at the 

beginning of data stream block.  The QAM Demod component creates two output binary 

waveforms from the complex QAM signals for the phase shifting block to exploit.  One 
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completes a straight forward demodulation.  The second reverses the sign of the 

quadrature signal.  This provides the following block with enough information to adjust the 

constellation accordingly. 

The two outputs of the QAM Demod module are 4 times oversampled by adjusting 

their time vectors and then loaded into the 90 degree phase shift detector.  This block 

correlates the input signal with the expected 11 bit Barker codes had they gone through 

any permutation of 90 degree shifts.   

Lastly, the script displays if and where the data triggered a phase shift event in the 

90 degree shift model, displays if and where the data triggered the data checking model, 

and how many errors occurred in each instance.   
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Data and Clock Timing 

 

Figure 36 - Data and Clock Timing 

The complexity of the data and clock timing of both the simulation and real systems 

requires a focused look at the data chain.  Figure 36 maps out the data rate after each step 

in the receiver as well as the clock input required for each component in the FPGA.  The 

data rates affect the programming of the simulation more directly, whereas the clock rates 

affect the FPGA programming more directly.  Of course, both are virtually occurring in the 

simulation and physically occurring in the FPGA, but the simulation only depends on data 

rates of the input and the components in the FPGA only react to the input clock speed.  
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Therefore, the above figure includes all the timing parameters together for organization’s 

sake. 

As noted in the figure, the blue text denotes the data rate between each component 

with respect to the FIFO read clock (6.25MHz).  Obviously, the first data line (Iout) is 1 

times the data clock.  The match filter interpolates the data by 4 times, therefore the data 

rate increases to 4 times the data clock (25 MHz).  The phase recovery and QAM PLL do not 

alter the data rate.  The QAM Demod bock, by the nature of 4 QAM demodulation, doubles 

the input data rate by two (50 MHz).  The input of the demod block is the I and Q channels 

representing a 2 bit symbol, thus the output is twice as fast as the input.  The 180 degree 

phase shifter, begin-sequence checker, and bit error rate detector do not alter the data rate. 

The green text lists the clock speed for each block in three different ways; the three 

numbers for each are equivalent.  The first is a ratio of the 100 MHz reference clock of the 

FPGA, the second is a ratio of the 6.25 MHz FIFO read clock, and the final is the physical 

clock speed.  The match filter utilizes a 200 MHz clock, created from the clock doubler of 

the “ADV_DCM.”  As previously mentioned, the 100 order match filter and 50 order 

derivative filter would require more DSP48 blocks in the FPGA than are available.  The 

Simulink block for FIR filters cannot adjust to any other method.  For that reason, the filter 

block functions at a rate of 32 times the input data rate.  The phase recovery and QAM PLL 

blocks do not use the critically limited DSP48 blocks, thus overclocking is unnecessary.  

These blocks would actually use more resources due to the delays in the data path: the 

blocks would require 4 times as many delays if overclocked by 4 times, for instance.  The 

QAM Demod component time division multiplexes the 4QAM symbol data into a single 
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binary data stream, thus the clock rate doubles with respect to the previous block.  The two 

following blocks use the same FIR filter compiler as the match filter block to check the 

Barker codes, so the maximum overclocking of 200 MHz or 4 times the input data rate is 

used. 

The clock rates of each Simulink model are set by opening the Xilinx “System 

Generator” prompt and selecting the “Clocking” tab, as seen below.  In this example, the 

PhaseRecovery model is set to run on a 40 ns (or 25 MHz) clock.  Depending on 

implementation, this can be seen as bookkeeping more than anything.  With “Expose Clock 

Ports” selected, the correct clock signal must be assigned to the input clock pin of the VHDL 

component.  In models with multiple clock domains, for example those with downsampling 

blocks, there will appear several clock inputs in the VHDL component which must be tied to 

the correct clock.  The system generator would compile a DCM into the component when 

“Expose Clock Ports” is not selected and multiple clock domains exist.  This DCM would be 

used to divide or double the frequency of the input clock to match the requirements.  Since 

FPGAs have a limited amount of DCMs, the separate clock domains will be created by an 

upper level VHDL component and input to the generated Simulink model. 

 

Figure 37 - Simulink Clock Configuration 
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TX_Func.m 

[tol,spe1,t,h,DataIn1]=TX_func(chans,chanspace,bitp ersymbol,Fs) 

• Outputs 

o tol –complex output data stream, containing “chans” channels – (time 

domain) 

o spe1 –complex baseband signal, channel 1 of tol – (time domain) 

o t –time index for tol and spe1 

o h –Nyquist filter – (frequency domain) 

o DataIn1 - known pseudo-random bit stream modulating channel 1 (digital 

domain) 

• Inputs 

o chans – array to choose which channels to include in tol (eg. [1 2 6 7]) 

o chanspace – channel spacing variable (1 is pure Nyquist modulation) 

o bitpersymbol – oversampling rate of each symbol in the transmitter 

o Fs – sampling rate of the transmitter 

 

The binary data of channel 1 (baseband) of the transmitted signal is pseudo-

random, but known, and the same every time the simulation is run.  Since the system 

checks against this channel to calculate the bit error rate, the original bitstream must be 

known.  Thus, the function passes the data to the script it’s called from.  The pattern and 

required Barker codes are formed by DataIn1_maker.m, explained below. 
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All the other channels are pseudo-random and regenerated every simulation 

iteration.  The first 2 and final 2 bits of every data channel (including channel 1) are 

duplicates to provide a reduced voltage jump when the cycle repeats.  Two bits, not 1, are 

required since 4-QAM splits the 2 bits, effectively, into 1 bit in the in-phase channel and 1 

bit in the quadrature channel.  Therefore, prior to the Nyquist filtering, the I and Q level of 

the first symbol and final symbol equal one another.   Following the Nyquist filtering, a 

difference in the exact level is inevitable, but the difference reduces with this preemptive 

measure.  The duplication process is executed on line 31 for all channels, except channel 1 

which is done during pre-processing. 

The loop from line 27 to 43 first creates the data bit stream for each channel (except 

1), then modulates an I and Q signal to -1, 0 or 1.  Summing two consecutive bits, then 

applying a cosine or negative sine function calculates the current I and Q values.  The 

function repeats each I and Q value by a factor of “bitpersymbol” using the repmat and 

reshape functions.   

 Next, the function calculates the Nyquist filter based on the sampling frequency, the 

channel spacing, and beta values.  The Nyquist filter emerges from a boxcar filter multiplied 

by an inverse sinc function.  Each channel’s frequency response is multiplied to the filter, 

then to a complex sinusoid to shift each channel to its respective frequency slot.  The sum 

function produces the “tol” variable, as the separate channels are organized into rows of 

the same matrix. 

The following plot displays the tol signal in blue.  The Nyquist filter of channel 1 laid 

over the unfiltered signal shows the repetitions of the digital spectrum reduced to only the 
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baseband signal.  The channel 2 filter overlaps the channel 1 for high spectral efficiency.  

The 3 dB amplification of the edge of the subchannels and steep rolloff are apparent in this 

plot.   

 

Figure 38 – Baseband Subchannel Input, Nyquist filter, and Transmitter Output Spectra 

DataIn1_maker.m 

In lieu of inputs and outputs, this Matlab script creates the desired pseudo-random 

bit pattern as specified by the variables located at the top o be saved and reused.  The 

bitpersymbol variable is used to calculate the total number of binary bits that will be 

contained by the data stream.  The transmitter memory limits the length of the data block 

to 2^15 points.  The transmitter also requires the data block be an integer factor of 64, 

which the calculation of TotalBit takes into account.   

The first 20 bits of the data block contain two crucial sections of data.  The first 3 

symbols match up with the final 4 symbols of the data block to reduce a phase jump when 

the memory repeats itself at the end of every cycle.  The 8 proceeding symbols alternate the 

I channel from 1 to -1 to help the PLL lock onto the clock.  Essentially, a low frequency 
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component reduces a frequency spike, then a high frequency component aids the clock 

recovery process. 

Starting at bit 21 and extending to bit 44 is the 11-bit Barker code, followed by its 

negative, used for 180 degree phase shift detection.  Immediately thereafter at bit 45 and 

extending to bit 70 is the 13-bit Barker code, followed by its negative.  This block is used for 

beginning of data stream detection.   
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chebysfilter.m 

[out,OUT]=chebysfilter(IN,fin,data) 

• Outputs 

o out – filtered input signal – (time domain) 

o OUT – filtered input signal – (frequency domain) 

• Inputs 

o IN – input signal – (frequency domain) 

o fin – frequency  index of IN 

o filter – two column matrix  

� column 1 – frequency index of filter 

� column 2 – response of filter (dB) – (frequency domain) 

 

This process needed its own function due to the different frequency indices of the 

input signal and the filter.  The function interpolates both the input data and filter 

accurately match the responses, multiplies the two in the frequency domain, and outputs 

the result.  As seen in Figure 35, the highest frequency component measured of the filter 

was 5 GHz.  To extend the filter to higher frequencies, the final value of the filter was simply 

extended out.  The 800 MHz point on the signal marks the edge of the ADC passband.  The 

plot below demonstrates the analog filter (response in red) acting upon the total Nyquist-

WDM spectrum in blue to produce the output in green.  All three components, being in the 

“analog” domain, regularly extend much higher in frequency.  This graph has been zoomed 

in for sake of legibility. 
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Figure 39 - Anti-Aliasing Filter Demonstration 
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Simulink Simulation Results 

Once the transmit waveform is created, it is oversampled, analog filtered, 

downsampled, digitally filtered and interpolated.  The following figures show a comparison 

of the spectrums through these processes.  These spectra were modulated using 110% 

subchannel spacing. 

 

 

Figure 40 - Simulink Simulation Spectra Comparison (above: full; below: zoomed in) 

The green spectrum represents the baseband signal.  The system attempts to demodulate 

this sub-channel.  The 11 channel Nyquist-WDM waveform (tol) is the blue waveform.  The 

red spectrum displays the “analog” signal after oversampling and analog anti-alias filtering.  

The signal is considered analog due to the highly oversampled nature and the lack of 
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quantization.  The signal is downsampled to recreate the 1.6 GHz ADC sampled spectrum 

and presented in teal in the above figure; note the marker at 800 MHz, the edge of the ADC 

sampling spectrum.  The magenta spectrum displays the interpolated and match filtered 

signal.  The magenta spectrum filters out the baseband signal with 32 dB of attenuation of 

the interpolate sidebands to 3.2 GHz, or 4 times 800 MHz.  

 An interesting plot to study is the QAM PLL shift over time.  This plot, featured 

below, visualizes the PLL tracking the phase of the input signal and attempting to stay 

locked on.  Like its analog counterpart, the digital PLL’s first order and second order gain 

must be correctly tuned in to function correctly.  Notice the flat response, followed by 

sudden jumps.  The jumps represent the data stream resetting from the beginning.  The PLL 

skips advances forward searching for the nulls in the derivative signals, overshoots slightly, 

then settles quickly.  The two markers show the maximum (6.872) and minimum (4.596) 

peaks of one data block.   Divide that difference by the interpolated number of samples per 

symbol (9.562), and the range over one period is 24.1%.  On the far right edge of the figure, 

the plot spikes upward when the simulation input signal “runs out” and the PLL attempts to 

find the peaks of a DC signal. 
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Figure 41 - QAM PLL Shift 

 The following scatter plots should be used to see the Viterbi-Viterbi algorithm and 

QAM PLL at work.  The blue dots represent the complex match filter output, the green the 

output of the Viterbi-Viterbi phase correction block, and the red the output of the PLL 

reclocking function.  The signal had a 36 degree rotation applied to it, as seen by the corner 

of the blue constellation in the 1st quadrant.  Originally the corners of the transmitted 

constellation line up with the horizontal and vertical axes.  The Viterbi-Viterbi algorithm 

performed its duties well, realigning the constellation on the I-Q axis.   
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Figure 42 - Scatter Plot Comparison 

 

The following is an example of a typical output from the Matlab command window: 

shift 180 305 
shift 180 8497 
shift 180 16689 
shift 180 24881 
shift 180 33073 
trigI 505 
trigI 8697 
trigI 16889 
trigI 25081 
trigI 33273 
error count 14 
error count 13 
error count 15 
error count 14 

The 90 degree shift model executed a 180 degree shift, starting at counts 305, 8495, 16689, 

24881, and 33073.  In the following block, the data checker detected the beginning of the 

data block at counts 505, 8697, 16889, 25081, and 33273.  Clearly, the two blocks detect 

the appropriate sequence 200 ticks apart.  The difference arises from the delay block in the 

90 degree shift model and the fact that the two models trigger on different strings; 11 bit 

Barker code and 13 bit Barker code.  The associated error counts fill in at the end.  Notice 
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the data checker triggered 5 times, yet only 4 error counts are listed.  The final trigger, 

located at 33273, never reached the end of its data block, as the model is only set to run for 

40,000 clock cycles.  Therefore, the “end of string” signal never enabled, and consequently 

the overarching system would not accept the trial as complete, as it is on a per-trial basis. 

 Variables of every link of the digital signal processing system were altered and 

tested to analyze their effect on the bit error rate.  The first studies compare differences 

with the match filtering stage.  A few variables of note for the proceeding section are V&V 

ratio, in-phase, and N.  The V&V ratio is the ratio of the Viterbi-Viterbi averaging length and 

the symbol period of the signal.  For instance, if the Viterbi-Viterbi stage averages over 50 

points and the symbol period is 10, the V&V ratio is 5.  The in-phase is the input phase of 

the data with respect to the main axes and is given by radians over 2 pi.  The term N refers 

to the match filter length.  The first graph below displays the BER while varying N.  

Increasing the match filter order beyond 200 taps significantly reduces the gains. 

 

Figure 43 - BER vs Match Filter Order (N) 
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In a similar comparison, the match filter order was altered while differing the 

channel spacing.  Changing the channel spacing maintains the bandwidth of each individual 

subcarrier while shifting the center frequency.  A channel spacing of 100% will produce a 

signal where subcarriers have no extra bandwidth, whereas 130% would have a 15% 

spacing on each side of each subcarrier.  The reduction of gains after 200 filter taps 

remains.  Interestingly, once past 120% channel spacing is surpassed, filter order does not 

follow the same trend.  This can be attributed to the fact that the minimal bandwidth from 

the adjacent subcarriers bleed into the desired channel.  Increasing the channel spacing 

significantly defeats the purpose of Nyquist WDM, though, so it is preferable to utilize the 

signal processing to increase the bandwidth efficiency. 

 

Figure 44 - BER vs N vs Channel Spacing 
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 The next comparison takes on two different variables.  The first is the “Percent 

Analog Filter Bandwidth”.  This parameter denotes the relative bandwidth of the baseband 

signal and the analog filter in place before the ADC.  During this test, the bit per symbol was 

altered to expand and contract the bandwidth of the signal.  Therefore, in the test, the 

higher signal bandwidth also represents a faster bit rate.  

The results, shown in the graph below, represent the expected outcome.  Tracking 

along the x-axis, the signal first utilizes 32% of the analog filter bandwidth, continuing onto 

100% and beyond.  The results reveal a decline in BER from approximately the 32% point 

to the 60% point.  The BER remains relatively flat from 60% to 100% of the filter 

bandwidth, then dramatically increases as the baseband signal expands into the stopband 

of the analog filter. 

The nature of Nyquist-DWM relies on a dramatic and effective filtering scheme to 

remove power from the adjacent channels from the desired.  When the baseband signal 

takes up a mere 35% of the analog filter, that filter allows a large amount of power from the 

adjacent subchannels to be digitizes.  This creates a situation where the DSP is completely 

relied upon in the filtering process.  From 60%-100%, the complete analog and digital 

system works in harmony to eradicate the undesired signals from the desired.  In other 

words, the analog filter is employed to both filter out higher band signals that would create 

aliasing problems as well as helping to filter out the adjacent subchannels.  The increase in 

BER as the signal bandwidth increases beyond the analog filter bandwidth clearly stems 

from the fact that the analog filter is attenuating the desired signal. 
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The second variable, represented by the different lines, changes the Viterbi-Viterbi 

ratio.  As previously discussed, the V&V Ratio is the length of the summation function to the 

digitized points per symbol; eg, a received digital signal of 10 points per symbol per 

channel and Viterbi-Viterbi function which sums over 20 points would result in a V&V 

Ratio of 2.  This graph shows a mostly predictable outcome with a strange aspect.  As the 

test increases from a V&V Ratio of 1 to 16, the BER predictably decreases monotonically.  

The irregularity in the trend arises at the V&V Ratio of 0; ie, no averaging.  Denoted in green 

triangles, this line, looking left to right, begins at a predictable BER, but proceeds to follow a 

path between V&V Ratios 4 and 8 as the bandwidth of the signal increases.  To further 

study this concept, another test was conducted. 

 

Figure 45 - BER vs % Analog BW vs V&V Ratio 
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A key aspect to any one trial of the system is the input phase angle.  The previous 

tests all processed a received signal with a fixed input angle of 0.083*2*pi, or 1/6*pi.  

Locking the phase angle as a constant removed that extra variable to be able to study one 

factor at a time.  The following chart displays the affect the input phase angle has on the 

BER, as well as comparing different V&V Ratios. 

This chart displays several interesting features of the input phase angle correction 

algorithm of the receiver.  Firstly, all the lines exhibit an almost perfectly logarithmic 

(viewed linearly on this logarithmic chart) trend.  Reading the chart from right to left, they 

all stem from a BER of 0.5 at .125*2*pi input angle and branch out as expected with the 

higher V&V Ratios having a steeper decline.  Once again the 0 V&V Ratio line, represented 

with blue diamonds, crosses paths and does not follow the same trend.  Furthermore, the 

BERs reported towards the higher input phase angles are completely unacceptable for a 

production system. 

The 0 V&V Ratio trendline imparts that the system should employ a V&V Ratio of at 

least 16 if one will be used at all.  As replicated above, the 0 V&V Ratio line is nestled 

between the 4 and 8 at 0.83*2*pi.  Beyond that point, the line appears to follow a parallel 

path of the 16 line.  The .125*2*pi BER arises from the fact that that angle lies right on the 

division of two constellation zones.  The V&V algorithm must make a decision at any point 

in time to shift the current point 45 degrees clockwise or counterclockwise.  Being on the 

division line, it will statistically be incorrect 50% of the time, hence the BER of 0.5.  A 

realtime, continuous receiver system would utilize a phase tracking system such that the 

phase from the previous packet would be carried over and adjusted accordingly.  This 
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system breaks the data chain between stored arrays, due to hardware limitations this 

simulation is meant to study, and therefore no tracking can be implemented. 

 

Figure 46 - BER vs Input Phase Angle vs V&V Ratio 

 

All associated data for the graphs above is included in Appendix E. 
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Post-Processing of Data from a Real Fiber-Optic System 

In the previous section, the data remained in Matlab for the entirety of the 

simulation.  It is important to confirm the functionality of the developed real-time DSCM 

receiver algorithms are effective when processing waveforms undergoing the distortions 

and irregularities brought on by practical components such as an optical transmitter, 

optical fiber, and ADC.  This is an important test to further validate the design of the Matlab 

Simulink models prior to implementing them onto the real FPGA.   

The same functions above generated the baseband (DataIn1_maker.m) and full 

channel data waveform (Tx_func.m) to use in the real system.  To comply with the 

transmitter hardware requirements, the waveform was quantized to integers from 0-31, as 

well as having a data length of 32,768 per I and Q channel.  The imag() and real() Matlab 

functions split the waveform into the I and Q waveforms for storage in the transmitter.  The 

transmit function modulated the binary stream at a rate of 32 points per symbol, or 16 

points per bit, to mimic the optimized “percent analog filter bandwidth” during the 

simulation trials.   

The hardware transmitter modulates the complex signal onto a laser light source at 

a rate of approximately 21.4 GHz, producing a waveform with 11 1.3 Gb/s subchannels.  

The signal travels through SM optical fiber.  At the receiver, coherent homodyne detection 

downshifts the desired signal directly to baseband by mixing the optical signal with the 

local oscillator.  Due to the lack of independent laser sources, a portion of the optical power 

from the transmit laser was sent to the receiver as the local oscillator.  This setup assures 
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correct frequency matching, and the coherent detection is truly homodyne.  After the 90 

degree optical hybrid, two photodiodes covert the light signal to electric domain, then two 

amplifiers boost the in-phase and quadrature signals. The electrical signals are filtered by 

the analog anti-aliasing filters and an oscilloscope saves the output waveforms at 25 Gs/s 

sampling rate.  The script ReceiverPP.m loads (after transfer with a USB thumbstick) and 

processes the data.   

The post-processing and simulation scripts only have 2 differences.  The input data 

rate of the simulation was the transmitter sampling rate (~21 GHz) and the input data rate 

of the post-processing script is 25 GHz.  Secondly, the analog filter function no longer needs 

to be simulated since it was physically implemented.  Therefore, chebysfilter.m is neglected. 

 

Figure 47 - Test Setup 

Due to resource scarcity on the FPGA, the filters and DSP blocks had to be properly 

sized to find the optimal blend of analog bandwidth usage, filter order, and VV ratio.  The 

filters can be put in an “overclocked” state, which trades resources for input clock rate.  In 

other words, the filters would run at a much higher clock rate than the data rate.  The most 
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scarce and most needed slice of the FPGA is the “DSP slice”.  On the particular FPGA chosen 

for this project, only 48 DSP slices are available.  Without overclocking the FPGA would 

only allow for one 48 tap filter.  Another factor to consider is the match filter also operates 

as an interpolator.  That means that the filter must always run at a rate 4 times higher than 

the input data. 

The DSP slice resource must be shared by the match filter, derivative filter, and 

Barker sequence detectors.  The simulations done previously expressed that at least a 100 

tap filter should be used for the match filter.  An examination of the core generator 

software provided by Xilinx revealed that the resource savings were almost proportional to 

the OC ratio.  For instance, an overclock ratio of 16 yielded 13 times less DSP slice usage.  

After careful consideration of this and the previous simulations, the match filter was 

chosen to have 100 taps at 32 times overclock of the input data rate.  The derivation filter 

contains 50 taps at the same speed.  Since the derivative process occurs after interpolation, 

the derivative filter is only 8 times faster than its input data rate. 

 

Figure 48 - Resource Savings with Higher Overclocking Rates 
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Post-Processing Results 

The first operation of the receiver after digitizing the signal is filtering.  As 

previously discussed, the N-WDM match filter also interpolates the by 4 to aid in the 

resampling process.  The figure below displays a waveform of real data recorded by the 

oscilloscope after being transmitted, modulated, downshifted, and sampled.  The effect of 

the filtering is obvious: the waveform becomes much smoother and representative of a 

QAM signal.  The third graph is provided to easily visualize the interpolation. 

 

Figure 49 - Input & Filtered Data vs Time 

The match filtered data then passes through a derivative filter to drive the PLL.  The 
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derivative signal passes through the x-axis as expected.  At 1405, an inflection point can be 

seen in the main signal and by the derivative’s local max. 

 

Figure 50 - Filtered and Differentiated Signals vs Time 

The input spectrum from the real data looks similar to that of the simulation data, 

but noisier.  This is expected of a real system, having noise sources like laser phase noise, 

modulator inaccuracies, quantization errors, and so on.  The figure below displays the input 

spectrum (blue) and the output data from the filter stage (dashed-green).  The green 

spectrum has undergone the Nyquist-WDM matched filtering as well as 4x oversampling.   

 

Figure 51 – Input & Filtered Data (dB) vs Frequency (GHz) 
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The output of the QAM-PLL module provided an interesting result.  As with the 

simulated data, the best way to visualize the output is by viewing the PLL shift quantity.  

The pure simulation provided an output which produced an easily spotted jump at the 

transition between every data block.  The same variable of the QAM PLL plotted when 

processing real data produces no such jump.  This could be attributed to the smoothing 

effect of a modulator, photodetector, and ADC.  As seen on the graph, the QAM PLL is able to 

track the peak of the input waveform by approximately +-1 point.  With a digitized bit per 

symbol of approximately 9.8, this represents a 10% tracking accuracy. 

 

Figure 52 - QAM PLL Shift Amount 
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definitely shifted points which should’ve have been adjacent to separate quadrants.  The 

constellations on the right display a more ideal input data set. 

 

Figure 53 - V&V and QAM PLL Constellations vs Input Data (125% Channel Spacing) 

  

Figure 54 - V&V and QAM PLL Constellations vs Input Data (115% Channel Spacing) 

 The QAM PLL outputs, which feel the QAM decoder, from the two channel spacings 

above show how helpful 10% more bandwidth is to the Nyquist-WDM system.  This 

bandwidth is crucial for a system which relies on an under resourced match filter and 

phase tracking system.   

 The test system used a limit resources, being just large enough to fit on the physical 

FPGA provided for this project.  The combination match and interpolation filter is order 
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100 and the derivative filter is order 50.  The system utilizes a 4x interpolation function as 

in all the previous tests.  The V&V summation averages over 64 points.  With a interpolated 

points per symbol of 9.8, this gives a V&V Ratio of ~6.5.  The normalized bandwidth of the 

PLL loop, BnT, is 2.5119e-3 and the loop gain factor, Kp, is 1.5849e-3. 

 For a more accurate comparison of real data and simulated data, the simulation 

system was run 20 times at 115% and 130% channel spacing with all of the same 

parameters at the real data system.  Furthermore, the input phase angle was completely 

randomized to simulate the input angle of the real data system.  The trials were simulated 

20 times for each channel spacing and suffered 2 trials with null results. 

 

Figure 55 - Comparison of Real and Simulated Data 
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Hardware Implementation Perspective 

ADC12D1600RB 

 

Figure 56 - ADC12D1600RB Top Level Design 

The main electronics board used in this project is the ADC12D1600RB.  It is a 12-bit, 

dual 1.6 GHz analog-to-digital converter reference board.  The board includes a Xilinx 

Virtex-4 FPGA and an on-board USB controller (Cypress uC in Figure 56).  An on-board PLL 

helps to lock onto a crystal and increase clock rate to be used at the ADC sampling clock.  

Affixed with the necessary power regulation system, LEDs, jumpers, and SMA terminals, 

this board comes ready to use. 

Since this is a reference board setup, the FPGA comes preloaded with a demo 

program to evaluate the ADC.  The FPGA was used only to sort the data from the ADC and 

transmit the data to a PC through the USB controller in the prepackaged system.  The 

included PC software, WaveVision5, calculates the FFT and allows the user to view the 
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incoming analog waveform.  In this project, however, the FPGA will not only sort the data, 

but process it as well.  The USB controller will go un-used. 

As discussed earlier, there was a need to overclock the filter stage to free up enough 

resources to adequately process the data.  An insurmountable problem arises from the 

overclocking process in the real system.  The FPGA can only function in the 400 MHz range.  

The input data stream from the ADC is 1.6 GHz.  Therefore, the FPGA obviously cannot 

support clock speed 32 times the input data rate.  As a result, the input data will be cached 

and blocks of data will be processed at a time.  This was not the intent of the system, which 

planned to be real-time, but the resources available on the FPGA held the project back. 
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ADC12D1600 

 

Figure 57 - ADC12D1600 Functional Block Diagram 

The ADC12D1600 is a dual channel analog to digital converter.  The chip is highly 

configurable, with the ability to operate in a single channel mode sampling at up to 3.2 GHz 

or in a dual channel mode sampling at up to 1.6 GHz per channel.  The dual channel setup 

shares a single clock, but can be configured to sample on the same or separate edges of the 

clock.  The ADC has differential analog inputs, as well as a differential clock input.  The 

outputs are also all in a differential setup.  The ADC’s main settings can be configured with 

simple jumpers, but advanced configurations (extended control mode) require the use of a 

serial interface to write to registers. 
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Figure 58 – Single Channel Analog Input Configuration 

For this project, the ADC12D1600 operates in the dual channel, same-edge sampling 

mode.  The analog inputs are setup in single-ended configuration shown above in Figure 

58.  Ideally, the analog input signal would be balanced, but due to the lack of a balanced 

photodetector this is impossible.  The full scale range (FSR) pin is set low, fixing the analog 

input range to 600 mVp-p (National Semiconductor Corporation, 2011).  The outputs of the 

ADC are demuxed, then processed by a DDR converter, to produce 2 12-bit DDR signals per 

channel.  The data must then be organized by whichever chip receives the signal, and the 

process to do so is discussed in the Implementation section, under demux_fifo_sort.vhd. 

 

Table 7 - Key Specifications of the ADC12D1600 

The ADC12D1600 datasheet reports having 9.4 effective number of bits (National 

Semiconductor Corporation, 2011).  The SNR and spurious-free dynamic ranges are 58.5 

dB and 70.3 dBc, respectively, when sampling at 1/6 GHz.   
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Xilinx Virtex-4 (XC4VLX25) 

 

Table 8 - Virtex 4 LX Model Comparison 

The ADC reference board includes the Virtex-4 FPGA.  Although this FPGA is 3 

generations old, it is still a capable chip.  The chip installed on this reference board, as 

noted in the above table, contains a relatively small amount of logic cells, block and 

distributed RAM, XtremeDSP slices, and other resources compared to the rest of its family, 

as well as the following generations. 
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PLL (LMX2531 LQ1570E) 

 

Figure 59 - LMX2351LQ1570E Functional Block Diagram 

The LMX2531 is a high performance frequency synthesizer with an integrated VCO.  

This chip takes in a reference signal and produces an output of virtually any frequency 

between 765-818 MHz or 1530-1636 MHz.  The chip is programmed via serial interface by 

the user to configure the frequency, filter, selectable outputs, and more. 

The functionality of this chip begins by producing a phase detector frequency fPD 

(Texas Instruments, 2013).  The phase detector frequency is given by 

 9'$ = 9�(%��/
 Equation 47 

where R is the “divider value.”  Tradeoffs of maximum output frequency and phase noise 

exist for the R values, which are restricted to 1, 2, 4, 8, 16, and 32.  The other variable the 

user has to control the output frequency consist of an integer and fractional values, given 

by 

 : = :���)*)+ + :"+����,��- Equation 48 
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to produce a multiplier value precise to the 1/4194303rd.  The integer value is an 11 bit 

number, and the fractional part consists of a 22 bit numerator and 22 bit denominator.  The 

resulting output frequency is 

 9.��� = 9/%�= = 9'$ ∗ : = 9�(%�� ∗ :/
 
Equation 49 

where D is 1 or 2, providing low band frequency options. 
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BLP-550+ 

 

Table 9 - Key Specifications of the BLP-550+ 

The ADC, as discussed previously, samples at a rate of 1.6 GHz.  Therefore, the 1st 

Nyquist region exists from DC-800 MHz.  The BLP-550+ analog filter was chosen for its 

wide, flat passband and steep rolloff.  As noted in the above table, typical specifications 

state at 800 MHz the attenuation is ~40 dB.  The desired signal bandwidth will be 

contained within DC-550 MHz to avoid a greater than 1 dB penalty.  The analog filter not 
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only acts as an anti-aliasing filter, but also attenuates the adjacent channels within the 

sampling Nyquist rate.    
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Hardware Implementation 

 

 

Figure 60 - Top Level Block Diagram 
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VHDL-only Components 

The following files were designed, created, and implemented fully in VHDL.  Any 

labeled signals in the vhdl block diagrams have the same name as in the program itself for 

debugging and alteration purposes. 

dclk_dcm.vhd 

This component implements the primitive “DCM_ADV,” or Advanced Digital Clock 

Manager Circuit. It is a configurable DLL.  In this instance, the component locks onto the 

ADC’s in-phase and quadrature data clocks.  These clock traces, as most the signals from 

the ADC, are differential signals.  Therefore, a differential clock buffer is instantiated prior 

to the DCM.  The clock period is set to 2.5 (ns), and the DCM is set to “MAX_SPEED” mode, 

as this is towards the top frequency for this component.  This component was generated by 

the Xilinx Architecture Wizard. 

 clk100_dcm.vhd 

This component is similar to the above, instead dedicated to the single ended 100 

MHz signal.  The input signal originates from a USB controller (unused) and, being single-

ended, only needs a single-ended buffer.  Due to the different data rates in the data 

acquisition and analyzing stages, a 6.25 MHz  (100 MHz/16) signal is also created by the 

DCM utilizing the “CLKDV_DIVIDE” parameter. 

genericcounter.vhd 

This is simple modifiable counter.   The inputs are a clock source, a clear signal, and 

constant integer (N) for how many bits wide the output should be.  The output is an N bit 

vector continuously counting at a rate of half the input clock. 
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PLL_init.vhd 

The ADC’s clock is driven by an external frequency synthesizer which uses a 60 MHz 

crystal as a clock source.  The desired clock speed of the ADC is 1.6 GHz, so the PLL must 

multiply the clock speed by a ratio of 1.6e9/60e6=26.6667.  The phase detector of the PLL 

(as per the datasheet) performs optimally with a reference frequency of about 2.5 MHz.  

The phase detector frequency is given by 

 9'$ = 9�(%��/
 Equation 50 

where OSCin is 60 MHz and R is the phase detector divider rate.  R is set to 16, resulting in a 

���=3.75 MHz.  The VCO output is given by 

 9/%� =
9�(%�� ∗ :
 = 9'$ ∗ : 

Equation 51 

where N is the counter value to increase the frequency.  N is set to 426.6667, creating the 

desired output frequency of 1.6 GHz. 

The R, N, as well as other values, are set via a serial data interface from the FPGA to 

the PLL.  There are 13 registers to be programmed, each with 20 bits of data.  The interface 

is a standard 3 pin system with a data line, clock, and load enable signal.  As seen in Figure 

61 below, the data for the register in clocked in first, followed by the register address.  The 

load enable signal must be logic low to start and continue the input process, then logic high 

to enter the stored value into the specified register.  The 6.25 MHz clock runs this process.  

The R and N values are programmed as stated above and all other registers are 

programmed with the default settings as according to the datasheet. 
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Figure 61 - Serial Interface Diagram 

adcDATAinterface.vhd  

 

Figure 62 - Single Channel adcDATAinterface.vhd Block Diagram 

The data lines from the analog to digital converter to the FPGA are differential 

signals.  The data is also sent as dual data rate (DDR) and demuxed into 2 signals.  This 

component converts the differential signals to single-ended and implements inverse DDR 
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(IDDR), outputting 4 singled ended signals.  For organization’s sake, adcDATAinterface 

instantiates 12 components (12 bit ADC) called “diffDDR2seIDDR.vhd”, doing the 

differential to single ended and inverse DDR process bit by bit.  As seen in the figure above, 

adcDATAinterface is the larger purple box and diffDDR2seIDDR’s are the smaller brown 

boxes.  The output is 4 12-bit signals. Although not pictured, the full speed data clocks from 

each channel’s dclk_dcm are used to clock the IDDRs.  Also not pictured are reset signals 

which are triggered at the beginning of each “begin write” command. 

demux_fifo_sort.vhd 

 

Figure 63 - Single Channel demux_fifo_sort.vhd Block Diagram 
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From the adcDATAinterface component, there are 4 data lines, 12-bits wide each, 

from each channel.  This data must be saved to memory and sorted.  As with the 

adcDATAinterface, an instantiation of demux_fifo_sort for each channel is required.  First, 

the data is registered using DataReg.vhd, which merely holds onto the data for one clock 

cycle with 12 D flip-flops in parallel.  The registers are always reading on every positive-

edge of the write clock, despite the current read or write state. 

When in the write state, the data is stored in FIFOs.  Each of the 4 data lines split 

into 2 FIFOs, reducing the data clock speed by 2 ensuring accurate data storage.  The FIFOs’ 

write clock is the divide by 2 clock from the dclk_dcm.  One FIFO writes on the rising edge 

while the other writes on the falling edge.   

Once the FIFOs fill up, the read/write state machine is triggered, switches clock 

domains to the 100 MHz clock, and begins to read from the FIFOs.  Note the order of output 

listed on the output mux.  Therefore, whereas the write function is performed as a parallel 

process, the read function acts as a single serial output as needed by the demodulator.  As 

per the ADC’s data sheet, the order of data from the parallel input data lines is: 

Order Data Bus Name Data Bus Description 

1 d1d_net Rising edge DDR; DEMUX value 1 

2 d1_net Rising edge DDR; DEMUX value 0 

3 d2d_net Falling edge DDR; DEMUX value 1 
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4 d2_net Falling edge DDR; DEMUX value 0 

Table 10 - Data Sort Order 

The data out stream from this component feeds directly to the 

receiver/demodulator module.  The read clock from the FIFOs is 6.25 MHz (100MHz/16).  

The purpose of the slow output speed will be discussed later on.  Once the read state begins 

and the data is sent to the demodulator, it doesn’t cease until the FIFOs are empty, at which 

point the read/write state machine will wait on the demodulation process to complete. 

Each of the 8 FIFOs has a depth of 1024 and width of 12 bits.  The 12 bit width is due 

to the 12 bit ADC.  The 1024 depth, totaling 8192, guarantees at least one full transmitted 

data block is stored.  The transmitter repeats a block of data 2^15 bits long per channel.  

Each symbol has 32 data points per channel for the main tests and simulation.  Therefore, 

using a rounded off 21 GHz transmitter sampling rate and 1.6 GHz receiver sampling rate, 

the received points per symbol (N) is:  

 : = 32 ∗
1.6�9
21�9 ≈ 2.44 

Equation 52 

At 2.44 bits per symbol, each data block will take the following amount of memory: 

 >�80?@�# = 2�0 ∗
2.44

32
= 2497 

Equation 53 

 

 �@�4?	>�8>�8/0?@�# =
8192

2497
= 3.28 

Equation 54 

Therefore, each cycle stores 3.28 data blocks. 
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DataSort.vhd 

 

Figure 64 - Dual Channel DataSort.vhd Block Diagram 

The DataSort.vhd file instantiates, connects, and runs the interface components.  The 

two channels from the ADC are independent, but equivalent. Therefore, the same data 

chain exists for each channel, but with their respective inputs.  As seen in Figure 64, the 12 

bit, differential signals are connected from the ADC straight to the adcDATAinterface 

component, which performs differential to single ended conversion, followed by the 

inverse DDR process.  From the interface component, the 4 12-bit signals continue to the 
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demux_fifo_sort component.  The signals are registered, stored in FIFOs, read from the 

FIFOs, then sorted on the way out, ready to be processed by the DSP section of the top level 

design. 

The ADC outputs a separate clock for each channel, thus a DCM component is 

required for each to run the IDDRs, clock the input registers, and write to the FIFOs.  The 

read clock for the FIFOs, though, is the same 6.25 MHz clock from the 100 MHz DCM.  A 

state machine contained in the DataSort component assists in this clock domain transfer, as 

well as controlling read, write, DSP, and reset operations. 
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Figure 65 - DataSort.vhd State Machine 

Event Trigger 

1 Rising edge of 6.25 MHz clock & 100 MHz DCM locked 

2 Event 1 & PLL Initialization Complete 

3 Event 1 & PLL Locked Signal Received (external) 

4 Event 1 & ADC I and Q Clock DCMs Locked 

5 Event 1 & All Data Sort FIFOs Full 

6 Event 1 & All Data Sort FIFOs Not Empty 

7 Event 1 & All Data Sort FIFOs Empty and Invalid 

8 Event 1 & Receiver Check Done 

Table 11 - DataSort.vhd State Machine Events 
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Figure 65 and Table 11 describe the state machine in DataSort.vhd.  The initial state, 

stclkinit, checks for the 100 MHz DCM to lock onto the input 100 MHz crystal.  A control 

signal pllstart also is triggered during the 1st state to begin the PLL initialization process. 

The state machine continues onto the 2nd state, ststart, after receiving a rising ede from the 

6.25 MHz clock.  Ststart waits for the PLL initialization process to complete.  Once complete, 

stwaitPLLlock waits for a high signal from the external PLL to indicate the PLL has locked 

onto the 60 MHz crystal and the 1.6 GHz clock signal is being sent to the ADC.  All this time, 

the two ADC clock DCM components have been held in a reset state to ready them for the 

clock signal from the ADC.  This is done since the ADC DCMs rely on the clock from the ADC 

which relies on the clock from the PLL.  Enabling the ADC DCMs prior to the external PLL 

being locked results in the DCMs intermittently being able to lock.  Once the PLL signals a 

lock, the state machine enters stwaitDCMlock.  In this state, the ADC DCM reset signal is 

cleared and the ADC DCMs are allowed to detect the incoming clock signals.  Once both ADC 

DCM components signal they have locked onto their respective clock, the state machine 

moves onto strst_if_fifo.  The initialization process (as noted in Figure 65) is now complete. 

Strst_if_fifo marks the first state of the “Sample, Read, Data Check” loop.  This loop 

repeats the main process of the program.  As the name suggests, the interface components, 

FIFOs, and DSP data chain components are reset during strst_if_fifo.  Note: the DSP data 

chain components do not exist under DataSort.vhd, but rather ReceiverFinal.vhd.  After a 

single clock cycle, the state machine progresses to stwait to allow the reset signal to disable 

and the component to become ready.  After another single clock cycle, the state machine 

progresses to stwrite.  The FIFOs receive a write signal and continue to store data until they 
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are all full in stwrite.  Once all the FIFOs have enabled “full” indicators, the state machine 

proceeds to stclktransition.  This state’s only role is to smoothly synchronize the transition 

from the FIFO write clock (derivative of the ADC clock) to the read clock (derivative of the 

100 MHz clock).  The next state is stread, where the FIFOs are read from until all the FIFOs 

have enabled “empty” indicators.  Finally, the state machine enters into st_w8_Rxcheck.  

During this state the DataSort component has no role except to wait for the 

ReceiverFinal.vhd component to send a “check done” signal.  This signal is sent if either the 

receiver has checked a data block for errors or has run through all the data without being 

able to find the start of a data block.  Once that “check done” signal has been detected, the 

state machine repeats back to strst_if_fifo and begins the loop once again. 

 

Control Signal Function State(s) When Enabled (‘1’) 

pllstart Triggers PLL_init.vhd  to begin stclkinit 

pll_ce Allows PLL registers to be altered ALWAYS 

dclk_rst Resets ADC DCM components stclkinit, ststart, stwaitPLLlock 

rst_if_fifo Resets the input buffers, FIFOs, and the DSP 

data chain (external component) 

strst_if_fifo 

we_net Enables write to FIFO process stwrite 

rd_net Enables read from FIFO process stread 

set_net Sets all input buffers and registers to ‘1’ 

(debugging purposes) 

NEVER 

Table 12 - DataSort.vhd Control Signals 
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Table 12 lists and describes the control signals which exist within DataSort.vhd and 

in which state(s) they are enabled.  The signals pllstart and dclk_rst are active during the 

initialization process, then sit dormant.  The signals rst_if_fifo, we_net (we=write enable) , 

and rd_net (rd=read) are used to control the DataSort FIFOs and are enabled during their 

respective states. 
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ReceiverFinal.vhd 

 

Figure 66 - ReceiverFinal.vhd Block Diagram 

ReceiverFinal.vhd instantiates and connects all the Simulink generated components.  

The only non-Simulink components contained in this entity are two FIFOs separating the 

reclocking stage and the binary decoder.  The clock signals to run these components 

originate from the DataSort.vhd component.  The clock connections can be viewed in Figure 

66, but were discussed in detail previously on in this paper. 

The signal chain in this QAM, Nyquist-WDM receiver is very straight forward.  The 

two data inputs are the I and Q channels: 12-bit data at 6.25 MHz data rate.  The data is 

normalized (Normalizer1.mdl) to utilize the 12 bit width completely and output to 
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Inormalized and Qnormalized.  A match and derivative filter (IQ_Filter.mdl) manipulate the 

data and output to I1, Ideriv1, Q1, and Qderiv1.  Then, the phase recovery process 

(PhaseRecovery.mdl) is executed and results in I2, Ideriv2, Q2, and Qderiv2.  The next block 

(QAM_PLL.mdl) reclocks the signal, resampling at (ideally) only the QAM symbol extremes.  

The outputs from the reclocking process are the I and Q symbol points, I3 and Q3, and the 

trigger, trig_sample, to notify the next block when to sample the data.   

Two FIFOs break up the data chain to store the data.  Without the FIFOs between the 

clock recovery and the binary decoder section, the binary section of the process would 

have to be clocked using the trigger from the reclocking block.  Instead, the FIFOs store a 

block of data and then empty their contents to the remaining components of the data chain.  

The FIFOs feed into a QAM demodulator (QAMDemod.mdl) block.  Two binary data streams 

are created to be used by the next component (NinetyDegreeShift.mdl) to appropriately 

rotate the binary constellation to mimic the transmitted signal.  Finally, the last component 

(BarkerCheck_DataCheck.mdl) detects the beginning of a data block and checks the 

following binary string for errors. 

The three outputs from the final component make up the only three main (non-

debugging) output signals: errorcount, checkdone, and checkdoneright.  The signal 

errorcount indicates the number of errors in the current data check cycle.  Internally in 

ReceiverFinal.vhd, there exists two signals which indicate the receiver has finished: 

checkdoneright and checkdonewrong.  If either of these two signals are enabled, checkdone 

becomes enabled.  Checkdone is used by the higher level entity and DataSort.vhd to trigger 

a reset for the whole system.  The signal checkdonewrong is enabled when the 



119 

 

ReceiverFinal.vhd FIFOs empty their data storage without the final block detecting a start 

of data block.  In other words, no error count could be conducted because the receiver 

could not detect the known binary sequence placed at the front of the data.  Conversely, 

checkdoneright is enabled at the end of a received and triggered data block, signaling the 

receiver was able to detect the start of the data block and count the errors of the block.   

 

Figure 67 - ReceiverFinal.vhd State Machine 

 

Event Trigger 

1 Rising edge of 6.25 MHz clock 

2 Event 1 & Both FIFOs Full 

3 Event 1 & Both FIFOs Empty 

4 Event 1 & Reset Signal Received from DataSort.vhd 

Table 13 - ReceiverFinal.vhd Block Diagram 
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Due to the existence of the FIFOs and clock shift in ReceiverFinal.vhd, a small state 

machine exists.  This state machine can be thought of as existing under the rule of the 

DataSort state machine.  Beginning at stRst, the state machine continues onto stWrFIFO to 

store the data from the reclocking component.  Once the FIFOs are full, the state machine 

proceeds onto stRdFIFO to read the data from the FIFOs.  If a reset signal is detected from 

DataSort during either the FIFO write or read states the state machine will return back to 

stRst.  The state machine advances to stDoneRd if the FIFOs empty all their data.  After a 

single clock cycle, the state machine returns to stRst. 

 

Control Signal Function State(s) When Enabled (‘1’) 

wr_en Enables write to FIFO process stwrite 

rd_en Enables read from FIFO process stread 

checkdonewrong Signals that no error checking was 

completed 

stDoneRd 

Table 14 - ReceiverFinal.vhd Control Signals 1 

Control Signal Function Enabled When 

checkdoneright Signals that error checking was completed BarkerCheck_DataCheck.mdl 

signaled end of received 

desired data block 

checkdone Signals to the higher level entity that 

receiver process has completed 

Either checkdonewrong OR 

checkdoneright enabled 

Table 15 - ReceiverFinal.vhd Control Signals 2 
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Tables 14 and 15 list the internal control signals enable by specific states or other 

reasons, respectively.  The wr_en and rd_en signals enable the FIFOs to be written to and 

read from, respectively.   As explained previously, checkdonewrong indicates the FIFOs 

have emptied before an error counting process has completed and checkdoneright 

indicated a successful error counting process has completed.  The role of checkdone is to 

notify the external blocks that the receiver has completed a cycle, whether or not an error 

count could be accumulated. 

  



122 

 

TopLevelDesign.vhd 

 

Figure 68 - TopLevelDesign.vhd Block Diagram 

The overarching entity to combine all the elements of this project is 

TopLevelDesign.vhd.  This entity connects the external hardware directly to the DataSort 

component and outputs an error count and trial count to the computer using an ILA core.  

The necessary connections between DataSort and ReceiverFinal, as discussed above, are 

completed in this designed.  These signals are: clk200_net, clk50_net, clk25_net, clk6_25_net, 

and the I and Q channel data lines.  The sorted data output is unsigned binary, but the input 

of the receiver requires 2’s complement.  To do this conversion simply and quickly, the 

most significant bit of each line is flipped, while the rest of the bits are left alone. 
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Two D-flip-flops included in this design ensure the reset and “check done” signals 

are timed and held correctly.  FDCE_rst holds the reset signal an extra clock cycle before 

resetting the receiver component.  This extra time ensures the accumulators receive their 

respective signals and accurately record the data.  The second flip-flop, FDRSE_check, has a 

more complicated wiring scheme.  The “set” input is controlled by the checkdone_hold 

signal.  The reset input is controlled by the reset signal from the DataSort component.  The 

output, Q, feeds back into the input, D, and also to DataSort.vhd to inform the component 

the receiver has completed its process.  The following is a typical chain of events after to 

complete a data check cycle: 

Order Event Set Reset D Clk Q 

1 ReceiverFinal processing data;  

DataSort waiting for checkdone_hold 

0 0 0 X 0 

2 Receiver completes process 1 0 1 ↑ 1 

3 DataSort detects checkdone_hold  0 0 1 X 1 

4 DataSort advances its state machine to the 

reset state 

0 1 0 ↑ 0 

5 DataSort advances its state machine to the 

write FIFO state 

0 0 0 X 0 

6 Repeat to 1 0 0 0 X 0 

Table 16 - FDRSE_reset Logic Sequence 

The errors after each successful receiver cycle are accumulated in the 

ErrorAccumulator block.  A signal named errorcount_last is always connected to the 
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accumulator, but only adds to the successive sum when a checkdoneright signal is enabled.  

Therefore, when the receiver empties its self-contained FIFOs without detecting the 

beginning of a data block, the checkdone signal triggers the reset process, but does not 

accumulate error data from that trial.  But, when the receiver did detect the beginning of 

the data block, the accumulator adds the current errorcount_last term to the existing error 

count while triggering the reset process.  A checkdoneright signal also causes the 

TrialCounter component to add 1 to its count.  The user can access the error accumulation 

and the total of successful trials accounted for via the ILA core.  With this information, a 

simple division can compute the BER. 

 

 0�
 =
�AA@A���B8B?4��@��A�4?3@B�� ∗ 0���3ℎ��#��7�A�A�4? 

Equation 55 

Hardware Results 

The Nyquist-WDM signal could not successfully be demodulated by the DSP system 

on the FPGA.  The signals were sampled, sorted, and filtered, but were unable to be 

correctly resampled and demodulated.  The problem most likely occurred in one or two 

areas.  The binary point shifts could have proved to confuse and disrupt the system.  Also, it 

was noticed that the compiler dropped components due to inaccurately discerning they 

were unused, leaving a non-working, illogical system behind.  The MUXs proved to be 

especially problematic, even when correctly initialized. 
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Future Work and Possible Improvements 

The demo board’s serial connection to the computer could produce a continuous 

BER calculation.  The current system has upper limits as to how long it can run, although 

the upper limit is very high.  This would also remove the Chipscope cores, which would free 

up a decent amount of resources which, of course, are scarce.  This would open the door for 

BER vs Time implementation.  Additional studies could be done by altering the 

environment of the optical system and noting the effect on the BER on a time plot. 

The system would really benefit from a phase tracking and correction.  This 

component would be complex, given the packet-based nature of this project.  It would 

probably be near impossible to alter the current design to add this feature.  A system with a 

non-burst, memory based front end would be necessary.   

The most obvious end goal of this project is to compare OFDM and N-WDM 

resources with same taps.  The study would take on an OFDM system with a 128 tap DFT 

and an N-WDM system with a 128 match filter.  Due to the design of this project, the front 

end is interchangeable, so a simple swap out of the first component of the data 

demodulation chain between OFDM and N-WDM could be done.  With that, a direct 

comparison of resource use and BER could be done. 
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Appendix 

A. Digital PLL with Proportional plus Integrator loop filter derivation 

"�,� = -���,� $%�,� − %&�,�' =
1-�

1 − ,��,�� %&�,� 

Rearranging, 

 

%&�,� . 1-�

1 − ,��,�� + -���,�/ = -���,�%�,� 

 

���,� = %&�,�%�,� = -���,�
C 1-�

1 − ,��,�� + -���,�D =
-�-���,�,��

1 − ,�� + -�-���,�,�� 

Substituting, 

 

��,� = -� + -�

1

1 − ,�� 

 

���,� = -�-� E-� + -�
1

1 − ,��F ,��
1 − ,�� + -�-� E-� + -�

1
1 − ,��F ,�� ∗

1 − ,��
1 − ,�� 

 

���,� = -�-�G-�(1 − ,��) + -�H,��
1 − 2,�� + ,�� + -�-�G-�1 − ,�� + -�H,�� 

Finally, 

 

���,� = -�-�(-� + -�),�� − -�-�-�,��
1 − 2 $1 − 1

2
-�-�(-� + -�)' ,�� + (1 − -�-�-�),�� 
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B. Bilinear Transformation 

����� = 2(I�� + I�
��� + 2(I�� + I�

�
 

 

���,� = �����
|��

�
�
	
��2��

��2��

=
2(I� J2�	1 − ,��

1 + ,��K + I�
�

J2�	1 − ,��
1 + ,��K� + 2(I� J2�	1 − ,��

1 + ,��K + I�
�

 

 

Multiplying by 

�

��
�

�

��
�

 , 

���,� = 2( 1I�
J2�	1 − ,��

1 + ,��K + 1

J 1I�
	2�	1 − ,��

1 + ,��K� + 2( 1I�
J2�	1 − ,��

1 + ,��K + 1

 

 

 

Substituting �� =
���

�
, 

���,� = 2( 1%� 1 − ,��
1 + ,�� + 1

J 1%� 	1 − ,��
1 + ,��K� + 2( 1%� 1 − ,��

1 + ,�� + 1

 

 

Multiplying by 
��

�
(�	
��)

�

��
�
(�	
��)

�, 

���,� = 2(%��1 − ,����1 + ,��� + %���1 + ,�����1 − ,���� + 2(%��1 − ,����1 + ,��� + %���1 + ,���� 

���,� = L2(%� + %��M + L2%��M,�� + L−2(%� + %��M,��L1 + 2(%� + %��M − 2L1 − %��M,�� + L1 − 2(%� + %��M,�� 

 

Denote � = �1 + 2��� + ��
�� for organization, 

���,� = L2(%� + %��MN +
L2%��MN ,�� + L−2(%� + %��MN ,��

1 −
2L1 − %��MN ,�� + L1 − 2(%� + %��MN ,��  
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C. ReceiverSimulink.m 

clear all  
%load data and module filenames  
filenames  
  
%constants  
Fs=21.4186e9*(1-2.8181e-005);  
bitpersymbol=32; %each symbol = 2 bits, 4QAM  
ADCFs=1.6e9;  
interpfactor=4;  
chanspace=1.05;  
mfilterorder=100;  
%% 
%make 10 digital signal, resample, apply Nyquist fi lter, and  
%combine  
[tol,spe1,t,h,DataIn1]=TX_func([1 2 3 4 5 6 7 8 9 1 0...  
11],chanspace,bitpersymbol,Fs);  
  
%apply random/known phase change  
phchange=2*rand()*pi;phchange=2*0.083*pi(); %comment second for random  
tol=tol.*exp(1j*phchange);  
  
TOL=fftshift(fft(tol));  
SPE1=fftshift(fft(spe1));  
  
f1=linspace(-(Fs/2),(Fs/2),length(tol));  
%% 
%resampling Tx data rate (~21 GHz) to Rx data rate (1.6 GHz)  
upsamprate=7*2; %344;  
downsamprate=94*2; %4605;  
  
%make analog signal  
y=interp([tol],upsamprate);  
fy=linspace(-(Fs/2)*upsamprate,(Fs/2)*upsamprate,le ngth(y));  
Y=fftshift(fft(y));  
  
analogsig=[y];  
ANALOGSIG=fftshift(fft(analogsig));  
  
%load analog anti-aliasing filter response  
importfile(filter_550); filter550=data; clear colheaders  textdata  data  
%apply analog anti-aliasing filter  
[analogsig,ANALOGSIG]=chebysfilter(ANALOGSIG,fy,fil ter550);  
%% 
%shift phase and sample  
  
%resample to 1.6 GHz  
insig=downsample(analogsig,downsamprate);  
  
INSIG=fftshift(fft(insig));  
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f2=linspace(-
upsamprate*(Fs/2)/downsamprate,upsamprate*(Fs/2)/do wnsamprate,length(insig));  
  
%repeat the input signal to mimic the real Tx, shif t by random integer sample  
insig_repeat=[insig insig insig insig insig insig i nsig 
insig]/(max(insig)*1.2);  
insig_repeat=circshift(insig_repeat,[0 
round(rand()*bitpersymbol*upsamprate/downsamprate)] );  
%% 
%matched and derivative filting process  
  
%retime the input signal to be 32 clocks per sample  
tt=(0:32:32*length(insig_repeat)-1)';  
  
%organize and normalize the I Q signals  
reinsig=[tt real(insig_repeat)'];  
reinsig(:,2)=reinsig(:,2)/max(abs(reinsig(:,2)))/2; %/2 
iminsig=[tt imag(insig_repeat)'];  
iminsig(:,2)=iminsig(:,2)/max(abs(iminsig(:,2)))/2; %/2 
  
% simple enable signal to keep the filters running always  
nd=[tt ones(length(tt),1)];  
  
R=Fs*chanspace/(bitpersymbol);beta=.1;  
Fpass=R/(ADCFs*interpfactor*chanspace); %match filter pass freq  
Fstop=R*(2-(1-beta))/(ADCFs*interpfactor); %match filter stop freq  
mf = matchfiltermaker(mfilterorder,Fpass,Fstop); %create match filter  
  
Fpass=R/(ADCFs*interpfactor); %deriv filter pass freq  
Fstop=R*(2-2*(1-beta)/1.9)/(ADCFs*interpfactor); %deriv filter stop freq  
df=derivfiltermaker(Fpass,Fstop); %create deriv filter  
  
%run the IQ filter Simulink module  
sim(IQ_Filter_mdl);  
  
%capture outputs  
matchI=downsample(yout(:,2),32/interpfactor); 
derivI=downsample(yout(:,3),32/interpfactor);  
matchQ=downsample(yout(:,6),32/interpfactor); 
derivQ=downsample(yout(:,7),32/interpfactor);  
  
%calculate fft of the match filter output  
MATCH=fftshift(fft(matchI));  
f3=linspace(-upsamprate*(Fs/2)/downsamprate*interpf actor,upsamprate*(Fs/2)  
... /downsamprate*interpfactor,length(MATCH));  
  
%plot the -original analog signal (TOL),  
%         -baseband analog signal (SPE1),  
%         -signal after resampling and anti-alias f ilting (ANALOGSIG)  
%         -signal sampled by the ADC (INSIG)  
%         -inphase (I) signal after match filtering  (MATCH)  
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figure(1)  
plot(f1,mag2db(abs(TOL))-max(mag2db(abs(TOL))) ...  
    ,f1,mag2db(abs(SPE1))-max(mag2db(abs(SPE1))) ...  
    ,fy,mag2db(abs(ANALOGSIG))-max(mag2db(abs(ANALO GSIG))), ...  
    f2,mag2db(abs(INSIG))-max(mag2db(abs(INSIG))) ...  
    ,f3,mag2db(abs(MATCH))-max(mag2db(abs(MATCH))))  
legend( 'tol' , 'spe1' , 'analogsig' , 'insig' , 'match' );  
xlabel( 'freq (GHz)' ),ylabel( 'magnitude (dB)' )  
%% 
%phase recovery  
  
% keep same timing from IQ_Filter_mdl output  
tt=0:1:length(matchI)-1;  
  
%organize the I Q and derivative signals  
Ifilt=[tt' matchI];Id1=[tt' derivI];  
Qfilt=[tt' matchQ];Qd1=[tt' derivQ];  
  
%apply reset signal at beginning of signal, then ne ver again  
rst=zeros(length(matchI),1);rst(1:2)=[1 1];  
rst=[tt' rst];  
  
%run Phase Recovery Simulink module  
sim(Phase_Recovery)  
  
%capture outputs  
Iphasecorrected=yout(:,1); Id=yout(:,2);  
Qphasecorrected=yout(:,3); Qd=yout(:,4);  
%% 
%clock recovery  
  
tt=0:1:length(Iphasecorrected)-1;  
  
%organize the I Q and derivative signals, normalize  the deriv signals  
maxId=max(abs(Id));  
Iphasecorrected=[tt' Iphasecorrected];Id=[tt' Id/ma xId];  
maxQd=max(abs(Qd));  
Qphasecorrected=[tt' Qphasecorrected];Qd=[tt' Qd/ma xQd];  
  
%define PLL gain/noise bandwidth factors and alloca te memory  
BnTs=0.002511886431510;  
Kp=0.001584893192461;  
trigIsums=zeros(length(BnTs),length(Kp));errorCntsu ms=trigIsums;  
N=bitpersymbol/(Fs/ADCFs)*4;invN=1/N;zeta=1/sqrt(2) ;K0=-1;  
  
%calculate PLL constants  
A = BnTs/(zeta+1/(4*zeta));  
B = zeta/N;  
D = 1+2*B*A+(A/N)^2;  
K1 = 2*B*A/(D*Kp*K0);  
K2 = 2/(N^2)*A^2/(D*Kp*K0);  
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%run QAM PLL Simulink module  
sim(QAM_PLL_mdl);  
  
%QAM_PLL time plot  
loopAdjust=yout(:,11);  
x1=500:1000;x1l=length(x1);  
x2=x1;x2l=length(x2);  
  
figure(2)  
plot(x1+14,yout(x1,1),x1+14,yout(x1,6),x1,yout(x1,2 ),x1,yout(x1,3)*.2, 'o' , ...  
    x1,yout(x1,4),x1,yout(x1,5),x1,yout(x1,9),x1,lo opAdjust(x1), ':' )  
legend( 'I match in' , 'Q match in' , 'deriv in' , 'trig' , 'trigged match' , ...  
    'I to FB' , 'Q to FB' , 'Loop Adjust' )  
%% 
%calculate PLL clocking shift vs time  
cnt=1;temp=0;shift=0;  
  
IoutT=yout(:,4);Iin=yout(:,1);  
QoutT=yout(:,10);Qin=yout(:,6);  
  
Iout(1)=IoutT(1);Qout(1)=QoutT(1);cnt1=2;  
 
for  ii=1:length(yout(:,1))  
    if  yout(ii,3)==1  
        if  temp==0  
            temp=ii;  
        else  
            trigL(cnt,1)=ii-temp;  
            if  cnt > 1  
                shift(cnt,1)=trigL(cnt,1)-  ... 
bitpersymbol*upsamprate/downsamprate*interpfactor+s hift(cnt-1,1);  
                shift(cnt,2)=ii;  
            end  
            cnt=cnt+1;  
            temp=ii;  
        end  
         
        Iout(cnt1)=IoutT(ii);  
        Qout(cnt1)=QoutT(ii);  
        DataIndices(1,cnt1)=ii;  
        cnt1=cnt1+1;  
    end  
end  
  
figure(3)  
plot(shift(:,2),shift(:,1))  
legend( 'shift amount' )  
%% 
%scatter plot of input, phase recovered, and clock recovered signals  
figure(6)  
scatter(matchI,matchQ)  
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hold on 
scatter(Iphasecorrected(:,2),Qphasecorrected(:,2))  
  
scatter(Iout*1.5,Qout*1.5)  
hold off  
%% 
%QAM demod 
  
%organize data and time arrays for QAM demod  
tt=0:2:2*length(Iout)-1;  
I1i=[tt' Iout'];  
Q1i=[tt' Qout'];  
%plot input to QAM Demod  
st=2;ed=1000;  
xx=linspace(st,ed,ed-st+1);  
figure(5)  
plot(xx,Iout(xx), 'o' ,xx,Qout(xx), 'o' )  
  
%run QAM Demod Simulink model  
sim(QAMDemod_mdl); %clk = clk/2  
%% 
%180 degree phase shift checker/executer  
  
%reclock 4x oversampling  
tt=0:4:4*length(yout)-1;  
dataIQ=[tt' yout(:,1)];  
dataInegQ=[tt' yout(:,2)];  
  
%reset first 2 samples, none after  
rst=[tt' [ones(2,1);zeros(length(tout)-2,1)]];  
  
%create 50 MHz (non-oversampled data rate) signal  
clk_50MHz=repmat([0 0 0 0 1 1 1 1],1,ceil((length(y out))/8*4));  
t2=0:length(clk_50MHz)-1;  
clk_50MHz=[t2' clk_50MHz'];  
  
%run 180 degree shift correcter Simulink module  
sim(NinetyDegreeShift_mdl)  
  
%capture outputs and output text of any shift event s  
shift_pt3=yout(:,4);  
shift_pt3i=find(shift_pt3==1);  
fprintf( 'shift 180 pt3 %i\r' ,shift_pt3i)  
shift_pt4=yout(:,3);  
shift_pt4i=find(shift_pt4==1);  
fprintf( 'shift 180 pt4 %i\r' ,shift_pt4i)  
shift_pt7=yout(:,2);  
shift_pt7i=find(shift_pt7==1);  
fprintf( 'shift 180 pt7 %i\r' ,shift_pt7i)  
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%capture main and other outputs  
tt=0:1:1*length(yout)-1;  
data=[tt' yout(:,1)];  
filt180in_1=yout(:,5);filt180out_1=yout(:,8);  
filt180in_2=yout(:,6);filt180out_2=yout(:,9);  
filt180in_3=yout(:,7);filt180out_3=yout(:,10);  
%% 
%BER checker  
  
%run BER checker  
load(DataIn1_2048)  
sim(BarkerDataChecker_mdl); %clk = clk  
  
%capture several intermediate outputs for debugging  
barkerfilt=yout(:,1);  
trigI=yout(:,2);  
trigQ=yout(:,3);  
  
%check/display beginning of data segments  
wait=1;  
  
for  ii=1:length(yout(:,1))  
    if  wait==1  
        if  yout(ii,2) ==1  
            fprintf( 'trigI %i\r' ,ii)  
            wait=0;  
        end  
    end  
    if  wait ==1  
        if  yout(ii,3) ==1  
            fprintf( 'trigQ %i\r' ,ii)  
            wait=0;  
        end  
    end  
    if  wait ==0  
        if  ((yout(ii,2) == 0) && (yout(ii,3) ==0))  
            wait =1;  
        end  
    end  
end  
  
%capture and display error count  
errorCnt=downsample(yout(:,5),4);  
done=downsample(yout(:,8),4);  
percentDone=downsample(yout(:,9)/2176,4);  
  
doneI=find(done==1);  
  
fprintf( 'error count %i\r' ,errorCnt(doneI))  

 



134 

 

D. ReceiverPP.mat 

clear all  
filenames  
di=load( 'D:\\Work\\Masters 
Project\\Matlab\\ReceiverFinal\\Data\\C2i100000_wf1 .dat' );  
dq=load( 'D:\\Work\\Masters 
Project\\Matlab\\ReceiverFinal\\Data\\C3q100000_wf1 .dat' );  
  
bitpersymbol=32;  
Fs=21.4186e9*(1-2.8181e-005);  
ADCFs=1.6e9;chanspace=1.3;interpfactor=4;  
mfilterorder=100;  
  
  
di=interp(di,2); di=downsample(di,25);  
dq=interp(dq,2); dq=downsample(dq,25);  
  
DI=fftshift(fft(di));  
DQ=fftshift(fft(dq));  
f1=linspace(-800e6,800e6,length(DI));  
  
  
%% 
tt=0:length(di)-1;  
rst=[tt' zeros(length(di),1)];  
  
in=[tt' di];  
sim(Normalizer1_mdl)  
di_normalized=yout(:,1);  
  
in=[tt' dq];  
sim(Normalizer1_mdl)  
dq_normalized=yout(:,1);  
  
%% 
tt=(0:32:32*length(dq_normalized)-1)';  
reinsig=[tt di_normalized];  
iminsig=[tt dq_normalized];  
% iminsig(:,2)=iminsig(:,2)/max(abs(iminsig(:,2)))/ 2;  
  
nd=[tt ones(length(tt),1)];  
  
R=Fs*chanspace/(bitpersymbol);beta=.1;  
Fpass=R/(ADCFs*interpfactor*chanspace); %match filter pass freq  
Fstop=R*(2-(1-beta))/(ADCFs*interpfactor); %match filter stop freq  
mf = matchfiltermaker(mfilterorder,Fpass,Fstop); %create match filter  
  
Fpass=R/(ADCFs*interpfactor); %deriv filter pass freq  
Fstop=R*(2-2*(1-beta)/1.9)/(ADCFs*interpfactor); %deriv filter stop freq  
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df=derivfiltermaker(Fpass,Fstop); %create deriv filter  
  
sim(IQ_Filter_mdl);  
Imatch=yout(:,2);  
matchI=downsample(yout(:,2),8); derivI=downsample(y out(:,3),8);  
matchQ=downsample(yout(:,6),8); derivQ=downsample(y out(:,7),8);  
  
MATCH=fftshift(fft(matchI));  
f2=linspace(-800e6*4,800e6*4,length(MATCH));  
  
figure(1)  
plot(f1,mag2db(abs(DI))-max(mag2db(abs(DI))) ...  
    ,f2,mag2db(abs(MATCH))-max(mag2db(abs(MATCH))), ':' )  
legend( 'Input' , 'Filter Stage Output' )  
  
  
%% 
%phase recovery  
  
% keep same timing from IQ_Filter_mdl output  
tt=0:1:length(matchI)-1;  
  
%organize the I Q and derivative signals  
Ifilt=[tt' matchI];Id1=[tt' derivI];  
Qfilt=[tt' matchQ];Qd1=[tt' derivQ];  
  
%apply reset signal at beginning of signal, then ne ver again  
rst=zeros(length(matchI),1);rst(1:2)=[1 1];  
rst=[tt' rst];  
  
%run Phase Recovery Simulink module  
sim(Phase_Recovery)  
  
%capture outputs  
Iphasecorrected=yout(:,1); Id=yout(:,2);  
Qphasecorrected=yout(:,3); Qd=yout(:,4);  
  
%% 
%clock recovery  
  
tt=0:1:length(Iphasecorrected)-1;  
  
%organize the I Q and derivative signals, normalize  the deriv signals  
maxId=1; %max(abs(Id));  
Iphasecorrected=[tt' Iphasecorrected];Id=[tt' Id/ma xId];  
maxQd=1; %max(abs(Qd));  
Qphasecorrected=[tt' Qphasecorrected];Qd=[tt' Qd/ma xQd];  
  
clk6_25=repmat([0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 
1],1,ceil((length(Iphasecorrected))/16));  
t2=0:length(Iphasecorrected)+2;  
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clk6_25=[t2' clk6_25'];  
  
loop_fb_sel=[ones(25,1);zeros(length(Iphasecorrecte d)-25,1)];  
loop_fb_sel=[tt' loop_fb_sel];  
  
BnTs=logspace(-3,-1,6);  
% Kp=linspace(.05,.8,8);  
Kp=logspace(-4,-1,6);  
trigIsums=zeros(length(BnTs),length(Kp));errorCntsu ms=trigIsums;  
N=bitpersymbol/(Fs/ADCFs)*4;invN=1/N;zeta=1/sqrt(2) ;K0=-1;  
  
% for BnTsii=1:length(BnTs)  
        for  BnTsii=2  
%      
%         for Kpii=4  
    for  Kpii=3  
    [BnTsii Kpii]  
         
         
        A = BnTs(BnTsii)/(zeta+1/(4*zeta));  
        B = zeta/N;  
        D = 1+2*B*A+(A/N)^2;  
        K1 = 2*B*A/(D*Kp(Kpii)*K0);  
        K2 = 2/(N^2)*A^2/(D*Kp(Kpii)*K0);  
        %run QAM PLL Simulink module  
        sim(QAM_PLL_mdl);  
         
        loopAdjust=yout(:,11);  
         
        %QAM_PLL time plot  
        x1=500:1000;x1l=length(x1);  
        x2=x1;x2l=length(x2);  
         
        figure(2)  
        
plot(x1+14,yout(x1,1),x1+14,yout(x1,6),x1,yout(x1,2 ),x1,yout(x1,3)*.2, 'o' , ...  
            x1,yout(x1,4),x1,yout(x1,5),x1,yout(x1, 9),x1,loopAdjust(x1), ':' )  
        legend( 'I match in' , 'Q match in' , 'deriv in' , 'trig' , 'trigged 
match' , ...  
            'I to FB' , 'Q to FB' , 'Loop Adjust' )  
         
        %%  
        %calculate PLL clocking shift vs time  
        cnt=1;temp=0;shift=0;  
         
        IoutT=yout(:,4);Iin=yout(:,1);  
        QoutT=yout(:,10);Qin=yout(:,6);  
         
        Iout(1)=IoutT(1);Qout(1)=QoutT(1);cnt1=2;  
         
        for  ii=1:length(yout(:,1))  
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            if  yout(ii,3)==1  
                if  temp==0  
                    temp=ii;  
                else  
                    trigL(cnt,1)=ii-temp;  
                    if  cnt > 1  
                        shift(cnt,1)=trigL(cnt,1)-N +shift(cnt-1,1);  
% shift(cnt,1)=trigL(cnt,1)-10+shift(cnt-1,1);  
                        shift(cnt,2)=ii;  
                    end  
                    cnt=cnt+1;  
                    temp=ii;  
                end  
                 
                Iout(cnt1)=IoutT(ii);  
                Qout(cnt1)=QoutT(ii);  
                DataIndices(1,cnt1)=ii;  
                cnt1=cnt1+1;  
            end  
        end  
         
        figure(3)  
        plot(shift(:,2),shift(:,1))  
        legend( 'shift amount' )  
         
        %%  
        %scatter plot of input, phase recovered, and clock recovered signals  
                figure(6)  
                scatter(matchI,matchQ)  
         
                hold on 
                scatter(Iphasecorrected(:,2),Qphase corrected(:,2))  
         
                scatter(Iout*1.5,Qout*1.5)  
                hold off  
         
         
        %%  
        %QAM demod 
         
        %organize data and time arrays for QAM demod  
        tt=0:2:2*length(Iout)-1;  
        I1i=[tt' Iout'];  
        Q1i=[tt' Qout'];  
        %plot input to QAM Demod  
        st=2;ed=1000;  
        x=linspace(st/2,ed/2,(ed-st)/2+1);x1=st:2:e d;  
        xx=linspace(st,ed,ed-st+1);  
        x=1:length(Iout);  
        figure(5)  
        % plot(x1,I1i(x,2),':o',x1,Q1i(x,2),'-o')  
        plot(x,Iout, 'o' ,x,Qout, 'o' )  
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        %%  
        %run QAM Demod Simulink model  
        sim(QAMDemod_mdl); %clk = clk/2  
         
         
        %%  
        %180 degree phase shift checker/executer  
         
        %reclock 4x oversampling  
        tt=0:4:4*length(yout)-1;  
        dataIQ=[tt' yout(:,1)];  
        dataInegQ=[tt' yout(:,2)];  
         
        %reset first 2 samples, none after  
        rst=[tt' [ones(2,1);zeros(length(tout)-2,1) ]];  
         
        %create 50 MHz (non-oversampled data rate) signal  
        clk_50MHz=repmat([0 0 0 0 1 1 1 1],1,ceil(( length(yout))/8*4));  
        t2=0:length(clk_50MHz)-1;  
        clk_50MHz=[t2' clk_50MHz'];  
         
        %run 180 degree shift correcter Simulink module  
        sim(NinetyDegreeShift_mdl)  
         
        %capture outputs and output text of any shift event s  
        shift_pt3=yout(:,4);  
        shift_pt3i=find(shift_pt3==1);  
        fprintf( 'shift 180 pt3 %i\r' ,shift_pt3i)  
        shift_pt4=yout(:,3);  
        shift_pt4i=find(shift_pt4==1);  
        fprintf( 'shift 180 pt4 %i\r' ,shift_pt4i)  
        shift_pt7=yout(:,2);  
        shift_pt7i=find(shift_pt7==1);  
        fprintf( 'shift 180 pt7 %i\r' ,shift_pt7i)  
         
        %capture main and other outputs  
        tt=0:1:1*length(yout)-1;  
        data=[tt' yout(:,1)];  
        filt180in_1=yout(:,5);filt180out_1=yout(:,8 );  
        filt180in_2=yout(:,6);filt180out_2=yout(:,9 );  
        filt180in_3=yout(:,7);filt180out_3=yout(:,1 0);  
         
        %%  
        %BER checker  
         
        %run BER checker  
        load(DataIn1_2048_50err)  
        sim(BarkerDataChecker_mdl); %clk = clk  
         
        %capture several intermediate outputs for debugging  
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        barkerfilt=yout(:,1);  
        trigI=yout(:,2);  
        trigQ=yout(:,3);  
         
        %check/display beginning of data segments  
        wait=1;  
         
        for  ii=1:length(yout(:,1))  
            if  wait==1  
                if  yout(ii,2) ==1  
                    fprintf( 'trigI %i\r' ,ii)  
                    wait=0;  
                end  
            end  
            if  wait ==1  
                if  yout(ii,3) ==1  
                    fprintf( 'trigQ %i\r' ,ii)  
                    wait=0;  
                end  
            end  
            if  wait ==0  
                if  ((yout(ii,2) == 0) && (yout(ii,3) ==0))  
                    wait =1;  
                end  
            end  
        end  
         
        %capture and display error count  
        errorCnt=downsample(yout(:,5),4);  
        done=downsample(yout(:,8),4);  
        percentDone=downsample(yout(:,9)/2176,4);  
         
        doneI=find(done==1);  
         
        fprintf( 'error count %i\r' ,errorCnt(doneI))  
         
        trigIsums(BnTsii,Kpii)=sum(trigI);  
        errorCntsums(BnTsii,Kpii)=sum(errorCnt(done I));  
         
        if  length(doneI)>4  
            if  doneI(2)==50  
        figure(7)  
        subplot(length(BnTs),length(Kp),(BnTsii-1)* length(Kp)+Kpii)  
        scatter(Iout,Qout)  
            end  
        end  
    end  
end  
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E. BER Data 

BER vs Match Filter Order 

Tx 

sm/sy                         

32 

   

Filt N 

       

  

FstpF 

  

  25 50 80 100 150 250 500 1000   

2 

  

  0.039597 0.024038 0.005874 0.001669 0.000771 0.000584 0.000546 0.00038   

dataL 

  

                    

16384 

  

                    

V&V 

  

                    

16 

  

                    

R factor 

  

                    

1 

  

                    

InPhase 

  

                    

0.083 

  

                    

  

  

                    

                          

  

           

  

  

 

Data         Filt N           

  

 

    25 50 80 100 150 250 500 1000   

  

 

    0.036326 0.023475 0.005628 0.001747 1.30E-03 0.00013 0.00039 0.000917   

  

 

    0.034387 0.026256 0.008992 0.001747 6.48E-04 0.000648 6.51E-05 0   

  

 

    0.051128 0.018496 0.005757 0.001165 7.12E-04 0.000584 0.001171 9.82E-04   

  

 

    0.033676 0.025998 0.004722 0.001941 5.18E-04 0.000973 0.001431 0.000131   

  

 

    0.051968 0.023928 0.006598 0.001941 0.000583 0.001621 0.001041 0.000196   

  

 

    0.046927 0.023411 0.00414 0.002071 0.001036 0.000454 0 0.000262   

  

 

    0.034581 0.027032 0.005628 0.001747 0 6.48E-05 0.000455 0.000524   

  

 

    0.036908 0.024639 0.004269 0.000971 0.000842 0.000973 0 0   

  

 

    0.03555 0.027679 0.006986 0.002459 0.001101 0.000259 0.00039 0.000393   

  

 

    0.034516 0.019466 0.006016 0.000906 0.000971 0.00013 0.00052 0.000393   
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BER vs Match Filter Order vs Channel Spacing 

Tx sm/sy                     

32 FiltN   

FstpF   25 60 80 100 150 250 500   

2 100% 0.24213 0.156654 0.136986 0.087695 0.061862 0.058376 0.057793   

dataL 105% 0.084394 0.068227 0.049744 0.038801 0.03078 0.030107 0.0337   

16384 110% 0.041583 0.025502 0.015956 0.01486 0.011548 0.013422 0.010713   

V&V ChanS 120% 0.003835 0.001423 0.001251 0.000927 0.001792 0.001535 0.001908   

8 130% 0.00028 0.000129 2.16E-05 0 0 2.16E-05 0.00013   

FiltN 140% 0 0 0 0 0 0 0   

100                   

InPhase                   

9.71E-02                   

                    

                      

    

  Data       V&V           

      0 1 2 4 8 16 24   

              1.00  0.133346 0.147901 0.111521 0.091427 5.69E-02 0.055437 0.055754   

  ChSp           1.05  0.084739 0.059368 0.051814 0.039146 3.28E-02 0.030993 0.033635   

              1.10  0.044535 0.024963 0.017918 0.012811 8.87E-03 0.012514 0.01119   

              1.20  2.65E-03 0.001164 0.000517 0.001488 2.46E-03 0.002399 0.001822   

              1.30  6.46E-05 0 6.47E-05 0 0 6.48E-05 0   

              1.40  0 0 0 0 0 0 0   

          V&V           

      0 1 2 4 8 16 24   

              1.00  0.294939 0.160189 0.166505 0.086962 5.99E-02 0.059392 0.059463   

  ChSp           1.05  0.084481 0.071784 0.051038 0.039405 2.83E-02 0.028983 0.029796   

              1.10  0.036003 0.030783 0.016172 0.014882 1.38E-02 0.014718 0.011906   

              1.20  0.003749 0.00194 0.001811 0.000388 0.000907 4.54E-04 0.002017   

              1.30  0.000776 1.29E-04 0.00E+00 0 0 0 0.00013   

              1.40  0 0 0 0 0 0.00E+00 0   

          V&V           

      0 1 2 4 8 16 24   

              1.00  0.298106 0.16187 0.132932 0.084698 6.88E-02 0.0603 0.058161   

  ChSp           1.05  0.083964 0.07353 0.046381 0.037852 3.12E-02 0.030344 0.037668   

              1.10  0.044212 0.020759 0.013778 0.016888 1.20E-02 0.013032 0.009043   

              1.20  0.005106 0.001164 0.001423 0.000906 0.002007 0.001751 0.001887   

              1.30  0 0.000259 0 0 0 0 0.00026   

              1.40  0.00E+00 0 0 0 0 0 0   
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BER vs Percent Analog Fitler Bandwidth vs V&V Ratio 

Tx 

sm/sy                         

32 

   

V&V 

       

  

filter N 

  

  0 1 2 4 8 16 24 32   

150 

 

12 159% 0.233885 0.230096 0.344094 0.319844 0.163841 0.364274 0.125171 0.321706   

FstpF 

 

16 119% 0.056885 0.239498 0.116797 0.185228 0.03721 0.009881 0.00294 0.000281   

2 

 

20 95% 0.010046 0.111176 0.042128 0.021799 0.007778 0.000756 0 0   

dataL 

 

24 80% 0.014448 0.105993 0.045265 0.026131 0.008682 0.001037 4.32E-05 4.32E-05   

16384 

 

28 68% 0.010599 0.109384 0.050083 0.025452 0.00762 0.000756 0 0   

V&V 

 

32 60% 0.012886 0.097498 0.056768 0.030111 0.006497 0.000496 0.00013 0   

8 

 

36 53% 0.019656 0.105508 0.061234 0.034846 0.010011 0.000734 0.000151 6.47E-05   

R factor 

 

40 48% 0.027007 0.109882 0.054509 0.032464 0.012964 0.000884 6.47E-05 0   

1 

 

50 38% 0.058277 0.103117 0.061232 0.040181 0.017017 0.002049 0.000345 0.000367   

InPhase 

 

60 32% 0.089494 0.120755 0.077615 0.0575 0.024578 0.009939 0.006339 0.006662   

0.083                         

  

           

  

  

 

Data         V&V           

  

 

    0 1 2 4 8 16 24 32   

  

 

  12 0.229035 0.225528 0.378954 0.165963 1.68E-01 0.419617 0.127834 0.423774   

  

 

  16 0.058961 0.379062 0.113252 0.078615 3.74E-02 0.010443 0.002854 0   

  

 

  20 0.009398 0.10221 0.04161 0.016722 8.04E-03 0.000907 0 0.00E+00   

  

 

  24 0.014383 0.105993 0.044639 0.026174 9.65E-03 0.002203 0 0.00013   

  

 

N Tx 28 0.009973 0.110096 0.048961 0.025128 0.007836 0.000583 0 0   

  

 

  32 0.011526 0.097002 0.057308 0.028362 0.008224 0.001036 0.000389 0   

  

 

  36 0.022785 0.107062 0.066024 0.035277 0.009645 0.000647 0 0   

  

 

  40 0.022779 0.10341 0.057206 0.032874 0.012036 0.000777 0 0   

  

 

  50 0.056551 0.105209 0.063863 0.03934 0.016758 0.001229 0.000453 0.000324   

  

 

  60 0.091391 0.116875 0.077033 0.061768 0.022638 0.011125 0.006533 0.006533   

  

 

          V&V           

  

 

    0 1 2 4 8 16 24 32   

  

 

  12 0.238909 0.22897 0.377785 0.397012 1.49E-01 0.248782 0.130692 0.113024   

  

 

  16 0.054031 0.163196 0.114679 0.078615 3.55E-02 0.009405 0.002919 0   

  

 

  20 0.009398 0.117506 0.043165 0.023009 8.94E-03 0.000648 0 0   

  

 

  24 0.013541 0.103013 0.042306 0.025008 0.008682 1.94E-04 0.00013 0   

  

 

N Tx 28 0.009973 0.110874 0.049867 0.024221 0.008354 0.001554 0 0   

  

 

  32 0.013598 0.09752 0.057437 0.031406 0.005698 6.48E-05 0 0   

  

 

  36 0.019483 0.107256 0.058321 0.03217 0.010551 8.41E-04 0.000324 0   

  

 

  40 0.036562 0.112664 0.055717 0.031774 0.012942 0.001683 6.47E-05 0   

  

 

  50 0.062828 0.104885 0.058428 0.042834 0.018117 0.00317 0.000324 0.000324   

  

 

  60 0.088093 0.121984 0.077421 0.056659 0.022896 0.009249 0.006144 0.006144   

  

 

  

    

V&V 

   

    

  

 

    0 1 2 4 8 16 24 32   

  

 

  12 0.233712 0.235791 0.275544 0.396557 1.74E-01 0.424424 0.116986 0.428321   

  

 

  16 0.057664 0.176234 0.122462 0.398456 3.88E-02 0.009794 0.003049 0.000843   

  

 

  20 0.011342 0.113812 0.04161 0.025666 6.35E-03 0.000713 0 0   

  

 

  24 0.01542 0.108973 0.04885 0.027211 0.00771 0.000713 0 0   

  

 

N Tx 28 0.011852 0.107182 0.051422 0.027006 0.006671 0.00013 0 0   

  

 

  32 0.013534 0.097973 0.055559 0.030564 0.005569 0.000389 0 0   

  

 

  36 0.0167 0.102207 0.059357 0.03709 0.009839 0.000712 0.000129 0.000194   

  

 

  40 0.021679 0.11357 0.050605 0.032744 0.013913 0.000194 0.000129 0.00E+00   

  

 

  50 0.055451 0.099256 0.061404 0.038369 0.016176 0.001747 0.000259 4.53E-04   

  

 

  60 0.088998 0.123407 0.078391 0.054072 0.0282 0.009443 0.006339 0.007309   
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BER vs Input Phase Angle vs Viterbi-Viterbi Ratio 

Tx 

sm/sy                         

32 V&V   

filter 

N   0 1 2 4 8 16 24 32   

150 0.000 0 0.015865 0.003734 0.001813 0.00041 0 0 0   

FstpF 0.014 0 0.019793 0.005483 0.002633 0.000324 0 0 0   

2 0.028 0 0.025276 0.008289 0.003432 0.000453 0 0 0   

dataL 0.042 0 0.033802 0.013836 0.004921 0.000928 0 0 0   

16384 In Phase 0.056 0.000302 0.05189 0.021067 0.009001 0.001684 0 0 0   

ChS 0.069 0.002007 0.066654 0.032399 0.013534 0.003885 6.48E-05 0 0   

1.05 0.083 0.014678 0.099722 0.057804 0.02778 0.009605 0.000971 8.63E-05 0   

R 

factor 0.097 0.061365 0.15364 0.099204 0.067755 0.030629 0.005375 0.001209 0.000281   

1 0.111 0.178312 0.239699 0.200458 0.164023 0.127307 0.067237 0.032032 0.026657   

  0.1249 0.375726 0.376783 0.375639 0.374107 0.367934 0.377625 0.360552 0.389799   

                          

    

  Data         V&V           

      0 1 2 4 8 16 24 32   

    0 0 0.013857 0.003302 0.001554 5.18E-04 0 0 0   

    0.013889 0 0.019426 0.005504 0.002461 6.48E-05 0 0 0.00E+00   

    0.027778 0 0.023765 0.007058 0.003367 4.53E-04 0 0 0   

    0.041667 0 0.03283 0.010814 0.003108 0.000583 0 0 0   

  InPhase 0.055556 0.000194 0.05148 0.018131 0.007835 0.001813 0 0 0   

    0.069444 0.001619 0.069028 0.032442 0.015023 0.005116 0.000194 0 0   

    0.083333 0.01457 0.100434 0.054653 0.026161 0.006734 0.000324 0 0   

    0.097222 0.062358 0.151719 0.102312 0.069481 0.025837 0.008353 0.000648 0   

    0.111111 0.177686 0.235317 0.200479 0.163958 0.121673 0.062423 0.029593 0.016901   

    0.1249 0.376935 0.367804 0.371107 0.380431 0.357573 0.350774 0.360681 0.38613   

            V&V           

      0 1 2 4 8 16 24 32   

    0 0 0.017225 0.004339 0.002266 1.30E-04 0 0 0   

    0.013889 0 0.019621 0.005569 0.002914 5.83E-04 0 0 0   

    0.027778 0 0.02493 0.010166 0.003561 0.000324 0.00E+00 0 0   

    0.041667 0 0.035874 0.0158 0.006475 0.000648 0 0 0   

  InPhase 0.055556 0.000453 0.052451 0.021498 0.008289 0.000971 0 0 0   

    0.069444 0.002202 0.064366 0.030758 0.01457 0.003756 0.00E+00 0 0   

    0.083333 0.015023 0.100758 0.058085 0.030888 0.01049 0.001425 0 0   

    0.097222 0.061776 0.152496 0.097002 0.067021 0.03283 0.00531 0.000777 0.000842   

    0.111111 0.174059 0.246196 0.196723 0.162339 0.132163 0.071035 0.03173 0.038529   

    0.1249 0.374021 0.380302 0.378942 0.367286 0.363077 0.40439 0.337693 0.410283   

    V&V     

      0 1 2 4 8 16 24 32   

    0 0 0.016512 0.003561 0.001619 5.83E-04 0 0 0   

    0.013889 0 0.020333 0.005375 0.002525 3.24E-04 0 0 0   

    0.027778 0 0.027132 0.007641 0.003367 0.000583 0 0 0   

    0.041667 0 0.032701 0.014893 0.00518 0.001554 0 0 0   

  InPhase 0.055556 0.000259 0.051739 0.023571 0.010879 0.002266 0 0 0   

    0.069444 0.002202 0.066567 0.033996 0.011008 0.002784 0 0 0   

    0.083333 0.01444 0.097973 0.060675 0.02629 0.011591 0.001166 0.000259 0.00E+00   

    0.097222 0.059962 0.156705 0.098297 0.066762 0.033219 0.002461 0.002202 0.00E+00   

    0.111111 0.18319 0.237583 0.20417 0.165771 0.128084 0.068251 0.034773 0.024542   

    0.1249 0.376222 0.382244 0.37687 0.374603 0.383151 0.377712 0.38328 0.372985   
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