Quantitative Evaluation of the Effect of P-Glycoprotein on Oral Drug Absorption

-Assessment of Drug Permeability to Rat Small Intestine-

College of Pharmacy, Setsunan University, Osaka, Japan Yoshiyuki Shirasaka

PURPOSE

Transport Experiments by using P-gp Expressing Cell Monolayers

Transport Rate = f (
$$K_m$$
, V_{max} , $P_{passive}$)

Drug Concentration P-gp Expression Level Affinity to P-gp Passive Membrane Permeability Cellular Accumulation

< Impact of P-gp on *in vivo* Oral Drug Absorption >

Development of kinetic model that can predict the *in vivo* absorption of P-glycoprotein substrate drugs from *in vitro* data.

Effect of donor concentration on AP to BL and BL to AP transport of <u>quinidine</u> in Caco-2 monolayers

Various cell lines with different expression levels of P-gp

		P-gp expression levels			
ceil line -		Protein (µg/cm ²)	mRNA (×10 ⁻⁵ /GAPDH)		
1	Non-cell (Blank)	0.00	0.00		
2	Normal Caco-2 cells	26.8	3.22		
3	P-gp-induced Caco-2 cells	103.7	5.20		
4	P-gp-highly induced Caco-2 cell	s 191.0	9.53		
5	MDR1-knockdown Caco-2 cells	8.71	1.32		
6	MDR1-MDCKII cells	359.6	144.59		

Protein levels were detected and quantified by Western blotting, loading total protein of 50µg for cells and standard. mRNA levels were determined and quantified by Real-time quantitative PCR.

Effect of donor (apical) concentration on AP to BL transport of P-gp substrates in various cell monolayers

Quinidine

Analysis of P-gp function based on "Sigmoid E_{max} model"

To add the flexibility, Hill Coefficient (r) was introduced to Sigmoid E_{max} model

Estimation of $K_{m(app)}$, V_{max} and hill coefficient of three P-gp substrates by fitting CLp to Sigmoid E_{max} model

	Cell line P-gp expression level	MDR1-kd. Caco-2	Normal Caco-2	P-gp id. Caco-2	P-gp highly id. Caco-2	MDR1- MDCK II
Quinidine	<i>Κ</i> _{m(app)} (μΜ)	0.61	1.69	6.20	8.13	16.39
	V _{max} (×10 ⁻⁷ μmol/min/cm ²)	3.00	7.74	41.0	63.0	132.5
	r (Hill coefficient)	1.16	0.98	1.00	1.01	1.02
Verapamil	<i>Κ</i> _{m(app)} (μΜ)	_	1.01	1.66	2.07	2.85
	V _{max} (×10 ⁻⁷ μmol/min/cm ²)	—	0.91	5.09	8.40	12.6
	r (Hill coefficient)	—	1.02	1.00	1.01	1.02
Vinblastine	<i>Κ</i> _{m(app)} (μΜ)	29.88	80.69	149.01	323.35	—
	V _{max} (×10 ⁻⁷ μmol/min/cm ²)	88.3	213.7	498.7	1180.9	—
	r (Hill coefficient)	1.01	1.01	1.00	1.01	_

Why does " $K_{m(app)}$ " value fluctuate depending on the expression level of P-gp in cells

Lower expression level

Drug concentration at drug bindingsite of P-gp increase easily when the apical concentration become high.

Higher expression level

Drug concentration at drug bindingsite of P-gp is kept low even when the apical concentration become high.

Correlation between P-gp expression level and " V_{max} " value of three P-gp substrates

Quinidine
Verapamil
Vinblastine

V_{max} versus Protein

V_{max} versus mRNA

Correlation between P-gp expression level and " $K_{m(app)}$ " value of three P-gp substrates Quinidine
 Verapamil
 Vinblastine

How to estimate P-gp-mediated efflux in human intestine? How to predict the permeability in human intestine?

data by using P-gp inhibitor.

(2) P-gp mediated efflux :

 $CL_{p-gp} = V_{max} / (K_{m(app)} + C_a)$

Luminal concentration

Regional difference in P-gp expression levels in rat small intestine (proximal and distal)

Det#/Decier			P-gp expression levels	300		
Rat # / Region –			Protein (µg/cm ²)	250	Ave.	231.5
	1	Blank	0.00	u 200		
Det #1	2	Proximal	89.8	n) ₁₅₀		
nal #1	3	Distal	291.7	0 te i	77.7	
	4	Proximal	65.7	L L		
Hal #2	5	Distal	166.8	50		
Det #0	6	Proximal	77.6	0	્રે	- À
nal #3	7	Distal	235.9	0	oxime	Dist

Protein levels were detected and quantified by Western blotting, loading 100µg for rat BBM; 50µg for standard.

Estimation of " V_{max} " and " $K_{m(app)}$ " values of <u>quinidine</u> in rat small intestine (proximal and distal)

Passive permeability " P_{app} " of <u>quinidine</u> in rat small intestine (proximal and distal)

		Quinidine		
		Passive P _{app} (×10 ⁻⁵ cm/sec)	Ratio (Rat/Caco-2)	
Cell monolayers		1.41		
Rat	Proximal	5.06	3.59	
intestine	Distal	5.60	3.97	

*P*_{app} of <u>quinidine</u> to rat small intestine was measured by *in situ* singlepass perfusion experiments.

Simulation of concentration-dependent permeability of <u>quinidine</u> in rat small intestine (proximal and distal)

Simulation of concentration-dependent permeability of verapamil in rat small intestine (proximal and distal)

Simulation of concentration-dependent permeability of vinblastine in rat small intestine (proximal and distal)

	Proximal				Distal		
	V _{max} (×10⁵μmol/min/10cm gut)	K _{m(app)} (μM)	V _{max} /K _{m(app)} (×10 ⁻⁵ L/min /10cm gut)	V _{max} (×10 ⁻⁵ μmol/min/10cm gut)	K _{m(app)} (μM)	V _{max} /K _{m(app)} (×10 ⁻⁵ L/min /10cm gut)	
Predicted	51.3	<u>29.3</u>	1.75	153	40.9	3.73	
Experimental	<u>38.6</u>	<i>2</i> 3.1	1.67	111	32.9	3.37	

CONCLUSIONS

"Sigmoid E_{max} model" for permeability-concentration curve of P-gp substrate drugs can provide the fundamental parameters of P-gp-mediated transport, $K_{m(app)}$ and V_{max} .

This study clearly demonstrated the possibility to estimate $K_{m(app)}$ and V_{max} values in human intestine from P-gp expression level and to predict concentration-dependent permeability of P-gp substrate drugs on human intestinal absorption.

SIGNIFICANCE

Permeability-concentration curve of P-gp substrate drugs can predict how P-gp affect the pharmacokinetic profiles of its drugs and how much permeability of its drugs will be changed by dose adjustment and drug-drug interactions in clinical treatment.

In vivo permeability

ACKNOWLEDGMENTS

- <u>Setsunan University</u> -Prof. S. Yamashita Dr. S. Sakuma Dr. M. Kataoka Ms. Y. Masaoka Ms. Y. Nagai Mr. N. Kitamura

> Kobe University Prof. K. Okumura Dr. T. Sakaeda Ms. Y. Moriya Mr. H. Omatsu

- <u>Shujitsu University</u> -

Dr. T. Sakane

University of Tokyo -Prof. Y. Sugiyama Dr. R. Onuki Ms. T. Watanabe

<u>University of Mainz</u> -Prof. P. Langguth

<u>University of Washington</u> Prof. K. E. Thummel