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Purpose

• Develop and evaluate a mathematical model for delineating the passive and carrier 

mediated contributions to the absorption of some apical efflux substrates in Caco-2 

cell monolayers. 

• Evaluate the effect of concentration and binary combinations of substances, on 

permeation in terms of these two contributing factors, passive diffusion and active 

apical efflux.

• Integrate phase II metabolism and adsorption to the Transwell surface to the model.

• The objective was to overcome the limitations of the usually employed simple 

analysis that is based on calculation of the P
app

in apical to basal and basal to apical 

directions and the efflux ratio.



Methods

• Caco-2 cell monolayers grown in 6-well Transwells for 18 to 21 days  were used. 

• P-glycoprotein substrates Digoxin, Quinidine, Verapamil and Amentoflavone were 

used alone or in binary combinations in different concentrations. 

• Bidirectional transport was studied and the used compounds were quantified by 

HPLC. 

• The system of differential equations of the mathematical model was fitted to 

experimental concentration data, and optimal values of the kinetic parameters were 

deduced using the software EASY-FIT (Prof. K. Schittkowski, University of 

Bayreuth, Germany). 



Conventional Papp approach and Efflux Ratio

• Initial drug amount in the donor

• Linear drug transport with time applicable to early time points only

• Assumes negligible back flux and no mass balance problems
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• Time dependent

• Some substrates with high passive permeability (e.g. Verapamil) may not be 
detected by this approach

• No separate quantification of the passive permeability and the apical efflux

• No direct quantification of the influence of inhibitors and/or concurrently applied 

compounds



Theoretical modeling: Transport processes considered for modeling 

drug permeation in the Caco-2 monolayer and relevant processes
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Theoretical modeling: assumptions

• The change of concentration in the apical, the cellular and the basal compartment is 
considered

• Drug movement between the compartments by passive diffusion through the apical 
and the basal cell membrane is symmetrical and is characterized by the permeability 
coefficient, P

• Drug is subject to carrier mediated active efflux from the cellular to the apical 
compartment. This follows saturable kinetics which may be characterized by the 
kinetic parameters, v

max
, and K, 

• The drug concentration in the apical compartment does not influence efflux 
transport and the entire mass of drug present in the cellular compartment is substrate
of the transporter

• Mass is preserved



differential equations describing the change of drug concentration 

or mass as a function of time in the three compartments during 

permeation in both directions
transport direction apical to basal compartment
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representative fits of Quinidine HCl in both transport directions
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passive permeability coefficient of Quinidine 

HCl at different concentrations
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Kinetic parameters of transport I

0.2250.0430.210
average Mcell b to a 

[nmol]

0.1440.0041250.137
average Mcell a to b 

[nmol]

1.2811.4382.941vk [pmol/(s•cm2)]

293.2925.97206.74P • 106 [cm/s]

505050C
D0

[µM]

Verapamil HClDigoxinQuinidine HCl



Kinetic parameters of transport II – transport inhibition

vk Digoxin 50µµµµM & 100µµµµM in combinations with Quinidine HCl 
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Transport processes considered for modeling drug permeation in 

the Caco-2 monolayer and relevant processes including phase II 

metabolism and adsorption to Transwell surface
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differential equations describing the Amentoflavone transport 

including adsorption and phase II metabolism as a function of time 

transport direction apical to basal compartment
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fits of Amentoflavone transport in both directions
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fits of Amentoflavone metabolites for transport in both directions
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Conclusions

• All compounds used individually showed a polarised transport behaviour, the extent 
of which depended on the drug and the concentration used

• Kinetic parameters of the transport could be calculated with the developed model 
which included passive and carrier mediated transport, metabolism and non-specific 
adsorption

• Model estimated passive permeability coefficient of each drug was independent of 
concentration and varied between the drugs

• Model estimated apical efflux parameters varied between the different drugs and 
expressed the mass efflux rate of these drugs elicited by P-glycorprotein in Caco-2 
cells

• The apical efflux parameter also reflected inhibition of the efflux by concomitant 
drugs  

• Phase II metabolic rate constant in the cell was estimated

• By integrating surface adsorption, cellular transport was corrected for this distorting 
effect


