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Abstract 

Diabetes is a global concern; approximately 366 million people are currently diagnosed 

worldwide. Complications of diabetes are numerous and can cause damage to almost every organ system 

in the body. Neuropathy is the most common complication associated with diabetes and severely impacts 

patients’ quality of life. Diabetic neuropathy (DN) most commonly present as a distal symmetric 

polyneuropathy with a dichotomous presentation of either peripheral insensitivity or chronic pain. 

Eventually, patients can develop injury unawareness and foot ulcers, often resulting in amputation. 

Clearly establishing the mechanisms of diabetes-induced nerve damage will drive the development of 

more targeted and appropriate treatments. The pathogenesis of DN is multifactorial and the majority of 

research currently focuses on the toxic pathways induced by hyperglycemia. Interestingly though, insulin 

has been recently characterized to have direct effects on sensory neurons and is now believed to be a 

neurotrophic factor that is required for proper development, growth, and maintenance of the nervous 

system. Here, we tested the hypothesis that reduced sensory neuron insulin signaling contributes to DN 

pathogenesis via disrupted neurotrophic support. Results demonstrate that PI3K-Akt pathway activation 

in sensory neurons is insulin dose dependent and that insulin supplementation increases neurite 

outgrowth, establishing that sensory neurons are insulin responsive. These responses are blunted in type 2 

diabetic mice, indicating that sensory neurons demonstrate signs of insulin resistance similar to muscle, 

liver, and adipose. However, sensory neuron insulin receptor knockout (SNIRKO) mice that maintain 

euglycemia do not display signs of DN. Suggesting that a disruptions solely in sensory neuron insulin 

signaling does not cause DN. Surprisingly though, SNIRKO mice are hyperinsulinemic and pancreatic 

islets from SNIRKO mice display increased insulin content, suggesting a possible feedback mechanism 

between sensory neuron insulin signaling and insulin production. These results are consistent with a 

recently described novel pathway of pancreatic beta cell regulation via sensory neuron neuropeptides. In 

conclusion, while sensory neurons are insulin responsive, reductions in sensory neuron insulin signaling 

without hyperglycemia does not cause signs of DN and it is most likely the combination of reduced 
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insulin support and glucose neurotoxicity. Furthermore, the generation of SNIRKO mice has outlined a 

possible feedback mechanism through which sensory neurons modulate insulin production that could 

possible aid in establishing new therapeutic avenues for the treatment of diabetes. 
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Chapter 1: Introduction to Dissertation 

 

1.1 Sensory Neurons of the Peripheral Nervous System 

The peripheral nervous system (PNS) is composed of the neuronal cell bodies and peripheral 

nerves outside the central nervous system (brain and spinal cord). Sensory neurons of the PNS are housed 

in ganglia. Sensory neurons that innervate the face are located in the trigeminal ganglia and the majority 

of sensory neurons that innervate the remaining parts of the body are located in the dorsal root ganglia 

(DRG). The DRG sensory neurons are uniquely susceptible to damage from various insults and these 

neurons will be the main focus of this dissertation.  

 

 Development: DRG sensory neurons along with the glia cells of the PNS are derived from 

migrating neural crests cells [1]. Neural crest cells delaminate from the roof plate of the neural tube and 

undergo an epithelial to mesenchymal transition. The induction of neural crest delamination involves a 

complex signaling network involving Wnt, BMPs, and FGF signaling factors, as well as Sox9, FoxD3, 

and Snail transcription factors, resulting in changes in cell adhesion and cytoskeletal rearrangement via 

modifications of cadherins and RhoB, respectively [2].  Neural crest migration begins shortly after neural 

tube closure (~E9.0 in mice and ~E26 in humans). Beyond the cells of the PNS, neural crest cells also 

give rise to the craniofacial cartilage and bone, melanocytes, cardiac progenitors, adrenal medulla cells, 

and odontoblasts.  

Sensory neurons are dependent on neurotrophic factors for survival and differentiation during 

development [3]. A neurotrophic factor is defined as a soluble protein that promotes growth, survival, 

differentiation, and plasticity of neurons [4]. The best characterized neurotrophic factors are those of the 

neurotrophin family, including nerve growth factor (NGF), brain-derived growth factor (BDNF), 

neurotrophin-3 (NT3), and neurotrophin-4 (NT4). Neurotrophins signal through tyrosine kinase receptors 

trkA (NGF), trkB (BDNF and NT4), and trkC (NT3) [3] as well as p75 [5]. Additional neurotrophic 

factors include the family of glial derived neurotrophic factors (GDNF), as well as insulin-like growth 
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factor (IGF) and fibroblast growth factor (FGF). According to the neurotrophic hypothesis established by 

Victor Hamburger and Rita Levi Montalcini, during development, tissues secrete neurotrophic factors 

guiding targeted innervation and then promote survival of properly innervated neurons by inhibiting 

programmed cell death [5-7] . Mouse models of selective neurotrophin knockout or neurotrophin receptor 

knockout clearly demonstrate that sensory neuron development is dependent on neurotrophic factors and 

that certain subpopulations require certain neurotrophic factors. Mice lacking NGF display a 70-80% 

reduction in sensory neurons and a reduction in both thermal and mechanical sensitivity [8]. Mice with a 

BDNF knockout show approximately a 30% reduction in sensory neurons and have several behavioral 

deficits included decreased Meissner corpuscle mechanoreceptors [1, 9] . Mice with a null mutation in  

NT3 have approximately a 60% reduction in sensory neurons and display deficits in posturing and 

movements [10]. Furthermore, a loss-of-function mutation in the gene encoding trkA in humans results in 

congenital insensitivity to pain with anhydrosis (CIPA). CIPA is characterized by a loss of NGF 

dependent fibers resulting in pain insensitivity, anhydrosis, and mental retardation [11]. 

Due to the profound effect that these proteins have on neuron support, many are currently being 

investigated as treatments for neurodegenerative diseases including: amyotrophic lateral sclerosis (ALS), 

Huntington’s disease, Alzheimer’s disease, Parkinson’s disease, and several peripheral neuropathies [4, 

12]. In fact, decreased neurotrophic support is considered one of the major mechanisms involved in the 

pathophysiology of diabetic neuropathy (DN) [13-16].  This process is of such significance that several 

clinical trials have been performed to test the efficacy of neurotrophic factor treatment on DN.  Results 

have been mixed thus far. Of note, many of the neurotrophic factors activate the same intracellular 

signaling pathways as insulin, including the PI3K-Akt pathway through insulin receptor substrate [13-15, 

17-20]. 

  

Organization and Function: Sensory neurons are the only neurons to have a pseudounipolar 

morphology, with distal axonal projections both into the periphery as well as into the spinal cord of the 

CNS. DRG pairs are located laterally of the spinal cord in the intervertebral foramen. Within the DRG are 

http://en.wikipedia.org/wiki/Rita_Levi_Montalcini
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the cell bodies of sensory neurons. Each cell body is surrounded by a layer of satellite glia cells. The 

peripheral nerves are myelinated by Schwann cells. The DRG consists of a heterogeneous population of 

sensory neurons that can be subdivided by neuronal size, neurotrophic support, and sensory modalities. 

 A-alpha and A-beta neurons are large sensory neurons of the DRG. These neurons have large 

myelinated axons (A-alpha 13-20µm, A-beta 6-12µM) , with fast conduction rates (A-alpha 80-100 m/s, 

A-beta 35-75 m/s), and express neurofilament-H. Large A-alpha sensory neurons transmit afferent 

information about reflexes and proprioception and are dependent on NT3 for development and function 

[10]. The distal projections of A-alpha fibers terminate in sensory structures such as the muscle spindle 

and Golgi tendon organs. A-beta fibers transmit afferent information about vibration and touch via their 

distal projections to special mechanoreceptors such as Meissner’s and Pacinian corpuscles (vibration) and 

Merkel cells and Ruffini endings for pressure. A-beta fibers are dependent on several different 

neurotrophic factors including NGF, NT3, BDNF, and members of the GDNF family [21, 22].  The 

central projection of large sensory neurons either synapse with interneurons in lamina III and IV of the 

spinal cord dorsal horn, dive into the ventral horn to synapse with motor neurons or travel cranially in the 

dorsal column-medial lemniscus (DC-ML) pathway and synapse with second order neurons in either the 

gracile nucleus (leg) or cuneate nucleus (arm) in the medulla [12].  

 A-delta and c-fibers are small sensory neurons. A-delta fibers are thinly myelinated with an axon 

diameter of approximately 1-5 µm and a conduction velocity of approximately 5-30 m/s. C-fibers are 

unmyelinated with an axon diameter of approximately 0.2-1.5 µm and conduction velocities of 

approximately 0.2-2.0 m/s. Small sensory neurons can be identified histologically by the expression of 

peripherin. Small fibers transmit information about pain (nociceptors) and temperature (thermoreceptors) 

[8]. The distal projections of small sensory neurons innervate tissues throughout the body, ranging from 

the epidermis of the distal limbs to the internal organs [23]. The axons of small sensory neurons usually 

terminate as free nerve endings. The central projections of small sensory neurons synapse with secondary 

neurons in the dorsal horn of the spinal cord at laminas I, II, and V. The secondary neuron then decussates 

at the anterior white commissure and travels cranially in the anterolateral system (ALS) pathway.  
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C-fibers can be further subdivided into peptidergic and non-peptidergic classes. Interestingly, 

during development nerve growth factor (NGF) is required for the survival of almost all sensory and 

sympathetic neurons; however, during adulthood only about 40% of sensory neurons express trkA, the 

NGF receptor [24]. It has been demonstrated that a subset of nociceptive neurons downregulates the trkA 

receptor and upregulates the receptor for GDNF, Ret [25].  Similar to developing sensory neurons, 

peptidergic fibers express trkA whereas non-peptidergic fibers express Ret. Peptidergic neurons are 

histologically identified by their expression of neuropeptides such as substance P and calcitonin-gene 

related peptide (CGRP). Non-peptidergic neurons can be readily identified by the specific binding of 

isolectin B4 (ILB4). These different classes of C-fibers have been shown to have distinct peripheral 

projections [26], have different central projects [27] and appear to be differential effected in disease states 

[28]. 

Nociceptive small sensory neurons express unique receptors for noxious stimuli relating to 

thermal, mechanical, or chemical insults [29, 30]. The most well characterized of these receptors is the 

transient receptor potential vanilloid receptor 1 (TRPV1). TRPV1 was cloned in 1997 [31] and is a ligand 

gated non-selective cation channel. When activated, TRPV1 opens and allows positively charged ions 

(Na+ and Ca2+) to enter the neurons causing depolarization.  TRPV1 is activated in response to exogenous 

stimuli such as heat (>43°C) and capsaicin, or endogenous stimuli such as acidic pH levels and 

inflammatory mediators [32]. Accordingly, TRPV1-null mice show deficits in response to capsaicin, 

acidic pH, and thermal sensitization [33]. Interestingly, it has been demonstrated that insulin may modify 

TRPV1 sensitivity and membrane expression [34, 35] and alterations in TRPV1 have been reported in 

DN [36, 37]. Furthermore, fibers that express TRPV1 were recently shown to innervate the pancreatic 

islets of Langerhans and to be involved in the autoimmune destruction of the pancreatic beta cells in non-

obese diabetic (NOD) mice [38].  

Beyond the well-known and extensively studied afferent function of sensory neurons, they also 

have important efferent functions. Many of the efferent functions of sensory neurons are mediated 

through the release of neuropeptides such as substance P and CGRP [39-41]. Substance P and CGRP are 
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important regulators of neurogenic inflammation through interactions with endothelial and smooth muscle 

cells of the vasculature to promote vasodilation and vascular permeability, as well as interactions with 

several immune cells to promote chemotaxis and activation [42]. Neurogenic inflammation is an 

important physiological process for immune regulation and wound healing, however it is also implicated 

in the pathology of several diseases, particular chronic neuropathic pain [43]. Recently, along with 

TRPV1, substance P has been associated with pancreatic beta cell function modulation and autoimmunity 

in type 1 diabetic NOD mice [38]. The interaction of sensory neuron insulin signaling, TRPV1, 

neuropeptides, and diabetes pathogenesis will be further discussed in chapter 5. 

  

Injury and Disease: Disease and lesions in the PNS can be characterized by the deficit location 

(focal, multifocal, or diffuse), the systems involved (muscle, sensory, autonomic or mixed), and the 

pattern of involvement (distal or proximal or both). 

Focal neuropathies include entrapment neuropathies, such as carpal tunnel syndrome, ischemia 

induced neuropathy resulting from vasculitis, and traumatic injuries [44]. Focal neuropathies resulting 

from traumatic injury of peripheral nerves can be divided into 3 classes, neuropraxic, axonotemic, and 

neurotemetic [45]. Neuropraxia is an acute demyelination, normally resulting from a crush injury where 

the axon and connective tissue of the nerve remain intact. Neuropraxia takes 1-8 weeks to heal depending 

on the severity.  

Axonotemetic injury is characterized by damage to the axon and surrounding myelin, but the 

connective tissue (endoneurium, perineurium, and epineurium) remains intact. In this case, recovery is 

length dependent and the nerve can regenerate at a rate of about 1 mm/day. In contrast to the CNS, the 

PNS has a high capacity for regeneration. Regeneration involves a complex interplay between the 

neuronal cell body, axons, Schwann cells, and immune cells and is briefly outlined below.  After injury, 

the distal axon begins to degenerate and the cellular debris is phagocytized by Schwann cells and 

macrophages [46]. Schwann cells proliferate and form endoneurial tubes termed bands of Bungner, which 

provides the scaffolding for regeneration and helps guide growing axons [47]. These Schwann cells along 
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with other surrounding cells secrete high levels of neurotrophic factors, including NGF, that promote the 

survival and growth of injured neurons [48-50]. The neuronal cell bodies and proximal axons switch from 

a “transmitting mode” to a “growth mode” and upregulate production of growth associated proteins, such 

as GAP-43, and cytoskeletal proteins such as actin and tubulin [50]. Through these changes, axons 

generate dynamic growth cones that grow through the endoneurial tubes in response to environmental 

guidance cues to reinnervate target tissues [45, 47, 50].  

Neurotemetic injury is a complete severing of the peripheral nerve, with complete disruption of 

all supporting elements. A completely severed peripheral nerve fiber cannot recover properly and will 

eventually result in Wallerian degeneration of the neuron without surgical intervention.  

Diffuse neuropathy can result from several different pathogenic mechanisms, including immune-

mediated (Guillain-Barre syndrome), hereditary (Charcot-Marie-Tooth), cancer (Schwannomas) and 

paraneoplastic (lymphomas and leukemias), metabolic, toxins, or infections. As mentioned earlier, DRG 

neurons are uniquely susceptible to injury, most likely resulting from the reduced blood brain barrier at 

the DRG [51], and the length of the axon. As such, systemic alterations can results in diffuse sensory 

neuropathies. Cancer chemotherapeutic agents that target microtubules are particularly damaging to DRG 

neurons including taxanes (paclitaxel and docetaxel), vinca alkaloids (vincristine), and platinum-based 

compounds (cisplatinum and oxaliplatin). In fact, peripheral neuropathy is the limiting factor for 

treatment with these chemotherapeutic agents [52]. Beyond chemotherapy, changes in systemic nutrient 

levels (B12 deficiency [53]),exposure to toxic metals (cadmium [54] and methyl mercury [55]), and 

infections (leprosy, HIV, and varicella zoster [56]) can cause peripheral neuropathies. However, in 1994, 

diabetes mellitus overtook leprosy as the number one cause of peripheral neuropathy worldwide [57]. 

 

1.2 Diabetes mellitus 

Diabetes mellitus is a complex metabolic disorder characterized by hyperglycemia, polyuria, 

polydipsia, and unintentional weight loss. These symptoms are a result of either a decreased production or 

function of insulin.  Almost every organ system is affected by diabetes, causing a broad range of 
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symptoms and complications.  After several years, even with strict glycemic control, severe complications 

can start to develop, including retinopathy, nephropathy, blood vessel damage, foot ulcers, decreased 

immune function, and neuropathy [58].   

 

Epidemiology: Diabetes is increasing at an alarming rate, with 366 million patients currently 

diagnosed worldwide, and projections indicating that approximately 552 million will be diagnosed by 

2030 [59]. In the United States (US), approximately 18.8 million people are diagnosed, and this number is 

expected to almost double by 2030 [60, 61], with type 1 accounting for 5-10% [58] of cases and type 2 

accounting for 90-95% [58].  The increase in diabetes cases is predominantly due to the increasing 

number of type 2 cases in association with the obesity epidemic. Furthermore, it is estimated that 79 

million people in the US have prediabetes. According to the Center for Disease Control (CDC), in 2007 

231,404 deaths were attributed to diabetes, making it the 7th leading cause of death in the US [60].  

Diabetes is also the leading cause of kidney failure, peripheral neuropathy, blindness, and non-traumatic 

amputations in the US [60].  In addition, patients with diabetes have a 2-4 fold higher risk for heart 

disease and stroke [60].  The estimated cost of diagnosed diabetes in the US was $174 billion in 2007 

[60]. 

 

 Diagnosis: Symptoms of diabetes include increased thirst, increased urination, unintentional 

weight loss, fatigue, blurred vision, increased hunger, and non-healing wounds. Diabetes is diagnosed 

using tests to assess blood glucose levels, including fasting glucose, an oral glucose tolerance test, and 

hemoglobin A1C (HbA1C) (glycosylated hemoglobin) levels. Patients are diagnosed with diabetes with 

an 8 hour fasting blood glucose level above 126 mg/dl, whereas patients with levels between 100 mg/dl 

and 125 mg/dl are considered glucose intolerance and prediabetic [62].  Blood glucose of 99 mg/dl or 

below is considered normal. Additionally, diabetes can also be diagnosed if blood glucose levels remain 

elevated above 200 mg/dl 2 hours after a 75g oral glucose tolerance test or if HbA1C are above 6.5 [62]. 

Mouse models of diabetes differ slightly and the diagnosis of diabetes is not as well established and is 
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strain dependent. However, it is fairly accepted that a blood glucose level over 250 mg/dl is considered 

diabetic in mice. 

 

 Type 1 diabetes: Type 1 diabetes results from the destruction of insulin producing pancreatic beta 

cells. Patients are normally diagnosed in early childhood, and are dependent on insulin supplementation 

for survival [58].  If blood glucose levels are not managed properly with exogenous insulin, patients can 

develop diabetic ketoacidosis, resulting in coma and possibly death.  

The destruction of beta cells is driven by autoimmune attack. Autoreactive T-cells appear to the 

major driver of beta cell destruction in type 1 diabetes, however involvement of both autoreactive B-cells 

and the innate immune system has been demonstrated [63]. The inciting event causing loss of self-

tolerance is not well understood. One of the current leading hypotheses is molecular mimicry after a viral 

infection [64]. A current model of type 1 diabetes starts with an environmental insult (possibly a virus) in 

genetically susceptible individuals that causes immune recognition of islet specific antigens. Infiltrating 

inflammatory cells attack beta cells causing additional release of islet specific antigens and potentiation of 

the autoimmune attack. Ultimately, beta cells are destroyed, insulin production is ceased, and 

hyperglycemia ensues [63, 64]. Several autoantigen targets of Type 1 diabetes have been identified, 

including insulin, glutamate decarboxylase, carboxypeptidase H, and tyrosine phosphatase-like proteins 

insulinonma antigen-2 and 2β [65]. The best characterized genetic markers of diabetes susceptibility are 

varying HLA alleles [63].  

 

Type 1 mouse models: Several mouse models of diabetes have been generated. Two of the most 

commonly used models of type 1 diabetes are induced beta cell death via streptozotocin (STZ) and the 

non-obese diabetic (NOD) mouse which spontaneously develops diabetes due to autoimmune destruction 

of beta cells. STZ is an alkylating agent that induces cell death via DNA damage. STZ is specifically 

taken up by glut2, thus giving it beta cell specificity due to the high level of glut2 on beta cells [66]. In 

response to STZ, mice develop significantly elevated glucose levels, polydipsia, and failure to maintain 
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weight. Several mouse strains have been used with STZ. With respect to neuropathy, our lab has 

demonstrated that C57Bl/6 mice develop mechanical hypoalgesia with little change in thermal sensitivity 

[67]. A/J mice, on the other hand, develop mechanical hyperalgesia with little change in thermal 

sensitivity in response to diabetes [68]. However, varying results of DN presentation in mice have been 

reported. 

NOD mice were first described in 1980 and arose from a spontaneous mutation that resulted in 

insulitis and diabetes [69]. About 60-80% of NOD female mice develop diabetes by 12-14 weeks of age, 

whereas only 20-30% of males develop diabetes at the same age [70]. NOD mice are characterized by 

severe islet of Langerhans immune infiltration by autoreactive T-cells, resulting in beta cell destruction. 

NOD mice also demonstrate a propensity to other autoimmune diseases such as Sjogren-like 

sialitis/lacrimitis and systemic lupus erythematosus–like disease [70]. Recent evidence has indicated that 

NOD mice express a hypofunctional mutant TRPV1 on sensory neurons which may drive beta cell stress 

and autoimmune attack [38]. With respect to neuropathy, NOD mice demonstrate diabetic autonomic 

neuropathy [71], immune mediated peripheral neuropathy [72], and a reduced capsaicin response [38]. 

 

Type 2 diabetes: Type 2 diabetes results from a relative insulin deficiency due to peripheral 

insulin resistance, in that, muscle, adipose, and liver tissues no longer respond appropriately to insulin. 

Thus, glucose uptake is blunted and gluconeogenesis continues without regulation, resulting in elevated 

blood glucose levels. Insulin resistance is closely associated with obesity. The currently most accepted 

mechanism of insulin resistance is associated with increased circulating levels of free fatty acids and 

adipose secretions of adipokines (i.e. the proinflammatory mediator TNF-α) that inhibit insulin signaling 

[73, 74] (cellular mechanisms of insulin resistance will be discussed in detail in Chapters 3 and 4). 

Increased pancreatic-insulin production can compensate for some time, however eventually insulin 

production becomes insufficient due to beta cell dysfunction, resulting in hyperglycemia. While insulin 

resistance is an integral part of type 2 diabetes pathogenesis, it is ultimately the beta cell dysfunction that 

results in hyperglycemia [74]. Diagnoses is usually made in adulthood and most patients are obese, 
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inactive, and have poor blood lipid profiles [58].  Type 2 diabetes can be controlled with a combination of 

diet and exercise, as well as pharmacological intervention with different drug classes, including: insulin 

secretagogues, insulin sensitizers, and gastrointestinal glucose uptake inhibitors [62]. Poorly controlled 

type 2 diabetes can eventually result in patients requiring exogenous insulin to control blood glucose 

levels. Risk factors for developing type 2 diabetes include metabolic syndrome, physical inactivity, family 

history, and African-American, American Indian, Hispanic or Asian-American decent. Unlike the 

monogenetic disease, maturity onset diabetes of the young (MODY), type 2 diabetes is a polygenic 

disease with currently over 36 genes identified to have an association with its development [75].  

 

Type 2 mouse models: Common mouse models of type 2 diabetes are the leptin-deficient ob/ob 

mouse, the leptin receptor null db/db mouse, and the high fat fed mouse [76]. In the absence of leptin 

signaling, mice do not reach satiation and display hyperphagia [76], however, other factors beyond over 

eating may be contributing to the obesity and type 2 diabetes in ob/ob and db/db mice. Ob/ob mice 

display obesity, extreme hyperinsulinemia, and insulin resistance with transient hyperglycemia (by 14-16 

weeks of age, glucose levels return to baseline), although the leptin mutation on different background 

strains can produce different phenotypes. With respect to neuropathy, ob/ob mice display mechanical 

hyperalgesia, thermal hypoalgesia, reduced epidermal nerve fibers, and nerve conduction deficits [77]. 

Similar to ob/ob mice, db/db mice show obesity, hyperinsulinemia and insulin resistance. However, 

diabetes appears to be more severe in db/db mice and glucose levels remain elevated throughout their 

lifetime. With respect to neuropathy db/db mice display mechanical and thermal hypoalgesia, and reduced 

nerve conduction velocity [78, 79].  

A growing model of glucose intolerance, insulin resistance, and type 2 diabetes is diet-induced 

obesity, which may better model the human condition. C57Bl/6 mice on a high fat diet display 

characteristics similar, albeit milder, to ob/ob and db/db mice such as hyperinsulinemia, insulin 

resistance, dyslipidemia, glucose intolerance and hyperglycemia [80]. With respect to neuropathy, mice 
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on a high fat diet display an increased mechanical sensitivity with mild changes in nerve conduction 

velocity [80]. 

 

1.3 Diabetic Neuropathy 

Neuropathy is the most common complication of diabetes.  Every division of the nervous system 

is affected (peripheral, autonomic and central nervous systems), but this project will focus primarily on 

peripheral neuropathy.  Damage to the peripheral nervous system due to diabetes is associated with a 

particularly high level of morbidity and afflicts 40-50% of all diabetic patients [14, 60].  Diabetic 

neuronal complications first present in the distal extremities and can result in either numbness or chronic 

pain; and is one of the major factors in the development of Charcot joints, foot ulcers, and limb 

amputation in diabetic patients [14]. The current treatment for DN involves only symptomatic relief, and 

often the results are disappointing [81-83].  Defining the pathogenic mechanisms that contribute to 

diabetic neuropathy (DN) is essential to establish both appropriate pharmacological and 

nonpharmacological treatments for this devastating diabetic complication.   

 

 Epidemiology: The Rochester Diabetic Neuropathy Study enrolled 380 diabetic patients from 

Rochester, MN. The cohort had 102 type 1 and 278 type 2 patients. The prevalence of polyneuropathy 

was similar between patients with type 1 (54%) and type 2 (45%) diabetes [84]. As approximately 50% of 

patients develop DN, it is estimated that by 2030 over 230 million people worldwide will be affected and 

DN will have a health care cost of over $10 billion in the United States alone [85].  Identified risk factors 

for DN development from the EURODIAB Prospective Complications Study include smoking, 

hypertension, diabetes duration, HbA1C, body mass index (BMI), and blood lipid levels [86].  

 

Diagnosis: DN most often presents as a symmetric sensorimotor polyneuropathy, however focal 

neuropathies are also increased in diabetic patients [85].  Invariably, the symptoms of DN first manifest at 

the distal extremities, affecting the hands and feet.  This is termed a “stocking and glove” distribution and 
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highlights the susceptibility of the body’s longer axons. The small fibers of the PNS appear to be the most 

effected by diabetes and are the first to be involved in DN [87]. Changes in large fiber sensory modalities 

occur in later stages, and motor deficits can be seen in severe cases [84]. DN presents with a combination 

of positive and negative symptoms. Positive symptoms include chronic pain, increased sensitivity to 

either mechanical or thermal stimuli, or parasthesias/burning sensations. Negative symptoms include 

thermal or mechanical hypoalgesia, numbness, and reduced proprioception [14]. The combination of all 

these symptoms can result in chronic neuropathic pain, unawareness to injury, increased risk of falls, and 

foot ulcers leading to amputation. Patients are diagnosed using a combination of health history, 

neurological exam, electrophysiology, and intraepidermal nerve fiber density (IENF). 

The neurological exam for diabetic neuropathy involves testing the patient’s reflexes, observing 

gait, examining the patient’s feet for non-healing ulcers and assessing the patient’s ability to feel distinct 

modalities, normally starting with the feet and working up the leg. Sensory modalities commonly tested 

include vibration, discriminative touch, proprioception, and the response to a Semmes–Weinstein 10 g 

monofilament [14]. Additionally, computerized quantitative sensory testing is commonly used to help 

determine the patient’s specific sensory deficit [88]. 

The gold standard for DN diagnosis is alterations in nerve electrophysiology. Two of the most 

important electrophysiological changes are a decrease in sensory nerve action potential amplitude and 

sensory nerve conduction velocity [89]. These parameters are measured on the sural nerve, a 

predominantly sensory nerve of the lower leg. Electrophysiology is also commonly implemented in 

mouse models to characterize DN; however results are more variable. 

DN is a “dying back” neuropathy, in that, axons regress from their proper innervation site [14].  

This results from the inability of peripheral sensory neurons to maintain their distal axons.  Axons 

innervating the distal limb must project from the DRG and travel out to the distal limb, creating a large 

distance between the supporting cell body and the axon tip. The “dying back” of sensory neurons can be 

quantified by counting the epidermal nerve fibers stained with PGP 9.5 in punch skin biopsies [90]. A 

reduction in intraepidermal nerve fiber density (IENF) is characteristic of DN. Recently, a new method 
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has been developed to quantify nerve fiber density in the cornea, corneal confocal microscopy (CCM). 

Patients with DN show reduced corneal fibers similar to IENF. CCM has proven to be less invasive and 

time consuming than IENF and is currently being implemented in clinics throughout the world [91]. 

Deficits in the aforementioned areas in the presence of diabetes and absence of other insulting 

factors (chemotherapy, nutrient deficiencies, etc) warrant a diagnosis of DN. 

 

Pathogenesis: The development and progression of DN is multifactorial [14, 92, 93]. Currently 

investigated and proposed mechanisms are briefly discussed below. Unfortunately, treatments targeting 

many these mechanisms have shown limited success, indicating that further research is needed [81-83]. 

Diabetes is associated with several pathogenic changes in vascularization. Changes in blood flow 

and microvasculature have been demonstrated to be important mechanisms in the development of several 

diabetes complications, including nephropathy [94] and retinopathy [95]. Furthermore, cardiovascular 

risk factors (such as smoking, hypertension, and lipid levels) are associated with an increased risk of 

developing DN. Alterations in nerve blood flow have been demonstrated in DN [96] and it is likely that 

the biochemical changes associated with diabetes has direct effects on sensory neurons as well blood 

vessels, and that the development of DN is a result of changes in both neuronal function and nerve blood 

flow. Several recent clinical trials have addressed interventions to improve neuronal microcirculation and 

a combination therapy of pentoxifylline and pentosan polysulphate has demonstrated improvement in 

vibration thresholds [97]. 

Polyol pathway activation resulting in increased intracellular sorbitol accumulation is a 

longstanding proposed mechanism of DN. The increase in intracellular sorbitol causes an influx of 

extracellular fluid, due to poor membrane permeability of sorbitol, resulting in osmotic stress on neurons 

and an increase in reactive oxygen species (ROS). In rodent models, inhibition of aldose reductase, the 

first enzyme in the polyol pathway, has shown promising results [98]. Furthermore, upregulation of 

aldose reductase in Schwann cells has been shown to potentiate reductions in nerve conduction velocity, 
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indicating an important role for both the polyol pathway as well as Schwann cells in DN [99]. 

Unfortunately, clinical trials with aldose reductase inhibitors have demonstrated limited success [83]. 

Advanced glycation endproducts (AGEs) are the result of nonenzymatic glycation of proteins, 

lipids, and nucleic acids due to hyperglycemia. AGEs have been demonstrated to alter cell biology by 

reducing protein function and signaling through the receptor for advanced glycation endproducts 

(RAGE), which appears to cause an upregulation of proinflammatory pathways via NFκB and increase 

ROS [100]. In experimental diabetes, both neurons and Schwann cells upregulate RAGE. Furthermore, 

RAGE knockout mice show attenuated features of DN [101] and treatment of diabetic mice with 

benfotiamine, an AGE inhibitor, showed reduced DN symptoms [102]. 

A common downstream mechanism between all of the aforementioned pathways is increased 

production of ROS. In fact, the antioxidant α-lipoic acid has recently been approved for treatment of DN 

in Germany [103]. Mitochondrial dysfunction is considered one of the major contributing factors to 

increased ROS in DN. Due to hyperglycemia, an overload of metabolites are shunted to the mitochondria 

causing increased production of ROS. The increase in ROS causes cellular as well as mitochondrial 

damage which can eventually result in reduced electron transport activity and ATP synthesis, as well as 

neuronal calcium dysregulation [104]. 

Changes in neurotrophic support has been demonstrated in DN and, as mentioned earlier, several 

clinical trials have investigated neurotrophic factors as treatments for DN. Deficits in signaling, 

production, transport, and receptor expression have been demonstrated for a number of neurotrophic 

factors, including NGF, GDNF, BDNF, NT3 and IGF1. While the mechanism through which reduced 

neurotrophic support contributes to DN remains unclear, several possibilities have been proposed. These 

mechanisms include reduced neuropeptide production, reduced regeneration capacity, altered 

mitochondrial support, deficits in ion channels resulting in membrane potential disruptions, decreased 

cytoskeleton support of the distal axon, and blunted transport of intracellular signaling molecules [16, 67, 

105-109]. Similar to the “neurotrophic hypothesis” during development, a disruption in adult sensory 

neuron growth factors is believed to inhibit the neurons ability to withstand the underlying injury in DN, 
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thus resulting in axonal degeneration. While treatments with neurotrophic factors have shown promise in 

rodent models of DN, successful translation into human treatments has not been achieved [82]. Based on 

the observations that sensory neurons have reduced neurotrophic support in DN, that insulin has recently 

been demonstrated to have neurotrophic actions, and that insulin signaling is altered in diabetes, a 

growing mechanism of interest in DN is reduction in sensory neuron insulin support. 

  

Treatment: Evidence from the Diabetes Control and Complication Trial (DCCT) as well as a 

recent comprehensive review of 17 randomized studies indicate that enhanced glycemic control is the best 

treatment for prevention of DN [110, 111]; unfortunately, often a significant number of patients will still 

develop neuropathy. Furthermore, strict glycemic control is associated with a significant increase in 

hypoglycemic events. After symptoms develop, treatments are primarily focused on controlling severely 

uncomfortable symptoms such as chronic pain. According to the American Academy of Neurology, first 

line pharmacological interventions for painful DN include anticonvulsants (pregabalin and gabapentin), 

serotonin-noradrenaline reuptake inhibitors (duloxetine) and tricyclic antidepressants (amitriptyline) 

[112]. Additional medications that have been shown to be effective include sodium valproate, oxycodone, 

and capsaicin.  

 

1.4 Insulin 

Structure, Production and Release: Insulin is a 5.8 KDa peptide hormone that is secreted from 

the beta cells of the pancreas.  The beta cells are located within the islets of Langerhans. The morphology 

of islets of Langerhans is characterized by an inner cell mass of beta cells (insulin producing) and an outer 

ring of cells consisting mainly of alpha cells (glucagon producing) with interspersed delta cells 

(somatostatin producing). The islets of Langerhans make up the endocrine portion of the pancreas which 

accounts for about 2% of the pancreas, the remainder is exocrine tissue. 

The insulin gene (Ins) is located on chromosome 11 in humans [113]. Interestingly, mice have 2 

insulin genes, Ins2 is the murine homologue to the human insulin gene and is located on chromosome 7, 
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whereas Ins1 lacks exon 2 of the Ins2 gene and is located on chromosome 19 [114].  Insulin is initially 

translated as preproinsulin, consisting of the A, C, and B chains of the insulin peptide and a 24 amino acid 

(AA) rough endoplasmic reticulum (RER) localizing signal. In the RER, the signaling peptide is cleaved 

and proinsulin undergoes proper folding so that the A and B chains are linked by disulfide bonds. 

Proinsulin is then transported to the Golgi apparatus where the C-peptide is cleaved, leaving the 51 amino 

acids of the A and B chains connected by disulfide bonds [115, 116]. In the presence of zinc ions, insulin 

is then packaged into hexamers, which increases its half-life. Upon release, insulin is separated into the 

active monomer form and it has a half-life of 5-6 minutes in the blood. Degradation usually occurs after 

internalization of the insulin-insulin receptor complex via the insulin degrading enzyme [117]. 

Blood glucose levels predominantly regulate the release of insulin from pancreatic beta cells; 

however amino acid levels as well as parasympathetic nervous system activity can stimulate insulin 

release. The steps of insulin release in response to elevated glucose levels are as follows: 1) beta cells take 

up glucose through the specialized glut2 glucose transporter 2) glucose metabolism in the beta cells 

produces ATP 3) the cellular increase in the ATP/ADP ratio causes closure of the SUR/Kir6.2 potassium 

channel resulting in elevated intracellular K+ 4) increased intracellular K+ causes depolarization and the 

opening of voltage-gated calcium channels 5) Ca2+ enters the beta cell through opened calcium channels 

causing membrane fusion and insulin release. Insulin is released in two phases, a rapid first phase 

(secretion of preformed vesicles) and a prolonged second phase (newly synthesized insulin release) [116, 

118]. 

Insulin Receptor: The insulin receptor is a disulfide-linked heterodimer consisting of 2 alpha and 

2 beta subunits. The 120 KDa alpha subunit is extracellular and contains the insulin-binding domain. The 

95 KDa beta subunit is a transmembrane tyrosine kinase [119]. The insulin receptor gene is located on 

chromosome 19 [120] in humans and chromosome 8 [121] in mice. The insulin receptor is conserved 

across several species, from C. elegans (daf-2) [122] to Drosophila melanogaster (dInR) [123] to humans. 

The gene is comprised of 22 exons, with exons 1-11 corresponding to the alpha subunit and exons 12-22 
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corresponding to the beta subunit [124]. The insulin receptor is initially translated as a 190 KDa pro-

insulin receptor containing both the alpha and beta subunits; however, during posttranslational processing 

the alpha and beta subunits cleaved. Differential splicing of exon 11 results in 2 insulin receptor isoforms, 

that are expressed in a tissue specific manner [125, 126]. IR-A results from exclusion of exon 11 and 

shows increased affinity for insulin-like growth factors. IR-A is primarily expressed in fetal tissues and 

parts of the CNS. IR-B includes exon 11 and is termed the “high affinity” insulin receptor. IR-B is highly 

expressed in muscle, liver, and adipose [127, 128]. 

Mice with a systemic knockout of the insulin receptor are born at term with a mild 10% reduction 

in birth weight. However, immediately upon feeding, glucose levels and insulin levels rise dramatically 

and mice die from diabetic ketoacidosis within 3-4 days after birth [129]. While extremely rare, 

homozygous deletion of the insulin receptor has been observed in humans. A deletion of the inulin 

receptor in humans results in leprechaunism and is characterized by severe intrauterine growth 

retardation, several developmental delays, hyperinsulinemia, and post-prandial hyperglycemia, but fasting 

hypoglycemia [130].  In 1998, exon 4 of the insulin receptor was flanked by loxp sites enabling the 

conditional knockout of the insulin receptor using tissue specific cre recombinase expression and a more 

targeted understanding of insulin signaling [131]. Results from conditional knockout in several tissues 

have been published. Mice with muscle specific insulin receptor knockout using a muscle creatine kinase 

(MCK) promoter, displayed dyslipidemia, increased fat pads, but normal glucose, insulin levels and 

normal glucose tolerance [131]. A specific knockout of the insulin receptor in all adipose tissue using the 

aP2 promoter produced a mouse phenotype with reduced fat pads, resistance to obesity, and increased 

lifespan [132, 133]. However, mice with a conditional knockout of in the insulin receptor in brown 

adipose (uncoupling protein-1 promoter) demonstrated brown adipose atrophy and beta cell failure [134]. 

Mice with an insulin receptor knockout in the beta cells (rat Ins2 promoter) showed impaired glucose-

induced insulin release and glucose intolerance [135]; whereas liver knockout (albumin promoter) 

produced severe glucose intolerance, hyperinsulinemia and transient hyperglycemia [136]. Finally, a 

conditional knockout of the insulin receptor in the CNS has also been generated using the nestin promoter 
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[137]. These mice demonstrated increased food intake, diet-sensitive obesity, insulin resistance, and 

hypogonadotropic hypogonadism resulting in subfertility.  

 

Insulin receptor signaling pathway: The insulin signaling cascade is propagated by 

phosphorylation events beginning with activation of the insulin receptor tyrosine kinase upon insulin 

binding. After activation, the insulin receptor kinase phosphorylates tyrosine residues on both the receptor 

and docking proteins, such as insulin receptor substrate (IRS). Tyrosine phosphorylation allows 

downstream mediators with src homology-2 (Sh2) domains to bind IRS and localize to the plasma 

membrane. Two key Sh2 containing mediators are PI3-kinase, which activates the Akt cascade, and 

Grb2/SOS, which activates the MAPK cascade [18, 19].  These effectors eventually lead to increased 

transcription, translation, and translocation of the proteins necessary to carry out insulin’s actions (Figure 

1.1).   

 

Physiological functions of insulin: Insulin has numerous effects throughout the body, mostly 

relating to energy storage and glucose homeostasis.  In peripheral “insulin-sensitive” tissues (liver, 

muscle, and adipose), insulin mediates glucose metabolism by stimulating glucose uptake through 

translocation of glut4, as well as controlling glucose breakdown and synthesis via its effects on glycolysis 

and gluconeogenesis. Additionally, insulin promotes glycogen synthesis through inhibition of glycogen 

synthetase kinase, increases protein production through mTor activation, as well as promotes fatty acid 

synthesis and inhibits lipolysis through activation of Acetyl-CoA Carboxylase and inhibition of hormone 

sensitive lipase, respectively. Furthermore, insulin can mediate gene transcription through the MAPK 

pathway or through Akt-mediated phosphorylation of FOXO transcription factors which results in nuclear 

exclusion [138, 139]. Beyond energy balance, insulin plays a role in several other aspects of physiology, 

including: fertility, blood lipid levels, blood pressure, as well as, growth and survival of beta cells, bone, 

retina, and neurons [18, 140-142]. 
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Figure 1.1 
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Figure 1.1. The insulin signaling pathway: Intracellular insulin signaling is initiated by insulin receptor 

tyrosine kinase activity leading to the activation of both the PI3K-Akt pathway and the MAPK pathway. 

The most well characterized function of insulin signaling is glucose homeostasis; however insulin 

stimulates several other cellular mechanisms including the biosynthesis of proteins, glycogen, and lipids. 

Insulin receptor substrate (IRS), glycogen synthetase kinase β (GSK3β), extracellular signal-related 

kinase (ERK), Srchomology-2-containing protein (Shc), forkhead box protein O1 (FOXO1), Akt 

substrate of 160 kDa (AS160), mammalian target of rapamycin complex (mTorc), p70 ribosomal protein 

S6 kinase (p70S6K), hormone sensitive lipase (HSL), phosphodiesterase (PDE), protein kinase A (PKA), 

phosphoinositide dependent kinase (PDK), Growth factor receptor-bound protein 2 (Grb2), son of 

sevenless (SOS). Illustration by Stanton Fernald. 
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1.5 Insulin and the Nervous System: 

Throughout history, insulin signaling in the nervous system has been fairly ignored, because 

unlike muscle and adipose tissues, neurons do not take up glucose in an insulin dependent manner [143, 

144]. However, neurons do express insulin receptors [145]. Neurons primarily express the glut1 and glut3 

glucose transporters and take up glucose via a concentration gradient receptor mediated process [146]. 

However, it has recently been demonstrated that certain areas of the brain, such as the olfactory bulb, 

hippocampus, and hypothalamus express glut4 transports [147]. Glucose is the main energy supply for 

neurons; however, in states of extreme starvation neurons can utilize ketone bodies [148]. 

Insulin crosses the blood-brain barrier (BBB) through a saturable receptor mediated transport 

system, termed receptor-mediated transcytosis [149]. During this process, serum insulin binds the insulin 

receptor on the endothelial cells of the blood brain barrier; the ligand-receptor complex is internalized and 

transported to the opposite side of the cell where insulin is released. Insulin receptor-mediated 

transcytosis is currently one of the most targeted systems in drug development to transport chemicals 

across the BBB [150].  

Diabetes has recently been implicated as a risk factor for several neurological diseases, including 

Alzheimer’s and Parkinson’s disease [151, 152]. This has led to a spiked interest in the role that insulin 

might play in the nervous system. Many of the CNS changes associated with diabetes are similar to those 

observed in Alzheimer’s disease, including increased beta amyloid and tau phosphorylation [153]. 

Additionally, the brains from Alzheimer’s patients show characteristic signs of insulin resistance [154] 

and the insulin sensitizing drugs, thiazolidinediones, have been shown to improve memory in both mice 

[155] and human patients [156]. Furthermore, both intracerebroventricular and intrahippocampal insulin 

administration has been demonstrated to improve memory formation in rats [157-159], and insulin has 

been demonstrated to regulate synapse number and plasticity [160]. Recently, in phase 1 clinical trials, 

Alzheimer’s patients that received intranasal insulin treatment demonstrated improved memory and 

activities of daily living [161].  
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Beyond a role in memory, insulin is involved in centrally regulating glucose metabolism and food 

intake via signaling in the hypothalamus. Insulin inhibits neuronal firing of the NP-Y/AgRP neurons of 

the arcuate nucleus by activating KATP leading to neuronal hyperpolarization, resulting in decreased 

release of the orexigenic hormone NP-Y [162, 163]. Additionally, this process has been demonstrated to 

centrally regulate liver gluconeogenesis, and is hypothesized to be a major mechanism contributing to 

obesity and insulin resistance [164, 165]. Intriguingly, insulin also activates KATP channels on pancreatic 

beta cells, causing hyperpolarization and reduced insulin release in a negative feedback mechanism [166]. 

Insulin has also been demonstrated to regulate AMPA-induced neuronal damage [167] and 

modulate AMPA excitatory currents in the spinal cord dorsal horn [168]. Additionally, insulin receptor 

signaling in the CNS has been shown be involved in regulating neuronal development [169].  

These observations suggest that although neurons do not take up glucose in an insulin dependent 

manner, neurons do seem to be insulin responsive and insulin may be important to maintaining proper 

neuronal function.  

Insulin as a neurotrophic factor in sensory neurons: Insulin is a member of the insulin-like super 

family that includes Insulin, IGF1, and IGF2.  While IGF1 has been a well-defined neurotrophic factor for 

some time, insulin’s effect on neurons has only gained significant attention over the past 15-20 years. A 

growing body of literature has now established insulin as a potent neurotrophic factor that appears 

essential to promoting proper neuronal function.  

Insulin receptors are expressed on both the DRG neuron soma as well as in the peripheral nerve 

[170-172]. Several reports have indicated that the insulin receptor is predominantly expressed in small 

nociceptive neurons. Baiou et. al. indicated that approximately 40% of DRG neurons express the insulin 

receptor and that approximately 75% of insulin receptor expressing neurons were co-labeled with 

peripherin [173]. Furthermore, insulin receptor expression was not confined to one c-fiber subtype, as 

insulin receptor expressing neurons were co-labeled with either CGRP or IB4. However, and in contrast, a 

number of reports have also reported strong co-labeling with neurofilament-H, a marker of large 

myelinated neurons [174, 175].  
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In primary culture models of peripheral neurons, insulin supplementation has been shown to have 

many functional effects. Insulin stimulation appears to increase neuritogenesis, as well as neurite length 

and area. Recio-Pinto et al. showed that the percent of both sympathetic and sensory neurons bearing 

neurites increased in a dose dependent manner with insulin supplementation, with an ED50 of 0.4nM for 

sympathetic neurons and an ED50 of 30nM for sensory neurons [142]. Similarly, Fernyhough et al. 

reported that insulin increased the rate of neurite regeneration in DRG cultures 3.5 fold compared to 

control cultures without insulin supplementation [176]. Interestingly, this effect appears to be additive 

with NGF supplementation [177, 178]. One possible mechanism through which insulin may be promoting 

an increase in neurite outgrowth is through stabilization of tubulin microtubule mRNA, an essential part 

of neurite formation, as suggested by Fernyhough et al. [179].  Beyond neurite outgrowth, many reports 

also noted an apparent increase in neuronal survival with insulin supplementation [142, 180], and insulin 

is characterized to be one of the few essential molecules required for cultured primary peripheral neurons 

[141]. Furthermore, stimulation of the PNS with insulin has shown strong activation of the PI3K-Akt 

pathway, a pathway that is directly related to axonal growth and neuronal survival [181]. Thus, a possible 

molecular mechanism of increased neuronal survival with insulin supplementation may be through 

insulin-induced Akt activation, which in turn shuts down apoptosis through inhibition of both BAD and 

caspase 9 [182].   

Additionally, recent evidence has demonstrated that insulin may play an important role in 

Schwann cell physiology. Schwann cells express the insulin receptor in the basal lamina, plasma 

membrane and cytoplasmic processes [183]. Furthermore, insulin receptor expression in Schwann cells 

during development parallels myelin glycoprotein P zero (P0) expression and growth of the myelin 

sheath.  Moreover, insulin supplementation can induce P0 expression in primary Schwann cell culture, 

indicating that insulin could have crucial roles in myelination and peripheral nerve support via Schwann 

cell signaling [172].  

Beyond its effects on neurons in vitro, insulin has also been shown to have dramatic neurotrophic 

qualities in vivo. In nerve injury models (nerve transection or nerve crush), recovery from the ensuing 

pathological changes is accelerated by insulin supplementation. Q.G. Xu et al. showed that intraperitoneal 
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(IP) injections of insulin (0.02 IU Humulin R) twice daily increased both the rate of motor endplate 

reinnervation (measured by M wave amplitude) and hindpaw motor function recovery after sciatic nerve 

transection. Furthermore, in these studies it was also demonstrated that systemic insulin treatment through 

IP injections increased the number of mature regenerating myelinated fibers after nerve crush. Mice in the 

insulin treated group displayed significantly increased axonal and fiber diameter as well as increased 

axonal area [184]. Similar results were reported in a comprehensive study comparing the effects of 

intrathecal (through mini-osmotic pump) or near nerve insulin treatment on peripheral nerve regeneration 

after nerve crush injury by Toth et al [185].  In the experimental paradigm of this study, the most dramatic 

effects of insulin treatment were observed in the group receiving intrathecal insulin.  In separate 

experiments of sural (mostly sensory axons) and peroneal (mostly motor axons) nerve crush, insulin 

supplementation prevented degeneration of axons proximal to the nerve injury and accelerated 

regeneration of axons distal to the crush site. These changes were associated with an increase in axonal 

fiber density, size, and regenerating fiber clusters in both the sural and peroneal nerve with intrathecal 

insulin treatment. Furthermore, these observed morphological differences were coupled with an increase 

in CGRP and translated into an accelerated recovery of thermal sensation after nerve injury in insulin 

treated rats.  

Collectively, these studies have established insulin as a key component of neuronal support and 

have led to the assumption that disruptions in insulin availability (reduced circulating levels or reduced 

signaling) could have detrimental effects on neuronal function. 
 

1.6 Insulin and Diabetic Neuropathy:  

As previously discussed, the currently investigated pathways of DN pathogenesis mainly focus on 

the cellular damage associated with the various cascades activated in response to hyperglycemia. 

However, there are 2 major insults in diabetes. The first is the loss of insulin signaling, either due to 

insulinopenia (type 1) or insulin resistance (type 2), and secondly, the resultant elevated blood glucose 

levels. While it is reasonable to assume that the sequela of hyperglycemia does contribute to the 
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development of DN, it is also reasonable to consider that the loss of insulin signaling directly on sensory 

neurons may also be a contributing factor. 

Epidemiologic data from the Diabetes Control and Complications Trial (DCCT) provided very 

strong evidence of the link between poor glucose control and DN [186].  Results from this trial indicated 

that patients with intensive glycemic control (3 or 4 daily insulin injections or external pump) showed a 

64% percent reduction in neuropathy over a 5-year period as compared to patients on conventional 

therapy (1 or 2 daily insulin injections with mixed rapid and intermediating acting insulin). Furthermore, 

patients on conventional therapy experienced a steady deterioration in nerve conduction velocity, while 

patients in the intensive treatment group displayed no change and even a slight improvement [186, 187].  

Accordingly, the best known treatment for prevention of neuropathic complications is strict glycemic 

control. Interpretation of this clinical data has led to a large emphasis on the role of hyperglycemia in DN, 

however another interpretation of this data reveals that strict glycemic control also means a more 

balanced, steady, and physiological insulin exposure. Thus, the reduction in DN in intensive treatment 

group may be a result of restoration of the lost neuronal insulin signaling key to maintaining proper 

sensory function rather than just the control of hyperglycemia.  

Low insulin without hyperglycemia causes signs of DN: Do to the intimate connection between 

insulin and blood glucose levels; teasing out the consequences of changes in one variable without 

disruptions in the other is difficult. However, several studies have demonstrated that in instances of low 

serum insulin, yet euglycemia, abnormalities in sensory function develop. Correspondingly, strong 

evidence has also shown that low dose insulin treatment of animals with DN can reverse many of the 

abnormal morphologic and behavioral changes associated with the disease, without significantly altering 

glucose levels. 

A common animal model of type 1 diabetes is to use the beta-cell toxin STZ to induce severe 

insulinopenia and thus hyperglycemia.  However, there is a variable response to STZ and not all animals 

will develop hyperglycemia and diabetes. In 2010, Romanovsky et al. characterized a cohort of these 

euglycemic-STZ injected rats, and showed that while they did not have elevated glucose levels, they did 
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have a significant decrease in serum insulin concentrations as compared to rats that received vehicle. 

Interestingly, euglycemic-STZ rats did display mechanical hyperalgesia indicated by a reduced threshold 

on a paw-pressure withdrawal test. These changes were similar to that of hyperglycemic-STZ rats, 

although hyperglycemic rats did maintain a lower threshold [188]. In an earlier study, it was also 

demonstrated that this observed change in paw-pressure threshold correlated significantly with insulin 

deficiency in euglycemic-STZ rats and could be ameliorated with low-dose insulin treatment [189].  

Surprisingly, the euglycemic-STZ rats showed no alterations in mechanical sensitivity in response to von 

Frey filaments, no change in thermal sensation, or decreases in nerve conduction velocity. Perhaps 

indicating that the loss of neuronal insulin support and hyperglycemia contribute to different features of 

DN. 

 Similar results of neuropathy without overt hyperglycemia have also been demonstrated in the 

Goto-Kakizaki (GK) rat. Murakawa et al. evaluated the effect of continued impaired glucose tolerance 

(IGT) and progressive insulinopenia, without severe hyperglycemia on peripheral neurophysiology and 

neuromorphology in the GK rat [190]. While no differences in PNS function were observed in the 2-

month-old GK rat with IGT and hyperinsulinemia, 18-month-old GK rats with IGT and insulinopenia 

displayed classical features of diabetic neuropathy (reduced NCV, loss of unmyelinated axons, and 

increased frequency of regenerating fibers). Surprisingly, these neuropathic changes developed without 

overt fasting hyperglycemia in 18 month old GK rats (control=3.2±0.4 mM and GK=4.4±1.3 mM) and 

the authors suggest that these changes appear to be more related to the decrease in neuronal insulin 

support. Furthermore, in conjunction with the increase in CGRP expression with insulin treatment 

observed by Toth et al., Murakawa et al. noted a significant decrease in CGRP expression in 

insulinopenic 18-month-old GK rats. Together these results suggest that one of the mechanisms through 

which insulin may promote proper sensory function is by maintaining synthesis of key neuromodulator 

proteins and peptides.  

It has also been demonstrated that sequestering of endogenous intrathecal insulin in nondiabetic 

rats by intrathecally infusing anti-insulin antibodies produces slowed motor nerve conduction and atrophy 

of axonal fibers, similar to that seen in models of diabetic neuropathy [191]. Once again suggesting that 
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non-glycemic triggers of DN exist and that the loss of PNS insulin signaling may be one of the initiating 

events. 

Finally, it has recently been demonstrated that STZ-diabetic rats show reduced insulin receptor 

activation in the sciatic nerve [192]. The rapid change in insulin receptor signaling was correlative with 

the rapid onset of mechanical hyperalgesia. This was one of the first publications investigating insulin 

signaling in the sciatic nerve and the authors speculate that the change in sciatic nerve insulin signaling 

may help explain the change in nociceptive behavior associated with DN.  

 

Low dose insulin reverses signs of DN: As discussed earlier, many studies have shown that a loss 

of PNS insulin signaling may contribute to DN, similarly, several reports have demonstrated that low-

dose insulin (insufficient to reduce hyperglycemia) can have beneficial effects on the signs and symptoms 

of DN. Brussee et. al. demonstrated that intrathecal delivery of insulin or equimolar IGF1 daily for 4 

weeks could not only restore both motor and sensory nerve conduction deficits, but also prevent axonal 

atrophy in type 1 diabetic rats [191]. Furthermore, in a similar experiment, both intrathecal insulin and 

IGF1 were able to reverse the loss of epidermal nerve fiber density and length in diabetic rats [193], 

which is a well-documented and quantifiable consequence of the “dying back” neuropathy associated 

with diabetes.  Surprisingly, subcutaneous insulin deliver within these same experimental paradigms did 

not alter the investigated neuronal parameters. This is in contrast to the results from Hoybergs and Meert, 

which demonstrated that low-dose insulin delivered through subcutaneous insulin pellet can nearly 

normalize diabetes-induced tactile allodynia and mechanical hyperalgesia, despite persistent 

hyperglycemia (blood glucose levels dropped from 600mg/dl to approximately 400mg/dl 2 weeks after 

insulin pellet insertion) [194]. Thus, some controversy still exist as the appropriate dosing regimen and 

delivery method most appropriate for beneficial effects on the PNS, however it does appear that insulin 

treatment can relieve symptoms of DN through mechanisms other than reducing elevated blood glucose 

levels. 

Most recently, Guo et. al reported that intraplantar delivery of insulin at sub-glucose lowering 

levels not only reversed the loss of intraepidermal nerve fiber density but also slightly ameliorated some 
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of the symptoms of DN [174]. This study demonstrated the efficacy of local insulin administration on 

epidermal innervation in several mouse models of diabetic neuropathy, including type 1 diabetes induced 

by STZ in C57BL/6J, CD-1, and CFW as well as db/db type 2 diabetic mice. Intraplantar insulin showed 

a benefit on epidermal axons over vehicle control in each of these DN models and in diabetic C57BL/6J 

mice the increase in epidermal innervation with insulin treatment was also associated with upregulation of 

GAP43/B50, a growth associated protein. Along with changes in innervation, local insulin administration 

improved deficits in mechanical but not thermal sensation. These results further corroborate the neuronal 

growth promoting qualities of insulin and the potent affects that insulin treatment in vivo has on 

symptoms of DN.  

Beyond its effects on sensorimotor behavior and epidermal innervation, some subcellular 

pathological changes associated with DN can be alleviated with insulin treatment. Defects in sensory 

neuron mitochondrial function is believed to be a possible mechanism contributing to DN through several 

different pathways, including the over-production of ROS and reduced respiration through defects in the 

electron transport chain. Insulin and mitochondria are intimately connected through numerous metabolic 

pathways, and proper insulin signaling is essential for proper mitochondrial function [195]. Interestingly, 

insulin treatment has been shown to improve many of the mitochondrial defects associated with DN [196-

198]. Huang et al. reported that in a STZ model of type 1 diabetes, DRG neuronal mitochondria display 

increased depolarization and Chowdhury et. al. reported that diabetes can induce deficits in mitochondrial 

respiration as well as mitochondrial protein expression [196, 198]. In both of these reports, insulin 

supplementation restored the mitochondrial parameters back to the levels observed in control animals. 

These results suggest that a loss of insulin signaling may be one of the compounding factors affecting 

proper mitochondrial function.  

Similar to the beneficial roles of insulin treatment on sensory deficits associated with DN, insulin 

treatment has been shown to protect against late-stage diabetes-induced motor neuropathy as well [199]. 

Intranasal insulin (and subcutaneous insulin to a lesser extent) showed beneficial effects on motoneuron 

morphology and function. Insulin treated diabetic mice (8 month old CD1) showed protection against 

electrophysiological decline, loss of neuromuscular junctions, and loss of motor function (as measured 
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with forelimb and hindlimb grip testing as well as rearing activity). These results provided further 

evidence of the neurotrophic qualities of insulin and the potential impact it may have on proper neuronal 

function. 
 

1.7 Purpose and central hypothesis of dissertation:  

While substantial evidence is mounting in support of a role of dysfunctional neuronal insulin 

support in DN pathogenesis, several crucial areas still need to be investigated.  1) Unlike muscle, adipose, 

and liver, essentially nothing is known about neuronal insulin signaling pathways and this has greatly 

impeded the understanding of how reduced neuronal insulin support may lead to neuronal dysfunction. 2) 

Patients with type 1 and type 2 diabetes develop neuropathy with similar incidence and present with 

common symptoms. However, most early research surrounding the role of insulin in diabetic neuropathy 

has focused on type 1 insulinopenic diabetes, where decreased PNS insulin signaling is plausible do to the 

systemic lack of insulin. However, how this idea applies to type 2 diabetes, where patients are usually 

severely hyperinsulinemic is not well characterized. 3) Due to the intimate connection between blood 

glucose and insulin levels; separating the contribution to DN pathogenesis from either variable is nearly 

impossible using currently available models.  

The purpose of this project was to investigate the role of reduced insulin signaling in DN 

pathogenesis by delineating the PNS insulin signaling cascade, outlining the changes in PNS insulin 

signaling associated with type 2 diabetes and establishing a new model to study reduced sensory neuron 

insulin signaling independent of blood glucose changes.  

 

Central hypothesis: Reduced sensory neuron neurotrophic support resulting from disrupted insulin 

signaling contributes to the pathogenesis of diabetic neuropathy irrespective of hyperglycemia.  

 

 



30 
 

Chapter 2: In vivo Peripheral Nervous System Insulin Signaling 

 

2.1 Abstract 

Diabetes-induced damage to the peripheral nervous system (PNS) is associated with several 

debilitating symptoms, including chronic pain, numbness, and foot ulcers. Unfortunately, the 

pathogenesis of diabetic neuropathy (DN) is not fully understood and current treatment options are 

unsatisfactory. Alterations in PNS insulin support is a proposed mechanism contributing to DN 

development. However, a comprehensive study of insulin signaling in the PNS is lacking. The purpose of 

this study was to investigate PNS insulin signaling in response to exogenous insulin and to identify 

possible differences in PNS insulin signaling compared to muscle, liver, and adipose.  Nondiabetic male 

mice were administered an insulin dose curve. PNS insulin signaling was quantified with Western blots of 

Akt activation in the DRG and sciatic nerve. Resulting EC50 doses were used to characterize the PNS 

insulin signaling time course as well as make comparisons between insulin signaling in the PNS and other 

peripheral tissues (i.e. muscle, liver, adipose) at a therapeutically relevant insulin dose. The results reveal 

that the PNS in insulin responsive and that differences in insulin signaling pathway activation may exist 

within the PNS compartments. At a therapeutically relevant dose, Akt was significantly activated in the 

muscle, liver, and adipose at 30 minutes, correlating with the observed change in glucose levels. 

Interestingly, the sciatic nerve showed a similar signaling profile as muscle, liver, and adipose, however 

there did not appear to be significant activation in the DRG or spinal cord. These results begin to outline 

the in vivo PNS insulin signaling pathway and will help determine how disruption of PNS insulin 

signaling may contribute to the development of DN. 
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2.2 Introduction  

An interesting mechanism of DN that is currently receiving additional attention is the loss of 

insulin signaling in the nervous system, either through insulinopenia or insulin resistance [175, 181, 188, 

191, 193, 200]. Mounting evidence has established that insulin plays an important neurotrophic role in 

both the central nervous system (CNS) and peripheral nervous system (PNS). Insulin has been shown to 

induce neurite outgrowth [142, 179], facilitate in vivo nerve regeneration [174, 184, 185], and improve 

memory formation [159, 161]. 

Insulin signaling begins with activation of the insulin receptor tyrosine kinase which then 

phosphorylates tyrosine residues on docking proteins, such as insulin receptor substrate (IRS). Tyrosine 

phosphorylation of IRS allows downstream mediators to bind and propagate the signal. Insulin activates 

both the PI3K-Akt pathway as well as the MAPK pathway. Cellular actions of insulin in “insulin sensitive 

tissues” (i.e. muscle, liver, and adipose) include: increased glucose uptake, decreased gluconeogenesis, 

increased glycogen synthesis, increased protein synthesis, and increased lipid synthesis (for review 

[138]). 

Unfortunately, a comprehensive study of in vivo insulin signaling in the PNS has not been 

completed, and has hindered the understanding of the exact role that disrupted insulin signaling may play 

in DN. Varying results have been published with respect to the timing, dose, and delivery method needed 

for proper insulin signaling and functional results [184, 185, 201]. Additionally, insulin signaling has 

been investigated in primary DRG culture, but these studies are incomplete and translation of these results 

is difficult due to a complete disruption of the in vivo environment. Furthermore, culture models do not 

allow for the simultaneous comparison between tissues or provide information about the physiological 

effects of insulin signaling [181, 200]. The aim of the current study was to begin to establish PNS insulin 

signaling physiologic parameters in response to systemically delivered insulin. Delineating the PNS 

insulin signaling pathway will reveal possible mechanisms contributing to insulin’s neurotrophic effect 

and how disruptions in those mechanisms may lead to DN. 
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Our results indicate that while PNS insulin signaling is dose dependent, very high doses of 

intraperitoneal insulin were needed. In fact, only moderate insulin signaling was observed in the PNS as 

compared to the robust response of muscle, liver, and adipose when a therapeutically relevant insulin dose 

was administered. These studies provide a much needed baseline of PNS insulin signaling in comparison 

to other tissues and will be crucial in guiding future research aimed at delineating the role of insulin in 

DN pathogenesis.  

 

2.3 Experimental Procedures 

Animals: All experiments were approved by the University of Kansas Medical Center 

Institutional Animal Care and Use Committee.  Male nondiabetic C57bl/6 mice aged 8 to 11 weeks were 

used for all studies. Mice were given access to food and water ad libitum and housed on a 12-hour 

light/dark cycle. Mice were fasted 3 hours prior to the start of all experiments and data collection. Tissues 

collected included the lumbar dorsal root ganglia (DRG), sciatic nerve, lumbar enlargement of spinal 

cord, liver, gastrocnemius muscle, and epididymal fat pad. 

Antibodies and Reagents: Humulin R insulin (Eli Lilly, Indianapolis, IN) was used for all 

experiments. Blood glucose levels were measured vial tail clip with a glucose diagnostic assay (Sigma, St. 

Louis, MO). All antibodies for Western blot analysis were purchased from Cell Signaling (Danvers, MA) 

unless otherwise noted: total Akt, p-(Ser473)Akt, p-(Thr308)Akt, total GSK3β, p-(Ser9)GSK3β, total 

p44/42 MAPK (ERK1/2), p-(Thr202/Tyr204)p44/42 MAPK (ERK1/2), total mTor, p-(Ser2448)mTor, 

total AS160 (Millipore, Billerica, MA), and p-(Thr642)AS160 (Millipore). Secondary antibodies 

included: HRP-conjugated anti-mouse and anti-rabbit (Santa Cruz, Santa Cruz, CA). 

Insulin dosing: Insulin was delivered via intraperitoneal injection for all experiments and sterile 

PBS was used as a vehicle control. To establish an insulin dose curve, doses were increased from the 

minimal dose of 0.01 U/kg to the maximal dose of 10000 U/kg. Accordingly, minimum and maximum 

doses given were approximately 0.00025 and 250 units, respectively (assuming a 25 gram mouse). A 30 

minute insulin stimulation timeframe was used for these studies based on previous observations of PNS 
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insulin signaling, and this was later confirmed with a time course study. Blood glucose levels were 

measured immediately prior to insulin administration and directly following the 30 minute insulin 

stimulation.  

Based on the results of the dose curve and time course studies, an additional experiment was run 

to investigate PNS insulin signaling at a “therapeutically relevant” insulin dose, defined as a dose 

sufficient to decrease blood glucose levels without causing signs of hypoglycemia. An insulin dose of 

1.29 U/kg (3 times the EC50 for glucose percent change in dose curve experiments) was delivered via IP 

injection and mice were sacrificed at 30 minutes, 2 hours, 4 hours, and 6 hours thereafter. Glucose levels 

were measured before insulin administration and at every subsequent time point. Sterile PBS was used as 

a vehicle control. 

Western blot analysis: At sacrifice, tissues were harvested and snap frozen in liquid nitrogen and 

stored at -80°C until further use. Samples were homogenized in Cell Extraction Buffer (Invitrogen, 

Carlsbad, CA) containing 55.55 μl/ml protease inhibitor cocktail, 200mM Na3VO4, and 200mM NaF.  

After homogenization, samples were incubated on ice for 60 minutes and vortexed every 10 minutes to 

allow for complete protein extraction. Samples were then centrifuged for 10 minutes at 10000 rpm and 

the protein concentration of the supernatant was measured with a Bradford assay (Bio-Rad, Hercules, 

CA). Before samples were used for Western blot analysis, they were boiled with Lane Marker Reducing 

Sample Buffer (Thermo Scientific, Waltham, MA) for 3 minutes.  30 µg of protein was loaded per lane 

and samples were separated on a 4-15% gradient tris-glycine gel (Bio-Rad). After gel electrophoresis, 

samples were transferred to a nitrocellulose membrane and blocked in 5% milk.  Following incubation 

with primary and secondary antibodies, resultant bands were visualized with film and analyzed with 

ImageJ (NIH). All Western blot data is reported as the band density of the phospho-protein normalized to 

the band density of the total protein. 

Statistical Analysis: All data is expressed as means ± standard error of the mean. Insulin dose 

curve data was analyzed with a non-linear fit curve (Sigmoidal dose-response (variable slope)). The 

resultant EC50’s and R squared values are reported. In addition, dose curve data was also analyzed with a 
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1-way ANOVA and Dunnett’s post-hoc to compare all groups back to control (PBS).  Experiments 

investigating signaling time courses and 1.29 U/Kg insulin doses were also analyzed with a 1-way 

ANOVA and Dunnett’s post-hoc to compare all groups back to control (PBS or 0 time point). Outliers 

greater than or less than 2 standard deviations from the mean were not included in the analysis. All 

statistical tests were performed using GraphPad Prism software and a P value <0.05 was considered 

significant. 

2.4 Results 

Insulin induced Akt activation is dose and time dependent in the PNS:  

Akt is a major downstream mediator of insulin signaling and Akt phosphorylation (ser 473 via 

mTorc2 and thr 308 via PDK1) can be used to quantify insulin signal transduction. Here, insulin was 

delivered via IP injection in increasing doses and PNS insulin signaling was quantified with Western blots 

of activated Akt (p-(Ser473)Akt/ total Akt and p-(Thr308)Akt/total Akt) in the DRG and sciatic nerve. 

Analysis of dose response curves indicated that insulin induced Akt ser473 and thr308 phosphorylation is 

dose dependent in both the DRG and sciatic nerve (Figure 2.1). At the maximum dose of 10,000 U/kg the 

fold change for Akt ser473 phosphorylation as compared to baseline in the DRG and sciatic nerve was 9.2 

and 30.5, respectively. Analysis of Akt thr308 phosphorylation indicates the fold change at 10,000 U/Kg 

as compared to baseline was 14.0 in the DRG and 18.1 in the sciatic nerve.   

Beyond dosing, insulin signaling in the PNS is time sensitive. To establish the PNS insulin 

signaling time course profile, mice were given IP injections of insulin at 33.05 U/kg (the EC50 for DRG 

Akt ser473 phosphorylation) and the DRG and sciatic nerve were harvested at 0, 5, 15, 30, and 60 

minutes after insulin administration. At this dose, Akt activation was evident 5 minutes after insulin 

injection and appeared to be maximal at approximately 30 minutes in the DRG at both activation sites,   
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Figure 2.1 
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Figure 2.1: Insulin-induced Akt activation is dose dependent in the DRG and sciatic nerve. Mice 

were administered insulin via IP injections at doses of 0.01, 0.1, 1.0, 5.0, 10.0, 100.0, 1000.0 and 10000 

U/kg. Sterile PBS was used as a vehicle control. Akt phosphorylation at sites serine 473 (A and B) and 

threonine 308 (C and D) were then analyzed in the DRG and sciatic nerve and normalized to total Akt 

levels. Data was fit with a sigmoidal dose response curve and analyzed with a 1-way ANOVA and 

Dunnet’s post hoc. Results indicate that Akt activation in the DRG (A and C) and sciatic nerve (B and D) 

increased in a dose dependent manner with insulin. n=4-5 mice per dose. *=p<0.05, **=p<0.01, 

***=p<0.001. 
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ser473 (6.5 fold change from baseline) (Figure 2.2 A) and thr308 (5.7 fold change from baseline) (Figure 

2.2 C). In the sciatic nerve, Akt activation appeared to continue increasing out to the 60 minute time point 

at both phosphorylation sites, ser473 (14.0 fold change from baseline) (Figure 2.2 B) and thr308 (15.1 

fold change from baseline) (Figure 2.2 D).  For comparison, blood glucose levels were also collected at 

these time points (Figure 2.2 E). Glucose levels decreased throughout the study; however the rate of 

decrease was much slower from 15 to 60 minutes after an initial steep decline from 0 to 15 minutes. 

Experiments were not carried out past 60 minutes at this dose due to possible hypoglycemic events. 

 

Downstream insulin signaling pathway activation in the PNS:  

The insulin signaling cascade results in the activation of several cellular pathways, including 

pathways dependent on Akt activation and Akt independent pathways. Several proteins known to be 

modulated by insulin induced Akt activation in muscle, liver, and adipose tissue were investigated in the 

PNS via Western blot analysis including inhibition of GSK3β (glycogen synthesis), activation of mTor 

(protein synthesis), and activation of AS160 (glucose uptake). In addition, ERK activation was tested to 

evaluate Akt independent pathways (results are summarized in Table 2.1). All proteins investigated 

appeared to be respond to insulin in a dose dependent manner in the sciatic nerve (Figure 2.3). However, 

in the DRG, GSK3β (Figure 2.3A) and ERK (Figure 2.3G) signaling did not show a dose dependent 

relationship with insulin. In the sciatic nerve, it appeared that although both GSK3β (Figure 2.3B) and 

ERK (Figure 2.3H) signaling was dose dependent; a plateau level was not reached. Dunnet’s post hoc 

suggests that at a dose of 10000 U/Kg GSK3β in the DRG (Figure 2.3A) and mTor in sciatic nerve 

(Figure 2.3F) were the only points that did not show significant change as compared to baseline. 

The time course of downstream mediator activation was also investigated at an insulin dose of 

33.05 U/Kg. Only GSK3β serine 9 phosphorylation in the sciatic nerve showed significant changes under 

these experimental conditions (Figure 2.4), suggesting that either a longer time frame or higher insulin 

doses are needed to effectively study downstream insulin signaling in the PNS.  These results correlate  
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Figure 2.2 
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Figure 2.2: Insulin-induced Akt activation time course in DRG and sciatic nerve. Mice were 

administered 33.05 U/Kg insulin and Akt activation in the DRG (A and C) and sciatic nerve (B and D) 

was analyzed via Western blot at 5, 15, 30, and 60 minutes post insulin injection. Akt activation appears 

to be maximal around 30 minutes in the DRG and 60 minutes in the sciatic nerve. Glucose levels were 

significantly decreased 5 minutes after insulin injection. Results were analyzed with a 1-way ANOVA 

and Dunnett’s post hoc. N=3 mice per time point. *=p<0.05, **=p<0.01, ***=p<0.001. 
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Figure 2.3 
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Figure 2.3. Insulin dose curve downstream mediator activation. In addition to Akt, the in vivo 

signaling of several other proteins in the insulin pathway was investigated in the DRG and sciatic nerve in 

response to an IP insulin dose curve. Data was fit with a sigmoidal dose response curve and analyzed with 

a 1-way ANOVA and Dunnet’s post hoc. The sigmoidal dose response curve was unable to fit the GSK3β 

(A) and ERK (F) results in the DRG (not converged). All other proteins appear to have a dose dependent 

relationship with insulin. The overall ANOVA p-value was significant for all proteins investigated except 

mTor and GSK3β in the DRG and ERK in the SN. Results of Dunnet’s post hoc are denoted with *. n=4-

5 mice per dose. *=p<0.05, **=p<0.01, ***=p<0.001. 
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Table 2.1 
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Table 2.1: Summary of insulin dose curve insulin signaling pathway activation in the DRG and 

sciatic nerve. Analyzed results of in vivo insulin signaling in the DRG and sciatic nerve in response to an 

insulin dose curve indicate that both sensory neuron cell bodies and the peripheral nerve are insulin 

responsive. Interestingly, differences in downstream signaling may exist between the DRG and sciatic 

nerve. Data was fit with a sigmoidal dose response curve and analyzed with a 1-way ANOVA and 

Dunnet’s post hoc. “not converged” indicates that the sigmoidal dose response curve equation was unable 

to fit the data. *=p<0.05, **=p<0.01, ***=p<0.001.  
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Figure 2.4 

 



45 
 

Figure 2.4. Time course of insulin signaling downstream mediator activation. In contrast to Akt 

results, few significant changes were observed in downstream insulin signaling throughout the time 

course at a dose of 33.05 U/Kg. Only GSK3β in the sciatic nerve showed significant differences from 

baseline when analyzed with a 1-way ANOVA and Dunnet’s post hoc (Figure 4B). n=3 mice per time 

point. *=p<0.05, **=p<0.01, ***=p<0.001. 
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with those observed in the dose curve, where GSK3β in the sciatic nerve had the best fit with the 

sigmoidal dose response analysis (R square=0.6169) (Figure 3B).  

Differences in insulin signaling exist between PNS and “classically” insulin sensitive tissues:  

An interesting observation from the dose curve experiments was the large difference between the 

EC50 for glucose percent change (0.43 U/kg) (Figure 2.5A) and the EC50 for Akt activation in the DRG 

(33.05 U/kg) (Figure 2.1A), approximately a 77 fold difference. Furthermore, it is recognized that 33.05 

U/Kg is supraphysiological insulin dose and potentially lethal. To further explore the difference in 

glucose percent change and PNS insulin signaling as well as to investigate PNS insulin signaling at a 

more physiological insulin dose; Akt activation was tested over a 6 hour period in the PNS as well as in 

muscle, liver, and adipose at a “therapeutically relevant” dose. An insulin dose 3 times the EC50 for 

glucose percent change, 1.29 U/kg; was used for these experiments. Time points chosen were based on a 

previous publication investigating the delivery of insulin to neural structures via intranasal or 

subcutaneous injections [201]. It was indicated that intranasal insulin had greater deliver to neural 

structures at early time points, but that later time points showed increased insulin levels with systemic 

deliver. As expected, significant increases in Akt activation were seen in the liver (21.8 fold change) 

(Figure 2.5C), muscle (4.6 fold change) (Figure 2.5D), and adipose (21.5 fold change) (Figure 2.5E) at 30 

minutes, correlating with the change in glucose levels (Figure 2.5B). However, of the neural tissues 

investigated only the sciatic nerve demonstrated a significant increase in Akt activation (2.5 fold change) 

at 30 minutes (Figure 2.5F). No significant changes in Akt activation were observed in the DRG or spinal 

cord at all-time points investigated (Figures 2.5G and 2.5H, respectively). These results differ from 

previous results presented using higher insulin doses; indicating the dose and timeframe of insulin 

signaling in the PNS are codependent, an important consideration when trying to establish outcome 

measures for in vivo quantification of PNS insulin signaling. 
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Figure 2.5 
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Figure 2.5. “Therapeutic” insulin dose Akt activation time course in liver, muscle, adipose, sciatic 

nerve, DRG, and spinal cord. Analysis with sigmoidal dose response curve indicates that the EC50 for 

glucose percent change was 0.4295 U/Kg in insulin dose curve studies (A). A 6-hour time course study 

using 1.29 U/Kg insulin showed a significant decrease in glucose levels 30 minutes after insulin injection, 

with a return to baseline by 2 hours (B). Significant Akt activation was observed at 30 minutes post 

insulin in the liver (C), muscle (D), adipose (E), and sciatic nerve (F). No significant changes were seen in 

the DRG (G) or lumbar spinal cord (H). Data was analyzed with a 1-way ANOVA and Dunnet’s post hoc. 

n=6 at 0 time point, n=6 at 30 minute time point, n=4 at 2 hour time point, n=5 at 4 hour time point, n=3 

at 6 hour time point. *=p<0.05, **=p<0.01, ***=p<0.001. 
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2.5 Discussion  

Due to the growing cases of diabetes, diabetic complications are becoming increasingly prevalent. 

DN occurs with an elevated incidence as compared to other complications and is associated with dramatic 

decreases in patient quality of life. The goal of this study was to establish the profile of insulin signaling 

in the PNS in vivo in order to better understand how disruptions in PNS insulin signaling may impact 

sensory neuron function. Our results indicate that the PNS is clearly insulin responsive and that 

differences in insulin signaling may exist between PNS compartments. Furthermore, it also appears that 

PNS insulin signaling is muted as compared to muscle, liver, and adipose at a therapeutically relevant 

dose. Importantly, these results will further guide researchers when completing in vivo studies evaluating 

the impact of altered insulin signaling on DN pathogenesis. 

A consistent theme throughout the presented data was an increased insulin response in the sciatic 

nerve as compared to the DRG. For several of the investigated proteins, a higher fold change in activation 

(inhibition for GSK3β) was observed in the sciatic nerve. These results closely mimic previous 

observations of insulin signaling in the PNS using intrathecal injections (unpublished observation, Figure 

4.3). Moreover, at a “therapeutically relevant” insulin dose, only the sciatic nerve showed a significant 

increase in Akt activation. It is plausible that the post mitotic DRG neurons are buffered from large 

swings in insulin levels and rely more on basal insulin for support; whereas the Schwann cells of the 

peripheral nerve readily react to changing insulin levels via Akt activation to induce proliferation [202], 

differentiation [203] and myelination [204]. In fact, it has been recently discovered that not only do 

Schwann cells express insulin receptors [183], but that insulin receptor signaling is important in 

regulating glycoprotein P0 expression [172]. Furthermore, Schwann cell dysfunction has been implicated 

in diabetic neuropathy [205]. Thus, we propose that reductions in insulin signaling associated with 

diabetes not only impacts the sensory neuron cell body, but also the axons and Schwann cells of the 

peripheral nerve which severely diminishes the regenerative/repair capacity of distal axons. In DN, 

reduced PNS insulin signaling may be more of a propagating event than an inciting event, such that 

nerves cannot recover from hyperglycemia injury due to the lack of insulin support.  
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One important consideration when interpreting the data presented here is that this was a one-time 

IP injection of Humulin R insulin, differences in delivery (insulin pumps) or insulin formulations may 

give differing results. Furthermore, it should be noted that cross talk between insulin and the IGF1 

receptor does occur [176].  Insulin at high concentrations can signal through the IGF1 receptor and 

activate many of the same intracellular pathways (namely Akt). Thus, the signaling observed cannot be 

solely attributed to signaling through the insulin receptor.  

While these studies have provided a new understanding of insulin signaling in the PNS, they do 

not provide much indication of what amount of signaling is needed for a biological/cellular response or 

what exactly that response maybe. It can be extrapolated from the proteins investigated and the 

understanding of these pathways in “classically” insulin sensitive tissues, however further research is 

needed to completely understand the physiologic role of insulin in the PNS. The results of two 

downstream mediators were of particular interest, GSK3β and AS160. Inhibition of GSK3β was dose 

dependent in the sciatic nerve but not the DRG; suggesting that insulin may have divergent downstream 

signaling within different compartments of the PNS. Interestingly, inhibition of GSK3β has been shown 

to play a pivotal role in peripheral nerve remyelination [206] and that this may occur via the PI3K-Akt 

pathway [203]. Reductions in insulin-induced GSK3β inhibition in the peripheral nerve may contribute to 

pathological changes in DN. AS160 is predominantly thought to be involved in glucose uptake via 

translocation of Glut4 to the plasma membrane [207]. DRG neurons and Schwann cells of the peripheral 

nerve do not take up glucose in an insulin dependent manner [144, 208]. Thus, a dose dependent increase 

in AS160 activation was surprising. These results suggest that either high dose insulin may trigger 

glucose uptake in the PNS or that AS160 may have a previously undiscovered function in these tissues. 

Further experiments are needed to fully elucidate these possibilities. 

 A growing trend in the literature indicates that direct administration of insulin to the nervous 

system has a much greater neurotrophic potency as compared to systemic insulin administration [191, 

201]; an idea first proposed by Kan et. al., [209]. The results presented here may explain some of this 

observed effect, in that a majority of systemically delivered insulin is quickly metabolized in the muscle, 
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liver, and adipose possibly contributing to a blunted neurotrophic effect. Furthermore, it appears that only 

the peripheral nerve is responsive to low doses of systemic insulin; whereas, both the neuronal cell body 

and peripheral nerve are responsive to intrathecal insulin (unpublished observation, Figure 4.3). Insulin 

stimulation of both PNS compartments may produce a greater neurotrophic effect as compared to just 

peripheral nerve signaling. These results suggest that while current insulin formulations and delivery 

methods are very adequate for reducing elevated glucose levels, they may not reach the nervous system 

appropriately, and thus fail to deliver the needed neurotrophic support. Perhaps the development and 

integration of better insulin delivery to the nervous system either through different routes (i.e. intranasal) 

or through insulin peptide modification is warranted.  

In conclusion, these studies have established that the PNS is insulin responsive in vivo and that 

the peripheral nerve and DRG may have different insulin signaling profiles. This information provides a 

new basis for future experiments designed to explore the role of insulin in the PNS and how disruptions in 

PNS insulin signaling may be contributing to DN pathogenesis. 
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Chapter 3: Insulin Receptor Substrate 2 Expression and Involvement in Neuronal Insulin 

Resistance in Diabetic Neuropathy 

 

3.1 Abstract 

Insulin signaling depends on tyrosine phosphorylation of insulin receptor substrates (IRS) to 

mediate downstream effects; however, elevated serine phosphorylation of IRS impairs insulin signaling.  

Here, we investigated IRS protein expression patterns in dorsal root ganglia (DRG) of mice and whether 

their signaling was affected by diabetes.  Both IRS1 and IRS2 are expressed in DRG, however IRS2 

appears to be the prevalent isoform and is expressed by many DRG neuronal subtypes.  Phosphorylation 

of Ser(731)IRS2 was significantly elevated in DRG neurons from diabetic mice.  Additionally, Akt 

activation and neurite outgrowth in response to insulin were significantly decreased in DRG cultures from 

diabetic ob/ob mice.  These results suggest that DRG neurons express IRS proteins that are altered by 

diabetes similar to other peripheral tissues, and insulin signaling downstream of the insulin receptor may 

be impaired in sensory neurons and contribute to the pathogenesis of diabetic neuropathy.  
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3.2 Introduction  

Insulin receptor substrate (IRS) is a key mediator of intracellular insulin signaling. IRS is a 

docking protein known to be composed of 3 structural significant areas, an N-terminal pleckstrin 

homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and a C-terminal tail with multiple 

tyrosine, serine, and threonine phosphorylation sites [18, 19, 210].  The PH domain plays a role in 

binding IRS to the plasma membrane and the insulin receptor, the PTB domain binds IRS directly to the 

juxtamembrane domain of the insulin receptor, and the phosphorylation sites regulate the binding of 

effectors to IRS [18, 19, 210].  In addition, IRS2 also has a kinase regulatory-loop binding (KRLB) 

domain that plays a role in regulating IRS2 tyrosine phosphorylation [211]. 

Four mammalian isoforms of IRS have been described thus far, with IRS1 and IRS2 being the 

most physiologically relevant [212, 213].  IRS1 appears to be the main isoform expressed in muscle and 

adipose tissue [212-214], whereas IRS2 seems to be more relevant in liver and brain [212, 213, 215].  

Mice with systemic IRS1 knockouts demonstrate growth retardation, insulin resistance, and beta-cell 

hyperplasia without diabetes [213]. IRS2 knockout mice develop insulin resistance, decreased beta-cell 

proliferation, overt diabetes, and female sterility [212, 213]. 

Serine phosphorylation of IRS has emerged as a key regulatory step for insulin signaling in both 

physiological and pathological situations.  A large body of work suggests that elevated IRS serine 

phosphorylation inhibits insulin signal transduction [18, 19, 210, 214, 216-222].  Under normal 

conditions, IRS is tyrosine phosphorylated upon insulin binding, but following accumulation of activated 

downstream mediators, IRS is phosphorylated on serine residues, impairing insulin signaling through a 

negative feedback mechanism.  In an insulin-resistant state, agents that promote IRS serine 

phosphorylation are upregulated, resulting in pathological elevation of IRS serine phosphorylation and 

impaired insulin signaling [18, 19, 210, 216, 217, 222-224]. 

To address whether these same regulatory mechanisms affect sensory neurons, we examined IRS 

expression and signaling in vivo and in vitro in DRG neurons from streptozotocin (STZ)-induced type 1 

and ob/ob type 2 diabetic mice.  Our results suggest that IRS proteins are expressed by sensory DRG 
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neurons and undergo elevated serine phosphorylation in diabetic mice.  Cultured DRG neurons from 

ob/ob animals had blunted responses to insulin as indicated by decreased Akt activation and neurite 

outgrowth.  These findings support the hypothesis that insulin resistance due to increased serine 

phosphorylation of IRS2 could contribute to alterations in neuronal insulin support and promote 

peripheral nerve dysfunction. 

 

3.3 Experimental Procedures 

 Animals: All experiments were approved by the University of Kansas Medical Center 

Institutional Animal Care and Use Committee.  Mice were subjected to a 12-hour light/dark cycle and had 

ad libitum access to food and water.  For determination of IRS expression, 8-week old male C57Bl/6 mice 

were purchased from Charles River (Wilmington, MA).  DRG were harvested for reverse transcriptase-

PCR, Western blot analysis, and immunohistochemistry.  To determine the effects of diabetes on insulin 

signaling in peripheral neurons, male ob/ob mice and colony controls were ordered at 8 weeks of age 

from Jackson Laboratories (Bar Harbor, Maine).  The ob/ob leptin knockout mice have been previously 

characterized as a model of insulin resistance, type 2 diabetes, and DN [77].  

In addition, diabetes was induced in 8 week-old C57BL/6 male mice using a single 

intraperitoneal injection of streptozotocin (STZ), a pancreatic beta cell toxin, (Sigma, St. Louis, MO) at 

180 mg/kg body weight.  The STZ was dissolved in 10mM sodium citrate buffer (pH 4.5) and the 

nondiabetic mice were injected with 400 µl of the vehicle buffer.  Mice were fasted for 3 hours pre and 

post injection to improve STZ uptake in pancreatic β cells. Body weights and blood glucose levels via tail 

clip were checked weekly to monitor diabetes progression. 

Adult DRG Culture: Mice were anesthetized with an intraperitoneal (IP) injection of cold Avertin 

(2-2-2 Tribromoethanol) 20μL g-1 and transcardially perfused with ice-cold HBSS without Ca++/Mg++ 

(Sigma-Aldrich) to reduce protease activity and increase cell survival [225].  The DRG were harvested 

and transferred to 3 mL of ice-cold HBSS without Ca++/Mg++.  Adult mouse DRG were cultured 



55 
 

according to a protocol published by Molliver et al [225].  All procedures were performed in a tissue hood 

with appropriate sterile technique.  DRG were partially digested with 2 separate enzyme solutions, one 

containing papain (Worthington, Lakewood, NJ) and another containing collagenase type II 

(Worthington) and dispase type II (Roche, Basel, Switzerland).  Neurons were then triturated with a fire-

polished glass Pasteur pipette to dissociate neuronal cell bodies.  Neurons were grown on laminin/poly-D-

lysine coated coverslips (BD Biosciences, Bedford, MA) placed in 24 well culture plates (Sigma-

Aldrich). The media consisted of insulin-free B27 supplement (Invitrogen, Carlsbad, CA), 

penicillin/streptomycin (Invitrogen), and F12 culture medium (Invitrogen).  Neurons were then allowed to 

adhere to coverslips for 2 hours.  After this time, either 1mL fresh insulin-free media or media containing 

100nM insulin (Sigma-Aldrich), depending on the experimental group and assay was added.  For 

hyperglycemia experiments, DRG neuronal cultures from wildtype C57Bl/6 mice were grown in 25mM 

glucose and control cultures were maintained at 10mM glucose [226, 227]. 

 Reverse Transcriptase-Polymerase Chain Reaction: RT-PCR was performed to determine mRNA 

levels of different IRS isoforms.  Total RNA was isolated from DRG tissue using TRI Reagent (Ambion, 

Foster City, CA) as indicated in the manufacturer’s protocol.  The RNA concentration was determined 

using a Bio Rad spectrophotometer and the quality of RNA was tested with an electrophoretic separation 

technique (Agilent 2100 bioanalyzer tracer with the Eukaryote Total RNA Nano assay).  RNA was then 

reverse transcribed to cDNA using iScript cDNA synthesis kit (Bio Rad).  The thermal cycler conditions 

were as follows: 25°C for 5 minutes, 42°C for 30 minutes, and 85°C for 5 minutes.  Real time PCR 

amplification of IRS1, IRS2, IRS3, and IRS4 was performed using 2.0µg of cDNA and SYBR green 

master mix (Bio-Rad). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as a reference 

gene and all reactions were run in triplicate.  The thermal cycler conditions for PCR were 95°C and 60°C 

for 40 cycles.  IRS isoform mRNA levels were normalized to GAPDH and the ΔΔCt method was used for 

relative expression analysis. The primer sequences used for real time PCR were as follows: 

IRS1 forward: 5’-CTCTACACCCGAGACGAACAC-3’ 

IRS1 reverse: 5’-TGGGCCTTTGCCCGATTATG-3’ 
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IRS2 forward: 5’-CTGCGTCCTCTCCCAAAGTG-3’ 

IRS2 reverse: 5’-GGGGTCATGGGCATGTAGC-3’ 

IRS3 forward: 5’-TCCTCCAAAGAGTGTTCCTGC-3’ 

IRS3 reverse: 5’-GGGGCTTGAAGTAGTCCTGC-3’ 

IRS4 forward: 5’-TCCTGTACCAATGCTTCTCCG-3’ 

IRS4 reverse: 5’-AGCTTTCTTGTTCCGACTCGT-3’ 

GAPDH forward: 5’-AGGTCGGTGTGAACGGATTTG-3’ 

GAPDH reverse: 5’-TGTAGACCATGTAGTTGAGGTCA-3’ 

Western Blots: Protein from primary DRG cultures was harvested after 3 days in insulin-free 

media by removing growth media, adding CEB (Invitrogen), and then scraping the coverslips. Cell 

Extraction Buffer (CEB) (Invitrogen) contained 55.55 µl/ml protease inhibitor cocktail, 200mM Na3VO4, 

and 200mM NaF. Three coverslips per treatment group were combined into a single sample.  The samples 

were incubated on ice for 1 hour with light vortexing every 10 minutes and then centrifuged at 7000 rpm 

for 10 minutes at 4°C. Protein concentration of the supernatant was measured with a Bradford assay (Bio-

Rad, Hercules, CA). Samples were then boiled with Lane Marker Reducing Sample Buffer (Thermo 

Scientific, Waltham, MA) for 3 minutes.  For normalization purposes, equal amounts of protein were 

loaded for each sample.  The samples were separated on a 4-15% gradient tris-glycine gel (Bio-Rad) and 

then transferred to a nitrocellulose membrane.  After transfer, the membrane was stained with Ponceau S 

and cut so that IRS (180kDA) and Akt (60kDA) are separated, producing 2 membranes that could be 

probed independently.  Primary antibodies were used at the following dilutions and incubations: total 

IRS1 (Santa Cruz, Santa Cruz, CA) 1:1000 overnight at 4°C, total IRS2 (Millipore, Billerica, MA) 1:500 

overnight at 4°C, pSer(731)IRS2 (Abcam, Cambridge, MA) 1:1000 overnight at 4°C, insulin receptor β 

subunit (Santa Cruz) 1:500 overnight at 4°C, pSer(473)Akt (Cell Signaling, Danvers, MA) 1:500 

overnight at 4°C, total Akt (Cell Signaling) 1:500 overnight at 4°C, and actin (Millipore) 1:100,000 at 

room temperature for 1 hour.  Anti-mouse and anti-rabbit secondary antibodies conjugated to HRP (Santa 
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Cruz) were diluted 1:10,000 and incubated for 1 hour at room temperature.  Band density was analyzed 

with ImageJ (NIH). 

 Immunohistochemistry: DRG were harvested and immediately frozen in Tissue Tek (Sakura 

Fineteck, Torrance, CA).  The tissue was sectioned at 10µm with a cryostat and placed in serial order on 

glass slides.  Slides were blocked at room temperature for 1 hour with pre-incubation solution (1.5% 

Normal Goat or Donkey Serum, 0.5% Porcine Gelatin, 0.5% Triton X-100, and 450 µL Superblock 

(Thermo Scientific)).  Primary antibodies were used at the following dilutions and incubations: total IRS2 

(Millipore) 1:400 overnight at 4°C, mouse monoclonal Peripherin (Millipore) 1:2000 overnight at 4°, and 

mouse monoclonal Neurofilament 200 (Sigma) 1:2000 overnight at 4°C.  Donkey anti-Rabbit Alexa-488 

and donkey anti-mouse Alexa-555 conjugated secondary antibodies (Invitrogen) were diluted 1:2000 and 

incubated for 1 hour at 4°C.  Images were photographed using a Nikon Eclipse E800 microscope and 

analyzed with ImageJ (NIH).  

Neurite Outgrowth: To assess potential changes in the functional neurotrophic effect of insulin on 

DRG neurons, neurite outgrowth was quantified in dissociated cultures of ob/ob mice and controls.  After 

5 days in culture with either insulin-free media or media containing 100nM insulin the neurons were fixed 

with 4% paraformaldehyde for 10 minutes. Immunohistochemistry was performed with SMI-312 

(Covance, Emeryville, CA), a pan-axonal marker, to visualize neurites, and counterstained with nuclear 

marker, Hoechst 33342 (Invitrogen).  Coverslips were mounted on slides and imaged. Neurite outgrowth 

area was quantified using Image J.  A stereological grid was superimposed on images of the cultures and 

the number of neurites crossing exactly through intersections of the grid was counted, as were the number 

of neuronal cell bodies producing neurites.  Six coverslips per group were counted and the neurite area 

per neuron was calculated according to the following equation [228]:  

 

 Statistical  
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Analysis: All data were expressed as means ± standard error of the mean.  Data were analyzed using a 

student’s t-test or 2-factor analysis of variance (ANOVA). ANOVAs were followed up with post hoc 

comparisons using Fisher’s least significance difference where appropriate. A P value  < 0.05 was 

considered statistically significant.  

 

3.4 Results 

IRS2 is the predominant IRS isoform in the DRG:  

RT-PCR was used to determine which mRNAs encoding IRS isoforms were expressed in lumbar 

DRG from young adult C57Bl/6 mice.  Comparisons of mRNA levels for the 4 different IRS isoforms in 

the DRG of nondiabetic C57Bl/6 mice revealed that IRS2 mRNA is abundantly expressed within the 

lumbar DRG (Figure 3.1A, B). In fact, IRS2 mRNA was expressed nearly 27-fold higher relative to IRS1.  

In comparison, both IRS3 and IRS4 mRNAs were barely detectable in relation to IRS1 (Figure 3.1A, B).  

Western blots of DRG from nondiabetic C57Bl/6 mice showed that both IRS1 and IRS2 proteins were 

detectable in the DRG (Figure 3.1C, D).  Together, these results suggest that insulin signals may be 

mediated through IRS substrates in the DRG and IRS2 is expressed at much higher levels similar to other 

neural tissues [215, 229-231]. 

Because IRS2 was expressed at higher levels than other IRS isoforms, we focused on IRS2 

expression and signaling in DRG neurons.  Characterization of IRS2 expression patterns in the lumbar 

DRG revealed widespread IRS2-immunoreactivity throughout the ganglia (Figure 3.2A, D). IRS2-

immunoreactivity was predominantly observed in the cytoplasm of neurons and not in satellite cells or 

Schwann cells (Figure 3.2A, D).  Accordingly, identification of sensory neuron populations using 

antibodies to neurofilament heavy chain (NF-200, myelinated neurons, Figure 3.2B) and peripherin 

(unmyelinated neurons, Figure 3.2E) revealed that IRS2 was expressed by a majority of DRG neurons, 

and these IRS2-positive neurons included both unmyelinated and myelinated neuronal populations 

(Figure 3.2B, C, E, F). 
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Figure 3.1 
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Figure 3.1. IRS isoform expression in murine lumbar DRG. IRS isoforms were examined using RT-

PCR (A, B) and Western blot (C, D).  A) RT-PCR was performed on adult C57Bl/6 mouse lumbar DRG 

(n=3 mice) and comparisons were made among IRS1, IRS2, IRS3, and IRS4. GAPDH was used as the 

housekeeping gene. ΔCt values for IRS2 were significantly lower than any other isoform. B) Analysis of 

IRS mRNA levels that were normalized to IRS1 mRNA levels revealed that IRS2 mRNA expression was 

27-fold higher than IRS1 in the DRG.  * denotes P<0.05 n=3 mice.  C, D) Representative Western blots 

of IRS1 and IRS2 protein in mouse lumbar DRG. Equal amounts of protein (20μg) were loaded for each 

lane and samples were separated on 4-15% tris-glycine gel. Both IRS1 (C) and IRS2 (D) protein were 

readily detectable. All mice were 8-week old nondiabetic C57Bl/6 males.  
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Figure 3.2 
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Figure 3.2. IRS2 protein expression pattern in murine lumbar DRG. Fluorescence 

immunohistochemistry was used to examine IRS2 expression in adult C57Bl/6 mouse lumbar DRG. A, 

D) Photomicrographs of IRS2 immunoreactivity in DRG neurons. IRS2 was expressed in most neurons of 

the DRG in mice. B, E) Photomicrographs of the same sections stained with antibodies to NF–200 (B), 

which labels large, myelinated neurons in the DRG or peripherin (E), which labels unmyelinated small 

DRG neurons. C, F) Merged images of IRS2 and NF-200 (C) labeling illustrates that many IRS2-positive 

neurons also express NF-200, suggesting many IRS2-positive neurons are large myelinated neurons. 

Similarly, merged images of IRS2 and peripherin (F) labeling illustrate that many IRS2-positive neurons 

coexpress peripherin, suggesting many IRS2-positive neurons are small unmyelinated neurons. Scale 

bar=100μm. 
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Diabetes elevates IRS2 serine phosphorylation in mouse DRG:  

To determine whether IRS2 in the DRG is prone to diabetes-induced elevations in serine 

phosphorylation similar to other peripheral tissues, DRG neurons from type 2 diabetic and nondiabetic 

mice were cultured without insulin for 3 days and then harvested for Western blot analysis. Membranes 

were probed with antibodies selective for pSer(731)IRS2 and then stripped and probed for total IRS2 

(Figure 3.3A).  Quantification of pSer(731)IRS2 normalized to total IRS2 revealed that IRS2 serine 

phosphorylation was significantly increased in neurons from diabetic ob/ob mice compared to their 

nondiabetic controls (P < 0.05, Figure 3.3A).  Moreover, similar elevations in pSer(731)IRS2 were 

observed in freshly harvested DRG neurons after 6 weeks of STZ-induced type 1 diabetes in C57Bl/6 

mice (P < 0.05, Figure 3.3B).  These results reveal that IRS2 phosphorylation of serine residues is 

elevated in multiple models of diabetes and like other peripheral tissues, this serine phosphorylation could 

lead to suppressed insulin signaling in DRG neurons. 

To investigate whether the elevated serine phosphorylation of IRS2 observed in DRG neurons 

harvested from diabetic mice was possibly caused by the elevated glucose levels, cultures from 

nondiabetic control mice were grown in hyperglycemic conditions (25mM glucose) for 3 days and 

pSer(731)IRS2 levels were quantified.  Results from these experiments revealed that pSer(731)IRS2 was 

not elevated in hyperglycemic cultures as compared to control cultures grown in 10mM glucose (P > 0.05 

Figure 3.3C). Thus, short-term elevations in glucose levels do not appear to modify serine 

phosphorylation of IRS2, suggesting that the mechanisms responsible for this effect are not simply due to 

elevated glucose.  

It has been proposed that elevated serine phosphorylation of IRS proteins can lead to increased 

protein degradation of IRS.  Thus, degradation of IRS proteins may also contribute to insulin resistance 

[232].  To address this possibility, we quantified total IRS2 expression in neuronal cultures from ob/ob 

diabetic mice and normalized them to the housekeeping protein actin.  This analysis revealed that total 

IRS2 expression appeared to be decreased in DRG cultures from diabetic ob/ob mice, although this  
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Figure 3.3 
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Figure 3.3. pSer(731)IRS2 is elevated in DRG neurons from type 1 and type 2 diabetic mice.  Protein 

was harvested from adult mouse DRG culture from diabetic ob/ob and nondiabetic mice (A),freshly 

isolated DRG from STZ-injected diabetic and nondiabetic C57Bl/6 mice (B), and from DRG neurons 

grown in hyperglycemic and control conditions (C). Western blots were performed using antibodies that 

recognized phosphorylated ser731 resides on IRS2, and levels of Ser(731)IRS2 were normalized to total 

IRS2. A) Comparisons of pSer(731)IRS2 levels in nondiabetic and diabetic ob/ob mice revealed a 

significant increase in pSer(731)IRS2 levels in diabetic mice. * denotes P<0.05 vs nondiabetics. n=6 for 

nondiabetic mice and n=7 for diabetic mice. B) Diabetes was induced in 8-week old C57Bl/6 male mice 

with STZ and diabetes was allowed to progress for 6 weeks. Similar to ob/ob diabetic mice, 

pSer(731)IRS2 levels were significantly elevated in STZ-injected diabetic mice. * denotes P < 0.05 vs 

nondiabetics. n=5 for nondiabetic mice and n=8 for diabetic mice.  C) DRG neurons from nondiabetic 

animals were grown in 10mM (control) and 25mM (hyperglycemic) glucose concentrations. There was no 

significant change in IRS2 serine phosphorylation levels between groups.  n=6 for 10mM glucose and 

n=7 for 25mM glucose, 
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Figure 3.4 
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Figure 3.4.  Total IRS2 and IR protein levels in primary DRG culture. Protein was harvested from 

adult mouse DRG culture from diabetic ob/ob and nondiabetic mice. Western blots were performed using 

antibodies that recognized total IRS2 (A), or IR β subunit levels (B). In both cases protein levels were 

normalized to actin. A) Total IRS2 levels were slightly decreased in diabetic ob/ob mice, although this 

trend was not statistically significant (P > 0.05). n=7 for nondiabetic mice and n=7 for diabetic mice. B) 

IR β subunit protein levels were not statistically different between diabetic and nondiabetic mice. (P > 

0.05). n=5 for nondiabetic mice and n=6 for diabetic mice. 
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decrease was not statistically significant (P > 0.05, Figure 3.4A).  However, this finding is consistent with 

the view that elevated IRS2 degradation may play a role in diminished insulin signaling. 

One alternative possibility for decreased insulin signaling is a down regulation of the insulin 

receptor (IR) in DRG of diabetic ob/ob mice.  To examine this possibility, we measured total IR protein 

levels in DRG cultures from diabetic ob/ob mice.  There were no significant differences in IR levels 

between DRG cultures from diabetic ob/ob mice and cultures from nondiabetic mice (P > 0.05, Figure 

3.4B).   

 

Insulin-stimulated Akt activation is blunted in DRG neurons from diabetic mice.  

Akt is a serine kinase that is one of the major downstream mediators activated in insulin signaling 

in both peripheral tissues and neurons [18, 219].  In neurons, neurotrophic factor activation of the Akt 

pathway has been shown to promote survival and growth of neurons [177, 233].  In its activated form, 

Akt is phosphorylated (pAkt) on serine residue 473, and pAkt is decreased in settings of insulin resistance 

[234]. Here, DRG from diabetic ob/ob and control mice were grown in insulin-free media for 3 days and 

then stimulated with 100nM insulin for 15 minutes.  Cultures were then harvested for Western blot 

analysis to determine Akt activation in response to insulin.  No significant differences were observed in 

baseline levels of Akt activation between diabetic and nondiabetic mice.  Insulin significantly elevated 

activated pSer(473) Akt in cultures from both nondiabetic and diabetic mice (P < 0.05, Figure 3.5).  

However, Akt activation in response to insulin was significantly lower in cultures from diabetic ob/ob 

mice as compared to nondiabetic controls (P < 0.05, Figure 3.5), suggesting that the insulin signaling 

pathway is not being activated appropriately in the DRG of diabetic ob/ob mice.   
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Figure 3.5 
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Figure 3.5. Diabetes decreases insulin-stimulated Akt activation in DRG neurons. Primary cultures 

of lumbar DRG neurons from ob/ob diabetic mice and nondiabetic controls were stimulated with 100nM 

insulin for 15 minutes and harvested for Western blot. Membranes were probed for activated Akt 

(pSer(473)Akt) and normalized to total Akt levels. Insulin significantly increased Akt activation in both 

nondiabetic and diabetics cultures (* = P < 0.05). In contrast, insulin-stimulated Akt activation in cultures 

from diabetic ob/ob mice was significantly suppressed in comparison to nondiabetic controls,  († = P < 

0.05). There were no significant differences in baseline pAkt levels between nondiabetic and diabetic 

mice. * and † denote P < 0.05; n=5 for nondiabetic without insulin, n=6 for nondiabetics with insulin, n=6 

for diabetics without insulin, and n=6 for diabetics with insulin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



71 
 

Insulin-stimulated neurite outgrowth is diminished in DRG neurons from diabetic mice.   

One common feature of neurotrophic factors is their ability to stimulate neurite outgrowth in 

culture.  Insulin increases the percentage of neurons that produce neurites (neuritogenesis) and promotes 

overall growth of neurites in culture [142, 176].  Here, neurite outgrowth in response to insulin 

supplementation was used to determine whether suppressed insulin signaling correlated with alterations in 

neurite outgrowth. DRG cultures from diabetic ob/ob mice and nondiabetic controls were grown in 

insulin-free media or media supplemented with 100nM insulin.  After five days, the cultures were fixed 

and stained with SMI-312, a pan-axonal marker (Figure 3.6A-D).  Quantification of cultures harvested 

from nondiabetic and diabetic ob/ob mice revealed that neurite outgrowth was significantly elevated in 

nondiabetic cultures following insulin supplementation (P < 0.05, Figure 3.6A, C).  In contrast, insulin 

supplementation did not affect neurite outgrowth in cultures from diabetic ob/ob mice.  These differences 

suggest that cultures from diabetic ob/ob mice have impaired responses to insulin related to neurite 

outgrowth, a finding that is consistent with the hypothesis that insulin-signaling pathways in DRG 

neurons may be impaired by diabetes. 

 

3.5 Discussion  

The current study demonstrates that similar to other neural tissues, IRS2 appears to be the 

predominant isoform of IRS in DRG neurons.  Furthermore, insulin signaling in DRG neurons from 

diabetic mice undergoes similar modifications that have been proposed to underlie insulin resistance in 

adipose and muscle.  These signaling alterations are consistent with blunted responses of sensory neurons 

to insulin stimulation, including diminished activation of downstream molecules and morphological 

changes.  Collectively, these results provide an important step towards understanding how abnormalities 

in insulin signaling may impact sensory neurons, and may also contribute to the development and/or 

progression of diabetic neuropathy.  
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Figure 3.6 
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Figure 3.6: Diabetes decreases insulin-stimulated neurite outgrowth in DRG neurons. Primary 

cultures of lumbar DRG neurons from diabetic ob/ob and nondiabetic mice were grown in either insulin-

free media or with media containing 100nM insulin for 5 days. Neurites were then stained with SMI 312, 

a pan-axonal marker. Neurite area was quantified using a stereological grid applied overtop 

photomicrographs of cultured wells. Photographs of representative wells are show on the top panel A) 

nondiabetics without insulin (n=5), B) diabetics without insulin (n=6), C) nondiabetics with insulin (n=6), 

D) diabetics with insulin (n=5). E) Quantification of neurite outgrowth in the different treatment groups. 

Insulin significantly increased neurite outgrowth in nondiabetic animals, whereas there was no effect of 

insulin on neurite outgrowth in neurons from diabetic mice. * and † denote P < 0.05. Scale bar=100μm. 
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Although insulin resistance is a major focus in type 2 diabetes associated with adipose and 

muscle tissue, our understanding of the effects of reduced insulin support to sensory neurons is 

surprisingly lacking.  A number of studies have reported expression patterns of the insulin receptor and 

IGF-1 receptor in DRG, but little is known about the expression of IRS isoforms in DRG.  Previous 

studies reported that the insulin receptor is expressed primarily by small nociceptive unmyelinated 

neurons [170, 171, 173].  Similar expression patterns were described for the IGF-1 receptor [235], 

suggesting that insulin and IGF-1 may preferentially modulate small nociceptive neurons in the DRG 

[173].  In the current study, IRS2 protein appears to be expressed by both small and large DRG neurons, 

suggesting that insulin and/or IGF-1 may support a broader scope of neuronal subtypes than previously 

thought.  Additionally, several reports have documented IRS as key docking proteins in many signaling 

cascades other than insulin, including neurotrophins such as brain-derived neurotrophic factor [20, 236, 

237]. Thus, inhibitory IRS serine phosphorylation may be blunting the signaling of several neurotrophic 

factors. 

Studies are currently underway to determine if changes in IRS serine phosphorylation also leads 

to altered IGF1 signaling. IRS proteins are a major component of both insulin and IGF1 pathways, so it is 

possible that the reductions in insulin signaling through IRS serine phosphorylation may also affect 

proper IGF1 function.  It will be important to identify these relationships, as a better understanding of 

how IRS proteins integrate trophic signals may shed light on mechanisms associated with neurotrophin 

deficiency in diabetic neuropathy [16].  Finally, although the current study focused primarily on IRS2, 

IRS1 was clearly detectable in the DRG. It is plausible that DRG neurons can utilize multiple IRS 

proteins to signal, and compensation and cooperation between IRS proteins likely exist in the DRG and 

should be considered in future investigations. 

Schwann cell dysfunction leading to demyelination, decreased neurotrophic support, and altered 

protection of neurons is a known factor in the pathogenesis of DN [205].  Schwann cells express insulin 

receptors [183], however the docking protein profile has not been completely characterized.  In this study, 

we did not observe IRS2 expression in Schwann cells, raising the possibility that insulin signaling in 
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Schwann cells may be mediated through another IRS isoforms or an additional docking protein such as, 

growth factor receptor-bound protein 2 (Grb2), Grb2-associated binding protein 1 (GAB1), or src 

homology 2 domain containing transforming protein 1 (SHC1). 

One interesting finding from this study was that IRS2 serine phosphorylation was increased in 

DRG from both type 1 and type 2 diabetic animals.  This result was not entirely surprising as a growing 

body of literature has documented altered insulin responses in type 1 diabetic patients [238-241].  Most 

recently, Schauer et. al. demonstrated that type 1 patients are insulin resistant compared to nondiabetic 

subjects and that the degree of insulin resistance correlated with cardiovascular disease risk [239].  This 

suggests that mechanisms associated with insulin resistance thought to be exclusive to type 2 diabetes 

may also be at work in type 1 diabetes. 

In the current study, experiments were carried out in vitro to determine whether elevated glucose 

may underline the increases in serine phosphorylation of IRS2.  At this point, our results do not support 

this view, as we saw no change in serine phosphorylation of IRS2 in neurons grown in high glucose.  A 

failure to see insulin signaling changes in cultures exposed to abnormally high glucose levels could be a 

result of the short time frame, such that agents associated with hyperglycemia and increased IRS serine 

phosphorylation, including advanced glycation endproducts and reactive oxygen species, did not 

sufficiently alter the stress kinase activity level. Further research is required to determine the interplay of 

DRG IRS serine phosphorylation and hyperglycemia.  

If the efficacy of insulin signaling does indeed play an important role in DRG function, it is 

reasonable to propose that factors common to both diabetes models could play an important role in 

modulating IRS2 signaling regardless of available insulin levels.  In that vein, chronic inflammation, 

increased free fatty acids, and elevated oxidative stress associated with diabetes inhibits insulin signaling 

by increasing serine phosphorylation of IRS1 in muscle and adipose tissue [18, 19, 210, 216, 217, 219, 

222-224, 242-244].  These various cellular stressors drive IRS serine phosphorylation by activating 

serine/threonine kinases.  Evidence has targeted several kinases involved in this pathway, including 

inhibitor of kappa B kinase b (IKKb), c-Jun N-terminal kinase (JNK), mammalian target of rapamycin 
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(mTOR), and glycogen synthetase kinase-3 β (GSK-3β) [18, 210, 212].  Further reports have shown that 

both IRS1 and IRS2 have a JNK binding motif [18, 220], and that JNK and GSK-3β knockout mice 

display increased insulin sensitivity [243, 245].  In addition, rapamycin, an mTOR inhibitor, has been 

shown to improve insulin sensitivity in an in vivo human study and a neuronal cell line [219, 246].  

Moreover, anti-oxidant or anti-inflammatory approaches can decrease stress kinase activity, leading to 

improved insulin action in muscle [234, 247].  These studies provide important links between 

inflammation, oxidative stress and insulin signaling, and it will be important to determine if these 

relationships exist and are relevant to sensory nerve dysfunction.  

Although it is likely that the inhibitory effect of IRS serine phosphorylation may be more 

dependent on the number of residues involved than a specific phosphorylation site [210, 248, 249], the 

question of how IRS serine phosphorylation may be affecting insulin signaling is not clear.  Several 

mechanisms have been proposed, including dissociation from either the insulin receptor or plasma 

membrane, increased IRS proteosome degradation, interference with binding of downstream mediators, 

and finally, decreased tyrosine phosphorylation of the IRS protein [210].  Our finding that IRS2 appears 

to be slightly decreased in neuronal cultures from diabetic ob/ob mice is consistent with the idea that 

elevated serine phosphorylation can lead to IRS degradation, thus limiting the ability of insulin to 

stimulate downstream effectors.  

In addition to effects of insulin in the peripheral nervous system, insulin signaling in the central 

nervous system (CNS) is gaining considerable attention.  Insulin is known to promote learning and 

memory [158], metabolic homeostasis [137], and have effects on aging [250]. Consequently, CNS insulin 

resistance has been shown to play a critical role in the development of Alzheimer’s disease [251], 

Parkinson’s disease [252], and metabolic syndrome [162].  It is now becoming evident that insulin 

resistance is not restricted to muscle and adipose tissue, but that it also occurs in nervous tissue and can 

potentially be detrimental to proper neuron function.  
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Conclusion 

The current study provides evidence that IRS proteins are expressed in the DRG and could play 

an important role in the ability of insulin to support peripheral neurons.  Elevated serine phosphorylation 

of IRS proteins is a major contributing mechanism underlying insulin resistance in muscle and adipose 

tissue.  Our results support a similar mechanism of insulin-signaling disruption within DRG neurons, and 

this modulatory step should be considered as an additional component contributing to diabetic 

neuropathy.  Future studies should address mechanisms that can promote insulin sensitivity in sensory 

neurons, as these may be an avenue to develop therapeutic interventions that could improve sensory nerve 

function in both type 1 and type 2 diabetic patients. 
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Chapter 4: In vivo Peripheral Nervous System Insulin Resistance 

 

4.1 Abstract  

A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that 

may contribute to sensory neuron dysfunction and diabetic neuropathy. While decreased PNS insulin 

signaling is plausible in type 1 diabetic (insulinopenic) models due to the paucity of insulin, a loss of 

insulin signaling within PNS neurons in type 2 (hyperinsulinemic) models has not been explored.  Here, 

experiments were performed to test the hypothesis that the PNS of insulin-resistant mice displays altered 

insulin signal transduction similar to other peripheral tissues. For these studies, nondiabetic control and 

type 2 diabetic ob/ob mice were challenged with an intrathecal injection of insulin or insulin-like growth 

factor 1 (IGF-1) and downstream signaling was evaluated in the dorsal root ganglion (DRG) and sciatic 

nerve using Western blot analysis. The results indicate that insulin signaling abnormalities documented in 

other “insulin sensitive” tissues (i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust 

increase in Akt activation was observed with insulin and IGF-1 stimulation in nondiabetic mice in both 

the sciatic nerve and DRG; however this response was blunted in both tissues from ob/ob mice. The 

results also suggest that upregulated JNK activation and reduced insulin receptor expression could be 

contributory mechanisms of PNS insulin resistance within sensory neurons. These findings contribute to 

the growing body of evidence that alterations in insulin signaling occur in the PNS and may be a key 

factor in the pathogenesis of diabetic neuropathy. 
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4.2 Introduction 

Diabetes and metabolic syndrome are risk factors for several neurological diseases and emerging 

evidence has indicated that neuronal insulin resistance may be involved in disease pathogenesis [253]. 

While altered insulin signaling is known to be the key factor in the development of diabetes, the role that 

it plays in DN is not well understood. Recent evidence suggests that cultured sensory neurons from 

insulin-resistant mice display classic signs of insulin resistance and that insulin resistance may be 

contributing to mitochondrial dysfunction and increased ROS in DN [181, 200]. Furthermore, clinical 

evidence has also reported that insulin resistance appears to be an independent risk factor for both 

autonomic and peripheral neuropathy [254].   

Cellular mechanisms of insulin resistance include downregulation of the insulin receptor, 

inhibitory serine phosphorylation of insulin receptor substrate (IRS), and upregulation of tyrosine 

phosphatases (PTPs). Many of these mechanisms are negative feedback pathways to regulate insulin 

signaling and can be potentiated by hyperinsulinemia. While mutations in the insulin receptor can result 

in insulin resistance, these events are rare [255]. However, a common observation is that chronic insulin 

treatment and hyperinsulinemia can induce blunted insulin receptor expression. The decreased insulin 

receptor expression seems to be due to increased receptor internalization and degradation [256, 257]. IRS 

serine phosphorylation is upregulated by several kinases downstream in the insulin signaling pathway (i.e. 

GSK3β), and IRS serine phosphorylation can blunt insulin signaling through several different 

mechanisms (discussed in Chapter 3). Like IRS serine phosphorylation, PTP downregulates insulin signal 

transduction. PTPs dephosphorylate the tyrosine residues on the insulin receptor and IRS, causing 

signaling deactivation.  Several PTPs have been implicated in insulin resistance, however the role of 

PTP1B is most well characterized. Cell lines that overexpress PTP1B demonstrate reduced insulin 

sensitivity [258] and PTP1B knockdown in insulin resistant ob/ob mice caused significant decreases in 

glucose and insulin levels and an increase in insulin sensitivity [259]. Furthermore, PTP1B knockout 

mice demonstrate increased insulin sensitivity and resistance to obesity [260].   



80 
 

Growing evidence suggests that neurons may become insulin resistant similar to other tissues and 

that insulin is a neuronal growth factor. However, no in vivo evidence of PNS insulin resistance has been 

presented and the cellular mechanisms associated with PNS insulin resistance have not been thoroughly 

investigated. The aim of the current study was to investigate insulin and IGF-I signaling in PNS sensory 

neurons in vivo and determine if signaling is disrupted in insulin-resistant type 2 diabetic mice. 

 

4.3 Experimental Procedures 

Animals: All experiments were approved by the University of Kansas Medical Center 

Institutional Animal Care and Use Committee.  Male ob/ob leptin null mutant and age-matched control 

mice (ob/+) were purchased from Jackson Laboratories (Bar Harbor, Maine) at 8 weeks of age.  Mice 

were given access to food and water ad libitum and housed on a 12-hour light/dark cycle.  Weekly blood 

glucose levels and weights were monitored and mice were sacrificed at 11 weeks of age. 

Glucose Tolerance Test: At 9 weeks of age, an intraperitoneal glucose tolerance test (IPGTT) was 

used to assess the response of mice to a glucose challenge.  After a 6-hour fast, mice were given an 

intraperitoneal injection of glucose at 1g of glucose per kg body weight.  Blood glucose levels were 

measured via tail clip immediately prior to the glucose bolus and then at 15, 30, 60, and 120 minutes after 

injection.  

Insulin Tolerance Test: At 10 weeks of age, mice underwent an insulin tolerance test (ITT).  Mice 

were fasted for 6 hours and then administered IP insulin (Humulin R, Lilly, Indianapolis, Indiana) at a 

dosage of 1.5U per kg body weight.  Blood glucose levels were monitored immediately prior to insulin 

injection and then at 15, 30, 60, and 120 minutes thereafter.  

HOMA-IR: Fasting insulin and fasting glucose levels were used to calculate the homeostatic 

model assessment of insulin resistance (HOMA-IR).  Scores were calculated with the following equation: 

(Blood Glucose (mg/dl) X (Serum Insulin (uU/mL))/405) [261]. 
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Mechanical Sensitivity: Mechanical behavioral responses to Semmes Weinstein-von Frey 

monofilaments (0.07 to 5.0 g) were assessed at 8, 9, 10, and 11 weeks of age.  Mice underwent 

acclimation 2 days prior to the first day of behavioral testing.  Mice were placed in individual clear plastic 

cages (11x5x3.5 cm) on a wire mesh grid 55 cm above the table and were acclimated for 30 minutes prior 

to behavioral analysis.  The filaments were applied perpendicularly to the plantar surface of the hindpaw 

until the filament bent.  Testing began with the 0.7 g filament, and in the presence of a response, the next 

smaller filament was applied.  If no response was observed, the next larger filament was used.  Filaments 

were applied until there was a change in response, followed by an additional 4 more applications. The 

withdrawal threshold was calculated using the formula from the up-down method previously described 

[262].   

Insulin and IGF-1 Injections: Sterile PBS (vehicle), 0.1U (~0.7 nmol) Humulin R insulin, or 

recombinant IGF-1 equimolar to 0.1U insulin was directly administered to both nondiabetic and ob/ob 

type 2 diabetic mice via a one-time intrathecal injection. Previously, intrathecal 0.1U insulin and 

equimolar IGF-1 have been shown to have beneficial effects on the symptoms of DN [185]. All injections 

were 50μL and administered with a 1cc 28½ gauge insulin syringe between the L6 and S1 vertebrae. In an 

additional preliminary study, sterile PBS or insulin was delivered through an intraperitoneal injection at a 

dose of 3.33U/kg, such that the total insulin administered was approximately 0.1U for nondiabetic mice 

and 0.17U (~1.2 nmol) for ob/ob mice. 

Western Blots: After a 30 minute insulin stimulation period, the lumbar DRG and sciatic nerve 

were harvested from 11 week old mice and frozen at -80°C.  Tissues were sonicated in Cell Extraction 

Buffer (Invitrogen, Carlsbad, CA) containing 55.55 μl/ml protease inhibitor cocktail, 200mM Na3VO4, 

and 200mM NaF.  Following sonication, protein was extracted on ice for 60 minutes and vortexed every 

10 minutes.  After centrifugation, protein concentration of the supernatant was measured with a Bradford 

assay (Bio-Rad, Hercules, CA).  Samples were then boiled with Lane Marker Reducing Sample Buffer 

(Thermo Scientific, Waltham, MA) for 3 minutes.  Equal amounts of protein (30 µg) were loaded per lane 

and samples were separated on a 4-15% gradient tris-glycine gel (Bio-Rad), and then transferred to a 



82 
 

nitrocellulose membrane.  Membranes were probed with the following primary antibodies and all 

antibodies were purchased from Cell Signaling (Danvers, MA) unless otherwise noted: total Akt, p-

(Ser473)Akt, total p70S6K, p-(Thr389)p70S6K, total GSK3β, p-(Ser9)GSK3β, total JNK, p-

(Thr183/Tyr185)JNK, total mTor, p-(Ser2448)mTor, Insulin-like growth factor 1 receptor β subunit, 

PTP1B (Abcam, Cambridge, MA), total AS160 (Millipore, Billerica, MA), p-(Thr642)AS160 (Millipore), 

Insulin Receptor β subunit (Santa Cruz, Santa Cruz, CA), and α-tubulin (Abcam).  Bands were visualized 

with either anti-mouse or anti-rabbit HRP-conjugated secondary antibodies (Santa Cruz) and ECL with 

X-ray film.  Densitometry with ImageJ (NIH) was then used to analyze each lane.   

Statistical Analysis: All data is expressed as means ± standard error of the mean. IPGTT, ITT, 

and behavior data were analyzed with a repeated measures analysis of variance (RM-ANOVA).  In 

addition, the area under the curve (AUC) for IPGTT and ITT was analyzed using a Student’s t-test.  

Western blot results were analyzed with 2-way ANOVA and Bonferroni’s post hoc analysis when 

appropriate.  Outliers greater than or less than 2 standard deviations from the mean were not included in 

the analysis. All statistical tests were performed using SigmaPlot software and a P value <0.05 was 

considered significant. 

 

4.4 Results 

Ob/ob insulin resistance:  

To quantify the extent of systemic insulin resistance in ob/ob mice, nondiabetic and diabetic 

ob/ob mice underwent an IPGTT at 9 weeks of age (Figure 4.1A).  Blood glucose levels of the ob/ob mice 

were significantly higher than nondiabetic mice throughout the course of the experiment and the area 

under the curve (AUC) was also significantly elevated for ob/ob mice (Figure 4.1B).  Results from the 

ITT indicated that nondiabetic, insulin-injected mice exhibited an expected physiological decrease in 

blood glucose in response to insulin; however, ob/ob mice displayed a transient elevation of glucose 
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Figure 4.1 
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Figure 4.1. Ob/ob mice display classic signs of insulin resistance: A, B) An IPGTT showed 

significantly elevated blood glucose levels in ob/ob mice throughout the test.  The blood glucose of ob/ob 

mice increased more than 10 mmol/L at its maximal level as opposed to nondiabetic mice that elevated 

less than 6 mmol/L after glucose injection, indicating severe glucose intolerance in ob/ob mice.  C, D) 

Similar to the IPGTT, data from the ITT showed reduced insulin sensitivity in ob/ob mice.  In fact, an 

insulin dose of 1.5U/Kg did not decrease the blood glucose level of ob/ob mice, whereas this dose 

lowered the blood glucose of nondiabetic controls by approximately 3.6 mmol/L.  E-G) At 10 weeks of 

age, ob/ob mice had significantly elevated blood glucose and serum insulin levels. Accordingly, the 

HOMA-IR measure of insulin resistance was significantly higher in ob/ob mice. **=p<0.01, 

***=p<0.001, ****=p<0.0001. IPGTT n=7 nondiabetic mice, n=6 ob/ob. ITT n=4 nondiabetic mice, n=4 

ob/ob. 
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levels (Figure 4.1C).  Statistical analysis of the data revealed that ob/ob mice maintained elevated glucose 

levels as compared to nondiabetic controls throughout most of the study, and that the AUC was 

significantly higher for diabetic ob/ob mice (Figure 4.1D).  The HOMA-IR, a measure of insulin 

resistance, was also calculated using fasting blood glucose and serum insulin levels from 10 week old 

mice.  Ob/ob mice had significantly higher blood glucose levels (14.3±2.1 mmol/L) as compared to 

nondiabetic mice (8.2 ±0.5 mmol/L) (Figure 4.1E). Fasting insulin levels were also significantly higher in 

diabetic ob/ob mice (6780±1610 pmol/L) compared to nondiabetic mice (198±25 pmol/L, Figure 4.1F). 

As such, ob/ob mice had a significantly elevated HOMA-IR as compared to nondiabetic mice (557±130 

compared to 10.1±1.4, respectively, Figure 4.1G).  These results demonstrate significant glucose 

intolerance and insulin resistance in ob/ob mice at this age.  

 

Mechanical allodynia in ob/ob mice:  

 To quantify a known behavioral abnormality associated with neuropathy in mice, mechanical 

sensitivity was assessed in nondiabetic and diabetic ob/ob mice at 8, 9, 10, and 11 weeks of age.  There 

were no differences in mechanical thresholds between nondiabetic and ob/ob diabetic mice at 8, 9, or 10 

weeks of age. However, at 11 weeks, there was a significant decrease in the mechanical thresholds of 

diabetic ob/ob mice compared to nondiabetic mice (Figure 4.2), consistent with sensory aberrations 

associated with peripheral neuropathy as previously reported in this genetic mouse strain [77]. 

 

Blunted insulin and IGF-1 Akt activation in ob/ob DRG and sciatic nerve:  

Insulin stimulation causes a robust activation of Akt in “insulin-sensitive” tissues like muscle and 

adipose, as well as in neurons of both the peripheral and central nervous system.  Moreover, reduced 

insulin-induced activation of Akt is a hallmark of insulin resistance [181, 200, 214, 263].  Here, 

nondiabetic and diabetic ob/ob mice were administered either intrathecal PBS or insulin and the DRG and 

sciatic nerve were harvested for Western blot analysis to assess Akt activation 30 minutes later.  In  
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Figure 4.2 
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Figure 4.2: Ob/ob mice develop mechanical allodynia: Mechanical thresholds were tested using von 

Frey monofilaments at 8, 9, 10, and 11 weeks of age.  Ob/ob mice did not display significant differences 

from nondiabetic controls at 8, 9, or 10 weeks.  However, at week 11, ob/ob mice had a significant 

decrease in their mechanical withdrawal thresholds. *=p<0.05. n=6 nondiabetic mice, n=6 ob/ob diabetic 

mice. 
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Figure 4.3 
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Figure 4.3:  Intrathecal insulin-induced Akt activation is blunted in the PNS of ob/ob mice: DRG 

(A) and sciatic nerve (B) were harvested after an intrathecal injection of PBS (nondiabetic n=10, ob/ob 

n=7) or insulin (nondiabetic n=10, ob/ob n=9) was administered to nondiabetic control and ob/ob mice.  

Nondiabetic mice displayed a robust and significant increase in Akt activation with insulin stimulation; 

however insulin failed to significantly activate Akt in the DRG of ob/ob mice.  Furthermore, the maximal 

increase in Akt activation with insulin stimulation was significantly lower in both the DRG and sciatic 

nerve of ob/ob mice. There were no differences in mice that received PBS in either the DRG or sciatic 

nerve. *=p<0.05, ***=p<0.001. 
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nondiabetic mice, insulin produced a strong elevation in levels of activated Akt (p(ser473)Akt/total Akt) 

in both the DRG and sciatic nerve (Figure 4.3A, B).  However in ob/ob mice, Akt activation was 

significantly lower in the DRG and sciatic nerve. In fact, insulin failed to significantly increase Akt 

activation over baseline in the DRG of ob/ob mice.  For comparison, Akt activation in the DRG was 

increased 3.1 fold in nondiabetic mice and 1.6 fold in ob/ob diabetic mice.  In the sciatic nerve, insulin 

produced a 9.7 and 6.1 fold increase in Akt activation in nondiabetic and ob/ob mice, respectively.  

To confirm that these results were not dependent on the intrathecal route of delivery, a small 

number of mice were administered intraperitoneal insulin at a dose of 3.33U/kg. Similar to the intrathecal 

delivery route, a significant increase in Akt activation was observed in the DRG and sciatic nerve of 

nondiabetic mice stimulated with insulin; however, no significant change was observed in either tissue 

from ob/ob mice. (Figure 4.4A, B).  In the DRG, nondiabetic mice displayed a 2.4 fold change in Akt 

activation, compared to a 1.5 fold change in ob/ob mice. IP insulin induced a 3.8 fold change in Akt in the 

sciatic nerve of nondiabetic mice, but only a 1.4 fold change in ob/ob in the sciatic nerve from ob/ob 

mice.  

IGF-1 and insulin activate many of the same intracellular pathways, and utilize many of the same 

signaling machinery [195], and altered IGF-1 signaling has been demonstrated in states of insulin 

resistance [264].  Furthermore, IGF-1 resistance has recently been demonstrated to be associated with 

brain insulin resistance and cognitive decline in Alzheimer’s patients [154]. To investigate IGF-1 signal 

transduction in the PNS of ob/ob mice, a dose of IGF-1 equimolar to 0.1U insulin was administered via 

an intrathecal injection.  Akt was significantly activated in the DRG from both nondiabetic (13.3 fold) and 

ob/ob diabetic mice (6.0 fold). However, Akt activation was significantly lower in the DRG from ob/ob 

mice as compared to nondiabetic mice (Figure 4.5A). In the sciatic nerve of nondiabetic mice, IGF 

stimulation produced a significant 2.8 fold increase in Akt activation. In contrast, Akt was not 

significantly activated in the sciatic nerve of ob/ob mice (Figure 4.5B).  
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Figure 4.4 
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Figure 4.4: The PNS of ob/ob mice showed reduced insulin-induced Akt activation in response to 

intraperitoneally-delivered insulin, similar to that observed with IT insulin. Nondiabetic and ob/ob 

diabetic mice were given intraperitoneal injections of PBS (nondiabetic n=3, ob/ob n=3) or insulin at a 

dose of 3.33U/kg (nondiabetic n =3 and ob/ob n=3). In both the DRG (A) and sciatic nerve (B) of 

nondiabetic mice, there was a significant increase in Akt activation in the insulin stimulated group as 

compared to mice that received PBS, yet no statistically significant changes were observed in the PNS 

from ob/ob mice. *=p<0.05, **=p<0.01. 
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Figure 4.5 
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Figure 4.5: The PNS of ob/ob mice displayed reduced Akt activation in response to intrathecal IGF-

1 as compared to nondiabetic mice. Similar to the results shown for intrathecal insulin, an intrathecal 

injection of IGF-1 produced a strong activation of Akt in both the DRG and sciatic nerve of nondiabetic 

mice, but the response was somewhat blunted in the PNS of ob/ob mice. In the DRG (A), there was a 

significant increase in Akt activation in both the nondiabetic and ob/ob mice; however, the activation 

level was significantly lower in the DRG from ob/ob mice. In the sciatic nerve (B), IGF-1 stimulation 

resulted in a significant Akt activation in nondiabetic mice, but not in the ob/ob mice. *=p<0.05, 

**=p<0.01, ***=p<0.001. n=8 nondiabetic PBS, n=9 nondiabetic IGF-1, n=7 diabetic PBS, n=10 diabetic 

IGF-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 
 

Insulin signaling downstream of Akt in the DRG and sciatic nerve:  

To assess whether diabetes-induced blunting of Akt activation was maintained downstream, several other 

insulin-responsive proteins were investigated via Western blot analysis, including mTor (protein 

synthesis), p70S6K (protein synthesis), AS160 (glucose uptake), and GSK3β (glycogen synthesis).  At the 

insulin dose (0.1U) and time point (30 minute stimulation) that were investigated, no statistical 

differences (p>0.05) were observed in the activation of these proteins even in control mice (Table 4.1). 

However, it is interesting to note that in both the DRG and sciatic nerve from ob/ob mice, there is a 

consistent pattern of a reduced fold change in response to insulin for most proteins compared to responses 

in nondiabetic mice.  

 

The PNS of ob/ob mice display reduced insulin receptor expression and increased JNK activation:  

To explore possible mechanisms responsible for reduced PNS insulin sensitivity, we investigated 

several pathways known in other insulin-resistant tissues. One contributor to reduced insulin signaling is a 

downregulation of insulin receptor expression induced by hyperinsulinemia [265].  As shown in Fig. 

4.6A, protein levels of the insulin receptor subunit β were significantly lower in the DRG of ob/ob mice 

compared to nondiabetic mice.  However, there was no statistical difference in the expression of insulin 

receptor between nondiabetic and ob/ob mice in the sciatic nerve (Fig. 4.6B). No significant differences 

between groups were observed in IGF-1 receptor expression in either the DRG or sciatic nerve (data not 

shown). 

Our previous studies in primary DRG cultures reported an upregulation of IRS serine 

phosphorylation [200], a recognized mechanism of insulin resistance in muscle and adipose. In the current 

study, we investigated both IRS1 (muscle and adipose isoform) [213] and IRS2 (neural isoform) [200, 

231] serine phosphorylation. In contrast to neurons in vitro, IRS serine phosphorylation does not appear 

to be significantly affected in the PNS in vivo within this model, (data not shown). Interestingly, there 

was significant activation of the stress kinase, JNK (p(Thr183/Tyr185)JNK/total JNK), in the sciatic  
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Table 4.1 

Protein of 
Interest 

DRG Sciatic Nerve 

Control Nondiabetic ob/ob Diabetic Control Nondiabetic ob/ob Diabetic 

Insulin-induced fold 
change  

Insulin-induced fold 
change  

Insulin-induced fold 
change  

Insulin-induced fold 
change  

mTor 1.52 1.00 1.13 0.98 

AS160 1.47 1.28 2.13 1.22 

p70S6K 1.00 1.04 1.09 0.93 

GSK3β 1.26 1.17 1.56 0.88 
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Table 4.1: Downstream Akt pathway activation in the DRG and sciatic nerve after intrathecal 

insulin stimulation. Four proteins downstream of Akt that are known to be involved in the intracellular 

actions of insulin signaling were investigated in the PNS of nondiabetic and ob/ob mice. In both the DRG 

and sciatic nerve, there were no significant changes in the activation of mTor, p70S6K, or AS160 in either 

nondiabetic or ob/ob mice, nor was there a significant change in the inhibition of GSK3β. Data presented 

is the fold change of protein modification (measured with Western blot analysis) induced by insulin as 

compared to that observed in mice that received PBS. n=7-10 for all groups. 
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Figure 4.6 
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Figure 4.6: Possible mechanisms that may be contributing to insulin resistance in the PNS. A) In 

this study the expression of the beta subunit of the insulin receptor was significantly reduced in the DRG 

of ob/ob mice as compared to nondiabetic controls.  B) No significant change in insulin receptor 

expression was observed in the sciatic nerve.  C) The stress kinase, JNK, was not significantly activated 

in the DRG of ob/ob mice; however in the sciatic nerve (D)   there was a significant upregulation of JNK 

in ob/ob mice. E, F) No differences in PTP1B expression profiles were observed in either the DRG or 

sciatic nerve between nondiabetic and diabetic groups. *=p<0.05. n=9 nondiabetic PBS, n=9 nondiabetic 

insulin, n=7 diabetic PBS, n=9 diabetic insulin. 
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nerve of ob/ob mice compared to nondiabetic mice (Fig. 4.6D) and a similar pattern of activated JNK was 

observed in the DRG of ob/ob mice, however significance was not reached (nondiabetic vs. diabetic 

p=0.122) (Fig. 4.6C). 

In addition to stress kinase activation and reduced insulin receptor expression, insulin resistance 

can also be induced by over activation of tyrosine phosphatases [258].  Here, however, PTP1B expression 

was not elevated in the DRG or sciatic nerve of ob/ob mice, nor did insulin stimulation appear to alter its 

expression levels (Fig. 6E, F, respectively). 

 

4.5 Discussion 

Diabetic neuropathy is associated with profound loss of distal limb sensation and/or pain, causing 

significant decline in the quality of life and potential morbidity and mortality for patients.  Currently, 

there are no clinical treatments that successfully improve neuropathic damage to peripheral sensory nerve 

fibers, likely due to the multifactorial etiology of neuropathy development and progression.  Here, we 

have demonstrated in vivo PNS insulin resistance in ob/ob mice. These results are consistent with recent 

in vitro studies and supports the view that altered insulin signaling may contribute to DN.  In general, a 

robust activation of insulin-sensitive pathways was observed in the DRG and sciatic nerve of nondiabetic 

mice, with a blunted response in both tissues from insulin resistant ob/ob mice. While no one mechanism 

of insulin resistance was clearly prevalent, significant changes were seen in two known pathways of 

insulin resistance, including increased JNK activity and reduced insulin receptor expression. Although 

more research is needed to fully elucidate the pathways leading to PNS insulin resistance; these results 

suggest that cellular mechanisms of insulin resistance that have been defined in muscle may also play an 

important role in the PNS. Collectively, this study supports the hypothesis that altered insulin 

neurotrophic support may be a key factor in the pathogenesis of DN.   

Importantly, these experiments used an in vivo approach to support the mounting in vitro 

evidence identifying PNS insulin resistance. This in vivo approach also made it difficult to completely 

assess cellular signaling. Thus, insulin-induced Akt activation was used as a focal point to assess PNS 
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insulin sensitivity.  Interestingly, Akt activation was very prominent in the DRG and sciatic nerve of 

nondiabetic mice, yet very few significant changes were seen in downstream signaling molecules. This 

may be due to a temporal effect, as downstream mediators of the Akt pathway may have not yet been 

activated during the 30-minute stimulation period used for this study. However, it is also plausible that 

the downstream Akt signaling proteins explored in this study do not play a prominent role in insulin 

pathways within the DRG. Thus, beyond protein synthesis through mTor and p70S6K or regulation of 

GSK3β actions, insulin may be playing a more important role in lipid and glucose metabolism, gene 

regulation, or mitochondrial maintenance in peripheral neurons.  It is clear that further studies are 

necessary to succinctly define the temporal components of this signaling pathway. As such, further 

experiments are underway to define in vivo PNS physiologic insulin signaling with respect to appropriate 

dosing, timing, and pathway activation.   

An additional caveat to this study is the use of leptin-deficient ob/ob mice. Leptin’s role in the 

nervous system is receiving increasing attention, and it may have a neuroprotective role [266]. It is not 

known how reduced neuronal leptin may have contributed to our results. Thus, confirming these results in 

a high-fat diet model of obesity will be an important step to further investigating PNS insulin resistance. 

In experiments presented here, it appeared that insulin produced a stronger Akt activation in the 

sciatic nerve as compared to the DRG (Figure 3), whereas IGF-1 produced a stronger Akt activation in the 

DRG as compared to the sciatic nerve (Figure 5). These results point to an apparent separation in 

insulin/IGF-1 signaling support within the PNS. One plausible explanation may be that insulin and IGF-1 

have different actions on the DRG soma and satellite cells compared to sensory axons, motor axons and 

Schwann cells in the peripheral nerve. These different cellular components likely respond differently to 

insulin and IGF-1 and would provide alternative signaling profiles. However, how this divergence in 

signaling may affect sensory neuron function is yet to be determined and ongoing research is targeted at 

delineating the differential roles that insulin and IGF-1 may play in sensory nerve biology.  

In ob/ob mice, both the DRG and sciatic nerve displayed reduced insulin-induced Akt activation, 

a classic indication of insulin resistance.  Several mechanisms of insulin resistance outlined in muscle also 
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appear to be altered in the PNS, and may be contributing to the observed reduction in insulin signal 

transduction. However, these results must be interpreted with caution as significant changes were not seen 

consistently across PNS tissues, and further research will need to be completed to fully establish a clear 

mechanism.  

Hyperinsulinemia can promote insulin resistance through downregulation of the insulin receptor 

[219].  This effect was demonstrated in our data. The ob/ob mice in this cohort had serum insulin levels 

34.3 fold higher than nondiabetic mice and the DRG of ob/ob mice displayed significantly lower insulin 

receptor expression. Thus, the extreme hyperinsulinemia in the ob/ob mice may be promoting insulin 

receptor downregulation and contributing to PNS insulin resistance. This idea is supported by a recent 

study that reported a significant decrease in insulin receptor mRNA in cultured DRG neurons that 

displayed insulin resistance when treated with high levels of insulin [175]. 

An alternative mediator of insulin resistance is the stress kinase JNK, which is activated in 

response to various cellular stressors, including low grade chronic inflammation induced by obesity [218, 

267].  In fact, ob/ob mice with a JNK null mutation have improved whole body glucose tolerance and 

insulin sensitivity [243].  JNK activation is proposed to promote insulin resistance through upregulation 

of IRS serine phosphorylation, and IRS is a key common signaling component of both the insulin and 

IGF-1 pathways. Interestingly though, in the current study we observed increased JNK activation without 

a significant elevation in either IRS1 or IRS2 serine phosphorylation. Some controversy does exist as to 

which serine sites are most important in insulin resistance, thus the serine sites that we probed 

(p(ser731)IRS2 and p(ser307)IRS1) may not be heavily involved in inhibiting insulin signaling in the 

PNS, resulting in our studies not seeing a significant effect. More powerful approaches such as mass 

spectrometry, may be needed to establish a global change in the IRS phosphorylation profile within the 

PNS [268].   

Another possible component of the insulin receptor signaling pathway that could be affected in 

insulin resistance is PTP1B. PTP1B is the canonical member of protein tyrosine phosphatases and serves 

an important role in insulin signaling regulation [258].  Overexpression of PTP1B has been linked to 
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insulin resistance in peripheral tissues of ob/ob mice [259] and PTP1B knockout mice display increased 

insulin sensitivity [260].  In the current study, we did not detect significant upregulation of PTP1B in the 

DRG or sciatic nerve of insulin resistant mice.  While there was no change in PTP1B expression, there 

still could be alterations in phosphatase activity and further studies are underway to explore this 

possibility. 

It will be important to put the current results in context with other contributory mechanisms of 

DN, including glucose and/or lipid mediated toxicity as well as oxidative stress [92].  We postulate that 

the metabolic dysfunction associated with hyperglycemia and dyslipidemia in concert with reduced 

neurotrophic support promotes deterioration and reduced regeneration of the distal axon.  Furthermore, 

the loss of appropriate insulin signaling could make neurons even more susceptible to these pathogenic 

cascades.  Further research into disrupted PNS insulin signaling relative to other pathogenic mechanisms 

is needed, as this will be a key step in translating these basic science results into clinical applications. 

Insulin resistance is emerging as a potential mediator of several neurological syndromes 

(reviewed in [253]). This study along with recent data of in vitro DRG insulin resistance strongly supports 

altered insulin signaling as a pathogenic mechanism in DN.  While insulinopenia has been a proposed 

contributor to DN in type 1 models for some time [190, 191, 193, 196], how this translated to type 2 

(hyperinsulinemic) models of DN remained elusive.  Here, we outline reduced insulin signaling in vivo in 

the PNS of type 2 diabetic ob/ob mice and possible mechanisms that may be contributing to these 

changes.  It is now becoming evident that decreased insulin neurotrophic support in the PNS is an integral 

part of DN and may be a congruent mechanism between type 1 and type 2 diabetic models of DN, as both 

have reduced insulin signaling either due to insulinopenia or neuronal insulin resistance.  

Future studies will focus on mechanisms through which insulin supports proper PNS function, as 

revealing these pathways may provide insight into how decreased insulin support contributes to the 

pathogenesis of DN.  Furthermore, delineating the details of PNS insulin signaling may open new 

avenues for therapeutic intervention in patients with DN.   
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Chapter 5: Sensory Neuron Insulin Receptor Knockout Mice 

 

5.1 Abstract  

Insulin is known to have neurotrophic properties and it has been proposed that loss of direct 

sensory neuron insulin signaling, irrespective of glucose neurotoxicity, is a major contributing factor to 

the development of peripheral diabetic neuropathy (DN). However, current in vivo models of DN are not 

sufficient to fully assess the role and function of sensory neuron insulin signaling. To determine if 

disrupted sensory neuron insulin signaling plays a crucial role in the development of DN we used Cre-

loxP technology to generate sensory neuron insulin receptor knockout (SNIRKO) mice. These mice 

display euglycemia, yet reduced sensory neuron insulin signaling. We predicted under these conditions 

that SNIRKO mice would develop signs of DN due to the reduced insulin neurotrophic support. However, 

SNIRKO mice did not have significant changes in sensorimotor behavior, nerve conduction velocity or 

intraepidermal nerve fiber density. Interestingly though, SNIRKO mice display significantly elevated 

serum insulin levels as well as glucose intolerance, and the pancreas from SNIRKO mice displays 

elevated insulin content in the islets of Langerhans. These results contribute to the growing idea that 

sensory innervation of pancreatic islets is key to regulating islet function and that a negative feedback 

loop of sensory neuron insulin signaling keeps this regulation in balance. While it appears that reduced 

neuronal insulin support does not independently lead to DN, SNIRKO mice will be a powerful tool to 

investigate sensory neuron insulin signaling and may give a unique insight into the role that sensory 

neurons play in modifying islet physiology.  
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5.2 Introduction  

The pathogenesis of DN is ill defined, although it appears to develop from a combination of 

hyperglycemia neurotoxicity and reduced neurotrophic support. One neurotrophic agent that is of 

increased interest in diabetes is insulin. A growing body of literature suggests that direct neuronal insulin 

signaling plays a key role in maintaining proper neuronal function and that disruption of this neuronal 

insulin signaling may contribute to DN. 

Unfortunately, the role of insulin signaling in sensory neurons is not well understood. There are 

inherent difficulties in studying the role of sensory neuron insulin signaling in vivo. With current DN 

models, neither hyperglycemia nor reductions in PNS insulin signaling can be isolated to establish the 

pathogenesis arising from either insulting factor. For example, STZ-induced diabetic mice are 

hyperglycemic and hypoinsulinemic and ob/ob mice are hyperglycemic and insulin resistant; thus, both 

models have elevated glucose levels and reduced insulin signaling. Furthermore, in vivo insulin 

stimulations to study signaling or physiological function generally cause a reduction in blood glucose 

levels. Even when low dose insulin is “directly” applied to neurons via intrathecal injections or near-nerve 

pumps, interpreting if the observed result was due to neuronal signaling or effects on the surrounding 

tissue is difficult.  

The previous generation of tissue specific insulin receptor knockout mice has greatly increased 

our understanding of the physiological role of insulin [213]. Conditional knockout mice are one of the 

most powerful tools available to establish an understanding of in vivo protein function. The growing 

interest in the role of insulin signaling in sensory neurons, the possibility that reductions in insulin 

independent of hyperglycemia drives DN, and the paucity of models available to study insulin signaling 

in sensory neurons provided a strong rationale to develop sensory neuron insulin receptor knockout 

(SNIRKO) mice. The purpose of this study was to characterize the metabolic and sensorimotor phenotype 

of SNIRKO mice with the hypothesis that SNIRKO mice would develop neuropathy similar to other 

mouse models of DN due to the absent neurotrophic support from insulin despite euglycemia. Our results 

suggest that reductions in sensory neuron insulin signaling alone do not contribute to the symptoms of 
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DN. However, it does appear that an important negative feedback mechanism may exist between sensory 

neuron insulin signaling and beta cell insulin production. These results contribute to a recently proposed 

model by Razavi et. al. [38] suggesting that TRPV1 positive sensory neurons modulate the function of 

pancreatic beta cells.  

 

5.3 Experimental Procedures 

Animals and Genotyping:  

SNIRKO mice were generated using Cre/Loxp technology [269]. AdvillinCre/+ mice have been 

previously characterized to demonstrate sensory neuron specific cre recombinase activity [270-274] and 

this was confirmed in our lab using a fluorescent reporter line Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J 

(Tomato) (Jackson Laboratories, Bar Harbor, ME). These tomato mice constitutively express td tomato in 

all cell membranes; however, in the presence of cre recombinase green fluorescent protein (GFP) will be 

expressed. Thus, green fluorescence is a marker for cre recombinase expression and activity in this 

reporter line.  

Mice with loxp sites flanking exon 4 of the insulin receptor gene (IRlox/lox) were purchased from 

Jackson Laboratories (Bar Harbor, ME). In the presence of cre recombinase, exon 4 is deleted creating a 

frameshift mutation resulting in a stop codon. The resultant product would be a nonfunctional 308 amino 

acid truncated peptide. Male AdvillinCre/+ mice were bred to female IRlox/lox to generate heterozygous 

AdvillinCre/+, IRlox/+ mice. Male AdvillinCre/+, IRlox/+ were bred to female IRlox/lox to produce SNIRKO mice 

with an AdvillinCre/+, IRlox/lox genotype. Mice were genotyped via tail clip. Primers used for genotyping 

AdvillinCre/+ were:  

p1: 5′-CCCTGTTCACTGTGAGTAGG-3′,  

p2: 5′-AGTATCTGGTAGGTGCTTCCAG-3’, 

p3: 5′-GCGATCCCTGAACATGTCCATC-3’.  

A wildtype allele produced a 500 bp fragment and a cre-expressing allele produced a 180 bp fragment. 

Primers used for genotyping IRlox/lox were:  
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p1: 5’-GATGTGCACCCCATGTCTG-3’,  

p2: 5’-CTGAATAGCTGAGACCACAG-3’.  

A wildtype allele produced a 279 bp fragment and an allele with loxp insertion produced a 313 bp 

fragment. All primers were added to a supermix to genotype SNIRKO mice and the PCR product was 

amplified for 35 cycles (94°C for 15 sec, 62°C for 15 sec, 72ºC for 90 sec) in a 40µL reaction. IRlox/lox 

were used as controls for all experiments. All experiments were approved by the University of Kansas 

Medical Center Institutional Animal Care and Use Committee. Mice were given access to food and water 

ad libitum and housed on a 12-hour light/dark cycle.   

 

Conformation of Sensory Neuron Insulin Receptor Knockout:  

RT-PCR: Total RNA was isolated from control and SNIRKO DRG to assess Cre/loxP 

recombination as described previously [134]. A reverse primer specific for exon 6 of the insulin receptor 

was used for reverse transcription: 5’-GTGATGGTGAGGTTGTGTTTGCTC-3’. The reaction was 

carried out using an iScript select kit (Bio-rad) at 42 degrees for 30 min, followed by 85 degrees for 5 

min. The generated cDNA was then used for PCR template. Primers to exon 3, 5’-

GCTGCACAGCTGAAGGCCTGT-3’, and exon 5, 5’-CTCCTCGAATCAGATGTAGCT-3’ were used 

to amplify the region corresponding to exon 4. PCR conditions were 94° for 30 secs followed by 35 

cycles of 94° for 30 sec, 58° for 30 sec, 72 °for 1 min and a final extension at 72° for 7 min. A 585 bp 

fragment indicates an intact insulin receptor and a 435 bp fragment indicates cre/loxp recombination and 

deletion of the 150 bp exon 4. 

Western blots: Insulin receptor protein expression was quantified in gastrocnemius muscle and 

DRG using Western blot analysis. Samples were homogenized in Cell Extraction Buffer (Invitrogen, 

Carlsbad, CA) containing 55.55 μl/ml protease inhibitor cocktail, 200mM Na3VO4, and 200mM NaF.  

After homogenization, samples were incubated on ice for 60 minutes and vortexed every 10 minutes to 

allow for complete protein extraction. Samples were then centrifuged for 10 minutes at 10000 rpm and 

the protein concentration of the supernatant was measured with a Bradford assay (Bio-Rad, Hercules, 
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CA). Before samples were used for Western blot analysis, they were boiled with Lane Marker Reducing 

Sample Buffer (Thermo Scientific, Waltham, MA) for 3 minutes.  30 µg of protein was loaded per lane 

and samples were separated on a 4-15% gradient tris-glycine gel (Bio-Rad). After gel electrophoresis, 

samples were transferred to a nitrocellulose membrane and blocked in 5% milk.  Following incubation 

with primary (Insulin receptor β subunit (Santa Cruz), Actin (Millipore)) and secondary antibodies, bands 

were visualized with film and analyzed with ImageJ (NIH).  

Additionally, Western blots were used to assess Akt activation in muscle and DRG following an 

intraperitoneal injection of insulin at 10.0 U/Kg to determine if insulin receptor knockout disrupted the 

insulin signaling pathway. Sterile PBS was used as vehicle control. Mice were fasted 3 hours prior to 

insulin injection. Thirty minutes after insulin stimulation mice were sacrificed and tissues were harvested. 

Western samples were then prepared and blots were probed with total Akt and p-(Ser473)Akt (Cell 

Signaling, Danvers, MA). 

 

Sensorimotor Behavior Analysis:  

SHIRPA: A modified SHIRPA analysis was used to assess gross motor and sensory function of 

SNIRKO mice at 6 weeks of age. SHIRPA is a semi-quantitative protocol used to assess genetically 

modified mice for defects in areas such as grooming, reflexes, strength, activity level, body position, and 

appearance [275]. Briefly, mice were placed in a glass viewing jar and undisturbed behaviors, such as 

body position, tremor, and spontaneous activities, were recorded for 5 minutes. Mice were then quickly 

transferred to an open arena to observe transfer arousal, gait, and tail position. After arena observation, 

mice were transferred to a grid and several different reflexes were assessed, including visual placing, 

righting reflex, limb grasping and pinna reflex. Throughout the observation period vocalization, excretion, 

appearance, and overall aggression level is recorded. Any sign of convulsion, disorientation, or 

stereotyped behavior was also documented. 

Force plate Actometer: To further assess activity and undisturbed behavior, mice were placed in a 

force plate actometer as previously described [276]. Briefly, mice were placed in a light and sound 
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attenuated box on a 42 cm X 42 cm metal plate coupled to force transducers located on each of the 4 

corners. The actometer is able to precisely determine the mouse’s location based on the recordings of the 

force transducers and is capable of providing high resolution temporal and spatial behavior data. Types of 

data that can be acquired are total distance travelled, percent of distance in the perimeter, focused 

stereotypys, and bouts of low mobility. For experiments presented here, data was collected for 60 frames 

at 10.24 seconds/frame (approx. 10 minutes total) and analyzed using FPA Analysis software. 

Thermal sensitivity: Prior to collection of experimental data, mice were acclimated to the 

behavior facility and equipment for a minimum of 2 days. On test days, mice were acclimated to the 

behavior facility for 30 minutes and then the Hargreaves table for 30 minutes prior to data collection. The 

surface of the table was maintained at 30°C, and mice were housed in individual clear plastic cages. A 

4.0V radiant heat source was applied to the mid plantar surface of the hind paw, and time to withdrawal 

was measured [277]. Four trials were recorded for each hindpaw, alternating paws between trials. To 

prevent damage to the skin of the paw, the heat source shut off automatically after 20.48 seconds. 

Thermal sensitivity was tested at 9, 13, and 28 weeks of age and data is presented as the average latency 

to withdrawal across both paws. 

Mechanical sensitivity: Mice were acclimated to the procedure for 2 days prior to testing at each 

time point and behavioral testing was performed at 8, 12, and 27 weeks of age. On test day, mice were 

acclimated to the behavioral testing room for 30 minutes in their home cages and for 30 minutes on the 

mesh grid in individual clear plastic cages. The mesh grid was elevated 55 cm above the testing table. The 

up-down method was used to test mechanical sensitivity [278].  A set of standard von Frey 

monofilaments (Stoelting, Wood Dale, IL) capable of exerting forces of 0.0045, 0.02, 0.068, 0.158, 0.178, 

1.2, 2.041, and 5.5 g were applied to the right hind paw of each mouse.  The duration of each stimulus 

was approximately 1 s and the inter-stimulus interval was approximately 30-60 seconds.  Beginning with 

the 0.158 g monofilament, the right hind paw of each mouse was tested for a withdrawal response.  

Depending on the response the next filament was selected, if there was a positive response (no paw 

withdrawal) the next filament with greater force was applied.  In the case of a negative response (paw 
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withdrawal) the next filament with a lesser force was used.  This method was continued in determining 

the next filament to test until four trials were completed after the first negative response for each mouse.  

The 50% threshold was calculated for each mouse as previously described [262]. 

Beamwalk: The ability of mice to traverse an elevated beam was used to test motor coordination 

and proprioception. Two days before testing, mice were acclimated to the behavior facility and trained to 

traverse a 1 m-long, 1.2 cm diameter, wooden beam [80]. On test day, mice were recorded with a digital 

video camera as they walked across the beam. Each mouse had 3 trials per testing period. Videos were 

later analyzed and the number of times either the left or right hindpaw slipped of the beam was counted as 

a footslip. The number of footslips was averaged across all 3 trails. 

Rotorod: Mice were placed on a rotating rod to test motor coordination and balance [279]. The 

speed of rotation was gradually increased from 4.0 to 40 rpm over a 5 minute time period and the latency 

to fall was recorded. If a mouse did not fall throughout the testing period, the rod was stopped and latency 

was recorded as 5 minutes. Mice were acclimated for one 5 minute period before being tested in 3 

separate trials with 5 minutes between trials. The average latency to fall across all 3 trials is reported. 

 

Metabolic Characteristics: 

 Several metabolic characteristics with respect to somatic growth, glucose metabolism and insulin 

signaling were monitored throughout the course of SNIRKO development and testing. Mice weights were 

recorded at 3, 5, 6, 7, 8, 16, 22, and 28 weeks of age. 

 Glucose and Hemoglobin A1C: Blood glucose levels were determined using a glucose diagnostic 

assay (Sigma-Aldrich, St. Louis, MO). Mice were fasted 3 hours prior to glucose measurement and blood 

was collected via tail snip at 6, 10, 16, 22, and 29 weeks of age. In addition, long term glucose levels were 

assessed by determining hemoglobin A1C levels immediately prior to sacrifice at 29 weeks of age using 

A1CNow+ Meter (Bayer, Leverkusen, Germany). 

 Insulin and Insulin-like Growth Factor-1: After a 3-hour fast, whole blood was collected via tail 

snip and allowed to clot on ice for 30 minutes. Samples were then centrifuged at 3000g for 15 minutes. 
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The resultant serum supernatant was used for analysis. Serum insulin and IGF-1 levels were measured 

with ELISAs from ALPCO (Salem, NH). Serum insulin levels were measured alongside glucose at 6, 10, 

16, 22, and 29 weeks of age and IGF-1 levels were determined at sacrifice.   

 Intraperitoneal Glucose Tolerance Test (IPGTT): At 28 weeks of age, both IRlox/lox and SNIRKO 

glucose tolerance was analyzed with an IPGTT. After a 6-hour fast, mice were administered a glucose 

bolus of 2g/kg body weight via IP injection. Blood glucose measurements were taken immediately prior 

to glucose stimulation and at 15, 30, 60 and 120 minutes thereafter. 

Nerve Conduction Velocity: Nerve conduction velocity was conducted as previously described 

[280]. Briefly, mice were anesthetized with 200 mg/kg Avertin (1.25% v/v tribromoethanol, 2.5% tert-

amyl alcohol, dH2O). Mouse body temperature was monitored with rectal probe and maintained at 37°C 

via feed-back controlled heating pad. Motor nerve conduction velocities (MNCVs) were obtained by 

measuring compound muscle action potentials using 9.9 mA stimulation at the ankle distally and at the 

sciatic notch proximally. MNCVs are reported as the average of 3 independent recordings. Sensory nerve 

conduction velocity (SNCV) was measured behind the medial malleolus with a 2.4 mA stimulation of the 

second toe digital nerve. SNCVs are reported as the average of 10 recordings. 

Fluorescent Microscopy: 

 Tomato mice cre expression: Advillin+/+, Tomato+/- and Advillincre/+, Tomato+/- mice tissues were 

fixed via intracardial perfusion with Zamboni’s fixative (4% paraformaldehyde and 15% picric acid) prior 

to dissection. After dissection, tissues were post-fixed in Zamboni’s fixative for 1 hour. Tissues were then 

rinsed in PBS for 24 hours before being transferred to 30% sucrose. After sucrose saturation, tissues were 

imbedded in optimal cutting temperature compound and stored at -80°C until further use. Tissue sections 

were cut using a Leica CM 1950 cryostat and placed on slides in serial sections. Sections were then 

covered with PBS and cover slipped. Images were acquired using a Nikon Eclipse 90i microscope. 

Exposure times were kept constant between experimental groups. 
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Intraepidermal Nerve Fiber Density: At sacrifice, the skin of the hindpaw footpad was removed 

from IRlox/lox and SNIRKO mice and fixed in Zamboni’s fixative for 1 hour. Tissues were then prepared 

and imbedded as described above. Hindpaw footpad skin was cut in sagittal sections with a Leica CM 

1950 cryostat and placed on slides in serial sections. Slides were blocked at room temperature for 1 hour 

with pre-incubation solution (1.5% Normal Goat or Donkey Serum, 0.5% Porcine Gelatin, 0.5% Triton 

X-100, and 450 µL Superblock (Thermo Scientific)). Primary antibody to PGP 9.5 (Chemicon, Temecula, 

CA) and donkey anti-rabbit Alexa-488 conjugated secondary antibody (Molecular Probes) were then used 

to label and visualize epidermal nerve fibers. Images were acquired with a Nikon Eclipse 90i microscope. 

Fibers that crossed the dermal-epidermal border were quantified in 3 regions per section and 3 sections 

per mouse were evaluated. The length of the epidermal region was measured with NIH Image J software 

and the intraepidermal nerve fiber density (IENFD) is expressed as number of fibers per millimeter of 

epidermis.  

 

Pancreas Morphology: 

Tissue Preparation: Pancreata were removed and fixed in 4% paraformaldehyde in phosphate 

buffered saline (PBS), pH 7.2, for three days at +4°C.  Tissue was embedded in paraffin using an 

automated vacuum tissue processor Leica ASP300S (Leica Microsystems Inc., Bannockburn, IL) and 

stored at +4°C. Tissue sections of 8 µm thickness were cut using a microtome RM2255 (Leica 

Microsystems Inc.) and mounted directly on Superfrost/Plus microscope slides (Fisher, Pittsburgh, PA, 

#12-550-12).  After cutting, slides were dried at +40°C overnight in an oven and stored at +4°C until 

processing.  

Paraffin embedded sections were deparaffinized/rehydrated in xylene followed by ethanol and 

PBS serial rehydration.  Antigen retrieval was completed in a steamer using 0.01M citrate buffer, pH 6.2, 

with 0.002M EDTA, for 30 min.  After cooling for 20 min, slides were washed in PBS 2 times and 

permeabilized in1% Triton X-100 in PBS for 30 min. Slides were rinsed again in PBS.  After washing, 
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sections were encircled with a PAP pen.  Sections were incubated in 10% normal donkey serum (NDS), 

1% bovine serum albumin (BSA), 0.03% Triton X-100, all diluted in PBS, for 30 min to block 

nonspecific binding sites and rinsed in PBS.  Blocked sections were used for immunofluorescence (IF) 

and immunohistochemistry (IHC) staining. 

Immunofluorescence (IF):  Blocked sections were incubated with the primary antibody mix at 

+4°C, overnight, in a wet chamber.  Sections were rinsed in PBS 3 times, and incubated for 2 hr at room 

temperature in a mix of fluorophore conjugated secondary antibodies in a dark wet chamber.  The 

following solution was used to dilute primary and secondary antibodies: 1% NDS, 1% BSA, 0.03% 

Triton X-100.  After incubation with secondary antibodies, slides were washed in PBS 3 times, and 

mounted with anti-fading agent Gel/Mount (Biomeda, Foster City, CA).  In some cases, DAPI (4’6-

diamindino-2-phenylindole; 0.5 µg/ml; Molecular Probes, Eugene, OR, # D1306) staining was performed 

for 5 min at room temperature following the first wash after secondary antibody exposure. 

The following primary antibodies were used to stain the pancreas: anti-insulin (1:200, Abcam, 

Cambridge, MA, # ab7842) or anti-insulin (1:100, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, # sc-

9168), anti-glucagon (1:300, Abcam, # ab10988), anti-somatostatin (1:300, Abcam, # ab53165), and anti-

Ki67  Proliferation Marker (1:200, Abcam, # ab16667).  Appropriate secondary antibodies were used that 

were conjugated with DyLight 488 (1:400, Jackson ImmunoResearch Laboratories Inc., West Grove, PA, 

# 706-485-148), Alexa 555 (1:400, Molecular Probes, Eugene, OR, # A31570),or Alexa 647 (1:400, 

Molecular Probes, # A31573). 

Images were captured on a Nikon C1Si or C1 Plus confocal microscopes (Nikon Instruments Inc, 

Melville, NY).  IF images were analyzed using Nikon software EZ-C1 3.90 Free viewer.  The cellular 

composition of islets was measured by counting the individual types of cells (β-cells labeled with anti-

insulin, α-cells with anti-glucagon and δ-cells with anti-somatostatin) in each islet, and dividing the 

number of each cell type by the total number of all labeled cells per islet. 

Immunohistochemistry (IHC): Anti-insulin (1:100, Santa Cruz Biotechnology, Inc., Santa Cruz, 

CA, # sc-9168) or anti-glucagon (1:200, Santa Cruz Biotechnology, # sc-13091) primary antibodies were 
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used.  Staining was developed using Histostain-Plus Broad Spectrum (AEC) Kit (Invitrogen, Frederick, 

MD, # 859943).  The IHC procedure was conducted according to manufacturer instructions.  Slides were 

counterstained with hematoxylin to identify cell nuclei. 

After staining, slides were rinsed in deionized water and placed on coverslips in Clear Mount 

mounting medium (Electron Microscopy Sciences, Hatfield, PA, #17985-12).  The specificity of 

immunoreactivity was confirmed by omitting the primary antibody from some sections.  The staining was 

observed using a light microscope Nikon Eclipse 80i (Nikon Instruments Inc, Melville, NY.). Images 

were analyzed using Ps Adobe Photoshop CZ4 extended software.  The relative insulin content was 

measured based on the intensity of staining of pancreatic sections with anti-insulin.  The average pixel 

value of staining per cell or per islet was determined.  Background staining was subtracted from each 

value. 

Insulitis was determined by the presence of lymphocyte infiltration, which was defined as highly 

concentrated monocytic nuclei around islets. Infiltration was scored using images of hematoxylin staining 

combined with IHC with either insulin or glucagon antibody labeling.  Islets were scored using the 

following criteria: peri-insulitis when infiltration had begun with peripherally observed immune cells; 

intra-insular insulitis when immune cells had clearly infiltrated the islet; and the islet destruction stage 

was determined when the islet area was completely infiltrated by immune cells.  Infiltration was 

calculated as the percentage of the islet area comprised of infiltrating cells. 

 

Statistical analysis: 

All data is reported as the mean ± standard error of the mean. The statistical test and n for each 

experiment is listed in the legend for each figure. Male and female mice were included in analysis, as the 

pattern of differences between IRlox/lox and SNIRKO mice was consistent across both sexes. A p-value less 

than 0.05 was considered statistically significant. Graphpad Prism software was used for all statistical 

analysis.  
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5.4 Results 

Cre recombinase expression is sensory neuron specific in Advillincre/+ mice:  

Advillin is a member of the gelosin superfamily and has recently been demonstrated to have a 

selective sensory neuron specific expression [274] and cre recombinase expression under control of the 

advillin promoter shows a similar sensory neuron specific expression [272]. Advillincre/+ mice are unique 

as compared to previous developed mice that conditionally express cre in sensory neurons. Advillincre/+ 

show cre expression in almost all sensory neurons where as previously developed mice only had cre 

expression in specific neuronal subpopulations [281]. To confirm sensory neuron specific cre expression, 

Advillincre/+ male mice were bred to female Tomato mice and the expression of GFP was qualitatively 

analyzed across several different tissues (Figure 5.1-5.3). Sensory neuron cell bodies showed strong GFP 

expression in Advillincre/+, Tomato+/- mice in both the DRG and nodose ganglia (Figures 5.1A and 5.2A, 

respectively), little to no GFP is visible in Tomato+/- mice. In addition to sensory neuron cell bodies, 

sensory axons can also be visualized in the hindpaw footpad (Figure 5.1B), sciatic nerve (Figure 4.1C), 

and dorsal horn of the spinal cord (Figure 5.2B) of Advillincre/+, Tomato+/-. No GFP expression was 

observed in axons of these tissues in Tomato+/- mice. GFP expression was not observed in sections of 

brain frontal cortex (Figure 5.2C), ventral spinal cord (Figure 5.2B), liver (Figure 5.3A) or muscle (Figure 

5.3B) in either Advillincre/+, Tomato+/- or Tomato+/- mice. 

 

SNIRKO mice have decreased insulin receptor expression the DRG: 

 Cre/lox recombination of the insulin receptor was confirmed in the DRG using RT-PCR (Figure 

5.4A). An RT-PCR product of 585bp, suggesting intact insulin receptor RNA, was observed in DRG both 

from IRlox/lox and SNIRKO mice. A 435bp product, suggesting deletion of insulin receptor exon 4, was 

only observed in DRG from SNIRKO mice. The presence of a 585bp product in the DRG of SNIRKO 

mice is most likely due to non-sensory neuron cells within the DRG sample that express the insulin 

receptor, as the DRG is not solely comprised of sensory neurons. Possible contaminating cells include 

Schwann cells, endothelial cells, and satellite cells [170]. 
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Figure 5.1 
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Figure 5.1. Cre recombinase expression in DRG, footpad, and sciatic nerve of AdvillinCre/+ mice. A 

reporter line for cre recombinase activity (Tomato) was used to confirm sensory neuron specific cre 

expression in AdvillinCre/+ mice. Images of red fluorescence, green fluorescence, and merged images are 

shown from AdvillinCre/+; Tomato+/- and Tomato+/- mice. A) Sensory neurons in the DRG show GFP 

expression in AdvillinCre/+; Tomato+/- mice but not Tomato+/- mice. Images were taken at 20x 

magnification. Scale bar=100µm. B) In the hindpaw footpad, GFP expression can be visualized in the 

axons of sensory neurons crossing the dermal-epidermal border (arrows) in AdvillinCre/+; Tomato+/- mice, 

but not Tomato+/- mice. Images were taken at 40x magnification. Scale bar=50µm C) Strong GFP 

expression was visualized in the sciatic nerve of AdvillinCre/+; Tomato+/- mice. GFP was not present in the 

sciatic nerve of Tomato+/- mice. Images were taken at 20x magnification. Scale bar=100µm. 
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Figure 5.2 
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Figure 5.2. Cre recombinase expression in nodose ganglia, lumbar spinal cord, and frontal cortex of 

AdvillinCre/+ mice. A portion of pancreatic sensory innervation arises from the nodose ganglia [282]. 

Here, GFP expression is evident in the sensory neurons of the nodose ganglia of AdvillinCre/+; Tomato+/-, 

but not Tomato+/- mice (A). Images were taken at 20x magnification. Scale bar=100µm. B) GFP 

expression is present only in the dorsal horn of the spinal cord from AdvillinCre/+; Tomato+/- mice, 

corresponding to the area of sensory neuron axon termination. No GFP expression is visible from either 

AdvillinCre/+; Tomato+/- or Tomato+/- mice in the ventral portion of the spinal cord, an area predominantly 

associated with motor neurons. Images were taken at 4x magnification. Scale bar=400µm. C) Neither 

AdvillinCre/+; Tomato+/- or Tomato+/- mice show GFP expression in the brain frontal cortex. Images were 

taken at 10x magnification. Scale bar=200µm. 
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Figure 5.3 
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Figure 5.3. Cre recombinase expression in muscle and liver of AdvillinCre/+ mice. Neither muscle 

(gastrocnemius) nor liver cells from AdvillinCre/+; Tomato+/- or Tomato+/- mice express GFP (A and B). 

Images were taken at 10x magnification. Scale bar=200µm. However, at higher magnification (40x) thin 

axons can be visualized expressing GFP in the muscle of AdvillinCre/+; Tomato+/- mice (images not 

shown). 
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Western blot analysis was used to determine whether cre/lox recombination resulted in reduced 

insulin receptor protein levels in the DRG (Figure 5.4B). SNIRKO mice show a significant decrease in 

DRG insulin receptor expression. Insulin receptor levels in SNIRKO mice are approximately 60% lower 

than that observed in IRlox/lox mice. This observed significant decrease in insulin receptor expression was 

not present in the gastrocnemius muscle of SNIRKO mice (Figure 5.4C).  

 To determine if reductions in DRG insulin receptor expression affected insulin signaling 

transduction, DRG Akt activation was assessed via Western blot analysis after IP insulin injection. As 

expected, DRG from IRlox/lox mice showed a significant increase in Akt activation (p(ser473)/totalAkt) in 

response to insulin stimulation (Figure 5.4D). However, Akt activation in the DRG of SNIRKO mice was 

not significantly increased above baseline (PBS) and was significantly lower as compared to IRlox/lox mice. 

Insulin-induced Akt activation was significantly activated in the muscle from both IRlox/lox and SNIRKO 

mice as compared to baseline and there was no significant difference between groups (Figure 5.4E). 

 These data suggest that insulin receptor cre/lox recombination was specific to sensory neurons 

and that reduced insulin receptor expression is significantly blunting neuronal insulin signaling. 

 

SNIRKO mice do not display gross changes in development:  

Mice with systemic insulin receptor knockout are born 10% smaller and die within 72 hours from 

severe diabetic ketoacidosis [129]. SNIRKO mice were born with the expected frequency and showed no 

observable difference in appearance or weight gain through 28 weeks of age (Figure 5.5). SNIRKO 

development was also assessed with SHIRPA analysis. SNIRKO mice did not show significant 

differences in overall SHIRPA scores as compared to IRlox/lox and no significant difference was detected 

between male and female SNIRKO mice (Figure 5.5B and C). The only significantly different behavior 

observed during SHIRPA analysis between IRlox/lox and SNIRKO mice was related to biting. Results 

indicate that SNIRKO mice were more likely to bite as compared to IRlox/lox mice (Figure 5.5D and E). 

The complete list of behaviors tested, scoring, and results of SHIRPA analysis are listed in Table 5.1. 
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Figure 5.4 
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Figure 5.4. SNIRKO Insulin Receptor Expression in DRG and Muscle. Cre recombinase excision of 

insulin receptor exon 4 flanked by loxp sites was confirmed in the DRG with RT-PCR (A). A 585 bp 

band was indicative of intact insulin receptor RNA and a 435 bp band suggested a recombination event 

and the excision of the 150 bp exon 4. A 435 bp band was only observed in DRG from SNIRKO mice. 

Western blots show a significant decrease in insulin receptor beta expression in the DRG of SNIRKO 

mice (B), however no significant change was observed in the muscle of SNIRKO mice (C). Results were 

analyzed with a student’s t-test. n=15 IRlox/lox and n=8 SNIRKO. Insulin stimulation failed to significantly 

activate Akt over baseline in the DRG of SNIRKO mice and insulin-induced activated Akt levels were 

significantly lower as compared to IRlox/lox (D). Insulin stimulation significantly activated Akt over 

baseline in the muscle from both IRlox/lox and SNIRKO mice. No significant difference was observed 

between IRlox/lox and SNIRKO mice insulin-induced Akt activation levels in the muscle (E). Results were 

analyzed with a 2-way ANOVA and Bonferroni’s post-hoc analysis. n=4 IRlox/lox PBS, n=4 IRlox/lox 

insulin, n=3 SNIRKO PBS and n=3 SNIRKO insulin. *=p<0.05, **=p<0.01, ***=p<0.001. 
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Figure 5.5 
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Figure 5.5. SNIRKO mice do not have gross developmental defects. SNIRKO mice do not show signs 

of major birth defects and appear healthy from birth (A). SNIRKO mice weigh similar to IRlox/lox mice of 

the same sex (B). Results were analyzed with a repeated measures 2-way ANOVA and Bonferroni’s post-

hoc. There were no differences between IRlox/lox and SNIRKO mice. The differences indicated in the 

figure are between males and females only. n=9 IRlox/lox male, n=10 SNIRKO male, n=8 IRlox/lox female, 

and n=6 SNIRKO female. SNIRKO mouse development was also quantified with a SHIRPA analysis. 

SHIRPA analysis uses a battery of tests to roughly assess behaviors as well as morphology. No significant 

difference in total SHIRPA score was noted between male and female IRlox/lox and SNIRKO mice (C). 

Results were analyzed with a 2-way ANOVA and Bonferroni’s post-hoc. n=12 IRlox/lox male, n=11 

SNIRKO male, n=6 IRlox/lox female, and n=7 SNIRKO female. Additionally, no difference was observed 

when males and females were combined (D). Results were analyzed with a student’s t-test. n=18 IRlox/lox 

and n=18 SNIRKO. The only significant difference in behavior noted between IRlox/lox and SNIRKO mice 

was in biting observed throughout the SHRIPA (E). SNIRKO mice displayed increased biting (0=biting 

present, 1=biting absent). Results were analyzed with a 2-way ANOVA and Bonferroni’s post-hoc. n=12 

IRlox/lox male, n=11 SNIRKO male, n=6 IRlox/lox female, and n=7 SNIRKO female. The significant 

difference was maintained when data from males and females was combined (F). Results were analyzed 

with a student’s t-test. n=18 IRlox/lox and n=18 SNIRKO. *=p<0.05, **=p<0.01, ***=p<0.001, 

****=p<0.0001. 
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Table 5.1 
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Table 5.1. SNIRKO SHIRPA data. Complete data and scoring from SHIRPA analysis indicates that 

SNIRKO mice do not have major developmental defects. Results were analyzed with a 2-way ANOVA 

and Bonferroni’s post-hoc. n=12 IRlox/lox male, n=11 SNIRKO male, n=6 IRlox/lox female, and n=7 

SNIRKO female. *=p<0.05, **=p<0.01. 
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SNIRKO mice are euglycemic:  

A central reason behind developing SNIRKO mice was the need to separate altered sensory 

neuron insulin signaling from hyperglycemia. Blood glucose levels were monitored for 6 months and no 

significant difference was observed between SNIRKO and IRlox/lox mice (Figure 5.6A and B). Independent 

of genotype, female mice did have a significantly lower blood glucose level as compared to males (not 

denoted in the figure). In addition, there was no significant difference in hemoglobin A1C levels between 

groups (Figure 5.6 C and D). The results indicate that in addition to reduce sensory neuron insulin 

signaling, SNIRKO mice maintain normal glucose levels. 

 

SNIRKO mice do not show significantly different actometer-assessed behaviors:  

A force plate actometer was used to assess several baseline behaviors. SNIRKO mice did not 

have a significant difference in total distance travelled and no significant difference was detected between 

the percent of distance travelled in the perimeter between IRlox/lox and SNIRKO mice (p-value=0.11). No 

significant difference between groups was observed in all other behaviors analyzed (Table 5.2). 

 

SNIRKO mice do not show sensorimotor behavior changes as seen in DN:  

A hallmark of DN in rodent models is changes in sensorimotor behavior, predominantly assessed 

by testing mechanical (large and small fiber) and thermal sensitivity (small fiber) using von Frey 

filaments or a Hargreaves table, respectively. SNIRKO mice have no significant difference in mechanical 

sensitivity (Figure 5.7 A). Analysis of thermal sensitivity with a repeated measures 2-way ANOVA 

indicates no main effect between IRlox/lox and SNIRKO mice throughout the testing periods (Figure 5.7 B), 

however Bonferroni’s post-hoc indicates a significant difference at 13 weeks of age. Interestingly, this 

appears to be due more to an increase in IRlox/lox threshold at this time point rather than a decrease in 

SNIRKO threshold. For comparison, IRlox/lox thresholds were 7.0, 7.9, and 7.5 at 9, 13, and 28 weeks of 

age, respectively. SNIRKO thresholds were 7.2, 6.8, and 7.0 at 9, 13, and 28 weeks of age, respectively. 
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Figure 5.6 
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Figure 5.6. SNIRKO mice are euglycemic. Blood glucose levels were measured at 6, 10, 16, 22, and 28 

weeks of age. Results were analyzed with a repeated measures 2-way ANOVA and Bonferroni’s post-

hoc. No significant differences were observed between male or female IRlox/lox and SNIRKO mice (A). 

Female mice independent of group did have significantly lower blood glucose levels than male mice (not 

denoted on the figure). n=12 IRlox/lox male, n=14 SNIRKO male, n=10 IRlox/lox female, and n=9 SNIRKO 

female. Furthermore, no significant difference was observed when data from males and females was 

combined (B). n=22 IRlox/lox and n=23 SNIRKO. Hemoglobin A1C levels were measured at 29 weeks of 

age. There were no significant differences noted in males or females between IRlox/lox and SNIRKO 

groups (C) or when data from females and males was combined (D). Results were analyzed with a 2-way 

ANOVA and Bonferroni’s post-hoc (C) and student’s t-test (D). 
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Table 5.2 
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Table 5.2. SNIRKO Mice do not have significant differences in activity behaviors assessed by force 

plate actometer. Force plate actometer is capable of precisely determining several behaviors related to 

activity and repetitive motion. All the behaviors assessed are listed and no significant difference was 

noted in any behavior. Results were analyzed with a 2-way ANOVA and Bonferroni’s post-hoc. n=14 

IRlox/lox male, n=14 SNIRKO male, n=10 IRlox/lox female, and n=9 SNIRKO female. The perimeter was 

defined as the outside 2 rows of squares when the force plate was divided into a grid of 16 by 16 squares. 

A bout of low mobility was defined as no movement outside a 15.0 mm radius for 10.24 seconds. Area 

measure is the amount of area covered by the mouse during 1 frame. The spatial statistic is an indication 

of the activity distribution across the actometer. A high spatial statistic indicates little movement around 

the actometer and a low spatial statistic indicates extensive of movement throughout the actometer. The 

focused stereotypy score is an indication of time spent doing repetitive motions. 
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Figure 5.7 
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Figure 5.7. SNIRKO mice do not display sensorimotor deficits characteristic of DN in murine 

models. It was hypothesized that the reduction in sensory neuron insulin signaling despite euglycemia 

would produce a phenotype similar to DN in mouse models. Similar patterns were observed across males 

and females between groups and data presented here is combined from males and females. No significant 

difference between IRlox/lox and SNIRKO was observed in mechanical sensitivity (A). For thermal 

sensitivity there was no significant difference of group between IRlox/lox and SNIRKO mice upon analysis 

with 2-way repeated measures ANOVA (B). However, Bonferroni’s post-hoc does show a significant 

difference between IRlox/lox and SNIRKO mice at 13 weeks of age. Of note, the thermal threshold for 

SNIRKO mice appears to remain relatively constant throughout the time period tested, yet IRlox/lox mice 

show an increase in threshold at 13 weeks. No significant difference between IRlox/lox and SNIRKO mice 

was observed in beamwalk (C) or rotorod (D). Mechanical sensitivity, thermal sensitivity, and beamwalk 

were analyzed with a repeated measures 2-way ANOVA and Bonferroni’s post-hoc. Rotorod was 

analyzed with a student’s t-test. n=24 IRlox/lox and n=23 SNIRKO. *=p<0.05. 
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Two additional tests were performed to assess motor coordination and balance/proprioception 

(large fiber). SNIRKO mice showed no significant difference in the number of foot slips during 

beamwalk analysis (Figure 5.7 C) or in the latency to fall during rotorod analysis (Figure 5.7 D).  

 These results indicate that SNIRKO mice do not appear to have similar sensorimotor deficits to 

that seen in rodent models of DN. 

 

SNIRKO mice do not show morphologic or physiologic changes as seen in DN:  

DN neuropathy is characterized as a “dying back” neuropathy. This can be quantified by 

assessing the density of epidermal nerve fibers in the hindpaw footpad (IENF). Rodent models of DN 

display reduced IENF density [280]. SNIRKO mice do not have significantly different IENF density as 

compared to IRlox/lox (Figure 5.8 A-C). 

 The gold standard for diagnosing DN in human patients is electrophysiological changes [89]. 

Reduced NCV can also be observed in rodent models of DN [280]. SNIRKO mice show no significant 

difference in either SNCV or MNCV (Figure 5.8 D and E, respectively). 

 

SNIRKO mice do not have a significant upregulation of the IGF-1 pathway:  

A common caveat of transgenic knockout models is compensation through an alternate pathway. 

Due to strong overlap of intracellular signaling between insulin and IGF-1 and that IGF-1 is known to be 

a neurotrophic factor for sensory neurons [176], we reasoned that one of the most likely pathways that 

may be upregulated to compensate for reduced insulin signaling in sensory neurons was the IGF-1 

pathway. However, no significant difference in serum IGF-1 levels (Figure 5.9 A) or IGFR protein levels 

in the DRG (Figure 5.9 B) were observed. 

 

 

 

 



137 
 

Figure 5.8 
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Figure 5.8. SNIRKO mice do not show morphological or physiological changes characteristic of DN 

in murine models.  Two characteristic signs of DN in mice are decreased IENF and reduced NCV. Nerve 

fibers (arrows) that cross the dermal-epidermal border (white line) were quantified in both IRlox/lox (A) and 

SNIRKO mice (B). No significant differences were noted (C). Results were analyzed with a student’s t-

test. n=4 IRlox/lox and n=4 SNIRKO. In addition, no differences were observed in either SNCV (D) or 

MNCV (E). Results were analyzed with a student’s t-test. n=24 IRlox/lox and n=23 SNIRKO. 
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Figure 5.9 
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Figure 5.9. The IGF1 pathway is not significantly upregulated in SNIRKO mice. One possible 

compensation pathway in SNIRKO mice is the IGF1 pathway. Here, IGF1 serum levels and IGF receptor 

expression levels in the DRG were assessed. No significant differences were observed between IRlox/lox 

and SNIRKO mice for either variable. Results were analyzed with a student’s t-test. n=20 IRlox/lox and 

n=20 SNIRKO for IGF1 serum ELISA and n=14 IRlox/lox and n=10 SNIRKO for IGF receptor Western 

blot analysis. 
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SNIRKO mice display significantly elevated serum insulin levels and glucose intolerance:  

A surprising observation made throughout the course of these studies was that SNIRKO mice 

displayed significantly elevated serum insulin levels (Figure 5.10). The difference between IRlox/lox and 

SNIRKO mice appeared to increase during the course of the testing period as well. For comparison, 

IRlox/lox mice had serum insulin levels of 0.93 ng/mL at 6 weeks of age and 1.00 ng/mL at 29 weeks of 

age. SNIRKO mice had serum insulin levels of 1.14 ng/mL at 6 weeks of age and 2.03 ng/mL at 29 weeks 

of age. Furthermore, when subjected to an IPGTT, SNIRKO mice maintained significantly higher blood 

glucose levels throughout the experiment (Figure 5.11 A and B) resulting in significantly different areas 

under the curve (AUC) between IRlox/lox and SNIRKO mice; suggesting that SNIRKO mice may show 

signs of hyperinsulinemia-induced insulin resistance. 

 These results suggest an interesting hypothesis in that sensory neuron insulin signaling plays a 

crucial role in regulating systemic insulin levels and glucose tolerance. 

 

Proposed mechanism of the sensory neuron’s role in beta cell modification: 

 In 2005 Razavi et. al. demonstrated that TRPV1 positive sensory neurons are critically involved 

in the pathogenesis of type 1 diabetes in non-obese diabetic (NOD) mice. NOD mice express a 

hypofunctional TRPV1 and it was demonstrated that embryological ablation of TRPV1 with capsaicin or 

substance P treatment could correct insulitis and diabetes in NOD mice [38]. Based on these observations, 

Tsui et. al proposed a mechanism of beta cell regulation via negative feedback of insulin signaling on 

sensory neurons (Figure 5.12, modified from [283]). TRPV1 stimulation results in the release of the 

neuropeptide substance P. Substance P plays an important role in regulating insulin production. It has 

previously been demonstrated that insulin may sensitize TRPV1 [34, 35]. Thus, in the NOD mouse which 

has a mutant TRPV1 receptor, there is a reduced release of substance P, resulting in an increase in insulin 

release from pancreatic beta cells in an effort to further sensitize TRPV1 and release more substance P 

(Figure 5.12 B). It is proposed that this results in beta cell stress and autoimmune attack. The observation 

that SNIRKO mice display hyperinsulinemia fits surprisingly well into this model. Whereas removal of 
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Figure 5.10 
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Figure 5.10. SNIRKO mice have significantly elevated serum insulin levels. Despite a conditional 

knockout of the insulin receptor specifically in sensory neurons, SNIRKO mice present with a systemic 

increase in serum insulin levels. A) A similar pattern of increased insulin levels in SNIRKO mice was 

observed between males and female throughout the experiment.  n=12 IRlox/lox male, n=14 SNIRKO male, 

n=10 IRlox/lox female, and n=9 SNIRKO female. B) Combined male and female insulin data shows a 

significant main effect of group (IRlox/lox vs. SNIRKO) upon analysis with repeated measures 2-way 

ANOVA (p=0.036). Bonferroni’s post-hoc indicates a significant difference at 29 weeks of age.  n=22 

IRlox/lox and n=23 SNIRKO. **=p<0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



144 
 

Figure 5.11 
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Figure 5.11. SNIRKO mice display glucose intolerance. Elevated insulin levels are capable of 

producing signs of insulin resistance and glucose intolerance. IRlox/lox and SNIRKO mice were subjected 

to an IPGTT. Male and female SNIRKO mice show elevated glucose levels above IRlox/lox mice of the 

same sex (A). A combination of data from male and female mice shows that SNIRKO mice appear to 

maintain elevated glucose level throughout the IPGTT (B). Analysis with a 2-way repeated measure 

ANOVA indicates the p-value for group (IRlox/lox vs. SNIRKO) was 0.054. Bonferroni’s post-hoc 

indicates at significant difference at 60 minutes post glucose injection. Calculation of the area under the 

curve (AUC) shows that male and female SNIRKO mice once again show similar patterns as compared to 

IRlox/lox mice (C) and the AUC was significantly elevated in SNIRKO mice as compared to IRlox/lox when 

data from male and females was combined. Results were analyzed with a student’s t-test. n=20 IRlox/lox 

and n=18 SNIRKO. *=p<0.05. 
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Figure 5.12 

 

 

C. SNIRKO mice with disrupted sensory neuron insulin signaling 

B. NOD mice with hypofunctional TRPV1  
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Figure 5.12. Proposed feedback mechanism between sensory neuron insulin signaling and beta cell 

function. A) Under normal physiologically conditions there is a finely tuned feedback mechanism 

between sensory neuron insulin signaling, TRPV1 sensitivity and neuropeptide release, and beta cell 

insulin production. B) In NOD mice, there is a primary defect in TRPV1 function (1), resulting in 

decreased substance P release (2). Due to decreased substance P support beta cells increase insulin 

production (3) in an effort to lower TRPV1 sensitivity and release more substance P via sensory neuron 

insulin signaling (4). This results in beta cell stress and in the autoimmune susceptible environment of 

NOD mice, diabetes. C) SNIRKO mice have a primary defect of reduced insulin receptor signaling (1) 

resulting in altered TRPV1 sensitivity (2) and reduced substance P release (3). Similar to young NOD 

mice, beta cells attempt to compensate for reduced neuropeptide signaling by increasing production of 

insulin (4), thus producing hyperinsulinemia in SNIRKO mice. Mechanism and figure adapted from Tsui 

et. al. [283]. Illustration by Stanton Fernald. 
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sensory neuron insulin receptors prevents sensitization of TRPV1, reducing the amount of substance P 

release, and causing the overproduction/release of insulin from beta cells in an effort to compensate 

(Figure 5.12 C). Based on these observations, preliminary studies were conducted to test these hypotheses 

in SNIRKO mice.  

 

Pancreatic islets from SNIRKO mice show normal morphology, no insulitis, yet increased insulin content:  

The proposed model suggests that the primary defect causing hyperinsulinemia in SNIRKO mice 

would be overproduction of insulin by the pancreatic beta cells. Beta cells are insulin producing cells of 

the pancreas and are located in the islets of Langerhans. The islets of Langerhans have a predictable 

morphology of centrally located beta cells surrounded by glucagon producing alpha cells and 

somatostatin producing delta cells. The islets of Langerhans are extensively vascularized [284] and 

innervated by both autonomic [285] and sensory nerves [282]. SNIRKO mice show no significant 

changes in islet morphology or cell composition as compared to IRlox/lox mice (Figure 5.13). Large islets 

have been demonstrated to have poorer function than small islets [286]. Islet size was quantified in 

IRlox/lox and SNIRKO mice, but no significant differences were noted (data not shown). Finally, insulitis 

(islet inflammation) and insulin content was assessed using immunohistochemistry. Based on the 

proposed model it was expected that SNIRKO mice would have mild insulitis resulting from increased 

beta cell stress. SNIRKO mice do not show signs of islet lymphocyte infiltration, which would have been 

noted by cells with small, densely stained nuclei (figure 5.14). However, islets for SNIRKO mice do 

display increased insulin content (Figure 5.14), consistent with proposed model. 

 

SNIRKO mice do not show TRPV1 protein changes in lumbar DRG:  

Unlike NOD mice, SNIRKO mice do not display decreased TRPV1 DRG expression (Figure 

5.15). It should be noted that lumbar DRG were used for these experiments and that DRG sensory 

neurons that innervate the pancreas arise from DRG T9-T12, thus those DRG may have different 

expression profiles. Furthermore, TRPV1 electrophysiological parameters still need to be determined. 
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Figure 5.13 
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Figure 5.13. SNIRKO islet of Langerhans cell composition. Endocrine cells of the islets of Langerhans 

were labeled (green=beta cells, red=alpha cells, blue=delta cells) and cell composition was quantified (C). 

IRlox/lox (A) and SNIRKO (B) mice display similar islet of Langerhans cell composition, with no 

significant difference between beta, alpha, or delta cells. Data was analyzed with a 1-way nested ANOVA 

on ranks and Dunn’s pairwise comparison. 42 islets from 3 IRlox/lox mice and 45 islets from 3 SNIRKO 

mice were analyzed. 
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Figure 5.14 
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Figure 5.14. Islets of Langerhans from SNIRKO mice have increased insulin content and no 

lympocytic infiltrate. Insulitis was analyzed by assessing samples stained with hematoxylin for immune 

cell infiltration. No significant insulitis was observed in either islets from IRlox/lox (A) or SNIRKO (B) 

mice. Islet insulin content was analyzed be quantifying insulin staining intensity. Islets from SNIRKO 

mice have significantly elevated insulin content as compared to islets from IRlox/lox mice (C). Results were 

analyzed with a student’s t-test. n=45 islets from 3 IRlox/lox mice and n=33 islets from 3 SNIRKO mice. 
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Figure 5.15 
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Figure 5.15. SNIRKO mice do not have significantly altered lumbar DRG TRPV1 expression. An 

observation made in NOD mice that connected insulin signaling, pancreas function, and sensory neurons 

was a mutation in TRPV1. In addition to a mutation in TRPV1, protein levels were shown to be decreased 

in NOD mice [38]. No significant difference in DRG TRPV1 expression was observed between IRlox/lox 

and SNIRKO mice. Results were analyzed with a student’s t-test. n=15 IRlox/lox and n=12 SNIRKO. 
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5.5 Discussion 

 While several studies have demonstrated the neurotrophic potential of insulin and suggested that 

reduced sensory neuron insulin support may be a major contributor to the pathogenesis of diabetic 

neuropathy, a model to specifically test sensory neuron insulin signaling in vivo without changes in other 

variables has been lacking. Here, we developed sensory neuron insulin receptor knockout mice to help 

better understand the role that insulin signaling plays in sensory neuron function. While the insulin 

receptor has been the target of several conditional knockouts, including the muscle [131], liver [136], 

pancreas [135], and central nervous system [137], these are the first mice to have a conditional knockout 

of the insulin receptor in sensory neurons. SNIRKO mice showed a tissue-specific decrease in DRG 

insulin receptor expression and reduced DRG insulin signaling, yet remained euglycemic. 

 SNIRKO mice do not show behavioral, physiological, or morphological signs of DN. Thus it 

appears that without hyperglycemia, a reduction in sensory neuron insulin signaling does not contribute to 

manifestations of neuropathy. Several possibilities may contribute to this result and they are discussed 

below.  

1) While in primary culture, at supraphysiologic doses, or with direct administration to the 

nervous system insulin may act as a neurotrophic factor, it may be that under normal physiological 

conditions insulin does not provide support to the PNS. Perhaps the large fluctuations in insulin levels 

throughout the day in response to glucose intake makes it unsuitable for support of sensory neurons, 

which need to maintain a tonically high metabolic rate in order to support the distal axon and tightly 

maintain electrochemical gradients. Furthermore, although it does appear that there are non-glycemic 

mechanisms contributing to DN, the most effective treatment for prevention of DN is strict glycemic 

control, suggesting that hyperglycemia is the main driving force of DN pathogenesis. 

2) In relation to hyperglycemia being the primary insult in DN; perhaps the PNS can function 

normally without insulin support in the absence of neuronal injury. Such that, the repair/regeneration of 

peripheral nerves is blunted and it is this loss of neurotrophic support during injury that contributes to 

DN. In support of this model is the repeated evidence indicating that insulin can promote nerve 
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regeneration after injury [174, 185]. Accordingly, SNIRKO mice may only show a difference in behavior 

or morphology after neuronal injury. Future experiments using models of nerve injury, such as nerve 

crush and spared nerve injury, as well as models using noxious agents such as formalin, complete 

Freund's adjuvant (CFA), and capsaicin are needed test this hypothesis.  

3) It also possible that the behavioral tests used to assess the sensorimotor function in SNIRKO 

mice was not appropriate. For example, von Frey filaments assess mechanical allodynia (painful response 

to a non-painful stimulus), not hyperalgesia (an exaggerated response to a painful stimulus). If DN 

neuropathy is the result of reduced PNS insulin signaling and glucose neurotoxicity, it may be that 

deficits in only one area produce milder neuropathy (i.e. hyperalgesia as compared to allodynia). Thus, 

test of hyperalgesia, such as pin prick, Randal-Stilleto, colorectal distension, or the use of noxious agents 

(formalin, CFA, or capsacin) may delineate the differences between IRlox/lox and SNIRKO mice. Future 

studies are aimed at including these additional tests to fully characterize the sensorimotor function of 

SNIRKO mice. 

4) An additional factor that may have contributed to the observed results is that SNIRKO mice do 

not perfectly model the reduced PNS insulin support present in diabetes. In diabetes, there is a global 

reduction in insulin support (reduced circulating levels or reduced signaling), such that not only will 

sensory neurons of the PNS have reduced insulin support, but so will the Schwann cells and satellite glia 

cells that also express insulin receptors [170]. Thus, while SNIRKO mice have reduced insulin support to 

sensory neurons, they should not have reduced insulin signaling in glia cells, which may confound the 

results. Based on these observations, a better model of reductions in PNS insulin support may be to 

knockout the insulin receptor in all cells of the PNS. Future studies are going to incorporate mice that 

specifically express cre recombinase in Schwann cells using the glycoprotein P 0 promoter with the goal 

of eventually having cre expression in both sensory neurons and Schwann cells simultaneously.  

Along these same lines, SNIRKO mice would have a sensory neuron insulin receptor knockout 

early in development (Advillin is expressed at E12.5 [274]). Insulin has been documented to have an 

important role in central nervous system development [169], and it was recently demonstrated that IRS2 
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knockout mice have reduced trkA positive neurons and alterations in thermal sensitivity [287]. SNIRKO 

mice do not appear to have developmental defects, indicating that insulin may not be crucial 

developmental neurotrophic factor for sensory neurons. Thus, the changes in IRS2 knockout mice are 

most likely the result of reductions in signaling from several different growth factors as IRS2 is a docking 

protein involved in transduction of several different signaling pathways, not just insulin [236]. 

Nevertheless, neuronal development without insulin signaling may cause adaptations or subtle changes in 

set points that may cloud the results and a complete quantification of DRG sensory neuron composition 

needs to be completed. A better model of reduced sensory neuron insulin signaling post development 

would be to use an inducible-cre recombinase. This would better mimic the loss of mature sensory neuron 

insulin signaling in diabetic patients. Unfortunatley, tamoxifen inducible Advillincre/+ mice only show cre 

activation in about 20% of sensory neurons (personal communication with Dr. Fan Wang). 

5) Finally, it is recognized that additional, uninvestigated pathways may be upregulated and 

compensating for the lack of sensory neuron insulin support. Beyond IGF-1, several other neurotrophins 

have signaling pathways similar to insulin, including NGF [13]. In fact, it was this observation that first 

indicated insulin may be a neurotrophic factor. Insulin has also been shown to promote neurotrophin 

actions [178]. Additional experiments are required to investigate other neurotrophic pathways. 

An intriguing observation from these studies was the elevated insulin levels of SNIRKO mice. 

These results are consistent with recent publications indicating that the efferent actions of sensory neurons 

modify beta cell insulin production/release via a negative feedback mechanism [38, 283]. This also 

establishes a novel function for insulin signaling in sensory neurons beyond the neurotrophic effects that 

were previously discussed. Insulin signaling in sensory neurons may serve to help regulate systemic 

metabolism. Two possibilities through which sensory neuron insulin signaling may be affecting serum 

insulin levels are discussed below. 

1) Sensory neuron insulin signaling modifies beta cell insulin production/release based on the 

model proposed by Ravazi et. al. [38]. Several studies have demonstrated that insulin can sensitize and 

potentiate TRPV1 signaling by lowering the threshold for activation and increasing membrane 
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translocation [34, 35, 288]. With the high concentration of insulin in the islet milieu it was recently 

proposed that TRPV1 would be tonically activated resulting in constant release of the neuropeptides 

CGRP and substance P [289]. CGRP and substance P are canonically considered to be potent 

proinflammatory regulators. However, these neuropeptides have also been demonstrated to have a trophic 

effect on beta cells [283, 290, 291] and treatment with CGRP and/or substance P causes normalization of 

insulin secretion and resolution of diabetes [38, 292]. It was also recently reported that capsaicin 

treatment can significantly reduce blood glucose levels in a mouse model of late phase type 1 diabetes 

[293]. Moreover, treatment with capsaicin and a capsaicin analog, resiniferatoxin, was shown to improve 

glucose homeostasis by increasing insulin secretion in type 2 diabetic Zucker rats [294, 295].  

Unfortunately, until now, the involvement of sensory neuron insulin signaling in this model could 

not be directly tested. Prediabetic NOD mice display hyperinsulinemia which is thought to be due to 

dysfunctional TRPV1 and neuropeptide release [38, 296]. SNIRKO mice also demonstrate 

hyperinsulinemia as well as increased islet insulin content. In line with the recent understanding of the 

importance of insulin signaling in TRPV1 sensitivity and the role of neuropeptides in beta cell function, 

we postulate that hyperinsulinemia in SNIRKO mice is the result of altered TRPV1 sensitivity and altered 

local islet neuropeptide regulation of beta cells. The demonstration that multiple interventions associated 

with the insulin-TRPV1-neuropeptide-diabetes model results in similar and predictable outcomes is 

strong support for the existence of such a system in vivo. Several experiments remain to further 

investigate this hypothesis in SNIRKO mice. Specifically, it will be important to analyze the neuropeptide 

levels of islets and the innervating sensory neurons as well as assess the sensitivity of TRPV1. 

Additionally, a key proof of concept experiment will be to determine if CGRP and/or substance P 

treatment can reverse the observed hyperinsulinemia in SNIRKO mice.  

2) Another previously unconsidered possibility that may contribute to elevated serum insulin 

levels in SNIRKO mice is a reduced insulin utilization or breakdown in the periphery. This may arise 

from 2 separate possibilities. First, a local system similar to that described in the islet involving insulin 

signaling, TRPV1 sensitivity, and neuropeptide release, may also be a factor in peripheral tissues. TRPV1 
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has been demonstrated to be an important factor in obesity, insulin resistance, and type 2 diabetes 

(reviewed in [297, 298]). In fact, TRPV1 null mice display resistance to diet-induced obesity and 

increased insulin sensitivity [38, 299].  

Secondly, sensory neurons may act as a “sensor” for systemic insulin levels in the periphery. A 

subpopulation of “glucose sensing” sensory neurons was recently identified in the nodose ganglia [300, 

301]. This novel population of neurons projects centrally to the nucleus tractus solitarius (NTS) in the 

medulla, a key area for integrating the afferent information from baroreceptors and chemoreceptors 

“sensing” blood pressure. Perhaps these “glucose-sensing” neurons have a dual purpose as “insulin-

sensing” neurons, or perhaps an additional subpopulation of “insulin sensing” neurons exists within the 

nodose ganglia. While “glucose- and nutrient-sensing” neurons of the hypothalamus have been known for 

some time, “glucose-sensing” by sensory neurons is a novel concept. It is proposed that the nodose 

contains 2 different populations of glucose sensing neurons, excitatory or inhibitory and that glucose 

sensing occurs at the level of the stomach and portal vein. “Glucose-sensing” neurons that innervate the 

portal vein are more likely to be inhibitory, whereas neurons innervating the stomach are more likely to 

be excitatory. Interestingly, glucose-induced excitation is the result of closure of an ATP sensitive K+ 

channel, similar to the mechanism for insulin release from beta cells [300]. Insulin has been demonstrated 

to open ATP sensitive K+ channels in beta cells as a negative feedback mechanism and in populations of 

hypothalamic neurons to reduce food intake [163, 166]. Thus, insulin may act through a similar 

mechanism on neurons of the nodose ganglia. In this paradigm, SNIRKO mice would display 

hyperinsulinemia due to reduced uptake of systemic insulin by the “insulin-sensing” neurons. 

Furthermore, increased insulin production and reduced insulin sensing may be connected, in that a 

reduction in insulin “sensing” in the periphery may produce a signal to increase beta cell insulin 

production via islet sensory neuron innervation.  

It is imperative to further confirm that the insulin receptor knockout is sensory neuron specific. 

Similar results of elevated insulin levels and glucose intolerance have previously been reported in mice 

with a conditional knockout of the insulin receptor in muscle in addition to a systemic heterozygous 
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insulin receptor knockout [131]. Thus, if SNIRKO mice have slight reductions in insulin receptor 

expression across multiple tissues, a similar phenotype of hyperinsulinemia may be evident. Techniques 

such as in situ hybridization and RT-PCR to visualize insulin receptor mRNA expression patterns and 

levels should be incorporated to compliment the presented protein expression data. Unfortunately, due to 

the presence of sensory neurons throughout the body, and the documented activation of Advillincre/+ in 

several peripheral sensory structures, such as free nerve endings, muscle spindles, Golgi tendon organs, 

Meissner’s corpuscles, and Pacinian corpuscles [274], results will always have to be interpreted with 

caution.  

The results presented here strongly indicate that sensory neuron insulin signaling is important in 

regulating systemic insulin levels, which may implicate sensory neuron involvement not only in DN, but 

in the development and progression of diabetes. Further research into these areas may help determine the 

pathogenic mechanisms of both DN and diabetes and open new pathways for treatment. In conclusion, 

SNIRKO mice do not appear to develop signs of DN, but do have systemic changes in serum insulin 

levels and glucose tolerance, supporting previous evidence of a connection between sensory neurons and 

pancreatic islet function.  
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Chapter 6: Dissertation Discussion and Conclusions  

 Experiments presented here were aimed at testing the hypothesis that DN pathogenesis is a result 

of reduced neurotrophic support from disrupted sensory neuron insulin signaling independent of 

hyperglycemia. These studies have 1) outlined the insulin signaling pathway in sensory neurons, 2) 

demonstrated that insulin signaling is modified in type 2 diabetes, and 3) characterized the phenotype of 

mice with a sensory neuron insulin receptor knockout. The PNS does respond to insulin in a dose-

dependent manner and the PNS shows signs of insulin resistance similar to other tissues in type 2 

diabetes. However, the physiological relevance of these results is challenged by our results demonstrating 

that supraphysiological insulin doses are needed to activate signaling and the absence of a neurological 

phenotype in SNIRKO mice. Based on these observations, the original hypothesis should be rejected. 

However, in light of the evidence that insulin is strongly neurotrophic, sensory neurons due respond to 

insulin, and there appears to be reduced signaling in both type 1 and type 2 diabetes a more suitable 

modified hypothesis would be that reduced sensory neuron insulin signaling in conjunction with the 

sequela of hyperglycemia contributes to DN pathogenesis. 

 The development of hyperinsulinemia in SNIRKO mice provides key information to a novel area 

of research suggesting that sensory neurons regulate pancreatic beta cell insulin production. Based on 

these results a new hypothesis was formed in that sensory neuron insulin signaling modulates beta cell 

insulin synthesis/release via a negative feedback mechanism, such that reduced sensory neuron insulin 

signaling results in an unchecked synthesis/release of insulin. 

 

6.1 Caveats and Discrepancies  

As with any large body of research, the experiments and methods of this project present several 

potential caveats that need to be considered when interpreting the presented data. They are discussed 

below in order of chapters presented.  

The DRG are not solely sensory neurons. This is a common issue throughout the field of DN and 

sensory neuron biology, especially when using techniques such as Western blots and RT-PCR. Generally, 
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due to accessibility, several DRG are pooled together and the whole DRG homogenate is used for 

analysis. The results are then interpreted as alterations in sensory neurons, yet the results could be due to 

the other cells of the DRG, such as Schwann cells and satellite cells. Along those lines, all sensory 

neurons are not the same, there are several different subpopulations, and thus, using a DRG homogenate 

may mask the results that are specific to a subpopulation. In that vein, insulin receptor expression in the 

DRG has been characterized to be predominantly in small neurons of the DRG [173], however conflicting 

reports exist [174]. With respect to Akt activation in the DRG, several attempts were made to use 

immunohistochemistry to support the Western blot data, however results were inconclusive due to the 

poor quality of antibodies used for immunohistochemistry (data not shown).  

The sciatic nerve is a mixed nerve with sensory and motor axons, thus results in the sciatic nerve 

cannot solely be attributed to sensory neurons. The sciatic nerve of a rat is composed of 8% motor axons, 

23% sympathetic axons, and 69% sensory axons [302]. Additionally, a large percentage of the protein or 

RNA extracted from the sciatic nerve would be from Schwann cells. A more sensory-specific peripheral 

nerve is the sural nerve. However, once again due to accessibility, the sciatic nerve is most commonly 

used as a representative tissue of the peripheral nerve.  

The insulin dose curve of PNS Akt activation provided strong evidence that DRG and sciatic 

nerve Akt activation in vivo is insulin dose dependent. However, for a better translation into how insulin 

may be signaling in the PNS of human patients, using subcutaneous (subq) injections rather than IP 

delivery would have been more useful, as insulin is delivered subq in diabetic patients. The 

pharmacokinetic profiles between subq and IP insulin are not drastically different, though, and IP insulin 

may even result in faster absorption and more physiological insulin levels [303, 304]. An additional 

complication of the dose curve experiments is the fact that Akt activation is both dose and time 

dependent. Thus, using a different time frame (experiment was done at 30 minutes) would shift the curve 

and generate different EC50s.  

A “therapeutic” dose of exogenous insulin did not significantly activate Akt over baseline in the 

DRG or spinal cord. However, it still remains unknown if endogenously released insulin would activate 
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signaling in these tissues. In fact, very little is known about DRG insulin diffusion/transport, although it is 

assumed to fluctuate with serum insulin levels due to the reduced BBB at the DRG. Interestingly, it has 

been reported that tissue insulin level does not correlate with serum insulin level [305]. However, it has 

also been demonstrated that intrathecally, intranasally, and subcutaneously delivered insulin reaches the 

DRG [191, 201] and that systemically delivered insulin increases cerebrospinal fluid insulin levels [306]. 

Attempts were made to study both Akt activation and DRG insulin levels in response to endogenously 

released insulin (data not shown). Nondiabetic and type 1 diabetic (control for glucose effects alone) mice 

were given bolus injections of glucose to induce insulin release. Tissues were then harvested at 15, 30, 60, 

and 120 minutes post-glucose injection. While nondiabetic mice displayed a significant increase in insulin 

levels and diabetic mice did not, there appeared to be Akt activation in tissues from both groups 

suggesting the glucose bolus was interfering. Using insulin secretagues to induce insulin release may be a 

more controlled experiment. Additionally, an assay was developed using an insulin ELISA (Alpco) based 

on beta cell insulin extraction protocols and the method published by Agardh et. al [305] to measure DRG 

and sciatic nerve insulin levels. However, after several attempts it was concluded that either the 

interference from the extraction buffer was too high or the tissue insulin level was below detection in both 

nondiabetic and diabetic mice. 

Insulin has been demonstrated to increase neurite outgrowth and similar results were 

demonstrated here (Figure 3.6), with a blunted growth in cultures from ob/ob mice. These results could 

have been more descriptive by looking at neurite outgrowth of different subpopulations using peripherin 

(small neurons) or NFH (large neurons). This would also have given an indication of the neuronal 

population supported by insulin. The culture system used may also have impacted the results. Neurons 

were allowed to adhere to coverslips in a small volume (approx. 100 µL) before wells were filled with 

media, this created a dense area of neurons and neuronal density is a major factor in neurite outgrowth 

[307]. Thus, although care was taken to maintain consistency across groups, and neurite area was 

normalized to number of cell bodies, it is possible that neurons from ob/ob mice had reduced survivability 
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in culture, similar to results published on type 1 DRG culture [308], which would have changed the 

neuronal density. 

A discrepancy between the results presented in Chapters 3 and 4 is the expression of IRS2 serine 

phosphorylation and the insulin receptor. In primary DRG culture, IRS2 serine phosphorylation was 

significantly increased in cultures from ob/ob mice (Figure 3.3), however in freshly isolated DRG from 

ob/ob mice no change in IRS2 serine phosphorylation was observed (data not shown). The results suggest 

that the increased IRS2 serine phosphorylation may have been a result of the culture system. It is possible 

that the DRG of ob/ob mice are “primed” for stress kinases activation and IRS serine phosphorylation due 

to elevated adipokines and the added stress of dissociation and 3 day culture potentiated this system. 

However it may remain undetectable in freshly isolated tissue. Similarly, in primary DRG culture there 

was no change in insulin receptor protein expression; however, freshly isolated DRG from ob/ob mice 

display a significant decrease in expression (Figure 4.6). The difference in environment may have 

produced this effect. Freshly isolated DRG were surrounded by extremely elevated serum insulin levels 

which may have driven down insulin receptor expression. However, cultured DRG were in a 

hypoinsulinemic system for 3 days which may have allowed the insulin receptor expression levels to 

upregulate.  

An area of research that has not been discussed thus far is the idea of de novo insulin synthesis in 

the nervous system. Rabbit brains express insulin mRNA [309] and neuronal culture from rat brains 

secrete insulin peptide [310]. Preproinsulin mRNA has also been characterized in the rat nervous system 

[311] and it has been suggested that de novo neuronal insulin synthesis may contribute to neurite 

outgrowth and differentiation [312, 313]. This could be a potential argument against reduced insulin 

neurotrophic support in diabetes, because the neuronal insulin level may be maintained. The role of 

neuronal insulin production is still ill-defined and its impact on DN has not been investigated.  

Finally, as previously discussed the generation of SNIRKO mice is associated with several 

caveats and unfortunately due to time constraints many of them remain uninvestigated to date. A major 

concern when using conditionally expressed cre recombinase mouse lines is off-target cre expression. 
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Advillincre/+ mice do show cre activity in Mo5 trigeminal motor neurons [274] and mosaic expression in 

epidermal cells (personal communication with Dr. Fan Wang). How this expression may be affecting our 

results is yet to be determined. Additionally, although several tissues have been investigated for Cre 

activity using Tomato mice, it is possible that certain tissues have been overlooked or cre activity is too 

low to visualize with Tomato mice but high enough to cause recombination. One tissue that has not been 

investigated to date is the autonomic ganglia. Advillin does not appear to be expressed in ganglia of the 

autonomic nervous system [274], however, due to the importance of autonomic control over insulin 

secretion the cre activity and insulin receptor expression in autonomic ganglia needs to be further 

investigated. In addition, IRlox/lox mice are an appropriate control for loxp site interference. However, 

using Advillincre/+ mice as an additional control in future experiments will insure that differences are not 

the result of cre recombinase expression alone.  

As mentioned earlier, using DRG homogenates presents several issues. This is particularly true 

for the SNIRKO mice, because although they showed significantly decreased insulin receptor expression 

and evidence of cre/lox recombination (Figure 5.4), it does appear that some intact insulin receptor 

expression remains. This is most likely due to non-sensory neuron cells in the DRG, however this has not 

yet been confirmed. Insulin receptor in situ hybridization would help clear up these discrepancies. Probes 

would have to be designed past exon 4 to be confident not to hybridize the early portions of the insulin 

receptor RNA that are still transcribed in the SNIRKO mice. Additionally, experiments could be 

performed using laser microdissection to isolate sensory neurons or primary DRG culture to assess single 

neuron characteristics.  

 

6.2 Future directions 

As expected, extensive work remains not only to further characterize the results presented, but to 

push this research forward. Several experiments are outlined below in order of chapters presented. 

 Akt activation in the PNS is insulin sensitive and the downstream signaling pathway was 

investigated here. However, the physiological result of PNS insulin signaling has yet to be clearly 
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defined. Future experiments need to be targeted at the function of insulin signaling in the PNS, this will 

provide important information about how loss of PNS insulin signaling may contribute to DN 

pathogenesis. A preliminary experiment used focused insulin signaling microarrays to assess genes 

modified by insulin in the DRG, however due to low numbers and high variability results are not 

presented here. Follow up on these experiments using additional microarrays and RT-PCR to confirm the 

results will be important to determine the role of insulin signaling in PNS gene transcription. 

 Insulin has been shown to have important roles in nerve regeneration and neurite outgrowth, yet 

the mechanisms through which insulin promotes these functions have not be revealed. The expression of 

key mediators of nerve regeneration, such as Gap43, in response to insulin needs to be investigated. Using 

nerve crush models, the difference in regenerative mediators in response to insulin could be characterized 

with immunohistochemistry, Western blots, and RT-PCR. Furthermore, samples already acquired from 

dose curve experiments may be helpful in answering these questions. Additionally, while 

immunohistochemistry of Akt activation was not useful in delineating the location of insulin signaling in 

the PNS, the discovery of a protein that is increased in response to insulin will be helpful in localizing the 

action of insulin to either a certain subpopulation of sensory neurons or perhaps glia cells.  

Furthermore, although insulin has been characterized to modify TRPV1 sensitivity, its actions on 

other receptors and channels of the PNS remain largely uninvestigated. The internal calcium levels in 

response to different agonists, such as ATP for P2Y receptors or mustard oil for TRPA1, could be 

quantified using Calcium imaging or patch-clamp in DRG cultures with or without insulin. Additional 

studies could also investigate the membrane translocation of different receptors in response to insulin. As 

discussed earlier, insulin has been characterized to modify the KATP channels in the hypothalamus and 

beta cell. The expression of KATP channels in sensory neurons was recently characterized [314, 315] and 

thus may be a pathway through which insulin is acting on sensory neurons that has not be previously 

investigated.  

Another area of insulin’s suggested role on sensory neurons in modifications of neuropeptides, 

however direct evidence is lacking. Recent developments at the Microfabrication and Microfluidics Core 
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in Lawrence, KS may provide important data in this area. DRG neurons that innervate the pancreatic beta 

cells could be cultured and stimulated with increasing doses of insulin and the neuropeptide concentration 

changes quantified in real time. Similar studies could also be performed investigating neuropeptide 

mRNA levels and accumulation in sensory neurons in response to insulin stimulation.  

Brussee et. al. [191] showed that sequestering of CSF insulin with intrathecal infusion of an 

insulin receptor antibody caused manifestations of neuropathy. A complimentary experiment to those 

studies and the data presented here would be to intrathecally infuse an insulin receptor antagonist and 

assess the resultant sensorimotor behavior. However, leakage out of the CSF would have to be tightly 

monitored as systemic insulin receptor antagonism would cause metabolic disturbances. 

It was demonstrated that IRS2 serine phosphorylation was upregulated in the DRG of type 1 

diabetic mice (Figure 3.3). Insulin resistance in type 1 diabetes has received increased attention recently 

[316] and insulin resistance in type 1 diabetes may be independently linked to cardiovascular disease 

[239]. Further studies should be completed to follow up on the increased IRS2 serine phosphorylation in 

type 1 diabetic mice. DRG Akt activation in response to insulin in both a culture and in vivo setting could 

be tested in STZ-diabetic mice. In fact, using an insulin dose curve to assess PNS insulin sensitivity in 

both type 1 and type 2 mice would provide an additional degree of evidence about diabetes-induced PNS 

insulin signaling changes. It would be predicted that the dose curve would show a significant rightward 

shift in diabetic mice as compared to nondiabetic mice. 

An additional study that would have helped demonstrate resistance specifically to the insulin/IGF 

pathway in the PNS of ob/ob mice would have been to administer an additional growth factor whose 

signaling has been shown not to be disrupted in diabetes, such as fibroblast growth factor. This 

experiment would have helped demonstrate that the observed decrease in Akt activation was due to 

changes in insulin sensitivity, not a global change in Akt activation, although that result may have been of 

interest as well. Furthermore, a similar Akt activation in the PNS from nondiabetic and ob/ob mice in 

response to an alternative growth factor would demonstrate that the reduced PNS signaling was not due to 
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reduced delivery of insulin to the PNS in ob/ob. Although similar results were demonstrated with both IT 

and IP injections, it still remains possible that the severe obesity of ob/ob mice confounded the results.  

 The majority of future experiments are related to further characterization of the SNIRKO mice, in 

fact several of the previously discussed experiments (such as neuropeptide levels or nociceptive receptor 

modifications) should also be analyzed in SNIRKO mice. The list of possible future experiments on 

SNIRKO mice is extensive; several of them are discussed here in relation to the discussion points 

established in chapter 5. 

 Changes in sensory function may not be evident until the system is challenged or injured. As 

discussed earlier this can be tested with several different experimental paradigms. The behavior and 

physiological response to noxious agents such as formalin, capsaicin, and CFA can be quantified by 

assessing injection site edema and erythema, or by observing the time spent attending to the injections, or 

by using tests of mechanical and thermal sensitivity to assess changes in threshold. Similarly, assessing 

the recovery/response of sensory function in models of physical injury such as nerve crush and spared 

nerve injury in SNIRKO mice will provide important information about the role of sensory neuron insulin 

support in nerve regeneration and repair. Investigation of mediators of nerve regeneration in this 

paradigm will also provide evidence of the pathways through which insulin acts. Diabetic mice have been 

characterized to have a reduced nerve regeneration capacity [317], similarly it is predicted that SNIRKO 

mice will have a poor recovery in response to nerve injury resulting from reduced neuron insulin 

signaling. 

 Diabetic patients have been characterized to have a reduced axon mediated flare response [318]. 

The neurogenic flare response is mediated by substance P and CGRP vasodilation upon c-fiber activation 

with exogenous heat. The increase in blood flow can be analyzed with laser Doppler imaging. Assessing 

the flare response in SNIRKO mice would be an additional way to test the role of insulin signaling on 

sensory neuron function and neuropeptides. It may also delineate if the reduced neurogenic flare in 

diabetic patients is due to hyperglycemia or reduced sensory neuron insulin signaling. 
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 Peripheral nerves of diabetic patients and mice show changes in ultrastructure morphology such 

as increased axon-myelin separations [319]. Although SNIRKO mice do not display changes in sensory 

behavior, they may have alterations in nerve morphology. Electron microscopy (EM) could be used to 

analyze ultrastructure morphology in SNIRKO mice and will also be important in studies assessing nerve 

regeneration. Furthermore, as previously discussed SNIRKO mice have a development sensory neuron 

insulin receptor knockout and while SNIRKO mice do not display developmental defects, the DRG 

composition may be altered. Thus, careful analysis and quantification of sensory neuron subpopulations 

are needed.  

 Diabetic patients have reduced would healing and it has been demonstrated that deficits in 

sensory neurons play an important role in regulating this process [320]. An interesting possibility is that 

the reduction in sensory neuron insulin signaling alters the neuro-immune axis needed for proper wound 

healing. SNIRKO mice are a powerful tool to test this hypothesis and this may give further insight into 

the function of neuropeptides in SNIRKO mice as the neuronal regulation of wound healing is through 

neuropeptide immune modification. The rate of healing, biomechanical properties, and collagen content 

of circular wounds on either side of the spine could be assessed in control and SNIRKO mice [321].  

 As previously discussed, to better model reduced insulin signaling in the PNS of diabetic patients, 

insulin signaling may have to be disrupted in glia cells in addition to sensory neurons.  Mice with 

Schwann cell specific cre expression under control of the glycoprotein P0 (P0cre/+) promoter are available 

for Jackson Laboratories. Two separate lines of insulin receptor knockout mice could be generated using 

Advillincre/+, P0cre/+ and IRlox/lox mice. One line would be a conditional knockout of the insulin receptor in 

Schwann cells and the other line would have a knockout of the insulin receptor in Schwann cells and 

sensory neurons simultaneously by breeding the P0cre/+ into the Advillincre/+ line. After generation of the 

new knockout lines, the phenotypes would have to be characterized with respect to development, 

metabolism, sensorimotor function, and PNS morphology. Interestingly, it has recently been 

demonstrated that the islets of Langerhans are surrounded by Schwann cells [322], thus a Schwann cell 

insulin receptor knockout and a knockout in both Schwann cells and sensory neurons may potentiate the 
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metabolic disturbance that have been observed in SNIRKO mice. Generation of these new mouse lines 

will be crucial in further delineating the role of insulin in the PNS and how disruptions in PNS insulin 

signaling may contribute to DN and/or diabetes pathogenesis. 

 A modified hypothesis from these studies is that reduced neuronal insulin signaling in 

conjunction with the sequelae of hyperglycemia contributes to DN pathogenesis. SNIRKO mice are a 

powerful tool to analyze this hypothesis. Pathogenic cascades associated with hyperglycemia include, 

reactive oxygen species, polyol pathway activation, advanced glycation endproducts, and mitochondrial 

dysfunction. Several of these mechanisms can be upregulated independently of hyperglycemia via 

pharmacological mediators. An experiment to test if the combination of RAGE activation and reduced 

neuronal insulin support cause neuropathy would be to administer SNIRKO mice a RAGE agonist, such 

as S100b or AGE-bovine albumin. However, no reports of RAGE agonists and DN are currently 

available. The prediction for these experiments would be that RAGE activation in IRlox/lox mice would not 

induce neuropathy; however RAGE activation in SNIRKO mice would cause a neuropathic phenotype. 

Suggesting that DN is a result of insults from both AGE and reduced insulin support. Furthermore, 

glyoxalase 1 (Glo1) activity has recently been demonstrated to have a role in DN [68]. Glo1 is the rate 

limiting enzyme in AGE breakdown, and differential expression of Glo1 may dictate if patients develop 

positive or negative symptoms. Studies with SNIRKO mice will help determine if there is a connection 

between Glo1 and insulin. Glo1 expression could be characterized with RT-PCR, Western blots, and 

immunohistochemistry in SNIRKO and IRlox/lox mice. Furthermore, inhibition of Glo1 with s-p-

bromobenzylglutathione cyclopentyl diester produces thermal hyperalgesia in nondiabetic mice [323]. 

Inhibition of Glo1 in SNIRKO mice may give a better understanding of how Glo1 dysfunction may 

contribute to DN in human patients, as SNIRKO mice have the added defect of reduced sensory neuron 

insulin support. Similar experiments could be repeated for other factors, including ROS, which could be 

upregulated with the superoxide anion-inducing agent LY83583. 

 Surprisingly, SNIRKO mice displayed hyperinsulinemia, suggesting that sensory neuron insulin 

signaling may play a role in systemic metabolism regulation. Several experiments remain to fully 
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characterize the metabolic profile of SNIRKO mice including serum cholesterol and lipid levels, glucose 

uptake, insulin release in response to glucose bolus, and food intake. A high fat diet is regularly used to 

induce metabolic syndrome in mice, and it has recently been demonstrated that high fat diet can induce 

neuropathic changes [80]. Thus, a high fat diet would be a reasonable way to metabolically stress 

SNIRKO mice. Based on the proposed model (figure 5.12) it is predicted that SNIRKO mice will quickly 

progress to diabetes because of the underlying beta cell stress. 

 It has been demonstrated that administration of substance P can reduce the islet inflammation in 

NOD mice [38]. Accordingly, a proof of concept experiment would be to administer SNIRKO mice 

substance P, with the expectation that substance P would correct the SNIRKO hyperinsulinemia. 

Furthermore, Razavi et. al. proposed that the increased islet stress and insulin production induces 

autoimmunity in NOD mice. SNIRKO mice do not display insulitis, but have hyperinsulinemia and 

increased islet insulin content. Based on these observations, SNIRKO mice may be “primed” for diabetes 

development, such that a “second hit” would lead to rapid development of diabetes mellitus. As 

previously discussed, a high fat diet could be used as an environmental “second hit”, however viral 

infection is one of main environmental factors implicated in diabetes development. Diabetes progression 

in IRlox/lox and SNIRKO mice could be monitored after administered of polyinosinic-polycytidylic acid, a 

mimic of double-stranded viral RNA [324] with the hypothesis that SNIRKO mice would develop 

diabetes earlier and at a higher incidence than IRlox/lox mice due to their “primed” state. 

Sensory neuron innervation of the pancreas originates from both the nodose ganglia and the T9-

T12 DRG [282]. Ablation of pancreatic sensory neurons with capsaicin has been previously demonstrated 

to alter insulin levels [38], however, it is not possible to determine if those changes were due to neuronal 

death in the nodose or DRG. Establishing the sensory neuron population that is involved in modulation of 

pancreatic beta cells will be important in understanding the underlying mechanism. To determine which 

sensory neurons modulate insulin release, neurons from either the nodose or DRG could be selectively 

ablated with saporin.  Saporin is toxic upon endocytosis and when conjugated to a cell specific marker 

can target unique cell populations and it is currently being investigated for cancer treatment [325]. It was 
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recently demonstrated that 67% of DRG neurons innervating the pancreas express GDNF family receptor 

alpha-3, the coreceptor for artemin, whereas only 1% of nodose neuron innervating the pancreas express 

GDNF family receptor alpha-3 [282]. Thus, one way to specifically target DRG neurons innervating the 

pancreas maybe to give pancreatic injections of artemin conjugated to saporin. Characterization of the 

resultant phenotype will provide information about which sensory population has a larger role in 

regulating beta cells. While no publications are available, it has been proposed that selective surgical 

transection of DRG nerves innervating the pancreas can alter NOD mouse insulitis and diabetes (first 

proposed by Ravazi et. al. [38]). If so, this may be another way to investigate the selective role of sensory 

neuron innervation on beta cell function.  

 Beyond increased insulin production; it is also possible that SNIRKO hyperinsulinemia was a 

result of decreased uptake or breakdown. In light of recent evidence outlining vagal afferent “glucose 

sensing” sensory neurons of the nodose ganglia [300], it is possible that these neurons or a different 

subpopulation of neurons are “insulin sensing”, thus an insulin receptor knockout would reduce insulin 

uptake and lead to hyperinsulinemia. In fact, Advillincre/+ do show cre activity in the nodose ganglia 

(Figure 5.2).  

 Experiments to test the hypothesis of “insulin sensing” neurons of the nodose ganglia would 

include a combination of anatomical and physiological characterizations. Expression of the insulin 

receptor on nodose cell bodies and axons would be confirmed using a combination of Western blots, 

immunohistochemistry, RT-PCR, and in situ hybridization. Furthermore, FITC-labeled insulin could be 

systemically delivered and axonal binding and neuronal uptake monitored in nodose ganglia. Insulin 

sensitivity of nodose ganglia could also be assessed using an insulin dose curve and analyzing activated 

Akt. Similar techniques used to analyze “glucose sensing” neurons could be employed to assess the 

electrochemical response to insulin, such as patch clamp analysis and intracellular ion imaging (K+ or 

Ca2+). SNIRKO mice will be a valuable control in many of these experiments. 
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6.3 Potential impact to the field and patients:  

Prior to the experiments presented here, several areas in the field of DN were lacking support. 

Several studies had indicated the neurotrophic potency of insulin and established that under varying 

conditions reduced insulin support may contribute to DN. However, a basic understanding of PNS insulin 

signaling had not been completed. Historically, the nervous system has been considered nonresponsive to 

insulin. Studies presented here clearly demonstrate that the PNS does in fact show signaling activation in 

response to insulin. Interestingly though, it appears that differences between DRG and peripheral nerve 

insulin sensitivity exist. Furthermore, using both primary culture and in vivo models it was demonstrated 

that insulin signal transduction is blunted in the PNS from insulin resistant mice. This result has 

subsequently been demonstrated by 2 independent publications using similar primary culture techniques 

[175, 181]. Finally, SNIRKO mice have already provided important information on the role of insulin 

signaling on sensory neurons and should prove to be a powerful model for both DN and diabetes. These 

results will help push the field of DN forward and hopefully establish new treatments and relief for 

patients. 

 The outlining of the PNS insulin signaling pathway will greatly aid in establishing the role that 

insulin plays in PNS support and how this differs from its role in muscle, liver, and adipose. It also 

provides direction for future researchers to pursue. Akt activation was significantly activated in the sciatic 

nerve and not the DRG at a “therapeutic” insulin dose, suggesting that an increased emphasis should be 

placed on Schwann cell and peripheral nerve insulin support. This idea could also be applied to other 

mechanisms being investigated in DN pathogenesis, in that dysfunction in the entire PNS needs to be 

considered, not just the sensory neurons. Furthermore, supraphysiological insulin doses were needed to 

activate signaling in the DRG and SNIRKO mice do not display signs of neuropathy. These results 

suggest that reduced sensory neuron insulin signaling in the absence of other insults does not cause DN. 

This brings up a basic, but often overlooked aspect of DN, in that DN development/progression is 

multifactorial. Thus, treatments need to be multifaceted, targeting glucose neurotoxicity, reduced 
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neurotrophic support, ischemia and reduced insulin support simultaneously. This may help explain the 

poor success rates of DN treatments that make it to clinic trial. 

 The recent understanding that insulin has important functions in the CNS and PNS suggests that 

insulin may also be important in other tissues previously thought to be insulin insensitive. Based on this 

observation, other complications associated with diabetes, such as retinopathy and nephropathy, could be 

a result of changes in insulin signaling in addition to hyperglycemia. In fact, recent studies have 

demonstrated that insulin mediates a pro-survival pathway in retinal neurons and diabetes downregulates 

retinal insulin signaling [326]. Additionally, insulin receptors have been localized to the proximal and 

distal tubules in the renal cortex and a diabetes appears to downregulate kidney insulin receptor 

expression [327]. These studies and the ones presented here are starting to establish that insulin has roles 

beyond glucose metabolism in the muscle, liver, and adipose. This will be important information in 

designing new treatments for diabetes and diabetic complications. 

 One possible new treatment for DN may be to modify insulin therapy. Two possible areas of 

modification are changes in delivery or insulin peptide structure. In fact it has previously been 

demonstrated that intranasal insulin treatments improves Alzheimer’s symptoms in patients [161] and 

signs of DN in diabetic rats [201]. The latter study demonstrated that insulin delivered intranasally had a 

more rapid and concentrated delivery to the spinal cord and DRG than subcutaneous insulin. Furthermore, 

the peak insulin concentration in the blood with intranasal delivery was nearly 1000 fold lower than that 

obtained with subcutaneous delivery. Accordingly, the incidence of hypoglycemic events was 

significantly lower in the intranasal insulin group. With the advanced deliver of insulin to the nervous 

system, significant improvements in signs of DN were observed in the intranasal insulin group as 

compared to not only placebo groups, but subcutaneous insulin groups as well. These results suggest that 

while the delivery of subcutaneous insulin (the currently most utilized route) may be sufficient to control 

blood glucose, it may not be sufficient to completely protect against the development of DN. 

Another modification to insulin deliver may be to co-administer c-peptide. Currently patients 

only receive insulin, however it has been demonstrated that c-peptide and insulin have synergistic cellular 
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effects on neurite outgrowth and survival in the SH-SY5Y neuronal cell line [180]. Beyond cultured 

neurons, c-peptide treatment in patients with DN has been demonstrated to improve deficits in NCV as 

well as signs of sensory and autonomic neuropathy in a recent clinical trial [328]. Therefore, it is possible 

that the delivery of synthetic insulin without c-peptide does not provide the necessary combination of 

support to spare patients from developing diabetic complications.  

Intense blood glucose control is the best known preventative treatment for diabetic complications. 

As expected though, hypoglycemia is the most common side effect of intense glycemic control. Perhaps 

the reduced complications with intense glycemic control are in part due to increased insulin support to 

other “off-target” tissues (kidney, retina, PNS, etc.). Thus, direct modification of the insulin peptide to 

increase delivery to tissues beyond muscle, liver, and adipose may decrease diabetic complications. This 

could be completed by trying to specifically target certain tissues or by decreasing the potency of insulin 

at muscle, liver, and adipose, thus enabling increased insulin dosing without causing hypoglycemia. The 

difference between currently delivered insulin formulations results from slight changes in insulin peptide 

sequence. For example, the rapid acting analog lispro has an aspartic acid residue in replace of a proline 

residue at site 29 of the beta chain. This weakens the tendency to form hexamer aggregates and increases 

the rate of absorption and action [329]. Accordingly, perhaps insulin modifications that direct increased 

delivery to certain tissues would show benefits in decreasing diabetes complications. It has also been 

shown that different tissues express different insulin isoforms, IR-B in muscle, liver, and adipose and IR-

A in the CNS and Schwann cells [183], thus maybe modifications that create a higher binding to isoform 

A over isoform B may also be beneficial. 

It was recently demonstrated that the insulin sensitizing drug, Pioglitazone, improves memory 

formation in a mouse model of Alzheimer’s disease [330]. Furthermore, studies have shown that 

treatment with rosiglitazone reduces DN in diabetic STZ-mice independent of its effects on 

hyperglycemia [331]. With the growing evidence that insulin resistance may be present in both type 1 and 

type 2 diabetes and that insulin support to other tissues may be beneficial in preventing complications, 

adding insulin sensitizing drugs as first line therapy for all diabetic patients may be warranted.  
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The recent evidence that sensory neurons may regulate beta cell function, as well as 

autoimmunity in NOD mice and that SNIRKO mice display hyperinsulinemia opens new possibilities for 

diabetes treatment. Several intriguing question to consider are: 1) Can neuronally-targeted treatments be 

utilized as treatments for diabetes? 2) Can mutations in previously uninvestigated neuronal genes dictate 

susceptibility to diabetes? 3) Is the sensory neuron interaction with beta cells key to improving islet 

transplants and synthetic beta cell production?  

1) Can neuronally-targeted treatments be utilized as treatments for diabetes? The idea that 

diabetes may be neuronal driven is not new. It has been documented that several of the characterized 

autoimmune antigens of type 1 diabetes are coexpressed in neuronal tissues [283] and in 2001 Winer et. 

al. detailed an associated between the neuronal autoimmune disease, multiple sclerosis (MS), and type 1 

diabetes [332]. These results have been further supported by 2 population studies demonstrating an 

increased risk of MS in patients with type 1 diabetes and vice versa [333, 334]. Moreover, in 2005 

Carrillo et. al. characterized islet-infiltrating B-cells of NOD mice to predominantly target neuronal 

antigens [335].  The development of hyperinsulinemia in SNIRKO mice further promotes the idea that 

neuronal elements may be involved in diabetes. The long term goal of this research is to positively impact 

patient care; thus based on these results and observations, one new avenue for patient treatment may be 

neuronally-targeted treatments. It may be possible to repurpose treatments that have shown beneficial 

impact on peripheral neuropathies or other neurological diseases. In fact, it has already been demonstrated 

that capsaicin can have beneficial effects on diabetes in mice [38]. Thus, through the modification of 

neuronal ion channels, neurotransmitters, or neuropeptides it may be possible to modify islet innervation 

and promote beta cell function and/or reduce autoimmune attack. Due the growing evidence that sensory 

neurons are playing a role in beta cell function, the first line medications to investigate would be ones that 

can modify sensory neuropeptide release beyond capsaicin, or too target neuropeptide administration to 

the pancreas. Intriguingly, angiotensin-converting-enzyme (ACE) inhibitors have recently been shown to 

have beneficial effects on diabetes and ACE inhibitors are known to cause an increase in the 

neuropeptide, substance P [336, 337]. Neuropeptide modulation by ACE inhibitors may be a possible 
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mechanism of diabetes regulation. Additional medications of interests are the anti-seizure and anti-

depression drugs that have shown beneficial effects on peripheral neuropathy. However, it should be 

noted that in the clinical trials investigating pregabalin as a treatment for DN, no change in metabolic 

profiles were observed [338]. Along these lines, repurposing of drugs can be difficult due to known side 

effects. Intense research would have to be done fine tuning the delivery, timing, and dosing of these drugs 

in order to specifically target pancreas innervation and measure beta cell function as an outcome. 

Branching out even farther, other nervous system modifying drugs could be investigated including 

medications for Alzheimer’s, anxiety, analgesia, or anesthesia. 

Beyond pharmacology, other neurologically targeted treatments may be of use, including 

electrical nerve stimulation. Interestingly, it has already been reported that vagal nerve stimulation helps 

curb obesity and type 2 diabetes [339], as well as promote insulin release [340] although it was concluded 

that this effect was through ANS regulation. A more targeted approach based on the evidence presented 

here would be to stimulate the sensory neurons of the pancreas. In fact, in 2012 the Neural Diabetes 

Foundation, Inc. filed a patent for an implantable neural stimulation device to activate the pancreatic c-

fibers and modulate islet function/inflammation via neuropeptide release [341].  

Recent clinical trials have demonstrated that the use of nonreplicating herpes simplex virus 

(HSV) vectors can specifically target treatments or growth factors to the DRG. HSV is particularly useful 

for gene deliver to sensory neurons as HSV is retrogradely transported to sensory ganglia where the virus 

lays dormant. HSV vectors encoding encephalin, NT-3, and NGF have shown efficacy for treating 

polyneuropathy [342]. Specifically, targeting treatments to the sensory neurons of the pancreas to modify 

channel expression, neuropeptide release, or insulin sensitivity via viral vectors may prove effective for 

diabetes and DN treatment. This also may be a feasible option to increase insulin deliver to the PNS 

without inducing hyperglycemia. Furthermore, this approach may be associated with fewer side effects 

than the methods previously discussed. 

Finally, optogenetic control over sensory neurons may also be a way to modify beta cell function 

via sensory neurons. Optogenetics use light sensitive ion channels to either excite or inhibit neurons. 
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Optogenetics are now been widely investigated in several different model organisms and in several 

different neurological diseases [343]. It may be possible to specifically express light sensitive ion 

channels in the sensory nerves of the pancreas via targeted gene therapy to modulate beta cell function. 

Light would most likely have to be delivered via an implanted device. Although, optogenetic treatments 

have not reached clinical trials yet, this powerful technique has intriguing potential and may be relevant to 

diabetes treatment based on the apparent role of sensory neurons.   

2) Can mutations in previously uninvestigated neuronal genes dictate susceptibility to diabetes? 

Recently, NOD mice were demonstrated to express a hypofunctional TRPV1 and TRPV1 was mapped to 

the Idd4.1 diabetes risk locus on chromosome 11 [38]. Furthermore, TRPV1 null mice have increased 

insulin sensitivity. These results suggest that other unexplored neuronal genes may also be candidate 

genes for predicting diabetes susceptibility. In fact, 1 gene implicated in development of maturity onset 

diabetes in the young (MODY) is neuroD1, a transcription factor involved in neuronal development 

[344]. Thus, recent advancements in the understanding of neuronal involvement in beta cell function may 

expose new candidate genes for diabetes development and present new treatment or prevention options.  

3) Is beta cell/sensory neuron interaction a key to improving islet transplant and synthetic islet 

production? Some of the first evidence indicating an important relationship between islets and neurons 

and the potential neurotrophic property of insulin was from islet transplantations. Upon transplantation 

under the kidney capsule of mice islets are innervated by sensory neurons [345]. Furthermore, coculture 

of beta cells with DRG neurons demonstrated increased survival of DRG neurons and reduced insulin 

output from beta cells (once again suggesting a negative feedback mechanism with sensory neuron insulin 

signaling) [346]. Thus, simply understanding that a necessary relationship between sensory neurons and 

beta cells exists may be able to revolutionize some current diabetes treatments. 

Islet transplantation has demonstrated several promising results. According to the 2012 

Collaborative Islet Transplant Registry report 66% of patients were insulin independent 1 year after 

transplantation in the 2007-2010 era, and even if patients were not completely insulin independent they 

showed reduced insulin need and better glucose control [347]. Additionally, islet transplant has been 
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demonstrated to greatly improve hypoglycemia unawareness. Unfortunately, several problems still exist 

with islet transplantation. Two major problems are immune rejection of transplanted islets and poor 

availability of islets for transplantation. However, using the recent evidence on sensory neuron and beta 

cell interaction may help improve outcomes. One possible change may be to give sensory neuron 

neurotrophic factors during islet transplantation to promote earlier innervation. As most evidence is 

demonstrating a role for TRPV1 positive neurons, which are primarily peptidergic c-fibers, NGF may be 

the best candidate neurotrophin. Furthermore, it may be possible to improve islet survival during 

transplantation by using media’s or extraction procedures that include neuropeptides to help mimic the in 

vivo nerve regulation. 

An additional area where sensory innervation may play an important role is in the creation of 

glucose-sensitive insulin releasing beta cells from multi-potent stem cells. Obviously the potential of stem 

cell therapy is astronomical, but for many applications it remains too unpredictable for human patients. 

Diabetes treatment has been at the center of stem cell research for several years, with the hope that in 

vitro generation of beta cells would eventually lead to an endless supply of transplantable insulin 

secreting cells. While reports of insulin-producing cell generations have been published, translation into 

patient care is still not achievable [348]. Once again, it may be that without the finely tuned input from 

sensory neurons; that beta cells cannot survive or function properly. Thus, perhaps cocultures with 

sensory neurons or the use of neuropeptides in differentiation protocols may establish a more stable stem-

cell-derived beta cell. 

 

6.4 Conclusions: 

 The experiments presented here were designed to investigate insulin signaling in the PNS and 

how disruption of PNS insulin support may contribute to DN pathogenesis. Akt activation is insulin dose 

responsive in the both the DRG and sciatic nerve. Furthermore, insulin signaling appears blunted in the 

PNS of insulin resistant ob/ob mice, establishing a commonality of decreased neuronal insulin signaling 

in both type 1 and type 2 diabetes. However, it does not appear the reduced sensory neuron insulin 
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signaling is the only contributor to DN as SNIRKO mice with reduced DRG insulin signaling and 

euglycemia did not display neuropathy. Future directions will explore the possibility that reduced PNS 

insulin support potentiates glucose neurotoxicity and the effects of reduced insulin signaling on sensory 

neurons and Schwann cells simultaneously. Continued research in these areas will further the 

understanding of mechanisms impacting neuronal function in diabetes and hopefully present new 

treatment options. 

 Results of hyperinsulinemia and increased islet insulin content in SNIRKO mice fits well into a 

proposed model of negative feedback regulation of beta cell insulin production by sensory neuron insulin 

signaling. This newly proposed model has been met with much skepticism and these results help confirm 

previous reports. The combination of earlier results and those presented here expose new ways to 

investigate diabetes development and establish potentially uninvestigated avenues for treatment, such as 

neuronally-targeted pathways. 

 In conclusion, further research into the interplay between sensory neuron insulin signaling, DN, 

and beta cell function has conceivable translational benefits that may improve patient outcomes.  
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