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INTRODUCTION 

The question of when a given property of a topological space 

is preserved under mappings is one of the most familiar problems 

of general topology. Among the properties of greatest interest for 

general spaces is , without doubt, that of metrizability; metrizability 

always implies, in particular, a number of important special topological 

properties of the space in question (normality, regularity, 

paracompactness, etc.)* To determine in general the conditions for 

preservation of metrizability under mappings appears to be a 

difficult problem. It may well be that in the class of arbitrary 

continuous mappings the problem has no meaningful solution. The 

purpose of this paper is to obtain conditions for the preservation 

of metrizability by quotient mappings and to study the properties 

of quotient spaces of metric spaces. 

We will use "iff 1 1 as an abbreviation for " i f and only if". If 

f is a function from X onto Y, we will write f: X - » Y. 
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CHAPTER I. PRELIMINARIES 

We begin by stating some basic definitions and theorems. 

Definition 1 . 1 ; Let f be a function from a topological 

space X onto a set Y. Then the quotient topology fotf Y 

(relative to f and the topology of X) is the family 

%L m {u e Y: f^Cu) is open in X}. If Y has the quotient 

topology, then Y is called a quotient space and f a quotient 

map. 

Since the inverse of an intersection (or union) of members of Zt 

is the intersection (union) of the inverses, 26 is indeed a topology 

for Y. If a subset U of Y is open in a topology relative to 

which f is continuous, then f - 1 (U) is open in X. Thus the 

quotient topology is the largest topology for Y such that the 

function f is continuous. 

A subset B of Y is closed relative to the quotient topology 

iff f" 1(Y - B) - X - f ' ^ B ) is open in X. Hence B is closed 

iff f - 1 ( B ) is closed. 

Theorem 1 .2 : If f is a continuous function from the topological 

space (X,£/) onto the space ( Y , ^ ) such that f is either open 

or closed, then 21 is the quotient topology. 

Proof: Let f be an open map and let U be a subset of Y 

such that f~X(U) is open relative to £f- Then U - f(f~ 1(U)) 

is open relative to *U. Consequently, i f f is open, each set open 

relative to the quotient topology is open relative to and the 
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quotient topology is smaller than 2 .̂ If f is continuous as well 

as open, then since the quotient topology is the largest for which 

f is continuous, %i is the quotient topology. To prove the 

theorem for a closed function f i t is only necessary to replace 

"open" by "closed" in each of the preceding statements. Q.E.D. 

If f is a continuous map of a topological space X onto a 

space Y, the continuity of any g: Y - » Z implies that of g-f. 

The characterizing property of quotient maps is that the converse 

is also true. 

Theorem 1 .3: Let f be a continuous map of a topological space 

X onto a space Y. Then f is a quotient map i f and only if: for 

each topological space Z and each map g: Y - » Z, the continuity 

of g-f implies that of g. 

Proof: Assume that f is a quotient map and that g«f is 

continuous. Let U be an open subset of Z. Then 

(g-fT^U) - f " 1 ^ " 1 ^ ) ) is open in X, so that g " 1 ^ ) is open 

in Y. Therefore g is continuous. 

On the other hand, assume that the condition holds. Let Y f 

be the set Y with the quotient topology relative to f, and let 

f f : X - » Y f take the same values as f. Let i : Y -*> Y f be the 

identity map. Since i*f * f1 is continuous, the condition assures 

that i is continuous. Since i " *f• » f is continuous, and ff 

is a quotient map, the first part of the proof shows that i " 1 is 

continuous. Thus i : Y -»> Y f is a homeomorphism, and f is a 

quotient map. Q.E.D. 
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We now consider another way of looking at quotient spaces. Let 

f be a function from a topological space (X,^7) onto a space (Y, 

where < ^ is the quotient topology for Y. Define a relation R 

on X by xRy iff f(x) » f(y) for x,y in X. Clearly, R is 

an equivalence relation; the equivalence classes of R are the 

sets f - 1 ( y ) with y € Y. Let X/R be the family of equivalence 

classes, and let R(x) be the equivalence class to which x belongs. 

Let p be the mapping of X onto X/R defined by p(x) • R(x) • 

f"" 1(f(x)) for all x € X, and give X/R the quotient topology 

relative to p. We will show that Y is homeomorphic to X/R. 

Define a function g from X/R to Y by g(R(x)) • f(x) for 

all R(x) € X/R. Since R(u) • R(x) implies f(u) • f(x), g is 

well-defined. We have the following diagram, where is the 

quotient topology for X/R: 

(x, CO > (Y, J) 

p 

(X/R, SC) 

Since f is onto Y, g also maps onto Y. If g(R(x)) • g(R(u)), 

then f(x) • f(u) so that xRu and R(x) * R(u); thus, g is 

one-to-one. Consequently, g " 1 is a will-defined function. Since 

g " 1 ^ = p and p is continuous, Theorem 1.3 shows that g" 1 is 

continuous. Finally, since g-p « f and f is continuous, 

Theorem 1.3 shows that g is continuous. Thus Y is homeomorphic 

to X/R. 



These considerations lead naturally to the following example 

of a non-metrizable quotient space of a metric space. 

Example l.k: Let R be the real line with the usual topology 

and let Y be the space obtained from R be identifying the integers 

Z with 0. Then Y is not first countable (and so certainly not 

metrizable). 

Rroof: Let f: R -* Y be the natural quotient map, and suppose 

{Un: n * 1 ,2, . . . } is a countable local base of open neighborhoods 

of 0 in Y. Then f" 1(U ) is open in R and Z c f" 1 (u ) . Hence 
n n 

for each integer n there exists an € > 0 such that N (n) c f~ (y ) . n € n n 
00 

Now B • U N (n) is open in R and contains Z; it follows 
n=l €n/2 

that U » f (B) is open in Y and contains 0. But Un ^ U for 
each n, and consequently 0 cannot have a countable local base. Q.E.D. 

We conclude the first chapter by proving two lemmas for later 

reference. 

Lemma 1 .5: In a first countable space X, x € M iff there 

exists a sequence (x n) of points x^ in M such that {x^} 

converges to x. 

Proof: Choose for x a decreasing local base of open 

neighborhoods {Un: n » 1,2, •••)> =>Ug . . . . If x € M, then 

U n M ^ Of for all n. If xw 6 ü fl M, then {x 1 converges n ' r n n n 

to x. On the other hand, i f {x^} converges to x with X q € M, 

then clearly ü n n M ^ 0 for all n, and x € M. Q.E.D. 



Lemma 1.6: Let E be a topological space and suppose 

E = U E , where each E. is an open metrizable subspace of E 
. A . A. A. 

and the E f s are pairwise disjoint. Then E is metrizable. A, 

Proof: Let be a metric compatible with the subspace 

topology on E. and such that the diameter of E. is less than 1« 
A. A. 

Define a metric d for E by 

d(x,y) = 
"d^(x,y), i f x and y are in the same 

1, otherwise. 

Since the E 's are pairwise disjoint, d is well-defined. By 
A. 

considering cases, one easily shows that d is indeed a metric. 

To show that every set open in the topology of E is open in 

the topology induced by d, let x € E. c E and let U be an open 

set containing x. Then U fl E is open in E and, consequently, 
\ A. 

there exists 0 < € < 1 such that 

U fl E^ 3 {y: d^(y,x) < €) - {y: d(y,x) < €) . Thus 

U ^ {y: d(y,x) < €) . 

To show that every set open in the topology induced by d is 

open in the topology of E, let x € E. and let N_(x) • {y: d(y,x) < €) 
A. € 

be a metric neighborhood of x. We can assume € < 1. Thus 

N€(x) = {y: d^(y,x) < e) contains a set U open in E^. Since 

E. is open in E, U is also open in E. 
A, 

Thus the topology induced by d is compatible with the topology 

of E. Q.E.D. 
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CHAPTER II . SPACES IN WHICH SEQUENCES SUFFICE 

In this chapter we show that quotients of metric spaces are 

among those spaces in which sequences are adequate for the description 

of many topological concepts. 

Definition 2.1: A subset U of a topological space X is 

sequentially open i f f each sequence in X converging to a point in 

U is eventually in U. A subset F of X is sequentially closed 

iff no sequence in F converges to a point not in F. 

Clearly, any set open (closed) in X is sequentially open 

(sequentially closed) in X. 

Definition 2.2: A topological space X is a sequential space 

i f f every sequentially open set is open. 

Thus, in sequential spaces the open sets are precisely the 

sequentially open sets. 

Proposition 2*3: Every first countable space, and hence every 

metric space, is a sequential space. 

Proof: Let U be sequentially open in the first countable space 

X, and suppose U is not open. Then there exists x € U - Int U, 

where Int U denotes the interior of U. Let [U^: n = 1 , 2 , . . . } 

be a local base of open neighborhoods of x such that Û  >̂ Ug ^ . . . . 

If Un c u, then x € Int U; consequently, for each integer n 

there exists x„ € U n (X-U). Clearly, x„ x € U but {x 1 is n n n n 

not eventually in U, contradicting the assumption that U is 

sequentially open. Q.E.D. 
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Proposition 2.k: For any topological space X, ( l ) and (2) 

below are equivalent. If X is Haustforff, then they are also 

equivalent to (3) and (k). 

(1) X is a sequential space, 

(2) Every sequentially closed set in X is closed. 

(3) Every subset of X which intersects each convergent 

sequence in a closed set is closed. (We here use the term 

"convergent sequence" to mean the sequence plus all of 

its limit points.) 

(h) Every subset of X which intersects each compact metric 

subspace of X in a closed set is closed. 

Proof: ( l ) -* (2). Let X be a sequential space and let F 

be sequentially closed in X. If X - F is not sequentially open, 

there exists a sequence {x n) which converges to a point x € X - F 

but which is not eventually in X - F; hence for every integer N 

there exists n, > N such that x i X - F. Then fa } c F but 

x ~* x € X - F, contradicting that F is sequentially closed. 

Consequently, X - F is sequentially open and thus open. Therefore 

F is closed. The proof that (2) implies (l) is similar. 

(2) -> (3). Let X be Tg and let F be a subset of X which 

intersects each convergent sequence in a closed set. If F is not 

sequentially closed, there exists a sequence (x n) c F which 

converges to x ^ F. Since X is T g, x is the only limit point 

of ix
nh 8 0 that {x n) U {x} is a convergent sequence. Then 

x € F fl ( {x n } U {xj) - F fl ({x n ) U {x)), that is , F n ( {x n } U {x}) 
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is not closed, a contradiction. So F is sequentially closed and 

thus closed. 

(3) -> (2). Let X be Tg and let F be sequentially closed 

in X. Then F intersects each convergent sequence in a closed set. 

For suppose x^ -» x but F n (l^n) U {x}) is not closed. Since 

X is T±, F n ( {x n ) U {x}) is infinite, say {x } a F. Now 

x -»x so that x is the only limit point of F fl ({x } U {x}). 
\ n 

Since F fl ({* n } U {x}) is not closed, x ^ F; thus F is not 

sequentially closed, a contradiction. 

(3) -> For Hausdorff X, each convergent sequence is 

compact metric. For suppose x ß -> x, and let A » (x n) U {x}. 

Since any set of an open covering of A that contains x contains 

all but at most finitely many elements of A, A is compact. We 

can define a metric on A as follows: d(x . x ) * lr ~ rl &nd 
n m n m 

d(x,x ) • —. 
N 9 n' n 

CO -+ (3)* Let A be a subset of X which intersects each 

convergent sequence in a closed set. Then A intersects every 

compact metric subspace of X in a closed set. For suppose M c x 

is compact metric and A fl M is not closed, say x € A PI M - ADM. 

Since X is T g, M is closed in X and consequently AflM 5 M • 

then, since M is first countable, there exists a sequence 

{xQ : n = 1 , 2 , . . . } c AHM such that x ß -+ x. But 

A fl ({xnJ U {x}) « {x ß } is not closed, contradicting our assumption 

about A. Q.E.D. 

Lemma 2*5: Let f be a quotient map of a sequential space X 

onto a topological space Y. Then Y is a sequential space. 
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Proof: Let U 5 Y be sequentially open. To show that U is 

open in Y, we must show f - 1 (u) is open in X; since X is 

sequential, i t suffices to show f~^(\J) is sequentially open. So 

let {x^: n • 1 ,2, . . . } 5 x converge to x € f - 1 ( U ) . Then, by the 

continuity of f, f ( x
n ) -* ^ ( x ) € U; since U is sequentially open, 

{f(x n )} is eventually in U. But then (x ß) is eventually in 

f" X (U). Q.E.D. 

Definition 2.6: Let {X : |i € M) be a family of topological 

spaces such that fl X^, « $ i f yx £ n'. Then the topological 

sum of the X is the set £ * U{X : u € M) with the following 
M H 

topology: U 5 Z is open in £ i f f U PI X is open in X for 

every \x € M. 

If the X^ are not pairwise disjoint, we can construct 

homeomorphic spaces which are pairwise disjoint. 

Theorem 2.7: Every sequential space X is a quotient of a 

topological sum of convergent sequences. 

Proof: For each x € X and each sequence s * { s n : n = 1 , 2 , . . . ) 

in X converging to x, let S(s,x) * { s n : n • 1 , 2 , . . . } U {x} 

be a topological space in which each S q is a discrete point and 

s^ -> x in S(s,x). Let T be the disjoint topological sum of all 

possible S(s,x), and define f: T-> X by f ( t ) « t . 

To show that f is continuous on T, we show that f is 

continuous on each S(s,x). If m 6 S(s,x), then either m * x or 

m • s ß for some n. Suppose m • x and let V be a neighborhood 

of f (x) • x € X; since S q -> x in X there exists an integer N 



10 

such that n > N implies s n e V; thus U • {x} U { s ^ i > N} 

is a neighborhood of x such that f(U) c v, and hence f is 

continuous at x. Suppose m » s for some n and let V be a 
n 

neighborhood of f ( s n ) ; then U « {s^} is a neighborhood of s n 

such that f (U) c v, and hence f is continuous at s . 
n 

To complete the proof that f is a quotient map, let U be a 

subset of X such that f^Cü) is open in T. To show that U 

is open in X, i t suffices to show that U is sequentially open 

in X. If Xq € U and s * { s n : n * 1 , 2 , . . . } converges to x Q , 

then x Q € f^Cu) n S(s,x Q ) which is open in S(s ,x Q ) . Thus ia
nh 

considered as a subset of S(s,x Q ) , is eventually in f"^(u); 

consequently, {s^) is eventually in U. Q.E.D. 

The following corollary shows that quotient spaces of metric 

spaces are precisely the sequential spaces. 

Corollary 2>8: The following statements are equivalent. 

(1) X is a sequential space. 

(2) X is the quotient of a metric space. 

(3) X is the quotient of a first countable space. 

Proof: ( l ) -> (2). Let X be a sequential space. Then by the 

theorem X is the quotient of a topological sum T of convergent 

sequences. Defining a metric on each S(s,x) by 

d(s , s ) • |~ - i| and d(x, s ) = we obtain a topology 
v n' nr !n m' v ' n 7 n' * 

compatible with the topology of S(s,x). Then T is a metric space 

by Lemma 1.6. 

(2) -> (3). Every metric space is first countable. 
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(3) -> ( l ) . Suppose X is the quotient of the first countable 

space Y. By Proposition 2.3 Y is a sequential space. By 

Lemma 2.5 X is a sequential space. Q.E.D. 

Corollary 2.9: Among Tg-spaces quotient spaces of metric 

spaces are precisely those spaces satisfying the following condition: 

a subset A of X is closed iff A intersects every compact metric 

subspace in a closed set. 

Proof: The proof follows directly from Corollary 2.8 and 

Proposition 2.4. Q.E.D. 

Definition 2.10: A topological space X is called a Frechet 

space i f f for every subset A of X x € A iff there exists a 

sequence { X r : n = 1,2, . . . } 5 A such that x ß -» x. 

By Lemma 1.5 every first countable space is a Frechet space. 

Every Frechet space is a sequential space, since every sequentially 

closed set in a Frechet space is closed. 

Definition 2*11: A continuous function f: X -*> Y is 

pseudo-open i f f for any y € Y and for any open neighborhood U 

of tml(y), y € Int f(u). 

Proposition 2.12: Every open (closed) continuous function is 

pseudo-open. Further, every pseudo-open map is a quotient map. 

Proof: It is clear that every open continuous function is 

pseudo-open. Let f be a closed continuous mapping of X onto Y, 

let y € Y, and let f~ (y) 5 U open in X. Then there exists an 
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open set V => {y} such that f~X(y) c f" X(v) c u. (See [4; page 86].) 

Thus y € V c f(u); since V is open, it follows that y € Int f(U) 

and that f is pseudo-open. 

Let f: X - » Y be pseudo-open. Let U c y be such that 

f " 1 ^ ) is open in X. Then f " 1 ^ ) c f"X(U) for every y € U; 

consequently, y € Int f(f"" 1(u)) • Int U for every y € U. Thus 

U is open and f is a quotient map. Q.E.D. 

Since quotients of Frechet spaces need not be Frechet spaces, 

Lemma 2.5 does not have an analogue for Frechet spaces. We have, 

however, the following theorem. 

Theorem 2.13: If X and Y are Tg-spaces, X is a Frechet 

space and f: X - » Y is a quotient map, then Y is a Frechet 

space iff f is pseudo-open. 

Proof: Suppose that Y is a Frechet space, y € Y, and U 

is an open neighborhood of f - 1 ( y ) . If y i Int f(U), then 

y € Y - f(U). Hence there is a sequence {yQ) c Y - f(u) converging 

to y. Since Y is T g, TjTJ » { y j U {y}. If F - f ^ U y J ) , 

then by the continuity of f F c f^flJTT) * F U f " 1 ( y ) . But 

f" X (y) 5 U and U fl F - 0; hence f " 3 ^ ) n F - <jt and F 5 F. 

It follows that F is closed and thus that X - F * f" X(Y - {y n ) ) 

is open; therefore, since f is a quotient map, Y - {y n) is 

open, contradicting that {y n) -*y. Hence y € Int f(u) and f 

is pseudo-open. 

Assume f is pseudo-open, M c y, and y € M. If 

f - 1 ( y ) n f " 1 ^ ) - <fi, let U « X - f" X(M); then 
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y € Int f(U) c f(U) c y - m, contradicting y € M. Thus there is 

some xQ 6 f - 1 ( y ) fl f " 1 (M). Since X is Frechet, we can choose a 

sequence {xn*. n • 1 , 2 , . . . ) c f 1(M) converging to x Q . Then 

( f (x n ) : n = 1,2, . . . } c m and f(x ) -* y by the continuity of 

f. Thus Y is a Frechet space. Q.E.D. 

Proposition 2.1k: The disjoint topological sum E of any 

family of Frechet spaces (X^: n € M) is a Frechet space. 

Proof: If A c E, then A = U A fl X where A denotes 
x̂€M M

 x 

the closure of the set A in the space E and A 0 X denotes 

the closure of the set A (IX in the subspace X . The 

proposition now follows from the definition of a Frechet space and 

the hypothesis that each X^ is a Frechet space. Q.E.D. 

Theorem 2.1$: Among Tg-spaces, Frechet spaces are precisely 

the pseudo-open images of a topological sum of convergent sequences. 

Proof: Let Y be a Frechet space. By Theorem 2.7 Y is a 

quotient of a topological sum E of convergent sequences S(s,x). 

Since each S(s,x) is metrizable and is thus a Frechet space, 

Proposition 2.1^ shows that E is a Frechet space. By Theorem 2.13 

the quotient map is pseudo-open. 

On the other hand, i f Y is the pseudo-open image of a 

topological sum of convergent sequences, then Y is a Frechet space 

by Theorem 2.13* Q.E.D. 
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CHAPTER III . QUOTIENTS OF SEPARABLE METRIC SPACES 

In this chapter we characterize quotient spaces of separable 

metric spaces among the regular Tg-spaces. Except for Theorem 3.1 

the results are due to E. A. Michael [10]. We need several 

preliminary results. 

The weight of a topological space X is the least cardinal of 

a basis for the topology of X. 

Theorem 3*1: (Ponomarev). Every first countable T^-space is 

the open continuous image of a metric space of the same weight. 

Proof: Let 6 = {a) have cardinality T , and let 

0^,.. *>&n> • • • € 0)* Define a metric on B̂  

as follows: d(^,>|rf) • h where k is the least integer for which 

0^/0^. An open neighborhood is 

Let X be any first countable T^-space of weight T . Let 

¥3 = {U : a € 0) be a basis of cardinality T for X. We call 

\|r • (ex,,<X0, • . . ) € B "distinguished11 if Ü ,11 form a base 

of some point x € X. Let WCB^ be the set of all distinguished 

points. Since X is a T,-space, nfNtir is a neighborhood of x] 

for each x € X; thus for every i|r • (ct^Q^,...) € W there exists 

a unique x € X such that U ,U ' " * f o m a b a s e a t x> namely 
00 

(x) • fl U • In this way we define a mapping f: W X: if ~>x. 
i-1 a i 

Since X is first countable, f maps onto X. 
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To show that f is open, we will show that 
k k 

f (W n N „ ) = D U . Let x € n U , and add to 
a l " " > ° k i=l a i 1=1 a i 

U , . . . , U the neighborhoods U > U , . . . until you get a 
x Ha °k+l °k+2 

base at x. Let ti = (o^ , . . .,0^,0^. + 1 >... )• Then t(i\) = x, so 
k 

f(W (IN ) ^ n U • On the other hand, i t is clear from 
k 

the definition of f that f(W (1 N ) c fl U . 
^ • • • ' ^ ~ i = l ° i 

To see that f is continuous, let £ € W and let V be an 

open neighborhood of f (| ) . Since 73 is a basis, V is the union 

of members of 76* so f(|) e U , say. Then | € W fl H and 
JL n. 

f(W n N ) c u c V. Hence f is continuous at £. Q.E.D. 

Corollary 3 »2: Every second countable TQ-space (X,£7) is 

a continuous image of a separable metric space. 

Proof: Let 75 be a countable base of ( X , ^ ) , and let 

75' = {C: C € 73 or X - C € Then, if 2L i» the topology 

generated by &>20 is a T-^-space. A basis for 27 is the 

collection of sets which are finite intersections of members of 73 1; 

since 73* is countable, such a collection is also countable. Thus 

(X,21) is second countable (so also first countable). By Theorem 3.1 

(X; 20 is the continuous open image of a second countable metric 

space W under a mapping f. But 2L 3 C/> so (X,^70 is the 

continuous image of W under f. Since W is second countable 

metric, W is separable. (See [k; page 187].) Q.E.D. 

Definition 3*3: A network & for a topological space X is a 

collection of subsets of X such that any open set can be obtained 
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as a union of members of A cosmic space is a regular Tg-space 

with a countable network. 

The members of a network are not necessarily open subsets. Any 

base for the topology forms a network; so does the family of single 

points. 

Definition 3.k: A collection of subsets of a Tg-space X 

is a k-network for X iff, whenever C 5 U with C compact and U 

open in X, then C c p c u for some ? € Y^. An ^ 0 ~ s P a c e i s a 

regular Tg-space with a countable k-network. 

Every k-network is a network. For let x € U open; 

since {x} is compact, there exists P € IP such that x € P c u . 

Since this is true for every x € U, U can be obtained as a union 

of members of P. Thus every JX^Q-space is a cosmic space. 

Proposition 3«5: A subspace of an J\(Q-space is an TL^-space. 

Proof: Let X be an Ai^-space with countable k-network p. 

Let B be a subspace of X, and let P% » {P fl B: P € / ^ } . Let 

e c u with C compact and U open in B. Then C is also compact 

in X and U = B fl U' for some Uf open in X. Hence there is 

an element P of P such that C c p c u f . Then 

C • C n B c p O B c u ' (IB • U. Therefore p1 is a countable 

k-network for B. Subspaces of regular Tg-spaces are regular 

Tg-spaces, so B is an )\!Q-space. Q.E.D. 

Lemma 3*6: A separable metric space X is an \! n -space. 
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Proof: Let X3 = {B n: n • 1 ,2, . . . ) be a countable basis for 

X; without loss of generality we can assume /Ö7 is closed under 

finite unions. We show that 73 is a countable k-network for X. 

Let C c: u with C compact and U open in X. Since X is 

regular, there exists B^ € ^ such that x € B̂  c u for every 

x € C Since C is compact, there exist finitely many B^, say 
n n n ^ 

B , , . . . , B , suchthat C e U B.,. Since U B. c u and U B, € 13, 
i=l 1 i-1 1 i=l 1 

the proof is complete. Q.E.D. 

Definition 3.7: A Hausdorff space X is called a k-space iff 

a subset A of X is closed in X whenever A fl C is closed in 

C for every compact subset C of X. 

Theorem 3.8: If X is a k-space with a countable k-network, 

then so is any Hausdorff quotient space Y of X. 

Proof: A quotient space of a k-space is a k-space. (See [k; 

page 2^8].) Hence we need only show that Y has a countable k-network. 

Let 7^ be a countable k-network for X. The family of finite 

unions of elements of r is again countable and a k-network. 

Thus without loss of generality we may take r to be closed under 

finite unions. Let f be the quotient map of X onto Y, and let 

rf. = {f(P): P € f>). We will show that is a k-network for Y. 

Let e c u with C compact and U open in Y. Lit y € U 

and let x € f " 1 ( y ) ; since fx) is compact and f" 1(U) is open 

in X, there exists P € 7* such that {x) c p c f" 1(U) and 

therefore such that y € f(P) c u. Thus, let B^Rg,. . . be an 

enumeration of the elements of which are contained in U. Let 
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Let R' = H. U . . . U H , We have R1 = f (P. ) U...U f(P ) = n l n n ^ 1 n 
f(P 1 U...U Pn) • f(P^) for some P̂  € P. Hence for every n 

R1 € jfC and Rf c U, so i t suffices to show that CCD 1 for n n n 

some n. 

Suppose not. Then for each n there exists x ß € C - R .̂ 

Let A = {x n : n = 1 , 2 , . . . } . Now C is covered by elements of iC 
and RJLi 3 IC* Hence for all k > n , x. € C ~ Rf . Therefore n+i n K n 
A fl R1 is finite for all n. Also, given n there is a k such n 

that [x^ . . . , x n ) c R£. Hence x^ ^ x̂  for J • 1,2, . . . , n . 

Therefore A is infinite. 

Since A c c and C is compact, A has a limit point x. 

Then E • A - {x} is not closed in Y. Since f is a quotient 

map, f" (E) is not closed in X; since X is a k-space i t 

follows that there exists a compact set K c X such that f~^(E) PI K 

is not closed in K. Hence E fl f(K) is not closed in Y (if it 

were closed in Y, f" X(E fl f(K)) - f '^E) fl f - 1 f (K) would be 

closed in X, and then f ^ E ) fl K • [ f " 1 ^ ) fl f " 1 ^ * ) ] fl K would 

be closed in K). Since Y is a T-^space, E fl f(K) and the 

larger set A fl f(K) are infinite. Now C is compact and hence 

closed in the Hausdorff space Y, so f - 1 (C) fl K is compact. Hence 

there exists P € f9 such that f ^ C ) fl K c P c f~X(U). 

Now A C C , so A fl f (K) c C fl f(K) = f f f '^C) fl l ) c f(p) 

and thus A 0 f(K) c A fl f(P). But A fl f(K) is infinite, so that 

A fl f(P) is also infinite. Since f(P) c u, we have f(P) » Rn 

for some n. Thus A fl R^ is infinite and consequently so is 

A fl R ,̂ a contradiction. Q.E.D. 
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Lemma 3*9: Let X be a regular Tg-space. Then the following 

statements are equivalent. 

(1) X is cosmic. 

(2) X is the continuous image of a second countable Tg-space. 

(3) X is the continuous image of a separable metric space. 

Proof: ( l ) -> (2). Let & be a countable network for X. 

Let Y be the set X, topologized by taking ^ to be a sub-base. 

As in the proof of Corollary 3.2, Y is second countable. 

To see that Y is Tg, let x £ y be elements of Y. Consider 

x and y as points of X; since X is Tg, there exist sets U 

and V open in X such that x € U, y € V, and U OV • 0. 

Then there exist F-^*^ € & s u c h t h a * x € F l ' y € F 2 ' 0 1 1 ( 1 

F 1 fl Fg • 0. But considered as subsets of Y, F̂  and Fg are 

open. 

The identity map from Y to X is continuous. For if U is 

open in X, U U U F^ for some sub-family of Then 

f-^U) = f" X(U F a) = U f Ä l ( F a ) - U F a is open in Y. 

(2) (3)* Apply Corollary 3.2. 

(3) -* (1). Let Y be separable metric, and f: Y -*> X 

continuous. If is a countable base for Y, then 

S = {f(B): B € 25} is a countable network for X. Q.E.D. 

If X and Y are topological spaces, let C(X,Y) denote 

the space of al l continuous functions from X to Y, with the 

compact-open topology. This is the topology which has a sub-base 

consisting of all sets W(C,U) * {f € £(X,Y): f(C) c U} with C 

compact in X and U open in Y. 
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Lemma 3-10: If X is a compact metric space and if Y is an 

SQ-space, then £(X,Y) is cosmic. 

Proof: Since Y is a regular Tg-space, £(X,Y) is a 

regular Tg-space. (See [k; page 258].) A compact metric space is 

separable metric. (See [Ik; page 158].) Thus by Lemma 3.6 X is 

an J\ n -space. Let p and be countable k-networks for X 

and Y, respectively. The collection of all finite intersections 

of sets W(P,R) with Pep and R € % is clearly countable; 

we will show that i t is a network for £(X,Y) . 

Let f € W(C,U) where C is a compact subset of X and U 

is open in Y. Since C is closed i i X, f ^ U ) is open in X, 

and C cz f"" 1(u), the normality of X implies that there exists an 

open set V such that C c y c y c f - 1 ( u ) . Then there exists P € 

such that C c p c V, and consequently C c p c f" 1 (u). Since P 

is closed in the compact space X, P is compact. Thus f(P) is 

compact and f(P)> c: u. Therefore there exists R € 7^ such that 

f(P) c R c u. But then f € W(P,R) c w(C,U). Since the sets 

W(C>U) are a sub-basis for the compact-open topology, the proof is 

complete. Q.E.D. 

Definition 3 .11 : Let X and Y be topological spaces. A 

continuous function f: X -» Y is a compact covering iff every 

compact subset of Y is the image under f of seme compact subset 

of X. 

Lemma 3.12: If Y is a Hausdorff k-space, then any compact-

covering map f: X - » Y is a quotient map. 
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Proof: Suppose B c Y is such that f ^ B ) is closed in X. 

To show that B is closed in Y, i t is sufficient to show that 

B fl C is compact for every compact subset C of Y. 

Let C be a compact subset of Y. Then C • f(K) for some 

compact subset K of X. Then f " 1 ^ ) fl K is compact, and hence, 

by the continuity of f, so is its image B fl C. Q.E.D. 

If X is a T2-space with topology Cf> then let k(X) denote 

the set X, topologized by calling a subset closed iff its 

intersection with every (f -compact subset of X is ^-compact. 

Proposition 3*13: k(X) is a Hausdorff k-space and its 

topology yields the same compact sets as X. 

Proof: Since the intersection of a closed set and a compact 

set is compact, every set closed in X is closed in k(X). Thus 

the topology of k(X) contains the topology of X. It follows that 

k(X) is Hausdorff and that every set compact in k(X) is compact in X. 

On the other hand, let A be compact in X. Then A is closed 

in k(X). Let 3^ be any collection of k(X)-closed subsets of A 

having the finite intersection property; to prove that A is 

compact in k(X), it is sufficient to prove that fl & / 0. But 

F fl A is compact in the Tg-space X for every F € >5? and hence 

F • F D A is closed in X for every F € Thus ^ is a 

collection of X-closed subsets of A; since A is compact in X, 

To see that k(X) is a k-space, let A be a subset of k(X), 

let C be a compact subset of k(X), and suppose A fl C is closed 
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in C. Then A fl C is k(X)-compact and thus X-compact. By the 

definition of the topology of k(X), A is closed in k(X). Q.E.D. 

It is not difficult to see that a T^-space X is a k-space 

iff X = k(X), that i s , i f f the topologies of X and k(X) axe 

equal. 

Let X and Y be Tg-spaces and let f: X -> Y be a function. 

Then f̂ : k(x) -> k(Y) denotes the function taking the same values 

as f but from and into the new topological spaces. 

Lemma 3>1^: If X and Y are Tg-spaces and if f: X - » Y 

is continuous, then so is ffc: k(X) - » k(Y). 

Proof; Let B be closed in k(Y). To show that ^ ( B ) is 

closed in k(X), i t is sufficient to show that f" 1(B) DC is 

closed in X for every compact subset C of X. 

Let C be a compact subset of X. Since f is continuous, 

f(C) is compact in Y; thus B fl f(C) is compact in the Tg-space 

Y and hence closed in Y. Since C is closed in X, it follows 

that f" X(B) PI C - f ^ B fl f(C)) 0 C is closed in X. Q.E.D. 

Lemma 3«15: Every compact >SQ-space X is separable 

metrizable. 

Proof: Let be a countable k-network for X. By Urysohn's 

metrization theorem, i t will suffice to show that (Int P: P € /*} 

is a base for X. 

Suppose not. Then there is an x € X and an open subset U 

of X such that x € U and such that there is no P € r with 
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x e Int P c u. Let V^JJ^, . . . be a sequence of neighborhoods of 

x. Since X is regular, there exists an open subset V of X 

such that x e v c v c u ; let V * V flu for all n. Let 
n n 

*V *2'" " b e 8 1 1 e n u m e r a * * o r l °^ elements of )P contained in U. 
Suppose V c p for some n. Being the intersection of two n n 

neighborhoods of x, V n is a neighborhood of x. Hence x € Int PQ c u, 

contradicting our assumptions. Thus we can pick an x
n

 € Vn ~ p
n 

for all n. Let C • {x.^Xg, . . . } . Since X is compact, C is 

compact. But C c V c u, so C c p ^ for some n, which is 

impossible since x^ ft P .̂ Q.E.D. 

We now have the machinery necessary to prove the following 

theorem. It has a corollary concerning quotient spaces of separable 

metric spaces. 

Theorem 3*l6: The following properties of a regular Tg-space 

are equivalent. 

(1) X is an )\Q-space. 

(2) X is the image, under a compact-covering map, of a 

separable metric space. 

(3) k(x) is the image, under a compact-covering quotient map, 

of a separable metric space. 

(k) k(X) is a quotient space of a separable metric space. 

Proof: ( l ) -» (2). Let K denote the Cantor set, and define 

0: £(K,X) XK~»X by 0(f ,t) » f ( t ) . Since K is compact, $ is 

continuous. (See [9; page 223]-) By Lemma 3.10 £(K,X) is cosmic. 

Then by Lemma 3-9 there exists a continuous function u from a 
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separable metric space S onto £(K?3C). Since K is compact 

metric, K is separable. Thus S X K is a separable metric space. 

(See [k; pages 175 and 191].) Define S X K -> X by 

\|r(s,t) « $(u(s) , t ) . Since 0 and u are continuous, so is 

We will show that \|r is a compact-covering map. 

Let C be a non-empty compact subset of X. By Proposition 3*5 

and Lemaa 3-15 C is metrizable. Thus there exists f € £-(K,X) 

such that f(K) • C. (See [9; pages 165-6].) Pick s € S such 

that u(s) - f; we can do this since u maps onto £(K,X). By 

Tychonoff f s theorem, (s) x K is a compact subset of S X K. Now 

• ( { • ) X K) « C. (If C « (x), then this argument also shows 

that \|r maps onto X). 

(2) -» (3)- Let f: M - » X be a compact-covering map, with M 

separable metric. M is a Tg k-space. (See [k; page 248].) Thus 

M • k(M). By Ltama 3.1k f : M ~ » k(X) is continuous. Since k(X) 

and X have the same compact sets (see Proposition 3«13)* f̂  is 

a compact-covering map along with f. By Lemma 3-12 f̂  is also 

a quotient map. 

(3) -> (k). Obvious. 

(k) -> ( l ) . Suppose k(X) is a quotient space of a separable 

metric space M. By Lemma 3*6 M is an 5x 0~ sP a c e> so Theorem 3*8 

shows that k(X) has a countable k-network. Since X has the same 

compact sets as k(X) and every set open in X is open in K(X), 

X also has a countable k-network. Thus X is an V^-space. Q-E.D. 

The following corollary characterizes quotient spaces of 

separable metric spaces. 
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Corollary 3*17: Let X be a regular Tg-space. Then the 

following statements are equivalent. 

(1) X is an H^-space and a k-space. 

(2) X is a quotient space of a separable metzle space M. 

Rroof: ( l ) -> (2). This follows from (l) -* (k) of Theorem 3*16, 

since, when X is a Tg k-space, k(X) » X. 

(2) -> ( l ) . Since M is a k-space and a quotient space of a 

k-space is a k-space, X is a k-space. By Lemma 3*6 M is an 

Kn-space. Theorem 3.8 then shows that X is an >in-space. Q.E.D. 
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CHAPTER IV. GENERAL QUOTIENT SPACES 

In this chapter we obtain criteria for metrizability of an 

arbitrary quotient space of a metrizable space. Our first main 

result is due to A. Arhangel^kii [ 1 ] . Of fundamental importance 

is the following definition. 

Definition 4.1: A mapping f: X - » Y of a metrizable space 

X onto a topological space Y is called regular iff there exists 

a metric d compatible with the topology of X such that for each 

open subset G of Y and each point y € G there exists a 

neighborhood U of y such that d(f - 1 (u),X - f " 1 ^ ) ) > 0. 

We shall also need the following two definitions. 

Definition 4.2: Let 27- • {U : a € <£} be a covering of a 

space Y. For any B <z y, the set U{U :U fl B / ĵ ) is called 

the star of B with respect to and is denoted by St(B, 27). 

Definition 4.3: Let 77. • (U : a € U} be an open covering 
vX 

of Y. A sequence i7fn
: n = 1,2, . . . } of open coverings is called 

locally starring for 27 if for each y € Y there exists a 

neighborhood V of y and an integer n such that St(V, 27 ) 

c some U • 

We will make use of the following metrization theorem, also due 

to Arhangel1skii• 

Theorem 4.4: If Y is a T^-space and i f there exists one 

sequence { : n = 1,2, . . . ) of open coverings that is locally 
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starring for every open covering, then Y is metrizable. 

Proof: The proof may be found in [k; pages 196-7]« 

Our goal is the next theorem. 

Theorem k.$: A Hausdorff quotient space of a metrizable space 

is metrizable i f and only i f the corresponding mapping is regular. 

We first prove two lemmas. If X is a metric space with 

metric d, define N6(B) * {x: d(x,B) < €) for each B c x and 

each € > 0. 

Lemma k.6: Let f: X - » Y be a mapping of a metric space X 

onto a T^space Y which satisfies the following two conditions: 

(1) f is regular. 

(2) y € Int t[üAt~\y))] for any point y € Y and number € > 0. 

Then Y is metrizable. 

Proof: Let %6n> n * 1 *2 , . . . , consist of all open sets in X 

whose diameter is at most —. Let 2/ denote, for any n, the 
n n 

family of sets in Y consisting of the interiors of the stars of 

the points of the latter space with respect to the set of images of 

members of the covering g ^ : 2£ Ä ( I n t S t ( y , f ( ^ ) ) : y € Y). 

We assert that { n * 1 , 2 , . . . } is a sequence of open coverings 

of Y that is locally starring for every open covering of Y. 

First of all , the 2 ^ are coverings of Y. Note that 
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S t ( y , f ( # n » - U{f(U): U € % and f(u) n (y) ^ 0} 

« U(f(ü): U € 2 4 and U D f - 1 ( y ) / 

= f(U{U: U € ZCn and U n f - 1 ( y ) / 0}) 

= f t S t C f -^y) ,^ ) ] • 

condition (2). 

Now let y and N be an arbitrary point and a neighborhood 

thereof in Y. Since f is regular, there exist neighborhoods N, 

and N2 of y such that d(f" 1 (N 1 ) ,X - f " 1 ^ ) ) > 0 and 

d(f" 1 (N 2 ),X - f " 1 ^ ) ) > 0. Let r be the smaller of the two 

numbers on the left hand sides of these inequalities, and take 

integer M such that h < r. We shall now show that 

St(N2, Yy) c N. 

Consider any point yQ € St(Ng, <^M) - U{V: V € ZT^ and 

V n N2 / 0} - U{V: V « Int 8t(p,f(#M)) for some p € Y and 

V n N2 ^ 0). Let p € Y be such that 

1 ' ) yQe Int U{f(U): U 6 2 ^ and f(U) n (p) ^ 0} 

c U{f(u): U e Ku and p e f(U)} 

2«) 0 { N2 n Int U{f(U): U e and f(U) n {p} ^ 0} 

c n 2 fl U{f(ü): U € and p € f(U)}. 

By 1 ' ) y Q € f (G^) for some € »>ch that p € f (C^) -

By 2 ') N2 fl f(G^ ) / 0 for some € such that 

p € f « £ ) . That is , 2/v 

contains two members G? and d? 
2 T. 2 
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which satisfy simultaneously the following relations: 

1") f(G^) HN 2 + t 

2") f « £ ) n f r f ) / 0 
T. °2 

3") y 0 c f ( c ^ ) . 

By l " ) , <£ n f ' V ) ,( and consequently, since 
2 

diam < I < r < dCf^NgLX - f " 1 ^ ) ) , we have G*̂  c f ' 1 ^ ) . 

Hence f(c£ ) c N, so that f(G?J ) n f(<£ ) c N,, By 2M), we may 

write f(G^ ) OH. / <f>, or, equivalently, gJ* n f 4 ( N . ) £ 0. 

Since diam < jjj < r < d(f" 1 (N 1 ) ,X - f" X(N)), it follows that 

gJ* C f " 1 (N), so that f((£J ) c n. Consequently, yQ € N by 3"). 

TL TL 
Since y^ was an arbitrary point in St(Ng, we have 

shown that St(N0, 2fxt) c n. Thus, the family [Of : n • 1,2, •••} d M ^ n 

is locally starring for every open covering of Y. By Theorem k.k 

Y is metrizable. Q.E.D. 

Lemma 4.7: Let f: X ~ » Y be a regular quotient mapping of 

a metric space X onto a Tg-space Y. Then if a set H e x 

satisfies the condition f - 1 f(M) • M, the set f^ffM) is closed. 

Proof: Assuming the contrary, consider a point 

xQ € f"Xf(M) - f^fCM). Let y Q » f ( x Q ) . Then 

f " 1 ^ ) n f^fCM) - <jl and consequently f " 1 ^ ) n M * 0. 

Let us say that a point x € M is 6-accessible ftrom XQ i f 

for some y € Y we have N ( f^ fy ) ) 3 {XQ) U {X } . We assert that 
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for any € > 0, there exists a point in M which is €-accessible 

from x Q . Since x Q € f^ffM), there exists a sequence in f'^fiu) 

converging to x^; take x-ĵ  € f~Xf(M) such that d ^ . x ^ < €. 

Let y = f ( x x ) - I f f " 1 ^ ) HM » ^ then y £ f(M) and 

x.̂  £ a contradiction. Thus there is an Xg € M such 

that f (x 2 ) * y.^ In turn, the set M contains a point x^ such 

that d(x 3 ,x 2 ) < €. Then N ^ f " 1 ^ ) ) {xQ} U (x^), so that x^ 

is €-accessible from x Q . 

For every n, pick a point X r in M which is ^ - accessible 

from x Q . We will first show that {f(x ß )} converges to y Q . Let 

Ü be an arbitrary neighborhood of y Q . Pick a neighborhood 

of y Q such that d f f ^ U ^ X - f" X(U)) > 0. Then also 

d(f" 1(jf 0),X - f " 1 ^ ) ) > 0. Now let N be an integer such that 

I < mlntdff^CU^X - f - 1 (U)) ,d(f - 1 (y 0 ) ,X - f " 1 ^ ) ) } . 

Then f (x n ) € U for n > N. Indeed, consider the point y ß for 

which N l / n ( r 1 ( y n ) ) ^ (x 0) U (x n ) . Since d(x 0 , f " X (y n ) ) < |, 

there exists z Q € f " 1 ( y n ) s u c h
 t h a t d ( x o ' 2 n^ K n* I f 

z n € X - f " 1 ^ ) , then d(f - 1 (y 0 ) ,X - f " 1 ^ ) ) < d(x 0 , z n ) < | < |, 

a contradiction; thus z n € f " 1 (U 1 ) fl f " 1 ^ ) * I* follows that 

y n € Vv Hence t^iyj <= f " 1 ^ ) and {x n) c N l / n ( f " 1 ( y n ) ) c 

N ^ C f " 1 ^ ) ) - But then the inequality | < | < ( U f " 1 ^ ) , ! - f " 1 ^ ) ) 

implies that X q € f~X(u) and hence f ( ^ n ) € U. This proves that 

the sequence (f(x n )} converges to y Q . 

Since Y is Hausdorff, y Q is the unique limit point of the 

set ( f (x n ) } ; hence P « { f (x n ) } U {yQ} is closed in Y. 
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Therefore, the set Q = f - 1 (P) fl M is closed in X. Since 

f~1f(M) = M and X r € M for all n, we have that 

f " 1 ( { f ( x n ) } ) C M . Thus 

Q = [ f _ 1 ( { f ( x n ) ) ) U t'\y0)] DM 

- [ f _ 1 ( { ^ x n ) } ) n S ] U [tml(fQ) flM] 

where Q is closed in X, whereas {f(x n )} is a non-closed set 

in Y. This contradicts the assumption that f is a quotient 

mapping. Q.E.D. 

Proof of Theorem 4« 5: To prove sufficiency, let f: X ~ » Y 

be a regular quotient mapping of a metric space X onto a Tg-space 

Y. We will show that f satisfies condition 2) of Lemma 4.6. 

Let y be any point of Y and let U be any open set in X 

containing f - 1 ( y ) . Let L « Y - f(U) and M = f ^ L ) . Then 

f ~Xf (M) • M and U fl M * 0. Hence f~X(y) fl M = 0, that is , 

y i f(M). By Lemma 4.7 f w l f(M) is closed in X; this means, 

since f is a quotient mapping, that f(M) is closed in Y. But 

y € Y - f(M) e Y - f(M) - Y - L = f(U), so that y € Int f(U). 

To prove necessity, we will show that every continuous mapping f 

of a metrizable space X onto a metrizable space Y is regular with 

respect to some metric on X. Suppose that d ,d are metrics 
x y 

compatible with the topologies of X,Y, respectively, and define 

a metric d on X by 
d(u,v) » <yu ,v) + d y (f(u),f(v)) for u , v € X . 
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Then d is compatible with the topology of X. Since, clearly, 
d d x 

N€(u) c N€ (u), we have that ^7{\) c .JTU), where, for example, 

^ ( d ) is the topology in X determined by the metric d. To see 

that ^/(d) c >7'(dx), let € > 0 and u € X be given; by the 

continuity of f choose 0 < 8 < € such that d ^ ^ v ) < 5 implies 
d . 

that <Xy(t(u),t(v)) < e. Then, clearly, N 8
x(u) c N g € (u) . Thus 

^7"(dx) - ^ ( d ) . To see that f:(X,d) -W> ( T , 0 is regular, let 

G be an open subset of Y and y C G. Let € - g dy(y,Y-G) > ^ 

and U • N y ( y ) . Then U c G and d (U,Y-G) > €. Therefore, 

d(f _ 1(U),X - f ' ^ G ) ) > 0; for, i f u e f _ 1 (U) and v € X - f " 1 ^ ) , 

we have 

d(u,v) = d x(u,v) + d y (f(u),f(v)) 

> d y (f(u) ,f(v)) 

> dy^Y-G) 

> € > 0 . 

Thus f:(X,d) - » (Y,d ) is regular. Q.E.D. 

In the next theorem, due to Hlmmelberg, we work with pseudo-

metric spaces and obtain an interesting explicit definition of a 

pseudo-metric for the quotient space. 

Theorem klQ: Let f be a function from a pseudo-metrizable 

space X onto a topological space Y, and suppose that Y has 

the quotient topology relative to f. Then the following assertions 

are equivalent. 
l ) Y is pseudo-metrizable. 



32 

2) There exists a pseudo-metric d compatible with the topology 

of X and a subbase yd for the topology of Y such that 

for each G € there exists a set (e(y): y € G) of 

positive real numbers satisfying: 

( i ) N

€ ( y ) ( f " 1 ( y » c ' " V ) for all y € G, and 

( i i ) d ( f " 1 ( y ) , f " 1 ( * ) ) > €(y) - €(z) for all y,z € G. 

3) There exists a pseudo-metric d compatible with the topology 

of X such that the topology of Y is compatible with 

the pseudo-metric p defined by 

p(y,z) - inf d ( f " 1 ( y i - 1 ) , f * 1 ( y 1 ) ) , 

where y, z € Y, y^ € Y for all 0 < i < n, and the 

infimum is taken over all finite chains y • y Q , 

y r " # # ' y n " z -

Proof: ( l ) -+ (2) . Suppose that d^dy are pseudo-metrics 

compatible with the topologies of X,Y, respectively, and that d 
y 

is bounded. Let >4 be any subbase for the topology of Y and 

define d as in the proof of Theorem 4.5. If G is any proper open 

subset of Y, let €(y) * d (y,Y-G) > 0 for each y € G. To 

verify ( i ) , let x € X be such that d (x , f i l (y ) ) < € ( y ) . Then 

there exists z € f - 1 ( y ) such that d(x,z) < €(y); consequently, 

d y (f(x) ,y) - d y ( f (x) , f (z) ) < c(y), that is, f(x) € G and 

x 6 f ' ^ G ) . To verify ( i i ) , let y,z € G and let m € f - 1 ( y ) , 

n € f " " 1 ^ ) . Then 
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d(m,n) = dx(m,n) + d y(y,z) 

> d y(y,z) 

> dy(y,Y-G) - dy(z,Y-G) 

- e(y) - e(z) . 

Thus i(t'1(y),t-1(z)) > e(y) - €(z). 

(3) -» (1) . Trivial. 

(2) -» (3)« Let d , ^ be a pseudo-metric and subbase, 

respectively, as given by (2). Define p as in (3)- It is a 

trivial matter to verify that p is a pseudo-metric. Moreover, 

f: X - » Y is continuous i f Y has the topology defined by p, 

since 

p(f(u),f(v)) < d( f - 1 [ f (u) ] , f _ 1 [ f (v) ] ) < d(u,v) , 

whenever u,v € X. Thus all that remains to be shown is that the 

topology defined by p is larger than (and therefore equal to) the 

quotient topology on Y. To do this i t is sufficient to whow that 

each member of the subbase d is open relative to p. So let 

G € > / and let fc(y): y € G} be as in (2). Then p(y, z) < c(y) 

implies that z € G. For suppose p(y, z) < €(y) and choose 6 

such that p(y, z) < 6 < c(y). Then there exists a finite chain 

y * y o ' y l ' # Ä # ' y n = z o f P ° i n t 8 o f Y such that 

(*) E n
Ä l d f f - 1 ^ ) , ^ 1 ^ ) ) < P(y,z) + (e(y) - 5) 

- (p(y>z) - 8) + e(y) 

< e(y) . 
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In particular, d( f " ' 1 (y) , f " 1 (y 1 ) ) < €(y). This means that 

d(f" 1 (y),u) < €(y) for some u € f " 1 ^ ) . Then (i) of (2) implies 

that u € f - 1 (G) and y x € G. 

Now apply ( i i ) of (2) to (*) to obtain 

ZJä 2 d ( f - 1 ( y i - 1 ) , f - 1 ( y 1 ) ) < €(y) - d f f - ^ f " 1 ^ ) ) 

< €(y) - €(y) + eiy-J 

• €(y 1 ) . 

Thus, by repeating the argument following the inequality (*), we 

deduce that V^Yg •••>y
n * z 8 , 1 1 b e l o n g *° G* I n part* 0 ^ 0 1 , 

z € G. We have thus proved that G is open relative to p. Q.E.D. 
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CHAPTER V. CLOSED QUOTIENT MAPS 

In this chapter we will give a strong metrization theorem 

proved independently by Morita and Hanai ( l l ) and A. H. Stone (13)-

Part of the proof that we provide is due to C. J. Himmelberg. We 

need the following version of Frinkfs metrization theorem (6); 

its proof is the same as Frink's. 

Theorem 5.1: Y is pseudo-metrizable iff for each y € Y 

there exists a sequence {W (y)} of open subsets of Y such that 

3) given n and y, there exists m such that 

Wm(z)cwn(fc> i f Wm(z) meets W^y). 

We will denote the boundary of a subset A of a topological 

space X by BdA. Recall that A is closed in X iff BdA c A 

and that A is open in X iff A fl BdA =* 0. Also recall that 

the boundary of any set is closed. 

Lemma $.2; Let f be a function from a pseudo-metrizable space 

X onto a topological space Y such that B d f ^ y ) is compact for 

each y € Y. Then there exists a closed subset A of X such 

that f(A) - Y and f^Cy) n A is compact for each y € Y. 

Proof; For each y € Y, let 

n 
1) W1(y) => w 2 (y). . . , 

2) {W (y)) is a local base at y, and 

L(y) 
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where p is an arbitrary point of f - 1 ( y ) / 0. Note that if 
y 

f - 1 ( y ) n Bdf _ 1(y) - 0, then f - 1 ( y ) - 7p~T is the set difference 
y 

of an open set and a closed set and hence is open. 

Let L = U{L(y): y € Y} and A • X-L. Then L is open, A 

is closed, and f(A) • Y. 

If f " X (y) fl Bdf^fy) J 0, then f 4 ( y ) n A c Bdf 4 (y) ; 

since Bdf""^(y) is closed and compact and since closed subsets of 

compact sets are compact, it follows that f - 1 ( y ) fl A is compact. 

If f " 1 (y) fl Bdf"X(y) * 0, then f" X (y) fl A c "fiTT; since X 

is pseudo-metrizable, {p } is compact and we again obtain that 

f - 1 ( y ) n A is compact. Q.E.D. 

Lemma $.3: Let f be a closed continuous mapping of a pseudo-

metrizable space X onto a topological space Y such that 

1) each open subset of Y contains the closure of each of 

its points, and 

2) each f~ (y) is compact. 

Then Y is pseudo-metrizable. 

Proof; Let a pseudo-metric d for X be given. For each 

y € Y and each integer n > 0 define 

Vn(y) = U{f\zh t"\z) c y f ^ y ) ) ] 

and 

wn(y) = f(v n (y)) = Y - f[x - • | y n ( f " 1 ( jr) ) ] . 

Since f is a closed mapping, w
n ( y ) i s open; then, by the 

continuity of f, V (y) - t"Xt(y (y)) « f* 1^ (y)) is also open. 
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f - 1 ( y ) c f '^TyT) * and, since f^fy) is compact and 

f " 1 ^ ) is open, there exists n such that ( f ^ y ) ) c f ' ^ G ) , 

Hence V n(y) c f " 1 ^ ) , and y € WQ(y) c G. 

(3)- Suppose n and y are given and choose m such that 

a) m > 2n, 

b) A(t-\y),X - v g n (y) ) > | . 

(Recall that Vg^Cy) is open and f - 1 ( y ) c Vg n(y).) 

Now suppose Wm(z) meets Wm(y), say each contains w • f(u) 

with u € Vm(z) nv m (y). Then 

d ( f " 1 ( z ) , f _ 1 ( y ) ) < &(tml(z),u) + d(u,f - 1 (y)) 

. 1 ^ 1 2 
m m m 

-1 -1 2 and consequently d(f (z) ,f (y)) < Then there exists a p € f 

such that d(p, f _ 1 (y) ) < %; i t follows from (b) that 

2n̂  

<= V ^ y ) c h/JFw) • 
p € f _ 1 ( z ) n V 0 _(y) . Hence 

Now suppose x € V ( z ) . Then x € K. i A t " (y)), since »mvzy. inen x t " i / ^ 

§5 and f f c l (z ) c N l / 2 n l 
d f o f " 1 ^ ) ) < ~ < OTT «ad ^ ( » ) c » i /«„(^"' '(y))- It follows that 

Moreover, f"' 1(z) c Vn(y) whenever f " 1 ^ ) meets V n(y). For 

suppose f " 1 ^ ) D V n(y) ± 0; then z € Wn(y) and consequently, 

by (1), Tzjc:w n (y). Applying the continuity of f, we obtain 

tml(z) c f - ^ T I J ) c f \ ( r ) ) * V n(y)-

We now verify ( l ) , (2), and (3) of Theorem 5.1. 

(1). This is trivial. 

(2). Let G be an open subset of Y and let y € G. Then 
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Vm(z) c V n (y) , and consequently that Wm(z) c Wn(y). Q.E.D. 

Theorem 5.4: If X is pseudo-metrizable, Y is T^ or 

regular, f is a closed continuous mapping of X onto Y, and 

each Bdf" 1(y) is compact, then Y is pseudo-metrizable. (in 

fact, instead of using or regular for Y, we use only the 

assumption that each open subset of Y contains the closure of each 

of its points.) 

Proof: By Lemma 5.2 let A be a closed subset of X such that 

f(A) • Y and t~\y) OA is compact for each y € Y. If g • f |A, 

then g is onto Y and g - 1 ( y ) is compact. To see that 

g:A ->> Y is closed, let F be a closed subset of A. Since A 

is closed in X, F is closed in X; then, since f is a closed 

mapping, g(F) = f(F) is closed in Y. By Lemma 5.3 Y is 

pseudo-metrizable. Q.E.D. 

The following is Stone1s theorem. 

Theorem 5*5: Let f be a closed continuous mapping of a metric 

space X onto a topological space Y. Then the following statements 

are all equivalent. 

(1) Y satisfies the first countability axiom. 

(2) Bdf^Cy) is compact for each y € Y. 

(3) Y is metrizable. 

Proof: Note that Y is in any case a fc-space, for each y € Y 

is of the form f(x) where {x} is closed. Thus (2) -+ (3) follows 

from Theorem 5.4. That (3) -> ( l ) is trivial. 
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Assuming that ( l ) is true, let {Wn(y): n = 1 ,2 , . . . } be a 

countable basis of open neighborhoods of y € Y. Let 

F • f - 1 ( y ) . If BdF is not compact, there is a sequence 

{ x : n = 1 , 2 , . . . ) of points of BdP having no cluster point in n y 
BdF ; since BdF is closed, {x } has no cluster point in X. 

Now Y is a T,-space and f is continuous, so F is closed; 

consequently, x n e BdFy c F y c f - 1 ( w n (y)) . But f* 1(Wn(y)) is 

open, and hence there exists 0 < € < — such that 

N €(x n) c f " 1 (W n (y)) . It follows that there exists y n € X - F y such 

that y € f - 1 (W (y)) and d(x ,y ) < d denoting the distance n n n n n 

in X. Let P • (y n ) ; P is closed, since the sequence {ynJ has 

no cluster point in X (else the sequence {x n) would). Hence 

Q • f(P) must be closed in Y. Since y Q 4 P ,̂ y i Q; yet 

y € Q since Wn(y) meets Q in f(yn)> and this contradicts the 

closedness of Q. Q.E.D. 

In some cases the condition that f be closed follows from 

the other hypotheses. This is so, for example, i f X is compact 

and Y is Hausdorff. Another example will be given in the next 

theorem, also due to Stone. 

Definition 5*6; A decomposition of a set X is a pairwise 

disjoint family <̂9 of non-empty subsets of X whose union is X* 

The projection of X onto the decomposition /9 is the function 

P whose value at x is the unique member of & to which x 

belongs. 
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Definition 3.J: A decomposition of a topological space X 

is upper semi-continuous i f f for each D in and each open set 

U containing D there is an open set V such that D c v and 

every Df meeting V is contained in U. 

Using an equivalent definition, Kelley proves the following. 

Lemma 5.8; A decomposition of a topological space X is 

upper semi-continuous i f and only if the projection P of X onto 

is closed, where fi^has the quotient topology relative to P. 

Proof: See [9; pa«e 99]* Q.E.D. 

Definition $.9: A topological space X is locally peripherally 

compact if every point has arbitrarily small neighborhoods with 

compact boundaries. (Every 0-dimensional space is locally 

peripherally compact,) 

Theorem $.10: Let f be a quotient mapping of a locally 

peripherally compact metric space X onto a Hausdorff space Y such that 

Bd(f" 1(y)) is compact. Then f is closed, and consequently Y 

is metrizable* 

Proof: As before, we write F - f " 1 ( y ) . We will prove that 
•7 

the decomposition {F : y € Y} of X is upper semi-continuous. 

Let y € Y and let U be an open subset of X containing F • 
•7 

Since X is locally peripherally compact, there exists, for every 

x € BdFy c f» an open set U x containing x such that Ux u 

and BdU is compact. Since BdF is compact, we can cover BdF by x y y 
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a finite number of open sets Û > • • •, Um such that ü ^ c u and 

BdU± is compact ( l < i < m). Let V « U...U üm U Int F y ; 

then V is open, F c y c u , and the set BdV, being a closed 
y 

subset of the compact set BdÛ  U. ..U BdUm U Bdly, is compact. Let 

W = IL / (BdF ) U Int F , an open set containing F ; since 
n x/n y y y 

V c u. i t is enough to prove that, for some n, every F^ 
meeting W is contained in V. n 

Suppose this is false; then, for each n, we obtain a € Y 

such that F ^ meets both Wß and X - V. Since F ^ meets Wßi 

either F contains a point of Int F or F contains a point 
^n , y *n 

of Nj / (BdF ) . If F - f (c^) contains a point x of Int F , 

then - f(x) • y; since q n £ y (for F y c v), this is 

impossible. Thus F contains a point y Q of W^/(BdF), and 
%, 1 there exists x„ € BdF„ such that d(y .x ) < Now BdF_ c p c v, n y n n n y y 

BdF is compact, and X - V is closed; i t follows that there is an N 
y 

such that d(BdFy,X-V) > ^ for al l n > N. Thus WQ <=• V for al l 

n > N. Hence F meets both V and X - V (n > N); since F„ 
% *n 

is connected, i t must meet BdV, say in z Q (n > N). 

Since BdV and BdF are sequentially compact, z , -> z € BdV 
y n 

and x , -> x € BdF„ for a suitable subsequence of values n1 of n. n y 
Then also y . -> x. Now z 4. F , since V contains F„ and is 

n y y 

disjoint from BdV. Let f(z) * q; then q € Y - (y) and z € F^. 

Since Y is a Hausdorff space, there exist open sets B 1 and Bg 

such that q e B ^ y € B g, and B1 fl Bg • 0; then ^ * f " 1 (B 1 ) 

and Mg • f - 1 ( B 2 ) are disjoint open sets such that ML̂  >̂ F^ and 

Mg ^ F y . Since z € and x € Mg, there exists n f sufficiently 

large that Z Q I € 1^ and y Q , € Mg; by our choice of {ynJ and 
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{z } i t follows that F meets, and so is clearly contained in, 
n V 

both and Mg. But this contradicts the connectedness of F 

This proves the decomposition upper semi-continuous; the mapping 

f is therefore closed by Lemma 5.8. Y is metrizable by 

Theorem 5.5. Q.E.D. 

Duda (3) has proved an interesting complement to Theorem 5.5 

in the case that X is also locally compact. Roughly, i t states 

that i f one "throws away" from Y all of the f,bad,f points (points y 

such that the boundary of f " 1 ^ ) is not compact), then the result 

is s t i l l metrizable. We shall use the following definitions in the 

proof. 

Definition $.11: A subset S of a topological space X is 

said to be a scattered set i f every subset of S is a closed 

subset of X. An inverse set of a mapping f of X onto Y is 

any subset A of X for which A * f^f fA) . 

Definition $.12; Let {A^} be a sequence of subsets of a 

topological space X. Then 

(1) x € lim inf A iff there exists a € A for all n 
n n n 

each that a^ -> x. n 
(2) x € lim sup A^ if f there exists a subsequence ^n^^ o f 

{A. } and a_ € A_ such that a_ x. 

Clearly, lim inf A n c: lim sup An« 

Recall that a Hausdorff space X is locally compact iff each 

point has a neighborhood whose closure is compact. Equivalently, 

X is locally compact iff for each compact subset C of X and 
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each open subset U containing C, there exists an open set V 

such that V is compact and C c y c y c u . (See [k; page 238].) 

Lemma 5 »13: Let f be a closed continuous mapping of a 

locally compact metric space X onto a topological space Y. If 

F is the union of the point inverses which are not compact, then 

(1) F is closed in X; 

(2) for an arbitrary compact set K in X. only a finite 

number of non-compact point inverses can intersect S; 

(3) any inverse set A contained in F is a closed subset 

of X. 

Proof: Note that, as in the proof of Theorem 5*5> Y is a 

T^-space. Since f is continuous, f ' ^ y ) is closed in X for 

every y € Y. 

( l ) . If there are no compact point inverses, then F = X and 

F is closed. Suppose that f " 1 (y) is a compact point inverse. 

Since X is locally compact, there exists an open set U containing 

f 1 (y ) such that U is compact. Since f is closed and continuous, 

the set f 1f(X-U) is closed; its complement is an open inverse 

set V containing f - 1 ( y ) and contained in U. 

To prove ( l ) , i t suffices to show that X - F is an open set. 

Let x € X - F, say x 6 f - 1 ( y ) , where f ^ f y ) is compact; 

choose V as above. Since V is open, there exists an open set N 

such that x € N e v. i f N c f " X (y) c x - P , then, clearly, X - F 

is open. If H f - 1 ( y ) , let f - 1 (m) be any point inverse such 

that N 0 f ̂ (m) £ Then f ̂ (m) c V c u c u, since V is an 
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subset of the compact set U and is therefore compact. Thus N 

intersects only compact point inverses, so that N c X - F and, 

again, X - F is open. 

(2). Suppose K is a compact set in X and { f " 1 (y n ) } is a 

sequence of distinct non-compact point inverses, each of which 

intersects K in a non-empty set. Let X q € f - 1 ( y n ) n K f o r al l 

n; since K is sequentially compact, the sequence [x^] contains 

a subsequence fx } which converges, say to x. By replacing 
—1 —1 {f (yn)3 hy {f (y )} i f necessary, we can thus assume 

lim inf f " 1 ( y n ) ^ Letting L = lim sup f""1(yn)> it follows 

that L is in some point inverse. For let p € lim inf t^(y ), 

say p n -* p where p n € f"^(y n) for all n; then, by the 

continuity of f, y Q -> f (p) . It is easy to show that L <= f - 1 ( f ( p ) ) . 

By removing a term of the sequence { f " 1 (y n ) ) i f necessary, we 

can further assume that L is not in any one of the f " 1 ( y n ) » 

Suppose L is a compact set. Then there is an open set W 

containing L such that W is compact. Suppose f " 1 ( y n ) c W f ° r 

some n; since t~^°(y) is closed in X and therefore closed in 
n 

W, i t follows that f " 1 ( y n ) l s compact, a contradiction to our 

assumptions. Thus each f - 1 ( y n ) has at least one point X q not in 

W. If H * U x is not closed, there exists a sequence {x } 
n=l n °k 

in H which converges to a point x € X - H. Since x € '"^(jF- ) , 

x € L c w. Now W is open, consequently there exists a neighborhood 

of x containing only points of W and hence not containing any 
00 

x (since x i w), a contradiction to x -»x . Thus U x 
\ \ °k n»l n 
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is a closed set. Since f is cloaed and continuous, it follows that 

f - 1 f ( U x ) m U f 4 ( y ) is closed. On the other hand, 
n=l n n=*l n 

U f - 1 ( y n ) is not closed. For let a € lim inf f - 1 ( y n ) <= L; then 
n=l n n 

there exists a Q € f " 1 ( y n ) for all n such that aQ -> a. But 

since L is in some point inverse and L is not in any one of the 

f"" 1(yn)> a i Ü f ' ^ y j ; consequently U t~\y ) is not 
n=l n n=l n 

closed. Thus L is not compact. 

If L is not compact, i t contains an infinite sequence of 

distinct points z such that lim sup z_ « 0. There is an f - 1 ( y ^ ) 
n n n. -1 -1 and a point x, of f (y ) such that d(z. ,x.) < 1, an f (y ) 

-1 n ] L i ^ and a point x g of f" (y ) such that d(z 2,Xg) < and, in 
—1 -1 general, an f (y ) and a point i of f (y ) such that 

\ * \ 
d(z^,x^) < The sequence {x ,̂} must have lim sup x^ * 0, other-

00 
wise lim sup z, / 0. Thus U x. is a closed set; as before, i t 

* k»l * 
00 1 

follows that U f" (y ) is closed. On the other hand, 
k=l °k 

0 0 - l -1 
U f (y ) is not closed. For let a € lim inf f (y n) c L; then 

k*l \ n 

there exists a„ € t~^(y) for all n such that â  -* a. In n n n 
- 1 / \ 

particular, there exists a e f (y ) such that a -* a. But, 
\ \ \ 

0 0 -1 
as before, a i ü f (y ) . 

k=l \ 

Thus L is neither compact nor non-compact. This contradiction 

establishes (2) . 

(3). Let A be an inverse set contained in F. If A is not 

closed, then there is a sequence {xQ} of distinct points of A 

converging to a point x not in A. Fix the integer i ; then only 
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let n. be the smallest integer such that f(x ) ^ f(x ), 

j m 1,2,•••,k—1. 

Then x -> x and f (x ) / f (x ) for i ^ j • Replacing the 
°k n i n j 

sequence (x ) by the sequence (x } i f necessary, we can thus 

assume that f " 1 f ( x i ) n f - 1 f ( x ) - 0 i f i yi J. 
Now x n -> x yields that the set K • {x^: n • 1,2,. • •) U {x} 

is compact. Since f " 1 f ( x n ) C A C F for a l l n, the definition 

of the set F implies that each t~^t(x ) is non-compact. But 

f - 1 f (x ) meets K in x . Thus an infinite number of distinct n n 

non-compact point inverses meet K, contradicting (2). Therefore 

A is closed. Q.E.D. 

finitely many x are in f""""f(x ) . For suppose x € f " 1 f(x ), 
1 \ 1 

k = 1,2, . . . . Since x± e A, we have f ^ f f x . ) c f _ 1 f (A) - A. 

But x„ -> x and consequently x_ -»x 4 A; this contradicts the 

fact that f f ( x 1 ) is closed. Thus, for any fixed i, there 

exist only finitely many x Q such that f ( x n ) * f ( x i ) . Choose a 
subsequence {x„ } of {x ) as follows: 

°k n 

let x^ - x^, 
n l r L 

let ng be the smallest integer such that f (x Q ) / f (x 1 ) , 



47 

Theorem 5*l4: Let f be a closed continuous mapping of a 

locally compact metric space X onto a topological space Y. If 

S is the set of all y in Y such that the boundary of f " 1 (y) 

is not compact, then S is a scattered set and Y - S is a locally 

compact metric space. Moreover, if X is separable, then S is 

countable. 

Proof: Let B be any subset of S. Then f" 1(B) c p, where 

F is as defined in the preceding lemma. For let x € f 1 (B) ; 

then f(x) € B c s, and, consequently, B d f ^ f f x ) is not compact. 

Since f^ f fx ) is closed, B d f ' ^ x ) c f ~ X f ( x ) . It follows that 

f ' ^ x ) is not compact and, thus, that x € f " 1 f ( x ) c F. Then by 

(3) of Lemma 5*13 we have that f " 1 ^ ) i s closed in X; since f 

is closed, f f " 1 (B) • B ie closed in Y. Therefore S is a 

scattered set. 

The set Y - S is the continuous image of X - f" 1 (S) under 

f and the mapping f restricted to X - f " " 1 (S) • f - 1 (Y-S) is a 

closed mapping of X - f " 1 ^ ) onto Y - S, since the restriction 

of a closed mapping to an inverse set is closed. By (2) -> (3) of 

Theorem 5.5, we can say that Y - S is metrizable. 

To show Y - S is locally compact, l e t y € Y - S and 

suppose that Bdf - 1 (y) / 0. Since X i s locally compact and 

Bdf" 1(y) is compact, there exists an open set W containing 

Bdf " 1 ^) such that W is compact. Since 0 ^ Bdf"1(y) c f " 1 (y ) , 

we have that y € f(W). If y is not interior to f(w), then there 

exists a sequence of points y Q of (Y-S) - f(W) converging to y. 

Note that y / y n for al l n. If lim sup t^iy ) * 0, then for 
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every sequence {x } sunk that x e f (y )> n o subsequence of 
n n n 

{xn) converges; thus the set A • {x n : n - 1>2, •••} is closed. 

But f(A) • {y n : n » 1 ,2 , . . . ) is not closed, since 

y € f(A) - f(A). This contradicts that f i s a closed map. Hence 

lim sup f " 1 ( y n ) / Furthermore, 

lim sup f " 1 ( y n ) c Bdf^Cy) = f - 1 ( y ) fl X - f " 1 ( y ) - For let 
x € lim sup f ^ y ), say a -* x with a_ € f" (y„ ) . Then, by 

n \ ^ \ 
the continuity of f, y ->f(x); but a lso y -> y, so that 

f(x) » y and x € f " 1 ( y ) . Since y / y n for a l l n, we have that 

f " 1 (y ) e x - f ' ^ y ) for every n; consequently, a € X - f " 1 ^ ) 
n K 

for every k. It follows that x 6 X - f " " 1 ^ ) . Hence 

lim sup f ^ y J c Bdf^Cy). 

Now infinitely many of the f " 1 ( y n ) meet W. For, let 

p € lim sup f " 1 ( y n ) ; then there exists p € f"" 1(y„ ) such that 

p -> p. Since lim sup f - 1 ( y ) c Bdf^Cy) c w and since W is 
\ n 

open, W contains infinitely many of the p . I t follows that 

infinitely many of the y n are in f(w). This gives a contradiction, 

hence y is interior to f(W). 

Since f is both closed and continuous and W is compact, 

f(w) is closed and compact. Therefore we have that 

y € Int f(W) c Int f(W) c f(W) c f(w) « f(w), and consequently 

Int f(W) is compact. Thus Int f(w) i s a neighborhood of y 

whose closure is compact. 

If Bdf " 1 ^) - 0, then tml(y) I s an 

open set. Now, by Theorem 1.2, f is a quotient map; consequently, {y} 
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is open. Since ¥ - S is a T^space, 7y7 Ä (yJ- T h u s M l s 

a neighborhood of y whose closure is compact. Thus Y - S is 

locally compact. 

If X is separable as well as metric, X is Lindelof. 

Letting {V(x): x € X} be a covering of X by open sets whose closures 

are compact, we can extract a countable sub-covering of X, so that 

X is a countable union of compact sets. By (2) of Lemma 5.13 only 

a finite number of point inverses of points in S can meet any one 

of these compact sets. Thus f ' ^ S ) is a countable union of single 

point inverses. Therefore S is countable. Q.E.D. 
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CHAPTER VI. OPEN QUOTIENT MAPS 

In this chapter we prove a theorem of Stone concerning open 

continuous mappings. A space S is called l o c a l l y separable if 

every point x € S has a separable neighborhood. 

Theorem 6 .1: If f is an open continuous mapping of a locally 

separable metric space S onto a regular Hausdorff space B, and 

if for each p e E the set f - 1 (p ) is separable, then E is 

metrizable and locally separable. 

In our proof we use the following theorem of Alexandroff; the 

proof that we give is due to David Kullman. 

Theorem 6 .2: If X is a locally separable metric space, then 

X can be expressed as a union of pairwise dis joint , open, separable 

subspaces. 

Proof: Since an open subspace of a separable space is separable, 

we can assume without loss of generality that each x € X has an 

open separable neighborhood. Let be a cover of X by open 

separable sets. Since X is paracompact, <Zt has a precise, open, 

locally finite refinement, say 7/ - (V^: U € 2 0 - (See [4; 

pages l6 l -2] . ) 

We first as sett that each V y € if meets at most countably 

many Vy, € ?/. Fix Vrf since Vy is an open subset of U, V y 

is separable, metrizable, and hence Lindelöf. Also, since 7f is 

locally finite, each point x € Vy has a neighborhood N(x) which 

meets only finitely many Vy. Thus Vy has a countable subcover 
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UD = UD =» U U , s o U D is dense in U U . Also U D 
n n n n n n n n n n n n 
is countable, so U Un is separable. 

Finally we show that each X a is separable. Fix X a and 

v u c V L e t 

G. u{vfI, e 7A vTT, n vTr / 1 1 u' v ' tr u 
• {x e X: xRz, for some z € V^, by a "chain" of at 

most 2 elements) 

G2 - U{Vut e 2f\ V u ( 0 G 1 H ) 

- {x € X: xRz, for some z e Vy,, by a "chain" of at 

most 3 elements) 

N ( x ] L ) , N ( x 2 ) , . . a n d , since each N ^ ) meets only finitely many 
CO 

Vy,, we have that V^c u N ^ ) meets at most countable many Vy, • 

Now define a relation R on X by xRy iff there exist 

Ul>* # # , U n € ^ s u c h t h a t x € V u 1 y € V u ' 0 X 1 ( 1 

1 n 
v n n Vtt / 0 f o r i - l > 2 , . . . , n - l . Clearly, R is an 

u i u i+ l 
equivalence relation, so let {XQ: a € ^ } be the equivalence 
classes defined by R. The X^s are pairwise disjoint. To show 

that X^ is open, let x € X^ and x € Vrt. Then V„ c r . so that OL a U U Or 
X can be expressed as a union of open sets V . 
(X u 

We next show that the union of a countable, locally finite 

family of separable sets is separable. For, let {Un: n * 1 ,2 , . . . ) 

be a countable, locally finite family of separable sets. Then each 
U contains a countable dense subset D . The family of sets n n 
{Dn

-. n • 1,2, •••} is also locally finite. Therefore 
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Clearly, XQ = G1 U Gg U.. . . By our first assertion, each Ĝ  

is a countable union of sets Vy, € 7f, so XQ is also a countable 

union of sets Vy,. But these V u, make up a locally finite 

family of separable sets, so X is separable. Q.E.D. 

Lemma 6.3: Theorem 6.1 is true if S is separable, and E 

is then separable. 

Proof: If S is a separable metric space, then S is second 

countable. If {Un: n • 1 , 2 , . . . } is a countable basis for S, 

then (f(U n ) : n • 1 , 2 , . . . ) is a countable basis for E. For, let 

G be an open subset of E. Since f is continuous, f '^G) is 
_ 00 00 

open in S; thus f (0) = CJ U and G = U f(ü ) . 
i-1 m i i-1 •! 

Also, each f (Un) is open, since f is an open map. That is, E 

is second countable. The Lemma follows by Urysbhn's metrization 

theorem. Q.E.D. 

Lemma (S.4: If f(S) • E, where f is open and each f - 1 ( p ) 

is separable, then for every separable subset Y of E, f~ "̂(Y) 

is separable. 

Proof: Let Q = {q^: m • 1,2, •••} be a countable subset of 

Y such that Q ^ Y, and for each m let be a countable dense 

subset of f " 1 (q m )* Write X * U Xm- X is countable and 

X o f " 1 ( Y ) . For, let z € f " 1 ^ ) and let U be an open neighborhood 

of z. Then f(U) is an open neighborhood of f(z) 6 Y U Q. 

Consequently, f(U) contains some qja, say q^ * f(x), where x € U. 

Then x € f " * 1 ^ ) C X ,̂ and therefore ünX f f l / (jf. Thus 



53 

U n x ^ 0 and z € X. Q.E.D. 

Proof of Theorem 6.1: By Theorem 6.2, S can be expressed 

as a union of pairwise disjoint nonempty open sets S ,̂ each of 

which is separable. Write S ~ S to mean that there exists a 

finite sequence \ • XQ, X^,. •., A.̂  • (i such that each set f(S^ ) 

meets f(S ), i « 1.2, . . . , k . It is easily verified that ~ is 

an equivalence relation. Let the union of the S^'s equivalent 

to be T^; thus T^ is open, and euad T^, are either 

identical or disjoint. Further, T. is an inverse set. Since 

f^fCT^)) ^ T ,̂ i t is sufficient to show that whenever f - 1 (p ) 

meets T^, we have f" 1 (p) c T .̂ So suppose f ^ ( p ) meets T^ 

and let y € f " 1 ^ ) n S , where S ~ Sx . Note that p € f(S ) . 

Let x € f " 1 ^ ) ; then x € Sy Äor some v and hence p € f (S y ) . 

Consequently, f (S^) meets f(S y) and thus S v S^. Therefore 

S S. and x € T. . 

It follows that the distinct sets are disjoint and open, 

and they cover E. To prove the theorem, t t -will suffice to prove 

that each f(T. ) is separable metric. (See Lemma 1.6.) By 

Lemma 6.3 i t suffices to prove that each i s separable. 

Now let i f denote the union of those se ts S which can be 

reached from in at most n steps — that is , for which there 

is a sequence A. - XQA^J • • • >\ m V> o f type used to define ~, 

with k < n. Clearly, T^ • T° U T^ U . . a n d it is enough to 

prove that each T£ is separable. Suppose t h i s is true for one 

particular value of n. Then T£ + 1 consists of T£ together with 
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those sets S for which f(S ) meets f(T?) — that is, for 

which S meets f" ( f (T. ) ) . There are only countably many such 

sets S > For, by hypothesis, if is separable; hence, by the 

continuity of f, so is f(T?), and Lemma 6.k now shows that 

f : 1 ( f (T^) ) is also separable. It follows that f " 1 ^ ^ ) ) can 

meet at most countably many of the disjoint open sets S^. (See 

[Ik; page 115].) Thus l f + 1 is a union of countably many separable 

sets, and is again separable. Since T^ - S^ and is separable, 

the separability of if 0 follows for all n. Q.E.D. 
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CHAPTER VII. OPEN AND CLOSED QUOTIENT MAPS 

Lemma 7.1; An open continuous image Y • f(X) of a first 

countable space X is first countable. 

Proof: Let y € Y where y =*f(x). Since X is first 

countable, there is a countable basis of open neighborhoods 

{Un: n • 1 , 2 , . . . } for x; since f is open, V n • f(U n) is open. 

Then {V^: n • 1,2,...} is a countable basis of open neighborhoods 

of y. For, if G is any open neighborhood of y, f - 1 (G) is an 

open neighborhood of x (by continuity of f ) and therefore 

contains a U n; thus G = ff" 1(G) ^ f (U n ) - V . Q.E.D. 

By combining Theorem 5.5 with Lemma 7 . 1 we obtain immediately 

that an open, closed, continuous image of a metric space is 

metrizable. This result was originally proved by Balanchandran (2), 

who, however, gave an explicit metric for the image space. In this 

chapter we shall give his proof of the aforementioned result. We 

first prove two lemmas and give a definition.. 

Lemma 7*2: Let f be an open map of a f i r s t countable space X 

onto a topological space Y. Then, i f y n « * y in Y and 

x € f " 1 ^ ) , we can choose a point x n € f" (y^) (n - 1 ,2 , . . . ) 

such that x^ -+ x in X. n 

Proof; Let 1^ ^ Hg ^ . . . be a decreasing basis of open 

neighborhoods of x. If any Hj(j * 1,2, . . • ) be disjoint with an 

infinite number of f" 1(y n)> s«y f l ^ n ) ( i « 1 , 2 , . . . ) , then 
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yn± ^ f ( H j ) = 1*2, . . . ) • Since f is open and Hj is an open 
neighborhood of x, f(Hj) is an open neighborhood of y and 

hence contains all the y for sufficiently large i (since 
n i 

y ->?)• This contradiction shows that every H. must meet all 
i 3 

f 1 ( y n ) from a certain stage onwards. So for each j there is a 

least integer n. such that EL fl f - 1 ( y ) £ <ß for n > n.. 
j j n " " J 

We shall now show how to choose the sequence ( x
n )» F° r e a c ** 

integer n < n ,̂ choose as x Q any point in f 1 ( y n ) ; for n * n ,̂ 

choose as X q any point in HL̂  n f~ (/jJ)* K e x t f o r arbitrary 

n > n 1 , choose as x ß any point in ^ n f " 1 ( y n ) , where the 

integer m (depending on n) is determined as follows: set m • n 

if Hn fl f - 1 ( y n ) ^ otherwise set m » k, the largest integer 

< n such that n f " 1 ( y n ) / 0 (then n ^ > n > n^). Thereby 

we obtain a sequence {x } which is such that (each) H, contains 
ft « 

all x n for n>max(j ,nj) . It follows that x ß -> x. Q.E.D. 

Definition 7.3: If X,Y are non-null closed subsets of a 

metric space B with distance function d, the Hausdorff distance 

p(X,Y) is defined to be the greater of the two numbers 

sup d(x,Y) and sup d(y,X) 

x € X y € Y 

where d(x,Y) * inf d(x,y). 

y € Y 

Lenma 7.4: If p(X,Xn) -> 0, then for each x € X we can choose 

a sequence (x n) such that X q € X n for all n and such that x n -* x. 
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Proof: Let € > 0 be fixed. By definition of d(x,Xn) 

there exists x n € XQ with d(x,x n) < d(x,Xn) + | for any n. 

Since d(x,X n) < p(X,Xn) and p(X,Xn) 0, it follows that 

d(x,x n) Ö. Q.E.D. 

The metric space R is said to be totally bounded if for every 

positive €, the open cover of R by all spheres of radius € 

includes a finite subcovering. It can be shown that R is totally 

bounded i f f every sequence of its points contains a Cauchy 

subsequence. (See [15; page 236].) 

Theorem 7.5: Let f be an open, closed, and continuous map 

of a metric space R onto a topological space R*. Then R* is 

a metric space with the metric d*(x*,y*) * p(f " 1 (x*) , f " 1 (y*)) for 

all x*,y* in R*. 

Proof: By Lemma 7.1 R* is first countable. Since R is 

T^ and f is closed, R* is T^ Let d be the metric of R. 

If d is not bounded, we can define an equivalent metric <j for 

R by a(x,y) » min{l,d(x,y)}; thus we may assume the metric d 

of R to be bounded. Introduce in (the set) R* a metric d* as 

follows: d*(x*,y*) = p(X,Y), where X * f ^ x * ) , Y = ^ ( y * ) . 

ÜSince R* is T̂ , and f is continuous, X and Y are closed 

in R.) 

We shall now show that the given topology of R* is the same 

as the one induced by the metric d*. Since R* is first countable 

i t suffices, in view of Lemma 1.5, to show that a sequence x* ->x* 

in the given topology of R* if and only if ** -> x* under the 
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metric d*, i . e . , d*(x*,x*)-»0 as n -» «>. 

First let in R*. If d*(x*,x*) -/> 0, then 

d*(x*,x*) - p(XQ,X) > € for some e > 0 and for infinitely 

infinitely many n either 

many integers n, where X 0 = f (**), X - t" (x* ) . Thus for 

sup a(y>x ) > e 
y € X n 

or 

sup d(x ,X) > € . 
n n 

That is , for infinitely many n either 

(1) d(y n ,X n ) > €, y n € X, or 

(2) d(x n ,X) > 6, x n 6 XQ. 

By replacing {x*} by a suitable subsequence (which converges also 

to x*) we can suppose without loss of generality that one of these 

possibilities happens for all values of n. 

Case I . Let <*(yn>Xn) > € > 0, n « 1 , 2 , . . . . 

If the set Y • {ynJ is totally bounded, then {y n) contains a 

Cauchy subsequence (ynt) which can be so chosen that 

d (y m , , y n , ) < I for any m f ,n f . Then for any fixed m1 and all n1 

(A) d ( y m t . V ) ^ ^ V ' V * ~ d ( y n " y m ' ) 

> € ' 2 2 ' 

But, since (x* t ) is a subsequence of {x*} and x* -> x*, we have n n n 
x*, -*x* , Since y , € X • f Lemma 7.2 shows that points n m 
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x , € X , can be so selected that x . -* y , tor any fixed m', 
ii u n m 

a contradiction to inequality (A). 

If the set Y - (yn) is not totally bounded, there exists some 

subsequence { y n f } and a 8 > 0 with d ( y m t > y n t ) > 2 8 f o r 

m^n 1 such that m* ̂  n 1 . Since f i s open, x* -> x*, and 

y n , € X - f^Cx*) (n - 1,2,...), for each n f we can choose 

by Lemma 7.2 an nM such that 

8 —1 
d ( y n „ x n „ ) < £ , x n" € X n " * f ^*S"' ' 

Then 

d(x m ,„x n „) > d(y m „y n ,) - d ( y m „ x m „ ) - d ( y n „ x n „ ) 

> 26 - § - § - 6 , m" * n" . 

Thus X" = ( x
n " } has no limit points and hence Is closed in R; 

since f is closed, f(X") is closed in R * . On the other hand, 

note that our assumption that d (y n ">X n t i ) > 0 Implies that Xntf ^ X 

and hence that x*„ / x*; since f(XM) » t ^ t t ) and x*->x* (and 

so also x*,t -# x»), i t follows that f ( X " ) cannot be closed, so 

that we again have a contradiction. 

The assumption d ( y n > x
n ) > € is therefore untenable. 

Case II . Let d(x ,X) > € > 0 with x € X . 
n n n 

If we write X' - (x n ) , then i t i s clear that X 7 fl X - 0. 

If f(XÜ) 0 f(X) / 0, then F n X = X* n f _ 1 f (X) { 0, a 

contradiction; thus f(X 7) D f(x) « 0. But since f is closed 

and continuous we have that f(X r ) - f ( X ' ) and hence 

f(X') n f(x) - 0. (See [hi page 87].) On the other hand, 
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f(X) - x* belongs to f l r j since f(X') » (x*3 and x» -»x» . 

This contradiction shows that the assumption d ( x n , X ) > e is also 

untenable. Hence, d*(x*,x*) -»0. 
n' 

Conversely, if d*(x*,x*) - p(XQ,X) -» O and x € X, then 

Lemma 7.1* shows that points x Q € XQ can be found such that 

x ->x. It follows by the continuity of f t h a t x* -> x*. Q.E.D. n 
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CHAPTER VIII. ANOTHER RESULT 

We conclude by proving the following theorem, in which the 

mapping f can In fact be neither open nor c l o s e d . 

Theorem 8.1: If f is a quotient mapping o f a locally compact 

separable metric space S onto a first countable Tg-space B, then 

E is a locally compact separable metric space. 

We shall need the following lemmas. 

Lemma 8.2: Let f be a quotient mapping o f a topological 

space S onto a Tg-space E with a countable local base at p € E, 

and let (U : n » 1,2, • • •} be an increasing sequence of open 
0 0 -1 

subsets of S such that U UQ ^ f (p). Then, for some n, 
n=l 

p € Int f (U n ) . 

Proof: Let {Wn: n « 1 , 2 , . . . ) be a b a s i s o f neighborhoods of 

p; we may suppose 23 Wg z>.. without l o s s of generality, we 

may assume that each UQ meets f - 1 ( p ) . Then p € f(UQ) for all 

n. We show that, for some n, Wß c f(WQ)-

Suppose not; then, for each n, there i s a point 

q n € Wn - f (U n ) . Let Q = {qQ: n = 1 , 2 , . . . } and let 

X » f (Q) - U {f (q Q ) : n * 1 , 2 , . . . ) . Since q̂^ p, we 
n=*l 

have that p € Q. But p i Q, and, consequently, Q is not 

closed. Since f is a quotient map, X i s not closed and there 

exists a point x € X - X. Then, by the cont inuity of f, 

f(x) € f(X) c f[xT = Q, while f(x) i Q, t h a t is , f(x) € Q - Q. 
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Since qQ -> p and E is Hausdorf f, p is the only limit point 

of Q; consequently, f(x) = p. Hence x € f " 1 ^ ) , so x € UQ 

for some n. Since E is a T^-space and f is continuous, 

f 1 (q m ) is closed in S for every m; consequently, 

U{f 1 ( q m ) : 1 < m < n) is closed. Then, since Un is open in S, 

N = Un - U{f""1(qm): 1 < m < n) is an open set containing x. 

Since (Un) is an increasing sequence, the sequence (f(U a)} is 

also increasing; consequently, q n + i
 f ( u

n ) 8 1 1 1 ( 1 ^^^n+i.) n Un 5 5 

for all i > 1. It follows that N is disjoint from X, 

contradicting x e X. Q.E.D. 

A set is a-compact if i t is the union of countably many 

compact sets. 

Lemma 8.3; If f is a quotient mapping of a locally compact 

topological space S onto a first countable Hausdorff space E and 

if Bdf"1(p) is a-compact for each p € E, then E is locally 

compact. 

Proof: By hypothesis, given p e E, we can write 

Bdf (p) = U K , where is compact. Since S is locally 
n«l 

compact, K Q can be covered by finitely many open sets with compact 

closures; in this way we obtain open sets G Q => K Q such that 0 Q 

is compact and c a c . . . . Applying Lemma 8.2 to 
U • G U Int f^ fp) , we have p € Int f(U ) for some n. If n n n 

Bdf'^p) / 0, then K Y ^ 0 for some r; choose m * max{n,r}. 

Then o Z>G and, hence, G meets Bdf""1(p); since 



63 

Bdf'^p) c f ^ p ) , Gm actually meets f^Cp). Thus p € f(G^)> 

and so f(U ) - f (0 ) . Then p € Int f(U ) c int f(U ) « Int f(G ) m m n m m 
c f ^ G m^ which i s compact and closed in the Hausdorff space E. 

That is , f ( G
m ) i s a neighborhood of p whose closure is compact. 

If Bdf""1(p) = 0, then, as in Theorem 5.1^, (p) is a 

compact neighborhood of p. Q.E.D. 

Lemma 8.4: If f is a quotient mapping of a second countable 

space S onto a first countable Hausdorff space E, then E is 

second countable. 

Proof: Let ß • {Bm: m = 1 ,2 , . . . } be a countable base of 

open sets of S; we prove E has a base of the form (Int f(U)} 

where U is a finite union of sets of 73. Given any p € E and 

any open set G containing p, we have f - 1 ( p ) c f" " 1 (§) # Since 

f is continuous, f - 1 (G) is open and consequently can be written 

as the union of members of Thus f - 1 ( p ) can be covered by a 

sequence of sets B ,B of ^5, all satisfying B c f - 1 ( o ) . 
m l ^ m i 

Write U • B U...UB ; by Lemma 8.2 we have p € Int f(U ) n mn m n 1 n 
for some n, where f(U n) c G. Q.E.D. 

Lemma 8.$: A subspace A of a locally compact space S is 

locally compact i f it is of the form V flF, where V is open 

in S and F is closed in S. 

Proof: Given a € A, choose a set U open in S such that 

Ü is compact and a € ü c u <z v. Then U fl A is a neighborhood 

of a in A. The closure of this neighborhood in A is 



U fl A - U n (V n F) - U PI F, which is a set closed in U, 

and consequently is compact. Q.E.D. 

Lemma 8.6; If S is second countable, then every subspace 

of S is separable. 

Proof; Let M be a subset of S and let {U ;̂ i • 1 , 2 , . . . } 

be a countable basis for S. Then {M n IL : i « 1,2, • • •) is a 

countable basis for M. Choose a y^ € M fl for each i . The 

set { y i : i • 1 , 2 , . . . } is dense in M since each set open in M 

Is a union of the M D U .̂ Q.E.D. 

Proof of Theorem 8.1; Since S is separable metric, S is 

second countable; by Lemma 8.6 each Bdf"1(p) is separable metric. 

Since S is locally compact and Bdf - 1(p) « Bdf"1(p) fl S is the 

intersection of a closed set and an open set, each Bdf 1 (p) is a 

locally compact space (Lemma 8.5). Then each Bdf - 1(p) is a 

Lindelöf locally compact space and consequently is a-compact. By 

Lemma 8.3 E i s a locally compact Tg-space, and therefore E is 

regular. Lemma Q.k shows that E is second countable. It follows 

by Urysohn9s metrization theorem that E is metrizable. Q.E.D. 

As another immediate consequence of Lemma 8.4 we have the 

following corollary. 

Corollary 8.7; If f is a quotient mapping of a separable 

metric space S onto a regular Hausdorff space E satisfying the 

first axiom of countability, then E is separable metric. 

Proof; Apply Lemma 8.k and Urysohnfs metrization theorem. Q.E 
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