

BASEL

DEVELOPMENT OF A MATHEMATICAL MODEL FOR DETERMINING DRUG ABSORPTION PARAMETERS IN CACO-2 CELL MONOLAYERS

<u>Blaser D.</u>, Krömler C., Duthaler U. and Imanidis G. University of Basel, Institute of Pharmaceutical Technology, Klingelbergstrasse 50, 4056 Basel, Switzerland

Purpose

- Develop and evaluate a mathematical model for delineating the passive and carrier mediated contributions to the absorption of some apical efflux substrates in Caco-2 cell monolayers.
- Evaluate the effect of concentration and binary combinations of substances, on permeation in terms of these two contributing factors, passive diffusion and active apical efflux.
- Integrate phase II metabolism and adsorption to the Transwell[®] surface to the model.
- The objective was to overcome the limitations of the usually employed simple analysis that is based on calculation of the P_{app} in apical to basal and basal to apical directions and the efflux ratio.

Methods

- Caco-2 cell monolayers grown in 6-well Transwells[®] for 18 to 21 days were used.
- P-glycoprotein substrates Digoxin, Quinidine, Verapamil and Amentoflavone were used alone or in binary combinations in different concentrations.
- Bidirectional transport was studied and the used compounds were quantified by HPLC.
- The system of differential equations of the mathematical model was fitted to experimental concentration data, and optimal values of the kinetic parameters were deduced using the software EASY-FIT (Prof. K. Schittkowski, University of Bayreuth, Germany).

Conventional P_{app} approach and Efflux Ratio

$$P_{app} = \frac{V_R * \Delta C_R}{\Delta t * A * C_{D0}}$$

- Initial drug amount in the donor
- Linear drug transport with time applicable to early time points only
- Assumes negligible back flux and no mass balance problems

 $EffluxRatio = \frac{P_{app} : basal_to_apical}{P_{app} : apical_to_basal}$

- Time dependent
- Some substrates with high passive permeability (e.g. Verapamil) may not be detected by this approach
- No separate quantification of the passive permeability and the apical efflux
- No direct quantification of the influence of inhibitors and/or concurrently applied compounds

Theoretical modeling: Transport processes considered for modeling drug permeation in the Caco-2 monolayer and relevant processes

Theoretical modeling: assumptions

- The change of concentration in the apical, the cellular and the basal compartment is considered
- Drug movement between the compartments by passive diffusion through the apical and the basal cell membrane is symmetrical and is characterized by the permeability coefficient, P
- Drug is subject to carrier mediated active efflux from the cellular to the apical compartment. This follows saturable kinetics which may be characterized by the kinetic parameters, v_{max}, and K,
- The drug concentration in the apical compartment does not influence efflux transport and the entire mass of drug present in the cellular compartment is substrate of the transporter
- Mass is preserved

differential equations describing the change of drug concentration or mass as a function of time in the three compartments during permeation in both directions

representative fits of Quinidine HCl in both transport directions Quinidine HCl 80 µM apical to basal

Passive and carrier-mediated transport of different Quinidine HCl concentrations in Caco-2 cell monolayers

Kinetic parameters of transport I

	Quinidine HCI	Digoxin	Verapamil HCI
C _{D0} [μΜ]	50	50	50
P • 10 ⁶ [cm/s]	206.74	25.97	293.29
vk [pmol/(s•cm²)]	2.941	1.438	1.281
average Mcell a to b [nmol]	0.137	0.004125	0.144
average Mcell b to a [nmol]	0.210	0.043	0.225

Kinetic parameters of transport II – transport inhibition

Transport processes considered for modeling drug permeation in the Caco-2 monolayer and relevant processes including phase II metabolism and adsorption to Transwell surface

differential equations describing the Amentoflavone transport including adsorption and phase II metabolism as a function of time

fits of Amentoflavone metabolites for transport in both directions

Amount of Amentoflavone metabolites apical to basal & basal to apical

Conclusions

- All compounds used individually showed a polarised transport behaviour, the extent of which depended on the drug and the concentration used
- Kinetic parameters of the transport could be calculated with the developed model which included passive and carrier mediated transport, metabolism and non-specific adsorption
- Model estimated passive permeability coefficient of each drug was independent of concentration and varied between the drugs
- Model estimated apical efflux parameters varied between the different drugs and expressed the mass efflux rate of these drugs elicited by P-glycorprotein in Caco-2 cells
- The apical efflux parameter also reflected inhibition of the efflux by concomitant drugs
- Phase II metabolic rate constant in the cell was estimated
- By integrating surface adsorption, cellular transport was corrected for this distorting effect