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Abstract

Relativistic charged particles moving within regions of small-scale magnetic field tur-

bulence radiate as they undergo transverse accelerations reflective of the magnetic field

variation along the particle’s path. For a particle of Lorentz factor γ , relativistic beam-

ing concentrates the bulk of the particle’s emission within a small angle 1/γ from the

particle’s forward direction. Synchrotron radiation is produced when large-scale mag-

netic fields cause the charged particles to gyrate, with the resulting radiation spectrum

being primarily determined by the intermittent sweep of the relativistic beaming cone

past the direction to the observer. In small-scale magnetic field turbulence, magnetic

fields may be locally strong but varies over sufficiently small scales that the particle’s

emission is more consistently oriented towards a particular direction. Consequently, de-

flection effects cease to dominate the observed spectrum and the standard synchrotron

model no longer applies. In this dissertation, we focus on the strong jitter radiation

regime, in which the field varies over sufficiently short scales that the particle is never

substantially deviated from a straight line path and an observer in the particle’s for-

ward direction receives consistently strong radiation over many correlation lengths of

the magnetic field. We develop the general jitter radiation solutions for such a case and

demonstrate that the resulting radiation spectrum differs notably from the synchtrotron

spectrum and depends directly on the spectral distribution of the magnetic field encoun-

tered by the particle.
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The Weibel-like filamentation instability generates small-scale magnetic field tur-

bulence through current filamentation in counterstreaming particle populations, such as

may be found at or near propagating shock fronts, in outflow from regions of magnetic

reconnection, or from a variety of other scenarios producing an anisotropic particle ve-

locity distribution. The current filamentation produces an anisotropy in magnetic field

distribution that causes the jitter radiation spectrum to be sensitive to the radiating parti-

cle’s orientation with respect to the filamentation axis. Because the spectrum observed

from any given direction will be dominated by emission from particle’s moving along

that particular line-of-sight, this results in a natural angular dependence of the jitter

radiation spectrum.

We explore the implications of jitter radiation’s spectral sensitivity to the field

anisotropy produced by the Weibel-like filamentation instability to relevant astrophys-

ical and laboratory plasma scenarios. We calculate the jitter radiation spectra that may

be produced in a high-energy density laboratory plasma by using quasi-monoenergetic

electron beams to generate and then probe a region of current filamentation, and show

that the jitter radiation may be used as a radiative diagnostic to determine features of

the magnetic field distribution within this region.

For gamma-ray bursts, this instability may play a significant role in generating

magnetic field strength from relativistic collisionless shocks or other particle accel-

eration mechanisms. We show that the viewing angle dependence of the jitter radiation

spectrum can result in a rapidly time-evolving spectrum whose hard-to-soft evolution,

synchrotron-violating low-energy spectral indices, and correlation between low-energy

spectral hardness and the flux at peak energy may explain trends noticed in time-

resolved GRB spectral evolution. We generate the jitter radiation spectra as would

be produced in the co-moving frame by a single, instantantaneously-illuminated shock

front, which may then be relativistically transformed with appropriate geometry into
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a time-evolving spectrum and multiple such signals assembled to produce “synthetic”

GRB for comparison with observations.
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of particle speed β = 0.99 and angle θ = 10◦ between the particle’s

velocity and the filamentation axis ŝ. The vertical axis is normalized to
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Chapter 1

Introduction

1.1 Context and Outline

Understanding the dynamics of high-energy astrophysical phenomena is one of the

great challenges facing modern astronomers. Whereas our ancestors viewed the celes-

tial realms as a place of reliable constancy, we now know that our universe is actually

one of constant change across a variety of scales in time and space. Through explosive

events like supernovae (SNe) and gamma-ray bursts (GRBs), we find that rapid change

is not only possible, it is essential in redistributing matter and energy in a variety of

astronomical processes. Even the Sun, our own stable star, releases energy through

rapid events ranging down to a few hundred seconds in time. Furthermore, space-based

detectors have given us a new view of the energetic X-ray and gamma-ray universe,

and in particular have revolutionized our understanding of the extreme events in which

matter and energy are redistributed in the cycles of stellar and galactic evolution.

While the high energies of such astrophysical events make them of intrinsic inter-

est, their extreme dynamics and rapid topological changes often make them difficult

to treat analytically. In particular, the dynamic processes in such high-energy systems

can generate turbulence and instabilities that distribute energy across a wide range of

1



spatial scales. Changes in large-scale magnetic field topology and particle flows can

thus be strongly affected by physics occurring on scales many orders of magnitude

smaller. The breadth of scales involved makes modeling such systems computationally

intensive. While many high-energy astrophysical phenomena are being simulated us-

ing advanced computing techniques, much work remains in verifying that the results

of such simulations are well quantified, reproducible, and consistent across multiple

systems.

There is a standard “lore” in astrophysics which tends to consider all radiation

produced by relativistic particles to be synchrotron radiation (or possibly relativistic

bremsstrahlung). However, as we shall demonstrate, synchrotron radiation is only one

possible solution to the radiation equations for a relativistic particle, occuring specif-

ically in the limit of large-scale magnetic fields. The synchrotron radiation approach

breaks down when magnetic fields vary over spatial scales too small for the particle to

complete a gyration without encountering a variation in the local magnetic field.

Radiation from relativistic particles moving in small-scale turbulent magnetic fields

must instead be modeled via jitter radiation, in which the particle’s emission directly

reflects the underlying magnetic field variations accelerating the particle. In this thesis

we focus on applying the theory of jitter radiation to correctly understand the radiation

produced by relativistic charged particle populations moving in instability-generated

magnetic fields that are locally strong in magnitude but have correlation lengths shorter

than the particle’s gyroradius.

In this chapter we present the context for our work and background on the laboratory

and astrophysical plasma environments which we will consider. Chapter 2 develops the

mathematical theory of jitter radiation used in our calculations. Chapter 3 presents our

results of applying jitter radiation theory to calculate the angular distribution of emis-

sion that could be produced in laser-plasma experiments by particles moving within
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regions of filamentation. In Chapter 4, we present the results of using jitter radiation to

calculate the angle-averaged emission produced in the rest frame of a propagating ra-

diating region containing small-scale magnetic field turbulence. These results can then

be relativistically transformed and used to simulate a gamma-ray burst (GRB) event

as a series of illuminating “flashes” from multiple shock or reconnection events within

the relativistically-propelled outflow from a central engine. Chapter 5 presents further

analysis of the jitter radiation solutions and explorations of the effect of variations in

our initial choice of magnetic field parameters upon the resulting spectra. Chapter 6

contains analysis and conclusions from our full study of jitter radiation.

1.2 Magnetic Field Dynamics in Plasma Physics

The energies of many astrophysical systems are such that they contain a substantial

charged particle population. In appropriate conditions, these charged particle popula-

tions can exhibit unique collective behaviors as a plasma, essentially a charged parti-

cle fluid in which fluid flow and bulk motions are intrinsically linked to electric and

magnetic field. Plasma is the natural state of matter for stellar interiors and outflow;

furthermore, plasmas permeate much of what is commonly considered “empty” space.

Plasma processes are essential to the development and persistence of stellar, planetary,

and interstellar magnetic fields.

In a plasma, the approximate equality between the local number density of posi-

tive and negative charges (n+ ≈ n−) establishes quasi-neutrality so that the overall field

produced by the collection of particles is negligible outside the plasma. Within the

plasma, a sufficiently large charge density of a particular species is required in rela-

tion to its average temperature so that the local thermal motions of particles are effec-

tively screened at large distances by compensating changes in the spatial distribution
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of neighboring particles. The radius of the sphere of influence of an individual parti-

cle’s motion (outside of which the charge is “screened”) is known as the Debye length

λD =
√

kBTe/4πneq2
e (where kB is the Boltzmann constant, and Te,ne, and qe are the

temperature, number density and charge of the electrons, in a plasma with minimal ion

motion). This establishes the minimum scale for collective motions within the plasma.

The intrinsic link between particle motions and field configuration within a plasma

allows magnetic field to be created, modified, or destroyed by various plasma processes

and instabilities. Within a plasma, any attempted change in magnetic field configuration

causes the particles to react inductively to preserve their local magnetic field. In ideal

magnetohydrodynamics (MHD), the plasma is a perfect conductor in which there is no

resistance to this inductive behavior (resistivity η = 0), allowing for magnetic flux to

be conserved within each volume element of the plasma so that a magnetic field line

is effectively embedded or “frozen” into the plasma. The propagation of each volume

element of the plasma carries the “frozen-in” magnetic field lines along within that

volume. Restrictions on the free motion of the plasma particles in regions of non-

ideal MHD may prevent the plasma particles from perfectly preserving the local field

configuration, in which case the motion of the field line through the plasma can be

described by a term of magnetic diffusivity or resistance which defines the rate at which

the field line can “slip” through the plasma. For a plasma of resistivity η , the distance

` which a field line can slip in time t is given by

`=

√
ηct
4π

(1.1)

Consequently, the flux freezing condition in such a plasma will hold true for scales

larger than `.
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Because of flux freezing, magnetic field topology within a plasma can differ sub-

stantially from what it would be outside this charged particle medium. In empty space,

magnetic field lines are completely defined by source end points. No “kinks” are pos-

sible for a magnetic field line in empty space, other than where any changes to the

magnetic field propagate at the speed of light to update in space. On the other hand,

magnetic field topology in a plasma reflects the particle motions within the plasma and

can be kinked or twisted in what are effectively higher-energy configurations. Parti-

cle kinetic energies are tied into maintaining these high-energy field configurations;

consequently, the magnetic field can be viewed as storing magnetic energy.

To visualize this, one can consider what happens when a bar magnet is moved in

empty space versus within a plasma. In empty space, the bar magnet defines the mag-

netic field through all surrounding space. If the bar magnet is suddenly moved, the

magnetic field simply moves with it (updating at the speed of light). On the other hand,

if a bar magnet is embedded within a plasma, the plasma particles have established

motions in response to the imposed dipole magnetic field (we are assuming that the bar

magnet has been in its position long enough for the system to reach an equilibrium). If

the embedded bar magnet is suddenly moved, the change in its magnetic field contribu-

tion requires corresponding changes in the surrounding particle’s motions in order for

a new equilibrium to be established. Additionally, even if the bar magnet field source

remains fixed, the surrounding magnetic field could be modified by dynamics in the

plasma itself, as any forced plasma flow will necessarily result in the propagation of the

embedded magnetic field.

When plasma particles are forced to a critical point in which the ideal MHD condi-

tions break down, the result can be a rapid topological transformation of the magnetic

field into a lower-energy configuration, a process known as magnetic reconnection.

Magnetic reconnection releases the stored magnetic energy, redistributing the particle
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kinetic energies that were tied into maintenance of the high-energy field configuration.

This can result in high-velocity plasma (and field) outflow from a reconnection region.

Magnetic reconnection operates within a variety of astrophysical systems, playing an

especially notable role within flaring systems and other sites of rapid energy release

(see Zweibel and Yamada [2009] for a review).

Particle motions and magnetic field topology are intrinsically linked within a plasma.

Like their fluid counterparts, plasmas are subject to a variety of instabilities in which

a small perturbation within the plasma can lead to the growth of new plasma motions

that may build, modify, or destroy magnetic field as a result. Turbulent processes, with

their chaotic particle motions and transfer of energy across multiple length scales, can

tangle or disrupt existing magnetic fields. As we will see in the following section, we

are specifically interested in a mechanism by which initially small magnetic field fluc-

tuations grow in strength within a plasma population with an anisotropic distribution in

velocity space.

1.3 Small-Scale Magnetic Turbulence from the Weibel-

like Filamentation Instability

Counter-streaming particle populations can enhance existing magnetic field anisotropies

in the plane transverse to their streaming due to an instability which coalesces the coun-

terstreaming particles into current filaments. Medvedev and Loeb [1999] proposed that

such an instability could be responsible for magnetic field production in relativistic

collisionless shocks, generating strong magnetic fields with short correlation lengths.

The particular instability mechanism we are interested in has been called by vari-

ous names in the literature, and has often been associated with the Weibel instability
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due to its origins in an initial particle distribution function (PDF) anisotropy. Weibel

[1959] noted that anisotropic velocity distributions of electrons in a plasma could lead

to the growth of transverse electromagnetic waves. Fried [1959] provided an exam-

ple of a related physical mechanism for a particular anistropy in the electron PDF by

showing that counterstreaming electrion beams would be unstable to magnetic field

perturbations transverse to the beam and result in the formation of current filaments.

Although the filamentation instability Fried described is closely related to the Weibel

instability, the Weibel instability itself is significantly more general and includes the ef-

fects of a Maxwellian thermal velocity distribution. Thus, although the two instabilities

are often confusingly convolved with one another in the literature, they are not quite

equivalent.[Fried, 1959, Bret et al., 2010] For our purposes here we will thus desig-

nate the filamentation instability mechanism originating with Fried as the Weibel-like

filamentation instability, with a mechanism as described in the following paragraph.

The Weibel-like filamentation instability forms when a small magnetic field pertur-

bation causes counterstreaming particle populations to form into current filaments. The

basic mechanism is illustrated in Figure 1.1. In the idealized version shown here, the

instability begins from two particle populations which are uniform in density but with

oppositely directed bulk flow vectors. (In our simple illustration, we assume that the

particles are all identical in mass and charge; although in a real plasma there will be

both ions and electrons, the generally heavier mass of the ions tends to separate the dy-

namical timescales of positively and negatively charged particles sufficiently that they

can be largely treated as separate systems.) A small field perturbation in the plane trans-

verse to particle flow causes the particles to be slightly redirected by the Lorentz force,

so that the initially uniform current density begins to coalesce into current filaments.

In the sinusoidal perturbation shown, one can see that the particles are effectively fun-

neled towards the nodes of the function, with the oppositely directed “upward” and
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Figure 1.1: The Weibel-like filamentation instability occurs when a small transverse
magnetic field perturbation causes counterstreaming particle populations with an ini-
tially uniform current density across the yz-plane (top) to be “funneled” into current
filaments (bottom). The simple sinusoidal perturbation shown directs the oppositely-
directed particles towards alternate nodes of the sine wave where current filaments
grow. As can be seen from the Lorentz force, the concentration of current into fila-
ments produces an enhancement in the original perturbation until the filament growth
eventually saturates.
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“downward” particles being redirected to alternate nodes of the function. As these cur-

rent filaments form, they reinforce the initial magnetic field perturbation, causing the

local field fluctuations in the transverse plane to grown in strength and contribute to

further current filamentation. Eventually the instability will reach a saturation point

that limits the spatial scale of the magnetic field variations and further growth of the

current filaments. The Weibel-type filamentation instability is of interest for a variety

of relativistic collisionless plasmas because of its ability to grow small-scale magnetic

turbulence. The randomly oriented magnetic field variations in the plane transverse to

particle counterstreaming become enhanced in strength as the instability proceeds, so

that when the filamentation reaches its saturation point the local magnetic fields have

been increased in strength but still have short correlation lengths.

This instability mechanism has been extensively studied via particle-in-cell (PIC)

computer simulations, for a variety of plasma compositions and initial and boundary

conditions. (See Silva et al. [2003], Bret et al. [2010], Fonseca et al. [2003], Chang et al.

[2008], Frederiksen et al. [2004], Nishikawa et al. [2009] for some examples.) Simula-

tions indicate that the current filaments start small and then merge as they grow, reach-

ing saturation at some limiting density and scale of the filaments. Early simulations

and analytical treatments generally assumed that the Weibel-like filamentation instabil-

ity would occur due to interpenetrating plasma populations at or just upstream from a

propagating shock front. However, this instability appears to be much more ubiquitous,

occurring in many plasma scenarios with an appopriate anisotropy in particle distri-

butions.[Bret et al., 2010] This instability may also lead to filamentation in regions

where magnetic reconnection drives an outflow into the surrounding plasma.[Zenitani

and Hesse, 2008]
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1.4 Radiation from Small-Scale Turbulence

Electromagnetic radiation is released by the rearrangement of electric and magnetic

fields due to the acceleration of charged particles. Any change in either the direction

or speed of a charged particle’s motion can produce radiation, which is essentially a

traveling perturbation of the electric and magnetic fields. Charged particles moving at

relativistic speeds are known to emit the bulk of their radiation within a small angle of

their forward direction. This property, known as relativistic beaming, can be calculated

directly from the radiation equations, as will be shown in Chapter 2. For a radiating

particle moving with Lorentz factor γ , the bulk of the emission is emitted within an

angle αem = 1/γ of the direction of the particle’s instantaneous velocity.

In a large-scale magnetic field, the particle is deflected by the Lorentz force so that it

follows a helical path. This deflection causes the particle to radiate, but since its instan-

taneous direction is constantly changing, the relativistic beaming cone is constantly

being redirected as the particle gyrates. The bulk of the radiation is not consistently

emitted into any one direction relative to an inertial reference frame. Consequently,

an observer will either receive very low levels of emission if positioned outside the

sweep of the radiation cone or will receive periodic pulses of strong radiation from

the moments when the particle’s velocity is directed towards the observer. This is the

synchrotron radiation scenario, in which the the strongly deflected particle trajectory

causes the radiation emitted into a particular direction in space to vary substantially in

intensity as the particle propagates. The spectrum of radiation received by the observer

in this case is thus dominated by the frequency of the pulses as the particle spirals.

The characteristic frequency and the shape of the synchrotron radiation spectrum

are a result of the regular sweep of the relativistically beamed radiation cone past the

direction to an observer. For a particle with charge q, mass m and Lorentz factor γ ,
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responding to a magnetic field BBB, the particle gyrates with a frequency ωr = qB/γm =

ωg/γ . Accounting for relativistic beaming, the particle radiates into a given direction

only in short pulses of duration ∆t = 1/γ2ωg. The resulting radiation is dominated by

the critical frequency ωc = (3/2)γ2ωg sinαB, where αB is the radiating particle’s pitch

angle with respect to the magnetic field.[Rybicki and Lightman, 2004, Ginzburg and

Syrovats, 1965] For ω < ωc, the radiation spectrum produced by a single particle is a

power law with a spectral index of 1/3; for ω > ωc the spectrum decreases exponen-

tially. For a distribution of particles, the convolution of such spectra can modify the

shape of the resulting synchrotron radiation spectrum for a particle distribution, but the

low-frequency spectral index remains limited to values below 1/3 (-2/3 in the photon

spectrum) in the absence of absorption.

If instead of remaining (nearly) homogeneous on large-scales the magnetic field

orientation varies over a small scale relative to the distance on which a particle would

gyrate around the local field line, the particle will still be deflected, but the deflection

will not be consistently directed towards any particular direction long enough to sub-

stantially redirect the particle’s velocity and emission. Consequently, the particle will

emit strong radiation consistently along a certain line of sight as it undergoes these

small-scale deflections from the varying magnetic field. The spectrum of radiation re-

ceived by an observer positioned in the direction of the particle’s velocity will not be

influenced by major changes in the amplitude of the emission and will instead depend

directly upon the deflections undergone by the particle due to the magnetic field. Since

the particle can be thought of as "jittering" with small transverse accelerations as it

propagates, the resulting emission has been called "jitter radiation". In principle jitter

radiation has always been a possible limiting solution of the radiation equations (see

Landau and Lifshitz [1971], Brau [2004] for the classic textbook examples); however,

Medvedev [2000] pointed out its relevance for modeling radiation from small-scale
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magnetic field turbulence and thus for gamma-ray bursts and related astrophysical sys-

tems.[Medvedev and Loeb, 1999, Medvedev, 2006, Reynolds et al., 2010]

1.5 Implications for GRB studies

Gamma-ray bursts (GRBs) have long been an enigmatic challenge for high-energy as-

trophysics because of the very high energies and short dynamical timescales involved.

Observationally, a gamma-ray burst is simply a brief, strong (notably above back-

ground) gamma-ray signal. The typical duration of a GRB is less than a few hundred

seconds.

Because gamma-rays are strongly absorbed by the Earth’s atmosphere, studies of

astronomical gamma-ray sources require space-based detectors. The first gamma-ray

burst detections were made in the late 1960s by the Vela satellites, a small network of

satellites which had been launched to watch for gamma-ray and X-ray signatures of nu-

clear explosions in order to monitor compliance with the Nuclear Test Ban treaty.[Mészáros,

2006]. Scientists working with the Vela project noticed several strong gamma-ray sig-

nals that had no corresponding X-ray signature and did not appear to be connected

with any other indicators of nuclear weapons testing. Studies of the signal detection

across multiple members of the Vela satellite network indicated that the gamma-ray

bursts were not associated with any particular local source and appeared to come from

deep space. Klebesadel et al. [1973] first published the declassified detection of 13

gamma-ray bursts.

For a couple decades, progress in GRB research was severely limited by the obser-

vational challenges of their short time durations, coupled with the inherent difficulty

of focusing or tracing gamma-ray signals to indicate a point of origin. Early statistical

studies suggested that GRBs were detected isotropically from all directions in space,
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which was confirmed in 1993 by the Burst Alert and Transient Source Experiment

(BATSE) on the Compton Gamma-Ray Observatory (CGRO).[Mészáros, 2006] Firm

associations with source objects were not achieved until the late 1990s when improv-

ing rapid response networks and instrumentation allowed the Dutch-Italian Beppo-SAX

satellite to make the first detection of an X-ray transient associated with GRB 970228.

(GRB names are based on the date of observation, so that GRB 970228 corresponds

to the GRB detected on February 28, 1997. Multiple GRB detections on the same day

are denoted by letters after the numerical designation.) The X-ray transient associated

with GRB 9702228 improved localization sufficiently to lead to the corresponding dis-

covery of the first GRB optical counterpart and started the new era of GRB afterglow

observations.

Afterglow observations in X-ray, ultraviolet (UV), and optical allow for much im-

proved localization of GRB sources. Additionally, minimum redshifts may be deter-

mined from spectral features in the optical afterglow for some GRBs. Redshifts deter-

mined for GRBs so far range up to z > 9, with the average value among current (Swift)

burst detections of z≈ 2, verifying that GRBs do indeed originate at cosmological dis-

tances.[Gehrels et al., 2009] The isotropic equivalent energy (that is, the total energy

emitted by the source if the energy detected at our observation point is representative of

that emitted isotropically in all directions) released is thus found to be approximately

1053 ergs in gamma-ray emission alone, making GRBs one of the most luminous events

in the known universe. In the few seconds of its duration, a GRB outshines its host

galaxy and releases more energy than the Sun will produce in its entire lifetime.

The number of observed GRBs now totals in the thousands, with new detections

occuring nearly every day. The real advances in our understanding of these events

have come not from just the increasing quantity of detections, but by improvements in

the breadth of information obtained. Gamma-ray bursts are recognized and defined by
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their light curve, tracking how the brightness of the event changes with time. A GRB’s

initial bright “prompt emission” (recognized predominantly in gamma-rays although

we now know that the energy coverage does extend to lower energies) declines rapidly

in brightness after a few hundred seconds or less, followed by afterglow emission at

longer wavelengths. The prompt emission phase itself can vary widely in the lightcurve

progression, from a single peak with smooth decay, to more complex multiple peak

behavior.

The duration of the prompt gamma-ray emission is often quantified by defining

T90 as the time duration in which 90% of gamma-ray counts above background are

recorded. A bimodality in the T90 distribution seems to indicate that GRBs may be

divided into two classifications, short (T90 < 2 seconds) and long (T90 > 2 seconds).

Some evidence indicates that short GRBs may differ spectroscopically and in source

location from long GRBs and may have underlying differences in their production

mechanism; however, strong observational biases and inconsistencies among different

detectors have made this difficult to determine conclusively.[Ghirlanda et al., 2009]

The fluence of detected GRBs compared with the cosmological distances deter-

mined by redshift measurements in the afterglow of certain GRBs require substantial

energies in excess of 1053 ergs to be released at the GRB source. (This is true even if

the emission is strongly beamed.) Such energies suggest that the central engine which

drives the GRB is likely a cataclysmic event involving the core collapse of very high

mass stars or the merger of massive compact stellar remnants (e.g., a merger between

two neutron stars). The rapid time variability of the flux indicates that the source of the

energy must itself be very compact, driving some strong outflow which carries energy

either kinetically or as Poynting flux out to some distance at which the energized mat-

ter becomes thin enough for radiation to escape from the system. This outflow is likely

jetted within a certain solid angle rather than isotropic around the central engine, evi-
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denced in many GRB spectra by achromatic light breaks as the edge of the propagating

jet front passes the line of sight to the observer.

For our purposes in this thesis, the central engine driving the outflow is of little con-

cern, as we are primarily concerned with understanding the radiation mechanisms in

the relativistically-propagating jet. The prompt and afterglow emission have generally

been understood as originating in a series of internal and external shocks. The basic

theoretical model of a GRB suggests that prompt emission originates in the internal

shocks between shells of outflow material moving with slightly different speeds, while

afterglow emission is produced by external shocks between the outflow and surround-

ing material. However, much is still being discovered about the dynamics of jetted

outflows, which appear in a variety of astrophysical scenarios and may have more com-

plicated outflow structures, energy conversion processes, and magnetic field effects than

are accounted for in this simple internal-external shock scenario. The role of magnetic

fields in GRB prompt and afterglow emission is still poorly understood, partly because

little is known about the magnetic field strength within the emission sites. Attempts

to estimate magnetic field strength from polarization within the GRB prompt emission

have so far proven problematic and both theoretical and observational advances are

required to improve upon our knowledge here.
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Chapter 2

Theory of Jitter Radiation

2.1 Summary

Jitter radiation theory represents a new mechanism of radiation by a charged, ultrarel-

ativistic particle traveling through a region of small-scale magnetic field turbulence.

At each point along its path, the particle experiences a transverse acceleration due to

the relativistic Lorentz force in a random magnetic field. However, the field’s corre-

lation length is sufficiently small that the series of accelerations produces very little

deflection of the particle. Consequently, an observer receives a consistent portion of

the angular distribution of the particle’s emission, which is relativistically beamed in

the forward direction. In this chapter we present the general equations for jitter ra-

diation and then develop the equations relevant to the particular geometry representa-

tive of the magnetic turbulence generated by the Wiebel-like filamentation instability,

with magnetic wavenumber distributions that are independent along and transverse to

instability-generated current filamentation.
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2.2 General Theory of Jitter Radiation

The Lienard-Weichert equation [Landau and Lifshitz, 1971, Brau, 2004] gives the en-

ergy emitted towards an observer in direction n̂ per frequency per unit solid angle by

a charged particle moving relativistically along a trajectory r(t) with velocity βββ (t) =

v(t)/c and acceleration β̇ββ (t) = dv/cdt:

d2W
dωdΩ

=
e2

4π2c

∣∣∣∣∣∣
∫

∞

−∞

dteiω(t−n̂·r/c)
n̂×

[
(n̂−βββ )× β̇ββ

]
(1− n̂ ·βββ )2

∣∣∣∣∣∣
2

(2.1)

This equation takes into account the changing travel time of the radiation as the particle

propagates. The radiation received at a time tobs is due to the field produced by the

particle at the retarded time t ′ = t − n̂ · r(t)/c), where t is the time at the origin of

a local inertial reference frame at rest with respect to a distant observer. (Since we

are concerned with the evolution of a time signal, the constant time offset in tobs =

t +R/c where R is the distance from the observer to the origin of the local frame can

be neglected.)

The denominator factor proportional to (1− n̂ ·βββ )4 means that for ultrarelativistic

speeds βββ ≈ 1 the emission peaks strongly at n̂ ‖ βββ , a property known as “relativistic

beaming”. The particle’s deviation relative to the opening angle 1/γ of the relativistic

beaming cone determines whether the observed radiation spectrum will be dominated

by particle deflection effects (as in synchrotron radiation) or by variations in the field

itself. We can quantify this by defining a deflection parameter δrad which is the ratio

between the angle of deflection θde f l = |e| 〈B⊥〉λB/γmc2 and the relativistic beaming

cone’s opening angle 1/γ . Thus we have

δrad =
θde f l

1/γ
=
|e| 〈B⊥〉λB

mc2 (2.2)
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where <B⊥> is the average magnetic field strength transverse to the particle’s velocity,

λB is the correlation length of the magnetic field (and hence defines the scale over which

the magnetic field varies), m is the particle’s mass, and e is the particle’s charge. The

parameter δrad is notably independent of the particle’s velocity β (or equivalently its

Lorentz factor γ).

For δrad � γ , we have the synchrotron radiation regime, in which the path length

along which a particle’s radiation cone is oriented towards a particular direction is much

shorter than the correlation length λB of the magnetic field. Consequently, the emission

received by a particular observed is dominated by intensity variations due to the sweep

of the relativistic beaming cone. For δrad � 1, which we designate as the strong (or

small-angle) jitter regime, the particle’s radiation cone is consistently directed towards

a particular direction over a path length much longer than λB. In this case, the emission

into a particular direction is produced by particles which undergo accelerations but not

significant deflections. In the intermediate regime 1 . δrad . γ , which we designate

as the weak (or large-angle) jitter regime, the radiation spectrum is influenced both

by the path geometry and the magnetic field distribution. In such a case, the particle

is deflected beyond the relativistic beaming angle, but the field geometry along the

path segment before this deflection occurs leads to the occurence of low-frequency

harmonics that differ from the synchrotron. Figure 2.1 illustrates the differences in the

two jitter regimes, with part (a) showing the the weak (large-angle) jitter regime where

larger deflections lead to shorter path lengths (highlighted in bold) radiating towards

an observer. Part (b) of Figure 2.1 shows the strong (small-angle) jitter regime that has

minimal deflection and so a long path length (again highlighted in bold) radiates in the

direction of the observer.

In the strong (small-angle) jitter regime, the velocity βββ is nearly constant and the

time-dependence of the integrand is contained primarily in the acceleration β̇ββ . With a
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Figure 2.1: (a) In the weak, or large-angle, jitter regime (defined by 1 . δrad . γ),
the deflection of the particle over a field correlation length is approximately equal or
slightly larger than the opening angle 1/γ of the relativistic beaming cone. The radiat-
ing path lengths (in bold) seen by an observer are thus of intermediate size, so that the
resulting radiation depends both on the intermittency of emission towards the observer
and on the variation of the field over those parts of its path for which the particle is cor-
rectly oriented. (b) In the strong (or small-angle) jitter radiation regime, the particle’s
deflection is negligibly small compared to the opening angle 1/γ of the relativistically
beaming angle. Consequently the observer receives radiation from the particle as it
moves over a long path, yielding a spectrum that depends upon the magnetic field dis-
tribution that accelerates the particle.
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constant velocity, the position vector rrr(t) becomes rrr(t) = rrr000+cβββ t. We can then define

ω ′ = ω(1− n̂ ·βββ ), where ω ′ is the frequency corresponding to the Fourier transform of

the particle’s acceleration ξξξ =
∫

β̇ββeiω ′tdt. Equation 2.1 then becomes:

d2W
dωdΩ

=
e2

4π2c
|n̂× [(n̂−βββ )×ξξξ ]|2

(1− n̂ ·βββ )2 (2.3)

To evaluate this, we define the components of βββ and ξξξ in the direction n̂ of an observer

as βn = n̂ ·βββ and ξn = n̂ · ξξξ . We define β⊥ and ξ⊥ as the magnitudes of the vector

projections of βββ and ξξξ on the plane perpendicular to n̂. The angular spectral fluence

becomes:

d2W
dωdΩ

=
e2

4π2c

[
ξ 2

n + |ξξξ |2

(1−βn)2 −
2ξn(ξn− (βββ ·ξξξ ))

(1−βn)3 +
β 2
⊥ξ 2

n

(1−βn)4

]
(2.4)

The accelerations undergone by the particle, generated by the Lorentz force, will lie in

the plane perpendicular to the particle’s velocity. Thus, βββ ···ξξξ = 0, and the above reduces

to:
d2W

dωdΩ
=

e2

4π2c

[
|ξξξ |2

(1−βn)2 +
ξ 2

n (β
2−1)

(1−βn)4

]
(2.5)

Where the radiation peaks in the forward direction n̂ ‖ βββ , this becomes:

d2W
dωdΩ

=
e2

4π2c
|ξ⊥|2

(1−β )2 (2.6)

As it propagates, the particle’s acceleration is determined by the underlying magnetic

field, so we can relate the Fourier transform of the acceleration ξξξ to the magnetic

field encountered by the particle. At each position, the particle’s acceleration β̇ββ =

(eβ/mγ)β̂ββ ×B due to the Lorentz force is determined by the the local magnetic field

vector B and the particle’s velocity βββ at that point.
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In the strong jitter regime (hereafter we will operate exclusively within this regime),

the particle’s velocity is nearly constant in magnitude and direction, so the tempo-

ral evolution of the particle’s acceleration reflects the particle’s propagation along a

(nearly) straight-line path through the turbulent magnetic field. Consequently, the time-

integral of the particle’s acceleration can be translated into an integral over the magnetic

field vector distribution along the particle’s path. Using the relativistic Lorentz force,

we find that

ξξξ =
∫

β̇ββeiω ′tdt =
(

eβ

mγ

)
β̂ββ ×Bω ′ (2.7)

where we have defined Bω ′ =
∫

B(r0+cβββ t, t)eiω ′tdt. Taking the dot product ξξξ ·ξξξ ∗∗∗, we

obtain

|ξξξ |2 = ξ
∗
i ξ

i =

(
eβ

mγ

)2 [
|Bω ′|2− (β̂ββ ·B∗

ω ′)(β̂ββ ·Bω ′)
]

=

(
eβ

mγ

)2

(δµν − β̂µ β̂ν)W µν (2.8)

where we have defined a tensor W whose terms are products of the Fourier spectrum of

the magnetic field, W µν = B∗µ
ω ′B

ν

ω ′ . We can also take the dot product ξξξ ··· n̂ to determine

ξn and square this to obtain

ξ
2
n =

(
eβ

mγ

)2 [
B∗

ω ′ · (n̂× β̂ββ )
][

Bω ′ · (n̂× β̂ββ )
]

(2.9)

=

(
eβ

mγ

)2 [
δµν(1− (β̂ββ · n̂)2)− β̂µ β̂ν − n̂µ n̂ν − (β̂ββ · n̂)(β̂µ n̂ν + β̂ν n̂µ)

]
W µν

Although we are considering the radiation produced by a single particle, we can assume

that the field and particle distributions within the radiating region are sufficiently ho-

mogeneous that the exact starting position and trajectory of the particle has little effect

on the radiation produced. For simplicity, we also assume that the propagation time
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∆tprop during which the particle traverses the turbulent field region is much less than

the dynamic time scale ∆T of the magnetic field turbulence, allowing us to treat the

magnetic field distribution as static. In principle, the radiation produced by the parti-

cle at a particular time is dependent only on the local magnetic field accelerating it at

that point at its trajectory, so the full field evolution within the radiating volume is not

required. (Overall, we are assuming that the distribution of the magnetic field encoun-

tered at the particle’s position as a function of space and time is roughly equivalent to

the statistically-averaged distribution of the static magnetic field within the radiating

volume.) With these assumptions, the magnetic field spectrum tensor W µν becomes

W µν =
〈
B∗µ

ω ′B
ν

ω ′
〉
= (2π)−3V−1

∫
∞

−∞

B∗µ
ω ′B

ν

ω ′δ (ω
′− ck ·βββ )d3k (2.10)

Equations 2.5 and 2.10 do not presume any particular geometry of the turbulent mag-

netic field. These equations determine the jitter radiation spectra for any possible

magnetic field distribution that varies on short enough scales to be within the jitter

regime. The Weibel-like filamentation instability mechanism can generate such small-

scale magnetic field turbulence in both laboratory and astrophysical plasmas. In the

following section we consider the magnetic field distribution produced by this instabil-

ity and incorporate it into our equations.

2.3 Jitter Radiation from the Filamentation Instability

In the magnetic turbulence produced by the Weibel-like filamentation instability, the

magnetic field perturbations in the plane transverse to the bulk flow of the counter-

streaming particle populations cause the counterstreaming particles to coalesce into fila-

ments. We define the unit vector ŝ as the filamentation axis, the direction of the counter-
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streaming particle flow and filamentation. The filamentation instability builds magnetic

field strength in the plane perpendicular to the filamentation axis ŝ, with the resulting

magnetic field wavenumbers being randomly oriented within this plane. The random

orientations are generated independently at each position along ŝ. Consequently, the

distribution of magnetic wavenumber along ŝ is independent of the distribution of mag-

netic wavenumber produced in the plane transverse to ŝ.

For such a case, the magnetic field correlation tensor can be written as

B∗µ
ω ′B

ν

ω ′ = (δµν − ŝµ ŝν) |Bk|2 =Ck(δµν − ŝµ ŝν) f⊥(k⊥) f‖(k‖) (2.11)

where f‖(k‖) is the distribution of the magnetic wavenumber component parallel to ŝ,

f⊥(k⊥) is the distribution of the magnitude of the projection of the wavevector k onto

the plane transverse to ŝ, and Ck is a normalizable constant defined so as to make the

wavenumber distributions unitless. Combining this with Equations 2.8, 2.9, and 2.10

and inserting the result into Equation 2.5, we obtain:

dW
dωdΩ

=
e2

4π2c
G(ŝ, n̂,βββ )× (2.12)[(

eβ

γm

)2 1
8π3V

∫
|Bk|2δ (ω(1−βββ · n̂)− ck ·βββ )d3k

]

where we have defined the geometry and velocity dependent amplitude factor G(ŝ, n̂,βββ )

as

G(ŝ, n̂,βββ ) =

[
1+(ŝ · β̂ββ )2

(1−βββ · n̂)2 −
1
γ2

(ŝ · β̂ββ )2 +(ŝ · n̂)2−2(β̂ββ · n̂)(ŝ · β̂ββ )(ŝ · n̂)
(1−βββ · n̂)4

]
(2.13)

We can consider the simplifying geometry in which we choose to view the emission

within the plane defined by the filamentation axis and the particle velocity, so that ŝ, n̂,
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and β̂ββ lie in the same plane. In this geometry we can define the angle θ between the

particle trajectory and the filamentation axis and define the viewing angle α between

the particle trajectory and the direction n̂ to the observer. The relationships between the

angles and the corresponding vectors can be summarized as follows:

ŝ · β̂ββ = cosθ (2.14)

β̂ββ · n̂ = cosα (2.15)

ŝ · n̂ = cos(θ +α) (2.16)

In this planar case, Equation 2.13 becomes

Gplane(β ,θ ,α) =
1+ cos2 θ

(1−β cosα)2 −
(1−β 2)sin2

α

(1−β cosα)4 (2.17)

Figure 2.2 shows this factor Gplane(β ,θ ,α) plotted versus α for θ = 10◦ and β = 0.99

and normalized to its value at α = 0◦. This plot demonstrates the strong relativistic

beaming of the emitted radiation into the forward direction.

To solve for the power emitted per solid angle as a function of frequency, we make

the substitution |Bk|2 =Ck f⊥(k⊥) f‖(k‖) from Equation 2.11 into Equation 2.12.

d2W
dωdΩ

=
e4β 2

4π2γ2m2c
G(ŝ, n̂,βββ )

8π3V

∫
f‖(k‖) f⊥(k⊥)δ (ω(1−βββ · n̂)− ck ·βββ )d2k⊥dk‖

(2.18)

Analysis of Equation 2.18 indicates that the radiation spectrum will be determined by

the form of the magnetic field distribution encountered by the particle. We shall see

that the delta function plays a critical role within the integral in determining the relative

influence of the two different magnetic field distributions for different particle paths

and viewing angles.
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Figure 2.2: The geometry-dependent amplitude factor Gplane(β ,θ ,α) for varying view-
ing angles α as measured from the particle’s velocity βββ in the same plane as both βββ and
the filamentation axis ŝ. Here we have used values of particle speed β = 0.99 and angle
θ = 10◦ between the particle’s velocity and the filamentation axis ŝ. The vertical axis
is normalized to the value at α = 0 (that is, Gplane(0.99,10◦,α)/Gplane(0.99,10◦,0◦)).
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The transverse magnetic field distribution f⊥(k⊥) generated by the Weibel-like fil-

amentation instability has been explored analytically [Medvedev and Loeb, 1999] and

through plasma simulations [Frederiksen et al., 2004]. The exact characterization of the

distribution and the parameters influencing it are not fully developed, but it has been

shown to rise and then drop after a scale of order the plasma skin depth. The field dis-

tribution f‖(k‖) along the filamentation axis is even less well known in principle, but

we choose here to assume that it has a similar form. For our field distributions, we use

f⊥(k⊥) =
k2a⊥
⊥(

κ2
⊥+ k2

⊥
)a⊥+b⊥

, (2.19)

and

f‖(k‖) =
k

2a‖
‖(

κ2
‖ + k2

‖

)a‖+b‖
, (2.20)

where the free parameters κ , a, and b > 0 control the spectral break and the soft and

hard spectral indices, respectively.

The basic asymptotic behavior of these equations for the magnetic field distributions

is

f (kp) ∝

 k2ap
p , if kp << κp,

k−2bp
p , if kp >> κp.

(2.21)

where p is simply a reference index indicating either the parallel or perpendicular com-

ponent of wavenumber. The factors of 2 within the powers of kp are to keep fp(kp) as

positive definite. Since ap can in principle take on values which result in 2ap having an

odd value, it is important in implementing this equation within numerical calculation

to ensure that the numerator is either evaluated as (k2
p)

ap or as |kp|2ap .

Our field spectra (Equations 2.19 and 2.20) are defined so as to make variables k and

κ dimensionless values, expressed in terms relative to a wavenumber unit k0. This will
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result in a normalizable factor Bp0k−2bp
0 contributed to Equation 2.18 by each spectral

distribution, From the delta function in Equation 2.18 this means our frequencies will

be defined in terms of units ω0 = ck0.

2.4 Angular Dependence of Jitter Radiation

For calculation purposes, we define a Cartesian coordinate system in which the current

filamentation axis ŝ lies along the z-axis and the magnetic field is randomly oriented

in the transverse xy-plane. The independent magnetic field wavenumber components

in the directions along and transverse to the filamentation axis are then k‖ = kz and

k⊥ = (k2
x + k2

y)
1/2. We can rewrite the delta function in Equation 2.18 to isolate one

of the three wavenumber components. The integral of the delta function then allows

a substitution to be made for that wavenumber component as a function of the other

variables within the delta function. Because the wavenumber within the delta function

comes in via the dot product k ·βββ , and k is defined in terms of components along or

transverse to ŝ, the angle θ between ŝ and βββ modifies the effect of different components

of the wavevector.

The delta function in Equation 2.18 can be written in terms of ω ′ = ω(1−βββ · n̂) =

ω(1−β cosα):

δ (ω(1−βββ · n̂)− ckkk ·βββ ) = δ (ω ′− ckkk ·βββ ) (2.22)

In the cases where the particle velocity βββ is aligned directly along (θ = 0◦) or trans-

verse (θ = 90◦) to the filamentation axis ŝss (which we have defined as the z-axis in our

geometry) the term kkk ···βββ within the delta function in Equation 2.22 reduces to a function

of a single component of k (we choose the x-axis so that βββ lies within the xz-plane).
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The integral over the delta function then reduces to a simple substitution for kx or kz as

a function of ω , θ , and β .

For the case of velocities along the filamentation axis (βββ ‖ ẑ), we obtain k ·βββ = kzβ ,

which yields

δ (ω ′− ckzβ ) =
1
|cβ |

δ

(
kz−

ω

cβ
(1−β cosα)

)
(2.23)

This leads to:

∫
∞

−∞

f⊥(k⊥) f‖(k‖)δ (ω
′− ck ·βββ )d3k

= f‖(ω
′/cβ )

∫
∞

−∞

∫
∞

−∞

f⊥((k2
x + k2

y)
1/2)dkxdky (2.24)

Consequently, we find that the spectrum produced by particles moving parallel to

the filamentation axis is directly dependent on the distribution of the magnetic field

wavenumber along this axis,

dW
dωdΩ

∝ f‖(ω
′/cβ ) (2.25)

On the other hand, if we consider velocities transverse to the filamentation axis

(meaning βββ ‖ x̂ in our chosen geometry), then k ·βββ = kxβ and we obtain

δ (ω ′− ckxβ ) =
1
|cβ |

δ

(
kx−

ω ′

cβ

)
(2.26)

which leads to

∫
∞

−∞

f⊥(k⊥) f‖(k‖)δ (ω
′− ck ·βββ )d3k

=
1

c|β |

∫
∞

−∞

∫
∞

−∞

f⊥(((ω ′/cβ )2 + k2
y)

1/2) f‖(kz)dkydkz (2.27)
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The integral over kz will produce a constant, so we find that for the case of particles

moving transverse to the filamentation axis, the jitter radiation spectrum is directly

dependent on the form of the distribution of the transverse magnetic field wavenumber

components:
dW

dωdΩ
∝

∫
∞

−∞

f⊥(((ω ′/cβ )2 + k2
y)

1/2)dky (2.28)

In both limiting cases we obtain a spectrum whose frequency dependence is determined

only by the distribution of the magnetic field along (for θ = 0◦) or perpendicular (for

θ = 90◦) to the filamentation axis.

For a more general orientation of the beam at some angle 0◦ < θ < 90◦ relative

to the filamentation axis, the substitution for kx or kz includes the other wavenumber

component and the frequency dependence of the resulting spectrum is influenced by

both magnetic field distributions. Particle velocities at an oblique angle θ from ŝ (we

again select the x-axis so that β lies in the xz-plane) lead to k ·βββ = kxβ sinθ +kzβ cosθ .

The delta function then allows substitution for either kx or kz:

δ (ω ′− ckxβ sinθ − ckzβ cosθ) (2.29)

=
1

|cβ cosθ |
δ

(
kz−

ω ′

cβ cosθ
− kx tanθ

)
=

1
|cβ sinθ |

δ

(
kx−

ω ′

cβ sinθ
− kz cotθ

)
(2.30)
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The substitutions for kx or kz lead to

∫
∞

−∞
f⊥(k⊥) f‖(k‖)δ (ω ′− ck ·βββ )d3k

= 1
|cβ cosθ |

∫
∞

−∞

∫
∞

−∞
f⊥((k2

x + k2
y)

1/2) f‖
(

ω ′

cβ cosθ
+ kx tanθ

)
dkxdky (2.31)

= 1
|cβ sinθ |

∫
∞

−∞

∫
∞

−∞
f⊥

(((
ω ′

cβ sinθ
+ kz cotθ

)2

+ k2
y

)1/2)
f‖(kz)dkydkz (2.32)

For a single radiating particle, we can plug Equations 2.19 and 2.20 for f⊥ and f‖

into Equation 2.31 to obtain:

dW
dωdΩ

=
Cη1(θ)G(ŝ, n̂,βββ )

|β |

∫
∞

−∞

∫
∞

−∞

(k2
x + k2

y)
a⊥

(κ2
⊥+ k2

x + k2
y)

b⊥

( ω ′

cβ sinθ
+ kx)

2a‖

(κ2
‖ cot2 θ +( ω ′

cβ sinθ
+ kx)2)a‖+b‖

dkxdky

(2.33)

where we have combined constant factors into a single constant C and have defined the

θ -dependent factor

η1(θ) =
(tanθ)−2b‖

|cosθ |
(2.34)

Alternatively, if we put Equations 2.19 and 2.20 into Equation 2.32, we obtain

dW
dωdΩ

=
Cη2(θ)G(ŝ, n̂,βββ )

|β |
(2.35)

×
∫

∞

−∞

∫
∞

−∞

(( ω ′

cβ cosθ
+ kz)

2 + k2
y tan2 θ)a⊥(

κ2
⊥ tan2 θ +( ω ′

β cosθ
+ kz)2 + k2

y tan2 θ

)a⊥+b⊥

k
2a‖
z

(κ2
‖ + k2

z )
a‖+b‖

dkydkz

where

η2(θ) =
(cotθ)−2b⊥

|sinθ |
(2.36)

The two forms are equivalent; however, as we approach θ = 0 or θ = π/2, the calcula-

tion is more convenient if one avoids denominators approaching zero by choosing the

appropriate form. In our calculation, we use Equation 2.33 for angles π/4 ≤ θ < π/2
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and Equation 2.35 for angles 0< θ ≤ π/4. Neither form is valid for the endpoints θ = 0

or θ = π/2, as the delta function substitutions at those values must be treated separately

as above.

An analysis of equations (2.33) and (2.35) indicates that ω ′ functions as a shift

of the center of the magnetic spectral form in which we have made the delta-function

substitution. Since this ω ′ factor is always positive, the function’s offset always occurs

in the direction of negative wavenumber components kx or kz. An example of this

behavior for the product of two functions such as equations (2.19) and (2.20) over a

range of offsets is shown in Figure 2.3. The resulting integral is highly sensitive to the

shape of the two functions and the offset between them, which control the resonance

like behavior that produces the resulting peak and transition points in the spectrum.

The angle θ plays a role in determining both the width and the offset of one function

relative to the other: the κ2
‖ cot2 θ or κ2

⊥ tan2 θ terms in the denominator influence the

width of the function under consideration, while the offset is given by ω ′

cβ cosθ
or ω ′

cβ sinθ
.

These are linked such that as θ increases, both the width and the offset of the function

containing θ increases. The spectral indices a⊥, a‖, b⊥, and b‖ can also influence

the width of the functions and hence also affect the location of the transition points

in the acceleration spectra. The overall effect of such variations on the resulting jitter

radiation spectrum will be explored more in Chapter 4.

We can see from the jitter radiation spectrum’s dependence on ω ′ = ω(1−β cosα)

that the viewing angle α between βββ and the direction n̂ to the observer functions pri-

marily as a shift of the radiation spectrum’s distribution in frequencies, proceeding from

ω ′=ω(1−β ) for n̂ ‖ βββ to ω ′=ω for n̂⊥ βββ . With a series of small-angle substitutions,

we find that ω ′ = ω(1−β cosα) ≈ ω/2(α2 + γ−2). The integration over solid angle

dΩ≈αdαdφ can then be converted to an integration over dφdω ′/ω and integrate over
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Figure 2.3: Plots of the product f (k) f (k+a) of two functions of the form of our mag-
netic field spectra (Equations (2.19) and (2.20, illustrating the effect of the offset a. As
discussed, the angle-resolved jitter radiation spectrum is the integral of a product of
such functions, with an offset controlled by ω ′, β , and θ .

32



φ to obtain the angle-averaged emission:

dW
dω

=
2πe2

c3ω

∫
∞

ω/2γ2
|ξξξ |2

(
1− ω

ω ′γ2 +
ω2

2ω ′2γ4

)
dω
′ (2.37)

Solving this using |ξξξ |2 and the independent magnetic field distributions f⊥(k⊥) and

f‖(k‖) as in the previous section, we obtain

dW
dω

= Cav
(
1+ cos2

θ
)∫ ∞

ω/2γ2

(∫
f‖(kz) f⊥((k2

x + k2
y)

1/2)δ
(
ω
′− ck ·βββ

)
dkxdkydkz

)
×
(

1− ω

ω ′γ2 +
ω2

2ω ′2γ4

)
dω
′ (2.38)

where Cav is a normalizable constant.

The delta function operates as in the angle-resolved case to replace either the kx or kz

component within the integrand. The ω-dependence of the lower integration limit in ω′

means that we are effectively integrating over changing portions of the angle-resolved

spectral distribution. We will explore this further in Chapters 3 and 4 as we look at the

results of numerical calculations of both the angle-averaged and angle-resolved spectra.

2.5 Discussion of Results

We have seen that because of relativistic beaming, the radiation observed from a rela-

tivistic particle is strongly influenced by the particle’s deflection relative to the opening

angle 1/γ of the cone into which the bulk of its radiation is emitted (around the parti-

cle’s forward direction). Magnetic fields with sufficiently long correlation lengths result

in large-angle deflections of the particle, producing radiation in the synchrotron regime

as the emission from the gyrating particle sweeps back and forth relative to a given line

of sight. For the strong (small deflection angle) jitter regime, particles moving in mag-

33



netic fields with extremely short correlation lengths are accelerated but not substantially

deiated, so that an observer consistently receives radiation over a long path length, with

the spectrum of that radiation depending on the magnetic field variations the particle

encounters. For intermediate ranges in the weak (large deflection angle) jitter regime,

the particles are deflected but over sufficiently long scales that the radiation spectrum

obtained is determined both by particle deflection and by magnetic field variation.

The jitter radiation spectral power per frequency per unit solid angle depends di-

rectly upon the Fourier spectrum of accelerations undergone by the particle, which

depends via the relativistic Lorentz force on the distribution of magnetic field. We have

developed the relevant equations in general in Section 2.2 and in the particular context

of the magnetic field turbulence by the Weibel-like filamentation instability in Section

2.3. In the instability, the filamentation axis defines an anisotropy in the field distri-

bution, such that the magnetic wavenumber distributions are independent along and

transverse to this axis.

The resulting equations for the jitter radiation spectrum produced by particles prop-

agating through field turbulence created by the Weibel-like filamentation instability are

explicitly dependent on the angle the particle’s path makes relative to the filamentation

axis. Particles moving along the filamentation axis produce a jitter radiation spectrum

proportional to the distribution of the magnetic wavenumber component along the axis.

Consequently, the radiation obtained from such particles will contain crucial informa-

tion about the form of this magnetic field distribution. As f‖(k‖) is thus far largely

unknown for such a system, jitter radiation studies could provide valuable insight into

this aspect of the field. Particles moving transverse to the filamentation axis produce

a spectrum proportional to the transverse field distribution f⊥(k⊥) integrated over the

magnetic wavenumber component that is transverse to both the viewing direction and

the filamentation axis. The integration over the second wavenumber component in the
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transverse case results in a flattening of the spectrum at low-frequencies, which makes

it observationally distinct from the spectrum produced by particles moving along the

filamentation axis. Particles moving at oblique angles between these two cases will

have spectrum with a mixed dependence on the transverse and parallel magnetic field

distributions; however, as we shall see in Chapter 5, spectral differences in the two mag-

netic field distributions can cause one or the other to dominate the spectrum produced

at intermediate angles.

The radiation produced by particles with a particular velocity orientation β̂ββ relative

to the filamentation axis ŝ thus depends upon the angle θ between β̂ββ and ŝ. Furthermore,

the angular distribution of radiation produced by those particles is strongly peaked in

the forward direction, where viewing angle α between the particle velocity βββ and the

direction to the observer n̂ is small. Consequently, even with a radiating particle pop-

ulation that is isotropic in velocity space, the radiation received by an observer at a

specific viewing angle Θ relative to the filamentation axis will be dominated by con-

tributions from the particles moving in that direction (with θ = Θ). Consequently, the

jitter radiation spectrum may vary widely in form depending on an observer’s viewing

angle with respect to the filamentation axis in the radiating region, regardless of the

radiating particle distribution. This, as well as the lack of a low-energy spectral index

limit, is distinct from the synchrotron case.
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Chapter 3

Laboratory Applications of Jitter Radiation

3.1 Summary

The development of high-energy density laboratory plasmas has led to exciting new

possibilities for laboratory astrophysics, as such plasmas can be generated in con-

trolled laboratory conditions yet appear to scale well for comparison with the under-

lying physics in high-energy astrophysical events. The Weibel-like filamentation insta-

bility may be generated through laser-plasma interactions in order to study dynamics

of small-scale magnetic field turbulence that are significant for both astrophysical and

laboratory plasmas. In this chapter we develop the relevant jitter radiation theory for

such laboratory experiments and explore the effect of variations in the magnetic field

distribution upon the jitter radiation spectrum produced by particles moving through

the turbulent region.
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3.2 Studying the Weibel-Like Filamentation Instability

in Laboratory Laser-Plasmas

Filamentary structures have long been observed in laboratory plasma experiments, of-

ten problematically, as filamentation can disrupt inertial confinement fusion (ICF) and

degrade the quality of laser and beam applications. While plasma density filamentation

may be easily observed in a variety of scenarios, such filamentation has yet to be re-

liably studied with the simultaneous particle density, particle flow, and magnetic field

measurements that would be necessary to fully characterize the filamentary structures.

Understanding the instabilities leading to the formation of these filaments and the pro-

cesses governing their behavior once formed could have valuable applications for the

improvement of ICF and high-energy laser-plasma interactions. Furthermore, as we

have discussed in Chapter 1, such filamentation may play a significant role in a variety

of astrophysical plasma scenarios, including magnetic reconnnection, particle acceler-

ation at shocks, and astrophysical jet structure. Consequently, we may be able to gain

valuable insight into high-energy density plasma physics relevant across a variety of

scales by exploring filamentation instabilities in the laboratory.

The Weibel-like filamentation instability, which has been extensively studied in

particle-in-cell (PIC) simulations (see Silva et al. [2003], Frederiksen et al. [2004],

Nishikawa et al. [2009], Chang et al. [2008] for instance), may be responsible for gen-

erating near equipartition strength magnetic field turbulence within collisionless plas-

mas. Originating in counterstreaming particle motion, this instability was originally

considered primarily as a source of filamentation at or immediately upstream from a

propagating shock front. More recent studies have shown that this instability may op-

erate in a wider variety of contexts, arising at various sites of interpenetrating plasma

flow, at sites of plasma injection or outflow from magnetic reconnection or other pro-

37



cesses, and in non-shock plasmas with an appopriate anisotropy in particle velocity

distributions.

Jitter radiation, with its particular sensitivity to magnetic field distribution and field

anisotropy, is the appropriate radiation mechanism for relativistic particles in a small-

scale turbulent region such as produced by the Weibel-like filamentation instability.

Consequently, jitter radiation can provide a powerful, minimally-invasive diagnostic

for the magnetic field distribution in such regions.[Reynolds and Medvedev, 2012]

A typical laboratory laser-plasma experiment creates a plasma by focusing a high-

energy laser on a solid target within a chamber. For studies of the (Weibel-like) fil-

amentation instability, an electron beam or strong laser beam can produce anisotropy

in the plasma distribution function (PDF), which then drives the instability. The PDF

anisotropy is produced in the direction parallel to the impinging beam, and this direc-

tion will become the axis along which current filaments form. Once the filaments form,

jitter radiation will be produced by the plasma particles moving in the resulting small-

scale turbulent magnetic fields of the filaments. This radiation, which will be strongly

peaked in the forward direction of the impinging beam and the resulting filamentation

axis, can be used to diagnose properties of the magnetic field distribution. Such diag-

nostics, making use of the radiation inherently produced by the plasma particles, have

a distinct advantage in allowing properties of the magnetic field within the instability

to be explored without the use of in situ probes that might otherwise disrupt or alter the

instability itself.

As we have seen, the spectrum of jitter radiation is strongly dependent on the ori-

entation of the radiating particle population compared to any strong field anisotropies.

In our filamentation instability case, we showed the jitter radiation spectrum depends

strongly on the angle θ between the radiating particles’ velocity βββ and the filamen-

tation axis ŝ. In the scenario just described, the dynamics of the instability are such
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that the bulk of the particle population will be moving along the filamentation axis or

in directions a very small angle from it. The jitter radiation produced as a result will

thus reflect only a very small range of θ ≈ 0. As our analysis in Chapter 2 Section 2.4

demonstrated, the jitter radiation spectrum produced for θ = 0 depends directly upon

the parallel magnetic field distribution (that is, the distribution along the filamentation

axis ŝ) and is uninfluenced by the transverse magnetic field distribution. Thus, the

transverse magnetic field distribution cannot be well-explored using the jitter radiation

produced by particles from the instability-generating beam.

Alternatively, a second, lower-intensity, electron beam could be used to “probe’

the filamentation instability region from a wider range of directions, generating jitter

radiation from electrons moving at the angle θ = Θprobe relative to the filamentation

axis. While this scenario is more challenging in terms of experimental design and

engineering, it can provide a much more powerful diagnostic in its varying sensitivity

to particular components of the magnetic field distribution. Furthermore, the energy

distribution of the radiating particle population can be better controlled in this scenario.

Recent years have seen the development and improvement of a technique for gen-

erating quasi-monoenergetic relativistic electron beams using laser wake field accel-

eration.[Mangles et al., 2004, Geddes et al., 2004, Faure et al., 2004, 2006, Nakamura

et al., 2007, Malka et al., 2008, Osterhoff et al., 2008, Lindau et al., 2008, Pollock et al.,

2011] Such beams would be useful in minimizing particle energy distribution effects on

our jitter radiation spectrum, allowing for better characterization of the magnetic field

itself. The electron energy distribution in such beams is roughly Gaussian and can be

characterized by a peak energy and a full-width-at-half-maximum (FWHM). For our

calculations for radiating beams in sections 3.3.2 and 3.3.3, we have chosen our radiat-

ing particle population to have modest representative values for a quasi-monoenergetic

electron beam, with peak energy of 200 MeV and a full-width at half maximum of 50
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MeV. The radiation produced, either by the instability-generating beam or by a separate

probe beam, would be best detected near the peak of the radiation emission at α = 0◦,

which will be in the forward direction along the axis of the radiating beam. The electron

beam itself could be deflected, using a large scale magnetic field outside the instability

region, to avoid impingement on the radiation detector.

3.3 Jitter Radiation Spectral Solutions for Laboratory

Scenarios

3.3.1 Solutions for a single particle energy

From Chapter 2, we recall that the angle-resolved jitter radiation spectrum depends

upon the Fourier transform of the accelerations undergone by the particle as it prop-

agates through the region of small-scale magnetic field turbulence (see Equation 2.5).

From this, we used the anisotropy inherent in filamentation to develop an equation for

the power emitted per frequency per unit solid angle in terms of separate magnetic

field distributions along and transverse to the filamentation axis (Equation 2.18). We

then used two-power law forms (Equations 2.20 and 2.19) for both our parallel and

transverse magnetic field wavenumber distributions to obtain Equations 2.33 and 2.35

for the angle-resolved emission spectrum in terms of parameters controlling the low-

wavenumber and high-wavenumber spectral index of each field distribution as well as

the “break” or transition point between them. As noted in section 2.4, Equations 2.33

and 2.35 are equivalent but vary in calculation difficulty as they approach the limits

θ = 0 and θ = π/2.

We present here calculated solutions for the angle-resolved emission spectrum pro-

duced by a single particle energy, neglecting particle distribution effects other than the
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statistical consistency of particles moving in a certain direction θ relative to the fila-

mentation axis ŝ (e.g., we have assumed that the rate of propagating particles being

eventually deflected beyond a small angle from a certain path is approximately equiva-

lent to the rate of particles being deflected into a small angle from this particular path).

In this section we show results for varying θ between the radiating beam and a con-

stant α at which the radiation is detected relative to this beam. The viewing angle α

relative to the beam may be simply taken as 0, but since we have demonstrated that the

effect of α is to produce a shift in the frequency dependence and the amplitude of the

spectral shape, we have presented our results as functions of the frequency ω ′, where

ω ′ = ω(1−β cosα). For the case α = 0, this means ω ′ = ω(1−β ). Since we are then

effectively looking at a single angle α , we have normalized our data here to neglect the

α dependence of the amplitude (it may be easily reintroduced by including the factor

A(α)).

We have selected arbitrary-yet-reasonable values for our magnetic field parameters,

based on the spectral indices seen in GRB spectrum and in PIC simulations of Weibel-

like filamentation. For simplicity, we have chosen the same parameters for the field

distributions parallel and transverse to the filamentation axis, with

κ‖ = κ⊥ = 10, (3.1)

a‖ = a⊥ = 2, (3.2)

b‖ = b⊥ = 1.5; (3.3)

In Figure 3.1, we present the numerically-calculated results for varying θ , the angle

between the particle’s direction of motion βββ and the filamentation axis ŝ in Figure 3.1.

Figure 3.2 shows the same results, but focuses in greater detail on the critical region

around the peak of the spectrum. The graphs show linearly-connected ln− ln data, with
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Figure 3.1: The angle-resolved jitter radiation spectra for θ ranging from 2 through 88
degrees. The spectrum is numerically calculated for a step size of 0.1 in loge(ω

′) and is
normalized via division by the 3-dimensional integral over the magnetic field spectra.

data point intervals of 0.1 in ln(ω). (Unless specified otherwise all log functions in this

thesis are in base e.) We have arbitrarily normalized the spectra here so that the low-k

part of the θ = 2◦ spectrum asymptotes at unity. The resulting spectra are flat for low

ω ′, then at a certain ω ′ they turn rapidly into a sloped region, then there is a second

transition to a steep decline for high ω ′. For θ near 0 the spectra have a clear peak, but

as θ increases the peak recedes and eventually disappears altogether. As θ approaches

π/2 a peak again becomes evident but the location of the peak has shifted by about 0.4

from its position for low θ . The transition point for flattening at low ω ′ appears to move

off rapidly to lower ω ′ as θ approaches 0.
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Figure 3.2: View showing detail of peak region of the angle-resolved jitter radiation
spectra shown in Figure 3.1. One can see the disappearance of the peak and flattening
of the spectra for mid-range θ , followed by its reappearance at slightly lower log(ω ′)
at θ of about 76 degrees.
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Figure 3.3 plots the amplitude of the jitter radiation spectrum at our lower calcula-

tion boundary, at the approximate location of the peak for small θ , and at the approx-

imate location of the peak for θ close to π/2. The crossing of the lines on this graph

correspond to spectral transitions as the peak disappears and then eventually reappears

at a new location for higher θ . The graph of the slope of the log− log plot in Figure

3.4 also illustrates the disappearance and reemergence of the peak, but further shows

that even for the unpeaked spectra there is a flattening of the slope of the mid-range

θ spectra in the region in between the positions of the peaks that appear at higher and

lower θ . For unpeaked spectra, there remains a transition region of some extent be-

tween the low-frequency and high-frequency power laws; consequently, the unpeaked

spectra may still be better fit by division into three power law regions as opposed to

two.

Summarizing the results of this section, we find that the angle-resolved jitter radia-

tion spectra are generally characterizable to a good approximation by division into three

regions: a flat low-k region and two power law regions, as shown in Figure 3.5. These

may altogether be described via one amplitude, two non-zero spectral indices being

functions of the ap and bp spectral indices of the field spectra, and two breaks, which

depend primarily on the peaks κ⊥, κ‖ of the magnetic field wavenumber distribution.

3.3.2 Radiation from an instability-generating beam

We now consider the effects of a distribution of particle energies as would be found

in an actual laboratory experiment using jitter radiation to perform field diagnostics.

In our first case, we consider the radiation produced by the plasma particles propagat-

ing in the filamentation instability itself. A “simple” experimental setup could gen-

erate the filamentation instability by impinging a quasi-monoenergetic electron beam
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Figure 3.3: Plot of the spectral amplitudes taken at the low-ω ′ end of the calculated
spectra, and at the approximate locations of the spectral peak for low-θ and high-θ .
The dominance of one amplitude over the other illustrates the transition of the spectra
from peaked to unpeaked as θ progresses from 0 to π/2.
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Figure 3.4: The slope of the spectra in the log− log plot in Figure 3.1. Note that even
for unpeaked spectra there is a flattening of the spectral slope and in some cases a local
maximum (around log(ω ′/ω ′o) = 2.5).
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Figure 3.5: Here we show a model acceleration spectrum, as described in Equations
(5.2) - (5.4). The spectrum is flat in Region I (log(ω ′)< τ1), then becomes a power law
ω ′s1 in Region II (τ1 < log(ω ′)< τ2), and a power law ω ′−s2 in Region III (log(ω ′)>
τ2).
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upon a plasma, so that this electron beam both triggers the formation of the instabil-

ity and provides the particle population that will be propagating through the instability

after filament formation. The filamentation instability could also be formed by other

mechanisms, with a strong laser beam or by generating propagating shocks within the

plasma, in which case the energy distribution of the radiating particles may not be well

known a priori. Even in the case of filamentation produced by a quasi-monoenergetic

electron beam, the electrons’ energy distribution may be substantially modified by the

instability. While acknowledging such possible complications, we here neglect the self-

consistent modifications of the beam as it propagates through the instability. We thus

choose a representative quasi-monoenergetic electron beam for our radiating particle

distribution, with a Gaussian energy distribution with peak energy of 200 MeV and

FWHM of 50 MeV.

In this scenario, we consider the radiation produced by electrons in the same beam

that produces the filamentation instability, slightly after the formation of the instability

itself. The development of the filamentation instability is such that the filamentation

axis ŝ will be aligned with the direction of the generating beam r̂beam ‖ β̂ββ . In this case,

we find k · β̂ββ = k‖ and consequently, the components of k perpendicular to the filamen-

tation axis are eliminated from the delta function in Equation 2.18. The resulting jitter

radiation spectrum is thus obtained solely from the magnetic field distribution along the

filamentation axis, f‖(k‖). Beam divergence will contribute a small influence from the

transverse magnetic field to the spectrum emitted in the beam forward direction by the

full particle distribution, but such contributions are strongly limited by the anisotropy

of the particle distribution and the relativistic beaming factor as was shown in Figure

2.2.

For simplicity and in the absence of any particular plasma parameters governing

our magnetic field distribution, we have chosen (as in the previous section) to use the
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same spectral parameters for the magnetic field distributions along and transverse to the

filamentation axis. We have again used the arbitrary-yet-reasonable selected values for

the field spectral peak κ⊥ = κ‖ = 10, low-wavenumber spectral indices of a⊥ = a‖ = 2,

and high-wavenumber spectral indices of b⊥ = b‖ = 1.5. Our κp correspond to the

peak of each field distribution in wavenumber, defined to be in terms of units k0 =ω0/c.

Defining our units in terms of the field correlation length λB⊥ in the direction transverse

to the filamentation axis (the transverse field distribution being better developed by

theory), we can define k0 = 10/λB⊥ so that κ⊥ = κ‖ = 1/λB⊥. We then have frequency

units ω0 = 10c/λB⊥.

Figure 3.6 shows the resulting radiation spectrum produced by electrons within the

same beam that produced the instability, when the spectrum are obtained from various

angles α = 0◦,2◦,5◦,10◦,45◦, and 90◦ relative to the identical direction of the beam and

the filamentation axis (r̂beam ‖ βββ ‖ ŝ, or equivalently θ = 0◦). The dashed line shows the

spectrum produced by a particle of the electron beam’s peak energy and the solid line

shows the approximate overall spectrum, calculated as a weighted sum over the spectra

produced by particles of different γ . The values on the vertical axis are essentially arbi-

trary, as they depend on the average magnetic field strength generated by the instability,

the electron beam particle density, and the total volume of the radiating region in which

the beam intersects with the instability. Our horizontal axis is normalized to ω0 = ck0,

which we have defined above as 10cλB⊥.

3.3.3 Radiation from probe beam of varying incident angles

Exploring the magnetic field distribution transverse to the filamentation axis requires

obtaining and analyzing the radiation produced by particle populations moving in these

directions. We now consider our second proposed experimental scenario, in which the
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Figure 3.6: The spectrum produced by electrons moving parallel to the filamentation
axis, when viewed from different angles of observation α , defined as the angle between
the direction to the observer and the direction in which the beam propagates along the
current filaments. Solid lines show the emission generated by the full distribution of
beam particle energies; dashed lines show emission produced by an individual particle
with the beam’s peak energy. The maximum emission and highest peak frequency are
produced in the beam’s forward direction (α = 0◦). As it progresses to larger viewing
angles (shown are α = 2◦,5◦,10◦,45◦, and 90◦), the spectrum maintains its overall
shape but dims overall and softens in peak energy.

50



electron beam used to generate the instability is split prior to entering the plasma (or a

second beam generated) and redirected to probe the instability from other angles θ be-

tween the filamentation axis and the radiating beam. Since the peak emissivity will still

be in the radiating particle populations forward direction, the radiation spectra would

ideally be obtained with movable detectors that can be positioned in or close to the di-

rection of the beam’s path through the filamentation region (outside of the filamentary

region the beam may be deflected so as not to hit the detectors). Figure 3.7 shows the

spectrum for incident beam angles of θ = 0◦,2◦,5◦,10◦,45◦, and 90◦ when viewed from

the beam’s forward direction (α = 0). As in the previous subsection, the vertical nor-

malization is essentially arbitrary, but the horizontal normalization is defined in terms

of ω0 = ck0 = 10cλB⊥ , where λB⊥ is the correlation length of the magnetic field distri-

bution transverse to the filamentation. The case θ = 0◦ is of course equivalent to that

considered in section 3.3.2 if there is no variation in the energy distribution between

the probe beam and the beam that generated the instability.

For each θ , we have also calculated the spectrum for several different viewing an-

gles α = 2◦,5◦,10◦,10◦,45◦ and 90◦, where α is again defined as the angle between

the direction to an observer and the unit vector r̂beam along the probe beam, as mea-

sured in the same plane as the angle θ on the far side of rbeam from ŝ. Figure 3.8

shows the results for probe beam incident angles of θ = 2◦,5◦,10◦,45◦ respectively.

We have omitted the θ = 90◦ case from Figure 3.8 has been omitted since at these

scales it appears nearly identical to the θ = 45◦ case (see Figure 3.7). As before, solid

lines show the weighted sum over our distribution of γ , while dashed lines show the

spectrum produced by an individual particle at the peak value of γ (here a representa-

tive 200/0.511 Mev). The spectrum from an individual particle and the full distribution

differ notably in amplitude but not significantly in overall shape. For all of the probe

beam angles, the spectrum is strongest when viewed along the probe beam (viewing
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Figure 3.7: Calculated jitter radiation spectra such as produced a representative quasi-
monoenergetic beam of particles probing the filamentation instability region at angles
θ = 0◦,2◦,5◦,10◦,45◦, and 90◦ relative to the filamentation axis, all viewed along the
radiating beam (α = 0◦). The spectrum notably changes from a peaked form with low-
energy spectral index of approximately 2 at θ = 0, through peaked forms with a second
low-energy break at θ = 2◦,5◦, and 10◦, to forms with a break (but no distinguishable
peak) and a flat low-energy spectral index of 0 at θ = 45◦ and 90◦. Note that the hori-
zontal scale has been selected here to focus on the region immediately surrounding the
peak/break.
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Figure 3.8: Variation in the jitter radiation spectrum produced by a quasimonoenergetic
beam (solid lines) and an individual particle of the beam’s peak energy (dotted lines).
Each figure shows results for a particular angle θ between the probe beam and the
instability’s filamentation axis, when viewed from different viewing angles α = 2◦ (a),
5◦ (b), 10◦ (c), and 45◦ (d), all measured from the beam direction rrrbeam in the same
plane as θ .

angle α = 0◦), with amplitudes decreasing rapidly by several orders of magnitude even

when viewed at comparatively small viewing angles of α = 2◦,5◦, and 10◦ (in keeping

with the relativistic beaming we expect). While the overall spectral shape is unchanged,

the viewing angles α also result in a shift of the spectrum to shorter wavelengths ω .

This shift can be determined analytically from equation 2.12, from which we find that

for the case θ = 0◦ a spectral feature located at logωp in the α = 0◦ will be shifted to

logωp− log((1−β cosα)/(1−β )) when viewed at other angles α .
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3.4 Discussion of Results

We have numerically calculated the jitter radiation spectrum as produced by particles of

a single (delta-function) energy and of a Gaussian energy distribution. As expected, we

find that the jitter radiation spectrum is strongly dependent on the angle θ between the

particle’s velocity βββ and the direction ŝ which defines the anisotropy of the turbulent

magnetic field distribution produced by current filamentation. The basic form of the

resulting jitter radiation spectrum for a single-energy particle distribution at θ close

to 0 is flat at low-frequencies, followed by two power laws with a peaked transition

point in between them. For our choice of field parameters, the spectrum transitions

to an unpeaked form after θ ≈ 26◦, with a peaked form re-emerging as θ approaches

π/2. The unpeaked spectra can be approximately described as flat at low-wavenumber,

transitioning at a break point to a power law decrease at high-wavenumber. However,

the extended transition region for some of the unpeaked spectra suggests that a three-

region description may still be best to fit such spectra.

We have also considered the angle-resolved jitter radiation spectrum as produced

two particle beam scenarios as might be used in laboratory high-energy density plas-

mas to generate the Weibel-like filamentation instability and diagnose the magnetic

field distribution using the jitter radiation spectrum. In one case, we consider particles

directed in the beam that generates the instability, directed along the axis of filamenta-

tion. In the other case, we consider radiation produced by a secondary “probe” beam of

particles directed into the instability region to generate jitter radiation at a wider variety

of angles θ between the particle paths and the filamentation axis. The resulting radi-

ation spectra are calculated for several different viewing angles α with respect to the

probe beam, as well as several different incident angles θ = Θprobe of the beam with

respect to the filamentation axis ŝ.
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We find that in either case the emissivity is strongly peaked in the forward beam

direction as expected. The spectral distribution of the generated spectrum is dependent

primarily on the distribution of the magnetic field wavenumber’s component along the

beam. Thus, the spectrum produced by the instability-generating beam in subsection

3.3.2 contains details about the magnetic field distribution along the filamentation axis.

Information about the transverse magnetic field distribution must be obtained by using

a secondary beam to probe the instability region at angles transverse to the current

filamentation, as we demonstrate in subsection 3.3.3.
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Chapter 4

Astrophysical Applications of Jitter Radiation

4.1 Summary

Small-scale magnetic field turbulence can be generated in a wide variety of astrophys-

ical plasmas. In particular, the filamentation instability introduced previously is ex-

pected to operate where counterstreaming particle populations occur downstream from

internal shocks or in outflow from sites of magnetic reconnection. We have focused our

work on gamma-ray bursts as one proposed site of such turbulence. The theory of jitter

radiation may be able to explain observational features of GRB spectra that contradict

standard synchrotron radiation models.

4.2 Observed Spectral Features of Gamma-Ray Bursts

In Chapter 1 we presented the basic history of GRBs, an overview of their basic ob-

servational features, and an introduction to the theoretical framework in which they

are being explored. As we outlined there, the past twenty years of GRB observation

have been particularly fruitful, not just in increasing the number of GRB detections but

also in expanding the information obtained along with each event. For our purposes,
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we are specifically interested in the role that small-scale magnetic field turbulence may

play within GRB prompt emission and whether jitter radiation signatures within such

emission can uncover these underlying dynamics.

The Burst and Transient Source Experiment (BATSE) on board the Compton Gamma-

Ray Observatory (CGRO), launched in 1991 and deorbited in 2000, was designed to

continually monitor the full area of sky for a sudden rise in gamma-ray counts, cor-

responding to a gamma-ray burst, a solar flare, or other astrophysical event. Upon

detecting a "burst trigger" event, BATSE would initiate appropriate data recording and

could also send signals to the other CGRO instruments for concurrent measurements.

BATSE consisted of 8 modules, each equipped with a large area detector (LAD) and a

spectroscopy detector (SD). The LADs were designed to provide the sensitive full-sky

monitoring responsible for detecing burst triggers. Comparison of the count rates de-

tected in each LAD also allowed for a rudimentary localization of the GRB, to within

a couple degrees of sky. While the LADs provided good temporal resolution of a burst

event, the SDs were designed to provide better energy resolution. In all cases bet-

ter energy resolution was obtained for brighter bursts. [Kaneko, 2005, Band et al.,

1993] BATSE’s impressive catalog of over 2000 GRB detections remains one of the

best sources of GRB spectra for analysis.[Band et al., 1993, Schaefer et al., 1994, Ford

et al., 1995, Kaneko et al., 2006]

Both time-resolved and time-integrated GRB spectra are generally describable as a

power law at low-energies with a transition to a separate power law at high energies.

Fits to the spectral data generally make use of either a broken power law (BPL) model,

a smoothly-broken power law (SBPL) model, or the empirical Band function model

(also a transition between two power law forms) that was developed in Band et al.

[1993] and found to fit many GRB spectra well. The BATSE spectral catalog has been

extensively analyzed using a variety of these fits to search for correlations between
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Figure 4.1: Fits to the time-resolved spectra in GRB 970315 (BATSE burst 6124) indi-
cate that the spectral flux Fν at peak energy Epeak (left panel, top, in dark red) increases
and decreases in correspondences with the photon index (the low-energy index of the
photon spectrum NE(E)) αph (left panel, bottom, in blue). For large Fν(Epeak) the pho-
ton index αph exceeds the synchrotron limit αph ≤−2/3 shown as a horizontal line in
the left panel and as a vertical line in the right panel. Data from Kaneko et al. [2006].

spectral features. Among the results of such studies, it was noted that the flux at the

peak energy in the spectrum appears to track with the low-energy spectral index, so that

the “harder” spectra with a steeper incline at low-energies tend to have higher flux at the

peak energy.[Crider et al., 1997] Figure 4.1 shows an example of this tracking behavior

for GRB 970315 (BATSE burst 6124), with higher values of the photon index αph

(the low-energy spectral index of the photon spectrum NE(E)) clearly corresponding to

larger flux at peak energy Fν(Epeak). Certain time-resolved GRB spectra also appear

to evolve in time from “hard” to “soft” photon index values.[Crider et al., 1997, Bhat

et al., 1994]

Figure 4.1 also demonstrates the remarkable result that a percentage of time-resolved

GRB spectra appear to be steeper at low-energies than would be achievable from syn-

chrotron radiation, violating what is known as the synchrotron “line of death”.[Crider

et al., 1997, Preece et al., 1998, Frontera et al., 2000, Kaneko et al., 2006] As we
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Figure 4.2: Distribution of the effective low-energy photon index as determined by
BAND fits to 8459 time-resolved spectrom from the BATSE catalog [Kaneko et al.,
2006]. To minimize the effects of BATSE’s energy window, the effective low-energy
photon index is the slope of the BAND fit to the observed spectrum taken at the lower-
boundary of BATSE’s energy window ( 25 keV), following an approach developed in
Preece et al. [1998]. A vertical line indicates the -2/3 limit on the photon index in
optically-thin synchrotron spectra, with the faintly shaded region to the right of this
line indicating the portion of the spectral sample that violate this limit. Adapted from
Kaneko et al. [2006].
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noted in Chapter 1, Section 1.4, synchrotron radiation is limited to low-frequency spec-

tral indices no larger than 1/3 in the Fν spectrum and low-energy spectral indices no

larger than−2/3 in the corresponding photon spectrum NE(E). Analysis of the BATSE

spectral catalog [Kaneko et al., 2006] demonstrated that a sizable percentage of time-

resolved GRB spectra fit violated this synchrotron limit, as shown in Figure 4.2. Low-

energy spectral index values in excess of the indicate that the synchrotron shock model

cannot be producing such GRB spectra without some additional modification. Since

the jitter radiation spectrum can be steeper than the synchrotron “line of death” at low

energies, it may provide an explanation for the appearance of synchrotron-violating

spectra.

4.3 Calculating Jitter Radiation from GRB Sources

4.3.1 Basic Model and Approach

We assume that the bulk of the GRB prompt emission is produced by portions of the

jetted outflow which radiate strongly for a brief time when energized by plasma shocks

or reconnection events. If we consider the GRB source as a jet of material relativis-

tically propelled outward from some central engine, variations in outflow speed and

density will result in a series of internal shocks within the jet. As discussed in Chap-

ter 1, simulations indicate that the filamentation instability tends to occur at or near a

propagating shock front and produce small-scale magnetic field turbulence which will

cause the particles to radiate in the strong jitter regime.

We consider the propagating shock front within the GRB jet to be a portion of a

relativistically expanding curved shell, briefly illuminated as it emits jitter radiation. In

the simplest model, the filamentation forms directly as a result of particles streaming
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towards and away from the shock front and so the local filamentation axis ŝ will be

aligned with the normal to the shock front N̂shock (that is, ŝ ‖ N̂shock. The curvature

of the shock front means that, for an external observer located in direction n̂, the first

radiation received will be from the leading edge of the shock front in the observer’s

direction, for which N̂shock ‖ n̂ and at successive times will be from annular portions of

the shell where the shock normal N̂shock is directed at an angle to the observer’s line of

sight.

Analysis of the high-ω and low-ω asymptotic behavior of the angle-averaged ra-

diation spectrum for regions of filamentation viewed head-on (along the filamentation

axis) and edge-on (transverse to the filamentation axis), as carried out in Medvedev

[2006], yields:

for θ = 0,
dW
dω

∝

 ω1 if ω � κ‖vγ2

ω
−2β‖ if ω � κ‖vγ2

for θ = π/2,
dW
dω

∝

 ω0 if ω � κ⊥vγ2

ω−2β⊥+1 if ω � κ⊥vγ2
(4.1)

where θ is the angle between the line of sight and the filamentation axis [Medvedev,

2006]. We thus expect the radiation spectra from an instantaneously illuminated spher-

ical shell to vary between these two forms at successive observation times, dominated

by the parallel or the transverse spectra as we vary between the two extremes.

Because of the differences in travel time from different portions of the radiating

region, an instantaneous “emission event” in which the curved shell radiates translates

naturally into a lightcurve received by an observer. Recalling that we defined the angle

θ as the angle between the local filamentation axis ŝ and the direction n̂ to the observer

(all in the co-moving frame of radiating region), we can see that this means that the
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received radiation spectrum will naturally evolve with time from θ = 0◦ at the leading

edge towards θ = 180◦, with the range of angles θ depending upon the geometry of

the radiating shock front and the extent to which the emission comes from a narrow

jet or a complete spherical shell. Notably, this rapid temporal evolution of the spectral

form arises simply from the geometry and the sensitivity of jitter radiation to the mag-

netic field anisotropy produced by the filamentation instability, rather than requiring

any large-scale evolution in particle dynamics.

Recent research suggests that magnetic field carried along with the plasma outflow

may play an important role within many jetted outflows, both in aspects of jet struc-

ture and in converting stored magnetic energy to particle acceleration through magnetic

reconnection. In magnetic reconnection, segments of the plasma containing frozen-in

magnetic field lines are forced by the jet dynamics into a critical state which causes the

magnetic field configuration and associated particle motions to change rapidly. This

can cause particle acceleration and redirection of bulk plasma flows within the jet. In

our model, instead of bulk plasma flow being oriented radially inward and outward near

a shock front, magnetic reconnection could generate localized strong plasma flows that

occur in various directions as outflow from sites of magnetic reconnection. The fila-

mentation instability would then cause the growth of small-scale magnetic field turbu-

lence within these various "patches" of reconnection outflow. In such a model, the local

filamentation axis ŝ would not tend to be radial and could have a much wider range of

orientations relative to the normal of the radiating shell. Consequently, it would be pos-

sible to have more complex variations in the temporal evolution of the angle θ and the

corresponding form of the jitter radiation from a single radiating shell.

To produce a simulated GRB using jitter radiation, we first calculate the spectrum

as produced in the rest frame of an individual radiating region, then we relativistically

transform this into the radiation spectrum as would be seen by an observer. The re-
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sulting spectrum is fit using the Band function commonly used for GRB spectral anal-

ysis. We may incorporate the effects of various jet geometries, alignments, and bulk

Lorentz factor profiles to generate the time-evolving spectrum from a single jet front.

A complete GRB may then be simulated by combining the "flashes" of multiple shells

at random times with varying brightnesses that fit the statistical distribution of actual

observed GRBs. The resulting time-resolved GRB spectra can be binned and fit as it

would by various detectors and the results compared with real observations made by

BATSE (CGRO), Fermi, or Swift.

4.3.2 Jitter Radiation Spectra in the Comoving Frame

We present here the jitter radiation spectra in the rest frame of the radiating region

as it propagates relativistically away from the central engine of the GRB source. As

discussed earlier, the radiation spectrum emitted depends upon the particle’s angle θ

with respect to the filamentation axis. Assuming an isotropic distribution of radiating

particles, the radiation emitted into a particular direction towards an observer will be

dominated by the emission from particles whose velocities are within a small angle

of that direction (that is, β̂ββ ≈ n̂). The relativistic motion of the radiating shell means

that radiation emitted into all directions in the shell’s frame will be redirected towards

the forward direction of the propagating shell. Consequently, we average the jitter

radiation spectrum for a particular particle velocity orientation βββ relative to the local

filamentation axis over all emission angles α and φ . We thus use the angle-averaged

form of the jitter radiation equation 2.37 as developed in Chapter 2, Section 2.4.

Calculating the angle-averaged spectrum using Equation 2.37 requires two levels of

numerical integration. First, we integrate over two of the three components of magnetic

wavenumber (the integral over the third component having produced a substitution due
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to the delta function in Equation 2.12, as was discussed in Section 2.3). This result is

the angle-resolved spectrum as developed in Chapter 2 and explored in terms of its lab-

oratory applications in Chapter 3. The angle-resolved spectrum is directly proportional

to
〈
|ξ 2|

〉
, the average over the Fourier spectrum of the accelerations undergone by the

particle; consequently, we will refer to the angle-resolved spectrum from here on as the

“acceleration spectrum”.

The second integration comes from averaging over all emission angles α and φ ,

where we have converted the integral over viewing angle α to an integral over ω ′ =

ω(1−β cosα) with a variable limit that translates the effective shift based on α of the

first integration result’s frequency dependence into an integral over a single spectral

form.

We present full numerical calculations of the jitter radiation spectrum, generated

by successive numerical integrations of equations (5.1) and (2.33) or (2.35) The results

for varying angles θ are presented in Figure 4.3, with data point intervals of 0.2 on the

loge(ω) scale. We have normalized the spectra such that the low-energy asymptotic

value of the θ = 2 spectrum is unity.

The angle-averaged radiation spectrum results again show significant changes in

the spectra emitted at different angles θ relative to the main filamentation axis of the

magnetic field spectrum. Note that this viewing angle effect is entirely due to particles

with velocities directed along the line of sight providing the dominant contribution to

the radiation emitted to any particular viewing angle, since we are using the angle-

averaged emissivity for the spectrum emitted in the forward direction by particles with

a particular orientation angle relative to the magnetic field filamentation.

Figure 4.4 shows a more detailed view of the peak region, calculated at data point

intervals of 0.05 in loge(ω). The spectral shapes and trends are, as expected, much like

the acceleration spectra results seen previously, but broadened and flattened overall due
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Figure 4.3: The angle-averaged radiation power spectra (Fν ) of jitter radiation, numer-
ically calculated for a step size of 0.2 in log(ω) for every two degrees in θ . The dotted
lines are numerical calculations for values close to θ=0, illustrating the behavior of the
spectrum in this limit. The spectra are arbitrarily normalized so that the first calculated
value for the θ = 2 spectrum is 0. The radiation spectra are flat for low-ω , then slope
upwards to a notable peak for low θ . As θ progresses to π/2, the low-ω ′ amplitude in-
creases and the size of the sloped region decreases until the spectra becomes relatively
flat until its sharp decline at high-ω .
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Figure 4.4: A more detailed view of the radiation spectra in the region of the spectral
peak. The spectral values are calculated every 0.05 in log(ω) for finer resolution of the
detail in this region.

to the second integration. Notably, no peak reemerges in the angle-averaged radiation

spectra as θ approaches π/2 although the trend suggests that peak re-emergence for θ

near π/2 may be possible with a different parametrization of our magnetic field spectra.

Figure 4.5 shows the νFν spectrum such as is commonly presented for GRBs and used

in GRB spectral analysis.

Like the acceleration spectrum, the radiation spectrum can be generally described

in terms of three regions (two spectral breaks), and an amplitude or slope in each. In

contrast, the spectral fits typically used for GRB data analysis (i.e., broken power law

(BPL), smoothly-broken power law (SBPL) or Band function) are all two-region fits.

Because for jitter radiation the soft spectral index varies continuously and approaches

0 for low ω , the results of a simple two-region fit to these spectra would depend sig-
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Figure 4.5: The νFν spectra calculated from our jitter radiation power spectral results.
The νFν spectral peak is the peak energy Ep used in the Band functional fit commonly
used for GRB spectra [Band et al., 1993, Kaneko et al., 2006].
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nificantly upon where the lower bound of the data window falls relative to the peak.

Within a fixed data window, a two-region spectral fit would tend to produce an artificial

reduction in the soft spectral index for spectra with higher-frequency spectral peaks or

breaks.

Unfortunately there is no simple way to characterize the behavior of the middle

range of the spectrum because of the transition from peaked to unpeaked spectra as θ

varies. Even in unpeaked spectra, the extent and curve of the transition region between

the flat low ω ′ part of the spectrum and the strongly negatively-sloped high ω ′ part

of the spectrum varies substantially. Consequently, we have chosen to model the un-

peaked spectra still as a three-region spectra rather than solely by its upper and lower

asymptotes.

To conveniently summarize the spectral features and their evolution in this section,

we have developed a five-parameter fit which describes the spectral behavior in three

regions, which we designate as Regions I, II, and III. We can thus characterize the

spectra by defining three lines (each requiring a slope and a reference point on that

line) and finding the transition points at which they intersect. We have chosen our tech-

nique to optimize our results for the spectral indices, rather than the spectral transition

points. The same fit technique may be applied to either the acceleration (or angle-

resolved) spectrum or the radiation (angle-averaged) spectrum. We describe here our

fitting method and then present the results of its application to both types of spectra.

Region I (flat, amplitude A): The low-frequency region I is flat, with a slope close

to zero. To describe this region, we take our initial calculated amplitude to be A, the

low-frequency amplitude. For very small θ our lower calculation boundary may be in-

sufficient to capture the initial flat part of the spectrum, since our first spectral transition

point approaches -∞ as θ goes to 0.
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Region II (positive or negative slope s1): The intermediate-frequency region II may

have positive slope resulting in a peak or a slight negative slope (of notably less mag-

nitude than the slope in region III). We have defined the “drop point” as the region

where the second derivative reaches its minimum value. As the place of largest nega-

tive change in slope, this coincides well with the “knee” or second break of the function,

and is always at slightly higher frequencies than the peak itself. This has the advantage

of being consistently definable for both the peaked and unpeaked spectral forms. We

then find the slope and a reference point in this region by either:

• Method a: for peaked spectra, we take the maximum value of the numerical

derivative as s1 and the data point corresponding to this maximum value as our

defining reference point.

• Method b: for unpeaked spectra, we take the average value of the numerical

derivative in the region between the drop point and the “deviation point” where

the spectrum first drops below A−0.01 (this corresponds to a deviation of about

1% from its original value). Our reference point is the data point halfway between

or next highest to halfway between the deviation and drop points.

Region III (negative slope, defined as -s2): The high-frequency region III has a large

negative slope compared to the rest of the function. This slope is still changing over

the region close to the second spectral break that we are considering, so we determine

a representative slope by calculating the slope of a line between the drop point, which

is the minimum of the numerical second derivative, and the higher frequency point that

is the minimum of the absolute value of the numerical second derivative (the data point

closest to where the second derivative crosses zero in this region). These points are

well-defined for all our radiation spectra as long as the calculation boundary extends a
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couple orders of magnitude in e above the drop point. Either point may be used as a

reference point in this region.

The first spectral transition point τ1 is obtained by solving for the intersection of the

lines defined in Regions I and II, and the second spectral transition point τ2 is obtained

by solving for the intersection of the lines in Regions II and III.

We have chosen to work with the Fν spectrum because of the convenience of its

distinctive flat (spectral index of 0) initial amplitude, but it is easy enough to translate

Fν spectral features into spectral features of the νFν spectrum or the photon spectrum

N(E), as the spectral indices will simply be increased or decreased by 1 and the tran-

sition points between the power law regions will roughly coincide, with a slight shift

based on normalization. In terms of the Band function fit commonly used for GRB

spectra [Band et al., 1993], the relation between the high-energy spectral indices is

βBand = s2−1. The relation between the low-energy spectral indices is complicated by

the fact that the Band function is a two-region fit and not sensitive to multiple spectral

indices below the spectral peak; consequently αBand will range between -1 and s1− 1

depending on where the data fitting window falls relative to our first spectral break τ1.

The νFν peak energy, which is Ep in the Band function, will correspond to a slope of

-1 in the Fν spectrum, and will lie roughly in the vicinity of the second spectral break

τ2 in our fit.

Figures 4.6 - 4.10 show spectral fit results obtained using our above technique on

both the acceleration and (angle-averaged) radiation spectra. In addition to data reso-

lution effects, our results reflect the unavoidable discontinuity in fitting the peaked vs.

unpeaked form of the spectrum (this transition occurs around θ = 26◦ in our results).

Figures 4.6 and 4.10 indicate that the amplitude A and the high-frequency spectral

index s2 are close in both their values and their evolution with θ for the two types of

spectra. The mid-range spectral index s1 varies similarly in 4.8 for both spectra, but
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Figure 4.6: The angular dependence of the low-frequency amplitude A of our calculated
jitter radiation spectra and the corresponding variation of the low-frequency amplitude
A of our calculated acceleration spectra. The low-energy amplitude in each case is
taken to be the first calculated value of the spectrum; for our choice of parameters and
calculation window, this initial value is well below the first spectral break for all θ > 2◦.
In both cases, we have normalized our spectra such that the low-energy amplitude at
θ = 2◦ is 0.
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Figure 4.7: The angular dependence of the first spectral break positions
loge(ω/ωoγ2) = τ1 and loge(ω

′/ω ′o) = T1 in our calculated jitter radiation spectra and
acceleration spectra, respectively. In each case these transition points are found as the
intersection between the low-frequency fit line of slope 0 and the mid-range fit line of
slope s1 (radiation) or S1 (acceleration), as found by our described fit.
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Figure 4.8: The angular dependence of the mid-range spectral indices s1 of our calcu-
lated jitter radiation spectra and S1 of our calculated acceleration spectra. For peaked
spectra the mid-range spectral index is the maximum slope below the spectral peak; for
unpeaked spectra the mid-range spectral index is the average slope between the point at
which the spectrum falls below A− 0.01 and the point at which the numerical second
derivative reaches its minimum value (the “drop point”).
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Figure 4.9: The angular dependence of the second spectral break τ2 of the jitter radi-
ation spectra and T2 of the acceleration spectra. The transition point is the calculated
intersection between the mid-range fit line of slope s1 (radiation) or S1 (acceleration)
and the high-frequency fit line of slope −s2 (radiation) or −S2) (acceleration).
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Figure 4.10: The angular dependence of the high-frequency spectral indices s2 for our
calculated jitter radiation spectra and S2 of the corresponding acceleration spectra. The
high-frequency spectral index is calculated as the slope between the drop point (the
position of the largest negative change in slope) and the higher-frequency position at
which the numerical second derivative is closest to 0.
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Figure 4.11: A comparison of the angular dependence of the positions of the radiation
and acceleration spectral peaks and the spectral drop points, where the numerical sec-
ond derivatives of our calculated spectra reach a minimum. We have also plotted the
angular dependence of the peak in the νFν spectrum. The drop point in our Fν radia-
tion spectrum nicely tracks the behavior of the peak in the νFν spectrum, which is peak
energy Ep in the Band function [Band et al., 1993] commonly used to fit GRB spectra.

appears to approach different asymptotic values as it approaches θ = 0 and θ = π/2,

clearly showing the expected s1 < 1 limiting behavior. The second spectral break τ2

shows that the radiation transition point tends to be about 1/2 a power of e lower than

the second spectral behavior for the acceleration case, but shows similar evolution with

θ in both cases.

Figure 4.11 shows the angular dependence of the spectral peak in both our accelera-

tion and radiation Fν spectra, the νFν spectral peak (peak data point in Figure 4.5), and

the drop point, which we have defined as the minimum in the numerical second deriva-

tive. We clearly see the usefulness of the drop point in tracking the spectral behavior

across the full range of θ , and that it closely tracks the behavior of the νFν spectral
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Figure 4.12: The angular dependence of the strength of the spectral peak, i.e. the
height of the peak above the initial low-frequency spectral amplitude A. We see that the
peak disappears in the radiation spectrum at θ roughly 8◦ less than in the acceleration
spectrum, and does not reappear at θ close to 90◦.
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peak (Epeak). Both Figures 4.11 and 4.12 clearly show the re-emergence of peaked

acceleration spectra as θ approaches π/2 and the lack of peaked radiation spectra for

similar values of θ .

4.4 Incorporating Radiating Region Geometry and the

Effects of Its Relativistic Propagation

Because the radiating region is propagating with the relativistic bulk Lorentz factor

of the material ejected from the GRB central engine, the radiation emitted within the

frame of the propagating material must be properly relativistically transformed in order

to produce the radiation spectrum as would be seen by an observer. In the previous

section, we presented the jitter radiation spectrum as generated by a particular volume

element within the frame of the radiating region, which is part of the relativistically

propagating outflow from the GRB central engine. We saw that the spectrum emitted

by a particular volume element depends upon the angle θ between the local filamenta-

tion axis and the direction to the observer n̂. However, because the radiating region is

itself propagating relativistically, the emission into a particular direction n̂ will be redi-

rected by the relativistic Doppler effect. Thus we must correctly develop the relation

associating radiation from a particular volume element in the observer’s frame with the

corresponding spectral form dependent on θ in the co-moving frame. Furthermore, to

correctly translate this spectrum from the "co-moving" frame of this propagating slice

of the jet to the spectrum as would actually be observed by a distant observer the spec-

trum’s amplitude and frequency dependence must be relativistic transformed from one

frame to the other.
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The relativistic transformations for radiation produced by an optically thin, rela-

tivistically expanding source have been developed elsewhere (see Woods and Loeb

[1999], Granot et al. [1999], Ryde and Petrosian [2002], for example). We follow

the approach outlined in Woods and Loeb [1999] and Medvedev et al. [2009]. Within

the observer frame we assume that our radiating region is a portion of a thin curved

shell. The shell can be defined within a spherical coordinate system so that positions

on the shell are described by a polar angle θshell and an azimuthal angle φshell , where

we define the θshell = 0 axis as the direction to the observer. Since the radiating re-

gion is likely only a portion of this shell, corresponding to the expected jetted structure

of GRBs, we define a jet axis, with the radiating region lies symmetrically within an

opening angle of Θ jet around the jet axis. The jet axis will generally not lie along the

direction to the observer, so in our geometry we define the angle Θlos between the jet

axis and the observer’s line of sight. (We use Θ to here to designate angles that are fixed

for a particular choice of shell geometry, as distinct from angles θ which vary within

any given shell geometry.)

To calculate the observed flux, we want to determine the flux of radiation received

by a detector at the observer’s position. The energy flux per unit surface area at the

detector will be

Fν =
∫

Iν(ψ,φ)cosψdΩ≈
∫

dφ Iν(ψ,φ)ψdψ (4.2)

where ψ is the angle between an incident ray and the normal to the detector plane,

Iν(ψ,φ) is the intensity (as a function of frequency ν) of a ray incident on the detector

from the direction from the direction (ψ,φ) and dΩ = sinψdψdφ is the differential

solid angle of the emitting region. If we presume the detector is at a large distance d

so that d � r and is oriented nearly orthogonal to the line of sight, we can make the
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approximations cosψ ≈ 1, sinψ ≈ ψ , and ψ ≈ r sinθ/d. Defining µ = cosθ so that

ψdψ = (−r2/d2)µdµ we obtain

Fν =
∫

Iν(ψ,φ)

(
− r2

d2

)
µdµdφ (4.3)

If we define a volume emissivity jν for the emitting region, the intensity along a ray

from a particular direction (ψ,φ) as produced by a path length element ds = (r2dθ 2 +

dr2)1/2 measured in the observer frame, is given by

Iν(ψ,φ) =
∫

dIν =
∫

jνds (4.4)

If our thin spherical shell is expanding radially with local velocity βbulk = vbulk/c, this

leads to a bulk Lorentz factor of Γ = (1− β 2
bulk)

−1/2. In principle the Lorentz factor

may vary across the shell surface, particularly relative to the central jet axis; we can

incorporate different bulk Lorentz factor profiles in our model to account for this pos-

sibility. To relativistically transform the energies from the emitting shell’s co-moving

frame into the observer’s frame, we use the relativistic Doppler boost factor

D =
1

Γ(1−βbulk(eeeobs · eeevel))
(4.5)

where eeeobs is a unit vector in the direction of the observer and eeevel is a unit vector in

the direction of the relativistic velocity producing the boost. For our scenario, θshell is

the angle between the local direction of propagation for our relativistically expanding

radiating shell and the direction to the observer, so eeeobs · eeevel = cosθshell = µ .

Defining primed quantities as those in the co-moving frame and unprimed quantities

as those in the observer’s frame, we can similarly define cosθ ′shell = µ ′. Relativistic
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angle aberration relates the angles θshell and θ ′shell such that

µ
′ =

µ−βbulk

1−βbulkµ
(4.6)

The Doppler boosting factor can then be written in terms of either µ or µ ′ as

D(µ) =
1

Γ(1−βbulkµ)
= Γ(1+βbulkµ

′) (4.7)

The energies then transform as

ν = ν
′Dobs =

ν ′

Γ(1−β µ)
(4.8)

where primed quantities again denote values in the co-moving frame, and unprimed

quantities are values in the frame of observation. To relate the volume emissivities in

the co-moving and observer frames, we can use the Lorentz invariance of the quantity

jν/ν2 = j′
ν ′/ν ′2 and the substitution ds≈ dr/µ to obtain

dIν = jνds = j′
ν ′D(µ)2dr/µ (4.9)

We have defined the co-moving frame volume emissivity j′
ν ′(r
′,θ ′shell,φ

′
shell, t) as a

function of a location (r′,θ ′shell,φ
′
shell) of the radiating region and time t. The emissivity

will be a product of the number density of radiating electrons n′e (assumed to isotropic

across the shell) and the ensemble-averaged spectral power per electron P(ν ′,θ ′shell, t).

The spectral power from a particular portion of the curved radiating surface at (r′,θ ′shell,φ
′
shell)

has a form that depends upon the earlier-defined angle θ between the local filamenta-

tion axis ŝ and the direction of emission n̂ in the co-moving frame. If we assume a

simple spherical geometry for the radiating region in the co-moving frame, where the
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radiating shell has a constant radius of curvature R, and that the local filamentation axis

ŝ is aligned with the local normal to the spherical shock front N̂shock, then θ ′shell is equal

to θ . The angle θ ′shell transforms to the observer frame via Equation 4.6, and φ ′ = φ .

The volume emissivity in the co-moving frame is thus

j′
ν ′(r
′,θ ′shell,φ

′
shell, t) = n′eP(ν ′,θ , t) (4.10)

Differences in travel time for emission from different portions of the shell mean

that an observer will receive a time-dependent spectrum even if the shell radiates at a

single emission time tem. In the observer frame, the photon arrival time t is related to

the emission time tem as t = tem− rµ/c, with constants eliminated so that t = 0 is for a

photon emitted from the origin of our spherical coordinate system at time tem.

To obtain the correct flux Fν as a function of time, we must also consider the jet

geometry and the contribution each emitting “slice” of our radiating shell will make due

to its volume. For an infinitesimally thin shell, this translates into an illumination that

progresses from a circular area at the leading edge through annuli of successively larger

apparent radii, each defined by a small range of angles in θshell and contributing the

corresponding relativistically transformed spectral form times a factor proportional to

the radiating surface area. Because of the offset between the jet axis and the observer’s

line of sight, at a certain angle θshell = Θ jet−Θlos, the effective “radiating annuli” will

be cut off by the edge of the jet. We numerically identify the limits on φshell for such

values of θshell to ensure remain within the jet cone.

Incorporating all relativistic and geometric effects, the resulting flux per frequency

received by an observer at time t from our illuminated jet front is

Fν(t) = F0D2(t)P(ν ′(t),µ ′(t))(φ2(t)−φ1(t)) (4.11)
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Our θ -dependent jitter radiation spectra in the co-moving frame can thus be trans-

formed into a time-evolving radiation spectrum in the observer’s frame. A full GRB

can be simulated as a series of similar contributions by multiple radiating shells with a

distribution of illumination times and peak energies taken from the statistics of actual

GRB observations. A “simulated GRB” built up in this fashion can be sampled and

binned as it would be by BATSE or another detector and the results analyzed statisti-

cally for comparison with observations. This work is undertaken and explored in detail

in the related thesis [Pothapragada, 2012] by our collaborator.

4.5 Discussion of Results

We have calculated the angle-averaged power spectra of jitter radiation emitted by a

single relativistic electron undergoing small Lorentz-force accelerations transverse to

its overall velocity. The resulting spectra are equivalent to the ensemble-averaged spec-

tra per electron from a monoenergetic delta-function distribution of relativistic elec-

trons. Our results are based on smoothly broken power-law distributions of magnetic

field wavenumber along and transverse to filamentation produced by the Weibel-like

filamentation instability. The shapes of the resulting jitter radiation spectra are shown

to depend on the underlying magnetic field distributions and to vary with the angle θ

between the electron velocity (being also the line of sight) with respect to the direction

of the field anisotropy due to filamentation.

The power (i.e., Fν ) spectrum produced by monoenergetic electrons moving to-

wards the observer with the Lorentz factor γ , in general, has three power-law segments:

a flat low-energy part, an intermediate-energy region which rises or slightly falls with a

slope of less than unity (the exact value depending on θ ), and a more steeply declining

high-energy region. The shape of the spectrum changes significantly with the angle θ
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between the radiating particle’s velocity and the axis of the current filamentation gener-

ated by the counterstreaming Weibel instability. As θ → 0◦, the low-frequency spectral

break τ1 approaches −∞ and the maximum spectral slope (mid-range spectral index

s1 approaches the value of 1 (the trend of our results agreeing well with the θ = 0◦

case in Medvedev [2006]). As θ increases, the spectral peak weakens as s1 decreases

and τ1 shifts towards the peak region. The disappearance of the spectral peak at some

particular θ appears to be a result of both these spectral changes, and there is an ex-

tended transition region between the low-energy and high-energy power law trends.

Consequently, we find that both the peaked and unpeaked spectra are well described by

a three-region fit. Two-region fits (which are common in GRB analysis) are likely to

miss out on the variation in the spectral slope below the peak at small θ ; consequently

the resulting low-energy spectral index will depend on where the peak falls relative to

the lower bound of a measured spectral window. This will be true even if the low-energy

spectral index is taken at a common energy, as in the “effective” low-energy spectral

index αe f f commonly taken as the tangential slope of the logarithmic spectrum at 25

keV.

In comparing the radiation spectra for the full range of θ , we have found that the

“drop point”, which we determined as the minimum of the numerical second derivative

of the logarithmic data (i.e. the largest negative change in the spectral slope) serves as

a good common reference point for both peaked and unpeaked spectra; in addition, the

“drop point” in the radiation power spectrum evolves with the angle θ much like the

νFν spectral peak energy Ep.

The jitter radiation spectra are significantly harder than synchrotron spectra in the

region just below the spectral peak. This may be a significant mechanism in explaining

the substantial population of gamma-ray burst spectra which appear to violate the syn-

chrotron limit. If we consider emission from a curved shell with a filamentary structure
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aligned everywhere along the normal to the shell (such as may be produced by a curved

propagating shock front, then the leading edge of the shell, where emission energy is

most boosted will also be where the effective angle for our jitter radiation spectrum is

θ = 0◦. The progression of θ with the viewing angle to more distant portions of the

shell would lead to a rapid hard-to-soft evolution in the spectrum from a single radiating

shell and to an overall tracking behavior between the hardness of the low-energy spec-

tral index (or equivalently the photon index αph and the flux at peak energy Fν(Epeak).

Both of these are key trends noticed in analysis of time-resolved GRB spectra, suggest-

ing that jitter radiation and small-scale magnetic field turbulence may indeed play a key

role in the production of GRB prompt emission.
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Chapter 5

Further Explorations of Jitter Radiation Spectra

5.1 Summary

We have presented the spectrum results obtained using the angle-resolved (Chapter

3) and the angle-averaged (Chapter 4) jitter radiation equations. In both cases, the

spectrum depends directly upon the accelerations undergone by the particle population

radiating into the direction of an observer. These accelerations are a result, via the

Lorentz force, of the magnetic field strengths and orientations as encountered along

the particle’s path. Based on the anisotropy generated by the Weibel-type filamenta-

tion instability, we have defined the magnetic field in the radiating region via magnetic

wavenumber distributions that are independent along and transverse to the filamenta-

tion axis. The jitter radiation spectrum results presented in preceding chapters have

been obtained using a particular form and choice of parameters of the magnetic field

distribution. In this chapter we further develop the connection between the choice of

parameters in these field distributions and the spectral features of the angle-averaged

and angle-resolved jitter radiation results.
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5.2 Characterizing the Jitter Radiation Spectrum

From Chapter 2, the angle-averaged emissivity of a relativistic particle undergoing a

series of small transverse accelerations not substantially affecting its overall velocity is

as follows:
dW
dω

=
e2ω

2πc2

∫
∞

ω/2γ2

|wω ′|2

ω ′2

(
1− ω

ω ′γ2 +
ω2

2ω ′2γ4

)
dω
′ (5.1)

The ω dependence contributed by the integral primarily originates in the lower

limit ω/(2γ2) and where it falls on the acceleration spectrum. In Chapter 3, section

3.3, we found that the acceleration spectrum could be simply characterized as three

regions of approximately power-law behavior: a flat initial amplitude at low logω ′

(Region I), a region of positive or negative slope (Region II), and a region with a more

steeply negative slope (Region III) (as was shown in Figure 5.1). Using this to make a

simple approximation for our acceleration spectrum in three regions, we can calculate

an approximate analytical solution to equation 5.1.

We can define our simple approximation to the acceleration spectrum using five free

parameters, all of which may be fit to the spectrum on a loge− loge plot: A = loga0 is

the amplitude of the low-ω ′ limit; T1 = logω ′1 is the transition point between the first

and second regions; S1 is the spectral index in the second region; T2 = logω ′2 is the

transition point between the second and third regions; and −S2 is the spectral index in

the third region (S2 > 0). One method for performing such a fit to our data was outlined
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in Chapter 4, section 4.3.2. The acceleration spectrum then has the form:

for ω
′ < eT1 :〈
|wω ′|2

〉
= eA = a0, (5.2)

for eT1 < ω
′ < eT2 :〈

|wω ′|2
〉
= eA−S1T1ω

′S1 = a0

(
ω ′

ω ′1

)S1

, (5.3)

for ω
′ > eT2 :〈
|wω ′|2

〉
= eA+S1T2−S1T1+S2T2ω

′−S2 = a0

(
ω ′2
ω ′1

)S1
(

ω ′

ω ′2

)−S2

(5.4)

Figure 5.1 shows example models for the acceleration spectra at θ = 10 degrees and θ

= 60 degrees and their comparison to the original acceleration spectra (as in Figure 3.1)

for our previously-defined choice of fitting rules.

To first order (neglecting the second and third terms in Eq. 5.1), the resulting angle-

averaged radiation spectrum is as follows:

for ω/2γ
2 < eT1 :(

dW
dω

)
I
= e2

2πc2 eA
[
(2γ2)−ω

S1e−T1
S1−1 +ω

(S1+S2)e−T1S1+T2(S1−1)

(S1−1)(S2+1)

]
= a0e2

2πc2

[
2γ2− S1

S1−1

(
ω

ω ′1

)
+ S1+S2

(S1−1)(S2+1)

(
ω ′2
ω ′1

)S1
(

ω

ω ′2

)]
, (5.5)

for eT1 < ω/2γ
2 < eT2 :(

dW
dω

)
II
= e2

2πc2 eA−T1S1

[
−ωS1

(S1−1)(2γ2)S1−1 +ω

(
1

S1−1 +
1

S2+1

)
eT2(S1−1)

]
= a0e2

2πc2

[
− (2γ2)1−S1

(S1−1)

(
ω

ω ′1

)S1
+ S1+S2

(S1−1)(S2+1)

(
ω ′2
ω ′1

)S1
ω

ω ′2

]
, (5.6)

for ω/2γ
2 > eT2 :(

dW
dω

)
III

= e2

2πc2 eA−T1S1+T2(S1+S2) (2γ2)1+S2

|S2+1| ω−S2

= a0e2

2πc2
(2γ2)1+S2

|S2+1|

(
ω ′2
ω ′1

)S1
(

ω

ω ′2

)−S2
(5.7)
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Figure 5.1: Here we show a comparison of our original calculated acceleration (angle-
resolved) spectra (as presented in Figure 3.1) for θ=10 (peaked) and θ=60 (unpeaked),
and our model acceleration spectra as described in Equations 5.2-5.4. In Region I, we
extrapolate the initial calculated amplitude. In Region II, we fit the calculated spectra
using the maximum slope in the region and fitting through the point of maximum slope
or by taking the average slope between the “deflection point” and “drop point” as de-
fined in Chapter 4, section 4.3.2. In Region III we have done a simple fit using the slope
and position at a fixed point in this region. Our choice of fit here focuses on accuracy
of the spectral indices, but is less accurate on the peak height and peak/break position
in the calculated acceleration spectra.
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The angle-averaged radiative power spectrum (equations (5.5) - (5.7)) obtained an-

alytically by our fit-based approximation for the acceleration spectrum agrees with that

obtained via full numerical integration in the following section within about 10%. We

have chosen our fitting method for the acceleration spectrum to most closely capture

the spectral indices; a different choice of fit may allow for a better determination of

peak positions.

Calculations of the angle-averaged spectrum for parameters fitted to our acceler-

ation spectra at θ = 10◦ and θ = 60◦ are shown in Figures 5.2 and 5.3. The region

boundaries in these figures indicate that the radiation spectrum cannot be described

by a simple linear approximation in the three regions that were defined by the breaks

in our acceleration spectrum. The key features (position of spectral peak and spec-

tral breaks) of the radiation spectrum originate in the additional terms in Equations 5.5

and 5.6. Consequently, the transition points in our radiation spectrum do not directly

correspond to the transition points in the acceleration spectrum.

The asymptotic behavior of the spectrum at high and low energies can be easily

obtained from Equations 5.5 and 5.7:

for ω/2γ
2 < ω

′
1 : (dW

dω

)
I ∝ ω

0, (5.8)

for ω/2γ
2 > ω

′
2 : (dW

dω

)
III ∝ ω

−S2 (5.9)

Thus the high and low-energy asymptotic behavior of the radiation spectrum will be

identical to the high and low-energy behavior of the acceleration spectrum.

The behavior of the spectrum in the intermediary Region II can also be obtained.

We take the derivative of Equation 5.6 to solve for the position P = log(ωp/2γ2) of the

90



Figure 5.2: The radiation spectrum for θ=10 degrees as obtained analytically using
equations 5.5 - 5.7 and the fit values for the model acceleration spectra as shown in
Figure 3.5. The result calculated (black) via full double numerical integration (as in
Figure 4.3) is shown here for comparison. The spectral transition point defined by
Equation 5.12 and the peak defined by Equation 5.10 are marked with arrows. We
note that the boundaries (dotted lines) between Regions I, II, and III as defined by our
model acceleration spectra do not clearly correspond to transition points in the resulting
radiation spectra. We have extrapolated slopes for Regions I, II, and III to demonstrate
the variation. The model again slightly overestimates the peak energy, but matches the
spectral shape well and agrees with the integrated spectra within about 10%.
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Figure 5.3: The radiation spectrum for θ=60 degrees as obtained analytically from our
simplified model acceleration spectrum (as shown in Figure 3.5) versus the full double
numerical integration result (black). As in the previous figure, we have extrapolated
the slope in Regions I, II, and III. We again obtain a good agreement with the overall
spectral shape, but now with an unpeaked form appropriate to this range of theta. The
spectral transition point defined by Equation 5.12 is marked with an arrow.
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spectral peak, in cases where it exists:

P =
1

1− S1
log
[

S1(S2 +1)
S1 + S2

]
+T2 (5.10)

We note that the peak position becomes undefined in the case S1 < 0, |S1| > S2 , for

which Equation (5.6) is everywhere decreasing. The case S1 < 0, |S1| < S2 , in which

the acceleration spectrum would decline more steeply in Region II than in Region III

is impermissible, so we find that the radiation spectrum will be unpeaked whenever the

mid-range spectral index S1 of the acceleration spectrum is negative (i.e., for S1 < 0).

An exploration of the behavior of peak point P relative to the region boundaries

shows that for certain values of θ the peak of the Region II function exists, but has

crossed the boundary into Region I and consequently does not appear in the resulting

radiation spectrum. Thus, while a calculation of P from the results of fitting the acceler-

ation spectrum appears to indicate the re-emergence of a peak in the radiation spectrum

as θ approaches π/2, this peak falls beyond the Region II lower boundary and is not

observed. We note that the first term in Equation 5.10 is negative for both 0 < S1 < 1

and S1 > 1, so the peak is always located below the transition point between Regions II

and III.

An analysis of the behavior of Equation(5.6) below the Region II peak indicates the

following behavior:

for ω
′
1 < ω/2γ

2 < ω
′
2 :
(

dW
dω

)
II

∝


ω1 i f S1 > 1,

ωS1 i f S1 < 1,
(5.11)

Thus, from Equations 5.8-5.11, it is evident that the spectral indices S1 and S2 of

the acceleration spectra will generally correspond to spectral indices s1 and s2 in two

93



power law regions of the radiation spectra. In the case of the high-frequency spectral

index s2 this correspondence is exact; however, the relation between mid-range (i.e.

intermediate-frequency) spectral indices s1 and S1 is modified an upper limit of unity

on s1 and also breaks down when the first term in equation 5.10 is undefined or larger in

magnitude than the distance between the acceleration’s spectral transition points T2−

T1.

The asymptotic form in Equation 5.8 suggests that we may neglect the second and

third terms in Equation 5.5 and solve for the transition point T = log(ωt/2γ2) at which

the dominating term in Region II becomes significant. We find that:

for S1 < 1 : (
ωt
2γ2

)S1
= (1− S1)ω

′S1
1

T =
1
S1

log(1− S1)+T1, (5.12)

for S1 > 1 : (
ωt
2γ2

)S1
=

(S1−1)(S2 +1)
S1 + S2

(
ω
′S1
1

ω
′(S1−1)
2

)

T = log
[
(S1−1)(S2 +1)

S1 + S2

]
+ S1T1 +(S1−1)T2 (5.13)

We have demonstrated that a simple approximation for our acceleration spectrum

allows us to analytically obtain some of the key features of the resulting jitter radiation

spectrum, notably that it will have a similar three-region form with dW/dω ∝ ω0 for

small ω and dW/dω ∝ ω−s2 for large ω and a possibly-peaked transition region. Un-

like the acceleration spectrum, the intermediary region in the jitter radiation spectrum

will have a maximum slope of 1 and may be unpeaked at angles θ at which the accel-

eration spectrum was peaked. We emphasize that our spectral calculations are all for a

single emitting electron, not a power-law distribution of electrons. Yet, the power-law
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photon spectrum emerges at high energies (above the second jitter spectral break ω2) in

this jitter mechanism, in contrast to the synchrotron exponential spectral decay above

the synchrotron frequency.

5.3 Spectral Features and Exploration of the Spectral

Parameter Space

We have explored the influence of changes in the magnetic field spectral parameters

on the acceleration experienced by the particle and hence its resulting radiative profile.

Chapters 3 and 4 presented the angle-resolved and angle-averaged radiation spectra

calculated from magnetic field spectra of the form given in Equations 2.19 and 2.20

with our original choice of parameters α = α⊥ = α‖ = 2.0, β = β⊥ = β‖ = 1.5, κ =

κ⊥ = κ‖ = 10. In this section, we present the results of varying these parameters. We

vary the joint parameters α , β , and κ in the parallel and perpendicular magnetic field

spectra. We also vary the parameters α‖, α⊥, β‖, and β⊥ individually. Finally, we vary

the ratio K = κ⊥/κ‖. For each variation of the initial parameters, we have calculated the

radiation spectrum for three representative angles at θ = 10◦, 45◦, and 80◦. The results

are presented according to their impact on the characteristics of the radiation spectrum

as developed in section 5.2, namely the initial amplitude A, the spectral breaks τ1 and

τ2, and the spectral indices s1 and s2. We also present the results for the peak “strength”,

the height of the spectral peak above the initial amplitude.

The spectra are divided by 〈B2〉 ∝
∫

f (k‖) f(k⊥)d3k ∝ k
−2(β‖+β⊥)
0 to appropriately

normalize the amplitudes relative to one another, but in all cases we have arbitrarily

normalized the final spectra such that the low-energy asymptotic value of the θ = 10

spectrum with our original choice of parameters is unity (zero on the logarithmic scale).
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As in Chapter 4, Section 4.3.2, the initial, low-frequency amplitude A is the first

calculated value of the angle-averaged radiative power emitted per frequency dW/dω .

This value is generally a good approximation for the asymptotic value of the function

as it approaches lower ω , though it may deviate somewhat from this value for θ ap-

proaching 0, as the spectra becomes sloped rather than flattened at our lower calculation

boundary in ω .

Among the resulting figures 5.4-5.7, variations in the magnetic field parameters κi

produce the largest effect on the low-frequency amplitude, causing changes of about

4 orders of magnitude in e when varied individually via the ratio K = κ⊥/κ‖, and up

to 7 orders of magnitude in e when varied together as κ = κ‖ = κ⊥. Variation with

changes in the magnetic field spectral indices αi and βi are small in comparison, on the

scale of about 1-2 orders of magnitude. The amplitude increases with increasing K for

θ = 10◦ and generally decreases with increasing K for θ = 80◦; thus, it increases when

κ⊥ dominates at small θ and when κ‖ dominates at large θ .

The mid-range spectral index in peaked spectra is the maximum slope below the

peak, as determined by taking the numerical first derivative of our calculated values.

For unpeaked spectra, we find the spectral index as the average slope between the point

at which the graph deviates by more than 0.01 from the initial amplitude A and the drop

point at which the numerical second derivative reaches a minimum.

Figures 5.8-5.10 present the effect of magnetic field parameter variations on s1.

As can be seen in Figure 5.11, the mid-range spectral index is strongly affected by

variations in both the parameters βi, especially for θ = 10◦, and in the relative strength

of the κi values. The peaked θ = 10◦ spectra is notably more sensitive to magnetic field

variations than the unpeaked 45◦ and 80◦ spectra. The ratio K = κ⊥/κ‖ has the largest

influence at all three representative viewing angles, with s1 increasing as κ‖ > κ⊥). We
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Figure 5.4: This figure shows the variation of the low-frequency amplitude of the radi-
ation spectrum (vertical axis) with changes in the magnetic field parameters αi, which
are varied progressively in the horizontal dimension as described below, for each of the
fixed viewing angles θ = 10◦, 45◦, and 80◦ (first, second, and third clusters respec-
tively). The solid line with square data points indicates the behavior when α is jointly
varied (over a range from 1 to 10, as indicated) in both the transverse and parallel mag-
netic field equation: α = α⊥ = α‖. The dotted lines show the effect of individually
varying α⊥ (triangular data points) and α‖ (diamond data points), which chracterize
the magnetic field transverse to and along the instability filamentation axis, respec-
tively. The parameters α⊥ and α‖ are varied from a starting value of 1.5 to an ending
value of 2.5, in increments of 0.1. Our original value of α = α⊥ = α‖ = 2.0 is the
central data point where the lines intersect.
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Figure 5.5: This figure shows the variation of the low-frequency amplitude of the radia-
tion spectrum (vertical axis) with changes in the magnetic field parameters βi, which are
varied progressively in the horizontal dimension for the fixed viewing angles θ = 10◦,
45◦, and 80◦ (first, second, and third clusters respectively). The solid line with square
data points indicates the behavior when β is jointly varied from 1.1 to 1.9, in incre-
ments of 0.1, in both the transverse and parallel magnetic field equation: β = β⊥ = β‖.
The dotted lines show the effect of varying β⊥ (triangular data points) and β‖ (diamond
data points) individually, also from 1.1 to 1.9, in increments of 0.1. Our original value
of β = β⊥ = β‖ = 1.5 is the central data point where the lines intersect.
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Figure 5.6: This figure shows the variation of the low-frequency amplitude of the ra-
diation spectrum with changes in the magnetic field parameters κ , which are varied
progressively in the horizontal dimension for the fixed viewing angles θ = 10◦, 45◦,
and 80◦ (first, second, and third clusters respectively). We vary κ jointly (κ = κ⊥ = κ‖)
by powers of 10, from 1 to 100, as indicated. We also vary κ⊥ and κ‖ relative to one
another by changing the ratio K = κ⊥/κ‖ through a range of values as indicated.

note that even at θ approaching π/2, we obtain a positive slope (and hence a peaked

spectrum) for K = 1/10.

For both peaked and unpeaked forms, the high-frequency spectral index -s2 is de-

termined by taking the slope between the drop point and the absolute minimum of

the second derivative above the peak (i.e., the closest data point to where the second

derivative crosses zero). Figures 5.12 - 5.14 show the effects of variations in the mag-

netic field parameters on -s2. We find that as expected analytically, this spectral index

is primarily influenced by the magnetic field parameters βi. In particular, s2 is most

strongly influenced by β⊥, the high-wavenumber spectral index of the magnetic field

spectrum transverse to the current filamentation. As seen in figure 5.13, β‖ affects s2

only at small angles θ , and its influence even then is less than that of varying β⊥. The

apparently strong influence of κ is largely an artificial effect as the κ parameter’s strong
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Figure 5.7: This figure compares the influences of the magnetic field spectral param-
eter variations on the low-frequency amplitude A of the radiation spectrum obtained
for representative viewing angles θ = 10◦, 45◦, and 80◦. For each spectral parameter
(indicated on the bottom axis) the graph indicates the range between the maximum and
minimum values of A obtained by our variations of that parameter. (The parameter
variations are as indicated in the previous figures and described in detail in the text.)
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Figure 5.8: This figure shows the variation of the mid-range spectral index with changes
in the magnetic field parameters αi. This is the maximum slope below the peak for
peaked spectra, and the average slope in intermediary region for unpeaked spectra,
and is shown for representative viewing angles θ = 10◦, 45◦, and 80◦. The solid line
with square data points indicates the behavior when α is jointly varied (over a range
from 1 to 10, as indicated) in both the transverse and parallel magnetic field equation:
α = α⊥ = α‖. The dotted lines show the effect of varying α⊥ (triangular data points)
and α‖ (diamond data points) individually, from 1.5 to 2.5, in increments of 0.1.
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Figure 5.9: This figure shows the variation of the mid-range spectral index with changes
in the magnetic field parameters βi. The solid line with square data points indicates
the behavior when β is jointly varied from 1.1 to 1.9, in increments of 0.1, in both the
transverse and parallel magnetic field equation: β = β⊥= β‖. The dotted lines show the
effect of varying β⊥ (triangular data points) and β‖ (diamond data points) individually,
also from 1.1 to 1.9, in increments of 0.1.

Figure 5.10: This figure shows the variation of the mid-range spectral index with
changes in the magnetic field parameters κ . We vary κ jointly (κ = κ⊥= κ‖) by powers
of 10, from 1 to 100, as indicated by the dotted line. We also vary κ⊥ and κ‖ relative
to one another by changing the ratio K = κ⊥/κ‖ through a range of values as indicated
by the solid line.
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Figure 5.11: This figure compares the influences of different magnetic field spectral
parameters on the mid-range spectral index s1 of the radiation spectrum obtained for
representative viewing angles θ = 10◦, 45◦, and 80◦. For each spectral parameter (in-
dicated on the bottom axis) the graph indicates the range between the maximum and
minimum values of s1 obtained by our variations of that parameter (The parameter
variations are as indicated in the previous figure and described in detail within the text.)
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Figure 5.12: This figure shows the variation of the high-frequency spectral index with
changes in the magnetic field parameters αi. The solid line with square data points
indicates the behavior when α is jointly varied (over a range from 1 to 10, as indicated)
in both the transverse and parallel magnetic field equation: α = α⊥ = α‖. The dot-
ted lines show the effect of varying α⊥ (triangular data points) and α‖ (diamond data
points) individually, from 1.5 to 2.5, in increments of 0.1.

shifting of the function (as indicated in our analysis of the spectral breaks below) to-

wards higher frequencies interferes with the calculation of s2 by shifting the absolute

minumum of the second derivative outside our calculation boundaries. This causes an

artificial reduction in the steepness of the slope for κ = 100, as evident also in Figure

5.14.

We calculate the first spectral break (i.e. transition point) as the intersection between

the line log
〈
|wω ′|2

〉
= A and the line of slope s1 through the point of maximum positive

slope for peaked spectra or through the data point in the middle of the range over which

we averaged to obtain slope s1 for unpeaked spectra. (If the middle of the range does

not fall on a data point, we take the next larger data point.) We find, as shown in figures

5.16-5.19, that the first spectral break is strongly influenced by changes in α and κ

or the κ-ratio K. The break position shifts to higher frequency by about an order of

magnitude in e as we increase α from 1 to 10 jointly in the parallel and perpendicular
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Figure 5.13: This figure shows the variation of the high-frequency spectral index with
changes in the magnetic field parameters βi. The solid line with square data points
indicates the behavior when β is jointly varied from 1.1 to 1.9, in increments of 0.1, in
both the transverse and parallel magnetic field equation: β = β⊥ = β‖. The dotted lines
show the effect of varying β⊥ (triangular data points) and β‖ (diamond data points)
individually, also from 1.1 to 1.9, in increments of 0.1.

Figure 5.14: This figure shows the variation of the high-frequency spectral index with
changes in the magnetic field parameters κ . We vary κ jointly (κ = κ⊥= κ‖) by powers
of 10, from 1 to 100, as indicated. We also vary κ⊥ and κ‖ relative to one another by
changing the ratio K = κ⊥/κ‖ through a range of values as indicated.
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Figure 5.15: This figure compares the influences of different magnetic field spectral pa-
rameters on the high-frequency spectral index −s2 of the radiation spectrum. For each
spectral parameter (indicated on the bottom axis) the graph indicates the range between
the maximum and minimum values of −s2 obtained by our variations of that parameter
(The parameter variations are as indicated in the previous figures and described in detail
in the text.)
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Figure 5.16: This figure shows the variation of the first spectral transition point with
changes in the magnetic field parameters αi, for θ = 10◦, 45◦, and 80◦. The solid line
with square data points indicates the behavior when α is jointly varied (over a range
from 1 to 10, as indicated) in both the transverse and parallel magnetic field equation:
α = α⊥ = α‖. The dotted lines show the effect of varying α⊥ (triangular data points)
and α‖ (diamond data points) individually, from 1.5 to 2.5, in increments of 0.1.

magnetic field spectra. In varying the αi separately we see that α‖ has a larger influence

at θ = 10◦ and α⊥ has a larger influence at θ = 80◦. Increasing the κ jointly by powers

of 10 results in shifting the first spectral break to higher frequencies by roughly 4 orders

of magnitude in e. Varying the κ parameters relative to one another results in a similarly

strong shift, towards higher frequencies for κ⊥ > κ‖.
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Figure 5.17: This figure shows the variation of the first spectral transition point with
changes in the magnetic field parameters βi, for θ = 10◦, 45◦, and 80◦. The solid line
with square data points indicates the behavior when β is jointly varied from 1.1 to
1.9, in increments of 0.1, in both the transverse and parallel magnetic field equation:
β = β⊥ = β‖. The dotted lines show the effect of varying β⊥ (triangular data points)
and β‖ (diamond data points) individually, also from 1.1 to 1.9, in increments of 0.1.
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Figure 5.18: This figure shows the variation of the first spectral transition point with
changes in the magnetic field parameters κi, for θ = 10◦, 45◦, and 80◦. We vary κ

jointly (κ = κ⊥ = κ‖) by powers of 10, from 1 to 100, as indicated by the dotted lines.
We also vary κ⊥ and κ‖ relative to one another by changing the ratio K = κ⊥/κ‖ through
a range of values as indicated by the solid lines.

The second spectral break τ2 is calculated as the intersection between a line of

slope s1 through the point of maximum positive slope (for peaked spectra) or through

the mid-point of the averaging region (for unpeaked spectra), and the line of slope −s2

through the ”drop point" at which the second derivative reaches a minimum (i.e., the

largest negative change in the slope). Our results (in figures 5.20-5.23) indicate that

the second transition point is most strongly influenced by the κi varied jointly or via

the ratio K. The low-wavenumber magnetic field spectral index also demonstrates a

fairly strong influence, with larger α shifting τ2 to higher frequencies. A comparison

of the influence of α on the two spectral break points (as seen in Figures 5.16 and 5.20)

indicates a very similar shift in both break points; thus increasing α shifts the entire

spectrum towards higher frequencies.

Figures 5.24-5.26 show the variation in the peak strength (which we have defined

as the height of the spectral peak above the low-frequency amplitude A with changes
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Figure 5.19: This figure compares the influences of different magnetic field spectral
parameters on the first spectral break loge(ω/ωoγ2) = τ1 of the radiation spectrum
obtained for representative viewing angles θ = 10◦, 45◦, and 80◦. For each spectral
parameter (indicated on the bottom axis) the graph indicates the range between the
maximum and minimum values of τ1 obtained by our variations of that parameter.
(The parameter variations are as indicated in the previous figure and described in detail
within the text.
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Figure 5.20: This figure shows the variation of the second spectral transition point with
changes in the magnetic field parameters αi. The solid line with square data points
indicates the behavior when α is jointly varied (over a range from 1 to 10, as indicated)
in both the transverse and parallel magnetic field equation: α = α⊥ = α‖. The dot-
ted lines show the effect of varying α⊥ (triangular data points) and α‖ (diamond data
points) individually, from 1.5 to 2.5, in increments of 0.1.

Figure 5.21: This figure shows the variation of the second spectral transition point with
changes in the magnetic field parameters βi. The solid line with square data points
indicates the behavior when β is jointly varied from 1.1 to 1.9, in increments of 0.1, in
both the transverse and parallel magnetic field equation: β = β⊥ = β‖. The dotted lines
show the effect of varying β⊥ (triangular data points) and β‖ (diamond data points)
individually, also from 1.1 to 1.9, in increments of 0.1.
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Figure 5.22: This figure shows the variation of the second spectral break with changes
in the magnetic field parameters κ . We vary κ jointly (κ = κ⊥ = κ‖) by powers of 10,
from 1 to 100, as indicated by the dotted line. We also vary κ⊥ and κ‖ relative to one
another by changing the ratio K = κ⊥/κ‖ through a range of values as indicated by the
solid line.

in the magnetic field parameters. For θ = 10◦, the only of our three representative

angles that has peaked spectrum for K = 1, peak strength increases with increasing α

and β . Individually, increasing β⊥ has the largest effect in increasing the peak strength,

while increasing α⊥ lowers it. Similarly, increasing α‖ increases the peak strength

while increasing β‖ lowers it. The largest effect overall is produced by variation of the

ratio K between the perpendicular and parallel field parameters κi. For κ‖ > κ⊥ (i.e.

K < 1), the peak strength appears to persist to higher angles θ , while for κ⊥ > κ‖ the

peak can be small or non-existent even at θ = 10◦. Thus the ratio between κ⊥ and κ‖,

the respective peaks of the magnetic field perpendicular and parallel spectra, strongly

influences the progression of the spectral evolution between its θ = 0 and θ = π/2

limiting values, as expected.
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Figure 5.23: This figure compares the influences of different magnetic field spectral
parameters on the second spectral break loge(ω/ωoγ2) = τ2 of the radiation spectrum.
For each spectral parameter (indicated on the bottom axis) the graph indicates the range
between the maximum and minimum values of τ2 obtained by our variations of that pa-
rameter (The parameter variations are as indicated in the previous figure and described
in detail in section within the text.
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Figure 5.24: This figure shows the variation of peak strength, namely the peak height
relative to the initial amplitude, for changes in the magnetic field parameters αi. We
present results only for θ = 10◦ because at θ = 45◦ and θ = 80◦ the spectrum is un-
peaked. The solid line with square data points indicates the behavior when α is jointly
varied (over a range from 1 to 10, as indicated) in both the transverse and parallel mag-
netic field equation: α = α⊥ = α‖. The dotted lines show the effect of varying α⊥
(triangular data points) and α‖ (diamond data points) individually, from 1.5 to 2.5, in
increments of 0.1.
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Figure 5.25: This figure shows the variation of peak strength (the peak height relative
to the initial amplitude) with changes in the magnetic field parameters βi. The solid
line with square data points indicates the behavior when β is jointly varied from 1.1 to
1.9, in increments of 0.1, in both the transverse and parallel magnetic field equation:
β = β⊥ = β‖. The dotted lines show the effect of varying β⊥ (triangular data points)
and β‖ (diamond data points) individually, also from 1.1 to 1.9, in increments of 0.1.
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Figure 5.26: This figure shows the variation of peak strength (the peak height relative
to the initial amplitude) with changes in the magnetic field parameters κ . We vary κ

jointly (κ = κ⊥ = κ‖) by powers of 10, from 1 to 100, as indicated. We also vary κ⊥
and κ‖ relative to one another by changing the ratio K = κ⊥/κ‖ through a range of
values as indicated. Note that we obtain peaked forms of the spectra for larger θ when
we have small values of the ratio K.

5.4 Discussion of Results

We have seen that relatively minor changes in the magnetic field spectra can produce

notable effects upon the jitter radiation spectra, particularly in determining whether the

spectrum at certain viewing angles θ are peaked or unpeaked and at what energy the

peak or break appears. While we have included in this section only spectra from a few

representative viewing angles θ , the angular dependence of these spectra demonstrates

that the connection of spectral features to the defining characteristics of the transverse

or parallel magnetic field spectra can be tested by observing their variation with viewing

angle.

Variations in the magnetic field spectral parameters influence the final radiation

spectrum by controlling the width and peak-positions of the functions within the inte-

grand and the extent to which this directly modifies the effect of the offset, which is
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proportional to ω ′. If we consider the general progression of the radiation spectra from

being strongly peaked at small θ to unpeaked at θ near π/2, the trends shown here in-

dicate that the speed of the progression of the spectral shape between the two extremes

is dependent on the relative strengths of the parameters in the magnetic field spectra

transverse and parallel to the shock front.

We have also developed in detail the connection between the radiation spectrum and

the underlying Fourier spectrum of the particle’s acceleration. In particular, we find that

the radiation spectrum has much the same shape as the acceleration spectrum but that

the apparent transition points in the two spectra do not simply coincide for most angles

of θ . Furthermore, although the acceleration spectrum sees the re-emergence of a spec-

tral peak for θ → π/2, the radiation spectrum does not. We have also demonstrated that

a simple fit to the acceleration (or angle-resolved) spectrum allows for the generation

of a model radiation (angle-averaged) spectrum which approximates the realistic one

with 10% accuracy.

In our exploration of the jitter radiation spectral parameter space, we have confirmed

that the jitter radiation high-energy spectral index is determined primarily by the high-k

magnetic field spectral index β , which otherwise has little influence on the spectrum.

The low-k magnetic field spectral index α significantly influences the low-energy and

mid-range portions of the radiation spectrum when varied jointly in both magnetic field

spectrum, but this influence is substantially reduced when only one αi is varied.

The parameters κ⊥ and κ‖ represent the dimensionless correlation lengths of the

magnetic field distribution in the direction along the Weibel current filaments (and the

direction of shock propagation in the case of a GRB) and in the perpendicular plane

(parallel to the shock plane for a GRB). We find that increasing κ⊥ and κ‖ jointly

shifts the entire spectrum to higher energies with relatively little effect on the spectral

shape. Thus, as expected, the location of the spectral peak and break energies (and
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the corresponding peak energy Ep of the νFν spectrum) are determined primarily by

the correlation length of the magnetic field turbulence. The progression of the spectral

shape between the head-on and edge-on cases is sensitive to the variation of the κ

parameter in one function relative to the other, such that for a particular viewing angle

θ either peaked or unpeaked spectra can be attained via modification of the κ ratio K.

In the extreme that κ‖ is 2 orders of magnitude larger than κ⊥ we recover a peaked

spectra for the angles as high as θ ∼ 80 degrees. It is also notable that the spectral peak

and transition points undergo relatively little horizontal shift as K varies when θ = 10

degrees, but shift quite dramatically (3-4 orders of magnitude) during this variation for

θ = 80 degrees.
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Chapter 6

Conclusion

6.1 Jitter Radiation: General Results and Consequences

The theory of jitter radiation has been developed to accurately model the radiation pro-

duced when relativistic charged particles propagate through a turbulent magnetic field

which varies on small scales less than a particle Larmor radius. We have demonstrated

both theoretically and via numerical calculation that the jitter radiation spectrum de-

pends upon the magnetic field distribution encountered by particle’s moving on a path

oriented towards an observer. The resulting jitter radiation spectrum thus depends di-

rectly upon the magnetic field variations encountered by the particles. This allows

for the radiation spectrum produced by a single particle in this scenario to vary more

widely in form than the synchrotron case in which the synchrotron emission from a

monoenergetic particle distribution always exhibits the same low-frequency power law

behavior with a spectral index of 1/3. While particle distribution effects can produce

synchrotron radiation spectrum with lower low-frequency spectral indices, higher val-

ues are not possible without frequency-dependent absorption effects. The jitter radia-

tion spectrum, however, can vary in its low-frequency spectral index even for the case

of a monoenergetic particle distribution, depending on the underlying magnetic field
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distribution. Consequently, the jitter radiation mechanism can be a natural source of

synchrotron-violating spectra.

Small-scale magnetic field turbulence can be established by the Weibel-like fila-

mentation instability, in which perturbations transverse to the flow velocities of coun-

terstreaming particle populations causes the formation and growth of current filaments

that reinforce the initial fluctuations in the transverse magnetic field. The filamenta-

tion establishes an anisotropy such that the resulting magnetic field distribution can be

described in terms of separate distributions of magnetic field wavenumber components

along and perpendicular to the current filamentation axis.

Because of relativistic beaming, the radiation produced into a particular direction

will be dominated by emission from particles moving with velocities βββ within a small

range of angles within 1/γ of the observer’s line of sight. Consequently, the jitter ra-

diation spectrum observed depends upon the angle θ made between the velocity βββ of

particles along the observer’s line of sight and the filamentation axis ŝ. This depen-

dence of jitter radiation’s spectral form on viewing angle with respect to magnetic field

anisotropy can allow for rapid temporal-evolution of the spectrum based on shock and

field geometries, without requiring any evolution of the radiating particle population’s

distribution function.

6.2 Jitter Radiation as a Laboratory Diagnostic

Jitter radiation’s sensitivity to magnetic field distribution within a turbulent region may

allow it to serve as a minimally-invasive magnetic field diagnostic in laboratory plas-

mas. We have calculated the jitter radiation spectrum as may be generated by the

Weibel-like filamentation instability when a laboratory laser-plasma experiment when

a quasimonoenergetic beam impinges upon a plasma to create current filamentation.
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We present results for the spectrum produced both for a monoenergetic “single parti-

cle” (or delta function particle distribution) and for a Gaussian distribution of particle

energies such as is produced in quasimonoenergetic electron beams. The jitter radiation

spectrum produced by a Gaussian distribution of peak energy 200 MeV and full-width-

at-half-maximum of 50 MeV showed little overall difference from the single-particle

result.

We first considered the radiation from electrons in the instability-generating beam,

which may be those caught up in the production of the instability itself. In this initial

case, we find that the radiation spectrum produced is reflective of the distribution of

the magnetic field wavenumber’s component along the filamentation axis (k‖), with a

peak frequency that reflects the dominant wavenumber component and low- and high-

frequency spectral indices that reflect the corresponding indices in the distribution of

k‖. Consequently, the resulting spectrum is notably steeper at low-energy wavelengths

than the synchrotron case would be: for our choice of field parameters the spectral

index has a value of about 4, well exceeding the synchrotron limit of 1/3.

Secondly, we calculated the radiation produced if a secondary electron beam is used

to probe the filamentation region at other angles θ relative to the filamentation axis ŝ.

Such a scenario allows one to vary the influence of the magnetic field wavenumber com-

ponents parallel and perpendicular to ŝ. A probe angle of θ = 90◦ returns a radiation

spectrum that depends only on the distribution of the magnitude k⊥ of the magnetic

field wavevector’s projection onto the plane transverse to filamentation. Even for an

choice of wavenumber distribution f⊥(k⊥) identical to our choice of f‖(k‖) the form of

the radiation spectrum produced for θ = 90◦ is different than that obtained at θ = 0◦

because the projection k⊥ = kxx̂+ kyŷ is a function of two wavenumber components

and randomly oriented in the transverse (xy, for our choice of coordinate systems here)

plane. Consequently, spectrum produced by particles moving in a direction along one of
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the transverse components (say along x̂ involves integrating the transverse field distri-

bution over the other transverse component (ky). As we vary the probe beam’s incident

angle, we progress from a strongly peaked spectral form with a steep, synchrotron-

violating low-energy spectra index, to peaked forms that have a low-energy flattening,

and to unpeaked forms with a low-frequency spectral index of 0 and a single break at

the transition to the high-frequency spectral index.

For both scenarios, the spectral intensity is greatest when viewed from the beams’s

forward direction, in keeping with the expected relativistic beaming of the emission.

Increasing the viewing angle α between the radiating particle velocity βββ and the direc-

tion to an observer n̂ serves both to produce this rapid decrease in the amplitude of the

spectrum and to shift the spectral frequency dependence to lower frequencies.

6.3 Jitter Radiation Implications for GRB Studies

As we have seen in Chapter 4, the diversity of jitter radiation spectra even for a mo-

noenergetic particle distribution may explain the rapid temporal spectral evolution seen

from certain high-energy astrophysical sources such as gamma-ray bursts. If produced

by jitter radiation, such an evolution need not reflect changes in the underlying parti-

cle distribution but can instead reflect changes in the viewing angle θ relative to current

filaments produced in small-scale magnetic field turbulence by the Weibel-like filamen-

tation instability.

The jitter radiation spectra are also notably not limited by the synchrotron “line of

death” that limits the low-energy photon index to values above −2/3. Thus jitter radi-

ation may be able to explain observations of synchrotron-violating spectra in a number

of GRB time-resolved spectra, without requiring ad hoc postulates of selective absorp-

tion. If spectra which violate the synchrotron limit can be reliably linked to sites of
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small-scale magnetic field turbulence, then jitter radiation spectral analysis has the pos-

sibility to uncover features of the magnetic field distribution within such astrophysical

sources.

Although we have focused on GRBs as possible sources of jitter radiation, many

other astrophysical objects may also be likely sites of small-scale magnetic field turbu-

lence. Furthermore, while we have here focused primarily on a filamentation geometry

postulated to lie everywhere along the normal to a spherically-propagating shock front,

the Weibel-like filamentation instability can arise in other scenarios of counterstream-

ing particle flow. This could lead to localized “patches” of filamentation, such as in

systems where magnetic reconnection leads to rapid outflow of plasma and may gener-

ate Weibel filamentation in such regions. Consequently, jitter radiation may be able to

trace more complicated behaviors and particle flow structures in GRBs, astrophysical

jets, and stellar explosions or eruptions for which magnetic field may vary widely from

the large-scale steady-state field required to produce synchrotron radiation.
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