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Abstract



Abstract

A wide class of biogeographic or phylogeographic studies predicts the simultaneous divergence of

co-distributed taxa. Typically, a geological event, or a climate-related change in geography, is

hypothesized to have structured a broad range of biota, many components of which may only be

distantly related to each other. Direct assessment of these predictions is precluded in many studies

by the lack or paucity of appropriate fossils for calibration when estimating divergence times in a

phylogenetic context. However, even without direct divergence time estimation of all the relevant

splits, there might be sufficient information in the data to estimate the probability that these groups

diverged simultaneously if the datasets are treated in a parallel, coordinated, and integrated fashion,

rather than independently. This study investigates the statistical framework and methods used to

address this issue.

Most current statistical phylogeographic methods rely on the coalescent as an underlying model.

While the coalescent is robust to a range of violations of some of its assumptions, such as the Wright-

Fisher demographic model, and, morever, has been elaborated or extended to allow the relaxing of

some of its other assumptions, little has been done to assess and quanitfy how violations of these

assumptions affect phylogeographic analysis in general, and phylogeographic model selection in

particular. One of the major problems in evaluating the performance of phylogeographic methods

with respect to their responses or behavior when the assumptions of the coalescent are violated

is the lack of a rich or flexible non-coalesccent based spatially-explicit simulation engine. The

first chapter of my dissertation is thus focussed on developing and producing such a simulator:

a forward-time, agent-based, spatially-explicit simulation program that generates genealogies for

multiple loci evolving in populations of multiple sexual diploid species on a spatio-temporally

environmentally-heterogenous landscape.
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The second chapter of the dissertation assesses the performance of an Approximate Bayesian

Computation approach to simultaneous divergence time testing model selection. It profiles the

performance this approach under a variety of conditions, ranging from ones in which its model

assumptions are completely met, to ones in which they are selectively violated in varying degrees.

While there currently are no full- or exact-likelihood methods that address this question, under

the special controlled circumstances of the study it was possible to adapt an existing program to

provide some indication of how a full-likehood method may work in contrast.

The third chapter of this work presents a program that simultaneously estimates the divergence

time between sister populations of multiple species in parallel. This program uses a Bayesian

statistical framework to analyze data from multiple genetic loci, integrating over uncertainty in

gene trees, divergence times, and demographic parameters. If limited to two species, the program

allows for reverse-jump MCMC to sample from models of different dimensionality with respect to

the divergence time, so as to explicitly estimate the posterior probability of simultaneous divergence

vs. non-simultaneous divergence.
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Chapter 1

Ginkgo: Spatially-Explicit Simulator

of Complex Phylogeographic Histories

1.1 Introduction

While phylogeography has been an active discipline of evolutionary biology since the 1990’s (cf.

Avise, 2000), the field has seen dramatic changes recently. Knowles and Maddison (2002) made

the case for the use of rigorous statistical approaches to phylogeographic studies, and the number

of statistical methods and software for the analysis of interactions between the geographical and

demographical history of populations and the corresponding genealogies has steadily grown (e.g.,

Carstens et al., 2004, 2005; Hickerson et al., 2007; Nielsen and Beaumont, 2009). The relative

merits of these approaches have been discussed and debated in the literature (e.g., Garrick et al.,

2008; Knowles, 2008; Templeton, 2009, 2008), from analytical (e.g., Beaumont et al., 2010) and

simulation perspectives (e.g., Panchal, 2007; Panchal et al., 2007). In most cases where methods

have been tested using simulated data, the simulation models have been based on the coalescent

(Kingman, 1982a), or have been simple relative to real-world processes (e.g., Petit, 2008; Panchal

et al., 2007). Simple simulations are easy to interpret and allow us to compare methods in the case

of clean data, but there is a danger that the results of such studies may not be applicable to the

analysis of real data.

Here we present Ginkgo, a C++ program for the agent-based simulation of genealogies of mul-
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tiple independent diploid and haploid loci evolving in populations of multiple species in a spatially-

explicit framework with dynamic geographies and environmental selection regimes. These sampled

genealogies can be used directly with phylogeographical analyses that take phylogenetic trees as

input, or sequence data can be simulated on the genealogies to produce input for phylogeograph-

ical software that operates on sequence data. Ginkgo’s simulation engine provides for complex

multi-scale geographical sub-structuring as well as important population genetic and evolutionary

processes (such as selection) that, while not typically accommodated during phylogeographic infer-

ence, are nonetheless commonly encountered in real-world data. Ginkgo thus allows for the design

of more realistic and challenging tests of the performance of phylogeographic analysis methods,

and to evaluate the robustness of different inference procedures to violation of their simplifying

assumptions.

1.2 The landscape

The spatio-environmental framework of Ginkgo is represented by the “landscape”, an abstract

n×m rectangular grid of cells (with n and m determined by the user). Each cell is associated with

a vector of environmental parameters or factors. The fitness of an organism in any particular cell

is given by a function of these environmental factors and the organism’s phenotype (see below).

This fitness determines the organism’s probability of survival in that cell.

Each cell has a carrying capacity associated which determines the maximum number of organ-

isms from across all species that it can support. If the total number of organisms in a cell exceeds

the cell’s carrying capacity, then the organisms are ranked in order of their fitness in that cell (see

below), and the lowest-ranked organisms are culled until the cell is at its carrying capacity.

Sexual reproduction is panmictic within a cell. Spatial-structuring arises through the control of

movement of organisms between cells. Organisms move randomly between adjacent cells, but this

migration is modulated by an entry cost associated with moving into a particular cell. The entry

costs differ across cells and between species, to reflect different ecological constraints or vagilities.

High entry costs can also be used to mimic barrier to gene flow between different regions of the

landscape.

The migration phase begins with each organism being assigned a “movement capacity”. This
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movement capacity is determined by the user for each particular species, and can be specified as a

fixed value, a value drawn from a parametric distribution (e.g., Poisson, normal or uniform), or a

custom vector of probability values associated with different movement capacities. The organism

then selects one of the nine cells that constitute its immediate neighborhood (i.e., its current cell

as well as the the eight cells bordering it) with uniform random probability. The organism then

attempts to “pay” the entry cost for that cell by deducting the cost from its movement capacity.

If the organism has a non-negative movement capacity remaining, then it successfully moves into

that destination cell. This process then repeats with the new cell taken as the current cell, until

the organism’s movement currency is depleted to 0 or less and it can no longer move into any cell,

at which point the migration phase for that organism terminates.

Long-distance dispersal can be introduced at any point during the simulation, determined in

advance by the user specifying a source cell, a destination cell, and the probability of dispersal.

A cell’s entry costs, environmental factors, long-distance dispersal probabilities, and carrying

capacity can be changed during the course of the simulation by specifying a schedule for these

parameters. This allows one to model changes in climate or geological connectivity of the landscape.

1.3 Species

Organisms in the simulation are organized into classes of distinct ecologies, i.e., “species” or “lin-

eages”. Membership in a particular species determines the potential breeding pool, movement

potential, and ecological niche of the organism. The movement potential of the organism refers to

the maximum number of cells an individual can move during local migration and the species-specific

entry cost for each cell. The ecological niche of the organism is determined by a vector of weights

that are used in the calculation of an organism’s fitness. These weights reflect which environmental

variables are the chief determinants of fitness for a species.

1.4 Fitness function

The fitness function for an individual is a modification of Fisher’s geometrical model of evolutionary

adaptation (Fisher, 1930). Each organism has a phenotypic vector (P), and high fitness corresponds

to a close match between the phenotypic vector of organism and the environmental parameters (E)
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of the cell. Specifically, the logarithm of the fitness function is a weighted least-square function,

where the weights are the species-specific parameters (S) that control the species’ niche. Thus, if

the length of the vectors is Q, then the logarithm of the fitness for individual i of species j in cell

k is:

ln (Fijk) = −
Q∑
q=1

S(j)
q

(
P(i)
q −E(k)

q

)2
. (1.1)

The value of the fitness function directly gives the independent probability of survival of an

organism of a particular species in a particular cell. In addition, the value of the fitness function also

determines the ranking of the relative fitness of individuals within each cell during the competition

phase. Note that the use of the Euclidean distance here assumes sphericity and identical units,

following Fisher (1930). If the environmental vectors are not mutually independent, i.e. there is

some co-variance, then this the Euclidean distance is not appropriate, and the Mahalanobis distance

or some other approach is needed to combine the components (Waxman, 2006).

The phenotypic vector of an organism is inherited under the following model:

P(i)
q =

P
(m)
q + P

(f)
q

2
+Norm

[
0, σ =

√
0.5
]

(1.2)

The inheritance of this fitness-determining phenotype is independent of the inheritance of the

genealogies of the neutral loci that are tracked during the simulation. Following inheritance, the

elements of the phenotypic vector are mutated using a species-specific probability distribution of

mutational effects.

1.5 The simulation routine

Each generation or round of simulation consists of the following phases: 1. Landscape Configuration,

2. Reproduction, 3. Migration, 4. Survival, and 5. Competition. During the landscape configura-

tion phase, the user-specified schedule of geographic parameters is used to alter the landscape.

The carrying capacities, environmental parameters, cell entry costs, and long-distance dispersal
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probabilities can be updated.

During the reproduction phase, all organisms of the same species within each cell mate ran-

domly, producing a species-specific number of offspring. Offspring are assigned a gender with

uniform random probability. The haploid allele of the mother is passed to the offspring. For

each independent neutral diploid locus, the offspring inherits an allele at random from the diploid

genotype of each of its parents. As noted above, the offspring’s non-neutral phenotypic vector is

inherited by combining elements from its parents’ phenotypic vectors. Following reproduction, the

parental generation organisms are removed from the simulation (generations are non-overlapping).

During the dispersal phase organisms move across the landscape subject to the constraints

imposed by entry costs of cells.

During the survival phase, the fitness of every organism in its current cell is evaluated to give

the probability of survival. Organisms that do not survive are removed from the simulation.

During the competition phase, the least-fit organisms are removed from each cell until the

number of organisms in each cell is below the cell’s carrying capacity.

The simulation proceeds for a pre-specified number of generations.. The user can determine

when and how genealogies are sampled during the simulation. At the generation chosen, a random

sample of organisms will be selected according to a sampling design which designates how many

organisms are sampled from each cell. The genealogies for all of the loci for the selected individuals

will be saved as trees in NEXUS files (Maddison et al., 1997). The tips of the tree are annotated

with the XY-coordinates of the cell from which it was sampled. The internal nodes will be labelled

with the XY-coordinates of the geographic position of the organism that held the most recent

common ancestor gene copy. Thus, the resulting trees not only contain the phylogenetic history

of the tracked loci, but also the full spatial or geographic history of the loci all the way back to

the most-recent common ancestor of all the sampled alleles. The user can also specify that the

total number of organisms of each species can be sampled at any point in the simulation. This

occurrence sampling results in an ESRI ASCII raster grid format file for each species, where grid

values represent the abundance of that species in each cell of the landscape.
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1.6 Testing and Validation

We use unit testing (Zhu et al., 1997; Huizinga and Kolawa, 2007) to verify that all low-level program

subcomponents (e.g., parsing of configuration files; individual organism movement, reproduction,

survival; genealogy construction and serialization;) behave as expected.

Integrative testing and validation was provided by simulating data under a simple 4-island

scenario, with each island exchanging migrants at an equal rate, and comparing the fixation index,

Fst, calculated on sequences simulated on the resulting genealogies (using Seq-Gen, Rambaut and

Grassly (1997)) to values predicted by the finite-island model (Nei et al., 1977).

We simulated data in Ginkgo under a demographic model consisting of a population subdivided

into 4 demes exchanging migrants at an equal and constant rate, with all other elements of the

simulation set to neutral or disabled altogether (e.g., environmental selection, competition, etc.).

This corresponds to a Wright-Fisher population evolving under a finite-island model, and it has

been shown that the fixation index, Fst, predicted under this model is (Nei, 1975):

Fst =
1

Nm
(

a
a−1
)2 (1.3)

where: N is the size of each sub-population,

m is the proportion of migrants in each sub-population,

a is the number of islands.

While migration rates were fixed for any single simulation run, we selectively varied migration

rates across runs (0 < m < 1), generating 100 replicate genealogies under each distinct migration

rate.

Genealogies of the diploid locus of 25 random individuals were sampled from each population

at various times during the simulation, yielding a series of 100-leaf genealogies. Seq-Gen (Ram-

baut and Grassly, 1997) was used to simulate a 1000-site nucleotide alignment on each of these

genealogies, using a Jukes-Cantor finite-state model of sequence evolution with various mutation

rates (1e−8, 5e−8, and 8e−8 per-site per-generation). Fst statistics were calculated on the simulated
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sequences, and compared to those predicted by Equation 1.3 (Figure 1.1). As can be seen in Fig-

ure 1.1, while there is large variance (probably due to usage of a finite sites model and sampling

error), in general the simulated data is consistent with the predictions of the 4-island incomplete

subdivision model, as indicated by the best fit line (R2 = 0.9259).

For comparative purposes we also simulated geneaologies using ms (Hudson, 2002), a pro-

gram widely used in population genetic and phylogeographic studies for generating samples from

a Wright-Fisher population, under the same demographic scenario (4-island model with migration

rates that were equal and constant within each simulation, but varied across simulations). Se-

quences were simulated on each of the the genealogies using Seq-Gen (Rambaut and Grassly, 1997)

under the same finite-state model and parameters. Fst statistics were calculated on the simulated

sequences, and compared to those predicted by Equation 1.3. As can be seen in Figure 1.2, the

data generated are very similar to that generated using Ginkgo, i.e., with large variance, but with

the best fit line (R2 = 0.9216) closely matching the perfect fit line.

1.7 Performance

When tracking 11 loci (10 diploid and one haploid), Ginkgo takes approximately 100 hours to

complete 150,000 generation cycles with populations of 120,000 individuals evolving on a 50 × 50

cell landscape (running on a 3.3 GHz Intel Xeon machine). Memory usage peaks at approximately

2.75G, and stabilizes at around 2.25G. Ginkgo can also be built to track fewer loci, with dramatic

improvements in performance. For example, if configured to track only one diploid and one haploid

loci, the previous simulation would complete in approximately 10 hours, with memory usage not

exceeding 0.5G.

Because Ginkgo is an agent-based simulator, its performance scales with the total number of

organisms modeled. The upper-limit on the number of organisms can be specified (it is simply the

sum of carrying capacities across all cells). Once the total number of organisms reaches its equi-

librium number, computation speed per generation is constant. Computation time scales linearly

with numbers of generations, provided that the cell carrying capacities do not change.

Memory usage behaves differently, however. Initially, Memory usage grows as a function of the

product of the number of organisms and number of generations simulated. Ginkgo uses reference-
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counting to track the genealogies of loci rather than organismal pedigrees. Thus, memory usage

drops every time the genealogy of a tracked locus coalesces into a single individual. When this

occurs, lineages without descendants are discarded and their memory is freed. Over time, the

average memory usage tends to stabilize to an equilibrium level that is a function of total population

size and the number of loci tracked.

1.8 Comparison with Similar Programs

The only other program currently available that provides for spatially-explicit forward-time individual-

based simulation of genealogies is DIM SUM (Brown et al., 2009). DIM SUM uses a continuous land-

scape, with the positions of individuals tracked by real-valued coordinates (longitude and latitude),

in contrast to the discrete cell-based landscape of Ginkgo, but uses a superimposed discrete grid to

evaluate carrying-capacities and other population-level aspects of the simulation. The underlying

genetic, demographic and spatial aspects of the simulation model of DIM SUM is much simpler than

that of Ginkgo. For example, Ginkgo allows for simulation of multiple unlinked diploid loci, in

addition to a single (maternally-inherited) haploid locus, evolving in sexually-reproducing popu-

lations of multiple species. In contrast, DIM SUM is limited to a single haploid locus evolving in

an asexual-reproducing population of a single species; in effect, DIM SUM tracks (haploid) alleles

rather than individuals. The spatial aspect of Ginkgo is also considerably more complex, with

different species having different movement rates across the same landscape at different times in

different places, and thus allowing for exploration of effect of distinct yet interacting ecologies on

gene genealogy patterns. DIM SUM, on the other hand, has the same dispersal kernel for all individ-

uals at all locations of the landscape. While DIM SUM offers carrying-capacity-based environmental

regulation of organisms, Ginkgo allows for a complex multi-parameter spatio-temporally dynamic

environmental selection regime. Apart from the long-term effects of selection on genealogies, this

regime provides for far more realistic modelling of landscapes, as organismal movements can be

restricted either by abstract movement rate limits or inhospitable environments, or both.

Despite the greater simulation model complexity, due in part to being implemented in C++ as

well as other optimizations, Ginkgo runs much faster than DIM SUM. For example, a population of

a 1000 individuals evolving on a 10 × 10 grid takes 22.56 minutes to complete 10,000 generations
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under DIM SUM on a 3.3G machine. In comparison, running a similar-sized scenario under Ginkgo

on the same machine (but tracking 10 diploid and one haploid loci in a sexual population instead

of a single haploid locus in an asexual population) takes just 4.16 minutes to complete 10,000

generations.

While DIM SUM is much less complex and efficient in comparison to Ginkgo, it does allow for

simulation of individuals on a truly continuous landscape, which can only be approximated in

Ginkgo through the use of very fine-grained cells. In addition, the dispersal kernels used by DIM

SUM may be easier to estimate and/or calibrate using available empirical data, while, with the

abstract movement cost system of Ginkgo, some preliminary exploration and trial-and-error may

be required to approximate the conditions of some real-world systems.

SPLATCHE (Currat et al., 2004) is another simulator that generates genealogies in a spatially-

explicit framework. It uses a hybrid forward-time/coalescent approach to simulating genealogies

and sequences within an environmentally-heterogenous spatially-explicit framework. While the

SPLATCHE simulation system is also orders of magnitude less complex than Ginkgo, lacking, for

example the ability to effect multi-scale spatial-structuring, multi-species competitive interaction,

complex environmental selection and conditioning, etc., its hybrid approach allows for very efficient

generation of genealogies when some of these aspects are not required.

1.9 Future Plans

Our primary motivation in the development of Ginkgo was to provide the software infrastructure

necessary to characterize the performance envelopes of current phylogeographic analysis methods

both under ideal conditions as well as when their assumptions were selectively violated. Ginkgo

can be used, for example, to assess the false positive and false negative rates of these methods in

identifying the correct phylogeographic history responsible for generating a particular set of data

when the data were generated from populations evolving in classic Wright-Fisher conditions, as

well as failure thresholds as these conditions are distorted in controlled and quantifiable steps in

terms of geographical sub-structuring, selection, etc.

The Ginkgo simulation model is extremely complex. This complexity is to provide flexibility, so

that different models and methods can be assessed in different ways, with selective and controlled
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experiments, isolating and focussing on differnent aspects, assumptions or weaknesses of these

models. While there is nothing in principle prohibiting the full suite of Ginkgo features being used

in any particular application, the complexity of interacting parameters and features may make it

very difficult to interpret any results, or ensure that any such interpretation is not artifactual.

Thus, for example, while the software itself allows for high-dimensional environmental selection

to be used in conjunction with nested spatial structuring, stochastic migration, and multi-species

competition simultaneously, it would not only be challenging to calibrate the simulation parameters

realistically, but also it would difficult to have any confidence that the results of a method applied

to this simulation data are not being skewed by some abstract artifactual interaction of these

parameter settings that would not be encountered in the real world.

While it is tempting to consider using Ginkgo as the simulation engine generating samples from

the prior in an Approximate Bayesian Computation (ABC; Beaumont et al. (2002); Bertorelle et al.

(2010)) context, the current state of computational power precludes this application for all but the

simplest of studies. However, Ginkgo can still be used in ABC framework as a discovery and

validation tool, to identify and develop useful summary statistics as well as to assess their power

with respect to the prior models as well as robustness as these model assumptions are violated. We

consider this, in fact, to be one of the more important applications of Ginkgo following its primary

purpose of method evaluation discussed above.

In terms of Ginkgo features, we plan to incorporate a speciation mechanism in the next version

of the program. This functionality is greatly desirable as it would provide the tools to understand

how micro-level mechanistic processes may modulate the processes of speciation in a geographical

framework, and allows Ginkgo to be sued as a platform to explore lineage diversification in a

geographical context.

1.10 Availability

Ginkgo is released under the GNU General Public License 3+. Pre-compiled binaries for some

platforms as well as user documentation are available for download from http://phylo.bio.ku.

edu/ginkgo/, while the source code is available from the public source code management repository

at http://github.com/jeetsukumaran/Ginkgo.
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Figure 1.1: Integrative validation of the Ginkgo simulation engine. Y-axis represents fixation index
(Fst) values, as calculated from sequence data simulated on genealogies produced by Ginkgo under
a neutral 4-island model with migration, while X-axis represents corresponding values predicted by
the n-island theory (Nei, 1975) for the same migration rate. Solid line shows best fit line (intercept
= 0.0037± 0.0018, slope = 1.0103± 0.0073, R2 = 0.9259), while dashed line shows the theoretical
perfect fit line (i.e., intercept = 0 and slope = 1).
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Figure 1.2: Simulation of the previous scenarios under ms for comparison purposes. Y-axis repre-
sents fixation index (Fst) values, as calculated from sequence data simulated on genealogies pro-
duced by ms under a neutral 4-island model with migration, while X-axis represents corresponding
values predicted by the n-island theory (Nei, 1975) for the same migration rate. Solid line shows
best fit line (intercept = 0.0039± 0.0019, slope = 1.0563± 0.0077, R2 = 0.9216), while dashed line
shows the theoretical perfect fit line (i.e., intercept = 0 and slope = 1).
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Chapter 2

Evaluation of Performance of

Approximate Bayesian Computation

Approaches to Simultaneous

Divergence Time Testing, with

Comparisons to Full-Likelihood

Approaches

2.1 Introduction

A number of biogeographic and phylogeographic hypotheses predict the simultaneous divergence of

multiple groups of sister taxa. For example, the Kra Ecotone is a climatic and biotic transition zone

located on the Thai-Malay Peninsula that marks the boundary between the mainland Indochinese

biota to the north and the Sundaic biota to the south. This zone corresponds to the western

boundary of the Sundaic region, just as Wallace’s Line (Mayr, 1944; Simpson, 1977; Van Oosterzee,

1997), marking the transition from the Sundaic biota to an Australasian/Sahul biota, corresponds

to the eastern boundary of this region. A wide range of biotic systems exhibit a shift in dominant
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elements across the Kra Ecotone, including flowering plants, arthropods, reptiles, amphibians,

fishes, mammals, birds etc. (Turner et al., 2001; Schulte et al., 2003; Michaux, 2010; Lourie and

Vincent, 2004; Inger, 2005; How and Kitchener, 1997; Evans et al., 2003; Brown and Guttman, 2002;

Baker et al., 1998; Inger, 1999). One class of traditional explanations for this pattern are climate-

based, which posits the seasonal differences in precipitation (in particular, the minimum number of

consecutive months without rain in the dry season) as the cause for the structure observed in the

relationships of the biota between the regions on either side of the Kra Ecotone (Whitmore, 1987;

Morley and Flenley, 1987). Woodruff (2003), however, suggests that marine highstands during the

Neogene (Hall, 2001; Holloway and Hall, 1998) may have imposed barriers to gene flow between

populations on either side of the ecotone, which have left their signatures in diversity patterns we

see today. A clear and testable prediction of the Neogene marine highstand vicariance hypothesis

is that pairs of sister taxa co-distributed across the Kra Ecotone would share the same divergence

time. If climatic factors were the underlying cause for the patterns, on the other hand, there is no

reason to suppose that the divergence times would be shared. Another example from Southeast Asia

can be found in the Philippines. The eustatic lowering of sea-levels during Pleistocene hypothermals

resulted in groups of smaller islands aggregating into “superislands”, as the channels between them

became exposed. The fragmentation of these Pleistocene Aggregate Island Complexes (PAIC’s) of

Greater Luzon, Greater Negros-Panay, and Greater Mindanao as the sea levels rose again after the

Pleistocene has been suggested as the historical basis for inter-island relationships and patterns of

endemism observed in various groups, such as mammals, amphibians and insects (Heaney et al.,

2005; Brown and Guttman, 2002). A prediction that follows from this hypothesis is that sister taxa

co-distributed across any of the within-PAIC component islands would share the same divergence

time, dating back to the Pleistocene.

Ideally, these predictions of simultaneous divergence of co-distributed sister taxa could be tested

by directly comparing divergence times of the splits in question from a time-calibrated phylogeny

estimated on data collected from these systems. In many cases, however, the lack of suitable and

reliable fossils to provide the calibration makes this approach unsatisfactory, due to large error or

uncertainty that results from being forced to rely on a few, distant, external calibration points.

Hickerson et al. (2006b) developed an Approximate Bayesian Computation (ABC) approach to

testing this prediction of simultaneous divergence without using fossils, msbayes, and since then
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this method has been applied in a number of different empirical studies: e.g. Leache et al. (2007);

Daza et al. (2010); Barber and Klicka (2010).

Approximate Bayesian Computation is a Bayesian approach to estimating the posterior prob-

ability of a model (and parameters) H given the data X (Beaumont et al., 2002; Didelot et al.,

2011; Beaumont, 2010) without calculating the likelihood. The calculation of the marginal like-

lihood of the data required to evaluate the posterior probability under Bayes Theorem is usually

a high-dimensional integral and is difficult to compute. Thus, instead of evaluating the posterior

probability directly, most full-likelihood Bayesian approaches sample the posterior probability dis-

tribution using Markov chain Monte Carlo (MCMC), importance sampling (IS), sequential Monte

Carlo (SMC) or other approximation methods. While these approximation approaches avoid the

often intractable calculation of the marginal likelihood of the data, they all still require calculation

of the likelhood for every sample, and this is still a computationally expensive operation, even if

tractable.

Approximate Bayesian Computation, in contrast, avoids the calculation of the likelihood by the

use of a set of summary statistics. Samples are drawn (simulated) from the prior, and rejected

based on whether or not the distance between the summary statistics calculated on the samples

and those calculated on the observed data falls under some pre-specified threshold. The samples

from the prior that are not rejected are accepted as samples from the posterior, and the posterior

probability of any particular parameter value is given by its weight or frequency of representation

in the set of accepted samples.

The Approximate Baysian approach of Hickerson et al. (2006b) estimates the posterior proba-

bility of the numbers of divergence times under a hierarchical model (Figure 2.1). Specifically, their

msbayes approach estimates the posterior probability of ψ, which indexes the number of distinct

divergence times across the Y pairs of co-distributed taxa, ψ ∈ {1, 2, . . . Y }, integrating over other

parameters including the mutation rate, actual divergence times, and, optionally, post-vicariance

migration between daughter populations.

Hickerson et al. (2006a) investigated numerous summary statistics for use in the problem of

divergence time estimation, and based on the results of this study, a preliminary set of these were

adopted for use in msbayes (Hickerson et al., 2006b). Various other summary statistics were added

to the implementation of the msbayes pipeline, including Wakeley’s ψ, which Huang et al. (2011)
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reported functioned well in distinguishing migration from isolation.

While the initial work of Hickerson et al. (2006b) and the later work of Huang et al. (2011)

employed thorough tests to evaluate the effectiveness and power of the msbayes approach and its

associated summary statistics, in all cases the testing was carried out with simulation models that

were identical to the estimation model. As such, we do not understand how the msbayes approach

behaves when dealing with data that does not conform to the model and its underlying coalescent

assumptions. For example, the ancestral populations as well as the daughter subpopulations of all

taxa are assumed to be pan-mictic with no substructuring, due to the Wright-Fisher premise of the

coalescent. However, in many of the applications of this approach discussed above, as well as in

many real-world populations, this is plainly false.

Furthermore, while the msbayes model does allow for incomplete isolation following the vicari-

ance, i.e., migration or gene flow between the daughter populations, its performance has only been

evaluated in a single simulation-based study (Huang et al., 2011). As previously noted, employed

a simulation model that was identical to the estimation model. This does not allow for exploration

of the method’s behavior as assumptions of the model are violated.

Another issue is the distinction between parameter estimation and model selection using Ap-

proximate Bayesian Computation. Most work in the development of ABC methods, as well as

investigations into the approach’s effectiveness and robustness, has been in the context of parame-

ter estimation in population genetics (e.g. Beaumont, 2010). Model selection, which is the objective

here, in contrast, has only recently received attention, and numerous issues have been identified

(Robert et al., 2011; Marin et al., 2011). For example, even if the summary statistics are sufficient,

the posterior probability of one model relative to another maybe be incorrect by an arbitrary factor

(Marin et al., 2011). As such, it would also be very useful to understand the performance of an ABC

approach to model selection as given by msbayes in relation to a full-likelihood approach to model

selection in phylogeography. An example of a full-likelihood method that might be used would

be IMa2 (Hey, 2010). IMa2 uses a full-likelihood Bayesian Markov chain Mont Carlo approach to

estimate population size, migration, and splitting time parameters for an ancestral population that

splits into two or more daughter populations with possible post-vicariance gene flow (Figure 2.2).

If the mutation rates are known (and are constant), then the IMa2 approach can be used to

estimate the posterior probability of simultaneous divergence of multiple co-distributed taxon pairs.
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This is because the IMa2 estimates of the divergence time are in units of mutation, and if the muta-

tion rates of different taxa are known, even to an arbitrary common constant factor, the estimates

of divergence times can be scaled, the results can then be related across multiple independent runs

for different taxa. Generally, the mutation rate is an unknown parameter, and thus using IMa2

to test for simultaneous divergence is not viable approach for most empirical studies. However, in

simulation-based studies the mutation rate is generally unambiguously known, and, furthermore,

can be fixed to be equal across different taxa. This is key to being able to relate the results across

the different taxa, and thus use IMa2 as a full-likelihood Bayesian approach to test for simultaneous

divergence. This approach does still require some approximation (specifically, the binning of diver-

gence times) due to the precision by which IMa2 reports its results. Nonetheless, while less than

ideal, using IMa2 in this way does allow for some assessment of how a full-likelhood Bayesian model

selection method may perform in contrast to an Approximate Bayesian Computation approach.

This study will characterize the relative performance of the msbayes Approximate Bayesian

Computation and IMa2 full-likelihood Bayesian approaches to simultaneous divergence time test-

ing under conditions that range from full conformance to the estimation model assumptions to

controlled and selective violation of these assumptions:

1. The baseline cases, where simulated conditions approximate as nearly as possible the assump-

tions of the coalescent ancestral process that underly the estimation methods.

2. Cases with post-vicariance migration, where isolation between daughter subpopulations after

the split is incomplete.

3. Cases with substructuring, where within-population substructuring (in both the ancestral as

well as daughter populations) is strong enough to result in deviations from the pan-mictic

assumptions of the coalescent.

This study will characterize each method’s performance in terms of of its power to detect non-

simultaneous divergence under the baseline configuration, as well as different levels of incomplete

isolation and within-population substructuring. Forward-time simulations in a spatially-explicit

framework will be used to generate the data used in the study, thus allowing for the assessment of

the robustness of these coalescent-based phylogeographic model selection to detecting false patterns
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when confronted with data with inherent spatial relationships (as described in, for example, Irwin,

2002).

2.2 Methods

2.2.1 Phylogeographic Simulation

Design

The core experimental design consisted of a two-species system, SA and SB, each with independent

vicariance histories (Figure 2.3). The ancestral population of the first species, S
(anc)
A , split into two

daughter subpopulations, S
(1)
A and S

(2)
A , at time t = TA generations. The ancestral population of

the second species, S
(anc)
B , in contrast, split into two daughter subpopulations, S

(1)
B and S

(2)
B , at

time t = TB generations. The difference in two divergence times, ∆T = TA − TB, thus represents

the separation in time between the divergence events in units of generations. Simulations were

run under a range of divergence-time separation models. The simulation models in which ∆T = 0

represented the cases of true simultaneous divergence, while the simulation models where ∆T > 0

represented the cases of true non-simultaneous divergence. In the analyses and discussions that

follow, the meta-parameter, ψ, will be used to index the number of distinct divergence times in the

simulation, with ψ = 1 representing the single divergence time model and ψ = 2 representing the

multiple divergence time model.

The simulations were carried out under three classes of conditions or configurations:

1. The baseline conditions were ones with both complete post-vicariance isolation between the

daughter subpopulations, as well as unsubstructured populations. That is, following the

vicariance event splitting the ancestral population S
(anc)
A at TA, no migrants were exchanged

between S
(1)
A and S

(2)
A , while following the vicariance event splitting the ancestral population

S
(anc)
B at TB, no migrants were exchanged between S

(1)
B and S

(2)
B . In addition, movement of

individuals within each of the subpopulations was allowed to be as unrestricted as possible,

so as to approach as nearly as possible the pan-mictic reproduction assumptions of a Wright-

Fisher population.

2. Under the incomplete isolation conditions, some degree of gene flow persisted between S
(1)
A and
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S
(2)
A after the vicariance event at TA; that is, isolation between the daughter subpopulations

of species SA was not complete. Isolation between the daughter subpopulations of SB, on

the other hand, remained complete. All populations were unsubstructured, i.e., approaching

Wright-Fisher pan-mixia.

3. Under the within-population structuring conditions, movement of individuals within each of

the subpopulations (S
(1)
A , S

(2)
A , S

(1)
B and S

(2)
B ), were restricted, thereby introducing effects of

isolation by distance by varying degrees. Isolation between the daughter populations following

the respective vicariance events was complete in all cases.

Implementation

Forward-Time Simulations (Ginkgo) The forward-time simulations were carried out using

Ginkgo, which generates data for multilocus diploid sexual (dioceous) individuals in a spatially-

explicit framework (Sukumaran and Holder, 2011). An initial set of simulations of 10 replicates

under the baseline configuration was carried out and analyzed to explore the parameter space and

identify regions of interest to be investigated in further detail in subsequent simulations. Following

this, an additional 10 replicates each under the three levels of post-vicariance gene flow and the

three levels of within-population structuring were also carried out.

A separate Ginkgo simulation was run for each species (SA and SB) for each replicate under each

experimental configuration and combination of parameters. Each Ginkgo simulation was carried

out using a landscape grid consisting of 7 rows and 14 columns. Two 5×5 regions were established

within this grid, corresponding to the regions occupied by each daughter subpopulation. The

carrying capacity for each of these regions were set such that the total number of organisms across

both regions corresponded to different values of the daughter subpopulation size, N . Various values

ofN were explored in a pilot set of simulations, N ∈ {500, 1000, 2500, 10000}, to determine optimum

values that satistified practical as well as theoretical criteria. In particular, population sizes had

to be small enough to allow for the completion of large numbers of simulation replicates, yet large

enough so as not to result in artifactual behavior. These pilot studies indicated that subpopulation

sizes of as small as 2000 or greater resulted in reasonable and similar behavior (corroborated by

the backward-time simulations; see below), as long as mutation rates were scaled accordingly. As

19



such, due to the efficiency in run times, in subsequent simulations daughter population sizes of

N = 2500 were used. This corresponded to a carrying capacity of 100 individuals per cell, and an

ancestral population size of 5000. Outside the subpopulation regions, the carrying capacity was set

to 0, such that no organism would be able to survive a generation there.

Ginkgo uses an artificial economy of “movement costs” for regulating the movement and inter-

action of individuals within its spatially-explicit framework (Sukumaran and Holder, 2011). Each

individual organism in the simulations had a Poisson-distributed movement “budget” with a mean

of 3. For the baseline cases, the entry costs for each cell within each subpopulation’s region was set

to the minimum value of 1. Previous work (Sukumaran and Holder, 2011) has indicated that this

allows for within-population movement that approximates a Wright-Fisher population sufficiently

well enough such that results can be predicted by both classical population genetics as well as

coalescent theory. Movement outside the subpopulation regions was restricted by imposing a cell

entry cost of 99.

The two subpopulation regions were initially placed adjacent to each other, with no restriction

of movement from one region to another, such that both subpopulations effectively functioned as

a single continuous population. At t = 10N generations after the start of the simulation (TA), a

vicariance event was simulated in SA by separating its two subpopulation regions by a region of

cells in which the entry costs were 99 and the carrying capacity was 0. This effectively prohibited

any interaction or gene flow between the two subpopulation regions.

For true simultaneous divergence simulation configurations, the ancestral population of SB

diverged at the same time as the ancestral population of SA in corresponding simulations. For non-

simultaneous divergence configurations, the ancestral population of SB diverged at TA + 4N,TA +

8N,TA+16N,TA+32N generations in different experimental configurations. In all cases, divergence

was carried out as described in the case for SA, i.e., by introducing a region that posed a barrier

both to movement and occupancy.

For the cases with incomplete post-vicariance isolation, the “stochastic long-distance” dis-

persal feature of Ginkgo was used to to established controlled gene flow. Three different levels

of incomplete isolation were simulated, resulting in individual per generation migration rates of

m ∈ {0.000025, 0.000067, 0.00400}, corresponding to low (Fst = 0.8), high (Fst = 0.6), and very

high (Fst = 0.02) migration rates, respectively.
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For the cases with within-population substructuring, the movement currency of individuals

within each subpopulation remained the same, but the cell entry costs were increased. Cell entry

costs of 6, 9, and 11, were used, to result in low, medium and high within-population substructuring

respectively.

Multiple replicates (n = 10) were run for each distinct experimental configuration and combi-

nation of parameters. Each replicate had multiple sampling periods, in which 25 individuals were

sampled at random from each of the daughter populations S
(1)
A , S

(2)
A , S

(1)
B , and S

(2)
B . For the initial

set of simulations, a sampling period density was high, with samples taken every 2N generations

after the second vicariance event, TB. For subsequent simulations, a reduced sampling regime was

used, with samples taken at TB + 4N , TB + 8N , TB + 16N , and TB + 32N generations after the

second vicariance event, TA. Each sample resulting in two sets of genealogies per sampling period:

a set of genealogies for the diploid loci of the 50 individuals in total sampled from S
(1)
A and S

(2)
A , as

well as a set of genealogies for the diploid loci of the 50 individuals in total sampled from S
(1)
B and

S
(2)
B . Both single-locus and multi-locus (L=5) samples were used. These pairs of sets of genealo-

gies, one pair of sets per sampling period per replicate per distinct experimental configuration and

combination of parameters, constituted the final output of the phylogeographic simulation phase

of the study.

Backward-Time Simulations (ms) The backward-time simulations were carried out using ms

(Hudson, 2002), which generates data under the coalescent for a haploid unisexual single locus

system. Two separate simulations were run for each replicate of each distinct combination of

parameters (population size and difference in divergence times), one for SA and one for SB. Each

simulation produced a sample of 50 individuals from two populations of size N each, with 25

individuals sampled from each subpopulation. Each replicate thus resulted in two genealogies of 50

individuals each, with one genealogy relating 25 individuals in each daughter population of SA, S
(1)
A

and S
(2)
A , and the other genealogy relating 25 individuals in each daughter population of SB, S

(1)
B

and S
(2)
B . The daughter populations of SA were set to merge looking backward in time at a range of

times in the past, from 4N to 64N , to replicate the corresponding sampling periods in the forward-

time simulations. In the true simultaneous divergence configurations, the daughter populations of

SB merged at the same time as those of the corresponding SA simulations. In the non-simultaneous
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divergence configurations, the daughter subpopulations of SB merged at 4N, 8N, 16N, 32N , and

64N generations earlier (looking backward in time) than the corresponding SA simulations, to

simulate different separations in divergence times between the two species SA and SB. As the

backward-time simulation performance was invariant with respect to population size, a greater

range of population sizes was explored, N ∈ {500, 1000, 2500, 10000, 30000, 300000}. Only single-

locus baseline configuration simulations were carried out using the backward-time simulations.

2.2.2 Sequence Data Alignment Simulation

All the methods being tested use alignments of nucleotide sequences as their basic input data.

As such, 1000-character alignments of nucleotide sequences were simulated under each genealogy

produced by the phylogeographic simulation phase. The genealogies, scaled in units of generations,

were rescaled by the various per site per generation mutation rates to produce trees with edge

lengths in units of expected numbers of substitutions. These trees were used as input to Seq-Gen

(Rambaut and Grassly, 1997) under a HKY model Hasegawa et al. (1985) of character evolution

with a transition-transversion ratio of 0.5, i.e. corresponding to a Jukes-Cantor model.

For the pilot studies, per site per generation mutation rates used were: 2e−8, 2e−7, 2.4e−7, and

7e−6. These mutation rates are higher than the mutation rates generally reported for eukaryotic

organisms, which averages between 1e−10 to 1e−8 (Wakeley, 2009). However, the population sizes

used in the simulation were small (N = 2500), and the higher mutation rates compensated for

these to result in reasonable eukaryotic population parameter values, θ: 0.0002, 0.0020, 0.0024,

and 0.0700. These population parameter values are within the range reported by many empirical

studies of eukaryotes (Wakeley, 2009). For the full analysis, alignments generated under per site per

generation mutation rates of 2.4e−7 and 7e−6 were used, for two categories of population parameter

values: “low” (θ = 0.0024) and “high” (θ = 0.07).

The pairs of alignments simulated on the pairs of sets of genealogies constituted the final output

of the entire simulation phase, and were used as the primary input for the methods being evaluated.

2.2.3 Estimation Procedures

The simulation phases described above produced multiple pairs of sets of alignments which could

be characterized by distinct combinations of the following parameters:
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• N , the size of the daughter subpopulations; for the full analyses described below, N = 2500.

• ∆T , the actual separation or difference in divergence times between the two pairs of sister

taxa, TB − TA, measured in units of N generations, where N was the subpopulation size; in

production studies, ∆T ∈ {0N, 4N, 8N, 16N, 32N}.

• m, per individual per generation post-vicariance migration rate between daughter populations

S1−1 and S1−2; m ∈ {0.000025, 0.000067, 0.00400}, corresponding to low (Fst = 0.8), high

(Fst = 0.6), and very high (Fst = 0.02) migration rates, respectively.

• z, within-population substructuring (i.e., restriction of movement within each of the daughter

populations, S
(1)
A , S

(2)
A , S

(1)
B and S

(2)
B ); these were Ginkgo specific values of 1, 6, 9, and 11 for

the between cell “movement costs”, and corresponded to minimal, low (Fst = 0.02), medium

(Fst = 0.6), high (Fst = 0.8) degrees of substructuring, respectively.

• tg, the time period in which the samples were taken, tg ∈ {TB +4N,TB +8N,TB +16N,TB +

32N}.

• L, the number of loci used (1 or 5).

• θ, the effective (per-site) population parameter of the alignment.

Each paired set formed the input data to the two approaches for simultaneous divergence

testing being evaluated: an approximate Bayesian computation approach using msbayes, and a

full-likelihood approach using IMa2.

Approximate Bayesian Computation Estimation of Support of Simultaneous Diver-

gence

Data from the prior were simulated using the msbayes MTML pipeline (Huang et al., 2011), which

uses a modified version of ms (Hudson, 2002), msDQH, to simulate data under the coalescent con-

ditioned on a vicariance splitting an ancestral population. The hyperparameters of the prior dis-

tributions were specified based on estimates of the final data or on the known truth. The upper

bound of the uniformly distributed prior on divergence time was set to twice the deepest divergence

time across all the genealogies, scaled by the 4N (the corresponding lower bound is fixed at 0 by
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the program). The lower bound of the uniformly distributed prior on the population parameter

θ was set to 0, while the upper bound was set to twice the maximum θ estimated across all the

alignments. Each analysis was run explictly excluding migration (i.e., 0 for the upper bound the

uniformly distributed prior on the migration rate), as well as low (0.001) and high (0.01) migration

rates. Fifteen million samples from the prior were generated, and this sample was used across all

experiments.

Following Huang et al. (2011) the summary statistics used for the single-locus rejection sampling

were:

• π, the mean pairwise differences between sequences.

• θ̂W , Watterson’s estimator of θ (Watterson, 1975).

• πnet, the difference between the mean pairwise differences of sequences within each daughter

subpopulation and the mean pairwise differences of sequences between each daughter subpop-

ulation.

• var(π−θW ), the denominator of Tajima’s D (Tajima, 1989), i.e. the variance of the difference

between two difference estimates of the population mutation parameter θ.

• Wakeley’s ψ (Wakeley, 1996).

In each analysis these summary statistics were calculated for the alignments of SA and SB

independentally, for a total of 10 summary statistics per analysis. Following Huang et al. (2011),

for multi-locus analyses, the mean of these statistics across the alignments of SA and SB were used.

Rejection sampling was set to accept only the 1000 samples out of the 15 million samples

from the prior with summary statistics closest to that of the observed data. While the msbayes

package does include a rejection component, it did not perform well with large, parallelized analyses.

Instead, the rejection sampling procedure was carried out using ABCToolbox (Wegmann et al., 2010).

ABC estimates are known to be biased toward the prior when using large numbers of summary

statistics, due to the “curse of dimensionality” (Beaumont et al., 2002; Beaumont, 2010; Leuen-

berger and Wegmann, 2010). Specifically, large numbers of summary statistics are required to

obtain satistfactory performance when dealing with complex and/or parameter-rich analyses: the
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summary statistics need to satisfy sufficiency, such that Pr(H|X) = Pr(H|S(X)). At the same

time, however, it is very difficult to generate a sample from the prior that results in a summary

statistic equal to or very close to the observed data. As such, a larger error tolerance is required to

generate sufficient samples in the posterior if acceptance is based on only accepting samples from

the prior within a particular distance from the observed. In the acceptence regime described here

(and used by msbayes), a pre-specified proportion of samples from the prior are accepted, and thus

there is an implicit tolerance given by the maximum summary statistic distance accepted into the

posterior, and grows with increasing numbers of summary statistics as well. The problem with

this greater tolerance is that samples from the prior that map to points in summary statistic space

further away from the observed data are weighted equally to samples from the prior that map closer

to the observed data. This results in a systematically biased estimate, with the bias toward the

prior. Beaumont et al. (2002) presented a method to correct for this bias by applying local linear

regression to parameter estimates, which results in parameter estimates being weighted inversely

proportionaly to the distance between their associated summary statistics and the the summary

statistics calculated on the observed data. This method can only be applied to continuous values.

To take advantage of this, msbayes makes use of an index statistic, Ω, which is given by the variance

in divergence times across a simulated sample divided by the mean. This statistic ranges from 0

(if all the divergence times in the sample are equal) to arbitrary large positive values. Following

the rejection step, Ω is calculated for every sample in the posterior, and then weighted by local

linear regression to correct the bias toward the posterior. Hickerson et al. (2006b) suggest that an

Ω value 0.01 be used as a threshold for concluding simultaneous divergence. This approach, i.e.,

the determination of simultaneous divergence based on a meta-summary statistic that considers

the ratio of variance of divergence times to the mean, not only allows for the application of local

linear regression to correct the bias toward the prior inherent in ABC estimation with a large set

of summary statistics, but also allows for a tolerance in how close different divergence times can

be and still be considered simultaneous. In this study, we will assess the use of the local linear

regression mode and mean of Ω as indicator statistics of the preferred or estimated divergence

time schedule model (single/simultaneous vs. multiple/non-simultaneous), in addition to the raw

estimate of the approximate posteiror probability (as given by the proportion of samples in the

posterior simulated under that model).
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Full-Likelhood Estimation of Support for Simultaneous Divergence

For the full-likelihood estimation of support for simultaneous divergence, IMa2 was run independen-

tally on each set of alignments for each species. Priors on the divergence time, population sizes and

migration rate parameters were uniformly distributed, with the upper bounds set to the twice the

maximum estimate across all the simulated data. A total of four chains was used in each analysis

(one cold, and three heated). Pilot studies were run to determined suitable numbers of steps and

sampling frequencies. It was found that a burn-in of 10,000 steps, and followed by 10,000 sam-

ples from the posterior with 100 steps between each sample was sufficient to obtain convergence,

as determined by inspection of likelihood sample plots in Tracer (Rambaut A., 2007), as well as

consistent results across multiple runs.

The results of an IMa2 analysis—population sizes, migration rates, and, of primary interest

in the context of this study, population splitting times—are all scaled by mutation rates. As the

mutation rates were constant and equal between the two species in this study, however, estimates

of divergence times of daughter populations from IMa2 can be compared directly across the two

species in the study. IMa2 reports the probability density of the splitting time scaled by mutation

rates of the two daughter populations in a two population system. This probability density is

reported in bins of 0.06. The pilot studies showed that the precision of the MCMC procedure

using the settings described above is insufficient to accurately compare divergence times at this

level of precision, especially for low θ values. Larger bin sizes, on the order of 10.0 mutation

units, were required for consistent results. The posterior probability of simultaneous divergence

was computed by summing the probability mass in corresponding bins across the two independent

runs and normalizing by the total probability mass.

2.3 Results

2.3.1 msbayes

Single Locus Baseline Cases

Figures 2.4 and 2.5 show the results of the msbayes analyses of single-locus data generated using

forward-time simulations (Ginkgo). Each figure is divided into a series of strips, with the top strip

26



representing the cases where the true divergence model was ψ = 1 (i.e., ∆T = 0), while subsequent

strips showing cases where the true divergence model was in fact ψ = 2, with gradually increasing

values of ∆T : 2N generations, 4N generations, 8N generations, etc. The sampling period is

represented on the x-axis in units of N generations: i.e., the time after the second divergence (TB)

when the daughter populations of SA and SB were sampled. The posterior probability of a non-

simultaneous divergence time schedule model (i.e., ψ = 2) is indicated on the y-axis of each strip.

Thus, a high value on the y-axis for the first strip shows strong support for the false divergence

model, while in subsequent strips a high value on the y-axis shows strong support for the true

divergence model. Each black dot represents a single set of paired samples from a single replicate

of the experimental configuration, for a total of 10 replicates at each sampling period. Each blue

dot represents the median of samples from the ten replicates for that sampling period.

Figure 2.4 shows the the results of analyses of data generated under high θ values (0.07), while

figure 2.5 shows the results of analyses of data generated under low θ values(0.0024).

From figure 2.4, it can be seen that for high θ values, the separation of divergence times must

be at least 16N generations before the msbayes ABC approach is able to detect non-simultaneous

divergence consistently and correctly. At ∆T = 8 and ∆T = 4, this approach generally (and

incorrectly) prefers the single divergence time schedule model. Furthermore, it can be seen that

the power to identify true non-simultaneous divergence is limited not only by a minimum time

separation between the two divergence events, but also constrained to be within a maximum span

of time elapsed since the divergence events: support for the correct multiple divergence model

erodes as samples are taken later and later after the second divergence. This limited “window” of

resolution, a minimum amount of time separation, and maximum time since the divergence events,

essentially describes the performance envelope of this approach for this data. If the system is

sampled from outside this window, then the msbayes ABC approach defaults to providing support

for single divergence.

In contrast, at low levels of θ, as shown in Figure 2.5, the msbayes ABC approach is unable

to identify non-simultaneous divergence at any point in time using the posterior probability of

models, regardless of the amount of time separating the two divergences. At lower levels of θ, then,

the performance envelope collapses: the approach unconditionally prefers a model of simultaneous

divergence, regardless of the true processes that generated the data.

27



As discussed above, msbayes uses an index statistic, Ω, given by the variance in divergence

times in a sample divided by the mean, to determine the divergence time schedule model instead

of the posterior probability directly. This statistic is weighted using local linear regression to

correct any bias toward the prior. Any result in which the weighted value of Ω (summarized

from the posterior samples either using the mode or the mean) falls below a critical threshold of

0.01 is taken to be indicative of support for simultaneous divergence. Figures 2.6 and 2.8 show

the proportion of replicates supporting simultaneous divergence when using the mode (figure 2.6)

or mean (figure 2.8) of the local linear regression weighted Ω values calculated from the samples

from the posterior for analyses carried out on simulations under baseline conditions and high theta

values. Figures 2.7 and 2.9, on the other hand, show the same but for simulations under baseline

conditions and low theta values. At high theta values, the performance of msbayes when using

the mode of the local linear regression weighted Ω to determine support for non-simultaneous

divergence (figure 2.6) is very similar to the performance when using the estimated approximate

posterior probability directly (figure 2.4). At low theta values, in contrast, reliance on this statistic

results non-simultaneous divergence being inferred for all replicates (figure 2.7). This is the opposite

of the case with the estimate approximate posterior probability, which unconditionally supported

simultaneous divergence when analyzing simulations with data generated under low theta values

(figure 2.5). Using the mean of the local linear regression weighted Ω values to determine support

for simultaneous divergence shows strikingly different behavior. At high theta values (figure 2.8),

all replicates are inferred to have experienced non-simultaneous divergence. At low theta values

(figure 2.9), using the mean of the local liner regression weighted values of Ω allows discrimination

of non-simultaneoiusus divergence in some replicates with separation of divergence time of 32N ,

and all replicates with a separation of divergence time of 64N .

With Migration

Analyzed Under Models That Do Not Consider Migration Figures 2.10 through 2.12 show

the posterior probability of non-simultaneous divergence when single-locus data generated under

high values of θ and incomplete isolation were analyzed using the Approximate Bayesian Compu-

tation approaches using an estimation model that does not take into account migration. With low

migration rates, shown in figure 2.10 the scatter in posterior probability is greatly increased with
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respect to the baseline cases. However, despite the increased noise, within a performance envelope

comparable to that of the baseline cases, the correct model is still preferred. With medium and high

migration rates, shown in Figures 2.11 and 2.12 respectively, a multiple divergence time schedule

model is strongly preferred, regardless of the of the actual divergence time separation or sampling

period. All posterior probability results of analyses of simulations with data generated under low

levels of θ are omitted due to, as with the baseline cases, complete and unconditional support for

simultaneous divergence.

The results for incomplete post-vicariance isolation using the weighted modes of Ω under low

θ regimes are shown in figures 2.13 through 2.15 for analyses under no assumption of migration.

The pattern of performance degradation is similar here as well, with increased noise at low-levels of

true migration and preference for multiple divergence times at high levels of true migration. Again,

results for analyses of data generated under low θ regimes are omitted due to lack of signal as with

the baseline cases, i.e., complete and unconditional support for simultaneous divergence.

The pattern of increased noise at low and medium levels of migration and loss of signal is also

seen in analyses of the low θ regime simulations incorporating migration when using the weighted

means of Ω (figures 2.16 through 2.18). Results for data generated under high θ regimes are

ommitted due to lack of signal, with complete and unconditional support for non-simultaneous

divergence as with the baseline cases.

Analyzed Under Models That Consider Migration Figures 2.19 through 2.21 show the

posterior probability of simultaneous divergence when single-locus data generated under high val-

ues of θ and incomplete isolation were analyzed using the Approximate Bayesian Computation

approaches using a low migration rate model. The performance is very similar to inference under

a 0-migration rate model: increased noise when there were low levels of migration in the truth,

to unconditional preference for the multiple divergence time schedule model when there were high

levels of migration in the truth.

Figures 2.22 through 2.24 show the posterior probability of simultaneous divergence when single-

locus data generated under high values of θ and incomplete isolation were analyzed using the

Approximate Bayesian Computation approaches using a high migration rate model. At low levels

of true migration, analyses under models that permit high migration tend to support the single
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divergence model, regardless of the true separation in divergence times. Conversely, when true

levels of migration are high, the analyses tend to support a multiple divergence time schedule

model, regardless of the true separation in divergence times.

Figures 2.25 through 2.27 show the replicates in which the multiple divergence model was

supported when using the weighted modes of Ω as an index of non-simultaneous divergence in a

model that allows for post-vicariance migration. The pattern is the same as with using the direct

posterior probability as an indicator: at low true levels of migration, the single divergence time

schedule model is unconditionally preferred, while at high true levels of migration, the multiple

divergence time schdule model is unconditionally preferred.

With Substructuring

Figures 2.28 through 2.30 shows the posterior probability of simultaneous divergence when single-

locus data generated under high values of θ and subpopulation structuring were analyzed using the

Approximate Bayesian Computation approaches. Generally, low and medium substructuring tend

to increase the scatter in the results, as seen in figures 2.28 and 2.29 respectively. However, high

levels of substructuring, as shown in figure 2.30, reduce the ability of the method to detect any

non-simultaneous divergence, to the point where no preference for either divergence time schedule

model is indicated. (Again, as above, all posterior probability results of analyses of simulations

with data generated under low levels of θ are omitted due to, as with the baseline cases, complete

and unconditional support for simultaneous divergence.)

When using the mode of the weighted Ω statistic to determine the divergence time schedule

model, the increased scatter at low (figure 2.31) and medium (figure 2.32) levels of substructur-

ing, and (general) loss of preference for either divergence time schedule model at high levels of

substructuring (figure 2.33).

In contrast to the above, when using the mean of the weighted Ω statistic to determine the

divergence time schedule model (for data generated under low theta regimes), we see a general

trend toward support for the multiple divergence model (figures 2.34 through 2.36). This trend is

most clearly seen under the highest levels of substructuring (figure 2.36), though it is also noticable

at lower levels (figures 2.34 and 2.35 ) when compared to the baseline case (figure 2.9). Thus, instead

of a lack of strong preference of either divergence time schedule model, as seen when relying on
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the raw approximate estimated posterior probability or the mode of the weighted Ω index, relying

on the mean of the weighted Ω results in preference for a multiple divergence time schedule model

under substructuring regimes.

Using Multiple Loci

Figures 2.37 through ?? show the results of analyzing multiple locus cases across all the conditions

discussed previously using msbayes. Specifically, msbayes was applied to data from 5 independent

loci evolved under baseline conditions, incomplete post-vicariance isolation, and within-population

substructuring. Under the baseline conditions (Figures 2.37), it appears that there is an initial

improvement in power, in that non-simultaneous divergence is diagnosed with only 8N generations

separating the two divergence events. At the same time, however, there is a loss of power with

samples taken at 32N . The results for the migration and the substructuring cases remain extremely

poor and inconsistent, with little clear pattern (Figures 2.38 through ??). In some cases there is

strong support for the single divergence time model and at others for theultiple divergence time

model, regardless of the true generating model.

2.3.2 IMa2

Single Locus Baseline Cases

Figures 2.43 shows the results of using IMa2 to analyze low θ regime data under baseline cases,

i.e., where all estimation model assumptions are met or at least closely approximated, and there is

neither post-vicariance gene flow nor any significant within-population substructuring. Note that,

due to the longer run times required, parameter sampling was sparser than that of the msbayes

analyses. In general, the performance in terms of the chronological window within which non-

simultaneous divergence is broadly comparable to that of msbayes when using the raw estimated

approximate posterior probability, or the local linear regression weighted mode of Ω. Specifically,

non-simultaneous divergence can be generally detected as long as a minimum of 16N generations

separates the two divergence events.
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With Migration

Figures 2.45 through 2.47 show the results of using IMa2 to analyze low θ regime data under

cases of incomplete post-vicariance isolation, where the estimation model does not account for

migration, while figures 2.48 through 2.50 show the results when the estimation model does allow

for migration. In all cases, there is a tendency toward preferring multiple divergence time schedule

models, regardless of the true generating model.

With Substructuring

Figures 2.51 through 2.53 show the results of using IMa2 to analyze low θ regime data under cases

where there is low, medium, and high within-population substructuring, respectively. While any

particular replicate results in preference for one model or another, there is no consistency in the

result: under the same conditions, different replicates produce support for different models.

2.4 Discussion

2.4.1 Baseline Performance of msbayes

The analyses of the baseline simulations showed that the msbayes ABC approach is only able to

correctly identify non-simultaneous divergence under a restricted range of conditions. Regardless of

whether the raw posterior probability, the mode of the local linear regression weighted Ω statistic, or

the mean of the local linear regression weighted Ω statistic was used as an indicator of the divergence

time schedule model, non-simultaneous divergence was only able to be correctly detected when the

time separating multiple distrinct divergence event was at least 16N generations. When using

the raw posterior probability or the mode of the local linear regression weighted Ω statistic, the

window for detection of non simultaneous divergence was also limited in terms of the amount of

time elapsed since the divergence events: after about 30N generations or so, all signal was lost.

Outside this window, i.e., if the time separating multiple distinct divergence evets was less than

16N generations, or the time elapsed since the divergences was more than 30N generations, the

msbayes approach provides (usually very strong) support for a single divergence schedule time

model, regardless of the actual, true generating model.
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This performance envelope of msbayes under baseline conditions has some characteristics that

are cause for concern. Firstly, the performance envelope is limited both in terms of the min-

imum amount of time that must separate two divergence events for them to be detectable as

non-simultaneous divergence as well as in the maximum amount of time that can elapse since the

divergence event. The existence of minimum threshold 1 for detection of non-simultaneous diver-

gence is not as troublesome as the concurrent existence of an upper bound on this detection window

in terms of the amount of time elapsed since the second divergence that is on the same scale and

so close in value to the minium threshold. The resulting performance window is, in other words,

relatively narrow, limited as it is by both a minium and maximum time that are on the other of

16N generations apart.

Perhaps more troubling than the narrow performance envelope per se is the fact that the

performance envelope is in some sense limited by the very quantity or variable that the method is

trying estimate (i.e., divergence time). This somewhat precludes the recourse of pre-determining

the applicability of the method by using other information, simply because use of the method

becomes redundant once the applicability is determined in this manner. That is, if an investigator

is able to use other information to ascertain the suitability of application of msbayes (e.g., a fossil-

calibrated time tree, which presupposes information on at least the relative mutation rate, if not

the population parameter, θ), then the need to use msbayes is obviated, as the variables of interest

have already been estimated.

Another issue of concern is that msbayes does not fail by producing inconclusive results, but

rather by producing strong support or preference for one particular model, which may or may

not be the correct model. This leaves the investigator in the unfortunate position of needing to

treat a strong conclusive result in any particular empirical analysis with skepticism. Furthermore,

in a biological or empirical context, the conclusion of simultaneous divergence is often the more

interesting one (and often is, in fact, the hypothesis of interest, as discussed in the introduction).

As shown, usage two out of the three possible indicators results in spurious strong support for

this model when the data is sampled from outside the chronological or mutational constraints

within which we can expect reasonable behavior from msbayes. Thus, perhaps ironically, it is when

1Determined to be 16N generations in the context of these simulations, though Oaks et al. (submitted) determined
this threshold to be on the order of 4 million years in the context of an empirical study with 22 taxon pairs.
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msbayes shows the support for the hypothesis of interest that the empirical investigator should be

most cautious.

2.4.2 Effect of Migration and Substructuring on Performance of msbayes

Both migration and substructuring had strong and complex effects on the performance of msbayes,

and these effects are summarized in Table 2.1.

Table 2.1: Effect of various factors on different indicator statistics used by msbayes to select divergence schedule
models: posterior probability (raw estimated approximate posterior probability, as given by the representation of this
model in the samples from the prior); mode and mean of the local linear regression weighted Ω statistic (given by the
variance in divergence times divided by the mean). “Migration (Under-treated)” refers to cases when post-vicariance
isolation is incomplete, but the estimation model does not allow for migration or does not allow for sufficient migration.
“Migration (Treated)” refers to cases when post-vicariance isolation is incomplete, but the estimation model does
take into account migration, and, furthermore allows for sufficient levels of migration. Key to cells: “(no effect)” =
no strong or consistent effect; “1DT” = tendency toward preferring single divergence time schedule model, regardless
of true divergence schedule model; “2DT” = tendency toward preferring multiple or non-simultaneous divergence
time schedule model, regardless of true divergence schedule model; “No power” loss of ability of discriminate between
competing models.

Indicator High θ Low θ Migration
(Under-treated)

Migration
(Treated)

Substruc-
ture

Posterior
probability

(no
effect)

1DT 2DT 1DT No power

Mode of Ω (no
effect)

1DT 2DT 1DT No power

Mean of Ω 2DT (no
effect)

2DT 1DT 2DT

Table 2.1 shows the effects of different factors on the performance of the three different statistics

used to select a divergence schedule model: the estimated approximate posterior probability of a

model, given by the proportion of representation of that model in samples from the posterior; the

mode of the local linear regression weighted values of Ω calculated on samples from the posterior;

and the mean of the local linear regression weighted values Ω calculated on samples from the

posterior. As noted above, at high θ regimes, the raw posterior probability and the mode of

Ω perform adequately, but the mean of Ω indicates strong support for the multiple divergence

time schedule model (“2DT” in table 2.1). Conversely, at low θ regimes, the mean of Ω performs

adequately, but the raw posterior probability and the mode of Ω perform indicate strong support

for the single divergence time schedule model (“1DT” in table 2.1).

When migration is not accounted for in the estimation model, or the estimation model does
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not allow the correct level of migration (by placing too low a bound on the uniform prior on

migration rates), all three statistics end up strongly supporting the multiple divergence schedule

model, regardless of the true generating model. Coversely, when migration is incorporated into the

estimation model at high levels (by placing an upper bound on the uniform prior on migration rates

much higher than the true migration rate), all three statistics end up strongly supporting the single

divergence schedule model, regardless of the true generating model. In fact, work on this aspect

of msbayes by Huang et al. (2011) came to the same conclusion, i.e., that unless an informative,

precise and accurate prior is placed on the migration rate, the msbayes analyses tends to be

mislead. This situation parallels that of the chronological window of performance described above:

the msbayes approach can only be safely used when it is augmented with external information

(even as it attempts to estimate some of that some information), and when this information is not

provided it does not fail with inconclusive results, but with positively misleading results. Huang

et al. (2011) recommend a pre-analysis to determine the level of post-vicariance gene flow, and

using these results to set informative and accurate priors on the actual msbayes analysis. For the

present, this remains the only viable way to use msbayes.

Within-population substructuring had strong effect on the msbayes analysis. When relying

on the raw estimated approximate posterior probability or the mode, the local linear regression

corrected Ω to select a divergence schedule model, within population substructuring led to loss

of power: the method was unable to conclude a preference for any particular model. This is a

satistfactory way for a method to fail outside of its performance envelope. Unfortunately, when

relying on the mean of the local linear regression corrected Ω to select a divergence schedule model,

support for a multiple divergence time schedule model was indicated, regardless of the actual or

true number of distinct divergence times.

2.4.3 Effect of Migration and Substructuring on Performance of the msbayes

Summary Statistics

The performance of the msbayes ABC approach described here is based on the summary statis-

tics used, and the limitations described above are attributable to the behavior of the summary

statistics outside the performance envelope. A principle component analysis was carried out using

the summary statistics calculated using the data generated using the forward time simulations,
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under baseline conditions and high θ values. Figure 2.54 shows a plot of the components 1 and

2. The blue dots represent true simultaneous divergence (i.e., ψ = 1,∆T = 0), the green dots

represent non-simultaneous divergence with ∆T = 4 and ∆T = 8, and the red dots represent

non-simultaneous divergence with ∆T ≥ 16. As can be seen, the results are consistent with the

full msbayes analyses: using these summary statistics, it is difficult to discriminate between true

simultaneous divergence and ∆T = 4 and ∆T = 8, but higher differences in divergence times can be

distinguished over a reasonable portion of parameter space. The portion of parameter space where

even this discrimination collapses, toward the right-hand side of the plot, is where the samples were

taken after t = TB + 30N .

Table 2.2: Principle components analysis of summary statistics calculated on data across all simulations. See text
for discussion.

Summary Statistic Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

pi.1 -0.412 -0.564 -0.179 0.166
pi.2 -0.365 -0.389 -0.278 0.239

wattTheta.1 -0.134
wattTheta.2

pi.net.1 0.533 -0.584 0.292 0.411 -0.301
pi.net.2 0.605 -0.231 -0.474 -0.470 0.342

Psi.1 0.124 0.284 -0.719 0.572 -0.234
Psi.2 0.141 0.153 0.216 0.495 0.813

Proportion of Variance 0.7514058 0.09802093 0.08078942 0.05915855 0.005692997
Cumulative Proportion 0.7514058 0.84942672 0.93021614 0.98937469 0.995067684

Table 2.2, which summarizes the PCA on the observed summary statistics, shows that Com-

ponent 1 explained over 75% of the variance, with the remaining components each explaining less

that 1%. Of the individual summary statistics, πnet and Wakeley’s ψ load positively on component

1, with πnet in particular loading very strongly (0.533 and 0.605 for the first and second taxon pairs

respectively). Thus, πnet is the most important statistic in driving the results.

It is no surprise, then, that increasing within-population structuring results in non-informative

results. As the within-population structuring increases, the mean pairwise distance between se-

quences within each population increases in relation to the mean pairwise distance between each

population, and thus the mean difference between these values decreases, to the point where all

signal is lost.
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2.4.4 Multilocus Data

It has long been understood that increasing the number of independent loci increases the power

of coalescent-based analyses (Kuhner et al., 2000; Nielsen, 2000; Carling and Brumfield, 2007).

However, in this study, increasing the number of independent loci analyzed to five had in some cases,

and somewhat counter-intuitively, an adverse effect on the results. There appears to be an initial

increase in power, in terms of the divergence time separation resolution, from 16N to 8N . However,

the performance of analyses of data generated under non-baseline conditions actually degenerated.

These are similar to conclusions drawn by Huang et al. (2011): when using the less than about

16 loci or so, the performance of msbayes was extremely poor relative to single locus analysis,

and that the method requires more than 32 loci or so to benefit from multi-locus analysis. They

conjecture that this degeneration in performance is due the additional rate hetereogneity introduced

by multiple loci. However, in these simulations, actual subsitution rate was fixed to be equal and

constant across all loci, so rate hetereogeneity per se was not a factor. One other possibility might

be with the way that msbayes integrates the summary statistics from across the different loci:

each summary statistic is calculated independentally for each locus, and the arithematic mean of

the statistic across loci is taken as the summary statistic for the entire multilocus dataset. This

approach not only discards much information, but also, due to the central limit theorem, actually

changes the expected distribution of all the statistics to converge to a normal distribution. With

extremely large datasets (i.e., on the order of 32 loci or so), enough information may remain with

the data such that robust results might be recovered.

2.4.5 Comparison with Full-Likelihood Model Selection

The full-likelihood approach to model selection employed in this study did not perform much better

than the approximate approach. Its performance envelope, in fact, on a broad scale, mirrored that

of the approximate approach under all conditions. This finding must be mitigated or considered

in the light of the fact that the full likelihood approach used in this study was constrained by the

somewhat crude binning used to relate the analysis across the two independent runs. As noted,

these bins were on the order 10 units of IMa2 time, which corresponds to 16.67N generations.

These large bins result in loss of discriminatory power, and probably one of the reasons that the
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power of the full-likelihood approach was not clearly and significantly better than the approximate

approach. (Finer binning did not result any shared probability mass for any particular time bin

across pairs of runs, and thus could not be used. It is possible that if the IMa2 MCMC were run out

for much longer, it would attain the numerical stability and precision required to allow finer-scale

binning of the time units. However, the run times for this would preclude large-scale evaluations

of parameter space such as those conducted in this study.)

2.4.6 Implications for Empirical Studies

This study suggests that any investigator wishing to use msbayes to test the hypothesis of simul-

taneous divergence would need to:

1. Ensure that the divergence times of each the populations were sufficiently recent.

2. Ensure that the priors on migration rates are informative and accurate.

3. Ensure that there is no significant substructuring within any of the populations.

4. Recognize that “simultaneous” may actually indicate a fairly broad time span.

In this study, the “sufficient recent” was approximately 30N generations, while “simultaneous”

was 16N generations. Obviously, what values constitutes “sufficiently recent”, and the size of the

possible time span that constitutes “simultaneous” might vary from system to system.

For example, the hypothesis marine highstands Miocene or Pliocene responsible for structuring

the biota across the Kra peninsula, as described in the introduction, would imply divergence times

of 24-13 MYA or 5.5-4.5 MYA. To apply msbayes to test the prediction of simultaneous divergence

following from this hypothesis, an investigator would have to estimate the population sizes of the

taxa being studied, as well as the generation time, to determine if the these period falls within

the performance envelope. Furthermore, the investigator must also demonstrate that the none of

the pairs of daughter populations being studied diverged considerably before the period of interest,

based on, for example, the maximum age of the credibility interval for divergence times.

Empirical investigators will also have to accurately determine migration levels between their

populations, using programs such as migrate (Beerli and Felsenstein, 2001), and set very tight

priors on the migration rate based on these estimates. The current implementation of msbayes
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does not allow for different migration priors on different groups, and this must be accommodated

if this situation is encountered in empirical data.

Empirical investigators will have to demonstrate that the populations from which their samples

are not excessively substructured. As with other factors, the quantitative or numerical definition

of “excessive” might vary from study to study. Perhaps, to be conservative, some sort of AMOVA

(Excoffier, 1995) or similar tests should be carried out to establish that there is no significant

substructuring within the daughter populations, and there fore allow for legitimate application of

msbayes.

All this indicates a broad suite of analyses that need to be carried out before msbayes can be

applied, e These validation procedures were not carried out in any of the empirical applications of

msbayes published thus Leache et al. (2007); Daza et al. (2010); Barber and Klicka (2010, e.g.).

These, and other empirical studies, may need to be revisited in the light of the present study

to establish whether or not their conclusions are artifacts of msbayes being confounded in one

direction or another by any of the factors described here.

2.4.7 Final Conclusions

The co-divergence of multiple pairs of taxa is a common prediction of a large class of biogeographic

and phylogeographic hypotheses. The most powerful and direct way to test this prediction, i.e., by

directly comparing the ages of the appropriate splits on a fossil-calibrated ultrametric phylogeny,

is often not feasible due to lack of suitable fossils. The msbayes approach, using Approximate

Bayesian Computation, provided a promising alternative. Unfortunately, this approach is limited

in a number of ways. It suffers from a narrow performance window coupled with the inability

to determine whether or not the data were sampled from within that performance window. The

fact that, in all but one class of conditions, msbayes produces positively misleading spurious results

(instead of inconclusive results) when operating out that performance window is also very troubling.

Adding more loci does appear to improve the performance of msbayes with respect to the

minimum amount of time separation needed to diagnose multiple divergence. The result of Huang

et al. (2011) suggest that better precision and accuracy are obtained as the number of loci increase to

32, but the evaluation was carried out within the established performance window of msbayes. If it

were in fact possible to determine whether the data indeed conformed to the method’s performance
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parameters (the time separating the divergence events, the time elapsed since the divergence events,

or the mutation rates), then it would also be possible to apply more direct and exact methods to

answer the question asked by the msbayes approach.

To improve msbayes, the most obvious approach would be to focus on its summary statistics.

In principle, it should be possible to develop a set of summary statistics that perform better. The

summary statistics used in the current implementation are population genetic summary statistics,

and do not use phylogenetic tree or spatial information. It might be hoped that incorporating

some of this information into summary statistics might yield better results. This view, however,

is challenged by the fact that even the full-likelihood approach, IMa2, in general is constrained to

the same performance envelope as the msbayes approximate approach in terms of the minimum

difference in divergence time and maximum time elapsed. As noted, though, the full-likelihood

method used here was crippled in terms of its power due to the poor resolution imposed by the

binning of divergence times. Thus, the possibility remains open that different summary statistics

might be able to produce a much more satisfactory Approximate Bayesian Computation approach.

An alternative might to focus on developing a full-likelihood approach to testing the prediction

of simultaneous divergence. In the long run, the gains in computational flexibility and efficiency of

the Approximae Bayesian Computaiton approach may not be sufficient to compensate for loss in

power, especially as computation hardware improves.
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2.5 Figures
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Figure 2.1: The hierarchical model used in msbayes to estimate the posterior probability of ψ, the number of
distinct divergence times found in a sample of Y co-distributed taxon pairs (Hickerson et al., 2006b). (A) The white
lines represent the genealogy coalescing within the containing black species or population tree. (B) The parameters of
the model include the times of divergences for each population pair, here given as τ and τ ′; the population parameters
θ for the various populations and stages of populations, where θ = 4Nµ, and N is the population size and µ is the
mutation rate; the migration rate between the populations, here given as M ; etc. Figure from Hickerson et al. (2006b)
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Introduction to the IM and IMa computer programs - March 5, 2007 

N1 N2

NA

m1

m2
Present

Past

t

TA = 4NAu

T2 = 4N2uT1 = 4N1u m2 =m2/u

m1 =m1/u

t = t u

There are six demographic parameters in the full 

two-population  Isolation with Migration model, 

with additional mutation parameters added with 

multiple loci.  Two challenges arise when applying 

such a full model:  (1) obtaining good estimates of 

the marginal densities; and (2) interpreting the 

results.  With large numbers of parameters the 

method has vast potential to exceed our intuition 

and thus to provide estimated distributions that we 

have not expected.   

  

This is figure 1 from Hey and Nielsen (2004).  With six parameters it can capture many of 

the phenomena that can occur when one population splits into two:  the splitting event may 

have been long ago or recent;  the ancestral and the two descendant populations may differ 

in size;  there may have been gene exchange during the time since population splitting; and 

this gene exchange may have occurred more in one direction than the other. Please note the 

direction of migration in the figure, in which m1 pertains to the movement of genes from 

population 1 to population 2.  It is important to understand that this is in the coalescent, 

meaning back into the past.  In other words, in the conventional sense of time moving 

forwards, m1 pertains to genes moving from population 2 to population 1, and m2 pertains 

to genes moving from population 1 to population 2. 

 

The Isolation with Migration model differs sharply from the general family of models in 

which populations have been exchanging genes for an indefinitely long period of time.  

Such ‘island models’  or ‘stepping-stone’ models assume that the pattern of variation 

within and between populations is at equilibrium between the counteracting forces of 

mutation, genetic drift and gene exchange. In this way the Isolation with Migration model 

should be more appropriate for the analysis of populations that have recently separated.  

 

The overall approach that is represented in these programs has many complexities and for 

this reason these programs can not be used to quickly obtain an answer to a particular 

question. Rather than being ‘plug and chug’,  the programs are tools for analyzing data. 

2 

Figure 2.2: The isolation with migration (IM) model for two populations. Parameters include the population sizes
(N1, N2, and NA), per gene copy per generation migration rates (m1,m2), and population splitting time (t). All
parameters are scaled by the neutral mutation rate (u) in the actual analysis. From Hey (2006).

Time = T1

Time = T0

∆T
 =

 T
1 -

 T
0

Species 1 Species 2

 S1-1 S2-1 S2-2S1-2

Sample g4 at T1 + 4N

Sample g8 at T1 + 8N

Sample g32 at T1 + 32N

Sample g16 at T1 + 16N

Sample g24 at T1 + 24N

Figure 2.3: The fundamental experiment design that formed the core of all studies to assess the performance of

simultaneous divergence time inference methods. The ancestral population of two species, S
(anc)
A and S

(anc)
B split

into two daughter subpopulations at TA and TB . True simultaneous divergence are the cases where TA == TB ; all
other cases are non-simultaneous divergence. Samples are taken various intervals following the second divergence,
and sequences simulated on these are used as the input for the simultaneous divergence time inference methods.
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Baseline Case: Minimal Substructuring, No Migration
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Figure 2.4: Posterior probability of non-simultaneous divergence of “baseline” forward-time simulations under
high theta values when analyzed using msbayes: all assumptions of the estimation model, in particular, Wright-
Fisher population assumptions and complete post-vicariance isolation (no migration) were met. Y-axis on each strip
indicates estimated approximate posterior probability of support for multiple divergences, while X-axis indicates
period after the second vicariance event in which the sample was taken. Each strip is for 10 replicates of a simulation
carried out at particular difference or separation of time between the two divergences. The top strip, ∆T = 0, is when
there is no difference in time between the two divergences, i.e., the case of true simultaneous divergence. High values
on the Y-axis here indicate support for the wrong model. The remaining strips show increasingly larger differences
in time between divergence events, and high values on the Y-axis thus indicate support for the correct model.
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Minimal Substructuring, Low Migration
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Figure 2.5: Posterior probability of non-simultaneous divergence of “baseline” forward-time simulations under low
theta values when analyzed using msbayes: all assumptions of the estimation model, in particular, Wright-Fisher
population assumptions and complete post-vicariance isolation (no migration) were met. See figure 2.4 for details on
interpreting the plots.
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Baseline Case: Minimal Substructuring, No Migration
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Figure 2.6: Proportion of replicates supporting non-simultaneous divergence of “baseline” forward-time simulations
under high theta values when analyzed using msbayes, and using the weighted mode of Ω (the variance in divergence
times divided by the mean; see text for details) to determine the divergence time model. All assumptions of the
estimation model, in particular, Wright-Fisher population assumptions and complete post-vicariance isolation (no
migration) were met. See figure 2.4 for details on interpreting the plots.
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Baseline Case: Minimal Substructuring, No Migration
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Figure 2.7: Proportion of replicates supporting non-simultaneous divergence of “baseline” forward-time simulations
under low theta values when analyzed using msbayes, and using weighted mode of Ω (the variance in divergence times
divided by the mean; see text for details) to determine the divergence time model. All assumptions of the estimation
model, in particular, Wright-Fisher population assumptions and complete post-vicariance isolation (no migration)
were met. See figure 2.5 for details on interpreting the plots.
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Baseline Case: Minimal Substructuring, No Migration
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Figure 2.8: Proportion of replicates supporting non-simultaneous divergence of “baseline” forward-time simulations
under high theta values when analyzed using msbayes, and using weighted mean of Ω (the variance in divergence
times divided by the mean; see text for details) to determine the divergence time model. All assumptions of the
estimation model, in particular, Wright-Fisher population assumptions and complete post-vicariance isolation (no
migration) were met. See figure 2.4 for details on interpreting the plots.
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Baseline Case: Minimal Substructuring, No Migration
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Figure 2.9: Proportion of replicates supporting non-simultaneous divergence of “baseline” forward-time simulations
under low theta values when analyzed using msbayes, and using weighted mean of Ω (the variance in divergence times
divided by the mean; see text for details) to determine the divergence time model. All assumptions of the estimation
model, in particular, Wright-Fisher population assumptions and complete post-vicariance isolation (no migration)
were met. See figure 2.5 for details on interpreting the plots.
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Figure 2.10: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values with low levels of post-vicariance gene flow when analyzed using msbayes, under an estimation model that
does not account for migration. See figure 2.4 for details on interpreting the plots.
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Figure 2.11: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values with medium levels of post-vicariance gene flow when analyzed using msbayes, under an estimation model that
does not account for migration. See figure 2.4 for details on interpreting the plots.
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Figure 2.12: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values with high levels of post-vicariance gene flow when analyzed using msbayes, under an estimation model that
does not account for migration. See figure 2.4 for details on interpreting the plots.
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Figure 2.13: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
low post-vicariance migration levels and high theta values when analyzed using a msbayes that does not account for
migration, and using weighted mode of Ω (the variance in divergence times divided by the mean; see text for details)
to determine the divergence time model. See figure 2.4 for details on interpreting the plots.
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Figure 2.14: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
medium post-vicariance migration levels and high theta values when analyzed using msbayes that does not account
for migration, and using weighted mode of Ω (the variance in divergence times divided by the mean; see text for
details) to determine the divergence time model. See figure 2.4 for details on interpreting the plots.
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Figure 2.15: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
high post-vicariance migration levels and high theta values when analyzed using msbayes that does not account for
migration, and using weighted mode of Ω (the variance in divergence times divided by the mean; see text for details)
to determine the divergence time model. See figure 2.4 for details on interpreting the plots.
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Figure 2.16: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
low post-vicariance migration levels and low theta values when analyzed using a msbayes that does not account for
migration, and using weighted mean of Ω (the variance in divergence times divided by the mean; see text for details)
to determine the divergence time model. See figure 2.4 for details on interpreting the plots.
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Figure 2.17: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
medium post-vicariance migration levels and low theta values when analyzed using msbayes that does not account for
migration, and using weighted mean of Ω (the variance in divergence times divided by the mean; see text for details)
to determine the divergence time model. See figure 2.4 for details on interpreting the plots.
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Figure 2.18: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
high post-vicariance migration levels and low theta values when analyzed using msbayes that does not account for
migration, and using weighted mean of Ω (the variance in divergence times divided by the mean; see text for details)
to determine the divergence time model. See figure 2.4 for details on interpreting the plots.
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Figure 2.19: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values with low levels of post-vicariance gene flow when analyzed using msbayes, under an estimation model that
allows for low levels of migration. See figure 2.4 for details on interpreting the plots.
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Figure 2.20: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values with medium levels of post-vicariance gene flow when analyzed using msbayes, under an estimation model that
allows for low levels of migration. See figure 2.4 for details on interpreting the plots.
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Figure 2.21: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values with high levels of post-vicariance gene flow when analyzed using msbayes, under an estimation model that
allows for low levels of migration. See figure 2.4 for details on interpreting the plots.
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Minimal Substructuring, Low Migration
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Figure 2.22: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values with low levels of post-vicariance gene flow when analyzed using msbayes, under an estimation model that
allows for high levels of migration. See figure 2.4 for details on interpreting the plots.
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Minimal Substructuring, Medium Migration
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Figure 2.23: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values with medium levels of post-vicariance gene flow when analyzed using msbayes, under an estimation model that
allows for textithigh levels of migration. See figure 2.4 for details on interpreting the plots.
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Minimal Substructuring, High Migration
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Figure 2.24: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values with high levels of post-vicariance gene flow when analyzed using msbayes, under an estimation model that
allows for textithigh levels of migration. See figure 2.4 for details on interpreting the plots.
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Minimal Substructuring, Low Migration
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Figure 2.25: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
low post-vicariance migration levels and high theta values when analyzed using a msbayes that assumes high levels of
migration, and using weighted mode of Ω (the variance in divergence times divided by the mean; see text for details)
to determine the divergence time model. See figure 2.4 for details on interpreting the plots.
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Minimal Substructuring, Medium Migration
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Figure 2.26: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
medium post-vicariance migration levels and high theta values when analyzed using msbayes that assumes high levels
of migration, and using weighted mode of Ω (the variance in divergence times divided by the mean; see text for details)
to determine the divergence time model. See figure 2.4 for details on interpreting the plots.
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Minimal Substructuring, High Migration
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Figure 2.27: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
high post-vicariance migration levels and high theta values when analyzed using msbayes that assumes high levels of
migration, and using weighted mode of Ω (the variance in divergence times divided by the mean; see text for details)
to determine the divergence time model. See figure 2.4 for details on interpreting the plots.
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Low Substructuring, No Migration

Sample Time (N Generations)

P
os

te
rio

r 
P

ro
ba

bi
lit

y 
of

 N
on

−
S

im
ul

ta
ne

ou
s 

D
iv

er
ge

nc
e

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

●

●

●

●

●
●●●

●
●

●●●●

●

●

●

●
●

● ●●

●

●
●
●

●

●●

●

●

●

●

●●

●

●

●

●●●●●●

●

●
●●
●

●

●●●
●

●

●

●

●
●
● ●

●

●

●
●

●

●
●

●

●

●

●

●●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●●

●

●

●●

●

●
●● ●●

●

●●

●

●
●

●

●

●
●
●
●

●

●

●

●

●●
●
●

●

●

●
●
●

●

●
●

●

●
●●●●●●

●●

●

●

●
●
●●

●
●●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●
●●
●●

●

●

●
●
●●●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●
●

●

●
●●●●

●

●

●

●

●

●

●
●
●

●●●
●
●
●●

●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●●

●

●
●●●

●

●

●

●
●
●

●

●

●

●

●
●
●
●●

●

● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ●

●

● ●
● ●

●
● ● ● ● ●

●

● ● ●

●

●
●

●

●●●

●

●
●

●

●

●

●

●
●●●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●●●

●
●
●
●
●●

●

●
●

●

●

●

●

●●●
●

●

●

●
●

●●●
●
●

●

●

●

●●

●

●

●
●

●

●

●
●●
●

●

●

●

●●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●
●
●
●

●

●

●

●
●

●

●
●●●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●●●●

●

●

●

●
●●

●

●●
●

●
●●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●●
●

●

●
●●

●

●
●

●
●●

●●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●
●●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●●●

●

●

●●

●

●●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●●
●

●

●
● ● ● ● ●

●
●

●

● ● ●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●
●

●●

●

●

●

●●●
●

●
●
●

●

●

●

●

●
●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●
●

●

●
●
●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●●

●●●

●

●
●

●
●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●
●
●

●

●
●
●
●
●

●

●●
●

●
●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●
●

●
●

●
●

● ● ● ●

●

● ●
● ● ● ● ● ● ● ●

●
● ● ●

●

●

●
●
●

●

●

●●

●

●

●
●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●
●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●●

●

●
●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●●

●
●

●
●

●●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●●●

●

●●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●
●●

●●
●

●

●

●
●
●

●

● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
● ●

●
● ● ●

●
●

●
● ●

●

●

●

●

●

● ● ● ●
● ●

● ●

●

●
● ●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●
●

●

●●
●
●
●●
●
●
●●

●

●

●
●

●●●●●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●●●●●●●●●●●●●●●
●

●●●●●●●

●

●●

●

●

●
●

●

●

●
●
●

●

●●●●●●●●●●●●●●●●●●●● ●

●
●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●●●●●●●

●

●●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●●●

●

●
●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●●

●
●●

●●●●●●●●●●●

●

●●●●
●
●●● ●●●●

●

●●
●

●●

●

●

●

●

●

●

●
●

●

●

●●●●●●●●●●

●

●

●●●
●
●

●

●

●

●●●●

●

●●●●●

●

●●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●
●●●●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

● ● ●

● ●

●

●
● ●

●

●●●●●

●

●●

●

●

●●●●●●●●
●
●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●● ●●●●●●
●●●
●●●●●●●●●●●

●

●

●

●

●
●

●

●

●
●

●●●●●●●●●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●● ●

●

●●●

●

●
●
●

●

●●●●●●●●●● ●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

●

●

●

●

●

●●●●●●●●●●

●
●
●

●

●
●

●

●
●

●

●

●

●●

●

●●
●

●

●

●●●●●●●●●●

●

●●

●●

●

●

●●

●

●●

●

●
●

●

●●

●

●●●●●●●●●●● ●●●

●

●
●●

●

●●●●●●●●●●●●

●

●

●

●

●

●●
●●
●

●●●●●●●●●●

●●●●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●●

●

● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ●

● ●

●
●

●

● ●

●

●

●

● ● ●

●

543212 4436 523810 20 5042 6426 463422 484 282 5816 6230 6018146 24 408 56

∆
T

=
0

∆
T

=
4

∆
T

=
8

∆
T

=
16

∆
T

=
32

∆
T

=
64

Figure 2.28: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values with low levels of within population structuring when analyzed using msbayes. See figure 2.4 for details on
interpreting the plots.

67



Medium Substructuring, No Migration

Sample Time (N Generations)

P
os

te
rio

r 
P

ro
ba

bi
lit

y 
of

 N
on

−
S

im
ul

ta
ne

ou
s 

D
iv

er
ge

nc
e

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

●

●

●

●

●
●
●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●
●

●
●

●

●

●

●●
●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●●

●
●
●●
●
●

●

●●●

●

●

●

●

●●

●

●●●
●

●
●●●●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●
●

●

●
●
●

●
●●

●●

●
●

●●

●

●
●●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●
●

●

●
●
●
●

●●

●
●

●

●

●

●

●

●

●
●●●

●

●●
●
●●

●
●

●
●
●●●

●●

●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●●●

●

●

●
●
●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●●
●
●

●

●
●
●

●
●

●

●
●●

●

●
●●

●
●●●●●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●
●
●●

●

●

●
●
●
●
●
●

●
●

● ● ●
●

●●
● ● ● ● ● ●

● ● ●
●

● ● ● ● ● ●
● ● ● ● ●

●

● ● ●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●
●●

●

●
●
●
●

●

●

●
●
●
●●

●
●●
●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●●
●●●
●
●

●

●

●

●●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●●
●
●

●

●
●
●

●

●

●

●

●

●

●
●

●●●●
●
●
●
●
●● ●●●●

●

●

●
●●●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●
●
●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●●●

●

●

●●

●

●

●
●
●

●
●

●●

●

●●
●●
●●
●

●

●

●
●

●●

●

●
●

●

●●

●

●●

●●

●

●

●●
●
●

●

●

●

●

●●

●

●

●

●●●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
● ● ●

●

● ●
● ● ● ● ●

● ● ●●
●

● ● ● ● ● ● ● ● ●
● ● ● ●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●●●
●
●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●
●
●
●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●
●

●

●

●●

●

●●

●

●●●
●●●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
● ● ●

● ●
●

●

●
● ● ● ● ● ● ● ● ●

●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●●●
●
●

●
●●

●

●
●●
●●

●
●●

●●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●
●●
●

●●●
●

●

●●●●●
●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●●
●

●

●

●

●
●

●●●

●

●

●

●

●

●
● ●

●

●

● ● ●
● ● ●

●
●

●
●

●

●

● ●
●

● ● ● ● ● ● ●

●

● ● ●

●

●
●
●

●

●

●●●●●

●
●
●

●
●
●

●
●●
●

●

●

●

●●●●

●

●
●●

●

●

●

●

●●

●
●●

●●●

●

●

●

●●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●●

●●●

●

●

●

●

●

●●●

●

●

●●●●●●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●

●

●
●

●
●
●●

●

●●●●

●

●
●
●●
●
●

●

●
●●

●

●

●

●

●●●

●

●●

●
●
●

●
●
●●

●●●

●
●●●●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●
●●
●● ●●

●

●
●
●
●
●

●

●

●

●

●●●●●●●

●

●

●
●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●
●

●●

●●●●

●

●

●●●●●
●●●●

●
●●●
●

● ● ● ● ●● ● ● ● ● ● ● ●

●

● ●

●

●
●

●
● ● ●

● ● ● ●

●

● ● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●●
●●●

●
●●

●

●

●

●

●●

●

●●●●●●●●●● ●●●●

●●

●

●

●

●

●●●●●●●●●●

●●●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●
●
●

●

●
●●
●●
●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●
●●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●

●
●

●

●
●

●

●

●

●

●

●●●●●●●●●●

●●●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●●●●●●●●

●

●

●

●

●●●

●●
●

●

●
●●

●

●
●

●

●●
●
●

●●
●
●●●
●●

●

●

●

●

●

●

●

●

●

●

●
●●
●●●●●●● ●●

●

●

●●●●●●●●●●●●●●●● ●

●
●●
●
●

●
●

●

●

●●●●●●●●●●

●

●

●

●
●
●

●

●

●
●

●●●●●●●●●●

●

●●

●
●

●●

●

●

●

● ● ● ● ●● ● ● ● ● ● ● ● ●

● ●

●

●

● ● ●
● ● ●

●
● ●

●

● ● ●

●

64 24 5436 52443810 14 485026 6420 46342218 6028 322 1612 62308 584240 56

∆
T

=
0

∆
T

=
4

∆
T

=
8

∆
T

=
16

∆
T

=
32

∆
T

=
64

Figure 2.29: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values with medium levels of within population structuring when analyzed using msbayes. See figure 2.4 for details
on interpreting the plots.
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Figure 2.30: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values with high levels of within population structuring when analyzed using msbayes. See figure 2.4 for details on
interpreting the plots.
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Figure 2.31: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
high theta values and low levels within-population substructuring when analyzed using msbayes and using weighted
mode of Ω (the variance in divergence times divided by the mean; see text for details) to determine the divergence
time model. See figure 2.4 for details on interpreting the plots.
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Figure 2.32: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
high theta values and medium levels within-population substructuring when analyzed using msbayes and using weighted
mode of Ω (the variance in divergence times divided by the mean; see text for details) to determine the divergence
time model. See figure 2.4 for details on interpreting the plots.
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High Substructuring, No Migration
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Figure 2.33: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
high theta values and high levels within-population substructuring when analyzed using msbayes and using weighted
mode of Ω (the variance in divergence times divided by the mean; see text for details) to determine the divergence
time model. See figure 2.4 for details on interpreting the plots.
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Low Substructuring, No Migration
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Figure 2.34: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
low theta values and low levels within-population substructuring when analyzed using msbayes and using weighted
mean of Ω (the variance in divergence times divided by the mean; see text for details) to determine the divergence
time meanl. See figure 2.4 for details on interpreting the plots.
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Medium Substructuring, No Migration
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Figure 2.35: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
low theta values and medium levels within-population substructuring when analyzed using msbayes and using weighted
mean of Ω (the variance in divergence times divided by the mean; see text for details) to determine the divergence
time meanl. See figure 2.4 for details on interpreting the plots.
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High Substructuring, No Migration
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Figure 2.36: Proportion of replicates supporting non-simultaneous divergence of forward-time simulations under
low theta values and high levels within-population substructuring when analyzed using msbayes and using weighted
mean of Ω (the variance in divergence times divided by the mean; see text for details) to determine the divergence
time meanl. See figure 2.4 for details on interpreting the plots.
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Baseline Case: Minimal Substructuring, No Migration
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Figure 2.37: Posterior probability of non-simultaneous divergence of “baseline” forward-time simulations under
high theta values for 5 independent loci when analyzed using msbayes: all assumptions of the estimation model, in
particular, Wright-Fisher population assumptions and complete post-vicariance isolation (no migration) were met.
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Minimal Substructuring, Low Migration
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Figure 2.38: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values for 5 independent loci with low levels of post-vicariance gene flow when analyzed using msbayes, under an
estimation model that does not account for migration. See figure 2.4 for details on interpreting the plots.
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Minimal Substructuring, Medium Migration
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Figure 2.39: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values for 5 independent loci with medium levels of post-vicariance gene flow when analyzed using msbayes, under
an estimation model that does not account for migration. See figure 2.4 for details on interpreting the plots.
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Minimal Substructuring, High Migration
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Figure 2.40: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values for 5 independent loci with high levels of post-vicariance gene flow when analyzed using msbayes, under an
estimation model that does not account for migration. See figure 2.4 for details on interpreting the plots.
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Medium Substructuring, No Migration
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Figure 2.41: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values for 5 independent loci with medium levels of within population structuring when analyzed using msbayes. See
figure 2.4 for details on interpreting the plots.
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High Substructuring, No Migration
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Figure 2.42: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values for 5 independent loci with high levels of within population structuring when analyzed using msbayes. See
figure 2.4 for details on interpreting the plots.
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Baseline Case: Minimal Substructuring, No Migration
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Figure 2.43: Posterior probability of non-simultaneous divergence of “baseline” forward-time simulations under
low theta values when analyzed using IMa2: all assumptions of the estimation model, in particular, Wright-Fisher
population assumptions and complete post-vicariance isolation (no migration) were met. See figure 2.4 for details on
interpreting the plots.
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Baseline Case: Minimal Substructuring, No Migration
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Figure 2.44: Posterior probability of non-simultaneous divergence of “baseline” forward-time simulations under
high theta values when analyzed using IMa2: all assumptions of the estimation model, in particular, Wright-Fisher
population assumptions and complete post-vicariance isolation (no migration) were met. See figure 2.4 for details on
interpreting the plots.
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Minimal Substructuring, Low Migration
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Figure 2.45: Posterior probability of non-simultaneous divergence of forward-time simulations under low theta
values with low levels of post-vicariance gene flow when analyzed using IMa2, under an estimation model that does
not account for migration. See figure 2.4 for details on interpreting the plots.
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Minimal Substructuring, Medium Migration
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Figure 2.46: Posterior probability of non-simultaneous divergence of forward-time simulations under low theta
values with medium levels of post-vicariance gene flow when analyzed using IMa2, under an estimation model that
does not account for migration. See figure 2.4 for details on interpreting the plots.
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Figure 2.47: Posterior probability of non-simultaneous divergence of forward-time simulations under low theta
values with high levels of post-vicariance gene flow when analyzed using IMa2, under an estimation model that does
not account for migration. See figure 2.4 for details on interpreting the plots.
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Minimal Substructuring, Low Migration
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Figure 2.48: Posterior probability of non-simultaneous divergence of forward-time simulations under low theta
values with low levels of post-vicariance gene flow when analyzed using IMa2, under an estimation model that does
account for migration. See figure 2.4 for details on interpreting the plots.
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Figure 2.49: Posterior probability of non-simultaneous divergence of forward-time simulations under low theta
values with medium levels of post-vicariance gene flow when analyzed using IMa2, under an estimation model that
does account for migration. See figure 2.4 for details on interpreting the plots.

88



Minimal Substructuring, High Migration

Sample Time (N Generations)

P
os

te
rio

r 
P

ro
ba

bi
lit

y 
of

 N
on

−
S

im
ul

ta
ne

ou
s 

D
iv

er
ge

nc
e

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

●

●

●

●

●

●

●●

●

●
●

●●●●●
●●●●

●

●

●

●
●
●

●

●●●

●●

●

●●●●●●●

●●●●●●

●

●●●

●

●

●
●
●●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●●
●

●

●

●

●●

●

●●

●

●●●●●●●●

●

●●●●

●
●

●

●●●●●●
●

●

●

●

●

●
●

●

●

●

●

●●●●●●●●●●

●

● ●

●

●

●

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●●●
●● ●●●●●●●●●●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●●●

●

●
●●

●●
●

●●●●

●

● ●

●

●

●

●●●●●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●
●
●●
●

●
●●
●

●
●

●

●
●●

●

●●

●

●●●●

●

●
●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●

●●●

●

●

●●●●●

●●●●●●●●●●

●

●
●

●

●

●

24 3284 4016

∆
T

=
0

∆
T

=
4

∆
T

=
8

∆
T

=
16

∆
T

=
32

∆
T

=
64

Figure 2.50: Posterior probability of non-simultaneous divergence of forward-time simulations under low theta
values with high levels of post-vicariance gene flow when analyzed using IMa2, under an estimation model that does
not account for migration. See figure 2.4 for details on interpreting the plots.
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Figure 2.51: Posterior probability of non-simultaneous divergence of forward-time simulations under low theta
values with low levels of within population structuring when analyzed using IMa2. See figure 2.4 for details on
interpreting the plots.
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Figure 2.52: Posterior probability of non-simultaneous divergence of forward-time simulations under low theta
values with medium levels of within population structuring when analyzed using IMa2. See figure 2.4 for details on
interpreting the plots.
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Figure 2.53: Posterior probability of non-simultaneous divergence of forward-time simulations under low theta
values with high levels of within population structuring when analyzed using IMa2. See figure 2.4 for details on
interpreting the plots.
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Figure 2.54: Plot of first two components resulting from a principal components analysis carried out on the
summary statistics calculated across all single locus simulations. Blue dots represent true simultaneous divergence
(i.e., ψ = 1,∆T = 0), green dots represent non-simultaneous divergence with ∆T = 4 and ∆T = 8, and red dots
represent non-simultaneous divergence with ∆T ≥ 16.
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Chapter 3

Full-Likelihood Bayesian Simultaneous

Divergence Time Testing by

Integrated Parallel Analysis of

Multiple Genes of Multiple Species

3.1 Introduction

The previous chapter evaluated the performance of two different approaches to simultaneous diver-

gence time testing. The first was an Approximate Bayesian Computation (ABC) approach, msbayes

(Hickerson et al., 2006a; Huang et al., 2011), while the second was a full-likelihood Bayesian ap-

proach using IMa2 (Hey, 2010).

It was found that even when all estimation model assumptions were met, the ABC approach

only performed adequately within narrowly defined constraints on the conditions which generated

the data: an upper limit on the time separating divergence events, a lower limit on the time

elapsed since the divergence events, and a relatively higher range of mutation rates. If the data were

sampled outside these constraints, the results produced were spurious and misleading, with support

for incorrect conclusions and no indication that the method had actually failed. Furthermore,

recognizing the data were sampled from outside these constraints required information that would

94



obviate or render uneccessary the analysis, In addition, the responses of the method when data

were sampled outside these constraints and/or when the assumptions of the estimation model were

violated were varied. In most cases, spurious support of varied degrees of strength were indicated

for different models, depending on the nature of the deviation or violation of the constraints.

The most straightforward way more information can be added to an ABC analysis for simulta-

neous divergence time testing, and the only way feasible under real-world conditions, is the addition

of data from more independent loci. However, the addition of up to five loci actually proved to

degenerate performance, a conclusion corroborated by work by the msbayes authors (Huang et al.,

2011), who found that when using up 16 loci, the performance of msbayes was worse relative to

single locus data due to coalescence variation, and 32 loci or more were required for improvement

in performance relative to single locus data.

The full-likelihood method using IMa2 did not perform much better. Its performance enve-

lope mirrored that of msbayes, except whereas msbayes required data generated under high-theta

regimes and produced false support for the single divergence model when given data produced

under low-theta regimes, the revese was case for IMa2, which performed adequately given data

generated under relatively low-theta regimes but failed by producing support for non-simultaneous

divergence when given data generated under relatively high-theta regimes.

This suite of performance and behavior characteristics of msbayes can be attributed to the

summary statistics used: π, the mean pairwise differences between sequences; θ̂W , Watterson’s

estimator of θ (Watterson, 1975); πnet, the difference between the mean pairwise differences of se-

quences within each daughter subpopulation and the mean pairwise differences of sequences between

each daughter subpopulation; var(π− θW ), the denominator of Tajima’s D (Tajima, 1989), i.e. the

variance of the difference between two difference estimates of the population mutation parameter

θ; and Wakeley’s ψ (Wakeley, 1996). It is possible that further study may lead to development

of summary statistics that improve the behavior of msbayes. This view is challenged by the fact

that the results produced under the full-likelihood method implemented using IMa2 were not dra-

matically improved. It would be expected that if the reason for the limitations in the performance

of msbayes were due to the loss of information in the summary statistics, a full-likelihood method

would performance significantly better in contrast, as full likelihood-based coalescent approaches

are the most powerful method we currently have. This might still be true. The problem with the
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evaluation of the full-likelihood method using IMa2 was that the estimation was run independently

for each of the taxon pairs, and the numerical instability and loss of precision in the MCMC required

large time bins — on the order of 16.67N or 41,675 generations. This was necessary because IMa2

was really not designed for this analysis, and the results of interest in this evaluation were based on

extracting parameters that IMa2 was designed to integrate over rather than estimate. In principle,

there is nothing in Bayesian theory to preclude usage of the IMa2 statistical framework in this way.

In practice however, the implementation of the IMa2 program (e.g., the way it treated, recorded and

reported the divergence times), resulted in the loss of much information and power. As a result,

we do not really have an accurate assessment of the performance of a full-likelihood approach to

simultaneous divergence time model selection to which to compare the msbayes approach.

The current study presents a full-likelihood Bayesian framework for the simultaneous (parallel)

analysis of data from multiple loci of multiple species, co-estimating genealogical/phylogenetic,

chronological as well as demographic parameters. As such, it allows for the direct assessment

of the question of interest, under the most powerful statistical approaches we have available for

phylogeographic model selection. Furthermore, because it uses a full likelihood approach, it is also

not prone to the various issues that reduce the effectiveness or undermine Approximate Bayesian

Computation approaches to parameter (such as the “curse of dimensionality” / bias toward the

prior (Beaumont et al., 2002)), or model selection, such as Bayes factor inconsistencies depending on

summary statistics used (Marin et al., 2011), unpredictable biases in model posterior probabilities

(Robert et al., 2011), etc.

3.2 Statistical Framework

3.2.1 The Probability Model

Let X represent the data, i.e., the molecular sequences sampled from multiple loci of individuals

from each of daughter population from each species, where Xi,j is the alignment of the jth locus

sampled for the ith species. If we let s be the number of species and ai be the number of loci

sampled for the ith species, then 1 ≤ i ≤ s, and 1 ≤ j ≤ ai. Each alignment Xi,j consists of

genes sampled from two daughter populations of species i, Pi,1 and Pi,2, which descended from an

ancestral population Pi,0 that split Ti generations in the past. Let T = {T1, T2, ...Ts} be the vector
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of times that the ancestral population of ith species diverged into the two daughter populations

Pi,1 and Pi,2 for all i ∈ {1, 2, ..., s} (Ti also corresponds to the depth or age of the root split of

the ith species tree representation of the data). Let Gi,j be an ultrametric phylogenetic tree, with

edge lengths in units of generations, that explains alignment Xi,j given mutation rate µi,j . Let the

collection of gene trees and mutation rates for the alignments in X be represented by the vector

G and µ, respectively. Let Ni,j,k be the population size for kth population of the ith species, Pi,k

(0 ≤ k ≤ 2, 1 ≤ i ≤ s), where k = 1 and k = 2 represent the daughter populations and k = 0

represents ancestral population. Let N be the vector of population sizes across all populations of

all species. Then the posterior probability of the model, Pr(T,G,N) given the data is given by:

Pr(T,G,N | X) =
Pr(X | G, µ) Pr(G | N,T) Pr(µ) Pr(N) Pr(T)

Pr(X)
. (3.1)

The Likelihood

Pr(X | G, µ) is the likelihood of the genealogies and mutation rate given the sequence data. For each

species i, let Xi,j represent the data (sequence alignment) for locus j, with genes sampled from both

daughter populations, Pi,1 and Pi,2. Each genealogy Gi,j then consists of a phylogenetic tree which

relates the genes from across both populations of species i for locus j under a Jukes-Cantor finite

states character substitution model with mutation rate µi,j . This probability Pr(Xi,j | Gi,j , µi,j) is

the phylogenetic or “Felsenstein” likelihood (Felsenstein, 1981, 2004; Yang, 2006), and the product

of this is taken across all loci and species to yield Pr(X | G, µ).

The Numerical Priors

Pr(µ),Pr(N), and Pr(T) are the joint prior distribution on the mutation rates, population sizes,

and divergence times, respectively.

The Structured Coalescent Prior

Pr(G | N,T) is the joint structured coalescent prior on the genealogies, given by the structuring

implied by the species tree divergence times, T, and the population sizes associated with each edge

of the species tree, N. For any particular locus j of species i, the individual genes sampled from

daughter populations Pi,1 and Pi,2 are related to each other by the genealogy Gi,j , as described
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above. The genealogy Gi,j is thus “embedded” within a two-tip species tree with root depth of Ti,

which induces a mapping of the nodes in the genealogy onto one of the three edges of the species

tree (the two sister descendent edges, each with an edge length of Ti, and the root edge). The leaf

nodes of a particular genealogy are mapped to the species tree based on the populations from which

the corresponding genes are sampled: Pi,1 or Pi,2. This identity is fixed and does not change, i.e.

it is part of the data. All internal nodes of this genealogy are coalescence events, and are mapped

onto a population based on the depth of genealogical node (i.e., the age of the node, or the time

in generations from the present as given by the sum of edge lengths between the node and any one

of the tips descended from it). Specifically, internal nodes of the genealogy with a depth ≤ Ti will

be assigned to Pi,k if and only if both of its children are from Pi,k. If the depth of an internal node

is greater than Ti, then the node will be mapped to the ancestral population or root edge of the

species tree, regardless of the population identities of its children (i.e., coalescence between genes

of different populations are allowed in the ancestral species). If, on the other hand, the depth of

an internal node is less than or equal to Ti on genealogy Gi,j , and its children are from different

populations, then this implies a migration event, which is not supported under the current model,

and in this special case, Pr(Gi,j | Ni,k, Ti) = 0.

Thus given a genealogy Gi,j relating genes sampled from two populations, Pi,1 and Pi,2 that

diverged Ti generations ago, assuming that no migration is allowed, we can assign the internal nodes

of the genealogy to one of three coalescence segments: one for each of the subpopulations Pi,1 and

Pi,2, and one for the ancestral population of species i, Pi,0. Within each coalescence segments,

the waiting times between coalescence events is given by the the differences in depth between each

successive internal node if they are ranked in order of depths. Let ωi,j,k be the vector of waiting

times between coalescence events on genealogy Gi,j for subpopulation Pi,k. The distribution of

waiting times between coalescence events follows an exponential distribution with rate parameter

of
(nt

2 )
Ni,k

(Kingman, 1982a,b), where ni,j,t is the number of independent lineages remaining at time t

in genealogy Gi,j and Ni,k is the (haploid) population size of Pi,k:

Pr(ωi,j,k | Ni,k) =
∏

h∈ωi,j,k

(ni,j,t

2

)
Ni,k

e
−(ni,j,t

2 )
Ni,k

h
. (3.2)
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Further let ci,j,k be the number of uncoalesced lineages remaining in population Pi,k at time

t = Ti, for k ∈ 1, 2 (all lineages coalesce in the ancestral population Pi,0). The probability that

none of the ci,j,k lineages coalesces in the each of the daughter edges between the time of the last

coalescence (i.e., di,j,k, the depth of the deepest internal node on genealogy Gi,j assigned to daughter

population Pi,k) and the end of the edge is given by the law of total probability as the complement

of the probability that none of the ci,j,k lineages colaesce in the remaining time interval, which is 1

minus the CDF of the exponential with a rate of
(ci,j,k

2
)

Ni,k
:

Pr(ci,j,k | di,j,k, Ni,k) = 1− (1− e
−(ci,j,k2 )

Ni,k
di,j,k

)

= e
−(ci,j,k2 )

Ni,k
di,j,k

(3.3)

Thus, for any particular genealogy for locus j of species i, Gi,j , given population sizes of Ni,k

for the two daughter (k = 1 and k = 2) and the ancestral (k = 0) populations and an ancestral

population splitting time of Ti, the prior probability of the genealogy as given by the structured

coalescent is:

Pr(Gi,j | Ni,k, Ti) =
∏
k=1,2

[Pr(ωi,j,k | Ni,k) Pr(ci,j,k | di,j,k, Ni,k)] Pr(ωi,j,0 | Ni,0), (3.4)

assuming there there is no migration implied by any internal node in any of the daughter populations

Pi,1 or Pi,2 having children from two differne populations. Otherwise, the Pr(Gi,j) = 0. The prior

probability for all genealogies, G, is given by the product of the priors for each genealogy Gi,j

across all species and loci.
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The Probability of the Data

The denominator in expression 3.1, Pr(X), is the probability of the data, and is given by the

integration of the numerator across all parameters:

Pr(X) =

∫
T

∫
N

∫
µ

∫
G

Pr(X | G, µ) Pr(G | N,T) Pr(µ) Pr(N) Pr(T) dG dµ dN dT. (3.5)

Expression 3.5 is difficult to evaluate analytically, and this means that expression 3.1 cannot be

evaluated directly. Here, instead of calculating the posterior using expression 3.1 directly, we use

Metropolis-Hastings Markov chain Monte Carlo (MCMC) to sample from the posterior distribution

(Metropolis et al., 1953; Hastings, 1970).

3.2.2 Evaluating the Posterior Using Metropolis-Hastings Markov chain Monte

Carlo

MCMC is a class of algorithms designed to sample from a target density, which, in this case is

the posterior given in expression 3.1. Assuming that we have initialized the MCMC chain to a

starting state, for the next and every subsequent step, we propose a state which we accept as the

new current state with a probability equal to the ratio of the posterior of the proposed state to the

current state (or 1, if this ratio is greater than 1).

That is, if we let θ represent the current state of the system, and θ∗ represent the proposed

state of the system (where “state” indicates the vector of values for T, G, N, and µ), then the

probability of accepting the proposed state using the algorithm of Metropolis et al. (1953) is:

α = min

(
1,

Pr(X | θ∗)
Pr(X | θ)

Pr(θ∗)

Pr(θ)

)
. (3.6)

The aspect of MCMC that allows it to be used to evaluate functions that cannot be solved

analytically is that the value of interest is a ratio of the function evaluated at the proposed and

current states. In the context of sampling from the posterior in a Bayesian analysis, this means that

the denominator on the right-hand side of expression 3.1, i.e., the probability of the data, cancels

out, and thus at every MCMC step, only the numerator on the right hand side of expression 3.1
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needs to evaluated:

Pr(X | G, µ) Pr(G | N,T) Pr(µ) Pr(N) Pr(T) (3.7)

The original algorithm as formulated by Metropolis et al. (1953) assumed symmetrical proposals,

where the probability of proposing a new state, θ∗ from the current state, θ, is equal to the

probability of proposing state θ from the θ∗. That is, equation 3.6 assumes that q(θ∗ | θ) = q(θ | θ∗),

where q(x | y) represents the probability of proposing state x from state y. This assumption was

relaxed when the algorithm was extended by Hastings (1970) to allow for assymetrical proposals

by factoring in a ratio, the Metropolis-Hastings ratio, into the acceptance probability. That is if

the proposal densities are not constrained to be equal, the acceptance probability α is given by:

α = min

(
1,

Pr(X | θ∗)
Pr(X | θ)

Pr(θ∗)

Pr(θ)

q(θ | θ∗)
q(θ∗ | θ)

)
. (3.8)

The collection of states visited at every step forms the MCMC chain. If the chain is irreducible

(i.e., under the proposal density q(· | ·), it should be possible for the chain to reach any state from

any other state given enough time), and all the states in the chain are ergodic — that is, every

state is positive recurrent (i.e., with infinite time, each and every state should be visited an infinite

number of times) and aperiodic (i.e., there is no particular constant/fixed number of steps between

every visit to any given state) — then the chain itself is said to be ergodic. If a chain is ergodic,

then from any starting state, given enough time, the chain will converge on the target density such

that the sampling frequency of states in chain approximate the sampling frequency of states from

the target density, regardless of the starting state of the chain (i.e. an ergodic chain will converge to

a stationary distribution that approximates the target distribution regardless of the starting state).

3.2.3 MCMC Moves

Construction of the MCMC chain proceeds using a collection of different moves or proposal types,

each of which perturbs a particular component or subset of components of the state as expressed
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in equation 3.7. The moves currently implemented are:

• Gene subtree sliding move.

• Divergence time move.

• Mutation rate move.

• Population size move.

• Divergence time model jump move.

Gene Subtree Sliding Move

In this move, a non-root edge is randomly selected from a random genealogy, and slided up or

down (toward the root or tip) by a random amount, adjusting the length of the edge to preserve

the ultrametricity of the tree. Let e be a non-root edge selected with uniform random probability

from all non-root edges on genealogy, Gi,j selected with uniform random probability from all gene

trees. Let the current depth of the parent node of e be d0. Let the depth of the child nodes of

the parent node of e be d1 and d2 for the first and second child, respectively. Let w be a tuning

parameter that determines the maximum magnitude of depth displacement in a gene subtree sliding

move. Then the new depth for the parent node of e, d∗0 is given by:

u1 ← Uniform(0, 1)
if u1 ≥ 0.5 then
d∗0 ← d0 + Uniform(0, w)

else
d∗0 ← d0 − Uniform(0,min(w, d0 −max(d1, d2)))

end if

Basically, a direction for the slide, either upwards toward the root or downward toward the tip,

is determined with uniform random probability. If sliding upwards, then the depth displacement is

simply elected witth uniform random probability from a range given by [0, w). Sliding downwards

toward the tip, however, is a little more complicated, as the state space does not allow for the

depth of a node to be less (i.e., younger) than the depth of any of its children. Hence the upper

bound of the depth displacement must be constrained by both the window size and the difference

in depths between the parent node of the edge being slided and depths of its children (it might be
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possible for the difference in depth between the parent node of the edge being slided depths of the

children to be greater than the window size; the window size constraint is to ensure that the move

is reversible to satisfy the irreducible constraint on the chain).

As a result of the special constraints of sliding downward, the probability associated from sliding

down from a particular depth x to any other particular depth x′ is not equal to the probability

of sliding up from x′ to x. Furthermore, when a subtree is slided up toward the root and crosses

parent nodes, there is only one path to choose. However in the revese case, when a subtree is being

slided toward the tip, it needs to randomly decide which subpath (left or right) it needs to slide

down. Again, this results in an unequal probability between a move and its reverse move. Both of

these unequalities must be taken into account in the Hastings ratio for the proposal. If the number

of nodes traversed when sliding is nc, then the Hastings ratio for a downward slide is given by:

2nc
min(w, d0 −max(d1, d2))

w
, (3.9)

while the Hastings ratio for an upward slide is given by:

0.5nc
w

min(w, d0 −max(d1, d2))
. (3.10)

The acceptance probability for a tipward slide move is thus given by in minumum of 1 and:

Pr(Xi,j | G∗i,j , µi,j)
Pr(Xi,j | Gi,j , µi,j)

Pr(G∗i,j | Ti,Ni)

Pr(Gi,j | Ti,Ni)

(
2nc min(w, d0 −max(d1, d2))

w

)
. (3.11)

while that for a rootward slide move is given by the minimum of 1 and:

Pr(Xi,j | G∗i,j , µi,j)
Pr(Xi,j | Gi,j , µi,j)

Pr(G∗i,j | Ti,Ni)

Pr(Gi,j | Ti,Ni)

(
0.5ncw

min(w, d0 −max(d1, d2))

)
. (3.12)
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Divergence Time Move

In this move, a species i is selected at random the depth of the root split Ti is displaced a value

drawn in uniform probability over the range [−w,w], where w is a tuning parameter specifying

magnitude of the maximum possible depth offset:

u1 ← Uniform(0, 1)
if u1 ≥ 0.5 then
T ∗i ← Ti + Uniform(0, w)

else
T ∗i ← Ti − Uniform(0, w)

end if

The Hastings ratio for this move is 1.0. The acceptance probability this move is thus simply

given by the minimum of 1 and the ratio of the posteriors:

Pr(Gi | T ∗i ,Ni)

Pr(Gi | Ti,Ni)

Pr(T ∗i )

Pr(Ti)
. (3.13)

Mutation Rate Move

In this move, the mutation rate for a gene tree selected at random, Gi,j is displaced with a value

drawn with uniform probability over the range [−w,w], where w is a tuning parameter specifying

magnitude of the maximum possible mutation rate change.

u1 ← Uniform(0, 1)
if u1 ≥ 0.5 then
µ∗i,j ← µi,j + Uniform(0, w)

else
µ∗i,j ← µi,j − Uniform(0, w)

end if

The Hastings ratio for this move is 1.0. The acceptance probability this move is thus simply

given by the minimum of 1 and the ratio of the posteriors:

Pr(Xi,j | Gi,jµ∗i,j)
Pr(Xi,j | Gi,jµi,j)

Pr(µ∗i,j)

Pr(µi,j)
. (3.14)

104



Population Size Move

In this move, a population Pi,k is selected at random from a species i selected at random, and

the population size is displaced by a value drawn with uniform probability over the range [−w,w],

where w is a tuning parameter specifying magnitude of the maximum possible size change.

u1 ← Uniform(0, 1)
if u1 ≥ 0.5 then
N∗i,k ← Ni,k + Uniform(0, w)

else
N∗i,k ← Ni,k − Uniform(0, w)

end if

The Hastings ratio for this move is 1.0. The acceptance probability this move is thus simply

given by the minimum of 1 and the ratio of the posteriors:

Pr(Gi | Ti,N∗i )
Pr(Gi | Ti,Ni)

Pr(N∗i )

Pr(Ni)
(3.15)

Divergence Time Model Jumping Move

A model jump move is one in which the dimensionality of the chain is changed. Green (1995,

2003) describes a general procedure for changing model dimensionality such that the MCMC chain

generates samples from the joint distribution of parameters and model indices. In the current

implementation, we allow for a two-species system in which the divergence times, T1 and T2, are

allowed to vary independently (the “split state”), as well as when they are constrained to be equal

(the “merged state”).

A move from the split state to the merged state involves making the older of the divergence

times of the two species equal to the younger:

if T1 > T2 then
T1 ← T2

else
T2 ← T1

end if

A move from the merged state to the split state, on the other hand involves selecting one of
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the two species, i, and making the depth of its root split, Ti, older by drawing a new depth with

a uniform probability over a range bounded on the lower end by the current depth and the upper

end by z, the depth of the youngest internal node of the collection of gene trees for species i that

is the parent of child nodes from different populations.

u1 ← Uniform(0, 1)
if u1 < 0.5 then
i← 1

else
i← 2

end if
T ∗i ← Ti + Uniform(0, z − Ti)

In the procedure described by Green (2003), the Hastings ratio is replaced by:

g′(u′)

g(u)
|J |, (3.16)

where:

• u is the set of random numbers generated using a probability distribution with the joint

probability density g(u), and deterministically results in the proposed state when used in the

proposal function, θ∗ = h(θ,u);

• u′ is a set of random numbers generated with a joint probability density g′(u′), and de-

terministically produces the reverse move, i.e., the current state given the proposed state,

θ = h(θ∗,u′);

• the sum of sizes of dimensionality of the proposed states and the set of random numbers

required for the reverse should equal the sum of the sizes of the dimensionality of the current

state and the set of random numbers required for the forward move: |θ∗|+ |u′| = |θ|+ |u|,

• and |J | is the absolute value of the determinant of the Jacobian of the transformation from

{θ,u} to {θ∗,u′}, J = det
[ δ(θ∗,u′)
δ(θ,u)

]
.

In our current implementation, the merge move involves going from a model with two indepen-

dent divergence times to a single divergence time. Hence the pre-move state space has one extra
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dimension. Without loss of generality, we let t1 equal the younger of the two divergence times and

t2 equal the older: t1 = min(T1, T2) and t2 = max(T1, T2). Then, if θ represents the two-divergence

time model state and θ∗ the single-divergence time model state, θ = {t1, t2} and θ∗ = {t1}. Fur-

thermore, the merge move is deterministic, so u = ∅, while the reverse move requires one random

variable, the new divergence time of the species that is split away from the merged group, t2, so

that u′ = {t2}. The Jacobian is then:

J = det

 ∂θ∗1dθ1

∂θ∗1
dθ2

∂u′1
dθ1

∂u′1
dθ2


= det

 ∂(t1)
dt1

∂(t1)
dt2

∂(u′1)
dt1

∂(u′1)
dt2


= det

1 0

0 1


= 1. (3.17)

The absolute value of the Jacobian is thus |J | = |1| = 1.

The ratio of the joint probability density of the random variables in the reverse move to that

of the forward move is

g(u′)

g(u)
=

1
z

1

=
1

z
. (3.18)

In addition, we also need to account for the difference in proposal probabilities: while the merge

is deterministic, there are two possible ways to split a merged group (i.e., either one of the pair of

species may be selected to have its divergence time made older), and thus the ratio of proposing

the reverse (split) move to that of the forward (merge) move is:
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1
2

1
=

1

2
. (3.19)

Thus the complete Hastings ratio for the merge move is given by:

q(θ | θ∗)
q(θ∗ | θ)

=
1

2

g′(u′)

g(u)
|J |

=
1

2z
. (3.20)

The Hastings ratio for the reverse move is given by the reciprocal of expression 3.20.

The acceptance probability of the merge move is then the minimum of 1 and:

Pr(G1 | T1)
Pr(G1 | T1)

Pr(G2 | T1)
Pr(G2 | T2)

Pr(T1)

Pr(T1) Pr(T2)

1

2z
, (3.21)

while the acceptance probability of the split move is the reciprocal of this.

3.3 Implementation

Estimation under the model and the MCMC scheme described above was implemented in a C++

program, “beluga”. Calculation of the phylogenetic or “Felsenstein” likelihood was delegated

to the BEAGLE library (Ayres et al., 2011), using the “pytbeaglehon” wrapper (Holder, 2011).

Input is in the form of a set of NEXUS-formatted files (Maddison et al., 1997), with one file per

species, with the file reading supported by the Nexus Class Library (Lewis, 2003). The current

implementation requires the starting gene trees to be specified, in addition to the alignment and

population identities of the sampled taxa.

A custom NEXUS block allows for specification of priors, parameter linkages as well as MCMC

tuning parameter values. In addition to common probability distributions, such as the uniform or

exponential, a fixed value can be assigned to priors to reflect existing knowledge or for debugging

purposes. Moves can be assigned different relative weights, allowing for some moves to be proposed
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more often than others, or to be disabled completely.

The primary output is a tab-delimited text file of parameters as well as a series of tree files, one

tree file per locus, consisting of samples from the MCMC chain taken at user-specified intervals.

Supporting scripts make use of the DendroPy phylogenetic computing library (Sukumaran and

Holder, 2010) to help compose the input data files as well as summarize or analyze results.

3.4 Validation

3.4.1 Methods

Validation of Phylogenetic Likelihood Calculations

Unit testing of the phylogenetic likelihood calculations was based on comparing likelihoods calcu-

lated on test datasets to the results obtained in PAUP* (Swofford, 1998). A variety of datasets,

both single locus and multi-locus, were used, and calculations were tested both of “clean” input

trees as well as trees that had undergone several thousand rounds of MCMC transformations.

Validation of Gene Subtree Sliding Move

Given a null alignment, a divergence time or root split of 0, and a fixed population size of Ny, we

expect that a well-behaved MCMC chain should sample gene trees with characteristics of neutral

coalescent trees sampled from a population of size Ny. This is because the null alignment provides

no information to the gene trees, and they are then essentially being sampled from the prior.

Because the species root split is fixed at a depth of 0, the prior on the gene tree is that of an

unstructured coalescence taking place in the ancestral population, which has a haploid population

size of Ny. Thus the gene trees sampled from the posterior should be expected to be sampled from

a coalescence distribution with a population size of Ny.

We carried out a series of tests to verify that beluga conformed to these expectations, using

population sizes of 17,000 and 49,000, and gene trees with 20 leaves. A total of 10 replicates was

carried out in each test, with the MCMC chain run for 1,000,000 steps and sampled every 10,000

steps. The coalescence interval sizes (i.e., difference between successive depths of internal nodes)

along with the corresponding number of lineages existing at the time of coalescence were extracted
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from each gene tree sampled and stored. The coalescence interval sizes for each particular number

of existing lineages were pooled. The distribution of coalescence interval sizes given a particular

number of existing lineages, k, k ∈ {2, 3, ..20}, should follow an exponential distribution with a rate

of
(k2)
Ny

, Ny ∈ {17000, 23000}. This was verified by coalescence interval sizes recorded into 20 bins,

and comparing the numbers in each bin to those expected if they were distributed Exp(
(k2)
Ny

), using

a chi-square test with 19 degrees of freedom.

Validation of Species Divergence Time Move

Given a null alignment, fixed population sizes in all edges of Ny, and a fixed gene tree with two

leaves (one from each population), we would expect a well-behaved MCMC chain to return samples

in which the difference between the root divergence time and the gene tree root to be exponentially

distributed with a rate of 1
Ny

.

This is because the species root split depth is bounded on the lower end by 0, and on the upper

end by the depth of the gene tree root. The species root divergence time is free to vary between

these two limits, and the difference between the root divergence time and the upper limit is the

effective time allowed for coalescence between the uncoalesced lineages from either population.

We implemented this test using population sizes of 1000. A total of 10 replicates were carried

out, with the MCMC chain run for 1,000,000 steps and sampled every 10,000 steps. The samples

of the root divergence time from the posterior were binned into 20 bins, and the proportion in

each were compared to that expected under a exponential distribution with a rate of 1
1000 using a

chi-square test with 19 degrees of freedom.

Validation of Population Size Move

Given a null alignment, a fixed divergence time of 0, and a fixed gene tree with the coalescent

intervals on the tree given by the expected values under the coalescent with a population size of

Ny, we would expect a well-behaved MCMC chain to return a posterior sample of population sizes

with a 95% HPD (high posterior density interval) that includes Ny.

This test was implemented using population sizes of Ny ∈ {17000, 49000}, with the MCMC

chain run for 1,000,000 steps and sampled every 10,000 steps, for a total of 5 replicates per test

condition.
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Validation of Mutation Rate Move

Given a fixed divergence time of 0, a fixed population size of 30,000, a gene tree simulated under

the coalescent with a population size of 30,000, and an alignment simulated on the gene tree with

a mutation rate of µ0, we would expect a well behaved MCMC chain to return a posterior sample

of population sizes with a 95% HPD (high posterior density interval) that includes µ0.

This test was implemented using mutation rates of µ0 = 1e− 6, with the MCMC chain run for

1,000,000 steps and sampled every 10,000 steps, for a total of 5 replicates per test condition.

Validation of Divergence Time Model Jumping Move

Given a simple two-species system, with a single gene tree for each species, and a single gene sampled

from each population of each species, we can analytically solve for the marginal likelihoods for the

merged, single, divergence time model as well as the split, multiple divergence time model.

Let T1 be the divergence time of an ancestral population, and g1 be the time to the most recent

common ancestor (MRCA) for a pair of genes sampled from each of the daughter populations. Let

T2 be the divergence time of a second ancestral population, and g2 be the time to the most recent

common ancestor (MRCA) for a pair of genes sampled from each of its daughter populations.

Let M1 be the shared divergence time model, where T1 = T2 = Ts. Let M2 be the multiple

divergence time model, where T1 and T2 are independent. Let the prior on divergence times be

∼ Uniform(0, u).

Shared Divergence Time Assuming without loss of generality that g1 ≤ g2, the marginal

likelihood of M1 is given by:
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Pr(M1) =

g1∫
T0=0

K(g1 − T0)K(g2 − T0) Pr(T0) dT0

=

g1∫
T0=0

1

N1
e
− 1

N1
(g1−T0) 1

N2
e
− 1

N2
(g2−T0) 1

u
dT0

=
1

N1N2u

g1∫
T0=0

e
− 1

N1
(g1−T0)− 1

N2
(g2−T0) dT0

=
1

N1N2u

g1∫
T0=0

e
(N1+N2)T0−N2g1−N1g2

N1N2 dT0. (3.22)

Let x = (N1+N2)T0−N2g1−N1g2
N1N2

.

Then,

dx =
N1 +N2

N1N2
dT0

dT0 =
N1N2

N1 +N2
dx. (3.23)

Substituting expression 3.23 into 3.22, we get:

1

N1N2u

x1∫
x0

N1N2

N1 +N2
exdx, (3.24)

where x0 is given by:

x0 =
−N2g1 −N1g2

N1N2
, (3.25)

and x1 is given by:

x1 =
g1 − g2
N2

. (3.26)
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Solving the integral in expression 3.24, and substituting in the new limits:

Pr(M1) =
1

(N1 +N2)u
ex
∣∣∣∣
g1−g2
N2

−N2g1−N1g2
N1N2

=
1

(N1 +N2)u

[
e

g1−g2
N2 − e

−N2g1−N1g2
N1N2

]
(3.27)

Multiple Divergence Times Assuming without loss of generality that g1 ≤ g2, the marginal

likelihood of M2 is given by:

Pr(M2) =

g1∫
T1=0

g2∫
T2=0

K(g1 − T1)
1

u
K(g2 − T2)

1

u
dT2dT1

=

g1∫
T1=0

g2∫
T2=0

1

N1
e
− 1

N1
(g1−T1) 1

u

1

N2
e
− 2

N2
(g2−T2) 1

u
dT2dT1

=
1

N1N2u2

g1∫
T1=0

g2∫
T2=0

e
− 1

N1
(g1−T1)− 1

N2
(g2−T2) dT2dT1

=
1

N1N2u2

g1∫
T1=0

g2∫
T2=0

e
T1
N1
− g1

N1
+

T2
N2
− g2

N2 dT2dT1. (3.28)

Solving this integral yields:

Pr(M2) =
1

u2

(
1− e−

g1
N1 − e−

g2
N2 + e

− g1
N1
− g2

N2

)
. (3.29)

From equations 3.27 and 3.29, for any particular value of g1, g2, N1, N2, and 1
u , the marginal

likelihoods ofM1 vs. M2 can be evaluated, and from this the Bayes factor forM1 vs. M2, K, can

be assessed directly. By setting g1 = 1e6, g2 = 1391206, N1 = N2 = 1e5, and u = 1e7, the Bayes

factor K, comes very close to 1 (i.e., both models are equally favored, with Pr(M1|X)
Pr(M2|X) = 1.000009).

Running an MCMC chain on this system should therefore yield the shared divergence time model

being sampled as frequently as the multiple divergence time model.

beluga was run on a dataset corresponding to this system 1000 independent times. A χ2 test
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was carried out on each independent run, with

χ2 =
(|M1| − 500)2

500
+

(|M2| − 500)2

500
. (3.30)

This statistic was compared to a χ2 distribution with 1-degree of freedom.

3.4.2 Results

Validation of Gene Subtree Sliding Move

Each test replicate involved 19 independent chi-square tests (one for each coalescence event in a

20-leaf tree), resulting in a total of 380 chi-square tests (19 tests per replicate, for 10 replicates for

each of the two population sizes). A sample plot of the results for one of the replicates is shown

in Figure 3.1, showing the predicted and observed value in each bin. In 363 of these 380 tests, the

null hypothesess could not be rejected at a 95% significance level. In the remaining tests, the null

hypotheses were rejected with p-values ranging from 0.01 to 0.04. These latter cases are consistent

with Type I error rate under the 95% significance level.

Validation of Species Divergence Time Move

Of the total of 10 test replicates carried out, eight could not be rejected at a 95% significance level.

The null hypotheses were rejected in the remaining two tests with p-values of 0.04789 and 0.0377.

A sample plot of the results for one of the replicates is shown in Figure 3.2.

Validation of Population Size Move

Figure 3.3 shows the combined densities for the posterior of the population size across all test

replicates. The mean estimated population size across all runs was 16,9995.55.

Validation of Mutation Rate Move

Figure 3.4 shows the combined densities for the posterior of the mutation rate across all test

replicates. In each test replicate, the true mutation rate (1e−6) was within the 95% high-posterior

density (HPD) region. The mean estimated mutation rate across all runs was 0.0000009697.
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Validation of Divergence Time Model Jumping Move

In 934 of the 1000 independent tests (93.4% of the cases), the null hypothesis of equal probabilities

ofM1 vs. M2 could not be rejected at the 95% significance level. This is somewhat higher than the

expected number of false rejections, and the discrepency could be attributed to numerical stability,

statistical power, or, indeed, and actual bias in favor of the single divergence time model. More

work is needed to address this issue.

3.5 Application to Simulated Data

3.5.1 Methods

The previous chapter discussed a two-species system that was used to evaluate an Approximate

Bayesian Computation (ABC) approach to simultaneous divergence time estimation, msbayes

(Hickerson et al., 2006a; Huang et al., 2011). Here, we apply beluga to the same data sets under

two estimation conditions: one in which the true genealogies are given and one in which they need

to be estimated along with the rest of the parameters.

Each data set consisted of a pair of species, and each species consisted of a pair of populations

that diverged T∗ generations in the past, T∗ ∈ {0N, 4N, 8N, 32N, 64N}, N = 2500. In true simul-

taneous divergence, T1 = T2 = 0, while in the remaining cases the differences in divergence times

ranged from 4N to 64N . Samples were take from each population are various intervals after the

second divergence event (4N, 8N, 16N, 24N, 32N, 64N), with each set of samples from from each

sampling period from each replicate of the experiment analyzed separately.

Genealogies were simulated using Ginkgo (Sukumaran and Holder, 2011), a forward-time spatially-

explicit phylogeographic simulator. Three classes of simulations were carried out: a “baseline” class,

in which all coalescent and model assumptions were met or approximated, a “migration” class in

which there was post-vicariance gene flow of varying degrees, and and a “within-population struc-

turing” class in which movement within a population was restricted to varying degrees. Sequences

were simulated on the genealogies using Seq-Gen (Rambaut and Grassly, 1997) under two mutation

rates, a per site per generation mutation rates of 2.4e−7 and 7e−6, for two categories of population

parameter values, repsectively: a “low theta regime” (θ = 0.0024) and a “high regime” (θ = 0.07).
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A total of 10 simulation replicates was generated for each distinct combination of classes, con-

figurations, parameters and settings.

A further set of simulations was carried out using multi-locus data. Parameter sweeps were

sparser in this case, focussing on a smaller subset of divergence time separations (0N, 8N, 16N)

and sampling periods (4N, 16N, 32N).

The estimation conditions in which the true genealogies were given and fixed were used to

assess the accuracy of the model selection under conditions of low-dimensionality / high infor-

mation. Specifically, beluga was given the true gene trees along with the data, and these were

fixed (i.e., the MCMC chain did not propose any changes to them). These analysis conditions

will provide indications of the accuracy and performance of the more novel aspects of the beluga

estimation procedure, namely the simultaneous divergence time model jumping, as opposed to

the Bayesian inference of phylogenies, which is a well-established field (Felsenstein, 2004). Priors

on population sizes were ∼ Uniform(0, 10000), while priors on the clade divergence times were

∼ Uniform(10000, 1000000). Each MCMC chain was run for 5,000,000 steps which took approxi-

mately 4 minutes to run to completion on a 3.3 GHz Intel Xeon machine. The MCMC chain was

sampled every 5000 steps, for a total of 1000 samples from the posterior. Convergence was assessed

by visual inspection of log-posterior, log-likelihood and parameter estimate densities of randomly

selected runs using Tracer (Rambaut A., 2007). In all such inspected runs, convergence occurred

very rapidly, and so the first 100 samples were conservatively discarded as burn-in across all runs.

The posterior probability of the divergence time model (one, i.e., simultaneous divergence, or two,

i.e., non-simultaneous or multiple independent divergence) was given directly by the proportional

representation of the respective model in samples from the posterior.

The estimation procedure was also run with the unfixed gene trees, i.e, beluga had to esti-

mate the gene trees and mutation rate along with all the other parameters under a low theta

regime. All priors were the same as before, with the additional mutation rate prior given as

∼ Uniform(1e−8, 1e−6). Each MCMC chain was run for 250,000,000 steps which took approxi-

mately 12 hours to run to completion on a 3.3 GHz Intel Xeon machine. The MCMC chain was

sampled every 250,000 steps, for a total of 1000 samples from the posterior. Again, covergence

was assessed by visual inspection of log-posterior, log-likelihood and parameter estimate densi-

ties of randomly selected runs using Tracer (Rambaut A., 2007), and the first 100 samples were
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discarded as burn-in.

3.5.2 Results

The results of the low-dimensionality (fixed, true gene trees) analyses of data generated under

baseline conditions (all model assumptions met) under both low and high theta regimes are shown

in Figures 3.5 and 3.6, respectively. Non-simultaneous divergence generally cannot be identified

if the time separating two non-simultaneous events is 4N or less. At time separations of 8N or

greater, however, non-simultaneous divergence can generally be identified correctly.

The results of the low-dimensionality analyses of data generated under conditions where the

Wright-Fisher population assumptions are violated by the introduction of gene flow between the

daughter sub-populations are shown in Figures 3.7 through 3.9. As more and more migration is

introduced, there is a tendency to prefer a non-simultaneous divergence time model unconditionally,

regardless of the actual generating model or truth.

The results of the low-dimensionality analyses of data generated under conditions where the

Wright-Fisher population assumptions are violated by the introduction of substructuring within

the daughter sub-populations are shown in Figures 3.10 through 3.12. As more and more sub-

structuring is introduced, there is a tendency to prefer a non-simultaneous divergence time model

unconditionally, regardless of the actual generating model or truth.

The results of the high-dimensionality analyses (gene trees are estimated as part of the inference)

of data generated under baseline conditions (all model assumptions met) under low theta regimes

are shown in Figure 3.14. Under this very parameter-rich model, performance is extremely poor,

with more than 64N generations separating the two divergence events required before the non-

simultaneous divergence model is correctly preferred.

3.6 Discussion

beluga provides a way to estimate simultaneously the divergence time between sister populations

of multiple species in parallel, using data from multple loci and integrating information from coa-

lescent, population genetic as well as phylogenetic processes in a Bayesian statistical framework. In

its most general case, beluga can analyze an arbitrary number of independent species. However, if
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limited to two species, the current version allows for reverse-jump MCMC to sample from models

of different dimensionality with respect to the divergence time, so as to estimate explicitly the

posterior probability of simultaneous divergence vs. non-simultaneous divergence. In this respect,

its application domain is similar to that of msbayes (Huang et al., 2011; Hickerson et al., 2006b),

and it can thus be seen as a full- or exact-likelihood counterpart. Tests and verification of various

components of the model and the program in isolation all indicate that both the model and its

implementation produce reasonable results as predicted by coalescent and Bayesian theory.

In applications to simulated data when given the true gene trees as information, performance

was excellent as long as the assumptions of the model were not violated. In particular, under

baseline conditions where coalescent assumptions of Wright-Fisher demographic condtions as well as

complete post-vicariance isolation as assumed by the estimation model were met, beluga was able to

identify correctly the number of distinct divergence times with a resoluton of 4N generations. That

is, as long as 4N generations or more separated separated two independent divergence events, given

the gene trees, beluga was consistently able to prefer correctly the non-simultaneous divergence

model with very strong support. If the time separating the two divergences was less than 4N

generations, on the other, beluga concluded preference for the non-simultaneous divergence model.

Migration or incomplete post-vicariance gene flow between the daughter populations misled the

beluga analyses, as it did with the msbayes analyses that did not treat migration. However, the

response was in the opposite direction, with spurious, strong, and unconditional support for the

simultaneous divergence. Since migration is excluded from the beluga model, a migrant allele can

only be explained by reducing the divergence time between daughter population such that the allele

is modelled as a coalescent event in the ancestor. With sufficient levels of migration, the divergence

times in both species get reduced to the extremely recent past, and thus any information regarding

time separation is lost. In effect, untreated migration “blocks” the method from “seeing” any

deeper in the past than the most recent migration, and a single unstructured population becomes

generally a better explanation for data from both species.

Within population substructuring confounded or confused beluga in much the same way, both

quantitatively and qualitatively, as it did msbayes and IMa2. As within-population substructuring

levels increased, a general trend toward unconditional support for non-simultaneous divergence was

observed, even if the divergence was actually simultaneous. This suggests that there might be no
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summary statistics that might rescue the Approximate Bayesian Computation approach from being

misled by the within-population substructuring. The likelihood can be seen as a perfect summary

statistic (Beaumont et al., 2010), and so if it lacks the power to discriminate correctly between

simultaneous and non-simultaneous divergence in a coalescent framework, it is unlikely that this

situation can be improved given the additional loss of information with any other coalescent-based

summary statistic. Indeed, these analyses were provided more information than ever might be

available to any real-world empirical study. The fixed gene trees alone reduced the dimensionality

of the problem by several orders of magnitude: the only numerical parameters to be estimated

were six population size parameters and two divergence time parameters. The resulting model is

extremely simple, and hence highly tractable and powerful, as indicated by the fact that, without

within-population structuring, beluga converged on the truth extremely rapidly and consistently

across multiple tests. However, with strong within-population structuring, beluga failed every time.

All this suggests that the limitation lies with the fact that if there substantial or strong population

structuring, then the coalescent submodel of any estimation framework needs to explicitly account

or treat this.

The high-dimensionality analyses produce poor results. When comparing these to msbayes

or IMa2, it should be remembered that the beluga analyses were under models of much higher

dimensionality than either these previous two. The msbayes model reports its results in units of N ,

and thus implicitly assumes equal population sizes. The IMa2 model, as used in the previous chapter,

explicitly assumes an equal mutation rate, and when comparing analyses across independent runs,

equal population sizes were also assumed. In the high-dimensionality beluga analyses presented, all

mutation rates and population sizes were free parameters, for a total of eight extra free parameters.

Furthermore, some of these free parameters are known to be non-identifiable given the existing free

parameters (e.g., population size, divergence time, gene tree edge lengths, mutation rate). Given

all this, it is actually surprising that beluga was able to identify correctly the divergence time

model at all. The fact that it could do this at the most extreme time separation analyzed indicates

the power of coalescent-based statistical phylogeography. At the same time, it also speaks to the

limits of knowledge: without some information on at least one if not more classes of the parameters

(mutation rate, population size, divergence time), then phylogeographic model selection in general,

and simultaneous divergence time testing in particular, is extremely difficult if not impossible.
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A comprehensive sensitivity analysis of beluga is needed, to establish the full boundaries of its

performance envelope. There are strong inter-dependencies between many of the parameters of the

beluga model (e.g., population size and divergence time, mutation rate and divergence time), and

informative priors on some of these may allow for better power in estimating others.

beluga is currently limited in a number of ways, all of which have the potential to be improved

in future work. The most obvious limitation is the reverse-jump MCMC between divergence time

schedule models is limited to two species. There is no theoretical reason that this cannot be

extended to an arbitary number of species, and this extension will greatly increase the applicability

and the usefulness of this program.

Furthermore, population relationships are currently limited to a single split (i.e., each species

tree is assumed to only have two leaves). This situtation is also easily resolved, and will be one of

the targets for future work.

Another area for improvement is the efficiency of some of the MCMC moves. In particular,

there are a number of sophisticated algorithms for ultrametric or clock-constrained phylogenetic

tree proposals (Höhna et al., 2008), some of which may perform much better than the simple subtree

slide move used here, and others of which might work well in conjunction with it. Improved

efficiency or performance in searching through gene tree space will directly contribute to better

usage of multiple locus information. In addition, the model jumping currently uses a very crude

scheme to propose the divergence time of a species when splitting away (i.e., transitioning from

the single divergence time state to a multiple divergence time state). This leads an extremely high

proportion of rejections of this move, which slows down mixing considerably. A more flexible move

may propose a new divergence time for the split group that, for example, decays exponentially from

the current divergence time, to increase the probability of it being accepted.

If the parameter space has multiple peaks, and, given the complexity of the space as well as the

well known non-identifiability of certain groups of parameters in some of the submodels, (such as the

mutation rate and time, or population size and time) then Metropolis coupling (Geyer, 1991; Altekar

et al., 2004) or will increase performance of the MCMC chains. Finally, while within-population

structuring present a challenging prospect to be treated statisically, models incorporating post-

vicariance migration have been developed and implemented (Hey and Nielsen, 2004, 2007). Future

work on beluga will incorporate these aspects, and allow for application in a broader range of
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contexts.
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3.7 Figures
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Figure 3.1: Results of a single replicat of the gene subtree slide move validation test. Each subplot, (a) through
(s), shows the observed (red) vs. expected (blue) frequencies of coalescent interval sizes. The expected distribution

should follow a coalescent distribution for a population size of 17000 and k lineages, Exp(
(k2)

17000
), k ∈ {2, 3, ..., 20}.

See text for details.
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Figure 3.2: Results of a single replicate of the divergence time move validation test, showing observed (red) vs.
expected (blue) frequencies of differences in divergence time vs. root of genealogy for a population size of 17000.
The expected distribution should follow a coalescent with 2 lineages and a haploid population size of 17000, i.e.
Exp( 1

17000
).
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Figure 3.3: Results of combined results of 10 independent tests of the population size MCMC
move/estimation procedure, showing estimated posterior distribution of across all runs. True population size
was 17000 (indicated by red dotted line). Mean of posterior was 16995.5478164, while the 95% HPD was
(11956.958467587323, 22799.177855160102).
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Figure 3.4: Results of combined results of 10 independent test of the mutation rate MCMC move/estimation
procedure, showing estimated posterior distribution of across all runs. True mutation rate was 1e− 6 (indicated by
red dotted line). Mean of posterior was 9.69e-7, while the 95% HPD was (6.17805e− 07, 1.357387e− 06).
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Baseline Case: Minimal Substructuring, No Migration

Sample Time (N Generations)
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Figure 3.5: Posterior probability of non-simultaneous divergence of “baseline” forward-time simulations under
low theta values when analyzed using beluga: all assumptions of the estimation model, in particular, Wright-Fisher
population assumptions and complete post-vicariance isolation (no migration) were met. Y-axis on each strip indicates
estimated approximate posterior probability of support for multiple divergences, while X-axis indicates period after
the second vicariance event in which the sample was taken. Each strip is for 10 replicates of a simulation carried out
at particular difference or separation of time between the two divergences. The top strip, ∆T = 0, is when there is
no difference in time between the two divergences, i.e., the case of true simultaneous divergence. High values on the
Y-axis here indicate support for the wrong model. The remaining strips show increasingly larger differences in time
between divergence events, and high values on the Y-axis thus indicate support for the correct model.
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Baseline Case: Minimal Substructuring, No Migration
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Figure 3.6: Posterior probability of non-simultaneous divergence of “baseline” forward-time simulations under high
theta values when analyzed using beluga: all assumptions of the estimation model, in particular, Wright-Fisher
population assumptions and complete post-vicariance isolation (no migration) were met. See figure 3.5 for details on
interpreting the plots.
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Minimal Substructuring, Low Migration

Sample Time (N Generations)
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Figure 3.7: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values and low post-vicariance gene flow when analyzed using beluga. See figure 3.5 for details on interpreting the
plots.
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Minimal Substructuring, Medium Migration
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Figure 3.8: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values and medium post-vicariance gene flow when analyzed using beluga. See figure 3.5 for details on interpreting
the plots.
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Minimal Substructuring, High Migration
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Figure 3.9: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values and high post-vicariance gene flow when analyzed using beluga. See figure 3.5 for details on interpreting the
plots.
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Low Substructuring, No Migration
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Figure 3.10: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values and low within-population substructuring when analyzed using beluga: the Wright-Fisher assumptions of
the estimation model were selectively violated by introducing a low degree of movement restriction within daughter
subpopulations. See figure 3.5 for details on interpreting the plots.
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Medium Substructuring, No Migration
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Figure 3.11: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values and medium within-population substructuring when analyzed using beluga: the Wright-Fisher assumptions
of the estimation model were selectively violated by introducing a medium degree of movement restrictions within
daughter subpopulations. See figure 3.5 for details on interpreting the plots.
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High Substructuring, No Migration
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Figure 3.12: Posterior probability of non-simultaneous divergence of forward-time simulations under high theta
values and high within-population substructuring when analyzed using beluga: the Wright-Fisher assumptions of
the estimation model were selectively violated by introducing a high degree of movement restrictions within daugher
subpopulations. See figure 3.5 for details on interpreting the plots.
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Baseline Case: Minimal Substructuring, No Migration
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Figure 3.13: Posterior probability of non-simultaneous divergence of multilocus (5 loci) “baseline” forward-time
simulations under low theta values when analyzed using beluga: all assumptions of the estimation model, in par-
ticular, Wright-Fisher population assumptions and complete post-vicariance isolation (no migration) were met. See
figure 3.5 for details on interpreting the plots.
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Baseline Case: Minimal Substructuring, No Migration
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Figure 3.14: Posterior probability of non-simultaneous divergence of “baseline” forward-time simulations under
low theta values when analyzed using beluga: all assumptions of the estimation model, in particular, Wright-Fisher
population assumptions and complete post-vicariance isolation (no migration) were met. MCMC was over gene tree
parameter space as well. See figure 3.5 for details on interpreting the plots.
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