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INTRODUCTION

The question of when a given property of a topological space
is preserved under mappings is one of the most familiar problems
of general topology. Among the properties of greatest interest for
general spaces is, without doubt, that of metrizability; metrizability
always implies, in particular, a number of important special topological
properties of the space in question (normality, regularity,
paracompactness, etc.). To determine in general the conditions for
preservation of metrizability under mappings appears to be a
difficult problem. It may well be that in the class of arbitrary
continuous mappings the problem has no meaningful solution. The
purpose of this paper is to obtain conditions for the preservation
of metrizability by quotient mappings and to study the properties
of quotient spaces of metric spaces.

We will use "iff" as an abbreviation for "if and only if". If

f is a function from X onto Y, we will write f: X —=>1Y.
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CHAPTER I. PRELIMINARIES

We begin by stating some basic definitions and theorems.

Definition 1.1: Let f ©be a function from a topological

space X onto a set Y. Then the quotient topology for Y

(relative to f and the topology of X) is the family
U= (Ucy: f'l(u) is open in X)}. If Y has the quotient

topology, then Y 1is called a quotient space and f a quotient

Eﬂ.

Since the inverse of an intersection (or union) of members of 2(
is the intersection (union) of the inverses, 2¢{ is indeed a topology
for Y. If a subset U of Y 1is open in a topology relative to
which f 1s continuous, then f-l(U) is open in X. Thus the
quotient topology is the largest topology for Y such that the
function f is continuous.

A subset B of Y 1is closed relative to the quotient topology
iff £1(Y -B) = X - £1(B) 1s open in X. Hence B is closed

iff £ 1(B) is closed.

Theorem 1.2: If f is a continuous function from the topological
space (X,27) onto the space (Y,2() such that f 4is either open

or closed, then 2{ is the quotient topology.

Proof: Let f bve an open map and let U be a subset of Y
such that f’l(U) is open relative to <. Then U = f(f’l(U))
is open relative to 2(. Consequently, if f is open, each set open

relative to the quotient topology is open retative to ZL, and the



quotient topology is smaller than 2(. If f is continuous as well
as open, then since the quotient topology is the largest for which

f is continuous, % is the quotient topology. To prove the
theorem for a closed function f it is only necessary to replace

"open" by "closed" in each of the preceding statements. Q.E.D.

If £ is a continuous map of a topological space X onto a
space Y, the continuity of any g: Y —>> Z implées that of g-f.
The characterizing property of quotient maps is that the converse

is also true.

Theorem 1.3: Let f be a continuous map of a topological space
X onto a space Y. Then f is a quotient map if and only if: for
each topological space Z and eachmap g: Y —>> Z, the continuity

of g-f implies that of g.

Proof: Assume that f 1is a quotient map and that g-f 1is
continuous. Let U be an open subset of Z. Then
(g-f)’l(U) = f'l(g'l(U)) is open in X, so that g'l(U) is open
in Y. Therefore g 1is continuous.

On the other hand, assume that the condition holds. lLet Y'
be the set Y with the quotient topology relative to f, and let
f': X ->>Y' take the same values as f. Let 1i: Y =>> Y' be the
identity map. Since i.-f = f' 1s continuous, the condition assures

l-f' = £ 1is continuous, and f'

is a quotient map, the first part of the proof shows that i'l is

that i is continuous. Since i~

continuous. Thus i: Y =>>Y' 1is a homeomorphism, and f is a

quotient map. Q.E.D.



We now consider another way of looking at quotient spaces. Let
f be a function from a topological space (X,7) onto a space (Y,2),
where Az, is the quotient topology for Y. Define a relation R
on X by xRy iff f(x) = f(y) for x,y in X. Clearly, R is
an equivalence relation; the equivalence classes of R are the
sets f-l(y) with y € Y. Let X/R be the family of equivalence
classes, and let R(x) be the equivalence class to which x belongs.
Let p be the mapping of X onto X/R defined by p(x) = R(x) =
f_l(f(x)) for all x € X, and give X/R the quotient topology
relative to p. We will show that Y is homeomorphic to X/R.

Define & function g from X/R to Y by g(R(x)) = f(x) for
all R(x) € X/R. Since R(u) = R(x) implies f(u) = f(x), g is
well-defined. We have the following diagram, where ' is the

quotient topology for X/R:

(X, ) . > (Y,2)
P

(x/R, ')

Since f is onto Y, g also maps onto Y. If g(R(x)) = g(R(u)),
then f(x) = f(u) so that xRu and R(x) = R(u); thus, g is

one-to-one. Consequently, g-l is a well-defined function. Since

g'l-f =p and p is continuous, Theorem 1.3 shows that g'l is
continuous. Finally, since g'p =f and f 1is continuous,
Theorem 1.3 shows that g 1is continuous. Thus Y 1is homeomorphic

to X/R.



These considerations lead naturally to the following example

of a non-metrizable quotient space of a metric space.

Example 1.4: Let R be the real line with the usual topology
and let Y Dbe the space obtained from R be identifying the integers
Z with O. Then Y is not first countable (and so certainly not

metrizable).

Proof: ILet f: R—-Y be the natural quotient map, and suppose
[Un: n=1,2...}] is a countable local base of open neighborhoods
of 0 in Y. Then f_l(Un) is open in R and Z C’f-l(Un). Hence

for each integer n there exists an en > 0 such that Ne (n) Cif-l(Uh).

n
00

Now B = U N, (n) is open in R and contains Z; it follows
n=1 ~"n/f2

that U = f(B) is open in Y and contains O. But Un ¢ U for

each n, and consequently O cannot have a countable local base. Q.E.D.

We conclude the first chapter by proving two lemmas for later

reference.

Lemma 1.5: In a first countable space X, x € M iff there
exists a sequence {xn] of points x in M such that {xn]

converges to x.

Proof: Choose for x a decreasing local base of open
neighborhoods {Un: n=1,2...}, Uy 20,2 ... . If x€ M, then
U NM # ¢ for all n. If x €U NM then [xn} converges
to x. On the other hand, if {xn] converges to x with x € M,

then clearly U NM # ¢ for all n, and x € M. Q.E.D.



Lemma 1.6: Let E be a topological space and suppose

E = U Ek’ where each Ek is an open metrizable subspace of E
A

and the Ex's are pairwise disjoint. Then E is metrizable.

Proof: Let dx be a metric compatible with the subspace
topology on Ek eand such that the diameter of EX is less than 1.

Define a metric 4 for E by

dx(x,y), if x and y are in the same Ex

a(x,y) =
1, otherwise.

Since the Ek's are pairwise disjoint, d is well-defined. By
considering cases, one easily shows that d is indeed a metric.

To show that every set open in the topology of E 1is open in
the topology induced by d, let x € EX CE and let U be an open
set containing x. Then U N EA is open in Ek and, consequently,
there exists 0 < € <1 such that
un E, 2 (y: dx(y,x) <€} = {y: d(y,x) < €)}. Thus
U2 {y: d(y,x) < €).

To show that every set open in the topology induced by 4 is
open in the topology of E, let x € E, and let Ne(x) = (y: d(y,x) < €)
be a metric neighborhood of x. We can assume € < 1. Thus
Ne(x) = (y: dx(y,x) < €} contains a set U open in E, . Since
Ex is open in E, U 1is also open in E.

Thus the topology induced by d is compatible with the topology

of E. Q.E.D.



CHAPTER II. SPACES IN WHICH SEQUENCES SUFFICE

In this chapter we show that quotients of metric spaces are
among those spaces in which sequences are adequate for the description

of many topological concepts.

Definition 2.1: A subset U of a topological space X is

sequentially open iff each sequence in X converging to a point in

U 1is eventually in U. A subset F of X is sequentially closed

iff no sequence in F converges to a point not in F.
Clearly, any set open (closed) in X is sequentially open

(sequentially closed) in X.

Definition 2.2: A topological space X is a sequential space

iff every sequentially open set is open.
Thus, in sequential spaces the open sets are precisely the

sequentially open sets.

Proposition 2.3: Every first countable space, and hence every

metric space, is a sequential space.

Proof: Let U be sequentially open in the first countable space
X, and suppose U is not open. Then there exists x € U - Int U,
where Int U denotes the interior of U. Let {Ung n=12...}
be a local base of open neighborhoods of x such that Ui =)U2 Dees
If Un c U, then x € Int U; consequently, for each integer n
there exists x € U N (X-U). Clearly, x »x €U but {xn] is
not eventually in U, contradicting the assumption that U is

sequentially open. Q.E.D.



Proposition 2.4: For any topological space X, (1) and (2)

below are equivalent. If X is Hausdorff, then they are also

equivalent to (3) and (L4).

(1) X is a sequential space,

(2) Every sequentially closed set in X is closed.

(3) Every subset of X which intersects each convergent
sequence in a closed set is closed. (We here use the temm
"convergent sequence”" to mean the sequence plus all of
its limit points.)

(k) Every subset of X which intersects each compact metric

subspace of X 1in a closed set is closed.

Proof: (1) - (2). Let X be a sequential space and let F
be sequentially closed in X. If X - F 1is not sequentially open,
there exists a sequence [xn] which converges to a point x € X - F
but which is not eventually in X - F; hence for every integer N

there exists n >N such that x ¢ X -F. Then (x )} CF but
B A
xnk +x € X - F, contradicting that F is sequentially closed.

Consequently, X - F 1is sequentially open and thus open. Therefore
F is closed. The proof that (2) implies (1) is similar.

(2) »(3). Let X be T, and let F be a subset of X which

2

intersects each convergent sequence in a closed set. If F is not
sequentially closed, there exists a sequence (xn] S F which

converges to x ¢ F. Since X is T x 1is the only limit point

2)
of {xn], so that {xn} U {x} 1is a convergent sequence. Then

xeFnN ({xAT’U x}) - Fn ({xn} U (x}), that is, F N ({xn} U {x})



is not closed, a contradiction. So F is sequentially closed and
thus closed.

(3) »(2). Let X be T, and let F be sequentially closed

2

in X. Then F intersects each convergent sequence in a closed set.
For suppose x —>x but F N ({xn] U {x}) 1is not closed. Since

X is T F N ([xn] U {x)) is infinite, say {(x_ } @ F. Now

e

xnk - x so that x is the only limit point of F N ((xn] U {x)).

l,

Since F N ({xn} U {x)) 4is not closed, x ¢ F; thus F is not
sequentially closed, a contradiction.

(3) » (4). For Hausdorff X, each convergent sequence is
compact metric. For suppose X, X% and let A = [xn} U {x).
Since any set of an open covering of A that contains x contains

all but at most finitely many elements of A, A 1is compact. We

can define a metric on A as follows: d(xn,xm) = I-:‘I -%I and
1
d(x,xn) = =

(4) - (3). Let A bve a subset of X which intersects each
convergent sequence in a closed set. Then A intersects every
compact metric subspace of X in a closed set. For suppose M S X

is compact metric and A NM is not closed, say x € ANM - A NM.

Since X is T M 1is closed in X and consequently A ﬂMf-_‘-ﬁ =

2)
then, since M 1is first countable, there exists a sequence

{xn: n=12...] € ANM such that X - X. But

AN ({xn} U (x}) = {xn} is not closed, contradicting our assumption

about A. Q.E.D.

Lemma 2.5: Let f ©be a quotient map of a sequential space X

onto a topological space Y. Then Y is a sequential space.

M;



Proof: Let UCY be sequentially open. To show that U is
open in Y, we must show f"l(U) is open in X; since X 1is
sequential, it suffices to show f-l(u) is sequentially open. So
let [xn: n=122...} € X converge to x € f-l(U). Then, by the
continuity of f, f(xn) - f(x) € U; since U is sequentially open,
{f(xn)) is eventually in U. But then {xn] is eventually in

f'l(u). Q.E.D.

Definition 2.6: Let {Xu: p € M} be a family of topological
spaces such that Xu n Xu. = ¢ if # u'. Then the topological
sum of the xl—l is the set Z = U[Xu: p € M} with the following
topology: UCS ZI is open in E iff UN X"l is open in Xu for
every u € M.

If the Xu are not pairwise disjoint, we can construct

homeomorphic spaces which are pairwise disjoint.

Theorem 2.7: Every sequential space X 1is a quotient of a

topological sum of convergent sequences.

Proof: For each x € X and each sequence s = (s :n=12,...
in X converging to x, let 8(s,x) = {s;: n=1,2...} U {x)
be a topological space in which each 5, is a discrete point and
s, »x in S(s,x). Let T be the disjoint topological sum of all
possible S(s,x), and define f: T-X by f(t) = t.

To show that f is continuous on T, we show that f is
continuous on each S(s,x). If m € S(s,x), then either m = x or
m=8, for some n. Suppose m = x and let V be a neighborhood

of f(x) = x € X; since s X in X there exists an integer N
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such that n > N implies s, € V; thus U = {x} U {si: i >N}
is a neighborhood of x such that f(U) €V, and hence f is
continuous at x. Suppose m = 8, for some n and let V be a
neighborhood of f(sn); then U = [sn} is a neighborhood of s
such that f(U) €V, and hence f is continuous at 8-

To complete the proof that f is a quotient map, let U be a
subset of X such that f-l(U) is open in T. To show that U
is open in X, it suffices to show that U is sequentially open
in X. If xO €U and s = [sn: n=12...] converges to xo,
then x, € f-l(U) n S(s,xo) which is open in S(s,xo). Thus {sn},
considered as a subset of S(s,xo), is eventually in f'l(U);

consequently, {sn] is eventually in U. Q.E.D.

The following corollary shows that quotient spaces of metric

spaces are precisely the sequential spaces.

Corollary 2.8: The following statements are equivalent.

(1) X is a sequential space.
(2) X 4is the quotient of a metric space.

(3) X is the quotient of a first countable space.

Proof: (1) » (2). Let X be a sequential space. Then by the
theorem X is the quotient of a topological sum T of convergent
sequences. Defining a metric on each 8(s,x) by
d(s,8,) = I}ﬁ - !lnl and d(x,s ) = %, we obtain a topology
compatible with the topology of S(s,x). Then T 4is a metric space
by Lemma 1.6.

(2) » (3). Every metric space is first countable.



11

(3) > (1). Suppose X is the quotient of the first countable
space Y. By Proposition 2.3 Y 1is a sequential space. By

Lemma 2.5 X 1is a sequential space. Q.E.D.

Corollary 2.9: Among T2-spa,ces quotient spaces of metric

spaces are precisely those spaces satisfying the following condition:
a subset A of X is closed iff A intersects every compact metric

subspace in a closed set.

Proof: The proof follows directly from Corollary 2.8 and

Proposition 2.4. Q.E.D.

Definition 2.10: A topological space X is called a Fréchet

space iff for every subset A of X x € A iff there exists a
sequence (xn: n=1,2...}] A such that X, - X.

By Lemma 1.5 every first countable space is a Fréchet space.
Every Fréchet space is a sequential space, since every sequentially

closed set in a Fréchet space is closed.

Definition 2.11: A continuous function f: X =>>Y 1is

pseudo-open iff for any y € Y and for any open neighborhood U

of f-l(y), y € Int £(U).

Proposition 2.12: Every open (closed) continuous function is

pseudo-open. Further, every pseudo-open map is a quotient map.

Proof: It is clear that every open continuous function is
pseudo-open. Let f be a closed continuous mapping of X onto Y,

let y €Y, and let f'l(y) C U open in X. Then there exists an
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open set V O {y) such that f_l(y) < f'l(V) c U. (See [4; page 86].)
Thus y € V< £(U); since V is open, it follows that y € Int £(U)
and that f is pseudo-open.

Let f: X >>Y Dbe pseudo-open. Let UCSY be such that
f_l(U) is open in X. Then f-l(y) c f-l(U) for every y € U;
consequently, y € Int f(f'l(U)) = Int U for every y € U. Thus

U is open and f is a quotient map. Q.E.D.

Since quotients of Fréchet spaces need not be Fréchet spaces,
Lemma 2.5 does not have an analogue for Fréchet spaces. We have,

however, the following theorem.

Theorem 2.13: If X and Y are T2-spaces, X is a Fréchet

space and f: X —=>> Y 1is a quotient map, then Y is a Fréchet

space iff f 1is pseudo-open.

Proof: Suppose that Y is a Fréchet space, y €Y, and U
is an open neighborhood of f'l(y). If y ¢ Int £(U), then
y €Y - £f(U). Hence there is a sequence {yn] cY - £(U) converging

to y. Since Y is T, lyn] = {y)uly) 1f F=f-l([Yn}),

then by the contimuity of f FC f'l(Ti;T) = FU£(y). But
f"l(y) CU and UNF = @; hence f'l(y) NF = ¢ and FCF.
It follows that F is closed and thus that X - F = f'l(Y - {yn})
is open; therefore, since f is a quotient map, Y - [yn} is
open, contradicting that {yn] —+y. Hence y € Int £f(U) and f

is pseudo-open. |

Assume f is pseudo-open, M CY, and yeﬁ. It

f'l(y) nf'l(m) = ¢, let U = X - f‘l(M); then
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y € Int £(U) € £(U) €Y - M, contradicting y € M. Thus there is

some X, € f-l(y) n f-l(M). Since X is Fréchet, we can choose a
sequence [xn: n=12...}]¢c f'l(M) converging to x,. Then
{f(xn): n=12..}) <M and f(xn) -y by the continuity of

f. Thus Y is a Fréchet space. Q.E.D.

Proposition 2.14: The disjoint topological sum £ of any

family of Fréchet spaces {xu: peM is a Fréchet space.
=% — -z
Proof: If ACZ, then A" = U AN xu where A~ denotes
ueM

X
the closure of the set A in the space £ and A N xu“ denotes
the closmure of the set A N Xu in the subspace Xu. The
proposition now follows from the definition of a Fréchet space and

the hypothesis that each X'_1 is a Fréchet space. Q.E.D.

Theorem 2.15: Among T2-spaces, Fréchet spaces are precisely

the pseudo-open images of a topological sum of convergent sequences.

Proof: Let Y be a Fréchet space. By Theorem 2.7 Y is a
quotient of a topological sum £ of convergent sequences S(s,x).
Since each S(s,x) is metrizable and is thus a Fréchet space,
Proposition 2.14% shows that £ is a Fréchet space. By Theorem 2.13
the quotient maep is pseudo-open.

On the other hand, if Y is the pseudo-open image of a
topological sum of convergent sequences, then Y is a Fréchet space

by Theorem 2.13. Q.E.D.
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CHAPTER III. QUOTIENTS OF SEPARABLE METRIC SPACES

In this chapter we characterize quotient spaces of separable

metric spaces among the regular T_,-spaces. Except for Theorem 3.1

2
the results are due to E. A. Michael [10]. We need several
preliminary results.

The weight of a topological space X is the least cardinal of

a basis for the topology of X.

Theorem 3.1: (Ponomarev). Every first countable Tl-spa.ce is

the open continuous image of a metric space of the same weight.

Proof: Let 6 = {a)} have cardinality T, and let
B = {v: ¥ = (011,052,...,(:zn,...),a:l € 6). Define a metric on B_
as follows: d(y,y¥') = % where k is the least integer for which

o # ak': An open neighborhood is

N(%%) = No’_l_""’ak = {(a]'.’aé"”):a]'.=al"“’aé=ak]'

Let X be any first countable Tl-space of weight 7. Let

B = {Ua: 0 € 6) be a basis of cardinality v for X. We call
Vv o= (al,a yeer) € B "distinguished" if U form a base

’ ,..'
)

of some point x € X. Let WC B-r be the set of all distinguished

points. Since X is a T, -space, n{Nx:Nmei_s; & neighborhood of x} = {x}

for each x € X; thus for every ¥ = (al,ae,...) € W there exists

a unique x € X such that U_,U ,... form a base at X, namely
0

(x} = n Uy, - In this way we define a mapping f: W X: ¥ - x.
i=l 71

Since X 1is first countable, f maps onto X.
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To show that f is open, we will show that

k k
f(WNN ) = N U . Let xe€ N U_, and add to
S TAREEAN i=1 % i=1 %
u. ,...,U the neighborhoods U »U seeo until you get a
% O A1 %ao

base at X. Let n = (a]_,‘..,%’%"'l,".). Then f(n) = x’ 80
k

£f(Ww N N, )2 N Uy, On the other hand, it is clear from
170 % T %

the definition of f that f(WNN e nuU
R T ]

To see that f 1is continuous, let € e W and let V be an

open neighborhood of f£(¢). Since 23 is a basis, V is the union

of members of &, so f£(t) € Ual, say. Then £ eW N Nal and
f(w ﬂNal) CU, C<V. Hence f is continuous at §. Q.E.D.

Corollary 3.2: Every second countasble T,-space (x,7) is

a continuous image of a separable metric space.

Proof: Let 25 be a countesble base of (X,7), and let
Br = (c:ceB or X-Ce ). Then, if 7/ 1is the topology
generated by B', (X,%) is a T,-space. A basis for 2 1is the
collection of sets which are finite intersections of members of /3 ';
since ' is countable, such a collection is also countable. Thus
(X,2{) 1is second countable (so also first countable). By Theorem 3.1
(X, 2() 1is the continuous open image of a second countable metric
space W under a mapping f. But 2/ 2 7, so (X,77) is the
continuous image of W under f. Since W is second countable

metric, W is separable. (See [U4; page 187].) Q.E.D.

Definition 3.3: A network %% for a topological space X is a

collection of subsets of X such that any open set can be obtained
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as a union of members of 7. A cosmic space is a regular T

o~ Space

with a countable network.

The members of a network are not necessarily open subsets. Any

base for the topology forms a network; so does the family of single
points.

Definition 3.4: A collection 70 of subsets of a T2-space X

is a k-network for X iff, whenever CC U with C compact and U

open in X, then CCS PCU for some P e 7. An ,'lfo-space is a
regular '1‘2-space with a countable k-network.

Every k-network # is a network. For let x € U open;
since ({x} is compact, there exists P € #° such that x € P C U.
Since this is true for every x € U, U can be obtained as a union

of members of /. Thus every ,I‘O-space is a cosmic space.

Proposition 3.5: A subspace of an ,\‘O-space is an ;\.‘o-space.

Proof: Let X be an f\_‘o-spa.ce with countable k-network 7.
Let B be a subspace of X, and let /' = (PNB: Pe ). Let
CcU with C compact end U open in B. Then C 1s also compact
in X and U = BNU' for some U' open in X. Hence there is
an element P of (© such that C CPCU'. Then
C = CNBCPNBCU'NB = U. Therefore /' is a countable
k-network for B. Subspaces of regular T, -spaces are regular

2
T2-spa.ces, so B 1is an )Uo—spwe. Q.E.D.

Lemma 3.6: A separable metric space X is an ;\.‘O-space.
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Proof: Let = [Bn: n=12...}] be acountable basis for
X; without loss of generality we can assume Z 1is closed under
finite unions. We show that Z? is a countable k-network for X.
Let C<CU with C compact and U open in X. Since X is

regular, there exists Bi € B such that x € B, €U for every

i
x € C. Since C is compact, there exist finitely many Bi’ say
n n n
B),...,By, such that C< U B,. Since U B, €U and U B, € z,
i=1 i=1 i=1

the proof is complete. Q.E{D.

Definition 3.7: A Hausdorff space X 1is called a k-space iff

a subset A of X is closed in X whenever A NC is closed in

C for every compact subset C of X.

Theorem 3.8: If X is a k-space with a countable k-network,

then so is any Hausdorff quotient space Y of X.

Proof: A quotient space of a k-space is a k-space. (See [L;
page 248].) Hence we need only show that Y has a countable k-network.
Let / be a countable k-network for X. The family of finite
unions of elements of /# is again countable and a k-network.
Thus without loss of generality we may take 7 to be closed under
finite unions. Let f Dbe the quotient map of X onto Y, and let
K = (£(P): P e ). We will show that 7€ is a k-network for Y.
Let C<U with C compact and U open in Y. lLet y e U
and let x € f-l(y); since (x) is compact and f-l(U) is open
in X, there exists P € 7 such that (x) < PcC f-l(U) and
therefore such that y € £f(P) € U. Thus, let Rl’Re’ ... be an

enumeration of the elements of 763 which are contained in U. Let
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Let Ry = Ry U...UR. We have R' = f(Pl) U...U f(Pn) =
f(Pl U...U Ph) = f(Pg) for some Pﬁ € /. Hence for every n
RA € Z? and Rﬁ C U, so it suffices to show that C C’R& for
some n.

Suppose not. Then for each n there exists x, € Cc - Rﬂ.
Let A = {xn: n=1,2,...}. Now C is covered by elements of 7f
and Rﬁ+133 Ré. Hence for all k > n, x € Cc - R'n. Therefore
AN R& is finite for all n. Also, given n there is a k such
that (X, ...,%} C Ry. Hence x # X, for j =1,2,...,n.
Therefore A is infinite.

Since ACC and C is compact, A has a limit point x.
Then E = A - (x} is not closed in Y. Since f is a quotient
map, f-l(E) is not closed in X; since X is a k-space it
follows that there exists a compact set K < X such that f'l(E) n K
is not closed in K. Hence E N f£(K) is not closed in Y (if it
were closed in Y, £ 1(E N £(K)) = £X(E) n £1£(K) would be
closed in X, and then £ 1(E) NK = [£1(E) N £ £(K)] NK would

be closed in K). Since Y is a T -space, E N f£(X) and the

1
larger set A N f(K) are infinite. Now C is compact and hence
closed in the Hausdorff space Y, so f-l(c) N K 1is compact. Hence
there exists P € 7° such that f'l(c) NKcPc f'l(u).

Now AcC, so ANEfEEK)cc N K = f(f'l(c) nK) < £(p)
and thus A N f(K) cA N £(P). But A N f(K) is infinite, so that
A N £(P) is also infinite. Since f(P) €U, we have f£(P) = R
for some n. Thus A N Rn is infinite and consequently so is

AN Rﬁ, a contradiction. Q.E.D.
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Lemma 3.9: Let X be a regular Te-space. Then the following

statements are equivalent.
(L) X is cosmic.

(2) X 4is the continuous image of a second countable T2-space.

(3) X is the continuous image of a separable metric space.

Proof: (1) - (2). Let ¥ be a countable network for X.
Let Y be the set X, topologized by taking \_;Z to be a sub-base.
As in the proof of Corollary 3.2, Y is second countable.

To see that Y is T2,
x and y as points of X; since X is T2,
and V openin X suchthat xeU, ye€V, and UNV = ¢.

let x # y be elements of Y. Consider

there exist sets U

Then there exist F,F, € S such that x e F,, y e F,, eand

1

F,NF, = @. But considered as subsets of Y, F

2
1 and F2 are
open.

The identity map from Y to X 1is continuous. For if U is
open in X, U &= UFa for some sub-family of \Sz Then
£rw) = £ Fy) = Uf’l(r'a) = UF, is open in Y.

(2) » (3). Apply Corollary 3.2.

(3) »(1). Let Y be separable metric, and f: Y => X

continuous. If 23 is a countable base for Y, then

F = {(f(B): B € B} is a countable network for X. Q.E.D.

If X and Y are topological spaces, let (’(X,Y) denote
the space of all continuous functions from X to Y, with the
compact-open topology. This is the topology which has a sub-base
consisting of all sets W(C,U) = {fe C(X,Y): £(C) €U} with C

compact in X and U open in Y.
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Lemma 3.10: If X is a compact metric space and if Y is an

',“%o—space, then (C.(X,Y) 1is cosmic.

Proof: Since Y is a regular T,-space, C(X,Y) is a
regular T,-space. (See [4; page 258].) A compact metric space is
separable metric. (See [14; page 158].) Thus by Lemma 3.6 X is
an ,\:o-space. Let 79 and 7€ be countable k-networks for X
and Y, respectively. The collection of all finite intersections
of sets w(?,n) with Pe ” and R e f is clearly countable;
we will show that it is a network for ( (X,Y).

Let f € W(C,U) where C 1is a compact subset of X and U
is open in Y. Since C 1is closed in X, f-l(U) is open in X,
and C < £ 1(U), the normality of X implies that there exists an
open set V such that CC V CV C £ 5(U). Then there exists P e 7
such that C < PcV, and consequently CC P C f-l(U). Since P
is closed in the compact space X, P is compact. Thus f(?) is
compact and f(P) € U. Therefore there exists R € /2 such that
f(P) c Rc U. But then f € W(P,R) € W(C,U). Since the sets
W(C,U) are a sub-basis for the compact-open topology, the proof is

complete. Q.E.D.

Definition 3.11: Let X and Y be topological spaces. A

continuous function f: X »Y 1is a compact covering iff every

compact subset of Y is the image under f of some compact subset

of X.

Lemma 3.12: If Y is a Hausdorff k-space, then any compact-

covering map f: X —>> Y is a quotient map.
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Proof: Suppose B CY is such that £ 1(B) is closed in X.
To show that B is closed in Y, it is sufficient to show that
B NC is compact for every compact subset C of Y.

Let C Dbe a compact subset of Y. Then C = f(K) for some
compact subset K of X. Then f-l(B) N K 1is compact, and hence,

by the continuity of f, so is its image B N C. Q.E.D.

If X is a Te-space with topology \7, then let k(X) denote
the set X, topologized by calling a subset closed iff its

intersection with every & -compact subset of X is _%/-compact.

Proposition 3.13: k(X) is a Hausdorff k-space and its

topology yields the same compact sets as X.

Proof: Since the intersection of a closed set and a compact
set is compact, every set closed in X is closed in k(X). Thus
the topology of k(X) contains the topology of X. It follows that
k(X) 1is Hausdorff and that every set compact in k(X) is compact in

On the other hand, let A be compact in X. Then A is closed
in k(X). Let F be any collection of k(X)-closed subsets of A
having the finite intersection property; to prove that A is
compact in k(X), it is sufficient to prove that N.F# # ¢. But
FNA is compact in the T2-spa.ce X for every F €% and hence
F = FNA is closed in X for every F € 5. Thus \;'7 is a
collection of X-closed subsets of A; since A 1is compact in X,
nNF # ¢.

To see that k(X) is a k-space, let A be a subset of k(X),

let C be a compact subset of k(X), and suppose A NC 1is closed
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in C. Then A NC is k(X)-compact and thus X-compact. By the

definition of the topology of k(X), A is closed in k(X). Q.E.D.

It is not difficult to see that a Ta-space X 1is a k-space
iff X = k(X), that is, iff the topologies of X and k(X) are
equal.

Let X and Y be T2-spa.ces and let f: X -5Y bve a function.
Then f,: k(X) » k(Y) denotes the function taking the same values

as f but from and into the new topological spaces.

Lemma 3.14: If X and Y are T,-spaces and if f: X >>Y

is continuous, then so is f: k(X) => k(Y).

Proof: Let B be closed in k(Y). To show that f;l(B) is
closed in k(X), it is sufficient to show that £ -(B) N C is
closed in X for every compact subset C of X.

Let C be a compact subset of X. Since f is continuous,
f(C) is compact in Y; thus B N £(C) is compact in the T,-space
Y and hence closed in Y. Since C 1is closed in X, it follows

that f'l(B) nc = f‘l(B N £(C)) NC 4is closed in X. Q.E.D.

Lemme 3.15: Every compact ﬁo-space X 1is separable

metrizable.

Proof: Let 7° be a countable k-network for X. By Urysohn's
metrization theorem, it will suffice to show that (Int P: P e 7}
is a base for X.

Suppose not. Then there is an x € X and an open subset U

of X such that x € U and such that there is no P € 70 with
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x € Int PC U. Let U]_’ U2, ... be a sequence of neighborhoods of

X. Since X 1is regular, there exists an open subset V of X

such that x e VEVCU; let V. = VNU forall n. Let

P.,P,,... be an enumeration of the elements of P contained in U.
Suppose Vn c Pn for some n. Being the intersection of two
neighborhoods of x, Vn is a neighborhood of x. Hence x € Int Pn cu,
contradicting our assumptions. Thus we can pick an x, € Vn - Pn
for all n. Let C = (x,X,...}. Since X 1is compact, C is

compact. But CcVcC U, so Cc Pn for some n, which is

impossible since x ¢ P . Q.E.D.

We now have the machinery necessary to prove the following
theorem. It has a corollary concerning quotient spaces of separable

metric spaces.

Theorem 3.16: The following properties of a regular T2-space

are equivalent.
(1) X is an Ho-space.
(2) X is the image, under a compact-covering map, of a
separable metric space.
(3) k(X) is the image, under a compact-covering quotient map,
of a separable metric space.

(%) k(X) is a quotient space of a separable metric space.

Proof: (1) - (2). Let K denote the Cantor set, and define
d: C(XK,X) xK->X by @(f,t) = £f(t). Since K 1is compact, ¢ is
continuous. (See [9; page 223].) By Lemma 3.10 & (K,X) is cosmic.

Then by Lemme 3.9 there exists a comntinuous function u from a
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separable metric space S onto C(K;’X). Since K is compact
metric, K 1is separable. Thus S X K is a separable metric space.
(See [4; pages 175 and 191].) Define ¢: S XK » X by

¥(s,t) = @(u(s),t). Since ¢ and u are continuous, so is V.
We will show that ¢ is a compact-covering map.

Let C be a non-empty compact subset of X. By Proposition 3.5
and Lemma 3.15 C is metrizable. Thus there exists f ¢ Z(K,X)
such that f(K) = C. (See [9; pages 165-6].) Pick s € S such
that u(s) = £f; we can do this since u maps onto (" (XK,X). By
Tychonoff's theorem, {s} XK is a compact subset of S X K. Now
v({8} XxK) = C. (If C = (x)}, then this argument also shows
that ¥ maps onto X).

(2) »(3). Let f: M =>> X be a compact-covering map, with M
separable metric. M is a T2 k-space. [See [4; page 248].) Thus
M = k(M). By Lémmea 3.14 £,z M >> k(X) is continuous. Since k(X)
and X have the same compact sets (see Proposition 3.13), f, is

k

a compact-covering map along with f. By Lemma 3.12 fk is also

a quotient map.

(3) » (). oObvious.

(4) - (1). sSuppose k(X) is a quotient space of a separable
metric space M. By Lemma 3.6 M is an ,\\O-space, so Theorem 3.8
shows that k(X) has a countable k-network. Since X has the same
compact sets as k(X) and every set open in X is open in kK(X),

X also has a counteble k-network. Thus X is an 'ﬁfo-spa.ce. Q.E.D.

The following corollary characterizes quotient spaces of

separable metric spaces.
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Corollary 3.17: Let X be a regular Ta-space. Then the

following statements are equivalent.
(1) X is an ',‘\‘o-space and a k-space.

(2) X is a quotient space of a separable metric space M.

Proof: (1) - (2). This follows from (1) - (4) of Theorem 3.16,

since, when X is a T, k-space, k(X) = X.

2
(2) > (1). since M is a k-space and a quotient space of a
k-space is a k-space, X is a k-space. By Lemma 3.6 M is an

Ho-spa.ce. Theorem 3.8 then shows that X is an ,\(o-spa.ce. Q.E.D.
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CHAPTER IV. GENERAL QUOTIENT SPACES

In this chapter we obtain criteria for metrizability of an
arbitrary quotient space of a metrizable space. Our first main
result is due to A. Arha.ngel'skﬁ [1]. Of fundamental importance

is the following definition.

Definition 4.1: A mapping f: X =>> Y of a metrizable space

X onto a topological space Y is called regular iff there exists
a metric d compatible with the topology of X such that for each
open subset G of Y and each point y € G there exists a

neighborhood U of y such that a(£™1(U),X - £7(¢)) > 0.
We shall also need the following two definitions.

Definition 4.2: Let 2 = {Ua: a € A} be a covering of a

space Y. For ey B CY, the set U(U:U NB # @) is called

the star of B with respect to Z{, and is denoted by St(B, 2().

Definition 4.3: Let A = (U ae A} be an open covering
of Y. A sequence [2/11: n=12,...} of open coverings is called

locally starring for 2( if for each y € Y there exists a

neighborhood V of y and an integer n such that St(V, Wn)

C some U._.
a

We will make use of the following metrization theorem, also due

to Arhangel'skil.

Theorem L4.4k: If Y is a Tl-space and if there exists one

sequence {Vn: n=12,...}) of open coverings that is locally
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starring for every open covering, then Y is metrizable.
Proof: The proof may be found in [4; pages 196-7].
Our goal is the next theorem.

Theorem h.§: A Hausdorff quotient space of a metrizable space

is metrizable if and only if the corresponding mapping is regular.

We first prove two lemmas. If X is a metric space with
metric d, define Ne(B) = (x: d(x,B) <€) for each BCX and

each € > 0.

Lemma 4.6: Let f: X —>>Y be a mapping of a metric space X
onto a Tl-space Y which satisfies the following two conditions:

(1) £ is regular.

(2) y € Int f[Ne(f-l(y))] for any point y € Y and number

Then Y is metrizable.

Proof: Let Zén, n=1,2..., consist of all open sets in X
whose diameter is at most -;L; Let yn denote, for any n, the
family of sets in Y consisting of the interiors of the stars of
the points of the latter space with respect to the set of images of
members of the covering 2( : yn = {Int St(y,f( 2(n)): y€Y).

We assert that [%: n=12...) is a sequence of open coverings
of Y that is locally starring for every open covering of Y.

First of all, the Vn are coverings of Y. Note that

€ > 0.
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1

st(y,£(2(,)) = U(f(U): Ue Z{ and £(U) N (y) # §)

= U(f(U): Ue 2{ eand UN £ (y) # 91
= f(U(U: Ue 2, end UN £ (y) £ 9))

= £lst(£7(y), X))

Therefore Int St(y,f(Z/n)) = Int f[ St(f'l(y),Z(n)] 3y by
condition (2).

Now let y and N be an arbitrary point and a neighborhood
thereof in Y. Since f 1is regular, there exist neighborhoods N,
and N, of y such that d(f'l(nl),x - f'l(N)) >0 and
d(f-l(Ne),x - f'l(Nl)) > 0. Let r be the smaller of the two
numbers on the left hand sides of these inequalities, and take

integer M such that r%< r. We shall now show that

st(N,, VM) cN.
Consider any point y, € St(Na, ?/M) = U(V: Ve yM and
VAN, # ¢) = U(V: V= Int St(p,#(%,)) for some peY and

V NN,

, # #). Let peY be such that

1') y,e Int U(£(U): U e Z(M and £(U) N (p) # ¢)
c U{f(u): Ue Z(M and p € £(U))
2') ¢ # N, N Int U(£(U): Ue 2(M and £(U) N {p) # @)

c N, NU{f(U): Ue Z(M and p € £(U)].

2
By 1') Yo € f(Ggl) for some Gzl € Z(M sych that p € f((fél).
By 2') N, N f((};) £ ¢ for some M e Z(M such that

2 2 %

pef((}';e). That is, Z(M contains two members Gzl and (}22
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which satisfy simultaneously the following relations:

1) f(e ) nwy £ 4
2") f(a;1>nf<a*;2> 9
3") ¥, € f«f;l)

By 1"), GI; n f-l(Nz) # ¢ and consequently, since
2

diem a’éz < §< r < d(f-l(Na),x - f‘l(Nl)), we have 022 c f'l(nl).

Hence f(c‘éz)c: N, 8o that f(Gl;l) n f((;'éa) cN, By 2"), we may

write f(Gr;l) n N # ¢, or, equivalently, ek nf'l(Nl) £ g

!

Since diam Gl:"l < % <r< d(f‘l(Nl),x - £Y(N)), it follows that
@ et M "
c £ (N), so that f(G. ) © N. Consequently, YVo€N by 3 ).
* x
Since y, was an arbitrary point in St(NE, ?/!'4), we have
shown that St(N, ,VM) CN. Thus, the family (2/: n=1,2,...)
is locally starring for every open covering of Y. By Theorem L.4

Y is metrizable. Q.E.D.

Lemma 4.7: Let f: X >>Y be a regular quotient mapping of

a metric space X onto a T,-space Y. Then if a set MCcX

2
satisfies the condition £ ~f(M) =M, the set £ “£(M) is closed.

Proof: Assuming the contrary, consider a point

T 1=
X, € T f(M) - £ "£(M). Let Yo = f(xo). Then
f'l(yo) n f'lf(ﬁ) = ¢ and consequently f'l(yo) nNM = ¢.

Let us say that a point x € M 1is e€-accessible from Xy if

for some y € Y we have Ne(f'l(y)) D {xo] U {x}. We assert that
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for any € > O, there exists a point in M which is €-accessible

from x,. Since x, € f-lf(h-d), there exists a sequence in f-lf(ﬁ)

converging to x,; take X, € f-lf(ﬁ) such that d(xo,xl) < €.

Let y, = f(x). If f'l(yl) NM = ¢, then y, ¢ f(M) and

X, ¢ f-lf(ﬁ), a contradiction. Thus there is an X, € M such

that f(x2) = yl. In turn, the set M contains a point x3 such
-1
that d(x3,x2) < €. Then Ne(f (yl)) D {xo} U {x3}, so that )

is €-accessible from xo.

For every n, pick a point X, in M which is —Ili-accessible
from X5° We will first éhow that {f(xn)] converges to yo. Let
U be an arbitrary neighborhood of Yo- Pick a neighborhood Ul
of y, such that (£ (U)X - £1(U)) > 0. Then also

d(f-l(!o),x - f'l(Ul)) > 0. Now let N be an integer such that

L < minfa(£7H(u)),X - £7(V)), (£ (y,) X - £7H(U))))

Then f(xn) €U for n > N. Indeed, consider the point Y, for

which Nl/n(f-l(yn)) 2 {x,) U {xn]. Since d(xo,f'l(yn)) < %,

-1 1
there exists z € f (yn) such that d(xo, zn) <z. If

1

-1 -1 -1 1
z €X - £ (U), then A(£7(y,),X - £7(U))) < dlxy2)) <Z <3

a contradiction; thus z_ € £ -(U;) N f'l(yn). It follows that

-1 -1 -1
¥, € Uj. Hence f (yn) cf (Ul) and {xn) = Nl/n(f (yn)) c
1 1
n W

implies that x € f'l(u) and hence f(xn) € U. This proves that

Nl/n(f-l(Ui)). But then the inequality < d(f‘l(Ul),x - ()
the sequence [f(xn)] converges to y,-
Since Y is Hausdorff, Yo is the unique limit point of the

set {f(xn)]; hence P = [f(xn)} U [yo] is closed in Y.
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Therefore, the set Q = f-l(P) NM 4is closed in X. Since
f-lf(M) =M and x €M for all n, we have that

f-l( [f(xn)]) C M. Thus

Q

£ (Le(x,))) U £ (y,)) N i

[£7H((&(x,))) N i) U (27 (y,) i)
£ (e(x )1

where Q 1is closed in X, whereas [f(xn)] is a non-closed set
in Y. This contradicts the assumption that f 1is a quotient

mapping. Q.E.D.

Proof of Theorem 4.5: To prove sufficiency, let f: X >> Y

be a regular quotient mapping of a metric space X onto a Te-space

Y. We will show that f satisfies condition 2) of Lemma 4.6.

Let y Dbe any point of Y and let U be any open set in X

containing £ (y). Let L = Y - £(U) and M = £ 5(L). Then

£le(M) =M and UNM =¢. Hence £ i(y) NM = ¢, that is,

y ¢ £(M). By Lemma 4.7 f'lf(ﬁ) is closed in X; this means,

since f is a quotient mapping, that f(M) is closed in Y. But

yeY-f(M)cY -f(M) = Y-L = £(U), so that y € Int £(U).
To prove necessity, we will show that every continuous mapping f

of a metrizable space X onto a metrizable space Y is regular with

respect to some metric on X. Suppose that dx’ dy are metrics

compatible with the topologies of X,Y, respectively, and define

a metric 4 on X by

d(u,v) = d.x(u,v)+dy(f‘(u),f(v)) for u,veX .
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Then d is compatible with the topology of X. Since, clearly,
Ng(u) c N:x(u), we have that y(dx) c 7(d), where, for example,
7 (d) is the topology in X determined by the metric d. To see
that Oh)cyug,la €>0 and ue€X be given; by the
continuity of f choose O < 8 < € such that dx(u, v) <3 implies
that dy(f(u),f(v)) < €. Then, clearly, N:x(u) CNge(u). Thus
;jf(qx) = 77(d). To see that f:(X,d) —=>> (Y,dy) is regular, let
G be an ogen subset of Y and y € G. Let € = é]‘dy(Y:Y-G) >0
and U = Ney(y). Then UC G and dy(U,Y-G) > €. Therefore,

a7t (u),x - £72(6)) >0; for, if ue £1(U) and veX - £(a),

we have

d(u,v)

dx(u: v) + dy(f(u): £(v))

v

d (£(u), £(v))
> 4,(v,Y-6)
> €>0 .

Thus f:(X,d) =>> (Y,dy) is regular. Q.E.D.

In the next theorem, due to Himmelberg, we work with pseudo-
metric spaces and obtain an interesting explicit definition of a

pseudo-metric for the quotient space.

Theorem 4i8: Let f ©be a function from a pseudo-metrizable
space X onto a topological space Y, and suppose that Y has
the quotient topology relative to f. Then the following assertions
are equivalent.

1) Y is pseudo-metrizable.
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2) There exists a pseudo-metric d compatible with the topology
of X and a subbase ;z/ for the topology of Y such that
for each G € ,/ there exists a set (e(y): y € G} of
positive real numbers satisfying:

(1) N, (£Xy)) c£Y(G) for all yeG, and

e(y)
(11) a(e™ (y), £ (z)) > e(y) - €(z) for all y,z € G.
3) There exists a pseudo-metric d compatible with the topology
of X such that the topology of Y is compatible with

the pseudo-metric p defined by
-1 -1
o(y;z) = infr_ a(f™(y, 410,27 (y))

where Y,z € Y, Yy €Y for all 0<1i<n, and the
infimum is taken over all finite chains y = Yo

yl,'on’yn = Z.

Proof: (1) - (2). Suppose that tg(,dy are pseudo-metrics
compatible with the topologies of X,Y, respectively, and that dy
is bounded. ILet ,J be any subbase for the topology of Y and
define d as in the proof of Theorem 4.5. If G is any proper open
subset of Y, let e(y) = dy(y,Y-G) >0 for each y € G. To
verify (i), let x € X be such that d(x,fﬂ(y)) < €(y). Then
there exists z € f-l(y) such that d(x,z) < e(y); consequently,
qy(f(x),y) = dy(f(x),f(z)) < e(y), that is, f(x) € G and
X € f-l(G). To verify (ii), let y,z € G and let me f'l(y),

ne f'l(z). Then
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d(m,n) dy(m,n) + d(y,2)
> d.(y,z)

> d(y,¥-6) - d (2,Y-G)

e(y) - e(z)

Thus  a(£71(y), £7(z)) > e(y) - €(z).

(3) > (2). Trivial.

(2) » (3). Let d,zf be a pseudo-metric and subbase,
respectively, as given by (2). Define p as in (3). It is a
triviel matter to verify that p 1is a pseudo-metric. Moreover,
f: X >>Y is continuous if Y has the topology defined by o,

since
p(£(u), £(v)) < a(ee(u)), e e(v)]) < dlu,v)

whenever u,v € X. Thus all that remains to be shown is that the
topology defined by p is larger than (and therefore equal to) the
quotient topology on Y. To do this it is sufficient to show that
each member of the subbase &47 is open relative to p. So let

G eyJV and let fe(y): y € G} be as in (2). Then p(y,z) < e(y)
implies that 2z € G. For suppose p(y,z) < e(y) and choose B
such that p(y,2z) < 8 < €(y). Then there exists a finite chain

y = yb,yi,...,yn = 2z of points of Y such that

(*) 5, ALy, )t (,)) < elyz) + (e(y) - 8)
= (p(y,z) - 8) + e(y)

< e(y) .
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In particular, d(f'l(y),f'l(yl)) < €(y). This means that
d(f—l(y),u) < €(y) for some u € f-l(yl). Then (i) of (2) implies
that u € f'l(G) and y, € G.

Now apply (ii) of (2) to (*) to obtain

5, Aty )7 (y,)) < ely) - aeTHy), e 7N ,))

IA

e(y) - e(y) + e(y;)
Thus, by repeating the argument following the inequality (*), we

deduce that y.,¥.):--»¥. = 2z all belong to G. In particular
1’72 n

z € G. We have thus proved that G is open relative to p. Q.E.D.
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CHAPTER V. CLOSED QUOTIENT MAPS

In this chapter we will give a strong metrization theorem
proved independently by Morita and Hanai (11) and A. H. Stone (13).
Part of the proof that we provide is due to C. J. Himmelberg. We
need the following version of Frink's metrization theorem (6);

its proof is the same as Frink's.

Theorem 5.1: Y is pseudo-metrizable iff for each y € Y
there exists a sequence {Wn(y)] of open subsets of Y such that

l) wl(y) Dwa(y)"‘)

2) {Wn(y)] is a local base at y, and

3) given n and y, there exists m such that

“h(z) C'wn(yg if Wﬁ(z) meets Wh(y).

We will denote the boundary of a subset A of a topological
space X by BdA. Recall that A 1is closed in X iff BAACA
and that A is open in X iff A NBdA = @. Also recall that

the boundary of any set is closed.

Lemma 5.2: Let f Dbe a function from a pseudo-metrizable space
X onto a topological space Y such that Bdf’l(y) is compact for
each y € Y. Then there exists a closed subset A of X such

that f(A) =Y and f'l(y) NA is compact for each y € Y.
Proof: For each y € Y, let

It £71(y), 1f £7l(y) nBac~(y) # ¢
L(y) =

£Hy) - To,), if £(y) nmari(y) = ¢,
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where Py is an arbitrary point of f-l(y) # @. Note that if
f'l(y) n Bdf-l(y) = @, then f'l(y) - TE;T is the set difference
of an open set and a closed set and hence is open.

Let L =U(L(y): ye€Y) and A =X-L. Then L is open, A
is closed, and f(A) =Y.

1r £(y) nBarH(y) # ¢ then £7(y) NAC BAET(y);
since Bdf-l(y) is closed and compact and since closed subsets of
compact sets are compact, it follows that f-l(y) N A is compact.
If f'l(y) anf'l(y) = ¢, then f'l(y) nAc'ﬁ;‘yT; since X

is pseudo-metrizable, ipyi is compact and we again obtain that

f-l(y) NA is compact. Q.E.D.

Lemma 5.3: Let f be a closed continuous mapping of a pseudo-
metrizable space X onto a topological space Y such that
1) each open subset of Y contains the closure of each of

its points, and

2) each f'l(y) is compact.

Then Y is pseudo-metrizable.

Proof: Let a pseudo-metric d for X be given. For each

Yy €Y and each integer n > O define

V() = Ul (R): £ (z) e W (e )

and

W) = £V (¥)) = Y - f1X - N (£ O]

Since f is a closed mapping, Wn(y) is open; then, by the

continuity of f, Vh(y) = f'lf(vn(y)) = f'l(wn(y)) is also open.
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Moreover, f-l(z) c Vn(y) whenever f‘l(z) meets Vn(y). For
suppose f-l(z) n Vn(y) # @; then z ¢ wn(y) and consequently,
by (1), T[z) < Wn(y). Applying the continuity of f, we obtain
£7(z) < £7HTD) < £ 7)) = V().

We now verify (1), (2), and (3) of Theorem 5.1.

(1). This is trivial.

(2). Let G be an open subset of Y and let y € G. Then

f-l(y) c f'l(m) 3 f-l(G), and, since f'l(y) is compact and

£71(G) 1s open, there exists n such that Nl/n(f'l(y)) c ).
Hence V (y) < £M(a), and y e W (y) <6
(3). Suppose n and y are given and choose m such that
a) m > 2n,
) At (y),x - v, (v) > 2
g 2n m °

=)
(Recall that Van(y) is open and £ (y) < V2n(y).)

Now suppose Wm(z) meets Wm(y), say each contains w = f(u)

with u € Vm(z) an(y). Then

a7l (2), £ (y)) < a(el(z),u) + a(w, £ (y))

<l,l .2
m m m

and consequently d(f-l(z),f'l(y)) < %. Then there exists a p € f'l(z)
such that d(p,£ (y)) < 5—; it follows from (b) that

-1
pef (z)Nn Van(y). Hence

£71(z) Vou(¥) © Nl/an(f'l(y))

=)
Now suppose X € Vm(,z). Then x € Nl/n(f (y)), since

1, 1 %) )
axt(z)) <E<z ana £7(2) c N /o (£7(¥))- It follove thet
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Vm(z) c Vn(y), and consequently that Wm(z) c Wn(y). Q.E.D.

Theorem §.l+: If X is pseudo-metrizable, Y is Tl or
regular, f 1is a closed continuous mapping of X onto Y, and
each Bdf-l(y) is compact, then Y is pseudo-metrizable. (In
fact, instead of using Tl
assumption that each open subset of Y contains the closure of each

or regular for Y, we use only the

of its points.)

Proof: By Lemma 5.2 let A be a closed subset of X such that

f(A) =Y eand r'l(y) NA is compact for each y € Y. If g = f|A,

then g is onto Y and g'l(y) is compact. To see that

g:A =>>Y 1is closed, let F be a closed subset of A. Since A
is closed in X, F 1s closed in X; then, since f 1is a closed
mapping, g(F) = £(F) is closed in Y. By Lemma 5.3 Y is

pseudo-metrizeble. Q.E.D.
The following is Stone's theorem.

Theorem 5.5: Let f be a closed continuous mapping of a metrie
space X onto a topological space Y. Then the following statements
are all equivalent.

(1) Y satisfies the first countability axiom.

(2) Bdf'l(y) is compact for each y € Y.

(3) Y is metrizable.

Proof: Note that Y is in any case a l‘l-space, for each y € Y
is of the form f(x) where {x} is closed. Thus (2) - (3) follows

from Theorem 5.4. That (3) - (1) is trivial.
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Assuming that (1) is true, let {wn(y): n=1,2...) bea
countable basis of open neighborhoods of y € Y. Let
Fy = f'l(y). If BdFy is not compact, there is a sequence
{xn: n=1,2...}) of points of Bd.Fy having no cluster point in
BdFy; since BdFy is closed, (xn} has no cluster point in X.

Now Y is a Tl-space and f 1is continuous, so Fy is closed;

consequently, x € BdF‘y c Fy c f-l(wn(y)). But . f'l(wn(y)) is
open, and hence there exists 0 < €< % such that

Ne(xn) c f'l(wn(y)). It follows that there exists y € X - Fy such
thet y € f-l(wn(y)) and d(x,y, ) < -11;, d denoting the distance
in X. Let P = {yn]; P 1is closed, since the sequence {yn} has
no cluster point in X (else the sequence [xn] would). Hence

Q = £f(P) must be closed in Y. Since Y, ¢ Fy, y¢Q yet

¥y € @ since Wn(y) meets Q in f(yn), and this contradicts the

closedness of Q. Q.E.D.

In some cases the condition that f be closed follows from
the other hypotheses. This is so, for example, if X is compact
and Y is Hausdorff. Another example will be given in the next

theorem, also due to Stone.

Definition 5.6: A decomposition of a set X is a pairwise

disjoint family A of non-empty subsets of X whose union is X.
The projection of X onto the decamposition AQ 1s the function
P whose value at x is the unique member of <9 to which x

belongs.
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Definition %.7: A decomposition 4& of a topological space X

is upper semi-continuous iff for each D in 5 and each open set

U containing D there is an open set V such that DCV and

every D' meeting V is contained in U.
Using an equivalent definition, Kelley proves the following.

Lemma 5.8: A decomposition ’@/ of a topological space X is
upper semi-continuous if and only if the proJection P of X onto oL

is closed, where ro/ has the quotient topology relative to P.

Proof: See [9; page 99]. Q.E.D.

Definition 5.9: A topological space X is locally peripherally

compact if every point has arbitrarily small neighborhoods with
compact boundaries. (Every O-dimensional space is locally

peripherally compact.)

Theorem 5.10: Let f be a quotient mapping of a locally

peripherally compact metric space X onto a Hausdorff space Y such that
Bd(f—l(y)) is compact. Then f 4is closed, and consequently Y

is metrizable.

Proof: As before, ve write F,_ = £71(y). We will prove that
the decomposition [Fy: y € Y] of X is upper semi-continuous.

Let yeY and let U be an open subset of X containing F v

Since X is locally peripherally compact, there exists, for every

X € Bdry < Fy, an open set Ux containing x such that Ux (= 1)

and Bde is compact. Since BdFy is compact, we can cover BdF

y %
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a finite number of open sets Ul, oo ,Um such that Ui CU and

BdU; is compact (1< i<m). Let V=0, U...uU UIntF;

i 1 Yy
then V is open, Fy cVcU, and the set BdV, being a closed

subset of the compact set BdUl U...U BdUm U Bdry, is compact. Let

W, o= Nl/n(BdFy) U Int Fy, an open set containing Fy; since

VcU, it is enough to prove that, for some n, every F(1
meeting wn is contained in V.

Suppose this is false; then, for each n, we obtain a q, € Y
such that Fq-n meets both wn and X - V. Since Fqn meets Wn,'

either Fqn contains a point of Int Fy or Fqn contains a point

of N, (BaF ). If Fqn - f'l(qn) contadns a point x of Int F,

then qn=f(x)=y; since q_n;éy (for FyCV), this is
impossible. Thus Fqn contains a point y, of N, /n(BdFy), and

1
there exists x € BdFy such that d(yn, xn) <. Now BdFy — Fy cv,

BdJF‘y is compact, and X - V is closed; it follows that there is an N

such thet d(BAF,X-V) > % for all n>N. Thus W CV for all
n > N. Hence Fq'n meets both V and X -V (n> N); since F

I

is connected, it must meet BdV, say in z_ (n > N).

n
Since B4V and BdFy are sequentially compact, Zo -2z € BdV
and X0 X € BdFy for a suitable subsequence of values n' of n.
Then also Y 2% Now =z ¢ Fy, since V contains I"y and is
disjoint from BdV. Let f(z) =q; then qe€Y - (y}] and z € Fq.
Since Y 1is a Hausdorff space, there exist open sets Bl and B2
such that q € B, yeBy, and B NB, = §; then M = £7(s,)
and M, = f'l(Ba) are disjoint open sets such that M, 2 Fq and
M2 2 Fy. Since z € Ml and x € M2, there exists n' sufficiently
large that z. € MZL and y ., € H2; by our choice of [yn] and
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{zn] it follows that F meets, and so is clearly contained in,

both Ml and M2 But this contradicts the connectedness of F .
qnl
This proves the decomposition upper semi-continuous; the mapping
f is therefore closed by Lemma 5.8. Y is metrizable by

Theorem 5.5. Q.E.D.

Duda (3) has proved an interesting complement to Theorem 5.5
in the case that X is also locally compact. Roughly, it states
that if one "throws away" from Y all of the "bad" points (points ¥
such that the boundary of f£ -(y) is not compact), then the result
is still metrizable. We shall use the following definitions in the

proof.

Definition 5.11: A subset S of a topological space X 1is

said to be a scattered set if every subset of S 1is a closed
subset of X. An inverse set of amapping £ of X onto Y is
any subset A of X for which A = £ 1f(A).

Definition 5.12: Let (Ah] be a sequence of subsets of a

topological space X. Then
(1) x € lim inf A, 1iff there exists a €A for all n
efich that a, > x
(2) x € 1im sup A, iff there exists a subsequence {%k] of
{%] and a.nk € Ank such that ank - X.
Clearly, 1lim inf An C lim sup An'
Recall that a Hausdorff space X 1is locally compact iff each
point has a neighborhood whose closure is campact. Equivalently,

X 1is locally compact iff for each compact subset C of X and
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each open subset U containing C, there exists an open set V

such that V 4s campact and C <V cVcU. (See [4; page 238].)

Lemma 5.13: Let f be a closed continuous mapping of a
locally compact metric space X onto a topological space Y. If
F is the union of the point inverses which are not compact, then

(1) F 1is closed in X;

(2) for an arbitrary compact set K in X, only a finite

number of non-compact point inverses can intersect K;

(3) any inverse set A contained in F is a closed subset

of X.

Proof: Note that, as in the proof of Theorem 5.5, Y is a

T.-space. Since f is continuous, f-l(y) is closed in X for

1
every y € Y.

(1). If there are no compact point inverses, then F =X and
F 1is closed. Suppose that f'l(y) is a compact point inverse.
Since X 1is locally compact, there exists an open set U containing
f'l(y) such that U is compact. Since f 1is closed and continuous,
the set f-lf(I-U) is closed; its complement is an open inverse
set V containing £ ~(y) and contained in U.

To prove (1), it suffices to show that X - F is an open set.
Let x€eX -F, say X € f-l(y); where f-l(y) is compact;
choose V as above. Since V 1is open, there exists an open set N
such that x e NCV. If NCf£l(y)cX-F, then, clearly, X - F
is open. If N ¢ £ l(y), 1let £1(m) ve any point inverse such

that N N f-l(m) # ¢. Then f'l(m) cvcuclU, since V is an
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inverse set and N CV; it follows thet £ “(m) is & closed
subset of the compact set U and is therefore campact. Thus N
intersects only compact point inverses, so that N< X - F and,
again, X - F is open.

(2). Suppose K 1is a compact set in X and {f'l(yn)} is a
sequence of distinct non-compact point inverses, each of which
intersects K in a non-empty set. Let x € f'l(yn) NK for all
n; since K is sequentially compact, the sequence {xn] contains
a subsequence (x ]} which converges, say to x. By replacing
{f_l(yn)] by {f.l (y. )} if necessary, we can thus assume
lim inf r‘l(yn) # @. Letting L = lim sup f“l(yn), it follows
that L 4is in some point inverse. For let p € lim inf f"l(yn),
say p, > p where p € f-l(yn) for all n; then, by the
continuity of f, y, - f(p). It is easy to show that L C f'l(f(p)).
By removing a term of the sequence {f'l(yn)] if necessary, we
can further assume that L is not in any one of the f‘l(yn).

Suppose L 1is a compact set. Then there is an open set W
containing L such that W is compact. Suppose f"l(yn) cW for
some n; since f-l(yn) is closed in X and therefore closed in
W, it follows that f"l(yn) is compact, a contradiction to our
assumptions. Thus each f-l(yn) has at least one point x not in

©0
W. If H = U X, is not closed, there exists a sequence {xnk}
n=1

in H which converges to a point x € X - H. Since xnk € f‘l(ynk),

x € LESW. Now W 1is open, consequently there exists a neighborhood

of x containing only points of W and hence not containing any
0

X (since x_ ¢ W), a contradictionto x_ —x. Thus U x

B B B n=1 °
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is a closed set. Since f 1is closed and continuous, it follows that
w -
£7le( U x) = U f l(y ) 1is closed. On the other hand,
n-l n=1

U (y ) is not closed. For let a € lim inf f l(y ) ©€L; then
n=1

there exists a € f'l(yn) for all n such that & - a. But
since L is in some point inverse and L 1is not in any one of the
00 © -
f l(y ), af U f-l(y ); consequently U f l(y ) is not
n n n
n=1 n=1
closed. Thus L is not compact.

If L is not compact, it contains an infinite sequence of
distinct points z, such that 1im sup z, = @. There is an £ (y )

and a point x, of £ (y ]_) such that d(zl,xl) < 1, an f (ynz)
and a point x, of £ (ynz) such that d( za,xa) < 'é" and, in
general, an f-l(y ) and a point x, of r-l(ynk) such that

Py
d(zk,xk) < % The sequence {xk] must have lim sup x, = @, other- |

(-]
) X, is a closed set; as before, it
k=1

o
follows that U f l(ynk) is closed. On the other hand,

k=1
o0

U £73(y_ ) is not closed. For let a € lim inf f‘l(yn) C1L; then

k=1 By

there exists a € f-l(yn) for all n such that a —~a. In

wise 1lim sup z, # §. Thus

particular, there exists a_ € f_l(y ) such that ank—»a.. But,

" e

[+ ]
as before, a ¢ U f°l(y ).
k=1 B

Thus L is neither compact nor non-compact. This contradiction
establishes (2).

(3). Let A be an inverse set contained in F. If A is not
closed, then bhere is a sequence {xn] of distinct points of A

converging to a point x not in A. Fix the integer i; then only



46

finitely many x  are in f-lf(xi). For suppose xnk € f'lf(xi),

k=12,... . Since x, € A, we have f"lf(xi) c f-lf(A) = A.

i
But X, X and consequently xnk - X ¢ A; this contradicts the
fact that f-lf(xi) is closed. Thus, for any fixed i, there

exist only finitely many x  such that f(xn) = f(xi). Choose a

subsequence {xnk] of {xn} as follows:

let xn = xl’
1
let n, be the smallest integer such that fix ) # f(xl),
%

let n, Dbe the smallest integer such that f(xnk) # £(x "3)’

J = 1,2’ oo o,k"l.

Then xnk - x and t’(xn ) # f(xn ) for i # j. Replacing the
i d

sequence ({x n] by the sequence (x_} if necessary, we can thus
assume that f’lf(xi) n f_lf(xd) = ¢ if 143,

Now x - x yields that the set K = {xn: n=12...}) U{x})
is compact. Since £ f(x) CACF for all n, the definition
of the set F implies that each f-lf(xn) is non-compact. But
f-lf(xn) meets K in X, Thus an infinite number of distinct
non-compact point inverses meet K, contradicting (2). Therefore

A 1is closed. Q.E.D.



b7

Theorem 5.14: Let f be a closed continuous mapping of a

locally compact metric space X onto a topological space Y. If
S is the set of all y in Y such thst the boundary of £ ()
is not compact, then S 1is a scattered set and Y - S is a locally
compact metric space. Moreover, if X is separable, then S is

countable.

Proof: Let B be any subset of S. Then £1(B) ¢ F, where
F is as defined in the preceding lemma. For let x € f-l(B);
then f(x) € B< S, and, consequently, Bd.f-lf(x) is not compact.
Since £ 1f(x) is closed, Bdf Lf(x) < £ 1f£(x). It follows that
f'lf(x) is not compact and, thus, that x € f-lf(x) C F. Then by
(3) of Lemma 5.13 we have that f-l(B) is closed in X; since f
is closed, ff-l(B) =B ie closed in Y. Therefore S is a
scattered set.

The set Y - S is the continuous image of X - f-l(S) under
f and the mapping f restricted to X - :E'—l(s) = f’l(Y~S) is a
closed mapping of X - f-l(s) onto Y - S, since the restriction
of & closed mapping to an inverse set is closed. By (2) - (3) of
Theorem 5.5, we can say that Y - S is metrizable.

To show Y - S 1is locally compact, let y € Y - S and
suppose that Bar (y) # ¢. since X is locally compact and
Bdf-l(y) is compact, there exists an open set W containing
Bdf'l(y) such that W is compact. Since ¢ # Bdf'l(y) c f'l(y),
we have that y € €(W). If y 1is not interior to f£(W), then there
exists a sequence of points y  of (Y-8) - f£(W) converging to y.

Note that y;‘yn for all n. If 1lim sup f'l(yn) = @, then for
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every sequence [xn) suck that x, € f'l(yn), no subsequence of
(x,} converges; thus the set A = {x:n =12 ...} 1is closed.
But f(A) = [yn: n=12,...} is not closed, since

Yy € m - £(A). This contradicts that f is a closed map. Hence

-1
lim sup f (yn) # ¢. Furthermore,

lim sup f'l(yn) cBar(y) = £3y) nx - £(y). For let

- -1
xelimsupfl(yn), say a -x with a_ € £ (y_). Then, by

"k " "

the continuity of f, ynk - f(x); but also y_  —Yy, so that

nk

f£(x) =y and x € £ (y). Since vy # y, for all n, we have that

f-l(Yn) <X - f-l(Y) for every n; consequently, ank €X - f-l(y)

——
for every k. It follows that x € X - £ ~(y). Hence
-1 -1
lim sup f (yn) < Bafr “(y).
Now infinitely many of the f-l(yn) meet W. For, let

P € lim sup f-l(yn) ; then there exists :pnk € f'l(ynk) such that

p. —p. Since 1lim sup f‘l(yn)cndf'l(y) W end since W is

e

open, W contains infinitely many of the pnk. It follows that

infinitely many of the y, are in f(W). This gives a contradiction,

hence y is interior to f£(W).
Since f 4s both closed and continuous and W is compact,

£f(W) is closed and compact. Therefore we have that

y € Int £(W) < Int £(W) c T(W) € £(W) = £(W), and consequently
Int £(W) is compact. Thus Int £f(W) is a neighborhood of y
whose closure is compact.

Ir Bari(y) = §, then £1(y) is en

open set. Now, by Theorem 1.2, f is & quotient map; consequently,

(y)
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is open. Since Y - S is a T, -space, )] = {y). Thus ({y)} is
a neighborhood of y whose closure is compact. Thus Y - § is
locally compact.
If X is separsble as well as metric, X is Lindeldf.
Letting [V(x): x €X) bvea covering of X Dby open sets whose closures
are compact, we can extract a countable sub-covering of X, 8o that
X is a countable union of compact sets. By (2) of Lemma 5.13 only
a finite number of point inverses of points in S can meet sny one
of these compact sets. Thus f-l(s) is a countable union of single

point inverses. Therefore S is countable. Q.E.D.
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CHAPTER VI. OPEN QUOTIENT MAPS

In this chapter we prove a theorem of Stone concerning open
continuous meppings. A space S is called locally separable if

every point x € S has a separable neighborhood.

Theorem 6.1: If f is an open continuous mapping of a locally
separable metric space S onto a regular Hausdorff space E, and
if for each p € E the set f “(p) is separable, then E is

metrizable and locally separable.

In our proof we use the following theorem of Alexandroff; the

proof that we give is due to David Kullman.

Theorem 6.2: If X is a locally separable metric space, then
X can be expressed as a union of pairwise disjoint, open, separable

subspaces.

Proof: Since an open sybspace of a separable space is separable,
we can assume without loss of generality that each x € X has an
open separable neighborhood. Let 2{ bve a cover of X by open
separable sets. Since X is paracompact, 2( has a precise, open,
locally finite refinement, say o = (Vi U € 2). (See [4;
pages 161-2].)

We first assebt that each V; € U/ meets at most countably
many Vi, € 2/ Fix Vi3 since VU is an open subset of U, VU
is separable, metrizable, and hence LindelSf. Also, since ¢/ 1is
locally finite, each point x € V;; has & neighborhood N(x) which

meets only finitely many VU:“ Thus VU has a countable subcover
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N(xl),N(xa), ..., and, since each N(xi) meets only finitely many

o0
V.., we have that V_< U N(x,) meets at most countable many V. ,.
U U i=1 i U

Now define a relation R on X by xRy iff there exist

UpeeesU € 2{ such that x € vUi’ y € vU , and

V. NV # ¢ for i =1,2,...,n-1. Clearly, R is an
Uy Uiy

equivalence relation, so let [xa: a e /) be the equivalence
classes defined by R. The Xa's are pairwise disjoint. To show
that Xa is open, let x € xa and x € VU. Then VUCXQ, so that
Xa can be expressed as a union of open sets VU.

We next show that the union of a countable, locally finite
family of separable sets is separable. For, let [Un: n=12...}
be a countable, locally finite family of separable sets. Then each
Un contains a countable dense subset D he The family of sets
{Dn: n=12...}) is also locally finite. Therefore
E_D: = gﬁ; = gUn’ S0 gDn is dense in gUn. Also gDn

is countable, so U Un is separable.
n

Finally we show that each xa is separable. Fix Xa and

VU c Xa. Let

6 = UlVg e 2 v, n v, # 9

= {x € X: xRz, for some 2z € VU’ by a "chain" of at

most 2 elements)

6, = UVy € 2: vV, NG # @)

= (x € X: xRz, for some z € Vy,» by a "chain" of at

most 3 elements)
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Clearly, Xa = Gl U G2 U... . By our first assertion, each Gi
is a countable union of sets Ve € Y, so X, 1is also a countable
union of sets VU" But these VU' make up a locally finite

family of separable sets, so Xa is separable. Q.E.D.

Lemma 6.3: Theorem 6.1 is true if S is separable, and E

is then separable.

Proof: If S 1is a separable metric space, then S 1is second
countable. If {Un: n=12...}) is a countable basis for 8§,
then {f(Un): n=12...] is a countable basis for E. For, let

G be an open subset of E. Since f is continuous, f-l(G) is

00 ©0
openin §; thus £73(G) = © U and G = U £(U_).
1= ™ i=1 ™

Also, each f(Un) is open, since f is an open mep. That is, E
is second countable. The Lemma follows by Urysbhn's metrization

theorem. Q.E.D.

Lemma 6.4: If f£(S) = E, where f is open and each f-l(p)
is separable, then for every separable subset Y of E, f-l(Y)

is separable.

Proof: Let Q = {q:m=1,2,...} be a countable subset of
Y such that a DY, and for each m let xm be a countable dense
subset of f‘l(qm). Write X = UX_. X is countable and
Xo f—l(Y). For, let =z € f-l(Y) and let U be an open neighborhood
of z. Then f£(U) is an open neighborhood of f(z) € Y U Q.
Consequently, f(U) contains some Q. S8y q = f(x), where x € U.

Then X € f-l(qm) e g, and therefore U N X # ¢. Thus
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UNX # ¢ and z € X. Q.E.D.

Proof of Theorem 6.1: By Theorem 6.2, S can be expressed

as a union of pairwise disjoint nonempty open sets §S,, each of

A

which is separable. Write SX ~ S'_1 to mean that there exists a

finite sequence A\ = NgrMseeesh. = p such that each set f(s"i-l)

meets f(SX ), i=12,...,k. It is easily verified that ~ is
i

an equivalence relation. Let the union of the Su's equivalent

to S)\ be TA.; thus '1‘k is open, and '.l')~ and Tx. are either

identical or disjoint. Further, TX is an inverse set. Since

f-l(f('.l‘x)) S T,, it is sufficient to show that whenever f-l(p)

meets Th’

and let y € f-l(p) n Su, where S“ ~ 8,. Note that pe f(sp).

Let x € f°l(p); then x € § for some v and hence p € f(sv).

we have f'l(p)CTX. So suppose f'l(p) meets T,

Consequently, f(Su) meets f(sv) and thus Sv ~ Su. Thereflore
Sv ~ Sx and x € TA'

It follows that the distinct sets f(’rk) are disjoint and open,
and they cover E. To prove the theorem, it will suffice to prove
that each f(T)\) is separable metric. (See Lemma 1.6.) By
Lemma 6.3 it suffices to prove that each T, is separable.

Now let T: denote the union of those sets Su which can be
reached from S)\ in at most n steps -- that is, for which there
is a sequence A\ = )"0’)‘1’ ”"k = u, of the type used to define ~,
with k < n. Clearly, T)\. = Ti U T;; U..., and it is enough to
prove that each T: is separable. Suppose this is true for one

+1
particular value of n. Then T: consists of ’1';: together with
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those sets Su for which f(Sp) meets f('r:) -- that is, for
which Sp meets f'l(f(Ti)). There are only countably many such
sets Sﬁ « For, by hypothesis, '1': is separable; hence, by the
continuity of £, so is f(T:), and Lemma 6.4 now shows that
f:l(f(T:)) is also separable. It follows that f'l(f('r:)) can
meet at most countably many of the disjoint open sets Su. (See
[14; page 115].) Thus T:ﬂ is a union of countably meny separable
sets, and is again separable. Since '1‘0 = S, and &s separable,

A A
the separability of '1’:3" follows for all n. Q.E.D.
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CHAPTER VII. OPEN AND CLOSED QUOTIENT MAPS

Lemma 7.1: An open continuous image Y = f(X) of a first

countable space X is first countable.

Proof: Let y €Y where y =f(x). Since X is first
countable, there is a countable basis of open neighborhoods
[Un: n=12...}) for x; since f is open, v, = f(Un) is open.
Then {V : n=1,2,...] is a countable basis of open neighborhoods
of y. For, if G is any open neighborhood of 'y, f-l(G) is an
open neighborhood of x (by continuity of f) and therefore

contains a U ; thus G = ff-l(G) Df(Un) = V,. QE.D.

By combining Theorem 5.5 with Lemma 7.1 we obtain immediately
that an open, closed, continuous image of a metric space is
metrizable. This result was originally proved by Balanchandran (2),
who, however, gave an explicit metric for the image space. 1In this
chapter we shall give his proof of the aforementioned result. We

first prove two lemmas and give a definition.

Lemma 7.2: Let f be an open map of a first countable space X
onto a topological space Y. Then, if yn —y 4in Y and
X € f-l(y), we can choose a point X € f'l(yn) (n =1,2,...)

such that xn -x in X.

Proof: Let H, ®H, 2... be a decreasing basis of open
neighborhoods of x. If any HJ(:] =1,2,...) be disjoint with an

: -1
infinite number of f l(yn), say £7(y, ) (1 =1,2...), then
i
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ynig‘f(HJ) (1 =1,2,...). Since f is open and }I:J is an open

neighborhood of x, f(HJ) is an open neighborhood of y and

hence conteins all the Yn for sufficiently large i (since
i

¥, —¥). This contradiction shows that every H,
i

-1
f (yn) from a certain stage onwards. 8o for each J there is a

must meet all

least integer ny such that H;j n f-l(yn) # ¢§ for n> By
We shall now show how to choose the sequence ({x n}. For each
-1
integer n < n), choose as x any point in f (yn); for n =n,,

choose as x ~any point in H N f-l(yni). Next for arbitrary

-1
n>n), choose as x any point in K nft (yn), where the
integer m (depending on n) is determined as follows: set m =n
if H N f-l(yn) # ¢; otherwise set m = k, the largest integer
-1
<n such thet H N f (yn) # ¢ (then Dy >0 2 nk). Thereby
we obtain a sequence (x n] which is such that (each) I-I'j contains

all x for n_>_ma.x(;],nd). It follows that x - x. Q.E.D.

Definition 7.3: If X,Y are non-null closed subsets of a

metric space R with distence function d, the Hausdorff distance

p(X,Y) is defined to be the greater of the two numbers

sup d(x,Y) and sup d(y,X)
x€X yey
where d(x,Y) = inf d(x,y).
yeyY
Lemma 7.4: If p(x,xn) -0, then for each x € X we can choose

a sequence (xn] such that xn € xn for all n and such that xn - X.
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Proof: Let € >0 be fixed. By definition of d(x,xn)
there exists x € X with d(x,xn) < d(x,xn) + % for any n.
Since d(x,xn) < p(x,xn) and p(x,xn) -0, it follows that
d(x,xn) -+ 0. Q.E.D.

The metric space R 1is said to be totally bounded if for every
positive €, the open cover of R by all spheres of radius ¢
includes & finite subcovering. It can be shown that R is totally
bounded iff every seguence of its points contains a Cauchy

subsequence. (See [15; page 236].)

Theorem 7.5: Let f Dbe an open, closed, and continuous map
of a metric space R onto a topological space R¥. Then R¥* is
a metric space with the metric d*(x*,y*) = p(f-l(x*),f'l(y*)) for

all x*,y* in R*.

Proof: By Lemma 7.1 R* is first countable. Since R is
Tl and f is closed, R* is 'rl. Let d be the metric of R.
If 4 is not bounded, we can define an equivalent metric ¢ for
R by o(x,y) = min{l,d(x,y))}; thus we may assume the metric d
of R to be bounded. Introduce in (the set) R* a metric d* as
follows: d*(x*,y*) = p(X,Y), where X = £ 1(x*), Y = £ 1(y*).

(Since R* is T

1 and f is continuous, X and Y are closed

in R.)

We shall now show that the given topology of R¥* 1is the same
as the one induced by the metric d*. Since R* is first countable
it suffices, in view of Lemma 1.5, to show that a sequence x; - x*

in the given topology of R* if and only if x; - x* under the



metric d%, i.e., d*(xg,x*) -0 as n — oo.

First let x*>x* in R. If d*(x:,x*) # 0, then
a*(x¥,x*) = p(X ,X) > € for same € >0 and for infinitely
many integers n, where X = f'l(x:), X = f-l(x*). Thus for

infinitely many n either

sup d.(y,xn) > €
YyeX

or
sup d(xn,x) >e .
X, €X "
That is, for infinitely many n either

(1) d(yn:xn) > €, Yn €X, or

(2) d(xn,x) >e x €X.

By replacing {x:] by a suitable subsequence (which converges also
to x*) we can suppose without loss of generality that one of these

possibilities happens for all values of n.

Cese I. Let d(yn,xn) >€>0, n=1,2,... »
If the set Y = [yn] is totally bounded, then {yn] contains a
Cauchy subsequence {yn.] which can be so chosen that

d(ym.,yn,) <-§- for any m',n'. Then for any fixed m' and all n'
(A) d(ymnxnv) 2 d(ynuxnc) - d(yn"ym')
€
>e-3 =3

But, since (x;,] is a subsequence of {x:) and x* - x*, we have

-1
x:.-’x*, Since Y1 €eX = f (x*), Lemma 7.2 shows that points
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X+ € X , can be so selected that X v = Yo for any fixed m',
a contradiction to inequality (A).

If the set Y = [yn] is not totally bounded, there exists some
subsequence {yn.] and a 5> 0 with d(ym,,yn,) > 28 for any
m',n' such that m' # n'. Since f is open, x% - x¥, and
y N € x = f-l(x*) (n = 1,2,000), for e&Ch n' we can Choose

n
by Lemma 7.2 an n" such that

-1
d(yn"xn") < g ) xnn € xnn = T (XHN) ’

Then

d(xmvuxnn) 2 d(ymnyna) - d(ymt’xm") - d(yn"xn")

8 8 ” ”
>28'2'§'=5’ m#n .

Thus X" = (xn..} has no limit points and hence is closed in R;
since f is closed, f(X") 1is closed in R¥. On the other hand,
note that our essumption that d(y e,X ») > O dimplies that X . #X
and hence that xk*. # x*; since f(X") = {x;..] and x* —» x* (and
so also xXy - x*), it follows that f£(X") cannot be closed, so
that we again have a contradiction.

The assumption d(yn,xn) > € is therefore untenable.

Case II. Let d(xn,x) >e>0 with x €X.

If we write X' = (x ), then it is clear that X' NX = §.
Ir £(XF) N£(X) # @, then ' NX = X nelex) 4 ¢, o
contradiction; thus £(X') N £(X) = @. But since f is closed
and continuous we have that f£(X") = ?(T'_) and hence

£(x') N £(X) = ¢@. (See [4; page 87].) On the other hand,



€0

£(X) = x* belongs to T(X') since f(X') = (x¥} and X% - x*,
This contradiction shows that the assumption d.(xn,X) > € 1is also
untenable. Hence, d*(xg,x*) - 0.

Conversely, if d*(x';,x*) = p(xn,x) »>0 and x € X, then
Lemma 7.4 shows that points x, €X canbe found such that

x, = X. It follows by the continuity of f that x% - x*. Q.E.D.
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CHAPTER VIII. ANOTHER RESULT

We conclude by proving the following theorem, in which the

mapping f can Bbn fact be neither open nor closed.

Theorem 8.1: If f is a quotient mapping of a locally compact
separable metric space S onto a first countable T,-space E, then

E 1is a locally compact separable metric space.
We shall need the following lemmas.

Lemma 8.2: Let f be a quotient mapping of & topological
space S onto a Ta-spa.ce E with a countable local base at p € E,

and let {Un: n=12...] bean increasing seguence of open

subsets of S such that U Uan'l(p). Then, for some n,
p € Int f(_Un). ‘ o

Proof: Let {Wn: n=1,2...] bea ba.sis. of neighborhoods of
p; Wwe may suppose Wl Dw2 O... . Without loss of generality, we
may assume that each U meets f-l(p). Then p € f(Un) for all
n. We show that, for some n, W < f(In).

Suppose not; then, for each n, there is a point
qnewn-f(Un). Let Q = {q_n:n=1,2,...] and let

x = £lQ) = v {f"l(qn):n=l,2,---]- Since q —p, we
n=1

have that p € Q. But p ¢ Q and, consequently, Q is not
closed. Since f is a quotient map, X 1is not closed and there
exists a point x € X - X. Then, by the continuity of f,

£(x) € £(X) cT(X) = Q while f£(x) £Q that is, f(x) €Q - Q.
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Since 9, —-»p and E is Hausdorff, p is the only limit point

of Q; consequently, f(x) = p. Hence x € f'l(p), so x €U,

for some n. Since E is a Tl-spa.ce and f 1is continuous,

f-l(qm) is closed in S for every m; consequently,

U{f-l(qm): 1<m<n} is closed. Then, since U, is open in S,

N = U - U{f-l(qm): 1<m<n) is an open set containing x.

Since {Un] is an increasing sequence, the sequence (f(Un)} is
also increasing; consequently, q .. ¢ f'(Un) and f'l(qm_i) nu, = ¢
for all i > 1. It follows that N is disjoint from X,

contradicting x € X. Q.E.D.

A set is o-compact if it is the unton of countably many

compact sets.

Lemma 8.3: If f£f is a quotient mapping of a locally compact
topological space S onto a first countable Hausdorff space E and
if Bdf-l(p) is g¢-compact for each p € E, then E is locally

compact.

Proof: By hypothesis, given p € E, we can write
0
Bdf'l(p) = U K, where K is compact. Since S is locally
n=1
compact, Kn can be covered by finitely many open sets with compact

closures; in this wey we obtain open sets Gn =] Kn such that '6:

is compact and G, < (}2 C... . Applying Lemma 8.2 to

U, = G, UInt f'l(p), we have p € Int f‘(Un) for some n. If

Bdf-l(p) # ¢, then K, # @ for some r; choose m = max{n,r}.

Then G G, DK,  and, hence, G meets Bd.f'l(p); since
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Bdf-l(p) c f-l(p), G, actually meets f'l(p). Thus p € f(Gh),

and so f(Um) = f(Gm). Then p € Int f(Un) C Int f(Um) = Int f(Gm)

c f('G_I;) 5 which is compact and closed in the Hausdorff space E.

That is, f(@) is a neighborhood of p whose closure is compact.
If Bdf-l(p) = ¢, then, as in Theorem 5.14, (p)} is a

compact neighborhood of p. Q.E.D.

Lemma 8.4: If f is a quotient mapping of a second countable
space S onto a first countable Hausdorff space E, then E 1is

second countable.

Proof: Let B = (B: m =1,2,...] be a counsable base of
open sets of S; we prove E has a base of the form (Int £(U))
where U 1is a finite union of sets of X3. Given any p € E and
any open set G containing p, we have f-l(p) c f'l(ﬂ). Since
f 1is continuous, f-l(G) is open and consequently can be written
as the union of members of 2. Thus f-l(p) can be covered by a

sequence of sets B ,B ,..., of ﬁ, all satisfying B Cf-l(G).
B T oy

Write U = B U...UB ; by Lemma 8.2 we have p € Int £(U_)
n ml mn n

for some n, where f(Un) cG. Q.E.D.

Lemma 8.5: A subspace A of a locally compact space § is
locally compact if it is of the form V N F, where V is open

in 8§ and F 1is closed in S.

Proof: Given a € A, choose a set U open in S such that
U is compact and a e UCUCV. Then U NA is a neighborhood

of a in A. The closure of this neighborhood in A 1is
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UNA = UN(VNF) = UNF, which is a set closed in U,

and consequently is compact. Q.E.D.

Lemma 8.6: If S is second countable, then every subspace

of S 1is separable.

Proof: Let M be a subset of S and let (U,: i =1,2,...}

b4
be a countable basis for S. Then (M N Uz i= 1,2,...) is a

countable basis for M. Choose a vy € MN Ui for each i. The
set [yi: i=12,...}] is dense in M since each set open in M

Xs a union of the M N Ui' Q.E.D.

Proof of Theorem 8.1: Since § is separable metric, S is

second countsble; by Lemma 8.6 each Bdf-l(p) is separable metric.
Since S is locally compact and Bdf-l(P) = Bdf-l(p) NS is the
intersection of a closed set and an open set, each Bdf-l(p) is a
locally compact space (Lemma 8.5). Then each Bdf-l(p) is a

Lindeldf locally compact space and consequently is g¢-compact. By
Lemma 8.3 E is a locally compact T2-space, and therefore E 1is
regular. Lemma 8.4 shows that E is second countable. It follows

by Urysohn's metrization theorem that E is metrizable. Q.E.D.

As another immediate consequence of Lemma 8.4 we have the

following corollary.

Corollary 8.7: If f 4is a quotient mapping of a separable

metric space S onto a regular Hausdorff space E satisfying the

first axiom of countability, then E 1is separable metric.

Proof: Apply Lemma 8.4 and Urysohn's metrization theorem. Q.E.D.
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