Static Light Scattering and Small-Angle Neutron Scattering Study on Aggregated Recombinant Gelatin in Aqueous Solution

A. Ramzi ¹, M. Sutter ², W.E. Hennink ¹, W. Jiskoot ^{1,2}

¹ Department of Pharmaceutics, UIPS, Utrecht University, The Netherlands

² Department of Drug Delivery Technology, LACDR, Leiden University, The Netherlands

Recombinant Gelatins

- Recombinant gelatins are currently being evaluated as pharmaceutical excipients.
- Behavior of recombinant gelatins in solution is not well investigated, but important for potential pharmaceutical applications.
- Suitable techniques for analyzing the solution behavior of recombinant gelatins are required.

Objectives

To evaluate the usefulness of combining static light scattering (SLS) and small-angle neutron scattering (SANS) for detecting aggregation of recombinant gelatin in aqueous solution and to obtain structural information about the aggregates.

Recombinant Gelatin: RG-15-His

- Expression in recombinant yeast cells (Pichia pastoris)
- Molecular mass = 15 kDa
- 161 amino acids
- Gelatin-typical Gly-X-Y triplets
- Amino acid sequence is given in patent WO02052342

Amino Acid	% (by number)
Ala	1.2
Asn	11.8
Glu	5.2
Gln	15.5
Gly	34.2
His	3.7
Lys	1.9
Pro	25.2
Ser	5.6

Preparation of RG-15-His Solutions and Aggregate Formation

- 2% and 0.2% (w/v) solutions in H_2O and D_2O
- Filtration through 0.2 μm filters
- GPC:

 Few small aggregates detected by dynamic light scattering (DLS).

- Hydrodynamic radii of several hundred nanometers.
- Highly polydisperse.

Analysis by Circular Dichroism and Fourier Transform Infrared Spectroscopy

Method	RG-15-His secondary structure	RG-15-His aggregation detectable?
Circular dichroism (CD)	unordered	no
Fourier transform infrared spectroscopy (FTIR)	unordered, many turns	no

RG-15-His aggregation does not depend on the formation of particular secondary structures (e.g. helices or β -sheets).

Static Light Scattering (SLS) and Small-Angle Neutron Scattering (SANS)

SLS: Laboratory technique

SANS: Requires a neutron source (e.g. reactor)

Scattering vector:

$$Q = \frac{4\pi}{\lambda} \sin\left(\frac{\theta}{2}\right)$$

Scattered intensity (I) is measured as a function of the scattering vector (Q), which makes data from SLS and SANS combinable.

Information Provided by SLS and SANS

Suspension of particles (e.g. protein aggregates) in a homogeneous medium

- Interactions between particles (at high concentration)
- Molecular weight

Size Range of SLS and SANS

$$D = 2\pi/Q$$

Large particles (e.g. aggregates)

Small particles (e.g. individual molecules)

Scattering Function

- N = Number concentration of particles
- V = Particle volume

- Scattering length density difference (contrast factor)
- Can be calculated.

$$I(Q) = N \cdot V^2 \cdot (\rho_{particle} - \rho_{solvent})^2 \cdot P(Q) \cdot S(Q)$$

- Form factor
- Particle size and shape
- Form factors for various geometries are known and can be used for analyzing measured data.

- Structure factor
- Particle-particle interactions
- In dilute solutions:
 S(Q)→1

2% RG-15-His Solutions Upon 24 h Storage

- At Q<Q*, the slope is -4, which is characteristic for particles with sharp interfaces (Porod's law).
- No plateau at low Q.
- Aggregates exceed upper size limit of instrumentation.
- At Q>Q*, the slope is -1, which is characteristic for rigid rods.

Data Analysis at Q<Q*

Real space

Two phase system (aggregates and solvent)

- Irregular aggregate shapes
- Irregular aggregate dimensions

Q-Space

Debye-Bueche model:

$$I(Q)^{-1/2} = I(0)^{-1/2} + I(0)^{-1/2} \cdot \Xi^{2} \cdot Q^{2}$$

where

I(0) is the scattered intensity at Q = 0 and

Ξ is a characteristic distance that is a measure of aggregate dimensions.

Data Analysis at Q<Q*

Analysis with Debye-Bueche model

 $\Xi = 332 \text{ nm}$

Data Analysis at Q>Q*

Scattering from large aggregates with sharp interfaces

Scattering from rigid rods

Length of the rigid rods

 $= 12/\pi \cdot Q^*$

 $= 37 \pm 5 \text{ nm}$

Data Analysis at Q>Q*

For rod like structures with negligible cross-sectional radius, the logarithm of $(Q \cdot I(Q))$ is independent of Q^2 .

(Kratky and Porod)

Interpretation of RG-15-His Aggregation

- RG-15-His in aqueous solution forms very large aggregates with sizes ≥ 300 nm.
- Large aggregates grow by the association of very thin, rigid rods of about 37 nm length.
- As a consequence of their geometry, the rods are likely composed of stretched and tightly packed RG-15-His molecules.
- This aggregation behavior is not previously reported for gelatins.

Usefulness of Combining SLS and SANS

- The combination of SLS and SANS provided detailed insight into the structure of RG-15-His aggregates.
- The advantages of combining SLS and SANS are the broad size range that is experimentally accessible, the independence of signals on specific secondary structures, and the non-invasive nature of the measurement procedure.
- The combination of SLS and SANS is a potent complementary approach for studying the solution behavior and aggregation of other pharmaceutically interesting biomolecules.

Acknowledgments

Fuji Photo Film BV, Tilburg, The Netherlands

D. Schwan, Institut für Festkörperforschung (IFF), Jülich, Germany