Controlled release of proteins from self-assembling hydrogels based on oppositely charged dextran microspheres

Sophie Van Tomme^a Rene van Nostrum^a, Stefaan De Smedt^b, Wim Hennink^a

^aDepartment of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences

Utrecht University, The Netherlands

^b Laboratory of General Biochemistry and Physical Pharmacy,

Department of Pharmaceutics, Ghent University, Belgium

GPEN 2006, 25th October 2006 University of Kansas, Lawrence

Outline

Hydrogels

- √ general features
- √ crosslinking methods

Aim of the project

Approach

Results:

- ✓ network characterization
- ✓ protein release
- ✓ degradation

Conclusions

Introduction

Hydrogel

- 3-dimensional hydrophilic network
- Good biocompatibility
 - ✓ minimal tissue irritation
 - ✓ low tendency for proteins and cells to adhere

Possible applications

Drug delivery system
 Release can be tailored

Scaffold for tissue engineering
 Degradation rate can be tailored
 Growth factors can be incorporated
 RGD peptides can be coupled to promote cell adhesion

Introduction

- 1. Chemical crosslinking ↔
- Radical polymerization
- Reaction of complementary groups (e.g. NH₂/COOH)
- Enzymes (e.g. proteases)
- ...

Covalent bonds

- high mechanical strength
- toxicity/denaturation

- physical crosslinking
 - Crystallization
 - Hydrogen bonding
 - Ionic interactions

Non-permanent bonds

- - self-assembly

weaker network

- Implants

→ injectable matrix

Aim of the Project

Synthesis, characterization and evaluation of an <u>injectable</u>, <u>self-assembling</u> hydrogel for *pharmaceutical* and *tissue engineering applications*

dimethylaminoethyl methacrylate

dimethylaminoethyl methacrylate

Microsphere preparation

- Radical polymerization of dexHEMA, emulsified in an aqueous PEG solution
- initiation by KPS (=potassium peroxodisulphate) and TEMED (=tetramethyl ethylene diamine)

water-in-water emulsion

Network formation

Rheology

'Study of flow and deformation'

- G'= Storage modulus (elasticity)
- G"= Loss modulus (viscosity)

tan
$$\delta = G''/G'$$

$$\begin{array}{ll} tan \ \delta = \ 0 & \rightarrow \ fully \ elastic \\ tan \ \delta = \ \infty & \rightarrow \ Newtonian \\ 0 < \ tan \ \delta < \ 1 & \rightarrow \ visco-elastic \end{array}$$

Geometry: 20mm flat plate Gap: 500 μm

Rheology: controlled strain

Strength (modulus) of the network can be tailored by the solid content of the hydrogel

Rheology: creep

dex-HEMA-MAA/dex-HEMA-DMAEMA mixture

→ <u>Elastic network</u>

Rheology: creep

Injectability

→ Reversibility of the network?

Swelling ratio $S=L_t/L_0$

Swelling ratio $S=L_t/L_0$

Swelling ratio $S=L_t/L_0$

Swelling ratio $S=L_t/L_0$

Ratio +/- ↑ — degradation time ↓

dex-HEMA microspheres (R₁)

normal situation

dex-HEMA-MAA microspheres (R_2)

repulsion

dex-HEMA-DMAEMA microspheres (R₃)

attraction + stabilization transition state

Possible release mechanisms

Possible release mechanisms

Possible release mechanisms

Hydrogels composed of 15% microspheres and 85% buffer

- Quantitative release of lysozyme and BSA
- Full preservation of enzymatic activity of released lysozyme

degradation-controlled release

In vitro rhodamine-B-dextran release

In vitro rhodamine-B-dextran release

Combination of release from positive and negative microspheres gives a zero order release

Conclusions

- Mainly elastic hydrogels are formed by mixing oppositely charged dextran microspheres
- Reversible gelation occurs
- ✓ Continuous diffusion-controlled release of proteins
- Degradation behavior can be tailored

Hydrogel properties can be tailored for various applications in drug delivery and tissue engineering

www.fip.org/pswc

Abstract submission deadline 15th December 2006

Travel grant requests: see website

Abstract submission deadline 15th December 2006

www.fip.org/pswc