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Abstract 

The nonlinear and unsteady nature of aircraft aerodynamics together with limited practical range of 

controls and state variables make the use of the linear control theory inadequate especially in the presence 

of external disturbances, such as wind. In the classical approach, aircraft are controlled by multiple inner 

and outer loops, designed separately and sequentially. For unmanned aerial systems in particular, control 

technology must evolve to a point where autonomy is extended to the entire mission flight envelope. This 

requires advanced controllers that have sufficient robustness, track complex trajectories, and use all the 

vehicles control capabilities at higher levels of accuracy. In this work, a robust nonlinear model predictive 

controller is designed to command and control an unmanned aerial system to track complex tight 

trajectories in the presence of internal and external perturbance. 

The Flight System developed in this work achieves the above performance by using: 

1 A nonlinear guidance algorithm that enables the vehicle to follow an arbitrary trajectory shaped by 

moving points; 

2 A formulation that embeds the guidance logic and trajectory information in the aircraft model, 

avoiding cross coupling and control degradation; 

3 An artificial neural network, designed to adaptively estimate and provide aerodynamic and propulsive 

forces in real-time; and 

4 A mixed sensitivity approach that enhances the robustness for a nonlinear model predictive controller 

overcoming the effect of un-modeled dynamics, external disturbances such as wind, and measurement 

additive perturbations, such as noise and biases. 

These elements have been integrated and tested in simulation and with previously stored flight test 

data and shown to be feasible. 
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û    : EKF Control Input Vector. 
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0. Introduction 

0.1 Motivation 

The majorities of Earth and Science missions are dangerous and require fixed-wing unmanned aerial 

systems (UAS) with longer range and high payload and power capacity flying in an unstructured and 

hostile environment. The related cost and complexity of large fixed-wing UASs are an order of magnitude 

higher than small, but mobile, UAS; however, the geometry, power, and payload limitations of small 

UAS reduce their functionality and practicality dramatically. The motivation of this work is to develop an 

advanced flight control framework to distribute sensor payloads between several smaller and less 

complex agents with local interactions. 

UAS formation flight requires the command and control of each agent, individually, considering their 

mutual interaction. But, aircraft have an unsteady, uncertain, and nonlinear dynamic, which is amplified 

by physical interactions between agents, and formation constraints. The classical aircraft command and 

control approaches are inadequate for this level of accuracy, so development and integration of advanced 

aircraft dynamic modeling and control techniques is a must. A numerically feasible nonlinear and time-

varying aircraft model integrated to an adaptive, robust and nonlinear control is required for each agent. 

0.2 Problem Statement 

The standard unmanned aerial system command and control is depicted in Figure 01. This system is 

characterized by the following subsystems: 

 
Figure 01. Standard UAS Command and Control Configuration. 
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• Controllers and observers that are linear and time-invariant, and limited to proximity of trim points. 

• Controllers and observers that are based on linear dynamic models that do not account for changes 

in the aircraft physics-based model. 

• A guidance subsystem that is independent of the control task, and designed separately. 

• A trajectory subsystem that is limited to predefined curve shapes, or explicit model following. 

This work is motivated to solve limitations outlined above by a feasible robust nonlinear model 

predictive control solution, as presented in Figure 02, coupled with an adaptive real-time system 

identification module to follow arbitrary trajectories. 

Specific designs and developments are tested in simulation and with previous stored flight test data. 

The main research goals are: 

• Development of a real-time adaptive nonlinear physics-based model of an aircraft 

• Development of a nonlinear attitude and speed guidance logic for flexible trajectory following 

based on arbitrary curves 

• An integrated guidance and control task to avoid any cross coupling 

• A feasible, adaptive, and robust numerical nonlinear and time-varying controller. 

 

 

 

      
Figure 02. Adaptive, Robust NMPC Command and Control Configuration for UAS. 
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0.3 Literature Review 

The most relevant references of the dissertation are detailed in the present section. 

0.3.1 Aircraft Modeling 

System modeling for control usually deals with a trade-off between complexity and tractability, i.e. 

how close the model is to the system against how easy is to handle control design and control 

implementation (Ref. [1]). Control design and control implementation, although related, need to be 

treated separately. Control implementation is simplified by the existence of increasingly fast and versatile 

hardware and software, so there is no important limitation here, but control design is still a difficult task 

which inherits the complexity of the system’s model. The modeling should be as simple as possible while 

meeting control specifications. 

When the control task is bounded by limited operation range, in the vicinity of one or more 

equilibrium points, the chosen framework for control design usually is the linear one. From a theoretical 

and phenomenological point of view, the aircraft dynamics and aerodynamics are highly nonlinear, time 

varying, and not without a significant level of uncertainty. For this reason, when the boundness premise is 

valid, a judicious approximation could be achieved leaving a single linear model or a set of linear models, 

either time invariant or time-varying, for linear control design. Ref. [2], [3] and [4] develop a very 

thorough description of the transition between the physical complexity and a manageable simpler 

description of an aircraft. 

Other sources of modeling are closer to a black box type of description, where measured data is used 

to identify the system. Several methods and models have been reported. They range from linear to 

nonlinear and from adaptive to fixed. From a control perspective, these identified models should be 

simple and manageable enough to allow practical control design. During the process of model estimation, 

meaningful sub products could be obtained, as is the case of aerodynamic derivative coefficients. These 

elements greatly help to understand the physical behavior of the aircraft for the particular trim conditions 
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under analysis. Enlightening works are found in Ref. [5] and [6] for parameter estimation in the time and 

frequency domain, respectively, where stability and control derivatives are estimated from data. A more 

recent work in parameter estimation is found in Ref. [7], where system identification is performed for 

adaptive and reconfigurable control by the incorporation of prior information, and in Ref. [8] by 

augmenting the model to include nonlinear terms. Unsteadiness is also addressed in Ref. [9] by estimating 

time-varying parameters. 

Unsteady system modeling has also been addressed by fuzzy logic and Artificial Neural Networks 

(ANN), as these two techniques offer a powerful mapping capability (see Ref. [10] and [11] respectively). 

Ref. [12] and [13] use fuzzy logic for capturing an aircraft’s aerodynamic unsteadiness through time 

varying estimation of aerodynamic coefficient derivatives, under the presence of adverse weather 

conditions. ANN has been extensively used to describe aerodynamics as well. Most of the applications 

implement the network as a fixed device, needed to be trained off-line with available data. Ref. [14] 

utilizes an ANN to estimate the normal force coefficient as a function of angle of attack covering a wider 

range. It performs the training stage off-line. Ref. [15] proposes the incorporation of first partial 

derivatives of the estimation errors with respect to ANN’s inputs in the minimization, reporting important 

improvements. These results suggest the necessity of incorporating the time rate information of change of 

key states in the ANN training, as angle of attack or sideslip angle rate of change, to better model the 

aircraft unsteady dynamics. Ref. [16] trains an ANN to predict the aerodynamics unsteadiness over a 

wing as a function of angle of attack, and its time rate of change, by measuring the pressure at 45 points 

over the wing surface. Its results indicate an accurate prediction of the unsteady separation flow field as a 

function of the angle of attack and its rate of change. On the other hand, Ref. [17], and [18] estimate 

unstable aircraft stability and control derivatives under a closed loop configuration. They use a technique 

called the Delta method to extract these derivatives and the controller gains, which are used to stabilize 

the originally unstable aircraft and allow system identification, otherwise unfeasible. As a variant, Ref. 
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[19] proposes the use of ANN to predict ahead in time, as a way of modeling the aircraft dynamic 

representation, avoiding dealing explicitly with the equations of motion; and Ref. [20], proposes an 

approach to model the aerodynamic force and moment coefficients for lateral-directional motion from 

recorded flight data, based on neural partial differentiation, as an alternative to the Delta method, showing 

comparable results. 

0.3.2 State Observers 

Various studies and their applications in linear and nonlinear observing have been developed. The 

extended Kalman filter appears to be the most widely used, especially in navigation applications, where 

inertial accelerometers and gyros aided with GPS, and magnetometers are merged to get improved inertial 

position and velocity. This is done together with body attitude (Ref. [21]), improving measured signals 

and estimating inaccessible unmeasured states. More sophisticated filters have been proposed including 

particle filtering Ref. [22] and sigma-point Ref. [23], among others, to overcome the inherent limitation of 

the extended Kalman filter when the system under observation is highly nonlinear, and the Gaussian 

distribution assumption for system and observation noises no longer applies. Although these approaches 

are more accurate, their main drawback is that they are computationally expensive, which makes them not 

very suitable for sensitive time applications, such as an Unmanned Aerial System (UAS). A useful 

comparison between these filters is done in Ref. [24]. Another approach was presented in Ref. [25], that 

uses state dependent Riccati equation to design the observer, having the aircraft represented as a linear 

time varying model, without incurring in any forced approximation. With the system described in a time-

varying linear format, which is not always possible, the Kalman filter is then applied. 

Observers for airflow or wind components are not very common in the literature. Ref. [26] performs 

observation of the two horizontal wind components used to correct the velocity transformations between 

the involved coordinate systems. The model used is a zero time rate of change between measurements. In 
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Ref. [27], an unscented Kalman Filter is used to estimate the horizontal wind components, assuming 

small angle approximations. No three-wind components have been found in the literature. 

As a way of correcting the misalignment of sensor installation, with respect to a common reference 

system, and inherent offset errors not detected by calibration processes, a set of sensor biases can be 

added to the observer as states. In order to model these new states the biases are generally assumed to be 

slow time-varying quantities (i.e. constant between measurements), but variable otherwise. The biases are 

characterized with a zero time rate of change (see Ref. [23]). 

Another important feature of an observer is the management of redundant measurements from 

independent sensors as a way to improve the quality of the observation or estimation of states. Ref. [28] 

performs a comparison of two of the most used methods to fuse the data, by merging the multi-sensor 

data through the observation equation of the filter, or by combining the data based on a minimum-mean-

square-error criterion, before entering the observer. 

0.3.3 Guidance, Navigation, and Control 

Any mission-based vehicle, either manned or unmanned, will require the interdependent tasks of 

guidance, navigation, and control, to accomplish any particular mission. In general, navigation systems 

indicate the position and velocity of a vehicle, and if these systems are placed in a closed loop with the 

vehicle’s actuators in order to control the position and velocity, guidance and control systems emerge (see 

Ref. [29]). 

For UAS in particular, technology has evolved to a point where autonomy is extended to the entire 

mission, and entire flight envelope. Autonomous vehicles, developing aggressive maneuvers when 

following a trajectory or a moving target, require complex controllers with enough robustness and 

accuracy, being able to use all potential control capabilities of the aircraft. In Ref. [30], the authors 

presented a design of an integrated guidance and control algorithm for autonomous vehicles through a 

simultaneous process, achieving zero steady state error about a trim point while guaranteeing stability by 
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avoiding possible cross coupling between loops. Their approach was based on gain scheduling theory; the 

trajectory tracking was achieved by switching among previously computed robust controllers. In Ref. 

[31], a lateral guidance and control law for UAS that handles a larger range of wind was presented. This 

approach is able to work with initially large cross-track errors from straight trajectory segments. A 

different approach is presented in Ref. [32], where an integrated trajectory tracking problem is formulated 

as a constrained nonlinear optimization problem. Unlike the receding horizon method which predicts the 

future, or an artificial neural network controller that uses the time history, the minimization must be 

performed with current data. Ref. [33] introduced nonlinear guidance logic for curved trajectory tracking, 

becoming a proportional-derivative control when applied to straight lines. This solution provided an 

anticipatory control element that improves the tracking capability when following a curved path. In Ref. 

[34] and [35], waypoint based guidance was improved by including the horizontal wind estimation, 

allowing the aircraft to smoothly converge to a new course after switching to the next trajectory segment 

in the presence of wind. This is an important development, especially for small UAS, where wind has a 

significant nonlinear effect on spatial orientation and consequently on the guidance algorithm. A different 

approach for path following is presented in Ref. [36], where 2D vector fields are used to represent the 

desired ground track and to generate course inputs for the inner loop attitude control, directing the aircraft 

to the desired track. An asymptotic stability is obtained for constant wind disturbances. More recently in 

Ref. [37], a Lyapunov-based adaptive back stepping approach is used to design a flight-path controller for 

a nonlinear F-16 model. A prescribed smooth inertial trajectory is asymptotically tracked in the presence 

of actuator failures and uncertainties in the stability and control derivatives. In a different approach, Ref. 

[38] proposes a spatial-temporal trajectory tracking capability for a fixed-wing aircraft on a time critical 

mission. 
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0.3.4 Gain Scheduling of Controllers 

Gain scheduling is an approach widely used to control nonlinear systems over a broad range of 

operation, especially when linearity assumptions are no longer valid, by interpolating among a set of 

linear, and generally time invariant, controllers. When meeting predefined requirements, this linear-type 

technique is able to interpolate controllers matching the plant when transiting between several operating 

points achieving stability and performance (see Ref. [39], [40] and [41]). A number of researches and 

developments in this area have been done for UAS. Ref. [42] designs an H-infinity gain scheduled 

controller for the pitch-axis by interpolating poles, zeros, and gains from a set of four trim point 

controllers, removing to some extent the existence of hidden coupling terms. On the other hand, Ref. [43] 

proposes an interpolation of the Riccati equations from frozen longitudinal H-infinity controllers, 

including the flexible modes of the aircraft within the model. Another approach presented in Ref. [44] 

applies the Linear Parameter-Varying (LPV) control technique to missile pitch-axis dynamics expressed 

as a time-varying linear function of states. This solution fails to apply when nonlinear models are not 

expressible as linear functions of the states. Reference [45] presents two approaches to longitudinally 

control a nonlinear model of a UAS expressed as an LPV model, over the entire range of cruise speeds. 

The first one formulates the variability of the LPV model over the range of speeds as unstructured 

uncertainty, and designs a unique robust controller able to stabilize the system over the entire range. The 

second method linearly interpolates between two robust controllers calculated at the two extreme 

velocities, performing the gain scheduling as a function of the instantaneous total velocity. The work done 

in Ref. [46] applies the gain scheduling technique by representing the longitudinal dynamics of an aircraft 

as a second-order model. This approach allows the scheduled gains to be adjusted against rapidly-varying 

system states. 
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0.3.5 Nonlinear Model Predictive Controller 

Changes in the dynamic or aerodynamic conditions due to nonlinear and time-varying nature of the 

UAS, together with external disturbances, can be addressed by an online scheduling version of pre-

computed linear controllers (see, for example, Ref. [42] for robust designs). These pre-computed control 

laws, which are intended for scheduled dynamic changes, lack the ability to adjust to unforeseen events, 

like unexpected changes in UAS dynamics due to failures. Adaptive control assisted, for instance, by 

system identification (Ref. [7]), could overcome unanticipated alterations in either actuators, sensors or 

the UAS itself, by redesigning online new controllers that better reflect the new identified dynamics. 

As for any controlled system, control and state variables and their rates of change are restricted within 

bounded ranges. These restrictions, eventually worsened by failures, augment the nonlinearity of the 

system and reduce the stability reserve. When control design does not explicitly include this constraint 

information, as in the case of linear control design, these constraints impose a severe difficulty in control 

tasks, either for the scheduling strategy or for the linear time-varying approach. 

The Nonlinear Model Predictive Control (NMPC) approach, as a numerical control algorithm, is able 

to solve previous drawbacks in a direct way, by searching iteratively for an optimal control solution under 

changing dynamics and their constraints (Ref. [47]). Given the availability of computational resources for 

online numeric search, the NMPC algorithm is able to incorporate a complete system description and all 

variable restrictions without coarse approximations or simplifications. It is able to use the full nonlinear 

dynamic model of a plant, and all existing constraints, at each numeric cycle, even though they change 

from one cycle to the next. This ability is due to its numerical nature, as each cycle in the algorithm starts 

the search with the current system’s model, independently of the one used in the previous cycle. By 

definition, NMPC is a nonlinear adaptive controller that is able to calculate as close to an optimal control 

law as possible, given the computational power, by using the best available representation of the system, 

possibly constrained and time-varying. 
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NMPC has been applied successfully in several areas, beginning with the chemical industry. Its 

application to unmanned vehicles is more recent and there are still promising advances to make. In Ref. 

[48], NMPC was applied to control a submarine in the longitudinal plane, where the vehicle was 

commanded to follow the sea bed at a constant distance, with no prior knowledge of its profile. Following 

this approach, Ref. [49] formulated a NMPC algorithm for a rotorcraft-based UAV, showing superior 

tracking performance over conventional multi-loop proportional-derivative controllers. Ref. [50] applied 

linear MPC to a small helicopter, easily incorporating control and state constraints, and reducing the 

typical computational burden of non-convex nonlinear programming. Another NMPC application is given 

in Ref. [51], where a receding horizon control algorithm is used for lateral road following, using passive 

sensors. NMPC has also been applied to compute evasive maneuvers in pursuit and evasion games (Ref. 

[52]), using a gradient-descent method. 

Most past developments utilize the NMPC formulation in the outer loop for navigation and guidance 

purposes, leaving the inner loop control task to some commercial autopilot. Although this approach 

reduces the computational power requirement by reducing the size of the nonlinear model to be employed 

by the NMPC, it generates an undesired potential coupling between both loops, affecting the stability. 

Ref. [53], which employs this configuration, proved that the closed-loop system remains stable if a given 

initial condition can be driven into a predefined set of final states by the solution of a finite-horizon 

control problem. In their work, the inner loop is handled by a commercial low-level controller, and the 

NMPC minimizes in the outer loop the lateral cross track error to straight waypoint segments, converting 

the control law problem into a regulation problem. 

Another interesting online application is found in Ref. [54]. The NMPC is used to control an inverted 

pendulum. The control law is able to work in the entire state space, including input and state constraints. 

This control problem is interesting to the KU Aerospace Engineering Flight System team, because it 

shares salient features with UAS’s. It displays fast dynamics with highly nonlinear behavior, unstable 
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about the operating point and showing a non-minimum phase nature. The online search uses a Sequential 

Quadratic Programming (SQP) approach, which works by breaking down the problem into a series of 

simpler sub-problems, each one approximated as a quadratic objective function subject to linearized 

constraints. This application included one control input and four states, two of them directly measured 

and two estimated. 

A control system is said to be robust when stability is kept and an acceptable performance is reached 

for a given range of uncertainties and disturbances. Toward this end, a robust controller is expected to 

incorporate explicit information of known uncertainty ranges. An important branch of robust control is 

the calculation of a stabilizing control solution fulfilling a prescribed performance under the worst 

possible effect of uncertainty and disturbance. In the linear framework a common robust control 

technique that deals with the worst external disturbances and uncertainty effects is H-infinity, through an 

analytical LTI controller. This approach of worst case optimization represents a game theory paradigm, 

where the controller computes control values to minimize a given cost function while perturbations, 

chosen by “nature”, try to maximize it (see Ref. [55]). This approach has been extended to the class of 

nonlinear plants described linearly by matrices with state-dependent entries (Ref. [56]), also called frozen 

Riccati equations. In this approach, state-dependent Riccati equations are solved to obtain a linear time-

varying controller. In a more general framework, nonlinear systems showing input affine relation are 

addressed by seeking an approximation of the solution of the associated Hamilton-Jacobi equation (see 

Ref. [57]-[58]). An application to general six degree-of-freedom motion is presented in Ref. [59] and for a 

fixed wing UAS in Ref. [60]. 

A direct numeric application of the previous approach, where the control variable is obtained by 

minimizing the cost function while the disturbance worst case is selected to maximize it, is the robust 

min-max NMPC. Implementation of min-max NMPC suffers from the colossal computational burden that 

currently limits its applicability. Ref. [61] and [62] propose an approximation of the min-max optimal 
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solution by reducing the problem to a minimization of the cost function in terms of future control inputs, 

subject to an upper bound of worst possible disturbance and uncertainty. Both cases propose an approach 

to compute the worst case for the consequent minimization, showing a slightly conservative control law 

and reducing the computational time. Another strategy to provide robustness is based on a separate design 

of two control loops. This is an inner linear MPC guaranteeing the tracking of the controlled variables in 

the absence of constraints and an outer nonlinear static law called a command governor modifying the 

reference signals to be delivered to the inner loop, by taking into account its limitations (see Ref. [63] and 

[64]). Although an interesting approach, it still keeps two separate control loops. 

There is another approach to deliver a feasible robust NMPC with much less computational demand. 

The idea is inspired by the use of frequency-dependent weighting matrices augmenting the system’s 

model by defining new controlled outputs to minimize, as in the linear cases of H-infinity or H-2 (see Ref. 

[65]) and nonlinear H-infinity (Ref. [66]). In this way, robustness is provided together with performance; 

two concepts originally competitors. A standard NMPC algorithm is then applied to the system 

augmented by the inclusion of the frequency-dependent matrices. The NMPC algorithm will numerically 

select the control input sequence that minimizes the new controlled output, neutralizing the effect of 

external disturbances, uncertainties, and noise, whose frequency content are assumed known. 

0.3.6 Aircraft Formation 

The study is inspired by the physics involved in birds’ formations where each individual has a limited 

knowledge of the whole group (constrained by their physiological sensors), where there is not necessarily 

a leader, centralized commanding or communication and control, but where there is a high level of 

coordination. This is done by following a very simple set of rules achieving remarkable objectives as a 

whole body, called emergent behavior. Ref. [67] studies the interaction logic of animal collective 

behavior, whereby reconstructing the three-dimensional position of a few individuals in flocks of birds, it 

is shown that the interaction does not depend on the metric distance, but rather on the topological 
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distance. Each bird modifies its position relative to the six or seven animals directly surrounding it, no 

matter how close or how far away those animals could be. 

One of the most important joint behaviors is the optimization of the aerodynamics involved in their 

maneuvers, decreasing important amounts of total drag. One of these formations is the V-formation that 

improves the efficiency and range of flying birds, particularly over long migratory routes. Birds flying in 

the upwash formed by the birds ahead are able to improve their lift and reduce their induced drag. A 

formation of UAS could take advantage of these aerodynamic effects, decreasing their energy 

consumption. Ref. [68] shows that in a V-formation of 25 members, each bird can achieve a reduction of 

induced drag by up to 65% and as a result increase their range by 71%. On the other hand, Ref. [69] 

explores an approach based on simulation as an alternative to scripting the paths of each bird individually. 

The simulated flock is an elaboration of a particle system, each bird being a particle. The aggregated 

motion of the simulated flock is created by a distributed behavioral model much like that at work in a 

natural flock; the birds choose their own course. The paper utilizes simple mathematical models of 

swarms given by the following three rules: move in the same direction as its neighbors, remain close to its 

neighbors, and avoid collisions with its neighbors. 

For control purposes, the aerodynamics of the formation needs to be well understood to be described 

by a simple but representative mathematical model (expected to be nonlinear and possibly time varying). 

This model can then be used to design a particular control solution. Ref. [70] performs a comparison of 

predicted and measured formation flight interference effects. It compares the data obtained from a wind-

tunnel test of two delta-wing aircraft in close proximity, with predictions from a vortex lattice method. 

Large changes in lift, pitching moment, and rolling moments are found on the trail aircraft as it moves 

laterally relative to the lead aircraft. In Ref. [71] a tight formation flight problem is addressed, consisting 

of a leading aircraft and a wing aircraft. The lead’s trailing vortices aerodynamically couple both aircraft. 

In close formation, the wing aircraft experiences an upwash field generated by the preceding airplane 
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inducing a reduction in required overall energy. The manuscript defines tight formation as one where the 

lateral separation between aircraft is less than the wingspan. It delivers an analytical equation for the 

optimal separation calculation. 

Ref. [72] studies the interaction of two aircraft flying in close formation. By positioning one craft 

flying in the correct position within the vortex wake of the other, substantial reductions in drag could be 

attained, with the amount of the reduction dependent on the relative positions of the two aircraft. The 

precise position of the second craft relative to the first one that maximizes the drag reduction is to be 

determined iteratively online leading to a peak-seeking control problem. A method of peak-seeking 

control using a Kalman filter to estimate the characteristics of the drag reduction is derived. 

A study of a nonlinear control of multiple UAS in close-coupled formation flight is done in Ref. [73]. 

This article studies the control of UAS flying in a close-coupled formation for the purposes of drag 

reduction. Inner and outer loops are employed in a two-UAS formation where the outer loop controller is 

based on sliding mode control and the inner uses adaptive dynamic inversion to track the commands. The 

controller configuration enables the wing UAS to maneuver in the lead UAS's wake, and to hold a 

predefined desired position within it. The induced lift on the wing UAS due to formation flight is shown 

to cause reduced angle-of-attack and thrust for this wing vehicle. 

Decentralized control, as one of the main mimics of bird formations to be accomplished, allows more 

efficient control calculation by using the distributed available computational power. Each airplane is able 

to synthesize its own control by knowledge of its status and possibly the status of its neighbors. Even with 

the existence of a centralized commanding device, the control calculation is more efficient when done in a 

distributive way. Ref. [74] proposes a decentralized nonlinear robust control system based on outer and 

inner control loops for close formation flight of multiple UAS. This control system keeps a predefined 

(based in Ref. [73]) separation distance of the wing airplanes calculated to achieve the minimum drag. 

The results confirm that when the wing aircraft is positioned properly in the vortex of the leading aircraft, 
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it experiences reduction in its required flight power. In closed-loop, prescribed separation trajectories are 

asymptotically tracked by each wing aircraft, while the lead aircraft is free to perform trajectory following 

maneuvers. 

Viewed as a system, the V-formation is a highly nonlinear, time-varying, and constrained system. To 

guarantee a broader operation range, a set of adaptive and nonlinear control laws are required. The NMPC 

approach appears to be a natural candidate, as it comprises a significant level of nonlinearity and 

adaptation management, while allowing explicit accommodation of constraints, granting a remarkable 

level of optimality. A decentralized algorithm for robust constrained linear MPC is proposed in Ref. [75]. 

This decentralized formulation for a MPC of systems incorporate coupled constraints. A single large 

planning optimization is divided into small sub problems, each planning only for the states of a particular 

subsystem. Relevant plan data is exchanged between subsystems to ensure that all decisions are consistent 

with satisfaction of the coupled constraints. A typical application would be autonomous guidance of a 

fleet of UAS in which the systems are coupled by the need to avoid collisions, but each vehicle plans only 

its own path. 

Ref. [76] describes the application of a methodology for high-level control and coordination of 

autonomous vehicle teams. The scheme employs decentralized receding horizon controllers that reside on 

each vehicle to achieve coordination among team members. On each vehicle, information about neighbors 

is used to predict their behavior and plan conflict-free trajectories that maintain coordination and achieve 

team objectives. 

As a variant based on the nonlinear model of multi-UAS close formation, Ref. [77] proposes a control 

strategy using a hybrid receding horizon control and differential evolution algorithm. Three simulation 

experiments are performed and simulation results show the feasibility and validity of the proposed control 

algorithm; the aerodynamic separation is based on Ref. [73]. A distributed control scheme to generate 

stable flocking motion for a group of agents is proposed in Ref. [78]. In this control scheme a molecular 
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potential field model is applied as the potential. The approach of distributed receding horizon control is 

adopted to drive each agent to find its optimal control input to lower its potential at every step. 

0.4 Significance and Originality 

0.4.1 Significance 

A decentralized flight control system is developed for an unmanned aerial system to perform arbitrary 

trajectory following in the presence of modeling uncertainties and external disturbances. The control 

design is a robust, adaptive, and nonlinear solution. This work has the following four significances: 

� A stable guidance logic for arbitrary trajectory following is developed. This original development is 

composed of nonlinear attitude command and airspeed command laws. An existent nonlinear horizontal 

guidance law for circular trajectories is expanded and improved. Jointly, a vertical guidance law is 

developed with similar capabilities. The new attitude guidance allows the following of arbitrary 

trajectories, defined by moving points. 

� Another original contribution of this research is the unification of guidance and control loops into a 

single loop. Integration of a unified loop allows computation of a single solution for both guidance and 

robust nonlinear model predictive control. As a result, a guidance and control solution is achieved for an 

extended flight envelope over a broader range of operation, independent of a trim condition or linear gain 

scheduling interpolation between several trim conditions. 

� In order to maximize the performance of the nonlinear model predictive controller and state 

observer, a new comprehensive and adaptive parameter identification is developed to update aircraft 

physics-based models in real-time. An online set of adaptive artificial neural networks are utilized to 

capture and characterize an aircraft’s nonlinear and unsteady aerodynamic and propulsive forces, 

complementing aircraft modeling. The quality of observed states and performance of the controller are a 

function of the accuracy of the physics-based model. Consequently, adaptive, nonlinear, and unsteady 
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modeling of aerodynamic and propulsive forces maximizes the accuracy and performance of robust 

nonlinear model predictive control and the quality of extended Kalman filtering estimations. 

� Nonlinear model predictive control robustness deficiency is compensated by applying the concept of 

mixed sensitivity through the addition of a frequency-dependent robustness capability. This innovative 

configuration is a successful numerical enhancement of low frequency tracking capability and disturbance 

attenuation and high frequency measurement noise and model uncertainty rejection. 

For the first time in the open literature, the feasibility of a robust nonlinear model predictive control 

coupled with real-time and adaptive artificial neural networks, which integrates the nonlinear guidance 

and control laws, is achieved for a UAS. The performance of an advanced developed and integrated 

decentralized control solution is verified by performing challenging tasks required for highly precise 

flight. 

0.4.2 Originality 

Based on the Literature Review, this work has the following originalities: 

- Development of stable guidance logic for arbitrary trajectory following composed of nonlinear 

attitude command and airspeed command laws. 

- Guidance logic and trajectory information embedding into the aircraft modeling, providing a 

single guidance and control model, to be used in a nonlinear model predictive control 

formulation. 

- Online adaptive artificial neural networks application for aerodynamic force estimation, to be 

used in the nonlinear model predictive control formulation. 

- Feasible robustness augmentation of a nonlinear model predictive control approach, based on full 

fixed-wing rigid aircraft modeling, augmented by a set of adaptive artificial neural networks for 

nonlinear aerodynamic estimation, and by a nonlinear guidance law for arbitrary trajectory 

following. 
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0.5 Dissertation Content Description 

The document comprises six chapters. The present chapter is the introductory chapter. First, second, 

third, and fourth chapters are directly derived from the dissertation research. Chapter five includes a 

conceptual description of centralized aircraft formations, and it is not part of the development. Its purpose 

is to solely offer a motivation for future research. 
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1. Aircraft Modeling 

1.1 Introduction 

Modeling a system has several applications. One application is for control purposes. Despite the 

chosen control design technique, the available knowledge of the system, composed of system variables 

and their relationships, is needed in the design of a control law and its application to the system. The 

relationships among the known variables of the system have to be reflected in a mathematical model. Its 

complexity will be determined by the complexity of the system, but also by the level of accuracy 

demanded from the control system. This model is based on available system information, and its design 

should be guided by usefulness rather than “truth” or exactness (Ref. [1]). 

In the modeling task, two different directions are clearly distinguishable; although, generally, they are 

jointly used: a phenomenological approach, where the system is decomposed into simpler subsystems 

whose laws of physics are known, and an experimental approach, where data from experiments are used 

to infer a model without any prior knowledge of the system, also called system identification (Ref. [1]). 

Even though these two routes are self-contained and can, theoretically, provide useful models separately, 

the typical practice is to merge both into one solution. That is, to establish the physics of the system from 

the available knowledge to a certain level of complexity and use data from experiments to estimate 

unknown sections of the system and/or unknown physical parameters within it. This solution retains the 

best features of both approaches; it has a broader range of validity and it becomes a good system predictor 

as it is fitted to the available data. 

1.2 Aircraft Equations of Motion 

The building block of this research is the rigid body fixed-wing aircraft, to be modeled in a non-

rotational flat earth. A complete modeling of the aircraft requires several coordinate systems. Figure 1 

shows all related coordinate systems centered in the aircraft center of gravity. They consist of the inertial 

coordinate system I , aligned with the inertial local flat earth coordinate system I , both oriented as 
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North-East-Down (NED), the body coordinate system B , fixed to the aircraft, the wind coordinate system 

W , oriented toward the relative wind, and the stability coordinate system S , oriented as shown in Figure 

1. Body B , stability S , and wind W  coordinate systems are interrelated through the airflow angles, i.e. 

the angle of attack α  and sideslip angle β , to de defined later. 

Based on Newton-Euler equations (Ref. [2] and [3]), the translational and rotational dynamics of the 

aircraft center of gravity (CG) referred to the inertial coordinate system I , (which relate the forces IF  

and moments IM  acting on the system to the time rate of change of the translational momentum IP  and 

angular momentum IH , respectively) are defined as follows 
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where [ , , ]TI N E DV V V=V  is the translational inertial velocity vector, [ , , ]TI N E DW W W=W  is the angular 

velocity vector, m is the aircraft mass, and IJ  is the inertia matrix defined in the inertial frame I  as 
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Figure 1. Coordinate Systems for Aircraft Modeling. 
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In order to express Equations (1) and (2) in terms of quantities referred to the body coordinate system 

B , and because the body reference frame B  rotates with respect to the inertial reference frame I  at an 

angular rate IW , the time rate of change of translational and angular momentum are expressible as 
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where I
%W  is the cross-product equivalent IW , and 

I
BH  is an orthonormal matrix for rotation of vectors 

from body-axes frame to inertial-axes frame (see Ref. [2]). Equations (4) and (5) are restated as 
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which gives 
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For the present work, both mass and inertia are assumed constant, i.e. ( ) 0dm t dt =  and ( )Bd t dt = 0J . 

Defining the body-axes velocity [ , , ]TB U V W=V , body-axes angular rate [ , , ]TB P Q R=W  and 
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the translation and rotation equations in the body-axes frame are 
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where BJ  is the inertia matrix defined in the body-axes frame as follows, and where the subscript B  is 

subsequently omitted  
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The two previous Equations (11) and (12), together with the following translational kinematics 

Equation (14), which relates the angular rate vector observed in the body-axes frame BW  to the rate of 

change of the Euler angle [ , , ]Tφ θ ψ=ΘΘΘΘ  (Ref. [2]), conform a set of nine equations in the nine variable 

vector [ , , , , , , , , ]TU V W P Q R φ θ ψ , that fully describes the rigid body aircraft over a flat, non-rotating earth 

 

( ) 1 0 sin ( ) ( )

( ) 0 cos ( ) sin ( )cos ( ) ( )

( ) 0 sin ( ) cos ( )cos ( ) ( )

P t t t

Q t t t t t

R t t t t t

θ φ
φ φ θ θ
φ φ θ ψ

 −   
    =     
    −      

&

&

&

 (14) 

Forces BF  and moments BM  are driving the system, as is apparent from Equations (11) and (12). 

Forces are formed by the addition of gravitational [ ]g⋅ , propulsive [ ]P⋅ , and aerodynamic [ ]A⋅  effects, i.e. 

[ ] [ ] [ ]g P A
B B B B= + +F F F F , while moments only comprise propulsive and aerodynamic, i.e., 

[ ] [ ]P A
B B B= +M M M  effects, as gravity is assumed uniform. Although gravity g  can be considered as an 

uncontrollable input to the system, it is treated as a constant. Controllable inputs to the aircraft are the 

engine throttle and elevator, aileron, and rudder servo deflection commands, i.e. 

( ) [ ( ), ( ), ( ), ( )]cmd cmd cmd cmd T
T E A Rt t t t tδ δ δ δ=u . 

Based on Ref. [2], [3], and [4], all forces and moments can be defined, up to some degree of 

approximation, as functions of the states of the aircraft 

( ) [ ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )]Tt U t V t W t t t t P t Q t R tφ θ ψ=x  and control inputs ( ), ( ), ( ), ( )T E A Rt t t tδ δ δ δ . Servo 

dynamics are considered an integral part of the aircraft dynamics, so servo deflections, a function of servo 
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commands ( )tu  as will be seen later, will be added to the aircraft state vector ( )tx , i.e. 

( ) [ ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )]TT E A Rt U t V t W t t t t P t Q t R t t t t tφ θ ψ δ δ δ δ=x . Forces and moments are 

then generically represented by ( , )BB Ff t=F x  and ( , )BB Mf t=M x . 

From a sensor perspective, airflow angles α  and β , and airspeed TV  are much more accessible to 

measure than body velocity components , ,U V W . The bijective equations, clear from Figure 1, 
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 (15) 

are used to interchange them. A more practical structure of the state vector is then defined as 

( ) [ ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )]TT E A Rt V t t t t t t P t Q t R t t t tα β φ θ ψ δ δ δ=x . 

1.2.1 Gravity Forces [ ]gBF  

The gravity force effect in the body coordinate system is the most straightforward in terms of its 

definition, given its known intensity and direction. Equation (16) shows its components after rotating 

from the inertial coordinate system I  to body B  
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1.2.2 Propulsive Forces [ ]PBF  and Moments [ ]PBM  

Propulsive force, or thrust, is highly dependent on the type and configuration of the engine (see Ref. 

[86]). For the present research, only the x-axis force is considered by assuming that the engine’s effect is 

perfectly aligned with this axis. Equation (17) shows the propulsive force expression 
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where the function ( )P
Xf ,tx  that represents the thrust exerted by the engine to the aircraft in the x-axis is 

undetermined and needs to be approximated, defining its structure and estimating its parameters, e.g. by 

using system identification. For the present research, the chosen structure is a polynomial expression of 

degree two as a function of the engine throttle position Tδ , i.e. 
2 2 1 0( , ) ( ) ( )P
X T X T XX t T t T t Tδ δ= ⋅ + ⋅ +x , with 

parameters 2
XT , 1

XT , and 0
XT . 

No propulsive moments are assumed in this work. 

1.2.3 Aerodynamic Forces [ ]ABF  and Moments [ ]ABM  

Determination of aerodynamic forces and moments is an intricate task. There is a complex physical 

dynamic and time-varying relation between the aerodynamic forces , ,A A AX Y Z  and moments , ,A A AL M N  

and the status of the aircraft [ , , , , , , , , , , , , ]TT T E A RV P Q Rα β φ θ ψ δ δ δ δ=x . Forces and moments can be 

defined in terms of the aircraft states and, at the same time, the state of the aircraft is affected by the 

aerodynamic forces and moments. This interrelation makes it very difficult to analytically obtain the 

underlying cause-effect relation. 

Following Ref. [2]-[4], it is customary to express the aerodynamic forces and moments in a 

normalized way, as a function of the aerodynamic force , ,X Y ZC C C  and moment , ,l m nC C C  coefficients. 
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where ( ) 0.5 ( ) ( )Tq t t V tρ=  is the dynamic pressure, defined as a function of the airspeed ( )TV t , and air 

density ( )tρ . In this work, air density is considered constant. The fixed parameters S , b  and c  are 

respectively called wing reference area, wing span and mean geometric cord, and are defined by the wing-

fuselage properties. 
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There are several ways of determining the functions ( )A
Xf ,tx , ( )A

Yf ,tx  and ( )A
Zf ,tx ; and ( )A

Lf ,tx , 

( )A
Mf ,tx  and ( )A

Nf ,tx . The most invoked method is a linear time-invariant approximation technique. 

The present work will use a nonlinear and time-varying system identification approach to obtain these 

functions without resorting to any linear assumption, to provide a larger operation range. 

The linear method is described below for completeness and as a reference. 

1.2.3.1 Linear Aerodynamic Forces [ ]ABF  and Moments [ ]ABM  

The general approach, called the component build-up method (see Ref. [4] for a detailed explanation), 

describes the aerodynamic forces and moments as a direct aggregation of several independent effects, 

each one having a physical support and being linearly described as a function of the aircraft perturbed 

states ( ) ( ) trimt t∆ = −x x x  as well as the steady state, trim condition trimx . This approach is valid in the 

neighborhood of the trim point ,trim trimx u , where the assumption of linearity and independence among all 

physical effects is feasible. 

For the case of linear and time invariant aerodynamic description, force coefficients , ,X Y ZC C C  and 

moment coefficients , ,l m nC C C  defined in the body coordinate system B  are obtained from the 

aerodynamic force coefficients , ,D Y LC C CS S S
 and aerodynamic moment coefficients , ,m nlC C CS S S

 defined in 

the stability axes S . The following conversion as a function of the trimmed angle of attack trimα  (Ref. 

[4]) is used 
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Drag force coefficient DC S
, side force coefficient YC S

, and lift force coefficient LC S
, along with rolling 

moment coefficient lC S
, pitching moment coefficient mC S

, and yawing moment coefficient nC S
 are 

assembled from the component build-up philosophy, as shown below 
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where ∆  amounts for the deviation or perturbation from the trim condition ,trim trimx u . Also the quantities 

, ,Dtrim Ltrim mtrimC C C  are required. All remaining coefficients in Equations (22) to (27), which are called 

stability and control derivatives, are generated for the chosen trim point. A widely used method for 

computing these parameters is the United States Air Force Stability and Control Digital DATCOM (Ref. 

[87]), which in turn is based on, and implements the methods contained in, the United States Air Force 
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Stability and Control DATCOM. This is a collection and recording of the most comprehensive knowledge 

in the area of aerodynamic stability and control prediction methods, and it calculates these derivatives for 

fixed-wing aircraft, according to the specified flight conditions. The outputs are the corresponding 

dimensionless stability and control derivatives. Another accessible tool is the engineering level software 

called Advanced Aircraft Analysis, (AAA), (based on Ref. [4]). It delivers these parameters by 

interpolating among information of existing aircraft. 

1.3 Aerodynamic Coefficients Estimation 

A common approach in obtaining the underlying relation of the aerodynamic forces and moments, 

denoted ( )A
Xf ,tx , ( )A

Yf ,tx , and ( )A
Zf ,tx , and ( )A

Lf ,tx , ( )A
Mf ,tx , and ( )A

Nf ,tx  from Equations (18) 

and (19), respectively, is their identification based on measured data. This solution approach is applicable 

if these functions act as a cause-effect relationship to be approximated between inputs and outputs, and if 

signals are available (see Ref. [5] to [9]). Several techniques are applied, e.g. linear or nonlinear curve 

fitting. Fuzzy logic and artificial neural networks (ANN) seem to be appropriate tools, as they inherently 

materialize the universal approximation theorem (see Ref. [10] and [11], respectively). This capability 

makes ANN a highly useful tool for mapping signals, i.e. extracting the underlying cause-effect 

relationship between inputs and outputs. 

As stated by the following theorem, a feedforward ANN with a single hidden layer, containing a 

finite number of neuron cells with sigmoid-type activation functions and linear activation functions at the 

output layer, inherently materializes the universal approximation theorem. It approximates any 

multivariable continuous function on a compact domain to any degree of accuracy. 

Theorem 1: Universal Approximation Theorem For any given continuous function 

( ) [0,1]jf ∈ ∈z R , with 1 2[ , , , ] [0,1]T q q
qz z z= ∈ ∈Lz R , and for 0ε > , there exists an integer M  and a 

set of parameters (weights and biases) ,i jb c ∈R , 
q

i∈w R , and jia ∈R  with 1i M= L  and 1j p= L  

such that 
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1

( ) ( )
M

T
j ji i i j

i

F a b cϕ
=

= + +∑z w z  (28) 

is an approximation of the function ( )jf z , with ( ) ( )j jF f ε− <z z , and where ( )ϕ ⋅  is a bounded and 

monotonically increasing activation function. 

Demonstration Omitted, see Ref. [88]. 

This capability makes ANN a highly useful tool for providing mapping of signals by curve fitting. 

Figure 2 shows the ANN configuration that materializes Theorem 1. 

With an adequate mechanism for adjusting its parameters, i.e. weights and biases, an ANN is capable 

of iteratively approximating any static relation to any degree of accuracy. The adjustment logic must be 

based on the level of precision demanded for the estimation. A standard method, the one chosen in this 

research, is to work with the cumulative quadratic error between the measured output of the system under 

identification and the estimated output of the ANN over a period of time. Reducing this error implies the 

ANN is able to better replicate the cause-effect relation of the system under identification. 

Regularly, an ANN is trained off-line, adjusting its parameters with previously stored data in cycles 

called epochs. After a validation process with independent data, i.e. uncorrelated with the one used during 

training, the ANN is assumed operational. Training is performed iteratively through a number of epochs, 

where each epoch uses the whole set of training data. These data, that includes all pertinent system’s 

inputs and outputs, are expected to capture the dynamics of the aircraft, i.e. signals should be 

representative of the dynamics to be identified. 
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As long as the dynamics of the identified system remain unchanged, there is no need to retrain the 

ANN and its parameters are kept fixed during operation. Two important conditions must be met for 

acceptable performance of an ANN as a universal approximator: a static and deterministic nature of the 

system under identification (the mathematical relation between inputs and outputs of the systems remains 

the same), and the availability of all signals involved in the cause-effect relation (i.e. inputs and outputs). 

Failure to meet one or both of these conditions degrades its performance. 

Given the aircraft’s inherently nonlinear and unsteady aerodynamics, worsened during off-nominal 

conditions (see Ref. [13]), ANN parameters must be readjusted in real-time, using fresh data to capture 

the changing dynamics of the system. The unsteadiness in the aerodynamics suggests that important 

dynamic behavior is unmodeled and random, and a static relation is no longer valid. This defect could be 

improved to some extent by expanding the system modeling. For example, it is well known that a 

correction needs to be made due to a convective time delay in changes in the wing-induced downwash at 

the tail (see Ref. [89]). This time delay could be modeled as a simple time lag, which makes the 

correction equivalent to an acceleration-type derivative. 
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Figure 2. ANN Interconnection Structure. 
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An interesting solution using ANN is presented in Ref. [17] and [18] where unstable aircraft stability 

and control derivatives are estimated under a closed loop configuration. They use a technique called Delta 

method to extract these derivatives and the controller gains. The controller is used to stabilize the 

originally unstable aircraft and allows system identification, which is otherwise unfeasible. Ref. [20] 

proposes an approach to model the aerodynamic force and moment coefficients and their derivative 

parameters for lateral-directional motion from recorded flight data based on neural partial differentiation. 

It is presented as an alternative to the Delta method, showing comparable results. 

In this work, an online adaptive learning algorithm is proposed to update parameters of the ANN in a 

continuous way. A time sliding window, where new sampled data is attached after shifting one step and 

the oldest portion of data is discarded, keeps the ANN in training mode permanently (sliding mode 

learning). The sliding mode learning concept allows error minimization between the ANN and nonlinear 

system by adjusting the ANN’s parameters, reproducing the current dynamic behavior of the aircraft. The 

adjustment and convergence must be reached faster than the occurrence time of significant changes in the 

aircraft dynamics; i.e. ANN’s time constant should be faster than the aircraft associated time constant. If 

this requirement is not fulfilled the outcome can be deleterious resulting in substantial performance 

degradation, if not failure to converge. 

After failures or significant changes in the dynamics or aerodynamics of the aircraft, previously well 

trained ANN could become outdated, forcing new training. Weights and biases should be updated to 

reflect the new dynamic status. Rather than performing this process in a disconnected way, the idea is to 

keep the ANN under continuous training, readjusting its parameters in a permanent way, and acquiring 

the new dynamics embedded into the new data, uninterruptedly. By using a recursive training process, the 

ANN parameters are under constant update. 

In the present work ANNs are fed by an aircraft subset of normalized states and servo deflections, 

collected as 1 2[ , , , ] [ 1,1]T q
qz z z= ∈ −Lz . Input weights iw , output weights jia , input biases ib , and output 
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biases jc  are constantly adjusted in real-time in order to iteratively decrease the error between predicted 

and measured quantities, in a quadratic sense. At each sample time the data in the moving window is used 

to perform the numerical search as in the epoch concept. In classical ANN applications, the learning 

process is finalized after a predefined level of accuracy is achieved and the ANN is declared trained. In 

this research, the learning process is unstopped and weights and biases are always under adaptation, 

derived from the current window data. Parameters under variation are then continuously fed into the 

NMPC, which keeps the replicated structures of the aerodynamic ANNs, allowing them to predict body 

accelerations, in real-time, based on these updated aerodynamic models. 

1.3.1 Adaptive ANN Aerodynamic Estimation 

The adaptive online training is done by minimizing the accumulated quadratic error between a 

measured quantity [ ]s k  and its estimation ˆ[ ]s k  over a period of WN  past samples, i.e. minimizing the 

cost function ( ) ( ) ( )TW = ⋅ ∈Rθ ε θ ε θθ ε θ ε θθ ε θ ε θθ ε θ ε θ , with 
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where rR∈θθθθ , the parameter vector including all weights and biases, is defined by 

 1 11 1 1 1 11 1 1 1[ , , ] [ , , , , , , , , , , , , , , , , , ]T
r p M pM M q M Mq pa a a a b b w a w w c cθ θ= =L L L L L L L L Lθθθθ  (30) 

with r p q M q M p= × + × + + . Using the following Newton-type search method, an iterative estimation 

is achieved 
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where ( [ ])W k∇ θθθθ  and 
2 ( [ ])W k∇ θθθθ  are the gradient and the Hessian of the cost function W  with respect 

to the parameter vector, respectively. They are defined as follows 

 
1

( )
r

W W
W

θ θ
∂ ∂ ∇ =  ∂ ∂ 

Lθθθθ  (32) 
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M O M

L

θθθθ  (33) 

At each iteration, a numerical approximation of these two arrays is possible to obtain by expressing 

the error vector ( )ε θε θε θε θ  by its first order Taylor expansion 

 ( ) ( ) ( )+ ≈ + ⋅Jε θ θ ε θ θ θε θ θ ε θ θ θε θ θ ε θ θ θε θ θ ε θ θ θΔ ΔΔ ΔΔ ΔΔ Δ  (34) 

where the rows of ( )J θθθθ , the Jacobian of ( )ε θε θε θε θ , include the gradients of each element of ( )ε θε θε θε θ  with respect 

to each parameter in the vector θθθθ , as shown below 
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 (35) 

Now, by using Equation (34), the cost function ( )W θθθθ , evaluated at +θ θθ θθ θθ θΔΔΔΔ , is then expressible as 

 
2

( ) ( )

( )

1
( ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( )

2

W W

T T T T

W

W J J J

∇

∇

+ ≈ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅
64748 6447448

1442443

θ θθ θθ θθ θ

θθθθ

θ θ ε θ ε θ ε θ θ θ θ θ θ θθ θ ε θ ε θ ε θ θ θ θ θ θ θθ θ ε θ ε θ ε θ θ θ θ θ θ θθ θ ε θ ε θ ε θ θ θ θ θ θ θΔ Δ Δ ΔΔ Δ Δ ΔΔ Δ Δ ΔΔ Δ Δ Δ  (36) 

from where the cost function’s gradient ( [ ])W k∇ θθθθ  and Hessian 
2 ( [ ])W k∇ θθθθ  can be directly extracted as 

a function of the error vector ( )ε θε θε θε θ  and its Jacobian ( )J θθθθ , which are more feasible quantities to calculate. 

Then Equation (31) is rewritten in its final form as 

 
1[ 1] [ ] [2 ( [ ]) ( [ ])] [2 ( [ ]) ( [ ])]T T Tk k k k k k−+ = − ⋅ ⋅ ⋅J J Jθ θ θ θ ε θ θθ θ θ θ ε θ θθ θ θ θ ε θ θθ θ θ θ ε θ θ  (37) 

To provide a degree of flexibility to the parameter search task, Levenberg’s approach is chosen (see 

Ref. [90] and [91]), where the Levenberg adaptive parameter [ ]kλ  is employed. It allows the transition 

from a steepest descent type of search to a quadratic one when approaching to the minimum, adapting the 

speed of convergence and having a direct impact in the algorithm stability. Based on Levenberg’s 

method, Equation (37) is modified as 
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1[ 1] [ ] [2 ( [ ]) ( [ ]) [ ] ] [2 ( [ ]) ( [ ])]T T Tk k k k k k kλ −+ = − ⋅ + ⋅ ⋅J J I Jθ θ θ θ ε θ θθ θ θ θ ε θ θθ θ θ θ ε θ θθ θ θ θ ε θ θ  (38) 

with I  the identity matrix of appropriate dimensions. 

Levenberg’s logic states that this adaptive parameter is to be adjusted during each iteration based on 

the evolution of the cost function. As in principle, Levenberg’s approach is intended for off-line training, 

it is slightly modified in this research to provide a mechanism for resetting the Levenberg parameter λ  

when reaching predefined extreme values, allowing an extended operation. This is intended to avoid 

unbounded growing of the parameter λ  when the cost function gets close to a minimum and consecutive 

iterations get closer, being trapped by it. This is a modification required to keep the ANN under 

permanent training. After starting with 0[ ]kλ λ= , for a minimum-maximum range 0 [ ]min maxkλ λ λ< < <  

with decrement and increment multiplicative factors 0decλ >  and 0incλ > , the logic is defined as follows 

 
min 0

max 0

([ 1]) ([ ]) [ 1] [ ] / , [ 1] [ 1]

([ 1]) ([ ]) [ 1] [ ]* , [ 1] [ 1]

dec

inc

IF W k W k k k IF k k

IF W k W k k k IF k k

λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

+ < → + = + < → + =

+ ≥ → + = + > → + =
 (39) 

The choice of these four values has a direct impact on the search efficiency and search stability, 

whose definition is highly problem-dependent. 

In this research, aerodynamic accelerations are estimated, i.e. 1 ˆ( ) XF a=z , 2 ˆ( ) YF a=z , and 3 ˆ( ) ZF a=z , 

under the consideration that, due to unsteadiness, these quantities are more susceptible to sudden changes 

than any other aircraft dynamics. A bank of three ANNs is assembled for this purpose, each one for 

separate acceleration, comprising each ANN a single hidden layer with 10M =  cells, and one output cell 

within the output layer, i.e. 1p = . Input z  and target f  signals are normalized within the range [ 1,1]−  to 

keep consistency with the active range of the input activation function ( )ϕ ⋅ , a hyperbolic tangent sigmoid 

transfer function, a common practice as is the case in Ref. [20]. 

The ANN’s inputs are selected from available state measurements, and servo deflection commands. 

No measurement of servo deflection is available. This selection is mainly based on theoretical and 

practical aerodynamic experience, supported by extensive trial and error experimentation. The ANN’s 

inputs for forward, lateral, and vertical accelerations are defined as [ , , , , , , ]T
X T T EV Qα β α δ δ= &z , 
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[ , , , , , , ]T
Y T A RV P Rβ β δ δ= &z , and [ , , , , , , ]T

Z T T EV Qα β α δ δ= &z , respectively, all with 7q = . The ANN’s target 

signals are measured acceleration components in the body coordinate system ��B , as defined in Equation 

(18), i.e. 1 / ( ) /A
A

X Xf a X m f ,t m= = = x , 2 / ( ) /A
A

Y Yf a Y m f ,t m= = = x  and 

1 / ( ) /A
A

Z Zf a Z m f ,t m= = = x . 

Each ANN performs at least one learning cycle (equivalent to an epoch) at each sample interval, 

working with the moving data window (in sliding mode learning). The window length WN , which is 

mainly shaped by computational power availability and quality of measurements, is set the same for all 

three ANNs. Currently, all data within the window share the same weight, although a forgetting factor can 

be applied to give less significance to older data. The following equations show the structures of the 

moving windows for input signal z  and target signal f  for each ANN. The forward acceleration ANN is 

fed by airspeed, angle of attack, sideslip angle, pitch rate, angle of attack time rate of change, engine 

throttle deflection, and elevator deflection. The ANN for lateral acceleration uses airspeed, sideslip angle, 

roll rate, yaw rate, sideslip angle time rate of change, aileron deflection, and rudder deflection. The ANN 

for vertical acceleration shares the same inputs as the forward acceleration ANN. 
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1.3.1.1 ANN Performance Test using Simulated Data 

To test the ANN performance in simulation, vertical acceleration ( )AZ t m  is chosen. The vertical 

ANN is constructed with one hidden layer comprising 5M =  cells and one output layer with 1p =  cell, 

where ( )1 ˆZF a=z . The inputs to the ANN are airspeed, angle of attack, sideslip angle, pitch rate, angle of 

attack time rate of change, and elevator deflection angles i.e. [ , , , , , ]T
T EV Qα β α δ= &z , with 6q = . The 

target is the vertical acceleration in the body coordinate system B , 1 ( ) ( ) ( )AZ ZZf a f ,t m q t SC t m= = =x , 

linearly simulated by using Equations (18), (20), (22) and (24). 

To test the ANN adaptability, a dynamic change is induced in the lift coefficient LC S
, defined in 

Equation (24) for a Yak 54 1/3 scale aircraft model. After 52  seconds of simulated flight, a reduction of 

25%  in the LC α  derivative is injected during a trajectory following. 
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As shown previously, this alteration in lift coefficient has a direct impact in the Z-axis body 

acceleration Za . 

Figure 3 shows the effect of the dynamic change on the estimated acceleration. After the ANN adapts, 

it converges back to the measured acceleration. The graph also shows how the estimated acceleration 

converges from an arbitrary initial condition to the measured acceleration after 50  seconds of flight, the 

moment when the ANN was activated. 

 
Figure 3. Z-axis Measured and Predicted Acceleration. 
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Figure 4. Z-axis Acceleration ANN Parameters. 
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Figure 4 shows the evolution of the parameters of the ANN after the failure, and how they adjust to 

decrease the estimation error. It also shows the initial adaptation after energizing the ANN. 

Figure 5 shows the evolution of the cost function, where it follows the same pattern as before, that is, 

increasing its value when the estimation error is larger and reducing it when the ANN starts to converge, 

returning to a minimum value after the adaptation of the ANN’s parameters. 

As shown for this particular scenario, this minimum moves below 
410− . It is important to keep in 

mind that this quantity reflects the summation of quadratic estimation error over the entire window. Based 

 
Figure 5. Z-axis Acceleration ANN Cost Function. 
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Figure 6. Z-axis Acceleration ANN Levenberg’s Parameter. 

50 50.5 51 51.5 52 52.5 53 53.5 54
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Time [sec]

L
e
v
e
n
b
e
rg
 A
d
a
p
ti
ve
 P
a
ra
m
e
te
r



38 

 

on extensive simulations, it has been verified that this minimum is affected mainly by the length of the 

moving window and the existence of noise measurements (not added in the present case). It is expected to 

be further increased when using measured flight data. 

Finally, Figure 6 shows the evolution of the Levenberg parameter, and how it evolves between 

5
min 10λ −=  to 

0
max 10λ = , clearly following the logic defined for its confinement. 

1.3.1.2 ANN Performance Test using Flight Test Data 

To verify the performance of the ANN’s adaptive capability with real data, two sets of stored 

Meridian flight test data, representing different dynamic conditions, are used; a flight from Pegasus 

Airfield in Antarctica during 2009  and a flight from Neem in Greenland during 2011 . Both sets of data 

were collected with a sampling frequency of 10  Hertz. For comparison and validation purposes, the same 

ANN is trained and tested without adaptiveness. This off-line ANN is constructed with 20M =  cells in 

the hidden layer and fed by the same inputs as defined for the adaptive ANN. As there is no pure 

aerodynamic acceleration measurement, data from accelerometers is used instead. All three accelerations 

are estimated. 

In general, both flights share the same pattern. From a prolonged cyclic autonomous period of flight, 

the aircraft is switched to remote control for landing. 

  
Figure 7. X-axis Measured and Predicted Acceleration in Antarctica: Mostly Autonomous Flight 

Portion (left) - Switch to Remote Control, Zoomed (right). 
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During autonomous flight, the non-adaptive ANN is trained. It is then tested in both the remaining 

autonomous flight segment, and during the remote controlled period. The adaptive ANN is tested in the 

same interval as the non-adaptive ANN. 

The non-adaptive ANN version is trained for a period of 1,000  samples (100  seconds of flight time). 

The adaptive ANN has a moving window of 10WN =  samples and Levenberg parameters of 0 0.001λ = , 

0.00001minλ = , 1maxλ = , 2incλ >  and 3decλ > ; all parameters are determined heuristically. 

  
Figure 8. Y-axis Measured and Predicted Acceleration in Antarctica: Mostly Autonomous Flight 

Portion (left) - Switch to Remote Control, Zoomed (right). 
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Flight Test Data
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Figure 9. Z-axis Measured and Predicted Acceleration in Antarctica: Mostly Autonomous Flight 

Portion (left) - Switch to Remote Control, Zoomed (right). 
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Figure 7, Figure 8, and Figure 9 show the Antarctica acceleration estimations, where at approximately 

1,750  seconds, the aircraft is switched from autonomous to remote control mode. Flight data is plotted in 

green, the non-adaptive ANN in red, and the ANN with adaptation in magenta. 

Figure 10, Figure 11m and Figure 12 show the Greenland accelerations, where at approximately 

1,775  seconds, the aircraft is switched from autonomous to remote control mode. Similarly, flight data is 

plotted in green, the ANN without adaptation in red, and the adaptive ANN in magenta. 

  
Figure 10. X-axis Measured and Predicted Acceleration in Greenland: Mostly Autonomous Flight 

Portion (left) - Switch to Remote Control, Zoomed (right). 
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Figure 11. Y-axis Measured and Predicted Acceleration in Greenland: Mostly Autonomous Flight 

Portion (left) - Switch to Remote Control, Zoomed (right). 
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As is consistent in all graphs, before mode switching, both estimations match the measured 

acceleration despite the high level of noise. After switching, when the aircraft is commanded to descend 

and approach to land, important differences are noticeable in the non-adaptive ANN. 

This change in flight regime is reflected in a very different dynamical characterization, and because 

the ANN’s parameters were trained during the AUTO mode portion of the flight, the network becomes 

useless when experimenting a different dynamic condition. 

This mismatch may also suggest that the selected inputs are not fully representative of the underlying 

functions. Although rate of change of some of the states were included to better reflect the physics of the 

aircraft interaction with its environment, extra derivatives maybe be added (see Ref. [15] and Ref. [16]) as 

inputs, in an effort to better characterize the dynamics in this specific flight condition (see also Ref. [12] 

for unsteady estimation using Fuzzy logic, during adverse weather effects). 

After failures or significant changes in the dynamics or aerodynamics of a system, a previously well 

trained ANN could become outdated, forcing new training. Weights and biases should be updated to 

reflect the new dynamic status. Rather than doing this process in a separate way, the idea would be to 

keep the ANN under permanent training, readjusting its parameters in a continuous way, acquiring the 

  
Figure 12. Z-axis Measured and Predicted Acceleration in Greenland: Mostly Autonomous Flight 

Portion (left) - Switch to Remote Control, Zoomed (right). 
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new dynamics embedded into the data in an uninterrupted way. By using a recursive training process, the 

ANN parameters are continuously updated. 

1.4 Nonlinear and Time-Varying Aircraft Mathematical Description 

This subsection presents the assembled aircraft model, the building block of the following 

developments. From Equations (11), (12), (13), (14), (15) and (19) the aircraft dynamics are defined as 
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 (43) 

where from a symmetric fixed wing angle assumption, 0xy yx yz zyJ J J J= = = = , xz zxJ J= . After replacing 

body velocities , ,U V W  by airflow angles ,α β  and airspeed TV , which are much more accessible for 

measurement, they should be treated in (43) as intermediate variables (only kept for brevity of notation), 

as well as , ,U V W& & &  from (11), restated here after considering Equations (16), (17) and (18) 
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Throttle, elevator, aileron, and rudder servos, considered an integral part of the aircraft, are modeled 

in this work as first order systems with time constants , , ,T E A Rτ τ τ τ  and states , , ,T E A Rδ δ δ δ , respectively, 

and defined with respect to the body coordinate system B . Servos are driven by servo commands 

( ) [ , , , ]T cmd cmd cmd cmd
T E A Rt δ δ δ δ=u , signals coming from the controller. Inertial position components 

, ,N E Hp p p , referred to the inertial coordinate system I , corresponding to North, East and Height of the 

aircraft, respectively, are also included, as their values will be used by the trajectory guidance logic as 

well as by the extended Kalman filter. The aircraft state vector is now extended to be 

( ) [ , , , , , , , , , , , , , , , ]T
T T E A R N E Ht V P Q R p p pα β φ θ ψ δ δ δ δ=x . 

Wind components , ,N E Hw w w  have been included as external inputs to the model in order to keep 

consistency between aircraft inertial and earth inertial coordinate systems. These quantities are assumed 

known for now. As will be seen later, particularly in the case of the extended Kalman filter, these 

quantities will be added as new states to the aircraft model along with new other states, i.e. measurement 

biases, to be dynamically estimated by the filter. 

From here on, the aircraft dynamics model defined by Equation (43) and its associated equations, 

without the wind components , ,N E Hw w w , will be represented by ( ) ( ( ), ( ))t t t=&x f x u , with ( ) nt R∈x  and 

( ) mt R∈u  as previously defined. The output model or observation equation ( ) ( ( ), ( ))t t t=y h x u , with

( ) rt R∈y  will be defined opportunely, when required. This equation is highly dependent on the available 

sensors and their performance. System noise ( )tv  represents the model mistmatch with respect to the 

aircraft and acts through the dynamic equation f . Measurement noise ( )tw  represents the mistmatch 

between the actual value and the observed value of a particular variable. It acts through the observation 

equation h . Both noises will be defined in the sequel, especially in the filter design and also in the 

predictive controller design. 
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2. Observer Design 

2.1 Introduction 

Observation and estimation of unmeasured states from noisy measurements has been an important 

topic in navigation and flight control theory. Many works have been devoted to linear and nonlinear 

observing or filtering. The Kalman filter in particular seems to be the most widely used observer (see Ref. 

[21], [92], [93] and [94]). In aircraft navigation, different types of sensors are optimally or sub-optimally 

integrated through Kalman filters to improve measurements and to estimate inaccessible or recover 

unmeasured states. 

With a varying complexity, the application of different versions of the Kalman filter mostly depends 

on the available computational power and the associated degree of approximation. The application is also 

based on the statistics of measurement noises and biases. More sophisticated filters are designed to 

achieve better accuracy. Particle Filtering (Ref. [22]) and Sigma-Point (Ref. [23]) are employed to 

overcome the inherent constraint of the extended Kalman filter dealing with highly nonlinear systems 

with non-Gaussian noise, or when Gaussian noise measurement undergoes nonlinear transformations and 

the assumption of jointly normal distributions is no longer valid. These refined filters demand an even 

higher computational power. Carefully regarding these restrictions, the extended Kalman filter becomes a 

good tradeoff solution. Ref. [24] presents a comparison between these three filters and highlights their 

strengths and weakness as applied to GPS/INS sensor fusion. Another approach to overcome inherent 

linearization approximation errors within the EKF formulation is presented in Ref. [25], where the use of 

the State Dependent Riccati Equation (SDRE) filter to design the observer it is proposed. An inherent 

requirement for the application of this solution is the ability to represent the aircraft model in a linear time 

varying (LTV) framework. 

The development and further operation of a demanding autonomous flight control system (FCS) 

requires the estimation of normally inaccessible or difficult to measure states of a UAS and the 
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improvement of those measured states contaminated by noise and subjected to unknown and possibly 

time-varying biases. Subsets of these states are normally needed for guidance, navigation, and control of a 

UAS, as well as subsequent nonlinear estimation; in this case, aerodynamic forces and moments. This 

work presents an EKF to perform the observation/estimation of all states of a UAS, including the three 

components of wind and a set of unknown biases assumed to have a slow time variation with respect to 

the dynamics of the aircraft. Ref. [26] and Ref. [27] present horizontal wind components estimation for 

UAS application. 

As a way to correct installation misalignment of sensors with respect to the reference system and 

inherent index or offset errors not corrected by calibration processes, a set of sensor bias states are added. 

In order to model these new states, a slow time-variance is assumed (i.e. constant between measurements 

but variable otherwise). The biases are characterized with a zero time rate of change. 

Another important added feature in a robust observer design is the inclusion of redundant 

measurements from independent sensors as a way to improve the observation/estimation of states. By the 

appropriate design of the EKF equations, the filter should perform a close to optimal merging of these 

analogous but independent measurements. Special care has to be taken in the characterization of the 

measurement noise statistics. Ref. [28] presents a comparison of two different techniques to fuse 

multisensory data. The first one merges the information within the filter and the second one combines the 

data prior to entering the filter. The present work fuses them within the filter formulation. 

Another important design requirement for a useful observer is the accuracy of the aircraft modeling, 

including its dynamics, sensors, and actuators characterization. In general terms, observers perform a 

prediction-correction type of calculation where predicted quantities are corrected with fresh measured 

data. The quality of the predicted values is directly based on the quality of the model used within the 

observer algorithm. Adequate effort needs to be spent in improving the aircraft dynamic modeling as the 



46 

 

EKF performance depends on it. Bad modeling of sensors and actuators is also deleterious. Sensor noise 

statistics are needed within the observer formulation. 

This chapter is mainly committed to the development of an EKF. 

2.2 Extended Kalman Filter Design 

The design of an EKF, as is the case for any observer (called filter as well, given its collateral noise 

filtering effect), requires a model for the prediction phase. This model is primarily based on the aircraft 

dynamic model recently defined, i.e. ( ) ( ( ), ( ))t t t=&x f x u , and the available sensor information represented 

by the observation or output equation ( ) ( ( ), ( ))t t t=y h x u ; to be defined. The filter functions f̂  and ĥ  

represent the system to be observed and, as such, incorporate all available information of the aircraft 

characterized by functions f  and h , but also consider other structures to be estimated as biases and 

wind, i.e. ˆ ⊇f f  and ˆ ⊇h h . Available knowledge of model mismatch ( )tv  and sensor noise ( )tw  is 

included through the Kalman gain ( )tK  calculation as shown below. From this knowledge, an observer 

equation in continuous time (based on Ref. [95]) is assembled as 

 
ˆˆ ˆ ˆ ˆ( ) ( ( ), ( )) ( )( ( ) ( ))

ˆˆ ˆ ˆ( ) ( ( ), ( ))

t t t t t t

t t t

= + −

=

&x f x u K y y

y h x u
 (45) 

where 
ˆˆ( ) nt R∈x  is the filter state vector and 

ˆˆ( ) mt R∈u  is the filter input vector. In general, the filter 

inputs correspond to the same system inputs, i.e. ˆ =u u  and m̂ m= . The filter output vector 
ˆˆ( ) rt R∈y  is 

determined from the aircraft sensor information, i.e. defined to replicate the available aircraft 

measurements, ( ) rt R∈y . As the filter output is designed to reproduce the available measurement 

structure and work with the output error ˆ−y y , normally r̂ r= . As will be seen, estimation of the aircraft 

states ( ) nt R∈x , the ultimate objective of the observation, will be obtained from the filter states, i.e. 

ˆ⊆x x .  

In order to facilitate the application of the extended Kalman filter algorithm, aircraft dynamics and 

observation equations ( ) ( ( ), ( )) ( )t t t t= +&x f x u v  and ( ) ( ( ), ( )) ( )t t t t= +y h x u w  are assumed to be 
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additively corrupted by signals v  and w , which are assumed to be Gaussian, uncorrelated, and of 

appropriate dimensions, i.e. ( ) nt R∈v  and ( ) rt R∈w . From Equation (45), the gain ( )tK , to be computed 

by the extended Kalman filter algorithm, is in general a time-varying matrix that accounts for non-

stationary noise statistics, and adjusts to time-varying linear representations of the nonlinear system under 

different dynamic conditions. Under the assumption of stationary noise, a constant Kalman gain K  may 

be calculated off-line for a chosen trim condition, and may be used in Equation (45). This type of 

simplification is a viable solution when there is not enough computational power available to calculate the 

Kalman gain in real-time. However, this restricts the operation to the vicinity of the assumed trim 

condition. Despite these assumptions, the dynamic or propagation function f  and the observation 

equation h  still include all known information of the system, increasing the chance of an acceptable 

estimation. 

Using the Euler discretization method, a same order n̂  discrete version of the continuous model is 

obtained, defined at each sampling time interval T∆ , to be used in the discrete Kalman filter: 

 
ˆˆ ˆ ˆ ˆ[ 1] [ ] [ ( [ ], [ ])

ˆˆ ˆ ˆ[ ] ( [ ], [ ])

k k T k k

k k k

+ = + ∆

=

x x f x u

y h x u
 (46) 

where the index [ ]k  corresponds to time ( )t  sampled at t k T= ∆ . The discrete extended Kalman filter 

algorithm (Ref. [95]) is defined as follows: 

 1

ˆˆ ˆ ˆ[ / 1] ( [ 1 / 1], [ 1])

[ / 1] [ 1] [ 1 / 1] [ 1] [ 1]

[ ] [ / 1] [ ]( [ ] [ / 1] [ ] [ ])

ˆˆ ˆ ˆ ˆ[ / ] [ / 1] [ ]( [ ] ( [ / 1], [ ]))

[ / ] [

T

T T

k k k k k

k k k k k k k

k k k k k k k k k

k k k k k k k k k

k k I

prediction

correction

−

− = − − −

− = − − − − + −

= − − +

= − + − −

= −





x f x u

P F P F Q

K P H H P H R

x x K y h x u

P K[ ] [ ]] [ / 1]k k k k −





 H P

 (47) 

Two phases are defined in this discrete observer, i.e. the prediction and correction steps. In the 

prediction stage, no new information is considered and the one-step ahead prediction state vector at time 

[ ]k , i.e. ˆ[ / 1]k k −x , is obtained by using the propagation equation f̂  based on previous values of state 
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and input vectors at time [ 1]k − . In the correction phase, the predicted state vector ˆ[ / 1]k k −x  is 

corrected, delivering ˆ[ / ]k kx  based on the difference between the output measurement at time [ ]k  and its 

predicted value, i.e. the output prediction error ˆ ˆ[ ] ( [ / 1] )ˆ, [ ]k k k k− −y h x u , scaled by the updated Kalman 

gain [ ]kK . 

In Equation (47), P  acts as the state error ( )ˆ−x x  covariance and matrices F  and H  constitute the 

Jacobian of the propagation equation f̂  and observation equation ĥ , respectively 

 

[ ] [ ] [ ]ˆ ˆ ˆ1/ 1 , 1 / 1

ˆ ˆ
[ 1] [ ]

k k k k k

k k

− − − −

∂ ∂
− = =

∂ ∂
x u x

f h
F H

x x
 (48) 

For nonlinear systems operated close to a trim point, these Jacobian matrices become nearly constants 

and can be computed off-line. The extended Kalman filter reduces to the Kalman filter and the algorithm 

in Equation (47) greatly simplifies. Matrices Q  and R  are the covariance matrices of the propagation 

equation noise v  and observation equation noise w , respectively. Under the assumption of stationary 

noise statistics, these covariance matrices become constant. Under the concurrence of the previous two 

assumptions, i.e. system linear behavior and stationary noises, matrices P  and K  become independent 

of the Kalman algorithm execution and their asymptotic values can be computed off-line. This is a further 

simplification of the algorithm. 

2.3 Extended Kalman Filter Application 

An extended Kalman filter is designed for a 40%  scale Yak 54 UAS, defined by 
221.11[ ]S ft= , 

10.16[ ]b ft= , 2.19 [ ]c ft= , 1.71 [ ]m lbm= , 
30.002295[ / ]slug ftρ = , 

24.2277 [ ]xxJ slug ft= ⋅ , 

29.9008 [ ]yyJ slug ft= ⋅ , 
211.4716 [ ]zzJ slug ft= ⋅  and 

20 [ ]xzJ slug ft= ⋅ . The filter state vector x̂  and 

input vector û= u, with ˆ 31n =  and ˆ 4m m= = , are defined respectively as: 

 
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ
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V P Q R a a a H H H

α β φ θ ψ δ δ δ δ

α β

 
=  
  

L

L
x  (49) 

 [ ]cmd cmd cmd cmd

T
T E A Rδ δ δ δ=u  (50) 
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The output equation vector ˆˆ ˆ( ( ), ( ))t ty = h x u , with ˆ 24r = , is defined as: 
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 (51)  

Measurements include inertial position (GPS), Euler angles (IMU), body angular rates (IMU), airflow 

angles vane and airspeed probe, 3D magnetic flux, body angular rate (3D gyros), translational 

accelerations (3D accelerometers), and elevator, aileron and rudder deflections. 

The state equation vector ˆˆ ˆ( ) ( ( ), ( ))t t t=&x f x u  is defined as: 
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where, besides the aircraft model from Equation (43), wind components ˆ ˆ ˆ, ,N E Hw w w  are added as states, 

as well as a set of measurement biases, i.e. airspeed and airflow angle biases ˆˆ ˆ, ,Tb b bV α β , body angular 
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rates biases (3D gyros) ˆˆ ˆ, ,b b bP Q R , body translational acceleration biases ˆ ˆ ˆ, ,Xb Yb Zba a a , and magnetic flux 

biases ˆ ˆ ˆ, ,Xb Yb ZbH H H . Subscripts , ,X Y Z  refer to body reference frame B  and subscript b  indicates bias 

of the associated state. Body velocities ˆ ˆ ˆ, ,U V W  are defined in terms of ˆˆ ˆ, ,TV α β , as in Equation (15), and 

body accelerations ˆ ˆ ˆ, ,U V W
& & &

, as in Equation (44), are rewritten here 
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Aerodynamic forces ˆ ˆ ˆ, ,
A A A

X Y Z  and moments ˆ ˆ ˆ, ,
A A A

L M N , defined by Equations (18) and (19), 

respectively, follow the linear component build-up approach detailed in 1.2.3.1, obtained for an airspeed 

trim condition of 70T trimV =  [knots]. Based on Chapter 1, and to complete the UAS modeling, stability 

and control derivatives from Ref. [99] are employed. These parameters were calculated, using the 

software Advanced Aircraft Analysis (AAA) developed by Design, Analysis, and Research Corporation 

(DARcorporation, Ref. [100]), for a straight and level flight at a constant altitude and at a constant speed 

of 70  [knots]. Table I summarizes the stability and control derivatives of the 1/3 scale Yak54. 

Following the approach in 1.2.2, thrust T  is modeled as a function of throttle deflection Tδ , i.e. 

2 2 1 0( , ) ( ) ( )P
X T X T XT X t T t T t Tδ δ= = ⋅ + ⋅ +x , where parameters 2 0XT = , 1 0.3815XT =  and 0 0TT =  were selected 

to approximate a linear function matching flight test data at the selected trim point. 

To complete the observation equation ĥ  in (51), the estimated body-axes magnetic flux ˆ ˆ ˆ, ,X Y ZH H H  is 

associated to existent inertial magnetic flux 0 0 0, ,N E DH H H  through Euler angles, as follows: 

 ( )
0

0

0

ˆ ˆ

ˆ ˆˆ ˆˆ, ,

ˆ ˆ

X XbN

B
Y I E Yb

DZ Zb

H HH

H H H

HH H

φ θ ψ

    
    = +    
           

C  (54) 

where B
IC  corresponds to the rotation matrix from inertial coordinate system I  to body coordinate 

system B . Using, for example, NOAA Earth's Magnetic Field Calculator, the inertial magnetic flux 
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0 0 0, ,N E DH H H  associated with the flight test area and flight date (assumed fixed), is obtained (based in 

Ref. [26]). Observation equation h  is then completed, inserting Equations (54) into Equation (51). 

2.3.1 Gain Scheduling Off-line Kalman Gain Matrices 

When flight operation is expected to strictly occur in the vicinity of a trim condition, and noise 

features are assumed to be invariant, online calculation of the Kalman gain matrix K , associated state 

error covariance P , Jacobians F  and H , and covariance matrices Q  and R  can be replaced by an off-

line computation. 

Both observation and propagation equations, (51) and (52), respectively, are directly or indirectly 

functions of yaw angle ψ̂ . Linearization of these equations over the same trim point, in terms of airspeed 

and flight condition, e.g. straight and level flight, but at different yaw values, will vary from one azimuth 

to another. This means that each linearization and its corresponding constant Kalman gain K  will be 

Table I. AAA Stability and Control Derivatives for 40% Yak 54 at 70  Knots 

Parameter Value Units Parameter Value Units 

0DC  0.023 [-] yC β  -0.4118 [1/rad] 

DC α  -0.0027 [1/rad] yC β&  0 [1/rad] 

D eC δ  -0.0004 [1/rad] ypC  0.0116 [1/rad] 

DC α&  0 [1/rad] yrC  0.3557 [1/rad] 

DqC  0 [1/rad] y aC δ  0 [1/rad] 

DuC  0.0011 [1/rad] y rC δ  0.2931 [1/rad] 

0LC  0 [-] lC β  -0.0336 [1/rad] 

LC α  5.0060 [1/rad] lC β&  0 [1/rad] 

L eC δ  0.4160 [1/rad] lpC  -0.3740 [1/rad] 

LC α&  2.3669 [1/rad] lrC  0.0602 [1/rad] 

LqC  7.3911 [1/rad] l aC δ  0.2593 [1/rad] 

LuC  0.0017 [1/rad] l rC δ  0.0242 [1/rad] 

0mC  0.0103 [-] nC β  0.1417 [1/rad] 

mC α  -1.0286 [1/rad] nC β&  0 [1/rad] 

m eC δ  -1.0369 [1/rad] npC  -0.0189 [1/rad] 

mC α&  -5.9000 [1/rad] nrC  -0.1971 [1/rad] 

mqC  -10.664 [1/rad] n aC δ  -0.0071 [1/rad] 

muC  0.0002 [1/rad] n rC δ  -0.1674 [1/rad] 
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valid only at one azimuth. This validity quickly degrades when moving away from the trimmed yaw 

angle, even if the aircraft maneuvers slowly, keeping small perturbed states. 

To neutralize the dependence of the linearization of f̂  and ĥ  on ψ̂ , a gain scheduling technique is 

proposed among a set of homogeneous precomputed Kalman gains, obtained for different yaw angles. 

Under the assumption of small departure from a common trim condition, i.e. a particular airspeed, the 

Kalman gain can be interpolated among consecutive Kalman gains as a function of the current yaw angle. 

For example, for the 40%  scale Yak 54 UAS flying at 70  knots in a steady state horizontal flight, a 

set of constant Kalman gain matrices iK  are obtained for 1, ,18i = L  different equally spaced yaw values, 

i.e. [0 ,20 ,40 ,60 ,...,300 ,320 ,340 ,0 ]iψ = o o o o o o o o
. 

For the given conditions, all Kalman gain matrices iK  share the same structure and nature, allowing 

an interpolation technique to be used among them. The interpolation is done per each entry. This gain 

scheduling among each entry of consecutive matrices, as a function of the yaw angle, provides a 

continuous time-varying Kalman gain as a function of yaw angle, i.e. ( )ψK . The idea is depicted in 

Figure 13. 

The implementation is materialized by using a lookup table as a function of yaw angle where the 

output is the interpolated Kalman gain matrix ( )ψK . Under previous assumptions of linearized behavior 

1( )K 1,1 L 1( )K 1,m

1( )K n,1 1( )K n,mL

MM O

19 ( )K 1,1 L 19 ( )K 1,m

19 ( )K n,1 19 ( )K n,mL

MM O

ψ

ψ ψ

ψ

( )ψK

19K

1K

 
Figure 13. Kalman Gain Matrix Gain Scheduling. 
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and stationary noises, and based on the simplified Kalman gain approach detailed in 2.2, the following 

filter is defined: 

 
ˆˆ ˆ ˆ[ / 1] ( [ 1 / 1], [ 1])

ˆˆ ˆ ˆ ˆ[ / ] [ / 1] ( )( [ ] ( [ / 1], [ ]))

k k k k k

k k k k k k k kψ

− = − − −

= − + − −

x f x u

x x K y h x u
 (55) 

To illustrate the severity of this yaw angle dependency, Figure 14 shows the first ten entries from the 

first row, (1,1) (1,10)K KL , as a function of yaw angle ψ . A sinusoidal pattern, with important changes 

in absolute magnitude and sign, emerges. This graph confirms the fact that linearization of propagation 

and observation equations used in the current filter, at similar trim conditions but at different yaw angles, 

are different, and this fact needs to be considered in the application of the off-line Kalman gain filtering. 

2.3.2 EKF Test Results 

The developed EKF is applied to a 40%  scale Yak 54 UAS. Previously stored flight test data, as well 

as simulated data, are used to test the filter. 

2.3.2.1 EKF Simulation Data Results 

The EKF is tested in simulation. The aircraft is engaged to follow a predefined closed trajectory, and 

airflow angles and airspeed measurements are subject to biases during flight. Also, wind is injected into 

 
Figure 14. Kalman Gain Matrix Subset of Entries. 
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the simulation. The following figures show some of the estimation results. Figure 15 shows the initial part 

of the trajectory, when the aircraft is engaged to follow it with an altitude offset. 

Figure 16 (left) shows the angle of attack and the estimated one. Figure 16 (right) shows the angle of 

attack bias and its estimation. 

Figure 17 (left) shows the sideslip angle and the estimated one. Figure 17 (right) shows the sideslip 

angle bias and its estimation. 

Figure 18 (left) shows the airspeed and its estimation. Figure 18 (right) shows the airspeed bias and 

its estimation. 

 
Figure 15. Simulation Data: UAS Trajectory Following. 
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Figure 16. Simulation Data: Angle of attack (left) – Angle of attack Bias (right). 
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All biases were estimated correctly, showing a small level of interference among each other, and 

some induced modulation from the trajectory itself. Airspeed bias takes the highest time to be estimated 

compared with both airflow angles. 

To test the wind estimation, three wind components have been introduced into the simulation at 

different times and different magnitudes. Figure 19 shows North and Down component estimations. 

Wind estimation has oscillatory behavior compared with the biases, although they converge to the 

expected mean values. This behavior limits the type of wind acceptable for this particular observer. Gusty 

winds, by nature quicker and more erratic, cannot be handled optimally by this configuration. This should 

be tackled by the robustness of the inner loop controller as external disturbances. Only slow time-varying 

winds (near-constant winds) are well suited for this observer. 

 
Figure 18. Simulation Data: Airspeed (left) – Airspeed Bias (right). 
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Figure 17. Simulation Data: Sideslip Angle (left) – Sideslip Angle Bias (right). 
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This behavior in biases and wind components estimation is due to the model selected to describe their 

nature. There is no prior knowledge about these entities so biases and wind components are modeled as 

constant values between measurements. 

2.3.2.2 EKF Flight Test Data Results 

EKF is tested with flight test data from a flight at Fort Riley, on May 08
th
 2012. The following figures 

show some of the main results. 

Figure 20 shows the measured and estimated angle of attack (left), and estimated bias (right). Figure 

22 shows the measured and estimated sideslip angle (left), and estimated bias (right). Figure 21 shows the 

measured and estimated airspeed (left) and estimated bias (right). 

  
Figure 20. Flight Data: Angle of Attack (left) – Angle of attack Bias (right). 
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Figure 19. Simulation Data: North Wind Component (left) – Vertical Wind Component (right). 
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Although there is no exact reference to compare with, a reasonable constant bias seems to be a good 

indicator of an acceptable estimation, despite the different maneuvers and flight paths. This is the case for 

angle of attack and sideslip angle. 

Airspeed does not show the same pattern, although this could be consistent with a slow convergence 

time detected at least in simulation (see below). Presumably, in a longer flight the estimated bias should 

settle to a more constant value. This has yet to be tested. 

2.4 Alternative Extended Kalman Filter Design 

By adding extra information such as accelerometer readings to the previous EKF design, a higher 

degree of accuracy and broader operational ranges are possible. Previous development resorts to the linear 

component build-up approach and polynomial modeling, described in Chapter 1, to compute aerodynamic 

  
Figure 22. Flight Data: Sideslip Angle (left) - Sideslip Angle Bias (right). 
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Figure 21. Flight Data: Airspeed (left) – Airspeed Bias (right). 
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and propulsive forces for Equation (53), respectively. Also, due to lack of knowledge of their dynamics, it 

assigns the simplest possible dynamic model to wind components in the state equation f̂  in (52), i.e. 

ˆ ˆ ˆ0, 0, 0N E Hw w w= = =& & & , which corresponds to constants between measurements. Both disadvantages can 

potentially be mitigated by using reliable accelerometer readings as inputs to the filter. 

The following modification to the filter state equation f̂ , adds dynamic equations for the inertial 

velocity ˆ ˆ ˆ, ,N E Hv v v , defined as a function of acceleration measurements delivered by 3D accelerometers, 

labeled , ,X Y Za a a , and restructures the dynamic equations of inertial position ˆ ˆ ˆ, ,N E Hp p p , accordingly. 

 

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ cos cos ( cos sin sin sin cos ) (sin sin cos sin cos )

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ cos sin (cos cos sin sin sin ) ( sin cos cos sin sin )

ˆˆ sin s

N N

E E

H H

N X Y Z

E X Y Z

H X Y

p v

p v

p v

v a a a

v a a a

v a a

θ ψ φ ψ φ θ ψ φ ψ φ θ ψ

θ ψ φ ψ φ θ ψ φ ψ φ θ ψ

θ

=

=

=

= + − + + +

= + + + − +

= −

&

&

&

&

&

& ˆ ˆ ˆ ˆin cos cos cosZa gφ θ φ θ− −

 (56) 

This modification discards the need of any approximated wind model. The filter delivers inertial 

position and speed, and consequently wind speed components are indirectly obtained from 

 

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆcos cos ( cos sin sin sin cos ) (sin sin cos sin cos )

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆcos sin (cos cos sin sin sin ) ( sin cos cos sin sin )

ˆ ˆ ˆ ˆˆ ˆ ˆˆ sin sin cos cos co

N N

E N

H

w U V W v

w U V W v

w U V W

θ ψ φ ψ φ θ ψ φ ψ φ θ ψ

θ ψ φ ψ φ θ ψ φ ψ φ θ ψ

θ φ θ φ

= + − + + + −

= + + + − + −

= − − ˆ ˆs Nvθ −

 (57) 

Also, by studying the body translational accelerations , ,U V W& & &  expressions, shown below, it becomes 

clear the terms the direct readings from accelerometers represent, as indicated: 

 

ˆ ˆˆˆ ˆ ˆ ˆ ˆ ˆ( ) sin sin

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ sin cos sin cos

ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ cos cos cos cos

X

Y

Z

a

P A
X

a

A
Y

a

A
Z

U RV QW X X m g a g

V RU PW Y m g a g

W QU PV Z m g a g

θ θ

φ θ φ θ

φ θ φ θ

= − + + − = −

= − + + + = +

= − + + = +

64444744448
&

644474448
&

644474448
&

 (58) 

Accelerometer measurements then replace the selected terms, directly avoiding any aerodynamic and 

propulsive force approximations. 
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A similar approach can be applied to aerodynamic moments, although it requires an intermediate step, 

with an associated possible level of degradation in their calculation. By analyzing the dynamics of the 

body angular rates in Equation (43), rewritten here: 

 

( ) 2 2

2 2 2

2 2

( [ ] [ ] ) / ( )

([ ] [ ] ) / ( )

([( ) ] [ ] ) / ( )

A A
xz xx yy zz zz zz yy xz zz xz xx zz xz

A
zz xx xz xx zz xz

A A
xx yy xx xz xz xx yy zz xz xx xx zz xz

P J J J J PQ J J J J QR J L J N J J J

Q J J PR J P R M J J J

R J J J J PQ J J J J QR J L J N J J J

= − + − − + + + −

= − − − + −

= − + − − + + + −

&

&

&

 (59) 

aerodynamic moments can be obtained by recovering them from the system of equations. Inertia terms are 

known as well as body angular rates. Body angular rates time derivatives , ,P Q R&& & , required to solve the 

system, are not directly accessible and the accuracy of their calculation, by any independent means, will 

determinate the accuracy level of the aerodynamic moment inference. 

With a reliable procedure in obtaining accurate aerodynamic moments, original filter input vector 

[ ]cmd cmd cmd cmd

T
T E A Rδ δ δ δ=u  can be definitely replaced by the new input vector, defined as:  

 [ ]ˆ
T

X Y Za a a=u  (60) 

with ˆ 3m = . 
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3. Guidance, Navigation, and Control 

3.1 Introduction 

Driving a vehicle is an extremely complex task that requires the convergence of at least three 

interrelated tasks, i.e. guidance, navigation, and control. In general, the navigation task delivers the 

position and velocity of a vehicle with respect to a defined reference frame. If this navigation task is 

placed in closed loop with the vehicle’s actuators to control its position and velocity, guidance and control 

tasks emerge as a direct consequence (see Ref. [29]). The guidance task is then in charge of directing the 

vehicle according to a predefined trajectory. It uses the information from the navigation task to determine 

the relative errors with respect to the trajectory. Based on this information, it actuates the controls to drive 

the vehicle and decrease those errors. Guidance and control tasks are normally fed by measured or 

estimated representative variables of the vehicle. Any vehicle-based mission, either manned or unmanned, 

will require the interdependent tasks of guidance, navigation, and control (GNC), to accomplish any 

particular mission.  

Different combinations of these three tasks have been reported, but the most widely used is the 

employment of two control loops, denominated outer loop and inner loop. In this configuration, guidance 

and navigation tasks are assigned to the outer loop, while the control is assigned to the inner one. Much 

less common is an integrated design of these tasks. Ref. [30] presents an integrated design of guidance 

and control algorithms for autonomous vehicles through a simultaneous process achieving zero steady 

state error about a trim point, guaranteeing stability and avoiding possible cross coupling between loops. 

One of the main concerns of this standard design of two separated nested loops is that, given the way 

they are interconnected, both loops are strongly coupled, i.e. the inner loop lies inside the outer loop. This 

severe condition imposes the requirement of avoiding mutual interference and loss of stability. 

Separately, each design may be highly stable on its own, but their interconnection can become unstable. 
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From some of the approaches that have been developed to implement guidance tasks for the outer 

loop, Ref. [31] presents a lateral track guidance based on the geometry existent between the path and the 

aircraft position and velocity vectors, and a control law based on fixed gains. It is designed for a UAS in 

the presence of strong winds. In Ref. [32], a different technique is presented where a trajectory tracking 

problem is formulated as a constrained nonlinear optimization problem. Ref. [33] introduces nonlinear 

guidance logic for curved trajectory tracking, which reduces down to a proportional-derivative control 

approximation when applied to straight lines. 

To improve the guidance task, Ref. [34] and [35] include horizontal wind information. This is an 

important addition, especially for small UAS where wind has a significant effect. A different approach for 

path following is presented in Ref. [36] where 2D vector fields are used to represent desired ground tracks 

generating course inputs for an inner loop attitude control. 

More recently, in Ref. [37] a Lyapunov-based adaptive back stepping approach is used to design a 

flight-path controller for a nonlinear F-16 model. A smooth prescribed inertial trajectory is asymptotically 

tracked in the presence of actuator failures and uncertainties in the stability and control derivatives. In a 

different approach, Ref. [38] proposes a spatial-temporal trajectory tracking capability for a fixed-wing 

aircraft in a time critical mission. 

For the inner loop, gain scheduling seems to be the most widely used solution to actuate the aircraft 

controls. Gain scheduling, able in principle to control nonlinear systems over a broader range of operation 

where linearity assumptions are no longer valid, works by interpolating linear, time-invariant controllers. 

A set of predefined controllers is kept available where each controller was optimally calculated for a 

particular operating point, achieving stability and performance in its vicinity. Based on the aircraft 

dynamic condition, switching among controllers is done by interpolating their entries. Although each 

controller assures stability in the neighborhood of its respective trim point, transition stability is not 
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necessarily achieved. Ref. [39] studies the transition between controllers and defines the requirement for 

preserving stability, and Ref. [40] and [41] present detailed analysis and design considerations. 

A number of different approaches in gain scheduling have been applied to UAS. As one of the first 

robust gain scheduling designs, Ref. [42] designs an H-infinity gain scheduling controller for pitch-axis 

by interpolating poles, zeros, and gains among four fixed trim point controllers. Alternatively, Ref. [43] 

proposes an interpolation of the Riccati equations associated to longitudinal H-infinity designs. Ref. [44] 

applies the Linear Parameter-Varying (LPV) control technique to missile pitch-axis dynamics. Reference 

[45] presents two approaches to control a longitudinal nonlinear model of a UAS, simplified as an LPV 

model, over the entire range of cruise speeds. The first approach formulates the variability of the LPV 

model over the range of speeds as unstructured uncertainty and designs a unique robust controller able to 

stabilize the system over the entire range. The second approach linearly interpolates between two robust 

controllers calculated at the two extreme velocities, performing gain scheduling as a function of the 

instantaneous total velocity. The work done in Ref. [46] applies gain scheduling by using a second-order 

model that represents the longitudinal dynamics of an aircraft. This approach allows the scheduled gains 

to be adjusted against rapidly-varying system states. 

The present chapter will elaborate on inner and outer loop concepts, presenting a development of gain 

scheduling among robust linear controllers for the 33%  scale Yak 54 UAS in the inner loop, and 

describing stable nonlinear guidance logic for the outer loop in the lateral and longitudinal planes. In 

particular, guidance laws developed here will be used in the following chapter in the design of an 

integrated nonlinear and predictive guidance and control algorithm.  

3.2 Inner and Outer Loops Design 

3.2.1 Inner Loop 

The inner loop is composed of a set of robust H-infinity controllers and a mechanism to perform gain 

scheduling based on dynamic conditions. Designing a set of linear time invariant controllers requires 



64 

 

linear time invariant UAS representations in each equilibrium point. For this purpose, based on dynamic 

equations developed in Chapter 1, the UAS’s nonlinear state space model is denoted ( ) ( ( ), ( ))t t t=&x f x u  

and ( ) ( ( ), ( ))t t t=y h x u  for propagation and observation equations respectively, with input 

( ) = [ , , , ]T cmd cmd cmd cmd
t e a rt δ δ δ δu , output ( ) ( ( ), ( )) [ ( ), ( ), ( ), ( )]TTt t t V t t t tθ φ β= =y h x u , and state ( )tx . This 

model is to be linearized at each equilibrium point ( , , )i i i
e e ex u y , indexed by superscript i . Subscript e  

refers to a particular equilibrium point, or trim point. At each equilibrium point, a truncated Taylor series 

expansion of the state space equations, up to first order derivatives, 

 

( ) ( , ) ( ( ) - ) ( ( ) - )

( ) ( , ) ( ( ) - ) ( ( ) - )

i i
e e
i i
e e

i i
e e
i i
e e

i i i i
e e e e

i i i i
e e e e

t t t

t t t

∂ ∂
≈ + +

∂ ∂

∂ ∂
≈ + +

∂ ∂
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x x

u u

x x

u u

f f
x f x u x x u u

x u

h h
y h x u x x u u

x u
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gives the set of linear representations of the system at equilibria. The following linear time invariant 

model, denominated 
i

G , is obtained for control design purposes 

 
( ) = ( ) ( )

( ) = ( ) ( )

i i
G G

i i
G G

t t t

t t t

∆ ∆ + ∆

∆ ∆ + ∆

&x A x B u

y C x D u
 (62) 

This is done after canceling out constant terms, defining ( ) ( ) - i
et t∆ =x x x , and relabeling the following 

partial derivatives evaluated at each equilibrium: 

 

i i
e e
i i
e e

i i
e e
i i
e e
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As shown in Figure 23, each linear model 
i

G  is augmented by the addition of the dynamic weighting 

matrices 1W , 2W  and 3W , becoming plant 
i

P , with inputs 
1 2

1 2,m mR R∈ ∈u u  and outputs 

1 2

1 2,p pR R∈ ∈y y . Appropriately shaping particular closed loop sensitivity functions, by using the 

singular values of these frequency-dependent weighting matrices, otherwise conflicting performance 
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objectives, namely low frequency reference tracking and disturbance rejection and high frequency noise 

cancellation, are harmonized. 

Plant 
i

P  is then expressed as 

 

1 1 2 2

1 1 11 1 12 2

2 2 21 1 22 2

i i i
P P

i i i
P

i i i
P

= + +

= + +

= + +

&x A x B u B u

y C x D u D u

y C x D u D u

 (64) 

where superscript i  continues to be the index among the set of augmented plants 
i

P  corresponding to 

each linearized plant i
G . Notice that the states Px  of the augmented plant 

i
P  contain both the original 

states ∆x  of plant i
G  and the weighting matrices states. 

A condition that greatly facilitates the gain scheduling procedure is to have a homogeneous augmented 

plant set in terms of structure, states, inputs, and outputs (or equivalently in terms of zeros and poles), and 

the same controller design technique. Given the aircraft dynamics do not change in nature along the range 

of equilibrium points, and because weighting matrices and control design technique are kept fixed for all 

linearization points, the condition is attained. 

The chosen control design technique is the H∞  linear robust controller. Based on Ref. [96] and [97], if 

the set of assumptions described below are met, then a suboptimal H∞  control synthesis will provide a 

controller 
i

K  that internally stabilizes the closed loop system such that 

 {1 1 1 1( ) sup [ ( )]y u y u

jw

s jwσ γ
∞
= ≤T T  (65) 
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Figure 23. Augmented System. 
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for a given 0γ > . 1 1y uT  is the closed loop transfer function from exogenous inputs 1u  (including 

references, disturbances, and noises) to controlled output 1y  (including weighted error, control, and 

output signals). In the present work, 1 1y uT  is constructed as follows: 

 1 1

1

2

3

( ) ( )

( ) ( ) ( )

( ) ( )

y u

s s

s s s

s s
∞

∞

=

W S

T W R

W T

 (66) 

as a combination of desired weighted closed loop objectives, ( )sS , ( )sR  and ( )sT , representing 

sensitivity, output sensitivity, and complementary sensitivity, respectively. Weighting the closed loop 

functions allows their joint minimization. For an effective low frequency reference tracking and 

disturbance rejection, weighting matrix 1W  is built to have high singular values at low frequency range. 

For noise cancelation at higher frequencies, 3W  is designed to have high singular values in those higher 

frequencies. The weighting matrix 2W  is designed as a constant matrix to penalize the control effort from 

getting unrealistic values and saturating actuators. Figure 24 shows an example of the singular values of 

the dynamic weightings chosen for the current requirements. 

The previous assumptions are 

a. 2( , )i i
A B  stabilizable and 2( )i i

C ,A  detectable, 

b. 12 2( )irank m=D  and 21 2( )irank p=D , 

 

Figure 24.  Weighting Matrices 1W  and 3W  Singular Values. 
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c. 212 [0 ]i T
mI=D  and 221 [0 ]i

pI=D , and 11
i

D  is expressible as 

 

{ {

{ {

1 2 1 2 1 2 2

2 1 2 2 2

1111 1112

( ) ( ) ( ) ( )
11

1121 1122

( ) ( ) ( ) ( )

i i

p m x m p p m x pi

i i

m x m p m x p

− − −

−

 
 

=  
 
 

D D

D
D D

 (67) 

d. 22 0i =D . 

e. 
2

2

1 12

i i

i i

jwI
rank n m

 −
= + 

 

A B

C D
. 

f. 
1

2

2 21

i i

i i

jwI
rank n p

 −
= + 

 

A B

C D
. 

If assumption c is not achieved by the chosen weighting matrices, it still can be obtained via scaling of 2u  

and 2y  together with a unitary transformation of 1u  and 1y . After previous assumptions are met, there 

exists some 0iγ >  for which the following relations hold 

 

( )

( )

1111 1112 1111 1112

2

max ,

0 0

( )

i i i T i T i

i i

i i i

and

σ σ γ

ρ γ

    <   
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⋅ <

D D D D

X Y

X Y

 (68) 

This is equivalent to the existence of an internal stabilizing suboptimal controller 
i

K  

 

1 2

1 11 12

2 21 0

i i i

i i i i

i i

 
 =  
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A B B
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C D

 (69) 

whose components are given by 
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and 12
i

D  and 21
i

D  are any matrices satisfying the relation ( ) 1
2

12 12 1121 1111 1111 1121( )
i i T i i i T i i T

Iγ
−

= − −D D I D D D D  

and the relation ( ) 1
2

21 21 1112 1111 1111 1112( )
i i T i i i T i i T

Iγ
−

= − −D D I D D D D , respectively. The feedback 
i

F  and 

state feedback 
i

H  matrices are defined 
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where 
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Matrices 
i

X  and 
i

Y  are the solutions of the following Riccati equations 
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 (76) 

The reason for choosing a robust controller design is the inevitable existence of uncertainty in the 

description of the aircraft. Depending on the available model mismatch knowledge, whose complete 
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depiction is undefined, uncertainty can have several approximate formulations. A common way to 

characterize model uncertainty is through parameter uncertainty. As will be shown below, because the 

current aircraft modeling has two different sources of stability and control derivatives, any individual 

derivative mismatch defines a range, i.e. a parameter uncertainty formulation. 

In order to facilitate the characterization of parameter uncertainty, a linear fractional transformation 

(LFT) is employed. Uncertainties are extracted and packed into i∆∆∆∆  following the procedure detailed in 

Ref. [97] shown in Figure 25, leaving a deterministic plant ˆ i
P , as opposed to the previous uncertain plant 

i
P . The LFT interconnection is defined as follows 
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1 1 21 22 23 1
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 (77) 

or as 1 1 1
ˆ ˆ( ( , ), ) ( ( , ), )i i i i i i

u l l u= =y F F P K u F F P K u∆ ∆∆ ∆∆ ∆∆ ∆ , where lF  corresponds to the lower LFT and uF  to 

the upper LFT. 

1y
1u

2y2u

i∆∆∆∆
ηηηη

ˆ i
P

i
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Figure 25. General LFT Interconnection. 
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Figure 26. Small Gain Theorem Interconnection. 
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By the following Small Gain Theorem, assuming 1∞∆ ≤ , the interconnected system shown in Figure 

26 is internally stable if and only if ˆ( , ) 1i i
l ∞ <F P K . 

Theorem 2: Small Gain Theorem Under the assumption that MIMO linear systems 1( )S s  and 

2 ( )S s  are stable, the closed loop transfer function matrix from 1 2( , )u u  to 1 2( , )e e , as shown in Figure 

26, is stable if the small gain condition 

 1 2( ) ( ) 1S jw S jw
∞ ∞

<  (78) 

is satisfied. 

Demonstration Omitted, see Ref. [98]. 

For each uncertain parameter, an uncertainty range is built considering the highest and lowest values. 

These extreme values are used to calculate a central value and a half range value. With this information, a 

normalized uncertainty range is constructed and pulled out of the plant. Figure 27 shows the arrangement 

for a multiplicative parameter unp . Rearranging unp  in terms of its central value C
unp  and half range value 

H
unp  leaves its uncertainty block with 1i

j ∞∆ ≤ . From pulling out of the system i
P  each uncertainty block, 

an integrated block i∆∆∆∆ , from 1[ , , , ]Tjυ υ= L Lυυυυ  to 1[ , , , ]Tjη η= L Lηηηη , is assembled as shown in Figure 

25. 
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Figure 27. Uncertainty Normalization. 
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3.2.1.1 Criterion for the Selection of Weighting Matrices  

After normalizing by γ  the following conditions can be defined from Equations (65) and (66) 
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 (79) 

These conditions can be restated as: 
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 (80) 

These relations establish a direct connection between the desired ( )sS , ( )sR  and ( )sT  closed loop 

functions and the shape of the weighting matrices’ singular values. For an effective low frequency 

reference tracking and disturbance rejection, and high frequency additive noise and/or bias cancelation, 

the following frequency domain specifications can be defined: 

a. Steady state error less than SA  

b. Closed-loop bandwidth close to w  

c. Amplification of high frequency additive perturbation, as noise and/or biases, less than TA  

These specifications can be translated into the following weighing matrices, where the term diag 

denotes a diagonal matrix: 

 

1

3

( )

( )

S

S

T

T

s
w
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s A w

w
s
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A s w
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 +  
=  

⋅ + 
  

W

W

 (81) 

For large values of 1/ SA  and 1/ TA , SM  and TM  are not significant and can be set to one. Closed loop 

bandwidth w  is commonly bounded from above by the frequency content of the additive perturbations. 
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3.2.2 Outer Loop 

The ultimate task of the inner loop controller, in this case robust, is to drive the aircraft by 

commanding the actuators to follow external commands generated by the outer loop. It, essentially, 

performs this task by minimizing the error between the external commanded states and the measured 

current states of the aircraft in a robust and stable way. For the actual design, this minimization is done 

over the errors in airspeed, pitch angle, bank angle and side slip angle, represented as: 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

T

cmd
V T T

cmd

cmd

cmd

e t V t V t

e t t t

e t t t

e t t t

θ

φ

β

θ θ

φ φ

β β

= −

= −

= −

= −

 (82) 

The task of the outer loop is to guide the aircraft to follow a trajectory path composed of straight 

segments { , , , }Lab bc cd  subtended between waypoints { , , , }
rr r

La b c . Inertial speed is also assigned to 

each segment. To this end, it has two main subtasks: one is to generate the attitude commands 
cmdφ  and 

cmdθ  based on the current inertial position , ,N E Hp p p , inertial speed , ,N E Hv v v , and the relative location 

of the aircraft with respect to the segment under track. The second subtask is to generate the airspeed 

command cmd
TV  based on the segment inertial speed abV  after considering the existing wind. The sideslip 

command 
cmdβ  does not require any specific logic as it is set to zero during the entire flight. 

The logic required for the generation of attitude commands 
cmdφ  and cmdθ  to keep the aircraft on track 

is based on a nonlinear guidance logic developed in Ref. [33] for lateral guidance, which originally 

generates 
cmdφ . 

The present research not only extends the logic to calculate cmdθ , but also adds new features for both 

attitude angle commands, ensuring stability for any initial location and any initial attitude of the aircraft. 

Stability, in the sense of Lyapunov, is demonstrated for the extended logic. 

The aircraft model, previously defined in Equation (43) and related equations, is augmented by 

embedding guidance laws and the trajectory information assumed to be known. Strictly speaking, from 
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the predefined trajectory, which is composed of straight segments subtended between consecutive 

waypoints, only the current or active segment is required, allowing online trajectory adjustments. The 

main variables to be generated and used by the outer loop, as well as by the predictive controller 

formulation and operation, as will be seen in the next chapter, are two angular errors (lateral and 

longitudinal referred to the segment) to be defined as new variables of the model. Part of the task of the 

inner loop controller will be to minimize these angular errors, generating a robust and feasible control, 

keeping a tight trajectory following. These angular errors are not originally defined in the aircraft model 

so their formulation, as a result of the current trajectory segment data and the guidance logic, is 

incorporated as new variables. This guidance logic, which was originally proposed for lateral nonlinear 

guidance in Ref. [33], is extended to the longitudinal plane and modified to extend its stability. 

The trajectory is composed of straight segments delimited by an ordered list of waypoints that includes 

their inertial location and associated inertial speed. The principle behind the trajectory following concept 

is to keep the UAS close to the current segment indirectly by minimizing lateral and longitudinal angular 

errors. A dedicated logic is incorporated to determine which segment is under tracking and when to 

switch to the next one in advance to avoid excessive overshoots and trajectory departures. This logic 

assumes the trajectory following starts from the first segment (subtended between the first two 
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Figure 28. Guidance Law Concept (left) - Switching Logic (right). 
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waypoints). Once the UAS has reached a predefined horizontal distance to the end of the segment (using 

horizontal components of pbd  in Figure 28 (left)), it will automatically change to the next segment 

(subtended between the second and third waypoints); see Figure 28 (right). This logic uses only two 

consecutive waypoints, allowing for the possibility of modifying future waypoints online as needed (e.g. 

for collision-avoidance purposes). 

As shown in Figure 28 (left), the guidance logic calculates the angle η  between the inertial velocity 

vector 
r
V  (to be distinguished from the component of body velocity V ) and the vector 

r
L  subtended 

from the current position 
r
p  of the UAS and an imaginary point 

r
r , located in the segment between 

r
a  to 

r
b . Point 

r
r  is positioned at fixed distance drd  toward the end of the segment from the closest point 

r
d  

with respect to the UAS. As 
r
d  moves, 

r
r  moves in the same direction (see solid red arrow). From the 

geometry it is evident that a small angle η  is equivalent to a small cross track error pdd  (minimum 

distance between the UAS and the segment) and the aircraft moving along the segment, or when the 

aircraft is asymptotically approaching the segment when situated off-track by moving toward point 
r
r . 

This error angle η  is decomposed into two angles, lateral LATη  and longitudinal LONη  angles, as shown in 

Figure 29 (left), referred to the current segment. 
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Figure 29. Longitudinal and Lateral Guidance Law Geometry (left) - Segment Rotations (right). 
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In order to reformulate both angles with respect to the lateral and longitudinal planes of segment ab , 

both vectors [ , , ]TN E Hp p p=
r

& & &V  and ( ) ( ) [ ( ) ( ), ( ) ( ), ( ) ( )]TN N E E H Ht t r t p t r t p t r t p t− = − − −
r r r
L = r p  

must be rotated from the inertial frame I  to a coordinate frame referred to the trajectory segment, labeled 

T , as shown in Figure 29 (right). For this purpose, point 
r
d  is parametrically determined as 
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t d t t q t
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 (84) 

where abd  represents the Euclidean distance between points 
r
a  and 

r
b . The parameter 0 ( ) 1dq t< <  then 

determines the location of point 
r
d  between 

r
a  and 

r
b , perpendicular to 

r
p . 

Point 
r
r  is located at the fixed distance drd  toward the end of the segment (waypoint 

r
b ) and can be 

parametrically defined as 

 

( )

( ) ( ) ( ) ( ) ( )

( )

N

E r

H

r t

t r t t m t t

r t

 
   = = + −  
  

r r rr
r d b d  (85) 

 ( )
( )

dr
r

db

d
m t

d t
=  (86) 

with ( )dbd t  being the distance from point 
r
d  to waypoint 

r
b . Given the characterization of the guidance 

law, point r  is acting as an unreachable pseudo-target located in the trajectory. 

Given the location of its waypoints 
r
a  and 

r
b  with respect to the inertial frame I , each segment is 

characterized by two rotation angles, trackα  and trackβ , as shown in Figure 29 (right). In order to get the 

angular errors LATη  and LONη , both vectors 
r
V  and 

r
L  are converted from the inertial frame I  to the 

segment coordinate frame T  using the following direction cosine matrix operation, T
IC  
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T
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Inertial vectors 
r
V  and 

r
L , referred to the segment coordinate frame T , become 
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From Figure 30, LATη  and LONη  are defined as follows, where the operator 2 2x y x y⊕ = +  is used for 

shortness, 
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The angular errors are required to vary within ,LAT LONπ η π− < < . A simple logic unwraps the lateral 

angle, so if it surpasses one of the limits, it is shifted pertinently in order to stay within the range. On the 

other hand, the longitudinal angle must be constrained to the limits to avoid inverted flight. This 

restriction can be included in the numerical search as a state constraint to assure that it is met. Also, no 

steep trajectory segments are advised. 
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Figure 30. Lateral Angle Calculation (left) - Longitudinal Angle Calculation (right). 
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A further conversion is applied to the angular errors LATη  and LONη  to obtain attitude angle commands 

CMDφ  and CMDθ , commanding variables which will be explicit elements in the augmentation of the model 

formulation toward an integrated representation that performs both guidance and control tasks. These 

angles are translated into attitude commands through the following nonlinear relations 

 

1

1

tan { ( )}

tan { ( )}

Lat

Lat Lat

Lon

Lon Lon

i
cmd a Lat p

i
cmd a Lon p

k
k k

s

k
k k

s

φ η

θ η

−

−

= ⋅ ⋅ +

= ⋅ ⋅ +

 (92) 

where gains pk  and ik  are convenient gains resembling PI controllers. The integral action has been added 

to force the steady state angle error to be zero. The arctangent function acts as a smooth limiter, avoiding 

prohibited growth of the commands. The adaptive gains 
22| | | |Lata LAT LATk =

r r
V L  and 

22| | | |Lona LON LONk =
r r
V L  are used to adequately neutralize changes in the aircraft’s speed due to external 

disturbances, such as wind gusts (see Ref. [33] for more details). Given the nature of guidance logic in 

Equations (92), errors will be zero only when both vectors are aligned and the UAS is flying with zero 

cross distance or when it is pointing toward the trajectory, with no external disturbances. 

A tight trajectory following is achieved when the aircraft is able to follow these attitude commands; 

when the errors ( ) ( ) ( )cmde t t tθ θ θ= −  and ( ) ( ) ( )cmde t t tφ φ φ= −  are small. These objectives are 

supplemented with the minimization of the airspeed state error ( ) ( ) ( )TV Tcmd Te t V t V t= −  and sideslip state 

error ( ) ( ) ( )cmde t t tβ β β= − . By correcting the segment inertial speed abV  based on the current wind, 

( )TcmdV t  is calculated. Also, ( ) 0cmd tβ ≡  as defined before. These four new variables, to be understood as 

the new output of the model, will be the input to the inner loop controller and will be defined as one of the 

objectives of the NMPC minimization in the next chapter. 

Stability in the Sense of Lyapunov 

In order to test the stability of the guidance law, a state space representation of the lateral dynamics 

with 0trackα =  is developed in terms of the variables ( )Lat tη  and ( )pdd t , the later being the shortest 
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distance from the UAS to the trajectory. As shown in Figure 31 (left), relations are defined among 

guidance variables. The dynamic of the variable ( )pdd t  is described as follows 

 ( ) | ( ) | sin( ( ) ( ))c
pd Lat Lat Latd t t t tη η= −

r
& V  (93) 

where positive distance is as shown, and ( )c
Lat tη is defined as ( )1( ) tan ( )c

Lat pd drt d t dη −= . As a sign 

convention, angles measured counterclockwise are taken to be positive. For the dynamics of ( )Lat tη  the 

centripetal acceleration ( )centa t , shown in Figure 31 (left), is defined as 

 
( )

( ( ) ( ))
| ( ) |

centc
Lat Lat

Lat

d a t
t t

dt t
η η− = − r

V
 (94) 

By assuming that the inner controller accomplishes a close tracking of cmdφ , and assuming 

tancenta g φ= , which is valid for coordinated turns, the following dynamics holds 

 
1

2 22 2

| ( ) | ( ) | ( ) | ( )
( ) sin( ( ) tan

( ( ) )( )

Lat Lat Lat dr pd
Lat Lat

pd dr drpd dr

t t t d d t
t t

d t d dd t d

η
η η −−

= + −
++

r r

&
V V

 (95) 

where the speed is assumed to be constant, i.e. | ( ) | 120 [ / sec] 70Lat t ft knots= ≈
r
V , 0Latik = , 1 2Latpk g= , 

and 300 [ ]drd ft= . From the dynamics defined in Equations (93) and (95), an autonomous nonlinear state 

space system is assembled that is useful in evaluating the guidance logic stability. Using a numerical and 

graphical solution, these equations are propagated in time for different initial conditions. Figure 31 (right) 

shows the phase portrait of the autonomous system. The lateral guidance logic is asymptotically stable in 
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Figure 31. Lateral guidance Geometry (left) - Phase Portrait for Lateral guidance (right). 
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the sense of Lyapunov for any initial distance pdd  and Latπ η π− > > , as all trajectories converge to the 

origin. 

3.3 Guidance, Navigation, and Control Testing 

In this section, the preceding guidance, navigation, and control developments are tested and compared 

against previous 33%  scale Yak 54 UAS flight test data. The aircraft is defined by 
210.8997[ ]S ft= , 

7.92[ ]b ft= , 1.45[ ]c ft= , 0.89 [ ]m lbm= , 
30.002295[ / ]slug ftρ = , 

21.0886 [ ]xxJ slug ft= ⋅ , 

22.1068 [ ]yyJ slug ft= ⋅ , 
23.0382 [ ]zzJ slug ft= ⋅  and 

20.05[ ]xzJ slug ft= ⋅ . 

To complete the UAS modeling from Chapter 1, stability and control derivatives from Ref. [99] are 

employed. These parameters were calculated using the software Advanced Aircraft Analysis (AAA) 

developed by Design, Analysis, and Research Corporation (DARcorporation, Ref. [100]) for a straight 

and level flight at a constant altitude and at a constant speed of 70  [knots]. Table II summarizes the 

stability and control derivatives of the 1/3 scale Yak54. 

Table II. AAA Stability and Control Derivatives for 33% Yak 54 at 70  Knots 

Parameter Value Units Parameter Value Units 

0DC  0.0513 [-] yC β  -0.3602 [1/rad] 

DC α  0.0863 [1/rad] yC β&  0 [1/rad] 

D eC δ  0 [1/rad] ypC  0.0085 [1/rad] 

DC α&  0 [1/rad] yrC  0.2507 [1/rad] 

DqC  0 [1/rad] y aC δ  0 [1/rad] 

DuC  0.0011 [1/rad] y rC δ  0.1929 [1/rad] 

0LC  0 [-] lC β  -0.0266 [1/rad] 

LC α  4.5465 [1/rad] lC β&  0 [1/rad] 

L eC δ  0.3792 [1/rad] lpC  -0.3819 [1/rad] 

LC α&  1.8918 [1/rad] lrC  0.0514 [1/rad] 

LqC  5.5046 [1/rad] l aC δ  0.3490 [1/rad] 

LuC  0.0017 [1/rad] l rC δ  0.0154 [1/rad] 

0mC  0.0020 [-] nC β  0.1022 [1/rad] 

mC α  -0.3937 [1/rad] nC β&  0 [1/rad] 

m eC δ  -0.8778 [1/rad] npC  -0.0173 [1/rad] 

mC α&  -4.3787 [1/rad] nrC  -0.1270 [1/rad] 

mqC  -8.0532 [1/rad] n aC δ  -0.0088 [1/rad] 

muC  0.0002 [1/rad] n rC δ  -0.0996 [1/rad] 
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The AAA is an aircraft design program that has a built-in aerodynamic database for different types of 

aircraft models, based on the theory developed in Ref. [4]. The AAA modeling procedure is based on the 

chosen trim condition and the aircraft geometric parameters.  

The work also employed a vortex lattice model (VLM) as a second method for estimating some of the 

stability and control derivatives. For uncertainty analysis purposes, results from the AAA and AVL 

estimations were compared in Ref. [99] with system identification results using previous flight test data. 

Different values for the same parameter allow the creation of an uncertainty range. As a result of the 

comparison, Table III shows stability and control derivatives, level of uncertainty (maximum and 

minimum), and the resultant center values and half range for each uncertain parameter. 

In order to perform gain scheduling, the same set of information and analysis is required at different 

trim conditions. In this research, for demonstration’s sake, one trim point is presented. 

The 70  knots trim condition is labeled as 1i =  and utilizing a set of weighting matrices as described 

before, a robust controller 
1

K , with 1 1

1( ) 0.543y u s γ∞= =T , is achieved. For the present closed loop 

configuration, after extracting the uncertainty blocks, infinity norm 1 1ˆ( , )l ∞F P K  for each uncertain 

derivative is calculated and shown in Table IV. The last row shows the worst case condition, which is the 

infinity norm for all uncertainties together. By construction 1 1j ∞∆ ≤  and consequently 1 1∞∆ ≤ , the 

Small Gain Theorem ensures that the controller robustness keeps stability facing known parameter 

uncertainty. 

Table III. Stability and Control Derivatives Uncertainty Range 

Parameter Maximum Minimum Central Value Half Range 

mqC  -4.3720 -16.1064 -10.2398 5.8666 

m eC δ  -0.7572 -1.2289 -0.9930 0.2359 

lC β  -0.0220 -0.0314 -0.0267 0.0047 

nrC  -0.1156 -0.2890 -0.2023 0.0867 

n rC δ  -0.0996 -0.1404 -0.1200 0.0204 
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The purpose of this section is to test the guidance, navigation, and control design in simulation 

conceptually comprisng a flight control system (FCS) and to compare its performance with Yak-54 UAS 

autonomous flight test equipped with a COTS autopilot system. For comparison purposes, similar flight 

conditions are induced in the simulation, and the same waypoints/trajectory are used for path following. 

 

 

Figure 32. 3D Path Following. 
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Table IV. Closed Loop Infinity Norm Associated with each Uncertainty 

Parameter 
1 1ˆ( , )l ∞F P K  

mqC  0.3846 

m eC δ  0.2451 

lC β  0.0100 

nrC  0.3816 

n rC δ  0.1674 

All 0.5617 
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As part of the comparison, inner and outer loops and extended Kalman filter, as defined before, are 

functioning. In this subsection, no gain scheduling and no ANN estimations are performed. 

The FCS is set to command the aircraft to follow a trajectory previously flown autonomously by a 

Yak-54 UAS equipped with a COTS autopilot. For the similarity to flight test condition, the same initial 

conditions are used. Also from the flight test data, wind information is extracted to replicate the external 

disturbance. Figure 32 shows 3D views. The flight history of the Yak-54 UAS equipped with a COTS is 

shown in magenta and the simulation is shown in green. 

There is an increase in speed during the rise. Although both systems follow the trajectory, the designed 

FCS presents a tighter tracking, with less cross track errors. 

 

Figure 33. Engine Throttle Deflection (left) – Elevator Deflection (right). 
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Figure 34. Aileron Deflection (left) – Rudder Deflection (right). 
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Figure 33 and Figure 34 show the control signals for both the designed FCS in simulation and the 

COTS autopilot. Some degree of correlation is apparent, with the exception of rudder deflection. By 

design, this COTS autopilot does not command the rudder. This certainly imposes extra demand on the 

aileron deflection and requires higher bank angles when initiating turns. 

Figure 33 and Figure 34 also include the respective simulated servo command. In the simulation, servo 

commands and servo deflections are related by a first order linear system. 

Despite the inherent dissimilarity between the COTS system and designed GNC, some basic but 

important comparisons can be made. 

Figure 35 (left) shows performance comparison between the COTS and the designed FCS following 

airspeed command when a 14.1 [ / sec]ft  wind blows from 291o . The airspeed command has a step 

increment around380 seconds. 

The ground speed is shown in Figure 35 (right), for a larger portion of the flight. It seems that the error 

in airspeed control of the COTS autopilot was the result of bias. This presumption is confirmed by adding 

a constant bias of about 10 12 [ / sec]ft−  to the measured airspeed and disabling the FCS’s Kalman filter 

for an even comparison. After inducing the bias, ground speeds achieve much higher correlation. 

Figure 36 show the attitude angles. The lack of rudder control in the COTS system is revealed in 

required aileron deflection and bank angle to track the trajectory accurately. 

 

Figure 35. Airspeed (left) – Ground Speed (right). 
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It is important to have in mind that the extended Kalman filter takes a few seconds to converge from 

the given initial conditions, affecting the first part of the estimation, but eventually showing a good 

command following after transients. 

3.3.1 Gain Scheduling Testing 

To assess the gain scheduling techniques a hypothetical failure is induced for the same aircraft flying 

at the trim airspeed of 70  [knots], through a change in the numerical value of a stability and control 

derivative. 

The failure is assumed to be successfully detected and identified within a determined time, and a new 

controller is applied. An effective gain scheduling process adjusts the controller and keeps the aircraft 

stability and performance when the adverse condition happens. As a condition for successful gain 

scheduling, the FCS is expected to achieve a similar level of performance and uncertainty management 

before and after the unexpected dynamic changes. 

In a simulated flight, at 120  seconds of a horizontal level flight, the numerical value of nC β  (see Table 

II) is reduced by a factor of 4 . This reflects a sudden change in the UAS dynamics, affecting the stability 

of UAS directionally. As a result of this change, the current controller loses its stabilizing capability and 

oscillation can be traced in the aircraft’s lateral-directional states. 

 

Figure 36. Pitch Angle (left) – Bank angle (right). 
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At approximately 138  seconds of flight, it is assumed that the induced failure has been successfully 

detected, isolated, and identified, and a new robust controller, better adapted to new dynamics, replaces 

the previous one. The resultant period of time taken to implement the gain scheduling (approximately 18  

seconds) is due to the fact that the failure does not show up immediately, as shown in Figure 37 and 

Figure 38.  

The induced failure is an alteration of the rate of change in yaw rate with respect to changes in sideslip 

angle, i.e. nC β , so for an original constant and close to zero sideslip, no immediate effect is observed. 

After sideslip angle starts to change, the failure has a multiplicative effect and grows faster. This is 

evident after 130  seconds. So, for this particular simulation, the failure is not assumed to be detected 

before this moment. 

  

Figure 37. Sideslip Angle (left) – Roll Rate (right). 
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Figure 38. Yaw Rate (left) – Rudder Deflection (right). 
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It is interesting to note that even though the closed loop with the old controller continues to be 

(linearly) stable, the uncertainty robustness is lost, as the infinity norm grows over unity 

1 1ˆ( , ) 4.6355 1l ∞ = >F P K . 
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4. Nonlinear Model Predictive Control 

4.1 Introduction 

Guidance, navigation, and control developed in the previous chapter was designed through two 

disctinct loops, i.e. the outer and inner loops, then mutual interference is not completely discarded. 

Changes known in advance in the dynamic or aerodynamic conditions, due to the inherent nonlinear 

and time-varying nature of the UAS, can be addressed by an online scheduling version of pre-computed 

linear controllers (see for example Ref. [42] for robust designs). These pre-computed control laws lack 

the ability to adjust to unforeseen events like unexpected changes in UAS dynamics due to some failure. 

By redesigning an online controller, or set of them, adaptive control assisted by system identification (see 

Ref. [7]) offers a solution to overcome unanticipated variations in either actuators, sensors, or the UAS. 

Control and state variables and their rates of change are physically restricted to some range. These 

restrictions can be worsened by unexpected failures, augmenting the nonlinearity of the system and 

reducing the stability reserve, imposing severe constraints to be satisfied by the controller. 

The nonlinear model predictive controller (NMPC) approach, as a nonlinear online numerical control 

calculation, is potentially able to solve all previous drawbacks in an integrated and direct way, while 

searching for an optimal control solution (or suboptimal given limitations in computational power) for  

changing dynamics and conditions (Ref. [47]). Theoretically, NMPC is able to include all information 

without coarse approximations or simplifications. Given the required computational resources, it is able to 

use the full updated nonlinear description of the plant, incorporating all constraints, either invariant or 

time-varying, during each search cycle. 

The capability of dealing with an arbitrary set of dynamic equations describing a system suggests the 

idea of integrating both the guidance and control tasks into one single task. Embedding the guidance laws 

and trajectory information into the original UAS model gives an augmented system suitable for integrated 
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numerical work. The numerical solution search, as done by NMPC, is then performed over one system, 

achieving a natively integrated GNC. This, by definition, discards any mutual interference. 

The NMPC has been applied successfully in several areas. Its application to unmanned vehicles is 

more recent and there are still promising advances to make. Ref. [48] applied NMPC to control the 

longitudinal plane of a submarine whose task was to follow the seabed at a constant distance with no prior 

knowledge of its variation. Similarly, Ref. [49] designed a NMPC solution for a rotorcraft-based UAV, 

showing superior tracking performance over conventional multi-loop proportional-derivative controllers. 

Ref. [50] applied linear MPC to a small helicopter easily incorporating control and state constraints. 

Another NMPC application is given in Ref. [51], where a receding horizon control algorithm is used for 

lateral road following using passive sensors. NMPC has also been applied to compute evasive maneuvers 

in pursuit/evasion games using a gradient-descent method, see Ref. [52]. 

Most of the past developments utilize the NMPC formulation in the outer loop, for navigation and 

guidance purposes, leaving the inner loop control task to some commercial autopilot. Although this 

approach reduces the computational power requirement by reducing the size of the nonlinear model 

employed by the NMPC, it does not eradicate potential cross coupling between both loops. Ref. [53], 

which uses NMPC as a high-level tracking controller (outer loop), proved that the complete closed-loop 

system remains stable if a given initial condition can be driven into a predefined set of final states. In their 

work, the inner loop is handled by a commercial low-level controller and the NMPC minimizes the lateral 

cross track error to straight waypoint segments, converting the control law into a regulation problem. 

Another interesting online application is found in Ref. [54]. The NMPC was used to control an 

inverted pendulum. The control law is able to work for any initial condition, and including both inputs 

and state constraints. It displays fast dynamics with highly nonlinear behavior and it is unstable about the 

operating point also showing non-minimum phase nature. The online search is done by Sequential 
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Quadratic Programming (SQP). This application included one control input and four states, two of them 

directly measured and two estimated. 

4.2 Integration of Guidance, Navigation and Control 

The aircraft model defined in Chapter 1, represented by ( ) ( ( ), ( ))t t t=&x f x u , with ( ) nt R∈x  and 

( ) mt R∈u , is augmented by embedding the guidance logic defined in Chapter 3 and the trajectory 

information, which is assumed to be known a priori. Strictly speaking, from the UAS trajectory, which is 

composed of straight segments subtended between consecutive waypoints, only the current or active 

segment is required. The next segments can be uploaded before they are needed. 

The guidance logic, as developed in the previous chapter, generates the angles Latη  and Lonη  between 

UAS inertial velocity vector 
r
V  and position vector 

r
L  subtended from the current UAS position 

r
p  to an 

imaginary point 
r
r  running over the current segment between waypoints 

r
a  and 

r
b . These angles Latη  and 

Lonη  are then conveniently translated into attitude commands cmdφ  and cmdθ . A tight trajectory following 

is achieved when the aircraft is able to follow these attitude commands closely. In effect, when 

( ) ( ) ( )cmde t t tθ θ θ= −  and ( ) ( ) ( )cmde t t tφ φ φ= −  are small. This is supplemented with the requirement of 

minimization of the airspeed and sideslip states errors, i.e. ( ) ( ) ( )TV Tcmd Te t V t V t= −  and ( ) ( ) ( )cmde t t tβ β β= − , 

respectively. ( )TcmdV t  is obtained based on the assigned segment inertial speed and current wind, and 

( ) 0cmd tβ ≡ . 

Given the discrete nature of the NMPC algorithm, the dynamics of the UAS have to be discretized, in 

particular their time derivatives. The choice of an appropriate discretization method is relevant, especially 

because using higher order discretization methods, in principle more accurate, tends to increase the 

number of states, and this strongly impacts the efficiency of the algorithm. The sampling rate, together 

with other design parameters like horizon length and precision of the numerical convergence, are also 

important design parameters. They have a direct impact on the NMPC performance in terms of accuracy, 

work load, and time consumption. Although a higher rate is theoretically better, this choice is generally 
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bounded by the available computational power. Also, the sampling rate will have a direct influence on the 

amount of data the NMPC algorithm will have to manage during each sample. In the present work (as will 

be seen below), the sampling time 1 / 20T∆ =  [sec], is chosen as the result of extensive simulation and 

current availability of computational resources. 

To avoid raising the order and complexity of the model, the chosen derivative discretization technique 

is the Euler method. Its application gives ( ) ( ) ( ( ), ( ))t T t T t t+ ∆ ≈ + ∆ ⋅x x f x u , to be generically 

expressed as 1 ( , ) ( , )k k k k k kT+ = + ∆ ⋅ = dx x f x u f x u , where k  is the time index of the discretized 

variables. By defining the output of the augmented UAS model ( ) rt R∈e  as the controlled output vector 

[ , , , ]T

T
Ve e e eθ φ β=e , the following augmented discrete model of the aircraft is defined in terms of the 

original states [ , , , , , , , , , , , , , , , ]T
T T E A R N E HV P Q R p p pα β φ θ ψ δ δ δ δ=x , and control 

[ , , , ]cmd cmd cmd cmd T
T E A Rδ δ δ δ=u  as 

 
1 ( , )

( ) [ , , , ]T

k k k

T
k k Ve e e eθ φ β

+ =

= =

d

e

x f x u

e h x
 (96) 

It is important to note here that the augmented model output is labeled e  to differentiate its origin, i.e. 

guidance augmentation. As will be seen later, for robustness extension purposes another output y , will 

also be added. 

4.3 Nonlinear Model Predictive Control Formulation 

Following a standard NMPC formulation, as described in Ref. [47], the control problem shown in 

Figure 39 is stated as receding-horizon control problem NP . It is defined as 

 { }min ( , )N V=
u

e uP  (97) 

for the system 1 ( , )k k k+ = dx f x u , and ( )k e k=e h x  given initial condition 0 0,x u , where the controlled 

and control sequences are 2 3 1{ , , , } R r N
N

×
+= ∈Le e e e  and 1 2{ , , , } Rm N

N
×= ∈Lu u u u , respectively. In the 

present work, the cost function ( , )V e u  to be minimized is defined as 
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 1 1 1

1

( , )
N

T T
k k k k k k

k

V + + +

=

= +∑e u e Q e u R u  (98) 

with ( ) [ , , , ] RT

T r
k e k V ke e e eθ φ β= = ∈e h x  and [ , , , ] Rcmd cmd cmd cmd T m

k T E A R kδ δ δ δ= ∈u , the controlled output 

and control vectors at each instant k  of the augmented system. Control and state sequences must satisfy 

the following constraints 

 
k

k

∈

∈

u U

x X
 (99) 

and as will be seen, imposed by the nature of the system under control, actual constraints can be stated as 

inequality constrains, accounting for limitations in variables size, i.e. maximum and minimum values. 

Symmetric Matrices R r r
k

×∈Q  and Rm m
k

×∈R  are positive semi-definite and definite matrices, 

respectively, allowing time-varying relative penalization among controlled and control sequences. As 

shown in Figure 39 the only external inputs are disturbance d  acting over the aircraft dynamics and the 

noise n  acting over the measurements, i.e. [ , ]T T T
w = n d . As the trajectory has been embedded into the 

aircraft model, there is no external reference to follow, so the control has been reduced to a regulation 

problem. External inputs are labeled generically as w , although they represent both external signals w  

and v  to the aircraft modeling. 

For a nonlinear model, analytical NMPC resolution is practically unfeasible, demanding numerical 

solutions in practice. As opposed to analytical solutions, numerical search does not reach the minimum in 
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Aircraft
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State
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d

 
Figure 39. Control Problem. 
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finite time, as it takes infinite number of iterations, requiring a predefined criterion to stop the search and 

declare an intermediate solution. At each algorithm cycle, i.e. during each time interval, the NMPC search 

algorithm outputs a control sequence 1 2{ , , , }N= Lu u u u , which provides a relative degree of 

minimization of the cost function ( , )V e u , for a given initial condition 0x . I.e. the output control 

sequence has a lower cost than the initial sequence at the beginning of each numerical search. At the next 

sample instant, the first element of the solution input sequence 1u  is applied to the UAS, the state of the 

aircraft 1x  is measured, and then the algorithm cycle is restarted with this new initial condition, i.e. by 

making 1 o→x x . During each prediction cycle, states and outputs within the horizon are unequivocally 

defined by the control sequence under determination 1 2{ , , , }N= Lu u u u , and the initial condition 0x  and 

0u , i.e. the measured state and the applied control input, and or equivalently by the prediction 

1 0 0( , )= dx f x u . 

This becomes clear by recursively applying the aircraft discretized model (96) within the horizon. The 

state sequence is then defined as (see Figure 40) 

 

2 1 1

3 2 2 1 1 2
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1 1 1 1 1 1
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and the controlled sequence as 

 

2 2 1 1

3 3 2 2 1 1 2

1 1 1 1 1

1 1 1 1 1

( ) ( ( , ))

( ) ( ( , )) ( ( ( , ), ))

( ) ( ( , )) ( ( ( ( , ), ), ))

( ) ( ( , )) ( ( ( ( ( , ), ), ), ))

N N N N N

N N N N N N

− − −

+ + −

= =

= = =

= = = =

= = = =

M

L L L

L L L

e e d

e e d e d d

e e d e d d d

e e d e d d d d

e h x h f x u

e h x h f x u h f f x u u

e h x h f x u h f f f x u u

e h x h f x u h f f f f x u u u

 (101) 

These expressions make clear that the cost function will only be dependent on the control input 

1 2{ , , , }N= Lu u u u  under search, and the initial condition 0x  and 0u , or equivalently 1x , which are fixed 

quantities at the beginning of each cycle. The receding-horizon problem is then restated as 

min { ( )}N u V=P u . The chosen approach to solve the nonlinear optimization problem is Sequential 

Quadratic Programming (SQP), detailed in Ref. [90] and Ref. [101]. SQP solves a sequence of 

optimization sub-problems, each which optimizes an approximated quadratic model of the objective 

subject to a linearization of the constraints. 

For this application only input constraints are considered, no state constraints are accounted for. Given 

the restrictions of the actuators (maximum and minimum control surface deflection limits and maximum 

and minimum engine throttle setting), the input sequence constraints k ∈u U , in Equation (99), can be 

characterized by { ( ) 0}<U = u c u . No input rate limiters are considered in the NMPC formulation as 

the robustness to be added later will provide a way to regulate the input sequence’s bandwidth indirectly 

but effectively. Under the assumption of maximum and minimum limit constraints, the vector-valued 

function 1 2( ) [ ( ( )] 0T
m Nc × ×= <Lc u u) c u  is able to accommodate all of them, as shown below. 

Minimum and maximum limits are to be updated online, during NMPC algorithm cycles, if changes in 

servo limits are detected. 
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 (102) 

Violated constraints must be included as part of the cost function, with the help of time-varying 

Lagrange multipliers 1[ ]Tpλ λLλ =λ =λ =λ = . The new objective function is so defined as 

 ( , ) ( ) ( )TL V=u u c uλ − λλ − λλ − λλ − λ  (103) 

where constraints are added as equality constraints only when they are valid, this is when they are 

violated during the numerical search. An updated constraint vector 1( ) [ ( ( )] 0T
pc= =Lc u u) c u  

incorporates only the current p  valid constraints; the upper bar is used to differentiate hypothetical in 

(102) from currently violated limits. Constraints are otherwise removed from the augmented objective 

function ( , )L u λλλλ  and consequently from ( )c u , along with respective elements in vector λλλλ . This 

condition is easily evaluated based on the sign of the respective multipliers (Ref. [90]).  

SQP solves the nonlinear problem with a series of sub-problems, each one minimizing a quadratic 

approximation of the objective function with a linearized approximation of the constraints. In the present 

formulation, as the constraints are defined as linear in the control variables, there is no need to linearize 

them. In the case of no valid constraints for a particular iteration, SQP reduces to a Newton-type 
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numerical method. Applying the SQP method from Ref. [90] to the present case, the following correction 

is made each numerical search step 

 

( ) ( ) ( )

1

1

1 1 1

i i i

i i i

m N p m N p m N p

+

+
× + × × + × × + ×

     ∆
= +     ∆     

u u u

λ λ λλ λ λλ λ λλ λ λ
 (104) 

where the subscript 1,2,i = L  indexes the iterations within a cycle, p  is the number of inequality 

constraints valid at iteration i , and 
( )

1 1[( ) , ( ) , , , , ] Ri T i T i i T m N p
N pλ λ × +∈L Lu u  is a column vector. The 

correction term [( ) , ]i T i T∆ ∆u λλλλ  is obtained by solving the following linear system of equations each 

iteration 

 

( ) ( ) ( ) ( )

2

1 1
0

T i T i

i

m N p m N p m N p m N p

V V

× + × × + × + × × + ×

     ∇ − ∆ −∇ +
=     ∆     

A u A

A c

λλλλ
λλλλ

 (105) 

where matrix 1( ) [ ( ) ( )]T i i i
pc c= ∇ ∇LA u u u  is the Jacobian of the constraints vector c . Remaining 

is the calculation of the Hessian and the gradient 
2V∇  and V∇ , respectively. Based on Ref. [54], and 

given the quadratic symmetry of cost function ( )iV u , it is expressed as ( ) ( ) ( )i T i iV =u v u v u  with 

1 2 1 2 1 2 1 2
2 1 12 1 1( ) [( ) , ,( ) ,( ) , ,( ) ]T i i T i T i T i T

N NNN ++= L Lv u Q e Q e R u R u  and ( ) Ri n N m N× + ×∈v u . The Hessian and 

gradient of the cost function can be approximately obtained by expanding the error vector ( )iv u in a 

Taylor series up to the first order term as ( ) ( ) ( )i i i i i∆ ≈ ∆v u + u v u + J u u , where ( )iJ u  is the Jacobian 

matrix of ( )iv u , and then forming, 
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( ) ( ( ) ( ) ) ( ( ) ( ) )

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2

i i i

i i i i i T i i i

V V V

T i i i T T i i i T T i i i

V

∇ ∇

∆ ≈ ∆ ∆

≈ + ∆ + ∆ ∆
64748 6447448 6447448u u u

u + u v u + J u u v u + J u u

v u v u u 2J u v u u 2J u J u u

 (106) 

4.4 Aerodynamic Estimation ANN Augmentation 

To take full advantage of the NMPC adaptability, the online aerodynamic nonlinear estimation 

developed in Chapter 1, is used in the controller’s aircraft model formulation. 

 



96 

 

4.5 Modification of Trajectory Following Model to Follow Moving Points 

The previous UAS guidance task was designed for straight lines, called segments, subtended between 

consecutive waypoints. To provide more flexibility for a centralized UAS formation command, with 

centralized commands and decentralized control, for example, a modification is developed in the present 

section to allow the UAS to track a moving point, i.e. to follow arbitrary curves shaped by moving points. 

The idea is to have a centralized command that delivers the moving points to the UAS flying alone or 

within a formation, so the moving point information is received by the UAS as an external reference. This 

is not mandatory and the moving point information could be already stored onboard the aircraft before 

taking off. Based on this moving point information, the UAS generates its own control actions by making 

use of its original guidance structure. 

The original waypoint guidance works by tracking a segment, i.e. a straight line, subtended between 

two consecutive waypoints 
r
a  and 

r
b , generating the angles Latη  and Lonη  referred to the trajectory, and 

consecutively converting these values into attitude commands cmdφ  and cmdθ . When the aircraft reaches a 

predefined distance to the end of the segment ab  it switches to the next segment bc . 

The idea is to use the original guidance structure without modifying it. The modification is done over 

the waypoints of the current segment ab . This is, using the moving point inertial position and speed 

coordinates, defined as [ ] : { [ ] [ ], [ ], [ ]},{ [ ] [ ], [ ], [ ]}NEH N E H NEH N E Hk k p k p k p k k v k v k v k= =
r rO O O O O O O Oo p v , and its 
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Figure 41. Time-Varying Waypoints [ ]k
r
a  and [ ]k

r
b . 
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history information, i.e. { [ 1], [ 2], }k k− − Lo o , which needs to be stored by the UAS, computes online 

time-varying waypoints [ ]k
r
a  and [ ]k

r
b , and new time-varying segment inertial speed [ ]abV k , and then 

override preexisting ones each sample time. The logic is sketched in Figure 41 and Figure 42. As shown 

in Figure 41, time-varying waypoints [ ]k
r
a  and [ ]k

r
b  are located in the extremes of a line intersecting 

current and previous moving point, i.e. [ ]ko  and [ 1]k −o . The distance at which waypoints are located 

should be greater than the distance required by the segment switching logic, but otherwise is irrelevant. 

As shown in Figure 42 (for the lateral plane), guidance logic applies unchanged, independently of the 

waypoints new time-varying nature. For the time-varying segment inertial speed [ ]abV k  a specific new 

logic is required. Originally this quantity was fixed, as were the waypoints. Now it will be a variable 

quantity, so a mathematical description is required.  

Previous modification will keep the aircraft close to the time-varying segment ab , irrespectively of its 

relative location with respect to the moving point [ ]ko , as the attitude guidance works with the line 

subtended between the current and previous moving points, i.e. [ ]ko  and [ 1]k −o , and not their relative 

location. In order to asymptotically get closer to the moving point [ ]ko , the absolute distance dod  

between point [ ]ko  and the projected position of the aircraft to the segment [ ]k
r
d , see Figure 43 (left), 

and its sign ( [ ] [ ])ob dbsign d k d k− , are shown to be adequate to control this guidance. Equation (107) shows 

the chosen mathematical relation 

I
[ ]k
r
a

[ ]k
r
b

[ 1]k −o
[ ]ko

[ ]k
r
p

[ ]k
r
d

[ ]k
r
r

[ ]
LAT

kη[ ]LATL k
r

[ ]LATV k
r

Height

North

East

 

Figure 42. Lateral Guidance Logic for Time-Varying Waypoints [ ]k
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a  and [ ]k

r
b . 
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 1 1

2

1
[ ] [ ] tan ( [ ] [ ]) [ ]ab NEH Vo ob db do

Vo

V k k k sign d k d k d k
k

−  = − − ⋅ 
 

O
v  (107) 

where [ ]NEH k
rO
v  is the speed magnitude of the moving point, and 1

Vok  and 2
Vok  are two positive constants 

that help shape the magnitude and rate of speed correction, respectively, and obd  and dbd  are the distances 

from waypoint 
r
b  to point [ ]ko  and to point 

r
d , respectively. 

From Figure 43 (right) it is clear that there is a bounded range for the speed command to vary centered 

in the current moving point speed. This shape allows a smooth correction and avoids excesively large 

speeds. 

4.6 NMPC Robustness Augmentation 

There is more than one way to grant robustness to NMPC. Although robustness is one of the main 

purposes and achievements of the action of feedback, it can be further improved using the available 

knowledge of uncertainties and external disturbances. Robust control aims to use existing uncertainty and 

disturbance bounds as additional information in the controller design to provide a degree of robustness. 

NMPC has no explicit robustness built-in, leaving a severe restriction in its employment. In general there 

are two main robustness augmentation schemes. One is the Min-max design; where minimization of a 

cost function is perform jointly with the maximization of the external disturbance effect (see for example 

Ref. [61] and [62]), and the other is the judicious shaping of some characteristic closed loop functions 
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Figure 43. Speed Segment Geometry (left) - Speed Command Guidance Logic (right). 
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(see Ref. [65] for H-2 and Ref. [66] for nonlinear H-infinity), indirectly providing robustness. The first 

one, probably more optimal, becomes quickly unfeasible when controlling medium size order systems in 

numerical solutions like NMPC. The second, a common approach as is the case of linear LQG, H-2, or H-

infinity, is less optimal, but offers a tractable online solution. The present section integrates this concept 

into an NMPC framework, providing it with robustness without endangering the feasibility of its 

application to an aircraft control. Figure 44 sketches the proposed solution. 

Note that internal signals do not show a time index as they are independent of the absolute time k ; 

NMPC works during the time interval between samples, based on the measured/estimated status of the 

system, and outputs its solution at the next sample time k , after several iterations. 

The robust NMPC solution is inspired by the robust augmentation developed for the mixed sensitivity 

technique in linear cases such as H-infinity and H-2 controllers. It is based on the assumptions that 

external disturbances and internal uncertainties have specific and disjoint frequency content, which is not 

unpractical. Disturbances are characterized by a low frequency range, while measurement noises and 

model uncertainties are normally defined by a high frequency range. This assumption leads to the 

successful application of the mixed sensitivity concept, shaped by dynamic weighting matrices 1W  and 
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Figure 44. Robust NMPC Configuration. 
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3W . This frequency modulation allows joint minimization of original opponent objectives, namely 

sensitivity (associated with 1W ) and complementary sensitivity (associated with 3W ) closed loop 

functions. This linear tool, which has been extended to a particular nonlinear control case in Ref. [66], for 

example, is also applied in the present work to the nonlinear model predictive controller. 

The signals to be minimized are an extension from the ones in the original NMPC developed in 4.2. As 

shown in Figure 44, the new minimization variable 
1 3[( ) ,( ) ]T T T=z z z , is entering the optimization 

algorithm, instead of only the original sequence e . Besides e , a new intermediate output is defined 

( ) [ , , , ]T
k y k T kV θ φ β= =y h x , i.e. 2 3 1{ , , , } Rr N

N
×

+= ∈Ly y y y . Both signals become, through weighting 

matrices, the new controlled output z . The control problem is then reformulated as the NMPC problem 

{ }min ( , )N V=
u

z uP  with 1 1 1

1

( , )
N

T T
k k k k k k

k

V + + +

=

= +∑z u z Q z u R u  for a given initial condition 0x . 

The aircraft dynamic model is expanded as 1 ( , )R R R
k d k k+ =x f x u  to include the dynamics of the 

weighting matrices, described as follows 
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with 
1 21 2
3 3 31 1 1[ , , , , , , , , , , , , , , , , , , , , , , , ]

rr W W WW W WR T
T T E A R N E H k k k k k kV P Q R p p p x x x x x xα β φ θ ψ δ δ δ δ= L Lx  the new 

vector states of dimension Rn . The set of matrices 1 1 1 1{ , , , }
i i i i

W W W W
A B C D  and 3 3 3 3{ , , , }

i i i iW W W W
A B C D , with 

1i r= L , are designed to achieve frequency response singular values in the shape of 1W  and 3W , 

respectively. Given the configuration, as shown in Figure 44, these frequency-dependent matrices will 

allow the joint minimization of the low frequency range sequence e and the high frequency range y  



101 

 

(defined by the bandwidth of the respective matrices’ singular values), originally opposed objectives. In 

sum, after necessary tuning, the right matrices will provide low frequency regulation and disturbance 

rejection, and high frequency measurement noise and model uncertainty attenuation. The choice of the 

sampling interval T∆ , in this case 1 / 20  seconds, which is bounded basically by the computational 

onboard available power, has a direct impact on the frequency range for which the weighting matrix 3W  

is effective. In theory, noise frequencies higher than 
1(2 )T −∆  [Hz] will show up unfiltered in the lower 

frequency range due to aliasing. This imposes the requirement of a previous independent analogous 

filtering stage. 

4.6.1 Robustness Weighting Matrices Design 

The design of the discrete-time weighting matrices 1W  and 3W  follows the same approach carried out 

in the continuous-time robust design problem (see 3.2.1.1). 

Low frequency reference tracking and disturbance rejection, and high frequency additive noise and/or 

bias cancelation are achieved by setting: 

a. Steady state error S SA A<  

b. Closed-loop bandwidth w w<  

c. High frequency noise amplification T TA A<  

where SA  and TA  are the maximum expected closed loop steady state error and high frequency noise 

amplification. The frequency bandwidth w , similarly to the continuous case, is closely defined by the 

measurement additive perturbation. In the present case, this factor is also determined by the discrete 

sampling frequency. 

The previous criterion, which gives analytical design specifications based on known statistics of 

disturbances and noise, serves as a starting point and should be adjusted by the outcome of high-fidelity 

simulations. For the present case, the following empirical conditions, which are highly problem-

dependent, are useful in the setting of the weighting matrices’ parameters: 
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I. For each element in the error vector [ , , , ]T

T
Ve e e eθ φ β=e , adjust respective parameter SA  in each 

transfer function in 1W , to achieve acceptable steady state error and disturbance attenuation. 

II. For each element in the output vector [ , , , ]T
TV θ φ β=y , adjust respective parameter TA  in each 

transfer function in 3W  to achieve acceptable measurement additive perturbation rejection. 

III. Adjust the closed loop bandwidth parameter w  to achieve acceptable control reaction time. 

IV. Perform steps I, II and III for different perturbations, in terms of intensity and frequency content, 

monitoring the evolution of the states and control variables of the aircraft in terms of amplitude 

and time duration, satisfying their respective constraints, and keeping the closed loop stability. 

4.7 Simulations 

In this section, trajectory and moving point tracking are tested in simulation for a UAS controlled to 

follow a predefined trajectory. Tracking is simulated both using the full NMPC formulation previously 

designed and making use of ANNs to model the translational accelerations. In both simulations, failures 

are induced to test the online detection and NMPC adaptation. Also in this section, robustness 

augmentation is tested in a separate simulation for both frequency ranges. 

4.7.1 Simulation of Trajectory Tracking 

In this simulation the Meridian UAS is commanded to fly a straight trajectory at 100  knots. 

Considering the Meridian modal analysis (Ref. [102]), the targeted time for real-time adaptive ANN 

estimation and NMPC numerical search is set to be around one second. It is very important to notice that 

both tasks are parallel tasks; they do not need to be accomplished sequentially, so their respective times 

do not add together. It is expected that using a dedicated microprocessor for both the ANN and NMPC, 

associated computational times could be decreased further. 

For the present section, the simulation is run at frequency of 20  Hertz. The NMPC is designed with a 

horizon of 20N =  sample times, giving a horizon time of one second of predicted flight. Also, one 

iteration has been employed. The ANN is trained using a moving window of 50WN = . 
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To test the performance of the ANN and NMPC performance in off-nominal conditions, two scenarios 

are simulated. An adverse onboard condition (e.g. damage) and external hazards and disturbances (e.g. 

icing) are induced. To implement these changes in the aircraft dynamics, while it is commanded to follow 

a trajectory, key aerodynamic derivatives are altered in Equations (24) and (22), respectively. 

It is shown that the adaptive ANN algorithm successfully identify the alteration in the UAS dynamics, 

reacting to it by adjusting the ANN parameters and consequently updating the NMPC physics-based 

model. Alterations are induced approximately after 20  seconds of north flight at 100  knots. 

Alteration of 0LC  

 
Figure 46. Trajectory Following (left) – Angle of attack and Pitch angle (right). 
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Figure 45. Throttle Deflection (left) - Elevator Deflection (right). 
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The first scenario is created by decreasing the coefficient 0LC  by 20% . This decrement simulates the 

effect of decreasing overall lift due to a wing loss incident. Figure 45 and Figure 46 show some of the 

relevant variables involved. As shown in Figure 45, longitudinal controls react accordingly to keep the 

UAS on the trajectory after the change is induced. 

Figure 46 (left) shows the direct impact on the altitude of the UAS after losing lift, and the consequent 

correction and approach to the trajectory. Figure 46 (right) shows the increase in angle of attack to 

compensate the loss in the overall lift, and the correction in pitch angle to restore the horizontal flight. 

Alteration of 0DC  

The second scenario is doubling the coefficient 0DC due to external hazards and change in the surface 

roughness due to icing. This increase in the total drag is counteracted mainly by increasing the thrust 

through the throttle deflection. Figure 47 shows the controls reaction. No significant departure from the 

trajectory was observed. 

Particularly in the first scenario, some high frequency oscillations are observed when the dynamic 

change was induced. This could be reflecting an incipient interference coupling between the NMPC and 

the ANN. One way to counteract this possible cause is to provide robustness to the NMPC. 

Previous simulations did not include robust design augmentation. 

 
Figure 47. Throttle Deflection (left) – Elevator Deflection (right). 
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4.7.2 Simulation of Moving Point Tracking 

A 33%  scale Yak 54 UAS is commanded to follow a moving point flying at 70  knots, starting from 

an offset location. 

For comparison, the same conditions are applied to the design from Section 3.2. 

Figure 48 shows 3D views of the moving point following, which is drawn in red. The aircraft starts 

with a crosstrack offset of 50  feet horizontally and 50  feet vertically. 

Figure 49 shows the engine throttle deflection. The two-loops guidance is suffering from important 

oscillations during the tracking task, whereas the integrated NMPC guidance shows quick convergence to 

 
Figure 48. 3D Views Moving Point Following. 
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Figure 49. Engine Throttle Deflection. 
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final values without any oscillation. This is a good example of the potential cross coupling between outer 

and inner loops. As shown before, both loops are separately stable, but not jointly. 

4.7.3 Simulation of NMPC with Robustness Augmentation 

Robustness tests are performed in low and high frequency ranges. The Meridian UAS is set to fly a 

straight trajectory. 

4.7.3.1 Low Frequency Range Robustness Test 

For the trajectory, while the UAS is flying a segment close to 100  knots, the NMPC solution is tested 

against a low frequency content external disturbance. It is subject to a constant wind of 5  knots from the 

East. Two similar simulations are compared: an NMPC solution without robustness and NMPC with 

robustness, given by the use of the frequency-dependent weighting function 1 1 / ( 1)W z= − , in the bank 

angle channel. 

Figure 50 shows 3D views where the effects of cross wind on the NMPC without low frequency 

disturbance rejection and low frequency regulation are apparent. 

Figure 51 shows the evolution of the bank angle and aileron as the main implicated variables. 

Although having greater excursion, both signals still have reasonable values in the robust case, while 

compensating for the disturbance. 

 
Figure 50. 3D Views Trajectory Following. 
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Different weighting functions 1W  can be used, without substantial behavior changes. It will have an 

impact on the disturbance rejection performance and the consequent flying conditions of the aircraft. 

4.7.3.2 High Frequency Range Robustness Test 

The NMPC solution is now tested against higher frequency content measurement noise. During the 

same type of tracking as before, the UAS is subject to additive measurement noise injected into the pitch 

angle measurement. Its spectral density is concentrated between 0.5  to 2  [Hz]. Figure 52 show the 

variables mainly affected. 

Although in general terms, the trajectory following was not severely affected (not shown), it is evident 

the deleterious effect the noise has on the pitch angle and elevator deflection (as a result of the NMPC 

 
Figure 51. Bank Angle (left) – Aileron Deflection (right). 
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Figure 52. Pitch Angle (left) – Elevator Deflection (right). 
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elevator command solution) in the non-robust case. By the use of a frequency-dependent function 3W  in 

the pitch angle channel, the NMPC solution has better performance with fewer oscillations in both 

signals. 
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5. UAS Formation Centralized Command 

This chapter is understood as the research’s motivational incentive. The complete work is embodied 

in Chapters 1 to 4, and this one is seen as a complement that inspires their development. All efforts put 

into their expansion, were illuminated by the ideas proposed in Chapter 5. 

The content of this Chapter, an exciting and thrilling proposal, is viewed as a possible continuation of 

what has been studied before, i.e. a starting point. 

5.1 Introduction 

Studies of aircraft formations are inspired by the physics of birds in formations. Each individual has a 

limited knowledge of the whole group (constrained by their physiological sensors), there may not be a 

leader or centralized command, communication or control, but there is a high level of coordination. This 

coordination follows a very simple set of rules, achieving remarkable objectives as a whole body, so 

called emergent behavior. Ref. [67] studies the interactions ruling collective animal behavior by 

reconstructing the three-dimensional position of a few individuals in a flock of birds. It is shown that the 

interaction does not depend on the metric distance, but rather on the topological distance. Each bird 

modifies its position relative to the six or seven animals directly surrounding it no matter how close or 

how far away those animals may be. 

One of the most important joint behaviors is optimizing the aerodynamics involved in the birds’ 

maneuvers, decreasing significant amounts of total drag. One of these formations is the V-formation that 

improves the efficiency and range of flying birds, particularly over long migratory routes. As birds fly in 

the upwash formed by forward birds in the formation they achieve a better lift to induced drag ratio. A 

formation of UAS could take advantage of these aerodynamic effects, thereby decreasing their energy 

consumption. Ref. [68] showed that each bird in a V-formation of 25 members can achieve a reduction of 

induced drag by up to 65%  and 71%  increase in range. Ref. [69] explores an approach based on 

simulating the paths of each bird individually. The simulated flock is an elaboration of a particle system 
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where the simulated birds are the particles. The aggregate motion of the simulated flock is created by a 

distributed behavioral model much like that at work in a natural flock; the birds choose their own course. 

The paper utilizes simple mathematical models of swarms given by the following three rules: birds must 

move in the same direction as their neighbors, remain close to their neighbors, and avoid collisions with 

their neighbors. 

To develop a formation command and control, both the dynamics and the aerodynamics of the 

formation need to be understood and described by a simple but useful mathematical model (expected to 

be nonlinear and possibly time-varying). This model can then be used to design a particular control 

solution. Ref. [70] performs a comparison of predicted and measured formation flight interference effects. 

It compares the data obtained from a wind-tunnel test of two delta-wing aircraft in close proximity with 

predictions from a vortex lattice method. Large changes in lift, pitching moment, and rolling moments are 

found on the trailing aircraft as it moves laterally relative to the lead aircraft. Ref. [71] studies the tight 

formation flight problem consisting of a leading aircraft and a wing aircraft. The lead’s trailing vortices 

aerodynamically couple both aircraft. In close formation, the wing aircraft experiences an upwash field 

generated by the preceding aircraft, leading to a reduction in required overall energy. The manuscript 

defines tight formation as one where the lateral separation between aircraft is less than the wingspan. It 

delivers an analytical equation for the optimal separation calculation. 

Ref. [72] studies the interaction of two aircraft flying in close formation. By positioning one craft 

flying in the correct position within the vortex wake of the other, substantial reductions in drag may be 

attained. The reduction amount is dependent on the relative positions of the two aircraft. To maximize the 

drag reduction, the precise position of the second craft relative to the first, is to be determined online, 

leading to a peak-seeking control problem. A method of peak-seeking control, using a Kalman filter to 

estimate the characteristics of the drag reduction, is derived. 
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Ref. [73] studies the nonlinear control of multiple UAS in close-coupled formation flight for the 

purposes of drag reduction. Inner and outer loops are employed in a two-UAS formation, where the outer 

loop controller is based on sliding mode control and the inner uses adaptive dynamic inversion to track 

the commands. The controller also enables the wing UAS to maneuver in the lead UAS's wake, and to 

hold a predefined desired position within it. The induced lift on the wing UAS due to formation flight is 

shown to cause reduced angle-of-attack and thrust for the wing vehicle. 

Decentralized control is the main feature of bird formations to be mimicked because it allows more 

efficient control calculation by using the distributed available computational power. Each airplane is able 

to synthesize its own control by knowledge of its own status, and possibly that corresponding to its 

neighbors. Even with the existence of a centralized commanding device, the control calculation is more 

efficient when done in a distributive way. Ref. [74] proposed a decentralized nonlinear robust control 

system, based on outer and inner control loops, for close formation flying of multiple UAS. This control 

system keeps a predefined (based in Ref. [73]) separation distance of the wing airplanes, calculated to 

achieve the minimum drag. The results confirm that when the wing aircraft is positioned properly in the 

vortex of the leading aircraft, it experiences reduction in its required flight power. In closed-loop, 

prescribed separation trajectories are asymptotically tracked by each wing aircraft while the lead aircraft 

is free to perform trajectory following maneuvers. 

As a system, the V-formation is a highly nonlinear and time-varying system, so to guarantee a broader 

operation range, a set of adaptive and nonlinear control laws are required. The NMPC appears to be a 

natural candidate as it comprises the desired level of nonlinearity and adaptation management. It also 

allows explicit accommodation of constraints, granting a remarkable level of optimality. Ref. [75] 

proposes an algorithm for robust constrained MPC which incorporates coupled constraints. A single large 

planning optimization is divided into small sub problems, each planning only for the states of a particular 

subsystem. Relevant plan data is exchanged between subsystems to ensure that all decisions are 
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consistently satisfying the coupled constraints. A typical application would be autonomous guidance of a 

fleet of UAS, in which the individual aircraft are coupled by the need to avoid collisions, but each vehicle 

only plans its own path. 

Ref. [76] describes the application of a methodology for high-level control and coordination of 

autonomous vehicle teams. The scheme employs decentralized receding horizon controllers that reside on 

each vehicle to achieve coordination among team members. For each vehicle, information about its 

neighbors is used to predict their behavior and plan conflict-free trajectories that maintain coordination 

and achieve team objectives. 

As a variant, Ref. [77] proposes a control strategy using hybrid receding horizon control (RHC) and a 

differential evolution algorithm based on the nonlinear model of a multi-UAS close formation. Three 

simulation experiments are performed and the simulation results show the feasibility and validity of the 

proposed control algorithm. The aerodynamic separation is based on Ref. [73], and Ref. [78] proposes a 

distributed control scheme to generate stable flocking motion for a group of agents. In this control 

scheme, a molecular potential field model is applied as the potential. The approach of distributed receding 

horizon control is adopted to drive each agent to find its optimal control input to lower its potential at 

every step. 

5.2 NMPC Decentralized Control 

The NMPC algorithm is highly demanding on computational power and generally limited by the 

available computational resources on board the aircraft. With available technology, a full centralized 

formation control is still unfeasible; although decentralized control is becoming a reachable solution (Ref. 

[79], [80] and [81]). Decentralized control relies on each UAS (also called agent, interchangeably) to 

compute its own control commands. To have a coherent formation, a centralized command is required. 

Each UAS NMPC requires information about its future moving points, i.e. during its horizon length, to 

perform the predictive calculations. To solve this requirement, and at the same time allow a centralized 
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command to define the location of each aircraft within the formation, centralized trajectory generation 

logic is required to keep a moving window of the future trajectory of each moving point for each UAS. As 

defined in the previous chapter, moving points o  are the locations where UAS are expected to be, so each 

element of the moving window, say [ ]k i+o , is the reference location for a UAS to be at time [ ]k i+ . 

This information is required by the NMPC algorithm at each time interval. 

The centralized trajectory generator is required to send each UAS the new entry of its moving point 

window every sample time, i.e. the furthest in time, and each UAS is required to keep the previous sent 

points. Figure 53 shows the moving window logic for a horizon of N  samples, where UAS 1
U  is 

approaching its moving point o . 

Although a desirable capability, each agent is not required to assure collision avoidance within the 

formation; certainly each agent is not restricted to have the sensors and the logic to determine weakness in 

safety. Collision avoidance within the formation is one of the main tasks of the centralized command 

generator. This is one of the main concerns when designing the formation and its dynamics. 

5.3 Formation Centralized Command 

The philosophy of the UAS formation presented here is to have decentralized control, but a centralized 

command. This is a centralized command logic running and located within the formation, i.e. onboard any 

formation agent with the capability of synthesizing its own controls and the formation commands. Every 

agent will be computing its control actions based on the formation command, a very demanding task. 
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Figure 53. Moving Point Window Concept. 
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Three structures for multi-agent formation decentralized control and centralized command are present 

in the literature: leader-follower, virtual structure, and the behavioral approach. Leader-follower seems to 

be the most used, Ref. [81]. For general applications it provides a simple and direct solution. For model 

predictive control, where each UAS needs to know the leader’s future status within the receding horizon 

length, it becomes a disadvantage. This is the case of Ref. [77] where it is assumed that the leader will not 

change its states within the horizon. Similarly in Ref. [82], each vehicle in a centralized formation 

requires the full future information of all other vehicles over the look-ahead horizon; or in a decentralized 

formation, each vehicle is required to assume that every other vehicle keep its last actuator commands 

frozen within the horizon. And in Ref. [83] it is assumed that leader’s acceleration vector is known within 

the horizon, or at least that it is bounded and converges to a constant. 

The centralized command generator broadcasts new entries for the moving point windows to each 

UAS, and each UAS transmits back to the centralized command generator its current position and 

velocity. Both happens once each time interval, and it is expected to be the only communication. Figure 

54 sketches the sharing information organization between the agents and the centralized command 
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Figure 54. Formation Communication Concept. 



115 

 

generator within a formation of j  agents. One of the main requirements for an effective information 

interchange is the availability of a reliable and efficient communication link between all agents. 

The chosen formation structure is a version of the virtual structure approach (Ref. [81] and Ref. [84]). 

In this approach, the formation has a defined structure and all its agents have defined locations within the 

formation. When the virtual structure modifies its shape and/or alters its motion based on broadcasted 

information, all its agents independently manipulate their controls to follow their moving points. 

As the command generator keeps sending the formation future commands (i.e. at time [ ]k , the future 

moving points 
1 2[ ], [ ], , [ ]jk N k N k N+ + +Lo o o  are sent to the formation of j  agents), each UAS’s 

NMPC does not need to guess or make assumptions in the case of leader-follower. This requires the 

command generator be able to determine the virtual structure in advance. 

The formation structure has a reference point, denominated [ ]RP ko , and every moving point [ ]j ko , is 

referred to it. Figure 55 shows an arbitrary formation at two different times [ 1]k −  and [ ]k  , with 3j =  

agents, their moving points located within the formation and its reference point. 

It is useful to define a formation coordinate system R centered in the reference point [ ]RP ko , which is 

at the same time referred to the inertial coordinate system I  by three rotation angles 

{ [ ], [ ], [ ]}RP RP RPk k kφ θ ψ , an inertial position { [ ], [ ], [ ]}RP RP RP
N E Hp k p k p k , and inertial speed 

{ [ ], [ ], [ ]}RP RP RP
N E Hv k v k v k . Any formation shape readjusting, formation speed increase or decrease, or 
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Figure 55. Arbitrary UAS Formation. 
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formation reorientation is performed over the reference point [ ]RP ko  and its coordinate system. Figure 55 

also shows the coordinate system R and its current orientation with respect to the inertial frame I . 

Each moving point [ ]j ko  is referred to the reference point [ ]RP ko  by three components in the 

coordinate system R, and if there are no modifications to the formation in the near future, their positions 

appear static. To compute the moving point’s time-varying inertial location and speed, these relative 

quantities are transferred to the inertial frame. For moving point [ ]j ko , associated to UAS j , located at 

{ [ ], [ ], [ ]}
j j j

X Y Zp k p k p kO O O  in R, its inertial position coordinates { [ ], [ ], [ ]}
j j j

N E Hp k p k p kO O O  are given by 
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 (109) 

It is clear that even for a fixed rotation from I  to R, i.e. time invariant, inertial location will vary as the 

whole structure is moving. For a local speed { [ ], [ ], [ ]}
j j j

X Y Zv k v k v kO O O , referenced to [ ]RP ko  in R, when 

the structure is changing its shape, for example, its inertial speed { [ ], [ ], [ ]}
j j j

N E Hv k v k v kO O O  is given by 
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Even when a fixed structure changes its orientation, i.e. { [ ], [ ], [ ]}RP RP RPk k kφ θ ψ  change, the agent’s 

moving point inertial speed also experiences changes. 

Figure 56 and Figure 57 show two basic formation maneuvers, a readjustment and a horizontal turn of 

its agent moving point’s positions. The first maneuver consists of switching from a V-formation to a line 

formation and the second, a reorientation of the formation where moving points change their formation 

coordinates from { [ ], [ ], [ ]}
j j j

X Y Zp k p k p kO O O  to { [ ], [ ], [ ]}
j j j

X Y Zp k i p k i p k i+ + +O O O , after i  interval times, 

and their inertial coordinates from { [ ], [ ], [ ]}
j j j

N E Hp k p k p kO O O  to { [ ], [ ], [ ]}
j j j

N E Hp k i p k i p k i+ + +O O O . 

One essential assumption for the present centralized commanding approach is the requirement of 

position information of each agent location, either referred to the inertial coordinate system I  or referred 
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Figure 56. UAS Formation Readjustment. 
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to the reference point. It is assumed that each UAS is able to determine its own location by using a 

passive sensor, i.e. a GPS receiver, and send this information to the centralized device; or, it is assumed 

that there is an active sensor onboard the formation, i.e. a radar onboard one or more agents, able to 

determine the relative position of the agents within the formation. 

This assumption is critical from the safety point of view. When an agent fails to follow its moving 

points due to some failure, its current location still is useful to the centralized command generator to 

adjust the formation to avoid any collision derived from this anomaly. 

5.4 Aerodynamic Coupling in Formation Flight 

A significant number of papers have been devoted to the study of the aerodynamic interaction between 

airplanes flying close enough to couple their surrounding wind fields. Different techniques have been 

used to model this interaction. In principle, the physics behind the interaction has a field interpretation, 

i.e. a vector field, and a rigorous description should consider a 3D continuous approach. This complexity 

is intractable from a practical control and command design point of view, and simplifications are required 

in order to arrive at a feasible controlled and commanded system. 

Studies are traced back to Ref. [103] where a vortex-lattice method was applied to a formation of three 

wings to calculate forces and moments and the potential benefits of flying aircrafts in formation. Two 

formations were analyzed, the V-formation and the double row formation, showing the same overall 
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Figure 57. UAS Formation Reorientation. 
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benefits as a whole. Their ranges were potentially increased from 46%  to 67% . They showed that the 

following aircraft in a V-formation required trimming in roll, while aircraft in the second row in a double 

row formation do not have out-of-balance rolling moments. Also, the second line aircraft saw double the 

benefits compared to the V-formation following aircraft, while the first line does not benefit at all. Lastly, 

it was found that both formations are insensitive to small longitudinal movements, but benefits (and 

trimming requirements) decrease rapidly with lateral and vertical movements from the optimum position. 

Wind tunnel experiments have also been conducted, as in Ref. [70] and Ref. [104]. The latest worked 

with two delta-wing aircraft in close proximity and made comparisons between measured and predicted 

effects. Large changes in lift, pitching moment, and rolling moment are found on the trailing aircraft as it 

moves relative to the leading aircraft. A maximum induced drag reduction of 25%  is measured as 

opposed to a predicted 40%  in the trailing aircraft. Important flight tests have been done largely 

confirming the estimated benefits, see Ref. [105]. 

Another research branch has been focused on synthetically mapping primary induced aerodynamic 

effects, i.e. induced drag and lift forces, and induced pitching and rolling moments experienced by a 

following aircraft. By using a horseshoe vortex representation and assuming inviscid flow in order to 

capture the dominant effects, maps with defined maximum peaks are obtained as a function of vertical 

and lateral separations (Ref. [72] and [108]), as shown in Figure 58 (based on Ref. [72]). Over a minimum 

x∆

z∆ y∆

 
Figure 58. Estimated Induced Lift and Rolling Moment (from Ref. [72]). 
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safety distance, i.e. on the order of a few wing spans, longitudinal distance becomes irrelevant as it has 

little effect compared with the other two, so normally it is discarded. 

Based on the convergent conclusions of existing literature, present research is attempting to consider 

this aerodynamic effect in the command design of the formation. The approach has more concept 

proofing and command generation enabling rather than confirming or contributing to the modeling of 

these aerodynamic couplings. 

The chosen solution attempts to capture the most relevant physical features but at the same time to 

keep the aerodynamic coupling model as simple as possible to facilitate a feasible formation commanding 

design. 

The idea, sketched in Figure 59 (based on Ref. [106]), will be based on a discrete wind field pattern 

formed behind each aircraft, shaped as a function of states of the aircraft states, and time dependent. 

Equation (111) defines the relationship 

 

[ , , , ] ( [ , , , , , , , , , , , , ],

[ , , , , , , , , , , , , ],

[ , , , , , , , , , , , , ])

j j j j j j j j j j j j j j

j j j j j j j j j j j j j

j j j j j j j j j j j j j
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x y z k w V P Q R p p p k

w V P Q R p p p k
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α β φ θ ψ

=
rU U U U U U U U U U U U U U

U U U U U U U U U U U U U

U U U U U U U U U U U U U
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 (111) 

where 
j

XwU , 
j

YwU  and 
j

YwU  are the wind vector field components associated to agent j
U , referred to 

coordinate systems R . These components will be a function of the states of each agent j
U , i.e. 

{ , , , , , , , , }
j j j j j j j j j

TV P Q Rα β φ θ ψU U U U U U U U U  and relative location { [ ], [ ], [ ]}
j j j

X Y Zp k p k p kU U U . The 

Rear View
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Figure 59. Regions of Upwash and Downwash. 
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extension of the wind field body should be carefully bounded, i.e. where there are no significant changes 

with respect to the free stream, there is no requirement to perform any wind field calculation. 

The compound wind field, adding contributions from all aircraft within the formation, is then 

described as 

 
1 1 1 1

[ , , , ] ( [ , , , ], [ , , , ], [ , , , ])
j j j j

j j j j

X Y Z

n n n n

x y z k w x y z k w x y z k w x y z k
= = = =

=∑ ∑ ∑ ∑
rU U U U
w  (112) 

The overall wind field, i.e. the one filling the whole formation, will be the superposition of all patterns 

and the inertial wind existing in the area. The accuracy or level of fidelity of the 3D wind field is not the 

objective here; its only purpose is to provide a simple characterization of a wind field to be used by the 

command generator optimization task. Availability of a better 3D wind field may replace the current 

model, but the optimal moving point generator logic will still be the same. 

5.5 Optimal Command Generation 

The outputs of the command generator are the future moving points, i.e. the newest element of the 

respective moving windows 
1 2[ ], [ ], , [ ]jk N k N k N+ + +Lo o o  within the formation. 

The formation is expected to fulfill some objective, e.g. transferring the aircraft from one location to 

another while minimizing their fuel consumption, achieving particular land coverage when carrying some 

type of remote sensor, etc. For this task, a formation cost function RPV  will be in place as the algorithm’s 

core of the command generator. It will fed by different sources of information, the wind field being one of 

the most important. Equation (113) defines the problem to be solved 

 { }
1 2

1 2

[ ], [ ], , [ ]
min ( , [ ], [ ], , [ ])

j

RP RP RP j
N

k N k N k N
V k N k N k N

+ + +
= ℑ + + +

L
L

o o o
o o oP  (113) 

where the cost function RPV  is defined over a predefined trajectory RPℑ , either loaded before taking off, 

updated or uploaded during flight. The outputs of the minimization process are the future moving points 

1 2[ ], [ ], , [ ]jk N k N k N+ + +Lo o o . 
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For the given assumptions, a numerical minimization approach will also allow the inclusion of 

obstacle avoidance, for particular agents or for the entire formation, and possible redistribution of the 

agents. Although obstacles could be classified as geographical and assumed static as well as non-

geographical and assumed mobile, from the avoidance logic both categories are indistinguishable and 

treated in the same way. 

The obstacle collision avoidance logic is supported by the requirement of an active sensor centered in 

the formation with a predefined range of detection. This range is an important parameter to be considered 

in the formation’s cost function. This sensor is assumed to be able to detect the obstacle within the range 

and give its relative location.  

The idea of avoidance is stated in two independent logics that could be integrated or kept separate, 

based on the available computational power. The first one is the formation trajectory adjustment and is 

independent of the current formation distribution. It only requires knowledge of the maximum formation 

shape dimension. Its main task is to redefine the trajectory of the formation to avoid the obstacle while 

minimizing the departure from the original trajectory, see Figure 60. The second logic is the redistribution 
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Figure 60. Trajectory Adjustment for Obstacle Avoidance. 
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of the agents within the formation, see Figure 56 and Figure 57. The idea is that both logics could work 

separately or integrated, if feasible. 

Both logics will be based on cost function minimization and will not deal with aircraft dynamics. They 

will minimize kinematic relations involving positions and velocities of the agent’s moving points or 

positions of the adjusted trajectory. This greatly simplifies the numerical complexity of the algorithm. 

5.6 Centralized Command Communication Delay Robustness 

The philosophy of the centralized command of sending future moving points 

1 2[ ], [ ], , [ ]jk N k N k N+ + +Lo o o  inherently provides a moderate robustness, in the face of 

communication delays. 

Each agent keeps its full future horizon N  available for NMPC computations, i.e.
 

[ ], [ 1], , [ ]j j jk k k N+ +Lo o o . In a temporary communication link failure, characterized by f N<  lost 

moving points, where UAS misses moving points [ 1], [ 2], , [ ]j j jk N f k N f k N+ − + + − + +Lo o o , 

the natural solution is to adaptively shrink its horizon length to include only previously received moving 

points, i.e. [ ], [ 1], , [ ]j j jk k k N f+ + −Lo o o . Once the communication is restored, the UAS can use the 

recently received moving points and the previous ones before the incident, to interpolate the missing 

elements and build an estimated full horizon. 

The length of the NMPC horizon N  is normally dictated by the available onboard computational 

power, using a horizon length as large as possible. As a way to increase communication robustness, it is 

possible to define a second horizon fN N> , not used by the NMPC but put in place to lessen the effects 

of communication failure. If fN  is sufficiently large, then the chance of affecting the NMPC horizon 

could be reduced. 

The choice of the design parameter fN  should be guided by two considerations. One is the expected 

length of a communication loss, based on existing data or existing statistics, and the other, the expected 

level of unpredicted obstacles coupled wih the extent of associated early warnings. The last consideration 
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will be strongly shaped by the availability and type of sensors. In the present work no particular sensor is 

chosen, and a real-time detection region centered in the formation is assumed for the purpose of the 

formation cost function 
RPV  minimization. 

With respect to the expected length of communication failure, this estimation can be guided by 

existing similar data. Ref. [85] reports an uplink communication drop out between ground station and 

aircraft COTS autopilot up to 2.5  seconds. Although this case is not fully representative, it at least gives 

a real value under comparable conditions, worthy as a starting point. 
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Conclusions 

An integrated Trajectory/Guidance/State Estimation/Controller system was developed motivated by 

the desire to create an advanced Flight Control System for future unmanned aerial vehicles that have 

nonlinear/time-varying dynamics, track complex trajectories and are subject to external disturbances. As a 

result of laboratory testing using standard simulation techniques as well as flight test data, the following 

conclusions have been reached: 

 

� A new nonlinear guidance law provides a stable attitude and airspeed command generation for 

arbitrary trajectory following. This development is expanding an existing nonlinear lateral guidance 

law by the addition of a new longitudinal law, providing a full nonlinear attitude guidance law. 

Specifically, the new guidance law can achieve a stable and steady state error free guidance through 

the use of integral effect, and by lifting constraints related to maximum distances and relative 

position with respect to the trajectory, expanding them to the entire state space. 

� An original contribution has been achieved by the integration of the guidance and control loops into 

a single task. This provides an effective solution to minimize mutual interference and cross coupling 

between these two distinct loops, in contrast to decoupled classical inner and outer loop approaches. 

The integrated formulation allows the computation of a single solution for both guidance and control 

tasks. This solution is achieved without the induction of oscillations and reduction of stability seen in 

nested inner and outer loops.  

� Using the Meridian flight test data, it is demonstrated that adaptive artificial neural networks 

utilizing the moving window concept and modified adaptive Levenberg’s parameter have the ability 

to adjust and capture fast changes in aerodynamic characteristics of the unmanned aerial vehicle in 

real-time. In contrast with static artificial neural networks, the adaptive artificial neural networks 

provide an accurate online, nonlinear, and unsteady estimation of aircraft dynamics regardless of the 

flight control modes (e.g. manual or autonomous). This original development shows that online 
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adaptive neural networks are capable of updating the aircraft physics-based model accurately and in 

real-time with a 10 Hz update rate. 

� By the application of the mixed sensitivity theory through the addition of frequency-dependent 

weights, the lack of robustness of the time-based nonlinear model predictive control approach is 

attenuated dramatically. This novel configuration has successfully enhanced the low frequency 

tracking capability and disturbance attenuation, and high frequency measurement noise and model 

uncertainty rejection. Specifically for the Meridian unmanned aerial system, the added robustness to 

the nonlinear model predictive controller reduces the commanded control values while keeping the 

attitude in the desired range. For example, in a specific case, when the Meridian was commanded to 

follow a trajectory in presence of 5 Knots crosswind, the aileron commanded value was reduced by 

300% and the aircraft achieved a better trajectory following with maximum 15 degrees bank angle.  

 

The feasibility of a robust nonlinear model predictive control for an unmanned aerial system, enhanced 

by the addition of adaptive artificial neural networks, and by the integration of nonlinear command and 

control tasks, has been achieved in high-fidelity simulations. 

  



127 

 

Future Work 

The following topics are seen as logic next steps derived from the present research. 

 

Near future: 

Adapt the MATLAB scripts to an operation-based structure, using Simulink software. 

 

Intermediate future: 

Perform flights to test the developed decentralized solution for individual agents. 

 

Distant future: 

Develop a centralized formation command based on the flight tested decentralized solution. 
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