KU ScholarWorks

Design, Analysis, and Simulation
of Rocket Propulsion System

ltem Type Thesis

Authors Kulhanek, Sarah Logan

Publisher University of Kansas

Rights This item is protected by copyright and unless otherwise specified

the copyright of this thesis/dissertation is held by the author.

Download date 2024-08-07 15:00:03

Link to Item https://hdl.handle.net/1808/10198

https://hdl.handle.net/1808/10198

Design, Analysis, and Simulation of Rocket Propulsion System
By
Sarah L. Kulhanek
Submitted to the graduate degree program in Aerospace Engineering and

the Graduate Faculty of the University of Kansas in partial fulfillment of
the requirements for the degree of Masters of Science.

Chairperson, Dr. Ray Taghavi

Committee member, Dr. Saeed Farokhi

Committee member, Dr. Shahriar Keshmiri

Date Defended: 6/6/2012

The Thesis Committee for Sarah L. Kulhanek

certifies that this is the approved version of the following thesis:

Design, Analysis, and Simulation of Rocket Propulsion System

Chairperson, Dr. Ray Taghavi,

Date approved: 6/6/2012

i

Abstract

This document details the functionality of a software program used to streamline a rocket
propulsion system design, analysis and simulation effort. The program aids in unifying the
nozzle, chamber and injector portions of a rocket propulsion system design effort quickly and
efficiently using a streamlined graphical user interface (GUI). The program also allows for the
selection of common nozzle profiles including 80% rao, conical, a user selected percentage bell,
and a minimum length nozzle (MLN) using method of characteristics (MOC). Chamber
dimensions, propellant selections, and injector selection between doublet or triplet allow for

further refinement of the desired rocket system design.

The program takes the available selections and specifications made by the user and outputs
key design parameters calculated from the input variables. A 2-D graphical representation of the
nozzle and/or chamber is plotted and coordinates of the plotted line are displayed. Additional
design calculations are determined and displayed within the program such as specific impulse,

exhaust velocity, propellant weight flow, fundamental instability frequencies, etc.

The rocket propulsion system design coordinates are saved to a *dat file which can be used
in a CAD program to plot a 3-D model of the rocket propulsion system. The *dat file is
compatible for creating splines in Unigraphics NX, Catia, and SolidWorks. Coordinates of the
injectors are saved to a *dat file to be modeled in a CAD program as well. The program
currently provides a symbolic link in the form of a button on the output page which will open

Unigraphics NX CAD program.

il

The post-processing simulation of the rocket propulsion system is done in a computational
fluid dynamics (CFD) program such as ANSYS ICEM CFD mesh generation software and
ANSYS FLUENT CFD. The program provides a button on the output page which will open the
ANSYS ICEM CFD mesh program and the ANSYS FLUENT CFD program. The user inputs
the parasolid or IGES/STEP file of the CAD 3-D modeling of the rocket propulsion system into
the ANSYS ICEM CFD meshing software. The geometry tolerant mesher program produces a
volume or surface mesh to be read into the ANSYS FLUENT CFD software. Using ANSYS
FLUENT CFD software, the user can choose to model the flow, turbulence, heat transfer, air
flow over the rocket, combustion in the chamber, or various other options of the rocket

propulsion system.

The rocket propulsion system is a graphical user interface (GUI) which is run through

Matlab and is compatible for 2009-2011 Matlab versions.

v

Acknowledgements

First and foremost, I would like to thank my advisory committee chairperson, Dr. Ray
Taghavi, for all your support, motivation, and guidance throughout this project. Your
mentorship, friendship, and dedicated teaching throughout my undergraduate and graduate
education at the University of Kansas will always be remembered.

Second, I would like to thank my committee members, Dr. Saeed Farokhi and Dr. Shahriar
Keshmiri for their support and guidance throughout this project and my undergraduate and
graduate education. The experiences I have gained through this work and my educational career
will last a lifetime.

Thirdly, I want to express my deep love and appreciation to my fiancé Jakob Bowden.
Thanks for your support, understanding, sacrifice, and encouragement through the hard times.
You kept me going and made my stressful work enjoyable. You gave me the strength and
motivation to work through the long days and late nights. You mean the world to me.

Also, I would like to express my deep love and appreciation to my family. Thanks to my
mother and father for their support and constant love throughout my life. You guys motivated
me to stick with it and be the independent strong willed girl you raised me to be. Thanks to my
two sisters and brother for their support and encouragement throughout the years. You kept me
going through the hard times and took the stressful work off my mind every time you called to
talk with me. I would like to dedicate this thesis to my family.

Fourthly, I would like to thank Jeff and Karen Bowden for their love, support, and
encouragement through my thesis. Thank you for the generosity of letting me stay with you
these past few months and for all the support through the hard times. You helped me get through

the late nights and difficult times.

Finally, I would like to thank all my friends in the KU aerospace department for making the
last 7 years memorable, especially Phil Rich and Adam Saverino. I enjoyed working with you
guys every day and having fun through the good and hard times of school. I will sorely miss

seeing you guys every day, but I have made lifelong friends that will always be a part of my life.

vi

Table of Contents

Page #
F e 0] 5 ¢ 11 AR i1
ACKNOWIEAZEMENLS.......eiiiiiieiieeiii ettt ettt e st e et e staeeteesaaeesbeessaeenseesssesnseenssesnseas v
| Ao 2 e USSR viii
List of Figures (CONTINUEM).......ccuiiiieiiiieriieeieeriie ettt ettt ebeesteeesbeesneeensaesnneenseenens X
LISt O SYMDOIS ..ttt e st e e tb e e e tbaeessaeeessaeesssaeessseeennseeenns X
List of Symbols (CONMUEA)........cciuiiiiiiiiiieiieiie ettt et siee e seaeebe e aaeesseenes Xi
List of Symbols (CONtINUEA)........cccuiieiiieeiiieeie et e e e e ae e e ereeenneeeaes xii
List of Symbols (CONNMUEA)........coouiiiiieiiieiieiieeie ettt ettt ettt et e sae e e seaeebeessaeenseesnneens xiii
1.0 INEEOAUCTION ...ttt ettt ettt e bt e et e seeeeaeean 1
2.0 LIterature REVIEWccueiiiiiiiiieiieie ettt ettt st nb et sae e 6
3.0 Theoretical ConSiAErationsS..........ccueeeiieeiiiieeiiieeieeeeiee et et e e e e eereesaaeeereeeeeseeesareeas 8
3.1 RAONOZZIC ...ttt 8
3.2 CONICAl NOZZICveieeiieeeie ettt ettt e e e aae e s b e e e abeeenseeenseeenneeas 10
3.3 Minimum Length Nozzle (MLN) using Method of Characteristics (MOC).................. 12
3.4 Combustion ChambeT..........eeiiuiiiiiiieciie ettt e et eaee e e e b e e esabeeeaseeenereas 21
K T T 131167101 - SO USROS 23
3.6 Propellant CalCulationscocuieiiiiiieiiieiieie ettt e 24
3.7 Resonant Frequency for the 1* Longitudinal, Radial, and Tangential Modes............... 25
4.0 Program DetailS.........coouiiiiiiiiiiieee et s 28
4.1 OVEIall LaYOUL.....iiiiiiiieiiecieecieeete ettt ettt ettt e be e st eebeessaeebeessseensaesssessseenssesnsaens 28
4.2 WelCOME TaD ..ttt e e e et e e e aaeeearaeen 30
4.3 INSrUuCtiONS TaDb...couiiiiiiiiii e 31
4.4 Design ChoiCes Tabc.cccoiiiiiiiiiiiiiieeeee et s 32
4.5 Input SEIECtiONS TaADcccuiiiiiiieeiieceeee e e e 34
4.6 Output SElections Tab.........coeiiiriiiiiiiiieee e 37
5.0 Program EXample RUNcoooiiiiiiiiic et 39
5.1 NOZZIE SEIECTIONS ...ttt ettt sttt e e be e eenseesaeeenne 39
5.2 Combustion Chamber and Nozzle Selection...........ccccoeveeiiiiiiiniiniiiniiieiceeee 41
5.3 Minimum Length Nozzle (MLN) using Method of Characteristics (MOC)................. 43
5.4 Three-Dimensional Modelingcceeviiieiiiiieiiieeiiieeieeeeeee e e 45
5.5 Simulation Computational Fluid Dynamics (CFD) Examplecccccccevveniininicnnenne. 48
6.0 Conclusion and Future Workcocooiiiiiiiiiieeeceeee e 50
7.0 RETRIEIICES ...ttt ettt sttt e et e aeesabeenaeeens 52
Appendix A: Main GUI Code.......cc.uiiiuiiiiiiieciieecee ettt et e e saee e e e 55
Appendix B: Function for Ra0 NOZZIEcccciiiiiiiiiiiiiiiicee e 108
Appendix C: funCtion CONICAL........c..eiiiiiiiiiieeii et re e e ree e s beeeeaaeeees 113
Appendix D: function MOCcccoiiiiiiiiiiieieeee ettt eaeeeees 114
APPENAIX F: fUCL ..ottt s et e e e e eaee e 120

vii

List of Figures

Figure 1-1:
Figure 1-2:

Rao N0zzle (RETEIENCE 2)iiiiieiiieiiieiieciteieeee ettt e 1
Conical Nozzle (RefErenCe 2)oeiviiieiiiieiieeciee ettt e 2

Figure 1-3:Under-Expanded, Over-Expanded, & Perfectly Expanded Nozzles (Reference 1)...... 2

Figure 1-4:
Figure 1-5:

Schematic of Supersonic Nozzle Design by the MOC (Reference 3)ccccveeeunenne 3
Rocket Cylindrical Combustion Chamber (Reference 4)ccccccvevveeiienieeniiennnnnn. 4

Figure 1-6: Schematic Diagram of the Doublet and Triplet Injector Types (Reference 2)............ 5
Figure 3-1: Parabolic Approximation of Bell Nozzle Contour (Reference 4)..........ccoceevervenennnen. 8
Figure 3-2: Schematic Sketch of Conical Nozzle (Reference 4)cccoecvveeeieevcieeenciieeciee e 11
Figure 3-3: Streamline GEOMELIYcccuevuieriirienieieeieeitest ettt sttt et s 14
Figure 3-4: Left- and Right-Running Characteristic Lines..........ccccoeeveeeiieeeiieeniie e eeiee e 16
Figure 3-5: Unit Processes for MOCcoouiiiiiiiiiiieiiesee ettt 18
Figure 3-6: Schematic of Supersonic Nozzle Design by the MOC (Reference 3)ccccccueneee. 20
Figure 3-7: Schematic of Minimum-Length Nozzle (Reference 3)........ccccevvieviieniiiiiiniicieenen. 21
Figure 3-8: The Resonance Modes (Reference 8)cooveeviieiiiiiiiiiiiieieeceee e 26
Figure 4-1: Layout PrOZIami..........coviiiiiiiieeiieiieeie ettt ettt et sve et eesbeesaaesasaesanessseensnas 29
Figure 4-2: Welcome Tabcc.ooiiiiiiiiiiiiciccecee et 30
Figure 4-3: INStructions Tab........c.coieiiiiiiiieieeeee e 31
Figure 4-4: Design Choices Tabccoooiiiiiiiiiiiiiiiiicc e 32
Figure 4-5: Layout of the Design choice SEleCtions...........ccueeuerierieriienienieieniescee e 33
Figure 4-6: INPUL TaDooiiiiii ettt ettt et 34
Figure 4-7: Nozzle Input Parameterscooeeierieiiiieiieniieieeeeeieee et 35
Figure 4-8: Chamber Input Parameters.coceveeriiiiiiiiniiiicieeeeececce e 36
Figure 4-9: Injector Input Parametersc.c.ooiiiiiiiiiiiiiiice e 36
Figure 4-10: MLN Input Parameters........c.cceoueeieriiriiiiinierieeieseceieete ettt 37
Figure 4-11: OUtput Tab c...cooiiiiii ettt e 38
Figure 5-1: Input Parametersccccooueiiiriiniiiiinieieeiesteceest ettt 39
Figure 5-2: 80% Ra0 NOZZIC.........ooiiiiiiiiiiiiiiic e 40
Figure 5-3: 50% Ra0 NOZZIC.....c...oviiiiiiiieiceee e 40
Figure 5-4: 15 Degree Half Angle Conical NOZzZIeccccooiiiiiiiiiiiiniiiieeceeee, 40
Figure 5-5: Chamber and Nozzle Input Parameters...........cccceceviereriiiniinieienicneceecsecee 41
Figure 5-6: 80% Rao Nozzle with Chamber ..o, 42
Figure 5-7: 50% Rao Nozzle with Chamber...........c.ccoceviiiiiiiniiniiice e 42
Figure 5-8: 15 Degree Half Angle Conical Nozzle with Chamber.............cccceeieiiiniiininnennne. 42
Figure 5-9: MOC Input Parameterscoccevuerieriiriiiiiiieiteeieseteie ettt s 43
Figure 5-10: Two-Dimensional Plot of the MLN using MOC for 25 linescccccceveereeneeenen. 43
Figure 5-11: Two-Dimensional Plot of the MLN using MOC for 50 linesc..cccceeverueeuennnene 44
Figure 5-12: Two-Dimensional Plot of the MLN using MOC for 100 lines.......c..ccoceeveerueennee. 44
Figure 5-13: 3-D Model of a 80% Rao Nozzle and Chamber (Reference 12)ccceveveeenenne 45
Figure 5-14: 3-D Model of 15 Degree Half Angle Conical Nozzle & Chamber (Reference 12). 46
Figure 5-15: 3-D Model of Doublet Injector (Reference 12)ccceevvveeiieeeieeeciieeeiee e 47
Figure 5-16: 80% Rao Nozzle Mesh Grid (Reference 14)ccccoevvieiiiiiiiiniieiiienieeeeeeeeeeee, 48
Figure 5-17: Experimental, Computational Schileren Images, and Mach contours for Baseline
Nozzle Configuration at Various NPRs (Reference 26)cccoocueevieiiiiiiieniieienieeieeeeeieee. 49

viii

List of Figures (continued)

Figure 5-18: Experimental, Computational Schileren Images, and Mach contours for Baseline
Nozzle Configuration at Various NPRs Continued (Reference 26)cccceeeevvveeieeecieeecieeenneen. 49

X

List of Symbols

MM

Description

Coefficient

Speed of sound

Area

Coefficient

Coefficient

Characteristic velocity
Characteristics

Discharge coefficient

Diameter

Exit point

Frequency

Thrust

Gravitational acceleration at sea level
Specific Impulse

Ratio of specific heats

Invariants along Characteristic lines
Wavelength

Length

Mach number

Molecular Mass

No. of characteristic lines

Units

ft/s>

inches
inches
Hz
Ibf
ft/s”
seconds
)
)
)
inches
)
Ibm/Ib-mol

Q)

List of Symbols (continued)

V2

Vdot

wdot

Greek

Description

No. of injector holes
Inflection point
Pressure

Mixture ratio
Radius

Universal gas constant
Time of operation
Temperature
Exhaust velocity
Volume

Volume flow rate
Width of nozzle
Weight flow rate

x coordinate

y coordinate

Description

Ratio of specific heats
Increment difference
Area ratio

Inflection angle

Units
)
inches
psi
)
inches
ft-1b/Ib mol-R
seconds
Rankine
ft/s*
in’
ft'/s
inches
Ibf/s
inches

inches

Units

degrees

xi

List of Symbols (continued)

Greek

0

1)

Subscripts

C

char

max

ML

Description

Flow deflection angle
Mach angle
Prandtl-Meyer function
Density

Full-velocity potential

Description

Chamber
Characteristic line
Exit

Fuel

Maximum
Minimum length
Nozzle

Oxidizer

Throat

Wall

X-direction
Y-direction

Characteristic chamber

Units
degrees
degrees
degrees
Ibm/ft’

degrees

xii

List of Symbols (continued)

Subscripts

+

Acronyms

CFD
Dat
GUI
HTML
MLN
MOC
NPR

RPA

Description

Left-running characteristic line

Right-running characteristic line

Description

Computational Fluid Dynamics
Data File

Graphical User Interface
Hyper Text Markup Language
Minimum Length Nozzle
Method of Characteristics
Nozzle Pressure Ratio

Rocket Propulsion Analysis

xiii

1.0 Introduction

Rocket propulsion system design pertains to conical, 80% Rao nozzle, percentage of contour
bell nozzle, and method of characteristics (MOC) of a minimum length nozzle including the
chamber and injectors calculations. This thesis presents a program that the user chooses input
parameters pertinent to design a rocket nozzle and runs calculations that are then used to create a
3-D model and to perform CFD analysis.

The history of rocket nozzles, specifically rao nozzle comes from G. V. Rao back in 1958,
when he derived analytically the wall contour of a nozzle by method of characteristics
(Reference 1). The bell contour shape nozzle minimized the losses of the internal shock waves
in the supersonic flow. According to Reference 1, bell shaped nozzles are used today for rocket
nozzles since the 1960s for both liquid and solid propellant rockets. Conical nozzles were used
primarily first before being modified to have a bell shaped exit nozzle. The shape of a Rao

nozzle and conical nozzle are shown in Figure 1-1and Figure 1-2, respectively.

Figure 1-1: Rao Nozzle (Reference 2)

Figure 1-2: Conical Nozzle (Reference 2)

An under-expanded nozzle occurs when the exit pressure is greater than the ambient
pressure at high altitudes. The exhaust plume continues to expand past the nozzle exit reducing
efficiency. A perfectly expanded nozzle occurs when the exit pressure equals the ambient
pressure, which results in maximum efficiency. An over-expanded nozzle occurs when the exit
pressure is less than the ambient pressure at low altitudes such as sea level. The exhaust plume
is pinched inward in fluid separation from the walls creating compression waves or shock waves
inside the diverging nozzle section. (Reference 2) Figure 1-3 below shows the under-expanded,

over-expanded, and perfectly expanded nozzles

Ambient Exit Pressure Ambient
Pressure Equals Pressure
Oblique Ambient
Shock Pressure

Exit Pressure
Flow Separation Greater Than

Region Ambient

Pressure
Plume Plume

Boundary Boundary Plume
Boundary

Figure 1-3:Under-Expanded, Over-Expanded, & Perfectly Expanded Nozzles (Reference 1)

The minimum length nozzle uses the method of characteristics (MOC) to numerically solve
the completely supersonic, steady inviscid flow of the nozzle. Figure 1-4 below shows the

schematic of the supersonic nozzle design by MOC.

M=l |

Sonic line (generally curv&d)—)l
|

|

]

Centerline

Figure 1-4: Schematic of Supersonic Nozzle Design by the MOC (Reference 3)

The rocket cylindrical combustion chamber is used most frequently for its ease in
manufacturing and performance compared to a spherical or near-spherical chamber (Reference

4). The cylindrical combustion chamber definition sketch is shown below in Figure 1-5.

—~ Chamber

—— Diameter D¢
Face Ae Throat
|
L |
Throat
Diameter Dy
Chamber Area Ay
Cylindrical
™| section e

Length Lc

Chamber Contraction _ _ Ag
Area Ratio A

Figure 1-5: Rocket Cylindrical Combustion Chamber (Reference 4)

The injectors, specifically a doublet or triplet impinging stream pattern design are used to
introduce liquid propellant into the combustion chamber (Reference 2). The doublet impinging
stream pattern works best when the hole size of the fuel is equal to the oxidizer hole size. On the
other hand, the triplet impinging stream pattern works best if the hole sizes between the fuel and
oxidizers are not that same size (Reference 2). The injector design regulates how the propellant
enters and distributes in the chamber. The injector is affected by chamber parameters such as
pressure in the chamber, mixture ratio, propellant used, propellant temperature, and most
importantly by the design selection of the injector itself. The use of a doublet or triplet injector
design has been used most by the U.S. (Reference 1). Figure 1-6 below shows the schematic

diagrams of the doublet and triplet injector types.

injed:ﬁllun hole

de="i impingement

impingement

L h

'uEI .'-.__.-'.-"".-.I:_ ._-_,.l_,—'-" pni“h uﬂﬁzﬂrff,”f-fr__‘[EJII.'I. .-
manifolds ./ face of manifolds |- fﬂ=?-r- 1 face o
i = injector EHEI_____-——-:"WHW
oxidizer - fuel /" W e
manil‘nlds""-‘i:l: manifolds ~4-[===
= S
Doublet Triplet

Figure 1-6: Schematic Diagram of the Doublet and Triplet Injector Types (Reference 2)

A literature review of current research and development in rocket nozzle design programs is

documented in Chapter 2. A theoretical review of the rocket design methodology used in the

program is provided in Chapter 3. Chapter 4 is an overview of the program layout, functionality,

and compatibility. The rocket design program runs through various examples in Chapter 5. The

conclusions and recommendations for future work on the design program are discussed in

Chapter 6.

2.0 Literature Review

This section presents a literature review of current work in rocket design programming and
analysis to provide insight into the development of the proposed rocket design, analysis, and
simulation of propulsion system.

There are programs available for purchase that allow a user to design a rocket, analyze
various parameters, and simulate various attributes of the rocket. However, most programs
available don’t have all three, design, analysis, and simulation of a rocket propulsion system, and
for no cost.

A well-used program called RocketSim is used to design any size rocket and simulate its
flight to see how high and fast it will fly. This program is best for design and simulation of
model rockets. Design components are such things as the nose cone, body tube, fins, ring tail,
tube fins, pod, bulkhead, engine block, and parachute. More specifically, the rocket motor
design selections consists of the name of the engine, engine manufacturer from a list of choices,
engine code, ejection delay, ignition delay, and overhang dimension. The rocket can be plotted
in a graph once all the design parameters are completed. The simulation of the rocket is a flight
simulation based on launch conditions input and the starting state with launch guide length and
launch angle. (Reference 5)

Another well-used program is AeroSpike. AeroSpike performs 2-D and 3-D minimum
length nozzle (MLN) design using the method of characteristics (MOC). In addition to annular
and linear aerospike nozzle design, AeroSpike performs an expansion wave analysis from the
throat of the thruster to each point on the plug contour to determine the shape of the optimized

aerospike nozzle. (Reference 6)

An analysis program called Rocket Propulsion Analysis (RPA) can be purchased to
perform calculations of heat transfer rate distributions with or without boundary layer coolant
and/or thermal barrier coating layer, film cooling analysis, radiation cooling analysis,
regenerative cooling analysis, thermal analysis of thrust chambers with combined cooling,
hydraulic losses in the cooling passages, evaluate different propellant compositions, and design
nozzle using method of characteristics. The output of all results is saved to plain text or HTML
format. (Reference 7)

Programs like the ones listed above have design, analysis, and simulation features, just
not all in one program. The rocket propulsion system design, analysis, and simulation to be
designed by the author will be designed specifically to feature the ability to design the propulsion
system, analyze the various design parameters, and simulate the rocket propulsion system post-

process.

3.0 Theoretical Considerations

A theoretical review of the rocket nozzle design of a Rao, conical, minimum length nozzle
using method of characteristics, combustion chamber, injectors, and various design calculations

used in the program is shown in this chapter.

3.1 Rao Nozzle

The Rao nozzle design consists of three curves: a convergent curve, a divergent curve, and
a parabolic curve. The convergent curve end point connects to the divergent curve starting point.
Where the divergent curve and the parabolic curve meet is the inflection point. The slope of the
parabolic curve is tangent to the inflection angle, 0, where the divergent curve circle and the
parabolic curve intersect. Figure 3-1 shows the parabolic approximation of the Rao nozzle

contour used to design and plot the Rao nozzle.

f

R 7

|
¢ Throat

Figure 3-1: Parabolic Approximation of Bell Nozzle Contour (Reference 4)

The equations used to calculate the convergent curve, divergent curve, and parabolic curve
are shown below as well as in the Matlab code in Appendix B.

The length of the nozzle, L,, is calculated in equation 3.1 below, where R; is the throat
radius of the nozzle (Reference 2). The 0.80 is 80% of the conical nozzle, which is what is used
for a Rao nozzle design.

) 0.80(vz ~1)R

b= tan(lS")

3.1)

For the convergent curve, which is the first curve, the x and y coordinate points are
calculated using equation 3.2 and equation 3.3 below. These equations come from the geometry

shown in Figure 3-1 above.

*].5%R, (3.2)

=Cos (8 X)
first curve

first curve

yﬁrst curve = Sin(eﬁrst curve)*l's *Rf +(15 *Rf +RI) (33)

For the divergent curve, referred to as the second curve, the x and y coordinate points are
calculated using equation 3.4 and equation 3.5. These equations also come from the geometry

shown in Figure 3-1 above.

=cos(0)*0.382* R, (3.4)

second curve second curve

ysecond curve = Sin (esecond curve) * 0382 * Rf + (0382 * Rt + Rf) (3 5)
For the parabolic curve, which is the third curve, the x and y coordinate points are calculated

using equation 3.6 and equation 3.7. The matrix below is used to solve for the coefficients a, b,

and c based on non-linear algebraic equations, which are then used to solve the parabolic curve.

- - r 1-1 _ _
2
a second curve second curve second curve
_ 2
b - Yexit }Iexit 1 X exit
c 1
2Y;econd urve 1 O
cu
| | tan6,
_ 2
third curve ay + by +c (3 6)
ythird curve = gRt (37)

The exit angle, Oi, is calculated in equation 3.8 below.
0., =tan” (EJ (3.8)
AX

3.2 Conical Nozzle

The Conical nozzle design consists of two curves: a convergent curve and straight curve
with an inflection angle, 0,. Figure 3-2 shows the parabolic approximation of the bell nozzle
contour used to calculate the convergent curve. The straight curve is a slope based on the length

of the nozzle, L, and the slope of the curve.

10

Nozzle Axis

¢ Throat

Figure 3-2: Schematic Sketch of Conical Nozzle (Reference 4)
The calculations for the two curves are shown below as well as in Appendix B. For the
convergent curve, the first curve, equation 3.8 and equation 3.9 below are used to calculate the x

and y coordinates.
x{ﬁrst curve = Cos(gﬁrst curve) * 1 5 * Rf (3 8)
yﬁrst curve = Sin (gﬁrst curve) * 1 5 * Rt + (1 5 * Rt + Rt) (39)

For the straight curve, the second curve, equation 3.10 and equation 3.11 are used to
calculate the x and y coordinates. Equation 3.12 and equation 3.13 are used to calculate the

coefficients of the y coordinate.

second curve = L (3.10)
Yessond cumve =~ Psecond curve 0 (3.11)
a =tan(6,) (3.12)
b=y-—ax (3.13)

11

3.3 Minimum Length Nozzle (MLN) using Method of Characteristics (MOCQC)

3.3.1 Characteristic Lines: Two-Dimensional Irrotational Flow

For steady, two-dimensional, irrotational flow, the determination of the characteristic
lines is done using equation 3.14, which is the full velocity potential equation. Note that @ is the

velocity potential. (Reference 3)

D2 @2 20,
(1— -]@xﬁ(l——y}@w— LD, =0

2 a? a? (3.14)

Note: D is the full —velocity potential

The velocity potential by definition is shown in equation 3.15. Also, recalling

that® = f (x, y) then the following equations 3.16 and 3.17 are calculated. (Reference 3)

O, =u, ®,=v and V=ui+v) (3.15)
PON RO

dD, = pw dx+ 3 dy=@, dx+® dy (3.16)
oD oD

dd, = 8xy dx+ 8yy dy=®, dx+D,,dy (3.17)

Substituting the equation 3.15 into equations 3.14, 3.16, and 3.17 the following equations

3.18, 3.19, 3.20 are created. (Reference 3)

2 2
(1_%J®xx_25_2vq)xy+[l_%j®yy:0 (3.18)
(dx)CDxx+(dy)Cny =du (3.19)
(dx)®,, +(dy)D,, =dv (3.20)

12

Equations 3.18 through 3.20 are a system of simultaneous, linear, algebraic equations in
the variables @y, @y, and ®,,. By applying Cramer’s rule, the solution for ®,, is found to be

the following equation 3.21. (Reference 3)

u? V2
dx du O
0 dv dy
N
D, = AL (3.21)
’ 1_£ _2uv 1_ﬁ D
a’ a’ a’
dx dy 0
0 dx dy

As seen in Figure 3-3 below, a point A and its surrounding neighborhood in an arbitrary
flowfield are shown. The derivative of the velocity potential, @y, has a specific value at point
A. The solution for @,y at point A for an arbitrary choice of dx and dy for an arbitrary direction
away from point A defined by the choice of dx and dy. For the chosen dx and dy, there are

corresponding values of the change in velocity du and dv. (Reference 3)

13

S

Figure 3-3: Streamline Geometry

The slope of the characteristic lines is shown below in equation 3.22 and equation 3.23.

(Reference 3)
dy —uv/azi\/[(u2+v2)/a2}—l
(a)char) [1—(u2 /az)} 22
”Z;Vz—I:Z—E—I:Mz—I (3.23)

There are three important statements: (Reference 3)

1. If M > 1, there are two real characteristics through each point of the flowfield. Moreover,
for this situation, equation 3.14 is defined as a hyperbolic partial differential equation.

2. If M =1, there is one real characteristic through each point of the flow. Equation 3.14 is a

parabolic partial differential equation.

14

3. If M < 1, the characteristics are imaginary, and equation 3.14 is an elliptic partial

differential equation.

Two real characteristics exist through each point in a flow where M > 1, the method of

characteristics (MOC) becomes a practical technique for solving supersonic flow.

The steady, two-dimensional supersonic flow, equation 3.22 is examined. Consider the

streamline as shown in Figure 3-3. At point A, u = VcosO and v = Vsinf. Equation 3.22

becomes equation 3.24 shown below. (Reference 3)

_ 2 . 2
dy Vcoszesmei\/z(coszl§’+sin2 6)—1
_ a a
(5] - = (3.24)
char {1 ——-cos’ 0}
a

Since, £ =sin"! (1/ M) , equation 3.25 is obtained as follows. (Reference 3)

V2/a*=M?=1/sin* u

(3.25)
Therefore, the following equation 3.26 is obtained. (Reference 3)
—cos@siné _'_\/cos2 0 +sin” 0 _1
.2 - -2
[QJ __sin’u sin” u (3.26)
dx char 1— COSZ 0
sin® 4

From trigonometry and algebra, the slope of the characteristic lines becomes equation
3.27.

dy _
(ajm ~ tan(0F (3.27)

A graphical interpretation of equation 3.27 is shown in Figure 3-4 below. At point A, the
streamline makes an angle 6 with the x axis. There are two characteristic passing through point

A, one at the angle p above the streamline, and the other at the angle p below the streamline.

15

The characteristic lines are Mach lines. The characteristic given by the angle 6 + p is called a C;
characteristic; it is a left-running characteristic. The characteristic given by the angle 0 - p is

called a C. characteristic; it is a right-running characteristic. The characteristics are curved due

to flow properties changing from point to point in the flow.

y 4

Figure 3-4: Left- and Right-Running Characteristic Lines

3.3.2 Compatibility Equations

The compatibility equation is the following equation 3.28. (Reference 3)

dv _ —[1—(142 /az)}dy
du 112/ @) |ax

(3.28)

From equation 3.21, N is zero only when D is zero in order to keep the flowfield

derivatives finite. When D = 0, only directions along the characteristic lines are considered as

16

well when N = 0. Therefore, equation 3.28 holds true only along the characteristic lines.

Therefore, the following equation 3.29 is defined. (Reference 3)

b _ (Qj (3.29)

(3.30)

Since u = Vcos0 and v = Vsin0, equation 3.30 becomes equation 3.31. (Reference 3)

d(VsinH) _ M?*cosOsinOF
_ . (331)
d(V cosb) 1-M?sin* @

The compatibility equation therefore is shown in equation 3.32 below. (Reference 3)

40— < (3.32)

There negative form of the equation applies along the C. characteristic and the positive
form of the equation applies to the C; characteristic. Equation 3.32 is identical to equation 3.33

shown below for Prandtl-Meyer flow. (Reference 3)
d0=\/M2—1d7V (3.33)

Since the equations are identical, equation 3.32 is replaced by the algebraic compatibility

equations 3.34 and 3.35. (Reference 3)

0+ V(M) =cnst=K_ (along the C_ chamcteristic) (3.34)

H—V(M) =cnst=K, (along the C, chamcteristic) (3.35)

17

3.3.3 Compatibility Equations Point by Point Along the Characteristics

3.3.3.1 Internal Flow

If the flowfield conditions are known at two points in the flow, the conditions at a third
point can be found. The third point is located by the intersection of the C. characteristic through
the first point and the C; characteristic through the second point, as shown in Figure 3-5 below.

(Reference 3)

Ct

]

.

Figure 3-5: Unit Processes for MOC
The 0 and v for the third point are found in terms of the known values of K+ and K_ as

shown in equation 3.36 and equation 3.37 below. (Reference 3)

=K +(K.),] (3.36)
y =%[(K_)1 —(K+)J (3.37)

Thus, the flow conditions at the third point are now determined from the know values at

the first and second point. The v determines the Mach number using equation 3.38. (Reference

3)

/7+1 S 7=) Ctant A=
v(M)= y_ltan \/}/+1(M 1) tan~' VM -1 (3.38)

18

The pressure, temperature, and density can be calculated after determining the Mach

number through isentropic flow relations as shown below in equations 3.39, 3.40, and 3.41.

(Reference 3)

L r=lyp

T_1+ 5 M (3.39)
_1 y/(r-1)

&=(1+7/—M2j (3.40)

p 2
| 1/y—1j

Po |1+ L2

5 (1+ 5 M} (3.41)

Assuming that characteristics are straight-line segments between the grid points, with
slopes that are average values. The C. characteristic through the first point is drawn as a straight
line with an average slope angle as shown in equation 3.42 below. The C. characteristic through
the second point is drawn as a straight line with an average slope angle as shown in equation

3.43 below. (Reference 3)

%(‘91""93)_%(#1“‘#3)} (3.42)
1 1
16 -0) 3 s a0) 649

3.3.4 Supersonic Nozzle Design

The expansion of an internal steady flow through a duct from subsonic to supersonic
speed, the duct has to be convergent-divergent in shape as seen in Figure 3-6 below. Assume the
sonic line to be straight. The flow accelerates to sonic speed in the throat region. Downstream of
the sonic line, the duct diverges. In minimum length nozzles the expansion section in Figure 3-7

is shrunk to a point and the expansion takes place through a centered Prandtl-Meyer wave

19

emanating from a sharp-center throat with an angle Oymax, M, as seen in Figure 3-7. The length
of the supersonic nozzle, L, is the minimum value consistent with shock free, isentropic flow.
Assume that the nozzle in Figure 3-6 and Figure 3-7 have the same exit Mach numbers. For the
minimum-length nozzle shown in Figure 3-7, the expansion contour has a sharp corner at point a.
The fluid encounters only two systems of waves, the right-running waves from point a and left-
running waves from point d. The expansion angle of the wall downstream of the throat is shown

below in equation 3.44. (Reference 3)

Expansion section

M=
Sonc ne {generally curved)

Centerline

Figure 3-6: Schematic of Supersonic Nozzle Design by the MOC (Reference 3)

20

-
=
- — - a

centerline

Figure 3-7: Schematic of Minimum-Length Nozzle (Reference 3)

Vi

Wi ML = (3.44)

When the centerline Mach number equals the design exit Mach number, it is point e. The
expansion section is terminated at point ¢, which fixes both its length and the value of Oymax. The
number of nodes is determines using equation 3.45 below.

No. of Nodes = [2 + (n + 1)}[11 / 2]

where n is the number of C_characteristics

(3.45)

3.4 Combustion Chamber

The combustion chamber is where the burning/combustion of the propellant occur. A
cylindrical chamber is used for the propulsion system design selection.
The chamber volume, V., is defined as the volume up to the nozzle throat section and

includes the cylindrical chamber and the converging cone frustum of the nozzle as shown in

21

equation 3.46 below. Note that L, is the cylinder length defined in equation 3.47, A/A, is the
chamber contraction ratio, and L. is the length of the conical frustrum. The length of the conical
frustrum is modeled with an angle of 45 degrees and defined as shown in equation 3.48. Also,
the characteristic chamber length, L", defined in equation 3.49 below, is the length that a
chamber of the same volume would have if it were a straight tube and had no converging section.
The cylinder volume, Vi, is the remaining chamber volume that is computed by subtracting the
frustum volume from the chamber total volume, which leaves a cylindrical relationship to

determine the cylinder chamber length as shown in equation 3.47 below. (Reference 2)

V.= AL+ AL (14474 +4/4) (3.46)
v
L =1 3.47
' 7rR12 ()
R
L =— " (3.48)
tan(45")
.V
L=-= 3.49
) (3.49)

The following chamber considerations are evaluated straight from Reference 2. The
volume has to be large enough for sufficient mixing, evaporation, and complete combustion of
propellants. The chamber diameter and volume can influence the cooling requirements. If the
chamber volume and the chamber diameter are large, the heat transfer rates to the walls will be
reduced, the area exposed to heart will be large, and the walls are somewhat thicker. There is an
optimum chamber volume and diameter where the total heat absorbed by the walls will be a
minimum. All inert components should have minimum mass. The thrust chamber mass is a
function of the chamber dimensions, chamber pressure, and nozzle area ratio, and method of

cooling. Manufacturing considerations favor a simple chamber geometry, low cost materials,

22

and simple fabrication processes. In some applications the length of the chamber and the nozzle
relate directly to the overall length of the vehicle. A large-diameter but short chamber can allow
a somewhat shorter vehicle with a lower structural inert vehicle mass. The gas pressure drop for
accelerating the combustion products within the chamber should be a minimum; any pressure
reduction at the nozzle inlet reduces the exhaust velocity and the performance of the vehicle.
These losses become appreciable when the chamber area is less than three times the throat area.
For the same thrust the combustion volume and the nozzle throat area become smaller as the
operating chamber pressure is increased. This means that the chamber length and the nozzle
length also decrease with increasing chamber pressure. The performance also goes up with
chamber pressure.

Based on the above chamber considerations from Reference 2, finding a solution that

would satisfy most of the considerations is typically used for the chamber design.

3.5 Injectors

The injectors of the rocket propulsion system are designed as a doublet or triplet
configuration. The discharge coefficient, Cg4, and the pressure drop percentage are assumptions
made. A typical pressure drop percentage is 20% according to Reference 2. The oxidizer and
fuel densities, p, and pg, respectively, are determined by dividing the weight densities of the
oxidizer and fuel by gravity. The oxidizer and fuel cross sectional areas are determined below in

equation 3.50 and equation 3.51, respectively. (Reference 2)

0:&1_ (3.50)
2AP C,
pr ¥
=1 3.51
7 2APC, (351)

23

Knowing the area required for the oxidizer and fuel, the number of holes for each is
determined as shown in equation 3.52 and equation 3.53. The diameter of the holes, D, is

adjusted in the design calculations based on the desire number of holes in the injector.

(Reference 2)

n = Lo (3.52)

n,=—= (3.53)

3.6 Propellant Calculations

The exit velocity of the nozzle is determined using equation 3.54 below. (Reference 2)

2 k R'T (k—l)/k
y, = |[ZEL Sy | P2 (3.54)
k-1mM| | p,

The i1deal specific impulse is found using the exit velocity in equation 3.55. Using

assumed correction values, the actual specific impulse is found as seen below in equation 3.56.
From the actual specific impulse, the weight flow rate is determined using equation 3.57, where

F is the engine thrust. (Reference 2)

Va
SPideal - (3 S 5)
&o
o =61, (3.56)
v (3.57)
‘4 SPactual

24

The weight flow rate is then broken down into oxidizer and fuel flow rates, 1" andy

respectively shown in equations 3.58 and 3.59, where r is the mixture ratio of the propellant.

(Reference 2)

v (3.58)

y ' (3.59)

r T 1

With the weight flow rates for the oxidizer and fuel are determined, the volume flow rates are
calculated below in equations 3.60 and 3.61. The total propellant requirements for specified time
of operations are based on the weight and volume flow rates and the time of operation. Two
seconds are assumed for start and stop transients. Equations 3.62, 3.63, 3.64, and 3.65 show the

weight and volume of each oxidizer and fuel. (Reference 2)

J (3.60)
p{)
J (3.61)
)
w, =1 (3.62)
w, =7 (3.63)
v,=v (3.64)
V=1t (3.65)

3.7 Resonant Frequency for the 1 Longitudinal, Radial, and Tangential Modes

The rocket combustion instabilities can cause excessive vibration pressure forces. The

high-frequency instability occurs in at two modes, longitudinal and transverse. The longitudinal

25

mode transmits along the axial planes of the combustion chamber and the pressure waves are
reflected at the injector face and the converging nozzle cone. The transverse modes consist of
the tangential and radial modes, which propagate along the faces perpendicular to the chamber
axis. The resonance modes of the combustion chamber are shown below in Figure 3-8 (a) is the

longitudinal mode, (b) is the tangential, and (c) is the radial mode. (Reference 2)

LT T TR TPy

Figure 3-8: The Resonance Modes (Reference 8)

The resonant frequencies in the chamber are calculated based of the relationship between
speed of sound, a, and the wavelength, 1. To calculate the resonant frequencies in the chamber,
first the speed of sound is determined based on the chamber temperature as shown in equation

3.66. (Reference 2)

a= kj\f—MT1 (3.66)

The longitudinal, tangential, and radial frequencies, f, are calculated using the basic
relationship between speed of sound, a, and wavelength, | as shown in equation 3.67 below.

(Reference 2)

f= (3.67)

~ |

26

The wavelengths for each frequency mode, longitudinal, tangential, and radial modes are

determined using the chamber characteristic as shown below in equations 3.68, 3.69, and 3.70.

(Reference 2)
Longitudinal,l = L, + L, (3.68)
Tangential,l = 7R, (3.69)
Radial,l = R, (3.70)

27

4.0 Program Details

The program layout of the design, analysis, and simulation of rocket propulsion systems is

discussed in this chapter.

4.1 Overall Layout

The overall layout of the program is shown below in Figure 4-1. The features of this
program allow the user to design a rocket propulsion system which includes the nozzle, chamber,
and injector design. The analysis of the rocket propulsion system features two-dimensional plot
of the design choices selected, coordinates of the rocket propulsion system to output to a *dat
file, and various design parameters pertinent to the user’s design study. From the design
parameters selected and calculated the user can simulate 3-D modeling of the rocket propulsion
system design using a CAD program and conducting computational fluid dynamic (CFD)

simulations.

28

u thee_thesis

Ho RS OE

Welcome ‘ Instructions | Design Choices Input Output |DefatiiVianies)| Reset Save

Welcome to the Design, Analysis, and Simulation of Rocket Propulsion System

In this program you can:

Design: Rao, Conical, Percentage of nozzle, or Method of Characteristics (MOC) nozzle
Chamber of the nozzle

Injector of the nozzle

Analyze: 2-D plot based on the design choices selected
Table of the coordinates of the rocket propulsion system
Qutput parameters of the design choices selected

Simulation: Based on data of the design choices the following can be simulated:
3-0 modeling of the rocket propulsion system design
Computational Fluid Dynamics (CFD) simulation of rocket propulsion system design

Yyyyyw?

Bell nozzle

Conicd nozzle

Wedl nozzle

Figure 4-1: Layout Program

The program has a welcome tab, instructions tab, design choices tab, input tab, and
output tab as seen in Figure 4-1 and each are discussed in the following sub sections. One the
right hand side of the program no matter what tab is currently open, the default values, reset,
save, and exit buttons are available for the user to select. The default values button sets default
input parameters for a rocket propulsion system design. The reset button clears all input values
selected by the user. The save button saves the GUI file of what the user had selected, values
inputted, and/or output results. The exit button when selected will prompt the user if they want
to exit the program by selecting yes or no in the dialog box. If no is selected, the program stays
open and if yes is selected, the program closes without saving. Also, in the top left corner there

is a toolbar of options, a save icon, printer icon, zoom in icon; zoom out icon, hand icon, and

29

data point selector icon. The save icon and printer icon are self-explanatory. The zoom in, zoom
out, hands, and data point selector icons are used when in the output tab for the 2-D plots.

4.2 Welcome Tab

The welcome tab is the first to be displayed when opening the design, analysis, and
simulation of rocket propulsion system. The welcome tab is shown below in Figure 4-2. The
description about the features of the program is shown to the user. The images shown below are

the simple shapes of a bell nozzle, conical nozzle, and ideal nozzle, from Reference 9.

u thee_thesis

||:| ﬁ:h
H -x‘? +\- :_\- iﬂ-? \'I:‘Z‘

Welcome| Instructions | Design Choices

Welcome to the Design, Analysis, and Simulation of Rocket Propulsion System
In this program you can:

Design: Rao, Conical, Percentage of nozzle, or Method of Characteristics (MOC) nozzle
Chamber of the nozzle

Injector of the nozzle

Analyze: 2-D plot based on the design choices selected

Tahle of the coordinates of the rocket propulsion system
Output parameters of the design choices selected

Simulation: Based on data of the design choices the following can be simulated:

3-D madeling of the rocket propulsion systerm design
Computational Fluid Oynamics (CFO)Y simulation of rocket propulsion systemn design

Tyerv’

Bell nozzle

Conical nozzle

Ied nozzle

Figure 4-2: Welcome Tab

30

4.3 Instructions Tab

The instructions tab is the second tab option in the program and is shown below in Figure
4-3. The instructions tab purpose is to familiarize the user on how to use the program and what

each tab is used for. The image of a space shuttle main engine is from Reference 10.

' thee_thesis v ... - — S|
Hoe &8 O 3

Welcome |§""'In§{fﬁa‘ilﬁlﬁs Design Choices Input Output

Instructions:

Design Choeices Tab:

Select nozzle choice, chamberine chamber, injectorine
injector

Select save selections, which will display the input page
according to selection

Input Tab:

Based on design choices from tab the nozzle, chamber,
andfor injector

the input parameters to select are displayed

Input all values and select save input button

Output Tab:

Based on design choices and input selections, output
parameters of Rocket propulsion system is shown

2-0 plot, coordinates are shown as well

You can save coordinates to dat file and then use to plot
3-0 model of system

Clicking on CAD button will open CAD program to then use
data to model rocket

Clicking on CFD button will open CFD where then use data
mesh and simulate CFD of rocket

Definition sketches are displayed when question mark
button is shown and selected

Reterence: hitp: figrin hg.nass.govABSTRACT SAGPN-2000-00054 3 html

0.5

Figure 4-3: Instructions Tab

31

4.4 Design Choices Tab

The design choices tab is where the user makes the selections for what units to use, the
nozzle selection, the chamber selection, and the injector selection. The design choices tab is
shown below in Figure 4-4. The images on the right hand side of the tab are of the different flow
behaviors of a nozzle, a cylindrical chamber definition sketch, and a doublet and triplet injector

type, from Reference 4.

] u thee_thesis = G
He AKX OE s
Welcome | Instructions |DeS|gnCh0|ces| Inpurt | Outpurt | M
Design Choices: ;
Slatty ~Injeey
J"’;P:“f;:” [b Cranby
; ; anEI;
Unit Selection b i !
- . Nerzred . /
Engisn il F'()css;re fd :? ej_ :R
[F! 0
Mozzle Selection: drad 0- Cr Qe
. Cridzzr —
Rao M| D Slattly _L
ve el]
Chamber Selection: _ Ry] 1 i
Chamber v: D = 4—;‘
Sxpartted
Injector Selection: J'|W Foweld
; 1% 4R
Doublet - D
injection hole Ll el
> it
L. impingement K
r"j e pnmﬁ e fx'-l—.-I IlI -
fuel oxidizer " A P, [,
mamlnldﬂ,"\ 7 | faceof manifolds T ,f[]:"?" L face ol
LA = injectar ;‘\IIJ_J‘”’ injector
oidizer /| fuel /- .'L < A
manilalds '“J;{[' manifolds []==f‘§~
i E]*ﬁﬁ E:
Doublet Triplet

Figure 4-4: Design Choices Tab
The design choices layout of the choices available is shown below in Figure 4-5. Based
on the design choices made the input tab discussed in the next sub section displays only that

which is selected in the design choices tab to input values for. Once the user makes their design

32

choices they must click the save selections button and then proceed to the input tab, this is made
aware of when the user hovers their mouse over the button, a message will appear to inform them

of this.

Design Choices Tab

English Units

Unit Selections

SI Units

— 309 Rao Nozzle

| Conical Nozzle

MNozzle Selections

| | Percentaze of Nozzle

Min. Length Nozzle
using MOC

Chamber

Chamber Selections

No Chamber

Doublet

L Injector Selections ’7 Triplet
L No Injectors

Figure 4-5: Layout of the Design choice selections

33

4.5 Input selections Tab

The input selections tab displays the panels based on what the user selected on the design

choices tab. The input selections tab is shown below in Figure 4-6, note that all possible options

were selected to show the user everything. If the user hovers over each of the input parameter

values, a message appears with recommended ranges. The definition sketch on the right hand

side of the tab is to help the user understand the design parameters and is from Reference 11.

The following subsections discuss each input parameter panel within the input selection tab.

After all required values are inputted the user must select the OK button on the right hand side to

save the results in the GUI and display the results in the output tab.

u thee_thesis

H -2\5 .+'\- % {ﬂ-? \"E

Input Selections:

Rao M
— Mozzle Input Parameters —— — Injector Sizing:
% Nozzle % e - — MOC Input Parameters:— 1
Rt inches . e
& - Pressure Coefficient Po 0.8
; derees Injector Pressure %
EANESS Diameter Fuel Injectar i 0.6
0 (Sea Level) M| #of lines
P2=p3 psia 0.4
Thrust, F It
Time Operation, tp i 02
L_star inches
0 L L L L
0 0.2 04 0.6 0.8
— Fuel Selection:
Liquid 02 + Methans =
— Fuel & Chamber Input Parameters:
Liquid 02 + Methane #1 Liquid 02 + Methane #2
Mixture Ratio by Mass) 32000) 3 Mixture Ratio ~
Mixture Ratio by Volume 11900 11100 Fuel Specific: Gravty -
Specific Gravity Methane 04240 04240 COxidizer Specific Gravity -
Specific Gravity Oxygen 1.1400 1.2300 Molecular Mass ”
Chamber Temperature (K) 3526 3526 k =
Chamber () o i S Rancee
Malecular Mass MM (kg/mal) 16.0300 16.0300 !
k 0 0
*hote: Data for the liguid propellants is from Rocket Propulsion Elements by George P. Sutton and Oscar Biblarz (7th ed.) Table 5-5 & Table 7-1

Figure 4-6: Input Tab

Welcome | Instructions |Design Choices || input Output _! Save ;

34

4.5.1 Nozzle Input Parameters

The nozzle input parameters are based on design calculations from Reference 2 and are
shown in a close up view in Figure 4-7 below. Whether 80% Rao Nozzle, Conical Nozzle, or
percentage of nozzle, the design inputs are the same. The percentage of the nozzle, the throat
radius, Ry, the area ratio, €, the inflection angle of the nozzle, 6,, the altitude selection from
popup menu, the atmospheric pressure, p> = p3, the thrust, F, and the time operation, t, are input

values that the user choices.

— Mozzle Input Parameters:

% Mozzle 5

Fi inches

13 ~

! degrees
Altituce:

0 (Sea Level) -

P2=P3 pEia
Thrust, F lExt
minutes

Time Operation, tp

" inches

Figure 4-7: Nozzle Input Parameters

4.5.2 Chamber Input Parameters

The chamber input parameters are based on what liquid propellant the user choices for the
chamber design and the design calculations from Reference 2 as seen in a close up view in

Figure 4-8 below. The mixture ratio, r, fuel specific gravity, ps, oxidizer specific gravity, po,

35

molecular mass, MM , specific heat ratio, k, chamber pressure, p., chamber temperature, T., and

the characteristic chamber length, L* are input values that the user choices.

— Fuel Selection:

Liquid 02 + Methane =
. — Fuel & Chamber Input Parameters:
|Liquid 02 + Methane #1/Liguid 02 + Methane #2
Mixture Ratio by Mass 3.2000 3 Mizdure: Ratio ~
Mixture Ratio by Volume 11900 11100 Fuel Specific Gravity -
Specific Gravity Methane 04240 04240 Oxiclizer Specific Gravty ~
Specific Gravity Oxygen 11400 1.2300 Molecular Maz= E
Chamber Temperature (K) 3526 3528 k &
Chamber ¢* (m/s) 1835 1853 Chamber Pressure, Po psia
Ranki
Molecular Mass MM (kg/mal) 16.0300 16.0300 Cl=nheglen=ttic e anking
k 0 0
*Mate: Data for the liquid propellants is from Rocket Propulzion Elements by George P. Sutton and Oscar Biblarz (7th ed.) Table 5-5 & Table 7-1

Figure 4-8: Chamber Input Parameters

4.5.3 Injector Input Parameters

The injector input parameters are based on the design calculations from Reference 2 and
are shown in a close up view in Figure 4-9 below. The pressure coefficient, Cq, pressure drop in

the chamber, AP, and the diameter of the fuel injector, dr are input values that the user choices.

— Injector Sizing:

Doublet -

Pressure Coefficient

Injectar Preszure %

Diameter Fuel Injectar

Figure 4-9: Injector Input Parameters

36

4.5.4 Minimum Length Nozzle (MLN) using Method of Characteristics (MOC) Input Parameters

The minimum length nozzle (MLN) using method of characteristics (MOC) input
parameters are based on the design calculations from Reference 3 and are shown in a close up
view in Figure 4-10 below. The chamber temperature, T, the chamber pressure, P., the width of

the nozzle, w, and the number of characteristic lines are input values that the user choices.

— MOC Input Parameters: —
T

Pc
iickh

of lines

—

Figure 4-10: MLN Input Parameters

4.6 Output selections Tab

The output selections tab displays the results based on what the user selected on the design
choices tab and what values were chosen for input to calculate the results. The calculations are
based on equations from Reference 2 and Reference 3. The output tab is shown below in Figure
4-11. If the user hovers over each of the output parameter values, a message appears with the
equations used to calculate the results. The results pertaining to the nozzle, combustion
chamber, and injector design are of the geometry, propellant, and instability frequencies. The
axes on the right hand side of the tab displays the plot of the nozzle and/or chamber. The x-y

coordinates table displays the coordinates of that which is displayed in the plot. The save to dat

37

file button exports the x-y coordinates from the table and saves them to a dat file in the same
location of the GUI program. The open CAD button when selected opens Unigraphics NX
program if available on the user’s computer. The *dat file saved is used to import the geometry
to the CAD program used for 3-D modeling. The open CFD button when selected opens the
CFD ANSYS ICEM meshing program and CFD ANSYS Fluent program if available on the
user’s computer. The 3-D model created in CAD from the *dat file is exported as a Parasolid or
STEP/IGES file which then can be imported in CFD ANSYS ICEM meshing program to mesh
the rocket propulsion system design. After creating a mesh on the design, the user then saves
and opens the mesh file in Fluent to run CFD simulations. The user has an infinite number of

options to choice from.

B thee_thesis IE"_lé
FEEREER »
|
Weicome | mstuctions | DesionChoices | mput || outpd] | Rese | s SR
Output Seloctions: XY Coordinates: r
— Nozzle Output Parameters: T = . = . s
L
5 09t
Thieta_&
08
0.7F
Chamber Output Parameters:
| Ln 06k
| L1
L* 05k
D
c 04
Injector Output Parameters: 03}
By
D o 02F
¥ fuel
oudedizer 01
0 i i i i i i i i i]
Rocket Qutput Parameters: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f,long. (1
Save to “.dat file |
| f, tang. -)
f, radial | Open CAD |
e . -
2 Open CFD J|

Figure 4-11: Output Tab

38

5.0 Program Example Run

This chapter shows examples of the program design, analysis, and possible simulations of

various rocket propulsion system design choices.

5.1 Nozzle Selections

The nozzle selections of an 80% Rao nozzle, conical nozzle, and 50% Rao nozzle selections
with the same throat radius, area ratio, inflection angle for the Rao nozzles, altitude, pressure,
thrust, and time of operation as shown below in Figure 5-1. The 2-D plots of the three different
nozzles are shown below in Figure 5-2, Figure 5-3, and Figure 5-4. As one can see the nozzle

lengths are different for each nozzle type.

— Mozzle Input Parameters:

% Mozzle 80 Y
Rt 55 inches
£ mwh s
i 45 degrees
Altitude;

0(Sealevell |

P2=PF3 147 psia

Thrust, F | 35000 | [bf

Time Operation, tp 2 e

Figure 5-1: Input Parameters

39

80% Rao Nozzle

50 : : : ; ; ; .
-20 0 20 40 60 80 100 120 140
Length of Mozzle, L (in.)

Figure 5-2: 80% Rao Nozzle

50% Rao Nozzle

B i i i i
-20 0 20 40 60 80 100
Length of Nozzle, L _ (in.)

Figure 5-3: 50% Rao Nozzle

Conical Nozzle

A N S T S
-20 0 20 40 60 80 100 120 140 160
Length of Nozzle, L (in.)

50 i i

Figure 5-4: 15 Degree Half Angle Conical Nozzle

40

5.2 Combustion Chamber and Nozzle Selection

The combustion chamber and nozzle selections of an 80% Rao nozzle, conical nozzle, and

50% Rao nozzle selections with the same throat radius, area ratio, inflection angle for the Rao

nozzles, altitude, pressure, thrust, time of operation, mixture ratio, fuel specific gravity, oxidizer

specific gravity, molecular mass, specific heat ratio, chamber pressure, and chamber temperature

for liquid oxygen and RP-1 as shown below in Figure 5-5. The 2-D plots of the three different

nozzles are shown below in Figure 5-6, Figure 5-7, and Figure 5-8. As one can see the nozzle

lengths are different for each nozzle type, but the chamber dimensions are the same.

— Mozzle Input Parameters:

% Nozzle a3 ¥

Rt 55 |inches

£ 775 ~

A 45 degrees
Altituce:
30,000 .|

P2=P3 4373 psia
Thrust, F | 35000 [}
Time Cperation, tp 2 ELEs
inches

L_star 175

— Propellant Selection;

Liquid 02 + RP-1 -]
Liquid 02 + Methane #1 Liquid 02 + Methane #2
Mixture Ratio by Mass 3.2000 3
Mixture Ratio by Volume 1.1300 11100
Specific Gravity Methane 04240 0.4240
Specific Gravity Oxygen 1.1400 1.2300
Chamber Temperature (K) 3326 3528
Chamber ¢* (m/s) 1833 1853
Malecular Mass MM (kg/mal) 16.0300 16.0300
k 0 0

— Fuel & Chamber Input Par: ters:
Mlixture Ratio 224 ~
Fuel Specific Gravity 58 -
Oxidizer Specific Gravity 114 -
Molecular Mass 218 -
k 1.24 -

Chamber Pressure, Po
Chamber Tempersture, T

2000
6500

psia
Rankine

*Mote: Data for the liguid propeliants is from Rocket Propulsion Elements by George P. Sutton and Cscar Biblarz (Tth ed.) Table 5-5 & Table 7-1

Figure 5-5: Chamber and Nozzle Input Parameters

41

40 -20 0 20 40 60 80 100 120 140
Length of Nozzle, L (in.)

Figure 5-6: 80% Rao Nozzle with Chamber

50
40
30
20

Length of Nozzle, L (in.)

Figure 5-7: 50% Rao Nozzle with Chamber

50

50 H H H
-50 0 50 100 150 200
Length of Mozzle, L _ {in.)

Figure 5-8: 15 Degree Half Angle Conical Nozzle with Chamber

42

5.3 Minimum Length Nozzle (MLN) using Method of Characteristics (MOC)

The MLN using MOC is selected with the following input parameters shown in Figure 5-9
below. The 2-D plot of the MLN for 25 lines, 50 lines, and 100 lines is shown in Figure 5-10,

Figure 5-11, and Figure 5-12, respectively.

MOC Input Parameters:

Tc 2000
Pc 1.26e+006
Width 5.6
of lines
50
[ok

Figure 5-9: MOC Input Parameters

Max Thrust {minimum length) Mozzle Design

] I I I I I I I I
e ozzle shape
6 Area_ . (predicted) H
— Char. Lines
= .
=
B
1] —
£
i
]
5]
L=} —
=
6+ -
K | | | | | | | | |
0 2 4 6 g 10 12 4 16 18 20

Mozzle length (in)

Figure 5-10: Two-Dimensional Plot of the MLN using MOC for 25 lines

43

Mozzle height (in)

Mozzle height (in)

Max Thrust (minimum length) Nozzle Design

— |\|0zZ|e shape
Area_ . (predicted)

- Char. Lines

2 4 6 g 10 12 14 16 18 20
Mozzle length (in)
Figure 5-11: Two-Dimensional Plot of the MLN using MOC for 50 lines
Max Thrust (minimum length) Nozzle Design
I I I I I I I I
e [\lozzle shape
Area_,.(predicted) H
— Char. Lines
| | | | | | | | |
2 4 6 8 10 12 14 16 18 20

Mozzle length (in)

Figure 5-12: Two-Dimensional Plot of the MLN using MOC for 100 lines

44

5.4 Three-Dimensional Modeling

Three-dimensional modeling of the nozzle, chamber, and injector is done using a CAD
program such as Catia, Unigraphics NX, or SolidWorks. In this case, Unigraphics NX was used.
The *dat file was imported into Unigraphics NX as a spline then revolved along the horizontal
axis. A three-dimensional model of a 80% Rao nozzle and chamber is shown below in Figure
5-13. The conical nozzle and chamber three-dimensional model is shown in Figure 5-14. A

three-dimensional model of a doublet injector face is shown in Figure 5-15.

Figure 5-13: 3-D Model of a 80% Rao Nozzle and Chamber (Reference 12)

45

Figure 5-14: 3-D Model of 15 Degree Half Angle Conical Nozzle & Chamber (Reference 12)

46

Figure 5-15: 3-D Model of Doublet Injector (Reference 12)

47

5.5 Simulation Computational Fluid Dynamics (CFD) Example

Computational fluid dynamics (CFD) simulation of a bell nozzle is shown below in Figure
5-17 and Figure 5-18 from Reference 26 as a post process. Unigraphics NX was used to plot the
3-D model of the rocket. The *dat file was imported into Unigraphics NX as a spline then
revolved along the horizontal axis. A three-dimensional model of a 80% Rao nozzle was
created. The Rao nozzle mesh grid was created in from ANSYS ICEM CFD and shown below

in Figure 5-16.

Figure 5-16: 80% Rao Nozzle Mesh Grid (Reference 14)

The CFD model of a steady, fully detached, 2-D nozzle with flow field nozzle pressure ratio,
NPR is between 2 to 3.41 that is shown in Figure 5-17 and Figure 5-18 below from Reference
26. The nozzle was over-expanded and dominated by shock-induced boundary layer separation
(Reference 26). All the solid walls were treated as no-slip adiabatic surfaces, and the bottom of
the entire domain was defined by a symmetry boundary condition in ANSYS Fluent CFD
program, according to Reference 26. As the NPR increases the shock increases in size and
moves downstream (Reference 26). The results are in agreement with the experimental data

shown side by side at each NPR value according to Reference 26.

48

Figure 5-17: Experimental, Computational Schileren Images, and Mach contours for

Baseline Nozzle Configuration at Various NPRs (Reference 26)

3.0

341

Figure 5-18: Experimental, Computational Schileren Images, and Mach contours for

Baseline Nozzle Configuration at Various NPRs Continued (Reference 26)

49

6.0 Conclusion and Future Work

In conclusion, the design, analysis, and simulation of the rocket propulsion system is useful
in conducting trade studies of rocket propulsion systems. The program aids in unifying the
nozzle, chamber and injector portions of a rocket propulsion system design effort quickly and
efficiently using a streamlined graphical user interface (GUI). The program also allows for the
selection of common nozzle profiles including Rao, conical, bell, and minimum length nozzles
(MLN) using method of characteristics (MOC). Chamber dimensions, propellant selections, and
injector selection between doublet or triplet allow for further refinement of the desired rocket
system design. The program takes the available selections and specifications made by the user

and outputs key design parameters calculated from the input variables.

A 2-D graphical representation of the nozzle and/or chamber is plotted and coordinates of
the plotted line are displayed. The rocket propulsion system design coordinates are saved to a
*dat file which can be used in a CAD program to plot a 3-D model of the rocket propulsion
systems. Coordinates of the injectors are saved to a *dat file to be modeled in a CAD program as
well. The program currently provides a symbolic link in the form of a button on the output page

which will open Unigraphics NX CAD program.

The post-processing simulation of the rocket propulsion system is done in a computational
fluid dynamics (CFD) program such as ANSYS ICEM CFD mesh generation software and
ANSYS FLUENT CFD. The user reads the parasolid or IGES/STEP file of the CAD 3-D
modeling of the rocket propulsion system into the ANSYS ICEM CFD meshing software. Using

ANSYS FLUENT CFD software, the user can choose to model the flow, turbulence, heat

50

transfer, air flow over the rocket, combustion in the chamber, or various other options of the

rocket propulsion system.

Future work on the design, analysis, and simulation of the rocket propulsion system would be

the following:

Integrated 3-D modeling graphics in the program instead having to open CAD program
and manually importing the rocket propulsion system design coordinates to model.
Multiple design sweeps at the same time in the same program window.

Detailed injector design selections including more than doublet and triplet injector types.
More chamber design selections in addition to cylindrical combustion chamber.

CFD mesh setup in the program instead of importing CAD model into CFD mesh
program.

CFD simulation analysis for multiple nozzle design studies and 3-D unsteady and steady
CFD calculations.

Material choices for the nozzle.

Heat transfer calculations.

Commercialize the program for use.

51

7.0 References

1. Sutton, George P., History of Liquid Propellant Rocket Engines, American Institute of
Aeronautics and Astronautics, Inc., Reston, Virginia, 2006.

2. Sutton, George P. and Oscar Biblarz, Rocket Propulsion Elements, John Wiley & Sons,
Inc., 6™ Edition. New York, 2001.

3. Anderson, John D, Modern Compressible Flow with Historical Perspective, McGraw
Hill, 3" Edition. Boston, 2003.

4. Huzel, Dieter K., and Huang, David H., Modern Engineering for Design of Liquid-
Propellent Rocket Engines, American Institute of Aeronautics and Astronautics, Inc.,
Washington, D.C., 1992.

5. Apogee Rockets, “Apogee Components,” RocketSim Software,

http://www.apogeerockets.com/Rocket_Software/RockSim/ [retrieved 2 March, 2012].

6. Cipolla, John/ AeroRocket, “AeroSpike,” AeroSpike Software,

http://aerorocket.com/MOC/MOC.html [retrieved 2 March, 2012].

7. Ponomarenko, Alexander, “Rocket Propulsion Analysis,” Rocket Propulsion Analysis

(RPA) Software, http://propulsion-analysis.com/ [retrieved 14 April, 2012].

8. Pirk, Rogerio, Souto, Carlos d’ Andrade, Silveira, Dimas Donizeti da, Souza, Candido
Magno de, and Goes, Luiz Carlos Sandoval, Liquid Rocket Combustion Chamber
Acoustic Characterization, Journal of Aerospace Technology Management, Sao Jose dos
Campos, Vol.2, No.3, September-December 2010, pg.269-278.

9. Frey, M. and Hagemann, G., Status of Flow Separation Prediction in Rocket Nozzles,

ATAA-98-3619, July 1998.

52

http://www.apogeerockets.com/Rocket_Software/RockSim/
http://aerorocket.com/MOC/MOC.html
http://propulsion-analysis.com/

10. NASA, “GRIN: Great Images in NASA,” Stennis Space Center Image # 81-201-1,

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

asa.gov/ABSTRACTS/GPN-2000-000543.html [retrieved 25 March 2012].

Hulka, James, Vigor Yang, Mohammed Habiballah, and Michael Popp, Liquid Rocket
Thrust Chambers: Aspects of Modeling, Analysis, and Design, American Institute of
Aeronautics and Astronautics, Inc., Reston, Virginia, Vol. 200.

Anon., “Unigraphics NX 7.0, Siemens Inc., 2012.

Anon., “Matlab R2009a, MathWorks, Inc., 2012.

Anon., “ANSYS ICEM CFD, ANSYS, Inc.., 2012.

Anon., “ANSYS Fluent, ANSYS, Inc., 2012.

Hagemann, Gerald, Immicch, Hans, Van Nguyen, Thong, and Dumnov, Gennady E.,
Advanced Rocket Nozzles, Journal of Propulsion and Power, Vol. 14, No. 5, September-
October 1998.

Shebalin, J-P, and Tiwari, S. N., NOZ-OP-2D: A CFD-Based Optimization System for
Axially Symmetric Rocket Nozzles, AIAA-2001-1062, January 2001.

Welle, R. P., Hardy, B. S., Murdock, J. W., Majamaki, A. J., and Hawkins, G. F.,
Separation Instabilities in Overexpanded Nozzles, AIAA-2003-5239, July 2003.

Martelli, Emanuele, Nasuti, Francesco, and Onofri, Marcello, Thermo-Fluid-Dynamics
Analysis of Film Cooling in Overexpanded Rocket NOzzles, AIAA-2006-5207, July 2006.
Nasuti, Francesco, Onofri, Marcello, and Martelli, Emaneule, Numerical Analysis of
Flow Separation Structures in Rocket Nozzles, AIAA-2007-5473, July 2007.

Colonno, M. R., Van der Weide, E., and Alonso, J. J., The Optimum Vacuum Nozzle: an

MDO Approach, AIAA-2008-911, January 2008.

53

http://grin.hq.nasa.gov/ABSTRACTS/GPN-2000-000543.html
http://grin.hq.nasa.gov/ABSTRACTS/GPN-2000-000543.html

22.

23.

24.

25.

26.

Martelli, Emanuele, Nasuti, Francesco, and Onofri, Marcello, Numerical Analysis of Film
Cooling in Advanced Rocket Nozzles, AIAA Journal, Vol. 47, No. 11, November 2009.
Boccaletto, Luca, and Dussauge, Jean-Paul, High-Performance Rocket Nozzle Concept,
Jounral of Propulsion and Power, Vol. 26, No. 5, September-October 2010.

Shimizu, Taro, Kodera, Masatoshi, and Tsuboi, Nobuyuki, Internal and External Flow of
Rocket Nozzle, Journal of the Earth Simulator, Vol. 9, March 2008.

Louisos, W. F., and Hitt, D. L., Numerical Studies of Thrust Production in 2-D
Supersonic Bell Micronozzles, AIAA-2008-5233, July 2008.

Elmiligui, Alaa, Abdol-Hamid, K.S., and Hunter, Craig A., Numerical Investigation of

Flow in an Over-expanded Nozzle with Porous Surface, AIAA 2005-4159, July 2005.

54

Appendix A: Main GUI Code

Filename: Thee thesis.m

function varargout = thee thesis(varargin)

% THEE THESIS M-file for thee thesis.fig

S THEE THESIS, by itself, creates a new THEE THESIS or raises the
existing

% singleton*.

% H = THEE THESIS returns the handle to a new THEE THESIS or the handle
to

% the existing singleton*.

% THEE THESIS ('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in THEE THESIS.M with the given input
arguments.

% THEE THESIS('Property', 'Value',...) creates a new THEE THESIS or
raises the

% existing singleton*. Starting from the left, property value pairs are

o

applied to the GUI before thee thesis OpeningFcn gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to thee thesis OpeningFcn via varargin.

o o oe

o

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o° oo

oe

See also: GUIDE, GUIDATA, GUIHANDLES

o\°

Edit the above text to modify the response to help thee thesis

o\°

Last Modified by GUIDE v2.5 16-May-2012 11:25:26

% Begin initialization code - DO NOT EDIT

gui Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @thee thesis OpeningFcn,
'gui OutputFcn', @thee thesis OutputFcn,
'gui LayoutFcn', 1,
'gui Callback', (1

if nargin && ischar (varargin{1l})

gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT

55

% —--- Executes just before thee thesis is made visible.
functlon thee thesis Openlnchn(hObject eventdata, handles, varargin)
This function has no output args, see OutputFcn.

o\

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLABR
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to thee thesis (see VARARGIN)

% Choose default command line output for thee thesis
handles.output = hObject;

set (handles.tabl, 'Visible', 'off")

set (handles.tab2, 'Visible', 'off")
set (handles.tab3, 'Visible', "off")
set (handles.tab4, 'Visible', 'on")
set (handles.tabb, 'Visible', "off")

o)

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes thee thesis wait for user response (see UIRESUME)
% uiwait (handles.figurel) ;

%$Plot picture on startup

raonoz = imread('rao nozzle.jpeg');

axes (handles.axes6);

image (raonoz) ;

axis off;

connoz = imread('conical nozzle.jpeg');
axes (handles.axes7) ;

image (connoz) ;

axis off;

idealnoz = imread('ideal nozzle.jpeg');
axes (handles.axes8) ;

image (idealnoz) ;

axis off;

% —--- Outputs from this function are returned to the command line.
function varargout = thee thesis OutputFcn (hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT) ;

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

oe

Get default command line output from handles structure
varargout{1l} = handles.output;

$Tab 1: Instructions
function tabl ResizeFcn (hObject, eventdata, handles)

56

o\

hObject handle to uipanell (see GCBRO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o\

o

%$Tab 2: Input
function tab2 ResizeFcn (hObject, eventdata, handles)

% hObject handle to uipanell (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAR
% handles structure with handles and user data (see GUIDATA)

%$Tab 3: Output
function tab3 ResizeFcn (hObject, eventdata, handles)

% hObject handle to uipanell (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

$Tab 4: Welcome
function tab4 ResizeFcn (hObject, eventdata, handles)

% hObject handle to tab4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
$ handles structure with handles and user data (see GUIDATA)

%$Tab 5: Design Choices
function tab5 ResizeFcn (hObject, eventdata, handles)

% hObject handle to tabb (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% [a,map]=imread('images.jpg');

$ [r,c,d]=size(a);

% x=ceil (r/60);

% y=ceil (c/60);

% g=a(l:x:end,l:y:end, :);

% g(g==255)=5.5*255;

% set (handles.pushbuttonl, 'CDhata',g) ;

e

[

$Tab 1: Instructions
--- Executes on button press in instructionsbutton.
function instructionsbutton Callback (hObject, eventdata, handles)

oe

% hObject handle to instructionsbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

handles = guidata(thee thesis);

set
set
set
set

handles.tabl, 'Visible', 'on'");
handles.tab2, 'Visible', 'off")
handles.tab3, 'Visible', 'off'");
handles.tab4, 'Visible', 'off")

—~ e~~~

57

set (handles.tab5, 'Visible', 'off'");

$Display image

ssme = imread('ssme.Jjpg');
axes (handles.axesl) ;

image (ssme) ;

axis off;

%$Tab 2: Input
--—- Executes on button press in inputbutton.
function inputbutton Callback (hObject, eventdata, handles)

o\

% hObject handle to inputbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

handles = guidata(thee thesis);

set (handles.tabl, 'Visible', "off'");
set (handles.tab2, 'Visible', 'on');
set (handles.tab3, 'Visible', "off');
set (handles.tab4, 'Visible', "off');
set (handles.tab5, 'Visible', "off");
set (handles.methane table, 'Visible', 'on');

(
(
(
(
(
(
set (handles.hydrazine table, 'Visible', 'off");
set (handles.hydrogen table, 'Visible', 'off'");
set (handles.RP1_table, 'Visible', 'off');

set (handles.UDMH table, 'Visible', 'off");

set (handles.flu hydra table, 'Visible', 'off");

set (handles.flu hydro table, 'Visible', 'off'");

set (handles.nitrotetro hydra table, 'Visible',6 'off');
set (handles.nitrotetro RP1 table, 'Visible', 'off');
set (handles.nitrotetro MMH table, 'Visible', 'off');

$Tab 3: Output
--—- Executes on button press in outputbutton.
function outputbutton Callback (hObject, eventdata, handles)

o\°

% hObject handle to outputbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLABR
% handles structure with handles and user data (see GUIDATA)

handles = guidata(thee thesis);

set (handles.tabl, 'Visible', "off'");
set (handles.tab2, 'Visible', "off")
set (handles.tab3, 'Visible', 'on'");
set (handles.tab4, 'Visible', 'off'");
set (handles.tab5, 'Visible', 'off")

I

%$Tab 4: Welcome

--- Executes on button press in welcomebutton.

function welcomebutton Callback (hObject, eventdata, handles)
% hObject handle to welcomebutton (see GCBO)

oe

58

$ eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

handles = guidata(thee thesis);

set) ;
set (handles.tab2, 'Visible', 'off'");
)

(handles.tabl, 'Visible', 'off"
(
set (handles.tab3, 'Visible', "off'
(
(

’

set (handles.tab4, 'Visible', 'on');
handles.tabb, 'Visible', 'off");

o)

%$Tab 5: Design Choices
--—- Executes on button press in designbutton.
function designbutton Callback (hObject, eventdata, handles)

o\

% hObject handle to designbutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

handles = guidata(thee thesis);

set (handles.tabl, 'Visible', "off")
set (handles.tab2, 'Visible', "off")
set (handles.tab3, 'Visible', "off');
set (handles.tab4, 'Visible', "off")
set (handles.tab5, 'Visible', 'on');

$Display image

nozz = imread('nozzlepicture.jpg');
axes (handles.axesb);

image (nozz) ;

axis off;

cham = imread('rocketss.jpg');
axes (handles.axesl10) ;

image (cham) ;

axis off;

inject = imread('injectors.jpg');
axes (handles.axesll) ;

image (inject) ;

axis off;

% —--—- Executes on button press in selectionbutton.

function selectionbutton Callback (hObject, eventdata, handles)

% hObject handle to selectionbutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

oe

= get
= get
= get
get

handles.popupunits, 'Value');
handles.popupnozzle, 'Value');
handles.popupchamber, 'Value');
handles.popupinjector, 'Value');

® QB
|

—~ e~~~

59

[

%$English

if ((u == && n
.nozzlepanel, 'Visible', 'on');
(.chamberpanel, 'Visible', 'on');
set (handles.
(.mocpanel, 'Visible', 'off');

set (handles
set (handles

set (handles

elseif (u ==
set (handles
set (handles

set (handles

elseif (u ==
set (handles
set (handles
set
set

—~ e~~~

handles

elseif (u ==
set (handles
set (handles
set (handles
set (handles

elseif (u ==
set (handles
set (handles
set
set

—~ e~~~

handles

elseif (u ==
set (handles
set (handles
set
set

—_~ o~~~

handles

elseif (u ==
set (handles
set (handles
set
set

—~ e~~~

handles

elseif (u ==
set (handles
set (handles
set

set (handles

elseif (u ==
set (handles
set (handles

.nozzlepanel, 'Visible', "off")
.chamberpanel, 'Visible', 'on')
handles. !
.mocpanel, 'Visible', 'on'");

== 1 && c ==1 && e == 1)

injectorpanel, 'Visible', 'on');

&& n == 2 && ¢ == 1 && e == 1)

(.nozzlepanel, 'Visible', 'on');

(.chamberpanel, 'Visible', 'on');
set (handles.

(.mocpanel, 'Visible', 'off');

injectorpanel, 'Visible', 'on');

& n == 3 && ¢c == 1 && e == 1)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'on');
handles.
.mocpanel, 'Visible', 'off'");

injectorpanel, 'Visible', 'on');

&& n == 4 &§& ¢c == 1 && e == 1)

.nozzlepanel, 'Visible', 'off'");
.chamberpanel, 'Visible', 'on'");
.injectorpanel, 'Visible', 'on'");
.mocpanel, 'Visible', 'on'");

& n ==1 && c == 1 && e == 2)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'on');
handles.
.mocpanel, 'Visible', 'off');

injectorpanel, 'Visible', 'on');

&& n == 2 && ¢ == 1 && e == 2)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'on');
handles.
.mocpanel, 'Visible', 'off');

injectorpanel, 'Visible', 'on');

& n == 3 && ¢ == 1 && e == 2)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'on');
handles.

injectorpanel, 'Visible', 'on');

.mocpanel, 'Visible', 'off');

&& n == 4 §& c == 1 && e == 2)

injectorpanel, 'Visible', 'on

& n == 1 && ¢ == 1 && e == 3)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'on');

60

set (handles.
.mocpanel, 'Visible', 'off');

set (handles

elseif (u ==
set (handles
set (handles
set
set

—~ e~~~

handles

elseif (u ==
set (handles
set (handles
set (
(

set (handles

elseif (u ==
set (handles
set (handles
set (handles
set (handles

elseif (u ==
set (handles
set (handles
set (handles
set (handles

—_~ e~~~

elseif (u ==
set (handles
set (handles
set (handles
set (handles

—~ e~~~

elseif (u ==
set (handles
set (handles
set
set

—~ e~~~

handles

elseif (u ==
set (handles
handles

handles

elseif (u ==

handles
set (handles
set

set

—~ e~~~

handles

elseif (u ==
set (handles
set (handles

injectorpanel, 'Visible', 'off');

& n == 2 && c == 1 §&& e == 3)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'on');
handles.
.mocpanel, 'Visible', 'off');

injectorpanel, 'Visible', 'off');

&& n == 3 && ¢ == 1 && e == 3)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'on');
handles.
.mocpanel, 'Visible', 'off');

injectorpanel, 'Visible', 'off');

&& n == 4 && ¢c == 1 && e == 3)

.nozzlepanel, 'Visible', 'off");
.chamberpanel, 'Visible', 'on');
.injectorpanel, 'Visible', "off");
.mocpanel, 'Visible', 'on');

&& n == 1 && ¢c == 2 && e == 1)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', "off");
.injectorpanel, 'Visible', 'on'");
.mocpanel, 'Visible', 'off'");

&& n == 2 && c == 2 && e == 1)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'off");
.injectorpanel, 'Visible', 'on'");
.mocpanel, 'Visible', 'off');

&& n == 3 && c == 2 && e == 1)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'off");
handles.

injectorpanel, 'Visible', 'on');

.mocpanel, 'Visible', 'off');

&& n == 4 §& ¢ == 2 && e == 1)

.nozzlepanel, 'Visible', "off");
.chamberpanel, 'Visible', 'off");
handles.)
.mocpanel, 'Visible', 'on'");

injectorpanel, 'Visible', 'on'

~e

&& n == 1 && ¢ == 2 && e == 2)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'off");
handles.

injectorpanel, 'Visible', 'on');

.mocpanel, 'Visible', 'off');

&& n == 2 && ¢c == 2 && e == 2)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', '"off");
set (handles.

injectorpanel, 'Visible', 'on');

61

set (handles.

elseif (u ==
set (handles

set

set (handles

elseif (u ==
set (handles
set (handles
set
set

elseif (u ==
set (handles
set (handles
set
set

—~ e~~~

handles

elseif (u ==
set (handles
set (handles
set
set

—~ e~~~

handles

elseif (u ==
set (handles
set
set
set

—~ e~~~

handles

elseif (u ==
set
set
set
set

handles

(

set (handles.
(handles.
(

handles.

handles.

handles.
.chamberpanel, 'Visible', 'off");
handles.injectorpanel, 'Visible', '"off");

handles.

mocpanel, 'Visible', 'off');

& n == 3 && c == 2 §&& e == 2)

.nozzlepanel, 'Visible', 'on');

chamberpanel, 'Visible', 'off');
injectorpanel, 'Visible', 'on');

.mocpanel, 'Visible', 'off');

&& n == 4 §& ¢ == 2 && e == 2)

.nozzlepanel, 'Visible', '"off');
.chamberpanel, 'Visible', 'off");
handles.
handles.

injectorpanel, 'Visible', 'on');
mocpanel, 'Visible', 'on');

&& n == 1 && ¢ == 2 && e == 3)

.nozzlepanel, 'Visible', 'on');

.chamberpanel, 'Visible', "off");
injectorpanel, 'Visible', 'off'");
.mocpanel, 'Visible', 'off'");

&& n == 2 && ¢ == 2 && e == 3)

.nozzlepanel, 'Visible', 'on');

.chamberpanel, 'Visible', "off");
injectorpanel, 'Visible', 'off');
.mocpanel, 'Visible', 'off'");

&& n == 3 && c == 2 && e == 3)

.nozzlepanel, 'Visible', 'on');
handles.
handles.

chamberpanel, 'Visible', 'off'");

injectorpanel, 'Visible', 'off');
.mocpanel, 'Visible', 'off');

&& n == 4 §& c == 2 && e == 3)
nozzlepanel, 'Visible', '"off');

mocpanel, 'Visible', 'on');

elseif (u ==
set
set
set
set

handles

—~ e~~~

elseif (u ==
set (handles
set
set
set

—~ e~~~

handles

elseif (u ==

set (handles.
.chamberpanel, 'Visible', 'on');

set (handles

handles.
.chamberpanel, 'Visible', 'on');
handles.
handles.

&& n ==1 && ¢ == 1 && e == 1)
nozzlepanel, 'Visible', 'on');

injectorpanel, 'Visible', 'on');
mocpanel, 'Visible', '"off");

&& n == 2 && ¢ == 1 && e == 1)

.nozzlepanel, 'Visible', 'on');
handles.
handles.

chamberpanel, 'Visible', 'on');

injectorpanel, 'Visible', 'on');
.mocpanel, 'Visible', 'off');

& n == 3 && ¢c == 1 && e == 1)
nozzlepanel, 'Visible', 'on');

62

set (handles.
.mocpanel, 'Visible', 'off');

set (handles

elseif (u ==
set (handles
set (handles
set
set (handles

elseif (u ==
set (handles
set (handles

set (handles

elseif (u ==
set (handles
set (handles
set
set

—_~ e~~~

handles

elseif (u ==
set (handles
set (handles
set (handles
set (handles

—_~ e~~~

elseif (u ==
set (handles
set (handles
set (handles
set (handles

elseif (u ==
set (handles
set (handles
set
set

—~ e~~~

handles

elseif (u ==
set (handles
set (handles
set (handles
set (handles

—~ e~~~

elseif (u ==
set (handles
set (handles
set
set

—~ e~~~

handles

elseif (u ==
set (handles
set (handles

set (handles.

handles.

handles.

handles.

injectorpanel, 'Visible', 'on');

& n == 4 §& ¢c == 1 && e == 1)

.nozzlepanel, 'Visible', 'off'");
.chamberpanel, 'Visible', 'on');
handles.
.mocpanel, 'Visible', 'on'");

injectorpanel, 'Visible', 'on');

& n ==1 && c == 1 && e == 2)

(.nozzlepanel, 'Visible', 'on');

(.chamberpanel, 'Visible', 'on');
set (handles.

(.mocpanel, 'Visible', 'off');

injectorpanel, 'Visible', 'on');

&& n == 2 && ¢c == 1 && e == 2)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'on');
injectorpanel, 'Visible', 'on');
.mocpanel, 'Visible', 'off');

&& n == 3 && ¢ == 1 && e == 2)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'on');
.injectorpanel, 'Visible', 'on'");
.mocpanel, 'Visible', 'off'");

& n == 4 §&& ¢c == 1 && e == 2)

.nozzlepanel, 'Visible', 'off");
.chamberpanel, 'Visible', 'on');
.injectorpanel, 'Visible',
.mocpanel, 'Visible', 'on');

'on

&& n == 1 && c == 1 && e == 3)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'on');
injectorpanel, 'Visible', 'off');
.mocpanel, 'Visible', 'off');

&& n == 2 && c¢c == 1 && e == 3)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'on');
.injectorpanel, 'Visible', "off");
.mocpanel, 'Visible', 'off');

&& n == 3 && ¢ == 1 && e == 3)

.nozzlepanel, 'Visible', 'on');
.chamberpanel, 'Visible', 'on');
injectorpanel, 'Visible', 'off');
.mocpanel, 'Visible', 'off');

&& n == 4 §& c == 1 && e == 3)

.nozzlepanel, 'Visible', 'off'");
.chamberpanel, 'Visible', 'on');
injectorpanel, 'Visible', 'off');

")

63

set (handles.

elseif (u ==
set
set (handles

set (handles

elseif (u ==
set (handles
set (handles
set
set

—~ e~~~

handles

elseif (u ==
set (handles
set (handles
set
set

—~ e~~~

handles

elseif (u ==
set (handles
set (handles
set
set (handles

elseif (u ==
set
set
set
set

handles

—_~ o~~~

handles

elseif (u ==
set (handles
set (handles
set
set

—~ e~~~

elseif (u ==
set (handles
set
set
set

—~ e~~~

handles

elseif (u ==
set (handles
set (handles
set
set

elseif (u ==
set (handles
set
set
set

—~ e~~~

handles

(handles.

(.chamberpanel, 'Visible', 'off");
set (handles.

(.mocpanel, 'Visible', 'off');

.nozzlepanel, 'Visible', 'off");
.chamberpanel, 'Visible', "off"
handles.
.mocpanel, 'Visible', 'on');

handles.
.chamberpanel, 'Visible', "off");
handles.
.mocpanel, 'Visible', 'off');

&& n == 1 && ¢c == 2 && e == 1)
nozzlepanel, 'Visible', 'on');

injectorpanel, 'Visible', 'on');

& n == 2 && c == 2 §&& e == 1)

.nozzlepanel, 'Visible', 'on');

.chamberpanel, 'Visible', 'off");
handles.
.mocpanel, 'Visible', 'off');

injectorpanel, 'Visible', 'on');

&& n == 3 && ¢c == 2 && e == 1)

.nozzlepanel, 'Visible', 'on');

.chamberpanel, 'Visible', "off");
handles.
.mocpanel, 'Visible', 'off'");

injectorpanel, 'Visible', 'on');

&& n == 4 §& ¢ == 2 && e == 1)

~— — ~
~.

injectorpanel, 'Visible', 'on
&& n == 1 && ¢c == 2 && e == 2)
nozzlepanel, 'Visible', 'on');

injectorpanel, 'Visible', 'on');

&& n == 2 && c == 2 && e == 2)

.nozzlepanel, 'Visible', 'on');

.chamberpanel, 'Visible', "off");
handles.
handles.

injectorpanel, 'Visible', 'on');
mocpanel, 'Visible', 'off');

&& n == 3 && c == 2 && e == 2)

.nozzlepanel, 'Visible', 'on');
handles.
handles.
.mocpanel, 'Visible', 'off');

chamberpanel, 'Visible', 'off');
injectorpanel, 'Visible', 'on');

&& n == 4 §& ¢ == 2 && e == 2)

.nozzlepanel, 'Visible', 'off'");
.chamberpanel, 'Visible', 'off");
handles.
handles.

injectorpanel, 'Visible', 'on');
mocpanel, 'Visible', 'on');

&& n == 1 && ¢ == 2 && e == 3)

.nozzlepanel, 'Visible', 'on');
handles.
handles.
.mocpanel, 'Visible', 'off');

chamberpanel, 'Visible', 'off');
injectorpanel, 'Visible', 'off');

64

elseif (u == && n == 2 && ¢ == 2 && e == 3)

set (handles.nozzlepanel, 'Visible', 'on');
set (handles.chamberpanel, 'Visible', 'off'");
set (handles.injectorpanel, 'Visible', 'off'");
set (handles.mocpanel, 'Visible', 'off');

elseif (u == && n == 3 && ¢ == 2 && e == 3)
set (handles.nozzlepanel, 'Visible', 'on');
set (handles.chamberpanel, 'Visible', 'off");

set (handles.injectorpanel, 'Visible', 'off');

(

set (handles.mocpanel, 'Visible', 'off'");
else (u == &§& n == 4 §& c == 2 && e == 3)
set (handles.nozzlepanel, 'Visible', 'off'");

set
set
set

handles.chamberpanel, 'Visible', "off");
handles.injectorpanel, 'Visible', 'off");
handles.mocpanel, 'Visible', 'on');

—~ e~~~

[

%$Popupl: Rao/Conical

--—- Executes on selection change in popupl.

function popupl Callback (hObject, eventdata, handles)

hObject handle to popupl (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

oe

o° oo

oe

o)

% Hints: contents = get (hObject, 'String') returns popupl contents as cell
array

[

% contents{get (hObject, 'Value')} returns selected item from popupl

$Pop-up menu Nozzle Selection choices
currentEntry = get (handles.popupl, 'Value');

currentEntry

Captions = get (handles.popupl, 'String');
Captions

Cell = Captions(currentEntry);

Cell

v = char(Cell)
switch v
case 'Rao'
set (handles.text3, 'FontName', 'Symbol'") ;
set (handles.text3, 'String', 'e');
set (handles.text4, "FontName', 'Symbol") ;
set (handles.text4, 'String', 'q');

case 'Conical'
set (handles.text3, 'FontName', 'Symbol") ;
set (handles.text3, 'String', 'e');
set (handles.text4, 'FontName', 'Symbol') ;
set (handles.text4, 'String', 'qg');

65

case 'Percent of Rao Nozzle'
set (handles.text3, 'FontName', 'Symbol'") ;
set (handles.text3, 'String', 'e');

set (handles.text4, 'FontName', 'Symbol'") ;
(

set (handles.text4, 'String', 'q');
end
% —--- Executes during object creation, after setting all properties.
function popupl CreateFcn (hObject, eventdata, handles)
% hObject handle to popupl (see GCBO)

o\°

eventdata reserved - to be defined in a future version of MATLAB

o

o\

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, '"defaultUicontrolBackgroundColor'))

set (hObject, "BackgroundColor', 'white');

o

%Popup2: Fuel Selections

--—- Executes on selection change in popup?2.

function popup2 Callback (hObject, eventdata, handles)

hObject handle to popup2 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° oe o°

o

\o

s Hints: contents = get (hObject, 'String') returns popup2 contents as cell
array

o)

% contents{get (hObject, 'Value')} returns selected item from popup2

%$Pop-up menu Nozzle Selection choices
currentfuel = get (handles.popup2, 'Value');

currentfuel

Captionsfuel = get (handles.popup2, 'String');
Captionsfuel

Cellfuel = Captionsfuel (currentfuel);
Cellfuel

f = char(Cellfuel)

switch f

case 'Liquid 02 + Methane'
set (handles.methane table, 'Visible', 'on');

set (handles.hydrazine table, 'Visible', "off'");
set (handles.hydrogen table, 'Visible', 'off');
set (handles.RP1 table, 'Visible', 'off");

set
set
set

handles.UDMH table, 'Visible', 'off');
handles.flu hydra table, 'Visible', 'off'");
handles.flu hydro table, 'Visible', 'off');
set (handles.nitrotetro hydra table, 'Visible',6 'off');
set (handles.nitrotetro RP1 table, 'Visible', 'off');
set (handles.nitrotetro MMH table, 'Visible', 'off');
case 'Liquid 02 + Hydrazine'
set (handles.methane table, 'Visible', 'off');

~ e~~~ o~~~ —~

handles empty - handles not created until after all CreateFcns called

66

case

case

case

case

case

handles
handles
handles
handles

set
set
set
set

set
set (handles
set (handles
set (handles

'Liquid 02
set (handles
set (handles
set (handles
set (handles
set (handles

set
set (handles
set (handles
set (handles

'Liquid 02
set (handles
set (handles
set (handles
set (handles
set (handles
set (handles
set
set (handles
set (handles
set (handles

'Liquid 02
set (handles
set (handles
set (handles
set (handles
set (handles
set
set
set (handles
set (handles
set (handles

~ o~ o~~~ o~~~

~ e~~~ o~~~ —~

handles.

handles.

(.hydrazine table, 'Visible', 'on');
(.hydrogen table, 'Visible', 'off'");
(.RP1 table, 'Visible', 'off');
(.UDMH table, 'Visible',6 'off');

set (handles.
(
(
(

flu hydra table, 'Visible', 'off');
flu hydro table, 'Visible', 'off');

.nitrotetro _hydra table, 'Visible', 'off');
.nitrotetro RP1 table, 'Visible',6 "off');
.nitrotetro MMH table, 'Visible', 'off');

+ Hydrogen'

.methane table, 'Visible', 'off');
(.hydrazine table, 'Visible', 'off');
(.hydrogen table, 'Visible', 'on');
(.RP1 table, 'Visible', 'off');
(.UDMH_table, 'Visible', "off");

set (handles.
(
(
(

flu hydra table, 'Visible', 'off');
flu hydro table, 'Visible', 'off');

.nitrotetro _hydra table, 'Visible',6 'off');
.nitrotetro RP1 table, 'Visible', 'off');
.nitrotetro MMH table, 'Visible', 'off');

+ RP-1"

.methane table, 'Visible', 'off');
.hydrazine table, 'Visible', 'off');
.hydrogen table, 'Visible', 'off");
.RP1 table, 'Visible', 'on'");

.UDMH table, 'Visible', 'off");

.flu hydra table, 'Visible', 'off');
handles.
.nitrotetro _hydra table, 'Visible', 'off');
.nitrotetro RP1 table, 'Visible', 'off');
.nitrotetro MMH table, 'Visible', 'off');

flu hydro table, 'Visible', 'off');

+ UDMH'

.methane table, 'Visible', 'off');
.hydrazine table, 'Visible', 'off');
.hydrogen table, 'Visible', 'off');
.RP1 table, 'Visible', 'off'");

.UDMH table, 'Visible','on');
handles.
handles.
.nitrotetro _hydra table, 'Visible', 'off');
.nitrotetro RP1 table, 'Visible', 'off');
.nitrotetro MMH table, 'Visible', 'off');

flu hydra table, 'Visible', 'off');
flu hydro table, 'Visible', 'off');

'Liquid Fluorine + Hydrazine'

set (handles
set (handles
set (handles
set (handles
set (handles
set
set
set (handles
set (handles
set (handles

o~~~ o~ o~~~ —~

.methane table, 'Visible', 'off');
.hydrazine table, 'Visible', 'off');
.hydrogen table, 'Visible', 'off');
.RP1 table, 'Visible', 'off'");
.UDMH_table, 'Visible', "off");
handles.
handles.

flu hydra table, 'Visible', 'on'");
flu hydro table, 'Visible', 'off');

.nitrotetro hydra table, 'Visible', 'off'");
.nitrotetro RP1 table, 'Visible', 'off');
.nitrotetro MMH table, 'Visible', 'off');

'Liquid Fluorine + Hydrogen'

set (handles.
set (handles.
set (handles.

methane table, 'Visible', 'off');
hydrazine table, 'Visible',6 'off');
hydrogen table, 'Visible', 'off");

67

case

case

case

set (handles.flu hydro table, 'Visible', 'off");
set (handles.nitrotetro hydra table, 'Visible', 'off');
set (handles.nitrotetro RP1 table, 'Visible', 'off');
set (handles.nitrotetro MMH table, 'Visible', 'on');
end
% —-—- Executes during object creation, after setting all properties.

handles
handles

set
set
set
set
set (handles
set (handles
set (handles

~ e~ o~~~ —~

handles.
handles.

.RP1 table, 'Visible', 'off');

.UDMH_ table, 'Visible', 'off");

flu hydra table, 'Visible', 'off');

flu hydro table, 'Visible', 'on'");
.nitrotetro _hydra table, 'Visible', 'off');
.nitrotetro RP1 table, 'Visible', 'off');
.nitrotetro MMH table, 'Visible', 'off');

'Liquid Nitrogen tetroxide + Hydrazine'

set (handles
set (handles
set (handles
set (handles
set (handles
set
set
set (handles
set (handles
set (handles

~ e~~~ o~~~ —~

handles.
handles.

.methane table, 'Visible', 'off');
.hydrazine table, 'Visible', 'off');
.hydrogen table, 'Visible', 'off'");

.RP1 table, 'Visible', 'off'");

.UDMH_ table, 'Visible', "off");

flu hydra table, 'Visible', 'off');

flu hydro table, 'Visible', 'off');
.nitrotetro _hydra table, 'Visible', 'on'");
.nitrotetro RP1 table, 'Visible', 'off');
.nitrotetro MMH table, 'Visible', 'off');

'Liquid Nitrogen tetroxide + RP-1'

set (handles
set (handles
set (handles
set (handles
set (handles
set
set
set (handles
set (handles
set (handles

~ o~ o~~~ o~~~

'Ligquid Nitrogen tetroxide + MMH (Monomethyl-hydrazine)

set (handles
set (handles
set (handles
set (handles
set (handles

handles.
handles.

(
(
(
(
set (handles.
(
(
(
(

.methane table, 'Visible', 'off');
.hydrazine table, 'Visible', 'off');
.hydrogen table, 'Visible', 'off'");

.RP1 table, 'Visible', 'off');

.UDMH_ table, 'Visible', "off");

flu hydra table, 'Visible', 'off');

flu hydro table, 'Visible', 'off');
.nitrotetro _hydra table, 'Visible',6 'off');
.nitrotetro RP1 table, 'Visible', 'on'");
.nitrotetro MMH table, 'Visible', 'off');
.methane table, 'Visible', 'off');
.hydrazine table, 'Visible', 'off');
.hydrogen table, 'Visible', "off");

.RP1 table, 'Visible', 'off');

.UDMH table, 'Visible', 'off");

flu hydra table, 'Visible', 'off');

function popup2 CreateFcn (hObject, eventdata, handles)

o° oo

o\°

o\°

Hint:

o\°

hObject
eventdata
handles

handle

popupmenu controls usually have a white background on Windows.

to popup2 (see GCBO)

reserved - to be defined in a future version of MATLAB
empty - handles not created until after all CreateFcns called

See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white') ;

68

% —--—- Executes on selection change in popup3.
function popup3 Callback (hObject, eventdata, handles)

% hObject handle to popup3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get (hObject, 'String')) returns popup3 contents as
cell array

% contents{get (hObject, 'Value')} returns selected item from popup3
currentAlt = get (handles.popup3, 'Value');

currentAlt

CaptionAlt = get (handles.popup3, 'String');

CaptionAlt

CellAlt = CaptionAlt(currentAlt);

CellAlt

aa = char(CellAlt)
switch aa
case 'O (Sea Level)'
set (handles.edit43, 'String',14.7);
case '5,000'
set (handles.edit43, 'String',12.228);
case '10,000"
set (handles.edit43, 'String',10.108);
case '15,000"
set (handles.edit43, 'String',8.297);
case '20,000"
set (handles.edit43, 'String',6.759);
case '25,000"
set (handles.edit43, 'String',5.461);
case '30,000"
set (handles.edit43, 'String',4.373);
case '35,000'
set (handles.edit43, 'String',3.468);
case '40,000"
set (handles.edit43, 'String',2.730);
case '45,000'
set (handles.edit43, 'String',2.149);
case '50,000"
set (handles.edit43, 'String',1.692);
case '60,000"
set (handles.edit43, 'String',1.049);
case '70,000"
set (handles.edit43, 'String',0.651);
case '80,000"
set (handles.edit43, 'String',0.406) ;
case '90,000"
set (handles.edit43, 'String',0.255);
case '100,000'"
set (handles.edit43, 'String',0.162);
end

o)

% —--- Executes during object creation, after setting all properties.
function popup3 CreateFcn (hObject, eventdata, handles)

69

o\

hObject handle to popup3 (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o\

o

o\

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, '"BackgroundColor', 'white');

o

end

% —--- Executes on selection change in popup4.

function popup4 Callback (hObject, eventdata, handles)

% hObject handle to popup4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get (hObject, 'String')) returns popupéd contents as
cell array

% contents{get (hObject, 'Value')} returns selected item from popupé

currentInj = get (handles.popup4, 'Value');

currentInj

CaptionInj = get (handles.popup4, 'String');
CaptionInj

CellInj = CaptionInj(currentInj);
CelllInj

inj = char(CelllInj)
switch inj
case 'Doublet'
set (handles.edit59, 'String',0.8);
set (handles.edit60, 'String',0.2);
set (handles.edit62, 'String',0.035);
case 'Triplet'
set (handles.edit59, 'String',0.8);
set (handles.edit60, 'String',0.2);
set (handles.edit62, 'String',0.035);
end

% —--- Executes during object creation, after setting all properties.
function popup4 CreateFcn (hObject, eventdata, handles)

hObject handle to popupé4 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oe

oe

oe

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

o\°

70

% —--—- Executes on button press in okbuttonl.
function okbuttonl Callback (hObject, eventdata, handles)

% hObject handle to okbuttonl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLABR
% handles structure with handles and user data (see GUIDATA)

validity = 0;

strper = get(handles.edit39, 'String');
strper = char(strper);

[per, status] = str2num(strper);
if(1 == status)
validity = validity + 1;
end

strRt = get(handles.editl, 'String');
strRt = char(strRt);

[Rt, status] = str2num(strRt);
[CRt,status] = str2num(strRt);
if(1 == status)
validity = validity + 1;
end
strarea ratio = get(handles.edit2, 'String');
strarea ratio = char(strarea ratio);
[area ratio, status] = str2num(strarea ratio);
[Carea ratio, status] = str2num(strarea ratio);
if(1 == status)
validity = validity + 1;
end

strtheta = get(handles.edit3, 'String');
strtheta = char(strtheta);

[theta, status] = str2num(strtheta);
[Ctheta, status] = str2num(strtheta);
if(1 == status)
validity = validity + 1;
end

strP3 = get(handles.edit43, 'String');
strP3 = char(strP3);

[P3, status] = str2num(strP3);
if(1 == status)
validity = validity + 1;
end

strF = get(handles.edit4l, 'String');
strF = char(strF);

[F, status] = str2num(strF);
if(1 == status)
validity = wvalidity + 1;
end

strtp = get(handles.editl4, 'String');

strtp = char(strtp);

[tp, status] = str2num(strtp);
if(1 == status)
validity = validity + 1;
end

strL star = get(handles.edit45, 'String');
strL star = char(strL star);
[L_star, status] = str2num(strlL star);
if(1 == status)
validity = validity + 1;
end

strr get (handles.edit6, 'String');
strr = char(strr);
[r, status] = str2num(strr);
if(1 == status)
validity = validity + 1;
end

strSG f = get(handles.edit7, 'String');
strSG f = char(strSG f);
[den f, status] = strZnum(strsSG f);
if(1 == status)
validity = validity + 1;
end

strSG o = get(handles.edit8, 'String');
strSG o = char(strSG o);
[den o, status] = strZ2num(strSG o);
if(1 == status)
validity = validity + 1;
end

strmol = get(handles.editl0, 'String');

strmol = char(strmol);
[mol, status] = str2num(strmol);
if(1 == status)
validity = validity + 1;
end

strgamma = get(handles.editll, 'String');

strgamma = char(strgamma) ;
[gamma, status] = str2num(strgamma) ;
if(1 == status)
validity = validity + 1;
end

strPc = get(handles.editl3, 'String');

strPc = char(strPc);
[P1, status] = str2num(strPc);
if(1 == status)

validity = wvalidity + 1;
end

strTc = get(handles.edit9, 'String');
strTc = char(strTc);
[Tl, status] = str2num(strTc);
if(1 == status)
validity = validity + 1;
end

strCd = get(handles.edit59, 'String');
strCd = char(strCd);

[Cd, status] = str2num(strCd);
if(1 == status)

validity = validity + 1;
end

strPd = get(handles.edit60, 'String');
strPd = char(strPd);

[Pd, status] = str2num(strPd);
if(1 == status)

validity = validity + 1;
end

strDf = get(handles.edit62, 'String');
strDf = char(strDf);

[Df, status] = str2num(strDf);

if(1 == status)
validity = validity + 1;

end

if (18 == validity)
h = get (handles.popupl, 'Value');
h
ff = get(handles.popup2, 'Value');
ff
inje = get (handles.popup4, 'Value');
inje
if(h == 1)

[Rao_x, Rao y,x conver,y conver,x cyl,y cyl,Ln,theta exit,nf] =

Rao (per,Rt,area ratio, theta,P3,F,tp,L star,r,den f,den o,mol,gamma,Pl,T1l,Cd,P
d, Df)
% [Rao_x, Rao_y,x conver,y conver,x cyl,y cyl,Ln,theta exit] =
Rao (per,Rt,area ratio, theta,P3,F,tp,L star,r,den f,den o,mol,gamma,Pl,Tl)
set (handles.editl8, 'String',num2str (Ln)) ;
set (handles.editl9, 'String',num2str (theta exit));
set (handles.edit46, 'String',num2str (nf));
set (handles.edit47, 'String',num2str (no));
plot (handles.axes2,x cyl,y cyl,'b',x cyl, -
y cyl,'b',x conver,y conver,'b',x conver,-y conver,'b',Rao_x,
Rao vy, 'b',Rao _x, -Rao y,'b");

title (handles.axes2, 'Rao Nozzle', 'FontWeight', 'bold'");

xlabel (handles.axes2, 'Length of Nozzle, L n (in.)"');

ylabel (handles.axes2, 'Radius of Nozzle, R n (in.)"');

set (handles.axes?2, "'XGrid', 'on') ;

grid on;

set (handles.axes2, 'YGrid', 'on'") ;

grid on;

oe

73

R
R
a
S

aox = [x cyl(l,:),x conver(:,:),Rao x(:,
aoy = [y cyl(l,:),y conver(:,:),Rao _y(:,
rrayl = num2cell([Raox', Raoy'l);

et (handles.xy table, 'Data', arrayl);

else(h ==)

o
°

[

66 ff ==
Cx_FC, Cy FC,Cx_CSC, Cy CSC,Rao_Cx, Rao_

Conical (CRt,Carea ratio,Ctheta);

Cy CsC,'b', Cx CSC, -Cy CSC,'b',Rao Cx, Rao Cy,'b', Rao Cx,-Rao Cy,'b');

set (handles.editl8, 'String',num2str (CLn)
set (handles.text1l0, 'Visible', "off'");
set (handles.editl9, 'Visible', 'off");
plot (handles.axes2, Cx FC, Cy FC,'b',Cx_

title (handles.axes2, '"Concial Nozzle', 'F
xlabel (handles.axes?2, 'Length of Nozzle,
ylabel (handles.axes2, '"Radius of Nozzle,
set (handles.axes?2, 'XGrid', 'on');

grid on;

set (handles.axes2, 'YGrid', 'on'") ;

grid on;

)17
) 1;

Cy,CLn,Ctheta _exit] =

)7

FC, -Cy FC,'b',Cx CSC,
ontWeight', 'bold');

Ln (in.)");
R n (in.)");

andles)

version of MATLABR
(see GUIDATA)

end
end
% —--- Executes on button press in okbutton2.
function okbutton2 Callback (hObject, eventdata, h
% hObject handle to okbutton2 (see GCBO)
% eventdata reserved - to be defined in a future
% handles structure with handles and user data
validityl = 0;

strT c= get(handles.edit20, 'String');

strT c
[T_c,
if(

S
1

= char(strT c);
tatus] = strZ2num(strT c);
== status)

validityl = validityl + 1;

end

strP_c= get(handles.edit2l, 'String');

strP c
[P_c,
if(

S
1

= char(strP c);
tatus] = str2num(strP c);
== status)

validityl = validityl + 1;

end

strwidth= get (handles.edit22, 'String');
strwidth = char (strwidth);
[width,

if(

1

status] = str2num(strwidth);
== status)

74

validityl = validityl + 1;
end

strnum= get (handles.edit38, 'String');
strnum = char(strnum);

[num, status] = str2num(strnum);
if(1 == status)
validityl = validityl + 1;
end

if (4 == validityl)

4
h = get(handles.popupl, 'Value');
h

o

if(strcmp(h, 'Rao') ==)
if(h == 1)

[Ae,TT,A max,Max_ thrust,noz,i,cl,c2,aa,cc
MOC code(T_c,P_c,width, num)

] =

plot (handles.axes3,noz(:,1),noz(:,2),"'k",noz(:,1),-noz(:,2),'k',aa,-

A max/width/2,'r*',aa,A max/width/2,'r*',cl,c2,'b
plot (handles.axes3,cl,c2,cl,-c2)
hold on;
plot (char(i,:,1),-char(i, :,2))
%plot (handles.axes3,RAe, TT);
title (handles.axes3, 'MOC', 'FontWeight',
xlabel (handles.axes3, '"MOC Length, L n (in
ylabel (handles.axes3, 'MOC, R n (in.)");
set (handles.axes3, 'XGrid', 'on');
grid on;
set (handles.axes3, 'YGrid', 'on'") ;
grid on;
else(h == 2)
[Ae,TT,A max,Max_ thrust,noz,i,cl,c2,aa,cc
MOC code (T _c¢,P_c,width, num)
plot (handles.axes3,Ae, TT) ;
title (handles.axes3, "Concial Nozzle', 'F
xlabel (handles.axes3, 'Length of Nozzle,

o° oo

oe

',cl,-c2,'b")

'bold") ;
)N

1 =

ontWeight', 'bold'");
Ln (in.)");
R n (in.)");

ta, handles)

version of MATLAB

ylabel (handles.axes3, 'Radius of Nozzle,
set (handles.axes3, 'XGrid', 'on'") ;
grid on;
set (handles.axes3, 'YGrid', 'on'") ;
grid on;
end
end
% —--— Executes on button press in default button.
function default button Callback (hObject, eventda
% hObject handle to default button (see GCBO)
% eventdata reserved - to be defined in a future
% handles structure with handles and user data

set (handles.nozzlepanel, 'Visible', 'on');
set (handles.chamberpanel, 'Visible', 'on');
set (handles.injectorpanel, 'Visible', 'on');

(see GUIDATA)

75

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

handles.mocpanel, 'Visible', "off");
handles.editl, 'String',5);
handles.edit2, 'String',77.5);
handles.edit3, 'String', 45);
handles.edit6, 'String',2.24);
handles.edit7, 'String',1.14);
handles.edit8, 'String',0.58);
handles.edit9, 'String', 6500) ;
handles.editl0, 'String',21.9);
handles.editll, 'String',1.24);
handles.edit4l, 'String',35000) ;
handles.editl13, 'String',2000) ;
handles.editl4, 'String',2);
handles.edit20, "'String',2000);
handles.edit21, 'String',1.26e6);
handles.edit22, 'String',0.1);
handles.edit38, 'String',15);
handles.edit45, 'String',118);
handles.edit43, 'String',3.44);
handles.edit39, 'String',0.8);
handles.editb59, 'String',0.8);
handles.edit60, 'String',0.2);
handles.edit62, 'String',0.035);

N~ o~~~ o~ o~~~ o~~~ o~~~ o~ o~~~ o~~~ —~

% —--—- Executes on button press in resetbutton.

function resetbutton Callback (hObject, eventdata, handles)

% hObject handle to resetbutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
reset = get (handles.resetbutton, 'Value');

reset;

if (reset == 1)
set (handles.nozzlepanel, 'Visible', 'on');
set (handles.chamberpanel, 'Visible', 'on');
set (handles.injectorpanel, 'Visible', 'on'");
set (handles.mocpanel, 'Visible', 'on');
set (handles.editl, 'String', {});
set (handles.edit2, 'String',
set (handles.edit3, 'String’',
set (handles.edit6, 'String',
set (handles.edit7, 'String',
set (handles.edit8, 'String’',
set (handles.edit9, 'String’',
set (handles.editl10, 'String',
set (handles.editll, 'String',
set (handles.edit4l, 'String',
set (handles.editl3, 'String',
set (handles.editl4, 'String',
set (handles.editl8, 'String’',
set (handles.editl9, 'String',
set (handles.edit20, 'String"',
set (handles.edit21, 'String',
set (handles.edit22, 'String',

~

~

{
{
{
{
{
{

N N~ N~ N~~~ N~~~ e~~~ o~~~
i e e e e R R e i e el e e el et

76

set (handles.edit38, 'String'
set (handles.edit45, 'String'
set (handles.edit43, 'String’

(
(
(
set (handles.edit39, 'String',
(
(
(

~
~.

~
o N

~

P Sy A

e e e e

—_— — — — —
~e N

set (handles.xy table, 'Data’, ;

cla (handles.axes?2) ;

cla (handles.axes3) ;
else
end
% —--—- Executes on button press in savebutton.
function savebutton Callback (hObject, eventdata, handles)
% hObject handle to savebutton (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
fileName = inputdlg('Please enter the name for your program');
directoryName = uigetdir('', 'Please select a folder to save to');
if directoryName == 0 %# User pressed the "Cancel" button...

directoryName = ''; S# ...s0 choose the empty string for the folder

end

filePath = fullfile(directoryName, fileName{1l}); %# Create the file path
hgsave (filePath) ;

%O0pens figure of plot to save

% [x FC, y FC,x SC, y SC, Rao_Xx,

Rao y,x,y,Ln,theta exit,x cyl,y cyl,x conver,y conver] =
Rao (Rt,area ratio,theta,r,SG £f,SG o,Tl,mol,gamma,F,P1l, tp)
hplot = plot(handles.axes2,x FC,y FC);

o oo

oe

ftmp = figure; atmp = axes;
copyobj (hplot, atmp);
saveas (ftmp, FileName) ;
delete (ftmp) ;

o° o

o

$SAVES SCREENSHOT

% fileName = inputdlg('Please enter the name for your figures');

% directoryName = uigetdir('','Please select a folder to save to');

% if directoryName == 0 %# User pressed the "Cancel" button...

3 directoryName = ''; St ...s0 choose the empty string for the
folder

% end

% filePath = fullfile(directoryName,fileName{l}); %# Create the file path
% extensions = {'fig', 'bmp'};

% for k = l:length(extensions)

% saveas (gcf, filePath,extensions{k}); %# Save the file

% set (gcf, 'PaperPositionMode', "auto"') ;

% end

% —--— Executes on button press in savedat file.

71

o3
°

function savedat file Callback (hObject, eventdata, handles)

% hObject handle to savedat file (see GCBO)
% eventdata reserved - to be defined in a future version of MATLARB
% handles structure with handles and user data (see GUIDATA)

oe

Create a Import File for NX Spline
fid=fopen ('RaoNozzle.dat', 'w+'")
for 1 =1: length(Rao_ x)
fprintf (fid, '%6.2f %6.2f 0\n', Rao x(i)',Rao_y(i)")

o oe

o\

% end

S else(h == 2)
S end

% end

validity = 0;

strper = get(handles.edit39, 'String');
strper = char(strper);

[per, status] = str2num(strper);
if(1 == status)
validity = validity + 1;
end
strRt = get(handles.editl, 'String');

strRt = char(strRt);
[Rt, status] = str2num(strRt);

[CRt,status] = str2num(strRt);
if(1 == status)
validity = validity + 1;
end
strarea ratio = get(handles.edit2, 'String');
strarea ratio = char(strarea ratio);
[area ratio, status] = str2num(strarea ratio);
[Carea ratio, status] = str2num(strarea ratio);
if(1 == status)
validity = validity + 1;
end

strtheta = get(handles.edit3, 'String');
strtheta = char(strtheta);

[theta, status] = str2num(strtheta);
[Ctheta, status] = str2num(strtheta);
if(1 == status)
validity = validity + 1;
end

o\°

stralt= get(handles.edit40, 'String');
stralt = char(stralt);

o\°

% [alt, status] = str2num(stralt);
% if(1 == status)

% validity = validity + 1;

% end

78

strP3= get(handles.edit43, 'String');
strP3 = char(strP3);
[P3, status] = str2num(strP3);

if(1 == status)
validity = validity + 1;
end

strF= get(handles.edit4l, 'String');

strF = char(strF);
[F, status] = str2num(sStrF
if(1 == status)
validity = validity + 1;
end

strtp= get(handles.editl4,
strtp = char(strtp);

);

'String');

[tp, status] = str2num(strtp);

if(1 == status)
validity = validity + 1;
end

strL star= get(handles.edit45, 'String'

strlL star = char(strlL star

)7

[L_star, status] = str2num(strL star);

if(1 == status)
validity = validity + 1;
end

strr= get(handles.edit6, 'String');

strr = char(strr);
[r, status] = str2num(strr
if(1 == status)

validity = validity + 1;
end

)7

strSG _f= get(handles.edit7, 'String');
strSG f = char(strsG f);
[den f, status] = strZ2num(strSG f);
if(1 == status)
validity = validity + 1;
end
strSG o= get(handles.edit8, 'String');
strSG o = char(strSG o);
[den o, status] = strZ2num(strSG o);
if(1 == status)
validity = wvalidity + 1;
end
strmol= get(handles.editl0, 'String');
strmol = char(strmol);
[mol, status] = str2num(strmol);
if(1 == status)

validity = wvalidity + 1;

) ;

79

end

strgamma= get (handles.editll, 'String');
strgamma = char(strgamma) ;

[gamma, status] = str2num(strgamma);
if(1 == status)
validity = validity + 1;
end

strPc= get(handles.editl3, 'String');

strPc = char(strPc);
[P1, status] = str2num(strPc);
if(1 == status)
validity = validity + 1;
end

strTc= get(handles.edit9, 'String');

strTc = char(strTc);
[Tl, status] = str2num(strTc);
if(1 == status)
validity = validity + 1;
end
if (15 == validity)
h = get(handles.popupl, 'Value');
h
ff = get (handles.popup2, 'Value');
ff
if(h ==)

[Rao_x, Rao y,x conver,y conver,x cyl,y cyl,Ln,theta exit] =
Rao (per,Rt,area ratio, theta,P3,F,tp,L star,r,den f,den o,mol,gamma,Pl,T1l)

Raox = [x cyl(l,:),x conver(:,:),Rao x(:,:)];
Raoy = [y cyl(l,:),y conver(:,:),Rao y(:,:) 1;
arrayl = num2cell ([Raox', Raoy']):;
gg = get(handles.xy table, 'Data');
end
end

% uiputfile

% rao=[Raox Raoy]

3 %Create a Import File for NX Spline
% fid=fopen('Nozzle data.dat',6 'w+')

% for i = l:length (Raox)

% fprintf (fid, '%2.2f %2.2f 0\n',rao);
% end

% fprintf(fid, %)

o

e

function editl Callback (hObject, eventdata, handles)

% hObject handle to editl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLABR
% handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of editl as text

80

% str2double (get (hObject, 'String')) returns contents of editl as a
double

% —--—- Executes during object creation, after setting all properties.
function editl CreateFcn (hObject, eventdata, handles)

hObject handle to editl (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, '"BackgroundColor', 'white');

o

end

function edit2 Callback (hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit2 as text
str2double (get (hObject, 'String')) returns contents of edit2 as a

o

double

% —--- Executes during object creation, after setting all properties.
function edit2 CreateFcn (hObject, eventdata, handles)

hObject handle to edit2 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

oe

end

function edit3 Callback (hObject, eventdata, handles)

% hObject handle to edit3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit3 as text

% str2double (get (hObject, 'String')) returns contents of edit3 as a
double

% —--- Executes during object creation, after setting all properties.

function edit3 CreateFcn (hObject, eventdata, handles)

81

o\

hObject handle to edit3 (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o\

o

o\

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, '"BackgroundColor', 'white');

o

end

function edit6 Callback (hObject, eventdata, handles)

% hObject handle to edit6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLARB
% handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of edit6 as text
str2double (get (hObject, 'String')) returns contents of edit6 as a

o

double

% —--- Executes during object creation, after setting all properties.
function edit6 CreateFcn (hObject, eventdata, handles)

hObject handle to edit6 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

oe

end

function edit7 Callback (hObject, eventdata, handles)

% hObject handle to edit7 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit7 as text
str2double (get (hObject, 'String')) returns contents of edit7 as a

oe

double

% —--- Executes during object creation, after setting all properties.
function edit7 CreateFcn (hObject, eventdata, handles)

hObject handle to edit7 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

oe

o° oo

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

o\°

82

if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');
end

function edit8 Callback (hObject, eventdata, handles)

% hObject handle to edit8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit8 as text

% str2double (get (hObject, 'String')) returns contents of edit8 as a
double

% —--—- Executes during object creation, after setting all properties.
function edit8 CreateFcn (hObject, eventdata, handles)

% hObject handle to edit8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, "BackgroundColor', 'white');

o

end

function edit9 Callback (hObject, eventdata, handles)

% hObject handle to edit9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATAR)

oe

Hints: get (hObject, 'String') returns contents of edit9 as text
str2double (get (hObject, 'String')) returns contents of edit9 as a

oe

double

% —--- Executes during object creation, after setting all properties.
function edit8 CreateFcn (hObject, eventdata, handles)

hObject handle to edit9 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o\°

o\°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', 'white') ;

o\°

end

83

function editl0_Callback (hObject, eventdata, handles)

o° o

o

o

o

hObject
eventda
handles

Hints:

double

%

--- Exe

handle to editl0 (see GCBO)
ta reserved - to be defined in a future version of MATLAB
structure with handles and user data (see GUIDATA)

get (hObject, 'String') returns contents of editl0 as text
str2double (get (hObject, 'String')) returns contents of editl0 as a

cutes during object creation, after setting all properties.

function editl0 CreateFcn (hObject, eventdata, handles)

o° oo

o\

oe

oe

hObject
eventda
handles

Hint: e
S

handle to editl0 (see GCBRO)
ta reserved - to be defined in a future version of MATLAB
empty - handles not created until after all CreateFcns called

dit controls usually have a white background on Windows.
ee ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))

set (h

end

Object, 'BackgroundColor', 'white'");

function editll Callback (hObject, eventdata, handles)

hObject
eventda
handles

Hints:

double

o

°

--—- Exe

handle to editll (see GCBRO)
ta reserved - to be defined in a future version of MATLAB
structure with handles and user data (see GUIDATA)

get (hObject, 'String') returns contents of editll as text
str2double (get (hObject, 'String')) returns contents of editll as a

cutes during object creation, after setting all properties.

function editll CreateFcn (hObject, eventdata, handles)

o° o

o

o

o

hObject
eventda
handles

Hint: e
S

handle to editll (see GCBO)
ta reserved - to be defined in a future version of MATLAB
empty - handles not created until after all CreateFcns called

dit controls usually have a white background on Windows.
ee ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))

set (h

end

Object, 'BackgroundColor', 'white'");

function editl2 Callback (hObject, eventdata, handles)

o° oo

o\°

o\°

hObject
eventda
handles

Hints:

handle to editl2 (see GCBO)
ta reserved - to be defined in a future version of MATLAB
structure with handles and user data (see GUIDATA)

get (hObject, 'String') returns contents of editl2 as text

84

% str2double (get (hObject, 'String')) returns contents of editl2 as a
double

% —--- Executes during object creation, after setting all properties.
function editl2 CreateFcn (hObject, eventdata, handles)

hObject handle to editl2 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, '"BackgroundColor', 'white');

o

end

function editl3 Callback (hObject, eventdata, handles)

% hObject handle to editl3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of editl3 as text
str2double (get (hObject, 'String')) returns contents of editl3 as a

o

double

% —--- Executes during object creation, after setting all properties.
function editl3 CreateFcn (hObject, eventdata, handles)

hObject handle to editl3 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

oe

end

function editl4 Callback (hObject, eventdata, handles)

% hObject handle to editl4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of editld as text

% str2double (get (hObject, 'String')) returns contents of editl4d as a
double
% —--- Executes during object creation, after setting all properties.

function editl4 CreateFcn (hObject, eventdata, handles)

85

o oo

o

o\

o

hObject handle to editl4d (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, '"BackgroundColor', 'white');

end

function editl8 Callback (hObject, eventdata, handles)

o° oo

o

o

o

hObject handle to editl8 (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Hints: get (hObject, 'String') returns contents of editl8 as text
str2double (get (hObject, 'String')) returns contents of editl8 as a

double

%

--- Executes during object creation, after setting all properties.

function editl8 CreateFcn (hObject, eventdata, handles)

o° oP

oe

oe

o

hObject handle to editl8 (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, '"BackgroundColor', 'white');

end

function editl9 Callback (hObject, eventdata, handles)

o oo

oe

oe

oe

hObject handle to editl9 (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Hints: get (hObject, 'String') returns contents of editl9 as text
str2double (get (hObject, 'String')) returns contents of editl9 as a

double

o

°

--- Executes during object creation, after setting all properties.

function editl9 CreateFcn (hObject, eventdata, handles)

o° oo

o\°

o\°

o\°

hObject handle to editl9 (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

86

if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');
end

function edit20 Callback (hObject, eventdata, handles)

% hObject handle to edit20 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLARB
% handles structure with handles and user data (see GUIDATA)

o\

Hints: get (hObject, 'String') returns contents of edit20 as text
str2double (get (hObject, 'String')) returns contents of edit20 as a

o\°

double

% —--- Executes during object creation, after setting all properties.
function edit20 CreateFcn (hObject, eventdata, handles)

hObject handle to edit20 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, '"BackgroundColor', 'white');
end

o

function edit2l Callback (hObject, eventdata, handles)

% hObject handle to edit2l (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATAR)

oe

Hints: get (hObject, 'String') returns contents of edit2l as text
str2double (get (hObject, 'String')) returns contents of edit2l as a

oe

double

% —--- Executes during object creation, after setting all properties.
function edit2l CreateFcn (hObject, eventdata, handles)

hObject handle to edit2l (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o\°

o\°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white') ;
end

o\°

87

function edit22 Callback (hObject, eventdata, handles)

% hObject handle to edit22 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLABR
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit22 as text
str2double (get (hObject, 'String')) returns contents of edit22 as a

o

double

% —--- Executes during object creation, after setting all properties.
function edit22 CreateFcn (hObject, eventdata, handles)

hObject handle to edit22 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o\

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, "BackgroundColor', 'white');

oe

end

function edit38 Callback (hObject, eventdata, handles)

% hObject handle to edit38 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit38 as text
str2double (get (hObject, 'String')) returns contents of edit38 as a

o

double

o)

% —--- Executes during object creation, after setting all properties.
function edit38 CreateFcn (hObject, eventdata, handles)

hObject handle to edit38 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oe

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

o° o

end

% —--- Executes on button press in opencad button.

function opencad button Callback (hObject, eventdata, handles)
% hObject handle to opencad button (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAR

88

% handles structure with handles and user data (see GUIDATA)
!C:\Program Files\UGS\NX 7.5\UGII\ugraf.exe

% —--- Executes on button press in opencfd.
function opencfd Callback (hObject, eventdata, handles)

hObject handle to opencfd (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
!C:\Program Files\ANSYS Inc\vl140\icemcfd\win\bin
C:\Program Files\ANSYS Inc\vl140\icemcfd\win\bin\icemcfd

o o° oe

— 0P

o

% —--- Executes on button press in pushbutton2l.

function pushbutton2l Callback (hObject, eventdata, handles)

% hObject handle to pushbutton2l (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oe

--- Executes when selected object is changed in unitspanel.
function unitspanel SelectionChangeFcn (hObject, eventdata, handles)
hObject handle to the selected object in unitspanel
eventdata structure with the following fields (see UIBUTTONGROUP)
EventName: string 'SelectionChanged' (read only)
OldvValue: handle of the previously selected object or empty if none was
elected
NewValue: handle of the currently selected object
% handles structure with handles and user data (see GUIDATA)

0 o° P o° o°

o

if handles.english

set (handles.textl2, 'String', '"uno")
else handles.metric

set (handles.textl2, 'String', 'dos")

function plot ax2 Callback (hObject, eventdata, handles)

% hObject handle to plot ax2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oe

Displays contents of axesl at larger size in a new figure

o)

% Create a figure to receive this axes' data

axes2fig = figure;

% Copy the axes and size it to the figure

axes2copy = copyobj(handles.axes2,axes2fiqg);

set (axes2copy, 'Units', '"Normalized', ...
'Position', [.05,.20,.90,.60])

% Assemble a title for this new figure

&9

o\

str = [get (handles.uipanel3, 'Title') ' for '
get (handles.poplabel, 'String')];

title(str, 'Fontweight', 'bold")

Save handles to new fig and axes in case

we want to do anything else to them

handles.axes2fig = axes2fig;

handles.axes2copy = axes2copy;

guidata (hObject, handles) ;

o° 0o oe

o\

function plot axes2 Callback (hObject, eventdata, handles)

% hObject handle to plot axes2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLARB
% handles structure with handles and user data (see GUIDATA)

functlon plot ax3 Callback (hObject, eventdata, handles)

% hObject handle to plot ax3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Displays contents of axesl at larger size in a new figure

% Create a figure to receive this axes' data

axes3fig = figure;

% Copy the axes and size it to the figure

axes3copy = copyobj (handles.axes3,axes3fiqg);

set (axes3copy, 'Units', 'Normalized',

'Position', [.05,.20,.90,.60])

Assemble a title for this new figure

str = [get (handles.uipanel3, 'Title') ' for '
get (handles.poplabel, 'String')];

title(str, 'Fontweight', 'bold")

Save handles to new fig and axes in case

we want to do anything else to them

handles axes3fig = axes3fig;

handles.axes3copy = axes3copy;

guidata (hObject,handles) ;

o° 0 d° e oe

oe

functlon plot axes3 Callback (hObject, eventdata, handles)

% hObject handle to plot axes3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

function edit39 Callback (hObject, eventdata, handles)

% hObject handle to edit39 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit39 as text

% str2double (get (hObject, 'String')) returns contents of edit39 as a

double

90

% —--- Executes during object creation, after setting all properties.
function edit39 CreateFcn (hObject, eventdata, handles)

% hObject handle to edit39 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, "BackgroundColor', 'white');

o

end

function edit40 Callback (hObject, eventdata, handles)

% hObject handle to edit40 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit40 as text
% str2double (get (hObject, 'String')) returns contents of editd40 as a
double

% —--- Executes during object creation, after setting all properties.
function edit40 CreateFcn (hObject, eventdata, handles)

hObject handle to edit40 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

o

end

function editd4l Callback (hObject, eventdata, handles)

% hObject handle to edit4l (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of editd4l as text
% str2double (get (hObject, 'String')) returns contents of editd4dl as a
double

Q

% —--- Executes during object creation, after setting all properties.
function edit4l CreateFcn (hObject, eventdata, handles)

hObject handle to edit4l (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

o\°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor"'))

oe

91

set (hObject, "BackgroundColor', 'white');
end

function editd43 Callback (hObject, eventdata, handles)

% hObject handle to edit43 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLABR
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit43 as text
str2double (get (hObject, 'String')) returns contents of editd4d3 as a

o

double

o)

% —--- Executes during object creation, after setting all properties.
function edit43 CreateFcn (hObject, eventdata, handles)

hObject handle to edit43 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, "BackgroundColor', 'white');
end

o

function editd44 Callback (hObject, eventdata, handles)

% hObject handle to edit44 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
$ handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit44 as text
str2double (get (hObject, 'String')) returns contents of editd44 as a

oe

double

% —--- Executes during object creation, after setting all properties.
function edit44 CreateFcn (hObject, eventdata, handles)

hObject handle to edit44 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white') ;
end

o

function editd45 Callback (hObject, eventdata, handles)

% hObject handle to edit45 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLABR
% handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of edit45 as text
str2double (get (hObject, 'String')) returns contents of editd5 as a

o

double

92

% —--- Executes during object creation, after setting all properties.
function editd45 CreateFcn (hObject, eventdata, handles)

% hObject handle to edit45 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

o\

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

o\

function editd46 Callback (hObject, eventdata, handles)

% hObject handle to edit46 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
$ handles structure with handles and user data (see GUIDATAR)

o

Hints: get (hObject, 'String') returns contents of edit46 as text
str2double (get (hObject, 'String')) returns contents of editd6 as a

oe

double

% —--- Executes during object creation, after setting all properties.
function editd46 CreateFcn (hObject, eventdata, handles)

hObject handle to edit46 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

o

end

function edit47 Callback (hObject, eventdata, handles)

% hObject handle to edit47 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATAR)

oe

Hints: get (hObject, 'String') returns contents of edit47 as text
str2double (get (hObject, 'String')) returns contents of editd7 as a

oe

double

% —--- Executes during object creation, after setting all properties.
function edit47 CreateFcn (hObject, eventdata, handles)

hObject handle to edit47 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

o\°

Hint: edit controls usually have a white background on Windows.

93

% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

function edit48 Callback (hObject, eventdata, handles)

% hObject handle to edit48 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of editd8 as text
% str2double (get (hObject, 'String')) returns contents of edit48 as a
double

o)

% —--- Executes during object creation, after setting all properties.
function edit48 CreateFcn (hObject, eventdata, handles)

hObject handle to edit48 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, '"BackgroundColor', 'white');
end

oe

function edit49 Callback (hObject, eventdata, handles)

% hObject handle to edit49 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit49 as text
str2double (get (hObject, 'String')) returns contents of editd49 as a

o

double

o)

% —--- Executes during object creation, after setting all properties.
function edit49 CreateFcn (hObject, eventdata, handles)

hObject handle to edit49 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o o

o

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o\°

function edit50 Callback (hObject, eventdata, handles)

% hObject handle to edit50 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLARB
% handles structure with handles and user data (see GUIDATA)

94

% Hints: get (hObject, 'String') returns contents of edit50 as text
str2double (get (hObject, 'String')) returns contents of edit50 as a

o\

double

% —--—- Executes during object creation, after setting all properties.
function edit50 CreateFcn (hObject, eventdata, handles)

hObject handle to edit50 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o\

o\

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', 'white');

o\°

end

function edit5l Callback (hObject, eventdata, handles)

% hObject handle to edit51 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of edit5l as text
str2double (get (hObject, 'String')) returns contents of editb5l as a

o

double

% —--- Executes during object creation, after setting all properties.
function editb5l CreateFcn (hObject, eventdata, handles)

hObject handle to edit51 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oP

oe

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, '"BackgroundColor', 'white');

o

end

function edit52 Callback (hObject, eventdata, handles)

% hObject handle to edit52 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit52 as text
% str2double (get (hObject, 'String')) returns contents of edit52 as a
double

% —--—- Executes during object creation, after setting all properties.
function edit52 CreateFcn (hObject, eventdata, handles)

hObject handle to editb2 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

oe

o° oo

o

Hint: edit controls usually have a white background on Windows.

95

% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

function edit53 Callback (hObject, eventdata, handles)

% hObject handle to edit53 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAR
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit53 as text
% str2double (get (hObject, 'String')) returns contents of editb53 as a
double

o)

% —--- Executes during object creation, after setting all properties.
function edit53 CreateFcn (hObject, eventdata, handles)

hObject handle to edit53 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, "BackgroundColor', 'white');
end

oe

function edit54 Callback (hObject, eventdata, handles)

% hObject handle to edit54 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of editb4 as text
str2double (get (hObject, 'String')) returns contents of edit54 as a

o

double

o)

% —--- Executes during object creation, after setting all properties.
function edit54 CreateFcn (hObject, eventdata, handles)

hObject handle to edit54 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o o

o

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o\°

function edit55 Callback (hObject, eventdata, handles)

% hObject handle to editb5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLARB
% handles structure with handles and user data (see GUIDATA)

96

% Hints: get (hObject, 'String') returns contents of edit55 as text
str2double (get (hObject, 'String')) returns contents of edit55 as a

o\

double

% —--—- Executes during object creation, after setting all properties.
function edit55 CreateFcn (hObject, eventdata, handles)

hObject handle to editb5 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o\

o\

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor"'))

set (hObject, 'BackgroundColor', 'white');

o\°

end

function edit56 Callback (hObject, eventdata, handles)

% hObject handle to edit56 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
$ handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit56 as text
% str2double (get (hObject, 'String')) returns contents of edit56 as a
double

% —--- Executes during object creation, after setting all properties.
function edit56 CreateFcn (hObject, eventdata, handles)

hObject handle to edit56 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

oe

end

function edit57 Callback (hObject, eventdata, handles)

% hObject handle to edit57 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit57 as text
% str2double (get (hObject, 'String')) returns contents of editb7 as a
double

Q

% —--- Executes during object creation, after setting all properties.
function edit57 CreateFcn (hObject, eventdata, handles)

hObject handle to edit57 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o\°

97

% Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

o\

function edit58 Callback (hObject, eventdata, handles)

% hObject handle to edit58 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLARB
% handles structure with handles and user data (see GUIDATA)

o\

Hints: get (hObject, 'String') returns contents of editb8 as text
str2double (get (hObject, 'String')) returns contents of edit58 as a

o\

double

% —--- Executes during object creation, after setting all properties.
function edit58 CreateFcn (hObject, eventdata, handles)

hObject handle to edit58 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

oe

function edit59 Callback (hObject, eventdata, handles)

% hObject handle to edit59 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit59 as text
% str2double (get (hObject, 'String')) returns contents of edit59 as a
double

% —--- Executes during object creation, after setting all properties.
function edit59 CreateFcn (hObject, eventdata, handles)

hObject handle to edit59 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

o\°

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white') ;
end

oe

98

function edit60 Callback (hObject, eventdata, handles)

% hObject handle to edit60 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAR
% handles structure with handles and user data (see GUIDATA)

o\

Hints: get (hObject, 'String') returns contents of edit60 as text
str2double (get (hObject, 'String')) returns contents of edit60 as a

o

double

% —--- Executes during object creation, after setting all properties.
function edit60 CreateFcn (hObject, eventdata, handles)

hObject handle to edit60 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o\

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, "BackgroundColor', 'white');

oe

end

function edit62 Callback (hObject, eventdata, handles)

% hObject handle to edit62 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
$ handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit62 as text
% str2double (get (hObject, 'String')) returns contents of edit62 as a
double

[

% —--- Executes during object creation, after setting all properties.
function edit62 CreateFcn (hObject, eventdata, handles)

hObject handle to edit62 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white') ;

oe

end

% —--- Executes on selection change in popupunits.

function popupunits Callback (hObject, eventdata, handles)

% hObject handle to popupunits (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get (hObject, 'String')) returns popupunits
contents as cell array

% contents{get (hObject, 'Value')} returns selected item from popupunits

99

% —--- Executes during object creation, after setting all properties.
function popupunits CreateFcn (hObject, eventdata, handles)

% hObject handle to popupunits (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

o\

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

o\

end

% —--- Executes on selection change in popupnozzle.

function popupnozzle Callback (hObject, eventdata, handles)

hObject handle to popupnozzle (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° o

o

o)

% Hints: contents = cellstr(get (hObject, 'String')) returns popupnozzle
contents as cell array

% contents{get (hObject, 'Value')} returns selected item from
popupnozzle

% —--- Executes during object creation, after setting all properties.
function popupnozzle CreateFcn (hObject, eventdata, handles)

hObject handle to popupnozzle (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o

o

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

o

end

% —--- Executes on selection change in popupchamber.

function popupchamber Callback (hObject, eventdata, handles)

hObject handle to popupchamber (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o oo

oe

% Hints: contents = cellstr(get (hObject, 'String')) returns popupchamber
contents as cell array

% contents{get (hObject, 'Value')} returns selected item from
popupchamber

% —--- Executes during object creation, after setting all properties.
function popupchamber CreateFcn (hObject, eventdata, handles)

hObject handle to popupchamber (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oe

o

100

% Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');

o\

end

o)

% —--- Executes on selection change in popupinjector.

function popupinjector Callback (hObject, eventdata, handles)
hObject handle to popupinjector (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° oo

o

% Hints: contents = cellstr(get (hObject, 'String')) returns popupinjector
contents as cell array

% contents{get (hObject, 'Value')} returns selected item from
popupinjector

% —--—- Executes during object creation, after setting all properties.
function popupinjector CreateFcn (hObject, eventdata, handles)

hObject handle to popupinjector (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oP

o

oe

Hint: popupmenu controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, '"BackgroundColor', 'white');

o

end

% —--—- Executes on button press in pushbutton25.

function pushbutton25 Callback (hObject, eventdata, handles)

% hObject handle to pushbutton25 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes on button press in pushbutton26.

function pushbutton26 Callback (hObject, eventdata, handles)

% hObject handle to pushbutton26 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes on button press in pushbutton27.

function pushbutton27 Callback (hObject, eventdata, handles)

% hObject handle to pushbutton27 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

101

function edit71 Callback (hObject, eventdata, handles)

% hObject handle to edit71 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLABR
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit71 as text
str2double (get (hObject, 'String')) returns contents of edit71 as a

o

double

% —--- Executes during object creation, after setting all properties.
function edit71 CreateFcn (hObject, eventdata, handles)

hObject handle to edit71 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o\

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, "BackgroundColor', 'white');
end

oe

function edit72 Callback (hObject, eventdata, handles)

% hObject handle to edit72 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
$ handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit72 as text
% str2double (get (hObject, 'String')) returns contents of edit72 as a
double

% —--- Executes during object creation, after setting all properties.
function edit72 CreateFcn (hObject, eventdata, handles)

hObject handle to edit72 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor"'))
set (hObject, 'BackgroundColor', 'white');
end

o

function edit73 Callback (hObject, eventdata, handles)

% hObject handle to edit73 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLABR
% handles structure with handles and user data (see GUIDATA)

102

% Hints: get (hObject, 'String') returns contents of edit73 as text
str2double (get (hObject, 'String')) returns contents of edit73 as a

o\

double

% —--- Executes during object creation, after setting all properties.
function edit73 CreateFcn (hObject, eventdata, handles)

hObject handle to edit73 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

o\

end

function edit74 Callback (hObject, eventdata, handles)

% hObject handle to edit74 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit74 as text
% str2double (get (hObject, 'String')) returns contents of edit74 as a
double

% —-—-- Executes during object creation, after setting all properties.
function edit74 CreateFcn (hObject, eventdata, handles)

hObject handle to edit74 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

oe

end

function edit67 Callback (hObject, eventdata, handles)

% hObject handle to edit67 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

Hints: get (hObject, 'String') returns contents of edit67 as text
str2double (get (hObject, 'String')) returns contents of edit67 as a

o° oo

double

103

% —--- Executes during object creation, after setting all properties.
function edit67 CreateFcn (hObject, eventdata, handles)

% hObject handle to edit67 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, "BackgroundColor', 'white');
end

o

function edit68 Callback (hObject, eventdata, handles)

% hObject handle to edit68 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
$ handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit68 as text
% str2double (get (hObject, 'String')) returns contents of edit68 as a
double

o)

% —--—- Executes during object creation, after setting all properties.
function edit68 CreateFcn (hObject, eventdata, handles)

hObject handle to edit68 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° o

o

o

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, '"BackgroundColor', 'white');
end

o

function edit69 Callback (hObject, eventdata, handles)

% hObject handle to edit69 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAR
% handles structure with handles and user data (see GUIDATA)

oe

Hints: get (hObject, 'String') returns contents of edit69 as text
str2double (get (hObject, 'String')) returns contents of edit69 as a

oe

double

Q

% —--—- Executes during object creation, after setting all properties.
function edit69 CreateFcn (hObject, eventdata, handles)
% hObject handle to edit69 (see GCBO)

104

o\

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o\

o\

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, '"BackgroundColor', 'white');

o\

end

function edit70 Callback (hObject, eventdata, handles)

% hObject handle to edit70 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
$ handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit70 as text
str2double (get (hObject, 'String')) returns contents of edit70 as a

oe

double

o)

% —--- Executes during object creation, after setting all properties.
function edit70 CreateFcn (hObject, eventdata, handles)

hObject handle to edit70 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oP

o

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, '"BackgroundColor', 'white');

o

end

function edit63 Callback (hObject, eventdata, handles)

% hObject handle to edit63 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o\°

Hints: get (hObject, 'String') returns contents of edit63 as text
str2double (get (hObject, 'String')) returns contents of edit63 as a

oe

double

% —--—- Executes during object creation, after setting all properties.
function edit63 CreateFcn (hObject, eventdata, handles)

hObject handle to edit63 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

oe

o° oo

o

Hint: edit controls usually have a white background on Windows.

105

% See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

function edit64 Callback (hObject, eventdata, handles)

% hObject handle to edit64 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLABR
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit64 as text
str2double (get (hObject, 'String')) returns contents of edit64 as a

o

double

% —--- Executes during object creation, after setting all properties.
function edit64 CreateFcn (hObject, eventdata, handles)

hObject handle to edit64 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oo

oe

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.
if ispc && isequal (get (hObject, 'BackgroundColor'),
get (0, 'defaultUicontrolBackgroundColor'))
set (hObject, 'BackgroundColor', 'white');
end

oe

function edit65 Callback (hObject, eventdata, handles)

% hObject handle to edit65 (see GCBO)
$ eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get (hObject, 'String') returns contents of edit65 as text
% str2double (get (hObject, 'String')) returns contents of edit65 as a
double

% —--- Executes during object creation, after setting all properties.
function edit65 CreateFcn (hObject, eventdata, handles)

hObject handle to edit65 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o oo

oe

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, 'BackgroundColor', 'white');

oe

106

end

function edit66 Callback (hObject, eventdata, handles)

% hObject handle to edit66 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Hints: get (hObject, 'String') returns contents of edit66 as text
str2double (get (hObject, 'String')) returns contents of edit66 as a

o\

double

o)

% —--- Executes during object creation, after setting all properties.
function edit66 CreateFcn (hObject, eventdata, handles)

hObject handle to edit66 (see GCBO)

eventdata reserved - to be defined in a future version of MATLAB
handles empty - handles not created until after all CreateFcns called

o° oP

o

oe

Hint: edit controls usually have a white background on Windows.
See ISPC and COMPUTER.

if ispc && isequal (get (hObject, 'BackgroundColor'),

get (0, 'defaultUicontrolBackgroundColor'))

set (hObject, '"BackgroundColor', 'white');

o

end

% —--- Executes on button press in exitbutton.
function exitbutton Callback (hObject, eventdata, handles)
hObject handle to exitbutton (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
% Get the current position of the GUI from the handles structure
% to pass to the modal dialog.
pos _size = get (handles.figurel, 'Position');
% % Call modaldlg with the argument 'Position'.
user response = modaldlg('Title', 'Confirm Close');
switch user response
case {'No'}
% take no action
case 'Yes'
Prepare to close GUI application window

o° 0P o° oe

oe

o° e oe

o

delete (handles.figurel)
end

107

Appendix B: Function for Rao Nozzle

Filename: Rao.m

function [Rao_x, Rao_y,x conver,y conver,x cyl,y cyl,Ln,theta exit,nf] =
Rao (per,Rt,area ratio, theta,P3,F,tp,L star,r,den f,den o,mol,gamma,Pl,T1,Cd,P
d, Df)

5%%%%%%%%%%5%5%5%5%5%5%55 INPUT VARIABLES%%%%%%%%%%%%%%%%%%%%%%%%%5%5%5%5%5%5%5%5%5%%%%5%%%%%

area ratio = 77.5;

% theta = 40; %deg

% F = 35000; %1bf

% Pl = 2000; %psia

S r = 2.24;

% mol = 21.9;

% den o = 1.14*%62.42;

% den f 0.58*62.42;

% T1 0; %Rankine

% gamma 1.24;

% P3 = 3.844; %psia

% tp = 2; Sminutes

% L star 118;
0.
0.

340
8
$ cd =

$ Pd =
$ Df = .0

w N oo |l
o

v_correction = 0.97;
CF correction = 0.90;
theta conver = 45;

00000 : 00000000000 o) o) o) o) o) [I) [I) 000
5%%%%5%%5%Calculationsss s %5555 %5555 5%55%55%5%55%55%55%5%55%55%5%5%5%5%5%5%%5%%5%%5%%5%%%

)
theta n = theta*pi/180; S%rad
tp = tp*60;
$ P2 = P3;
den o = den o0*62.42;
den f = den £*62.42;

v2_ i=sqrt (((2*gamma) / (gamma-1))* (R _dash/mol) *T1* (1-(P3/P1) " ((gamma-
1) /gamma))) ;

v2 a=v2 i*v correction;

c=v2 a;

I sp i=v2 i/g c;

I sp a=v2 a/g_c;

m_dot=F/c;

w_dot=m dot*g c;

108

CF_i=sqrt(((2*gamma”2)/ (gamma-1))*(2/ (gamma+1l)) " ((gamma+1l) / (gamma-1))* (1-
(P3/P1) * ((gamma-1) /gamma))) ;
CF_a=CF_1i*CF correction;
At=F/ (CF_a*Pl);
A2=area ratio*At;
Dt=sqrt ((4*At) /pi)
D2=sqrt((4*A2)/pi)

=2*Dt; % Diameter of the cylindrical part of combustion chamber
R2 D2/2;
w_dot f=w dot/ (r+l)
w_dot_o (w_dot*)/(r+1);
V_dot f=w dot f/(den f);
V_dot o=w _dot o/ (den o);
V_dot=V_dot o+V _dot f;
_f=w dot f*tp;
~o=w_dot o*tp;
_p=w_dot*tp;
0=V _dot o*tp;
_f= V dot f*tp;
_p=V_dot*tp;

V_c=L star*At; % Total Volume of the combustion chamber (Cylinder+Conical)
L_conver:(Dl—Dt)/(2*(tan(theta_conver))); %$Length of convergent part (not the
slant height, but straight one).
V_conver=(1/3)*pi*L conver* ((Dt/2)"2+(D1/2)* (Dt/2)+D1"2); %Volume of the
convergent part

V_cyl=V c-V conver; % Volume of cylindrical part

Ll (V_cyl-V _conver)/((pi/4)*D172); % Length of cylindrical part

%$Injector Sizing

del P = Pd*P1l; S%pressure drop from injector to chamber in psi

pf = den f/g c; %fuel density in slugs/ft"3

po = den o/g _c; %oxidizer density in slugs/ft"3
% Do = Df;

Af=sqrt (pf/(2*del P*144))*V _dot f/Cd; %fuel total area
Ao=sqrt (po/ (2*del P*144))*V _dot o/Cd; %oxidizer area

o\°

nf=Af/((pi/4)*Df"2) %number of fuel holes
no=Ao/ ((pi/4)*Do”"2) S%number of oxidizer holes

o\°

% cd=0.9; Sfrom Table 8-2
$total area

Smm
%area of each fuel injector
fia=(pi/4) *Df"2;
snumber of fuel injectors
nf=round (Af/fia); %rounded number based on previous fin
fia=Af/fin; %sq.ft.
fid=sqrt (fia* (4/pi));

o\°

oe

109

o\

%oxidizer ijector amount equals fuel injector amount
oin=fin;
oia=RAo/oin; %sqg.ft. oxidizer injector area
oid=sqrt (oia* (4/pi));

%angles

aod=30; %angle of oxidizer degress

afd=25; %angle of fuel degress

o 0P d° oP° oe

o\

o

vif=Vdf/Af; %$fuel velocity ft/s

vo=Vdo/RAo; %ox ft/s

delta=atan (((wdo/g0) *vo*sin (ao) - (wdf/g0) *vf*sin(af)) /...
((wdo/g0) *vo*cos (ao) + (wdf/g0) *vf*cos (af))) ;

Delta=delta*180/pi;

o° oo

o° oo

o

35555555555 %5%5%5%5%SFIRST CURVE (FC)$%%%%%%%%%%%%%%%%
% Angles for First Curve

Angle FC=-3*pi/4;

FC step=(-pi/2-Angle FC)/9;

theta FC=(-3*pi/4):FC_step: (-pi/2)

% Coordinates for First Curve

X FC=cos (theta FC)*1.5*Rt;
y_FC=sin(theta FC)*1.5*Rt+ (1l.5*Rt+Rt);
x FCl = x FC';

y FCl = y FC';

T5%5%%%%%5%%%5%5%%5%5%SECOND CURVE (SC) $%%%%%%%%%%%%%%%%
% Angle for Second Curve

Angle SC=-pi/2;

SC_step=((theta n-pi/2)-Angle SC)/4;

theta SC=-pi/2:SC step: (theta n-pi/2)

% Coordinates for Second Curve

x SC=cos (theta SC)*0.382*Rt;
y_SC=sin(theta SC)*0.382*Rt+(0.382*Rt+Rt);
X SCl = x sC';

3%%%%%%%5%%%%5%%%5%5THIRD CURVE (TC)%%%%%%%%%%%%%%%%%%
for Third Curve

x TC=cos (theta n-pi/2)*0.382*Rt;

y TC=sin(theta n-pi/2)*0.382*Rt+(0.382*Rt+Rt);

y_exit=sqgrt (area ratio) *Rt;

matrix y=[y TC"2 y TC 1; y exit"2 y exit 1; 2*y TC 1 0];
matrix x=[x TC; Ln ;1l/tan(theta n)];

X _exit=matrix y"-l*matrix x;

a=x_exit(1l,1);

b=x exit(2,1);

c=x_exit(3,1);

ao=aod*pi/180; af=afd*pi/180; %$converting degrees to rads

110

y=y TC:.1l:y exit;
x=a*y."2+b*y+c;

% Coordinate of Third Curve
Rao x=[x FC x SC x];
Rao_y=[y FC y SC yl;
rao=[Rao_x Rao y];

% plot(x FC, y FC,'r', x SC, y SC,'r', Rao_x, Rao y,'r'");

3%%%%%%%%%%Chamber Convergent Curve (Conver) 3%%%%
%$Initial starting point

x ct = x FC(1,1);

y ct =y FC(1,1);

x_converl=x ct-L conver;
y_converl=((

X _conver = [x converl x ct];
y_conver = [y converl y ct];

% x_conver=-L conver:l:x ct;
% X _conver = X conver';
% for i=l:1:size(x_conver,1)

(D1/2)-y_ct)/ (-L_conver-x_ct))*(x_converl-x ct)+y ct;

% y_conver(i)=(((Dl/2)—y_ct)/(—L_conver—x_ct))*(x_conver(i)—x_ct)+y_ct;

$%%%%%%%%%%%%Chamber Cylindrical Curve (cyl)%$%%%%
x _conver (1,1);

= y conver(l,1);
(
[

- x cyl x cyl;
y_cyl=y conver(l,1);
y cyl=ly cyl y cyl;

% plot(x cyl,y cyl,'g',x cyl,-y cyl,'g',x conver,
y _conver,'r-',Rao_x,Rao_y, 'k',Rao_x,-Rao_y, 'k")

% Dth = sqgrt (At/ (pi/4));
% Dc = Dth*2;
$——--CHAMBER---%
%chamber cone line
c_slope=tan(pi-45*pi/180); %slope
cN=[x FC(l),y FC(1l)]; Sstarting point
i=1;cy(1)=cN(2);cx(1i)=cN(1);
while cy(i)<Dc/2

i=i+1; cx(i)=cx(1i-1)-0.1;

cy (i)=c_slope* (cx(i)-cN(1l))+cN(2);

d° d° d° 0P o° o° o°

o\°

nd
cx=flipdim(cx,2); cy=flipdim(cy,2);

oe
0]

o° oo

o\°

%Chamber Volume and L*
Ac=pi*Rc"2;
Vec=L_ star*At;

o\°

oe

y conver,

'r-',x _conver, -

111

o\

Le=(Ve-(1/3) *pi* (-cx (1)) * ((2*Rt) "2+2*Rt*Rt+Rt"2)) /Ac;

o\

o

%chamber body line
fecx=[cx(1l)-Lc, cx(1)-Lc, cx(1)];
fcy=[0,Dc/2,Dc/2];

1 long=abs(cx(1)-Lc);

o° oo

o\

theta exit = atan((2.*a*Ln)+b);

[

% end

112

Appendix C: function conical

Filename: Conical.m

function [Cx FC, Cy FC,Cx CSC, Cy CSC,Rao_Cx, Rao Cy,CLn, Ctheta exit] =
Conical (CRt,Carea ratio,Ctheta)

000000000000000000

%%%%5%%%5%%%5%%%5%%%%Conical Nozzle %$%%%%%%%%5%%%%%%%%%

CLn=(s§rt(Carea_ratio)—1)*CRt/tand(l5);
%Ctheta=15; %deg
Ctheta n=Ctheta*pi/180; Srad

5595555535555 %%%FIRST CURVE (CFC) $%%%%%%%%%%%%%%%
$Angles for First Curve

CAngle FC=-3*pi/4;

CFC_step=((Ctheta n-pi/2)-CAngle FC)/4;

Ctheta FC=(-3*pi/4) :CFC_step: (Ctheta n-pi/2);

%$Coordinates for First Curve

Cx FC=cos (Ctheta FC)*1.5*CRt;

Cy FC=sin(Ctheta FC)*1.5*CRt+(1.5*CRt+CRt);

Cy FCn=sin (Ctheta n-pi/2)*1.5*CRt+(1.5*CRt+CRt) ;
Cx_FCn=cos (Ctheta n-pi/2)*1.5*CRt;

$%%%%5%%%5%%%5%%%5%%SSECOND CURVE (CSC) $%%%%%%%5%%%%%%%%%
%$Coordinates for Second Curve

CSCa=tan (Ctheta n);

CSCb=Cy_ FCn-CSCa*Cx_FCn;

step CSC=(CLn-Cx_FCn)/9;
Cx CSC=Cx FCn:step CSC:CLn;
Cy CSsSC=CsCa*Cx CSC+CSCb;

%$Coordinates of Third Curve

Rao Cx=[Cx FC Cx CsC];

Rao Cy=[Cy FC Cy CSC];

rao=[Rao_Cx Rao Cy];

splot (Cx FC, Cy FC,'b', Cx CSC, Cy CSC,'b',Rao Cx, Rao Cy,'b");
Ctheta exit = atand((2*CSCa*CLn)+CSCb) ;

end

113

Appendix D: function MOC

Filename: MOC_code.m

function [Ae,TT,A max,Max thrust,noz,i,cl,c2,aa,cc] =

MOC code (T _c¢,P_c,width, num)
Based on open source code

$find where P becomes u

h(l) = h th;

A star = h th*width;

M =1;

daMl = .1;

for i=1: max iter
h(i) = h(l) + (i-1)*dh;
Ae (i) = h(i)*width;
A Asq = (Re(i)/A _star)”"2;
A ratio(i)=sgrt(A Asq);

$Newton Rhapson on Eg. 5.20 - Anderson text

res = 1;
if 1 > 1

M = Ma(i-1);
end

while res > .001
M2 =M + dM1l;

funal = -A Asq + (1/M"2)*((2/(gamma+l))*

1)*M"~2/2)) " ((gamma+1) / (gamma-1)) ;

funa2 = -A Asq + (1/M272)*((2/(gamma+1l))* (1+ (gamma-

1)*M272/2)) " ((gamma+1) / (gamma-1)) ;
dv_dm = (funa2-funal)/dM1;

M = M - funal/dv_dm;
res = abs (funal);

end
Ma (i) = M;

% Find Pressure

(1+ (gamma-—

P(i) = P_c*(1+(gamma—1)*Ma(i)A2/2)A(—gamma/(gamma—1));

% Find thrust for each point

Te(i) = T c/(1+(gamma-1)*Ma(i)"2/2);
Tt (i) = T c/(1l+(gamma-1)/2);

Ve (i) = Ma(i)*sqrt(Te (i) *gamma*R) ;
Vt (i) = sqrt (Tt (i) *gamma*R) ;

rhot (1) = P(1)/ (R*Te (1)) ;

mdot (i) = rhot (i) *Ve (i) *Ae(i);

TT (i) = mdot(i)*Ve (i) + (P (1)

if P(i) < P amb

- P _amb) *Ae (1) ;

114

%Calculate the pressure if shock wave exists at the exit plane
P exit = P(i)*(1+(gamma*2/ (gamma+l))* (Ma(i)"~2-1));

if P _exit <= P_amb
P(i) = P_exit;
break

else

end

else
end

end

[a,b]=max (TT) ;

% Over or Underexpand the nozzle
b = b;

A max = Ae(b);

Max thrust = TT (b);

hold on;

% plot (A max,Max thrust,'r*'")

% legend('Thrust Curve', "Max Thrust')

M e = Ma(b); $Mach number at ideal exit

%Find theta max by using equation 11.33

theta max = (180/pi)* (sqgrt((gamma+l)/ (gamma-1)) *atan((sgrt((gamma-1)* (M e"2-
1)/ (gamma+1l))))-atan(sqrt (M e”2-1)))/2;

% D _theta for each char line

del theta = (theta max - theta i)/ (num-1);

% Find

for i=1:num
Initialize mach numeber

oe

for j=1l:num

if i==
$Theta for each line (first lines)
theta(i,j) = theta i + del theta*(j-1);
nu(i,j) = theta(i,]):;
K m(i,j) = theta(i,Jj) + nu(i,3j);
K p(i,j) = theta(i,j) - nu(i,j);
elseif i > 1
K p(i,j) = -K m(1,1);
% Find Thetas
if 3 >= 1
theta(i,j) = del theta*(j-i);
else

115

$theta(i,j) = theta(j,i-1);

theta(i,j) = theta(j,i);
end
nu(i,j) = theta(i,j) - K_p(j-/j)l'
K m(i,Jj) = theta(i,J) + nu(i,]);

end

% Prandtl-Meyer function (using Newton Rhapson)

dM = .1; % Leave at about .1
if 3 == 1

M ex(i,J) = 1.00;
else

M ex(i,j) = Mex(i,j-1);
end

res = 1;
while res > .01
M2 =M + dM;

funvl = (-nu(i,J)*(pi/180)+ (sqgrt ((gamma+1l) / (gamma-

1)) *atan ((sqgrt ((gamma-1)* (M"2-1)/ (gamma+1))))-atan(sqrt (M"2-1))));
funv2 = (-nu(i,J)*(pi/180)+ (sqgrt ((gamma+1l)/ (gamma-

1)) *atan ((sqgrt ((gamma-1)* (M2°2-1) / (gamma+1))))-atan (sqgrt (M2°2-1))));
dv_dm = (funv2-funvl)/dM;

M =M - funvl/dv_dm;
res = abs (funvl);

end

M ex(i,3J) = M;

% Find the angle mu

mu(i,j) = (180/pi)*asin(l/M ex(i,Jj));

end

[

% Add last point to char line
theta (i, num+1) = theta (i, num);
nu (i, num+1l) = nu(i,num);

K m(i,num+l) = K m(i,num);
K p(i,num+l) K p(i,num);
end

char = zeros (num,num+1,2);
for i=1:num

for j=l:num+l

o)

% Draw points of intersection

% Point 1 of all char lines
if § ==
char(i,j,1) = 0;
char(i,j,2) = h th/2;
end

116

% Where first line hits the symmetry line

if 1 =1 & j==
char(i,j,1) = (-h_th/2)/tan((pi/180)* (theta(l,j-1)-mu(l,3j-1)));
char(i,3,2) 0;

end

% Where all other lines hit the symmetry line
if j == i+l & j>2
char(i,j,1) = -char(i-1,3,2)/tan((pi/180)* (.5*theta(i,j-2)-
S5*(mu (i, j-2)+mu(i,j-1)))) + char(i-1,73,1);
char (i, j,2) = 0;
test(i,j) = (theta(i,j-2)-.5*(mu(i,j-2)+mu(i,j-1)));
testpty(i,j) = char(i-1,3,2);
testptx(i,j) = char(i-1,3,1);

[y

end

% All other data points for char 1 calculated
if 1 ==1 & 3>2 & j ~= i+1
= tan((pi/180) * (.5* (theta(i,j-2)+theta(i,j-1))+.5* (mu(i,j-

= tan((pi/180)*(.5* (theta(j-1,1)+theta(i,j-1))-.5% (mu (-

1,1)+mu(i, 3-1))));
A= [1,-Cm;1,-C p]l;
B = [char(1,1,2) - char(l,1,1)*C m;
char(1,j-1,2) - char(l,3j-1,1)*C p];
iterm(1l, :)=inv (A) *B;
char(i,j,1l) = iterm(1,2);
char(i,3,2) = iterm(1,1);
end
% All other points for all char lines calculated

if 1 > 1 & j~=1i+1 & j>2

C p = tan((pi/180)* (.5* (theta(i,j-2)+theta(i,j-1))+.5* (mu(i,j-
2)+mu(i, 3-1))));

Cm = tan((pi/180)*(.5* (theta(i-1,j-1)+theta(i,j-1))-.5* (mu(i-
1,j-1)+mu(i,j-1)))):

A=1[1,-Cm;1,-C pl;

B = [char(i-1,3],2) - char(i-1,3,1)*C m; char(i,j-1,2) - char(i,Jj-
1,1)*C _pl;

iterm(1l,:) = inv (A) *B;

char(i,j,1) = iterm(1,2);

char(i,j,2) = iterm(1,1);

end
end

end

[

% Fill in similar points (where char lines share points)
for i = 2:num
for j=2:num
char(j,i,1) = char(i-1,3+1,1);
char(j,1i,2) char (i-1,3j+1,2);
end

117

end

% *xxx4+Make the nozzle shape and extend the char lines to wall***x*x**

% Initial start point of the nozzle (at throat)
noz(1l,1) = 0;
noz(1l,2) = h th/2;

o\

Find all the points of the nozzle

for 1 = 2 : num
% Find different slopes and points to intersect
ml = tan((pi/180) * (theta (i-1,num)+mu(i-1,num)));
if i ==
m2 = (pi/180)*theta max;
else
m2 = ((pi/180)* (theta (i-1,num+1)));
end
m3 = ((pi/180)* (theta(i-1,num)));
m4 = tan((m2+m3)/2);
A= [1,-m4; 1,-ml];
B = [noz(i-1,2) - noz(i-1,1)*m4; char(i-1,num+1,2) - char(i-

1,num+1,1)*ml];

iterm(1l,:) = inv(A) *B;
noz(i,1l) = iterm(1,2);
noz(i,2) = iterm(1,1);

% Extend char lines to wall
char(i-1,num+2,1)= noz(i,1);
char(i-1,num+2,2)= noz(i,2);

end

$Last line

ml = tan((pi/180) * (theta (num, num)+ mu (num,num))) ;
m2 = ((pi/180)* (theta (num-1,num))) ;

m3 = ((pi/180)* (theta (num,num+l)));

m4 = tan((m2+m3)/2);

A= [1,-m4; 1,-ml];
B = [noz(num,2) - noz(num,l)*m4; char (num,num+1l,2) - char (num,num+1,1)*ml];
iterm (1, :) inv (A) *B;

iterm(1,2);
iterm(1,1);

noz (num+1, 1)
noz (num+1, 2)

% Extend char lines to wall
char (num, num+2,1)= noz (num+1,1);
char (num, num+2, 2)= noz (num+1,2);
if plotter ==

118

[a,b] = max(noz);
cc = A max/width/2;

aa=a(l);

cl = char(i,:, 1)

c2 = char (i, :,2)

end

% Find % errors in A/A* and Mexit

error Area = 100* (width*2*noz(num,2) - A max)/ (A max);
error Mach = 100* (M e - M ex(num,num))/M e;

M = Mnoz (1) ;

for i=1: size(noz,1)
Ae (i) = 2*noz (i, 2)*width;
A Asqg = (Re(i)/A _star)”"2;
A ratio(i)=sqgrt (A Asq);

$Newton Rhapson on Eg. 5.20 - Anderson text
res = 1;
ifi>1

M = Mnoz (i-1);

while res > .001
M2 = M + dM1l;

funal = -A Asqg + (1/M"2)*((2/(gamma+l))* (1+ (gamma-—
1)*M"~2/2)) " ((gamma+1) / (gamma-1)) ;

funa2 = -A Asq + (1/M272)*((2/(gamma+l))* (1+ (gamma-—
1)*M272/2)) " ((gamma+1) / (gamma-1)) ;

dv_dm = (funa2-funal)/dM1;

M = M - funal/dv_dm;

res = abs (funal);

end

Mnoz (i) = M;

end

% Find Pressure

Pnoz (i) = P_c*(1+(gamma-1)*Mnoz (i) "2/2) " (-gamma/ (gamma-1)) ;
end
end

119

Appendix F: fuel

Filename: Fuel.m

o
oo

o
oo
oo
o\°
oo
oo
oo
oo

990000000000000000009000090000900000000000000000000000000000000090000000000000
©C000D0

o
o

o\
c
—
n
()
—
()
Q
&
o
O
o]

Q
o O

o\

le 5-5: Theoretical Performance of Liquid Rocket Propellant

ombinations

ABLE 7-1: SOME PHYSICAL PROPERTIES OF SEVERAL COMMON LIQUID PROPELLANTS
: George P. Sutton and Oscar Biblarz

0000000000000000000000000000

o o° oe
W33 e

o

0000000000000000000000000000000000

%Combustion chamber pressure--1000 psia (6895 kN.m"2)
%Nozzle exit pressure--14.7 psia (1 atm)

%Optimum expansion

%$Adiabatic combustion and isentropic expansion of ideal gas

%The specific gravity at the boiling point was used for those oxidizers or
%fuels that boil below 20C at 1 atm pressure.

$Mixture ratios are for approx. maximum value of
0.0 0 0 [ele) [ee)

00000000000000000000000000

Notes (Table 7-1)

a: Red fuming nitric acid (RFNA) has 5% to 20% dissolved NO2 with an avg.
%molecular weight of about 60, and a density and vapor pressure somewhat
%$higher than those of pure nitric acid.

%b: At boiling point.
$c: Reference for specific gravity ratio: 1073 kg/m"3 or 62.42 lbm/ft"3

9900
000000000000 00O00

$Methane

methanefuel = {3.20, 3.00; S$Mixture Ratio by mass
1.19, 1.11; %Mixture Ratio by volume
0.424,0.424; S%Specfic gravity methane
1.14, 1.23; %Specific Gravity oxygen
3526, 3526; %Chamber temperature (K)
1835, 1853; %Chamber c*
16.03,16.03; SMolecular mass MM

0, 0;}; %k

hydrazinefuel = {0.74, 0.90; %Mixture Ratio by mass
0.66, 0.80; S$Mixture Ratio by volume
1.005, 0.952;%Specific gravity hydrazine
1.14, 1.23; %Specific Gravity oxygen
3285, 3404; %Chamber temperature (K)
1871, 1892; S%Chamber c*
18.3, 19.3; %Molecular mass MM
1.25, 1.25;}; %k

hydrogenfuel = { 3.40, 4.02; %Mixture Ratio by mass
0.21, 0.25; SMixture Ratio by volume
0.071,0.076;%Specific gravity hydrogen

120

RP1fuel = {

UDMHfuel = {

1.14,
2959,
2428,

8.9,
1.26,

.24,
.59,
.58,
1.14,
3571,
1774,
21.9,
1.24,

O N

1.39,
0.9¢6,

0.856,

flu hydrafuel ={ 1.83,
1.22,

1.14,
3542,
1835,
19.8,
1.25,

1.23;
2999;
2432;
10.0;
1.26;};
2.56;
1.82;

sk

%Specific Gravity oxygen
%Chamber temperature
%Chamber c*
%$Molecular mass MM

(K)

$Mixture Ratio by mass
$Mixture Ratio by volume

0.807;%Specific gravity RP-1

1.23;
3677;
1800;
23.3;
1.24;};
1.65;
1.14;

sk

$Specific Gravity oxygen
%Chamber temperature
%$Chamber c*
3Molecular mass MM

(K)

$Mixture Ratio by mass
$Mixture Ratio by volume

0.784;%Specific gravity UDMH

1.23;
3594;
1864;
21.3;
1.25;%};

2.30;
1.54;

sk

%Specific Gravity oxygen
%Chamber temperature
%Chamber c*
%$Molecular mass MM

(K)

$Mixture Ratio by mass
$Mixture Ratio by volume

1.005,0.952;%Specific gravity hydrazine

1.636, 1.44; S%$Specific Gravity fluorine
4553, 4713; %Chamber temperature (K)
2128, 2208; %Chamber c*

18.5, 19.4; SMolecular mass MM

1.33, 1.33;}; %k

flu hydrofuel ={ 4.54, 7.60; %Mixture Ratio by mass

0.21, 0.35; SMixture Ratio by volume
0.071,0.076;%Specific gravity hydrogen

1.636,
3081,
2534,

8.9,
1.33,

1.44;
3900;

%Specific Gravity fluorine
%$Chamber temperature (K)
2549; %Chamber c*

11.8; %$Molecular mass MM

1.33;}; %k

$Mixture Ratio by mass

sMixture Ratio by volume

%Specific gravity hydrazine

%Specific Gravity Nitrogen Tetroxide

Nitrotetro hydrafuel ={ 1.08, 1.34;
0.75, 0.93;
1.005,0.952;
1.447, 1.38;

Nitrotetro RP1fuel ={

3258,
1765,
19.5,
1.26,

3.4,
1.05, 0

1.447, 1.
3290, 0

0;

3152;
1782;
20.9;
1.26;1};

3Chamber temperature
%Chamber c*
%$Molecular mass MM

(K)

sk

$Mixture Ratio by mass

; S$Mixture Ratio by volume
1.005,0.952;%Specific gravity RP-1

38;

%Specific Gravity Nitrogen Tetroxide
; %Chamber temperature

(K)

121

; %Chamber c*
; %$Molecular mass MM
71 %k

Nitrotetro MMHfuel ={ 2.15, 1.65; 3Mixture Ratio by mass

1.30,

1.00; SMixture Ratio by volume

0.8788,0.857;%Specific gravity MMH (Monomethyl-

hydrazine)
1.447,
3396,
1747,
22.3,
1.23,

1.38; %Specific Gravity Nitrogen Tetroxide
3200; %Chamber temperature (K)

1591; %Chamber c*

21.7; %Molecular mass MM

1.23;}; %k

122

