# Gasoline Engine Economy as Affected by the Time of Ignition 

by George Jay Hopkins

1907

Submitted to the University of Kansas in partial fulfillment of the requirements for the Degree of Bachelor of Science
GASOLINE ENGINE BCONOMX
as Affected is
the Time of Ignition.
A Thesis
Submitted to the Faculty of the
University of Kansas
by
George Jay Hopkins,
For the Degree of B.S. in Meohanioal Engineering.
Lawrence ..... 1907

The author desires to make erateful acknowledgment of the friendiy aid and advioe of professor P. F. Walker M.M.I., Profeasor of Mechanioal Engineering at the University of Kansas, to whion muoh of the value of this Work 18 due.

Thanks are also due wor Wiliam Neville, M.S., who worked with the author durine the preperation of their theaes.
o. J. Hopkins.

Lawrence, Kansas.
June 1, 1907.

Gasoline Enpine Bconomy as Affected by Time of Ignition.

In the face of the conclusions arrived at by almost every manufacturer of internal combustion engines, the value of such a discussion as this might be questoned by the casual observer. But the vagueness in the practice of adjusting the ignition apparatus, and the divergence of opinions as to the effect of speed and mixture on the time allowed for lead, made it evident that more refinement in this line is not only possible, but in most cases profitable.

Considering the almost infinite variety of uses to which the internal combustion engine is put, it is manifestly impossible to set any one angle of advance, at which the maximum economy will be obtained in all cases. The field of investigation, therefore, is as broad as there is variety of engines, but we have limited this to a certain extent by assuming a definite fuel, and attempting to deal only with gasoline.

That the breath of the subject is still considerable, is seen from the fact that in 1903, after running; under approximately the same conditions-- a series of 346 tests covering a period of six years, Prof. Robertson, Lately of Purdue University, withheld data for further consideration, from his article in the Transactions of
the American Society of Mechanical Bngoneers Vol. 24, Page 1097. (Prof. Robertson used Natural gas instead of gasoline.)

In this article he has considered the following variables;-- speed, load, point of ignition, mixture and jacket temperature. Considering any three of these five fixed, the other two will be inter-dependent. In view of this sensitiveness of one variable to changes of any other, it is fortunately possible to set the load somewhere near the engine's rating, and the jacket temperature between 1 imits found common in practice, without materially narrowing the field of investigation, and at the same time effect a great saving in the labor of collecting data.

In justification of this, it is evident that if a number of values be taken for any variable, the series, to be complete, must be entirely repeated for each value, changing each of the other conditions in order, thus multyplying the work in direct proportion to the number of values taken for any variable.

The point of view during this investigation has been at all times merely a financial one and consequently the curves will be found to relate to the gasoline consumption per unit of power. For the same reason, that 18, to make the results commercially useful and comparable to usual practice, the running conditions have been kept as near those ordinarily surrounding actual running en-
gines, and as constant as possible.
The encine used is one installed in the mechanical laboratory of the University of Kansas;-- a seven by ten "Olds", rated at eight H.P. at a speed of about 300 R.P. M. $^{\text {. }}$

It's equipment is the same as that supplied commercially and of which the description follows, except that three heans were supplied for the cylinder to give 60,80 , and 100 pounds compression respectively. However, it was found impossible to use any but the loweet for Fre ignition fasoline without sericus backfiring, though the engine ran well at 100 pounds on natural gas. (Almost pure CH4 in this region.)

The valve mechanism, to which the explosion counter is attached, is controlled by the governor which holds open the exhaust valve and closes the intake during miss shots. The effect of this will be noticed on some of the cards. The cylinder being better scavenged the mixture was cooler and perhaps somewhat leaner,--due in part to the lag of the fuel valve after being allowed to seat,and consequently slower burning and less powerful, givinf both an inclined explosion line and reduced area.

The exhaust temperature was taken in the line Irom an auxiliary exhaust port consisting of four 3/8" holes situated near the end of stroke and communicating with the muffier through a pad connection morewed to the side of the cylinder.

Both intake and exhaust valres are of the mushroom" type, the intake being automatic. The gasoline valve is of the plain needle variety, having on the same stem, a light soreen which is acted upon by the inrushing air to lift the valve from its seat. It's lift is adjust able by a threaded sleeve and lock nut. The position of which was indicated by numbers stamped on the faces of the nut.

The ignition is accomplished by a mechanically operated break spark device, the pointe of which are pushed together and released, when they immediately Ply apart under the aotion of a strong coil spring.

The ignition apparatus is situatied in the top of the valve chamber, which is bolted to the side of the oylinder opposite the auxiliary axhaust. Current was supplied through a spark coll by a set of pix $^{\text {dry batteries, }}$ which being used but once week, gave an almost constant current of six amperes and nine volts.

The load was applied by an interohangable rope prony brake fitted to either one of the fly wheals, and read by a platform scale. A constant pressure of 70 pounds was maintained, resulting, at an arm of 1.83 feet In a load of about three fourth rating except in the case of varying speed when it became necessary to chadnge the 1oad to keep the power constant.

The indicated power was recorded by a Crosby Indicator using a 300 pound spring and actuated by a light
wooden reciprecating device connected to a small crank on the end of the shaft. The speed was taken with a revolution counter.

The incloged diagramatic aketon will give an 1dea of the arrangement of apparatus and manner of carrying out tests.

A small high speed steam engine connected to a three foot fin blower was used to drive air into the large tankg to the right, throuph the valve syatem shown. They have a capacity of something more than 200 cubie feet each, and are controlled by a set of valves arranged to allow the contents of one to be used while the other is being filled. (In the sketch the tank $X$ is rising While $Y$ is dupplying the engine; the crossed valves being closed.)

They were both weighted to a pressure of 3 inches of water and the air used by the engine was measured by taking the difference of the readings of the pointer $P$ before and after mptying. The cord being connected in the center of the tank reads accurately, regardless of tilting.

The regulator illustrated, was interposed to approximate the condition of constant air supply. Its action is as follows: the part A, floating up under the influence of the from the large tank, raises the lever I which oloses the cook $C$, shutting off the inflow, thus regulating the pressure with reasonable accuracy since $A$
has a content of about five oubic feet and the oylinder much less than one.

The thermometer, T, gave the tomperature of the 1ncoming air while the exhaust temperature wat taken after it has expanded to atmospheric pressure in a chamber of brick laid up loosely.

The temperature of the discharged jacket water Was read at $T$. (much difficulty was experienced in keeping this constant, but an attempt was made to ayerage about 250 ). Another thermometer was used to measure 1ts incoming teraperature, and the disoharge was caught in a calibrated tank and its weight read.

The calibrated glass jar, A, contains the gasoIIne, which is automatdeally pumped up and returned through an overflow; evaporation being prevented hy a tight stopper, perforated to receive the pipet.

All readinge, including indieator cards, but exeepting jacket water were taken at 5 minutes intervals. Most of the runs were of 20 minutes duration. Care was taken, however, to get all running oonditions constant before starting any test, and since facilities were at hand for doing this as perfectly as possible under any conditions, the short testa have been given the amme Talue as longer ones. Indeed, long daplicates of short tests have given quite uniform result/a.

Three persone were necestary to run a teat, since one man's time was almost wholly occupled with the
tanks and steam engine.
The onservations made were:
1 Speed
2 Loed
3 Explosions per min.
4 Gasoline valve setting
5 Angle of ignition advance
6 Amount of air (cu.ft.)
7 Amount of Fuel ( $p t s$ )
8 Temp. entering jacket water
9 Terap. leaving jacket water
10 Weight jacket water
11 Indicator cards and
12 Barometer.
From this data it is possible to make complete mechanical and thermal analysis of the engine's performance.

In this paper, however, only the following quantities have been calculated:

1 Gasoline per B.H.P. per hour
2 Gasoline per I.H.P. per hour and
3 Ratio of Air to fuel, by weight, in the mixture
Curves have been plotted showing:

1. Variation of fuel consumption per I.H.P. per hour with various angles of advance:-- at two constant sp speeds.
II. Same per B.H.P.
III. Variation of fuel oonsumption with varying mixture, the anele of advance being held oonstant:- for 3 angles. The constants and formulae used in oaloulating these are as follows,
I.H.P. $=.000918$ X M.E.P. X Exploaions P.M.
B.H.P. = . 02238 X R.P.M. (at 70 pounds brake load)
B.H.P. $=.01753$ X R.P.M. ( at 55 pounds brake load)

One pint of gaboline welghs ,77067 pounds.
For the weleht one oublo foot of air the following formulae from Kent's hand book was used; $\overline{\text { w }}=\frac{1.3253 \text { X Barometer; }}{459.2}$ 率 Temperature out since the baromoter varied so slightiy, its average, 28.8" was takon for all oases.

The average of the shots in a Parr Galorimeter gave a heat value of 19,300 Brition Thermal Units per pound of the casoline used. The samples were taken at various times during the time ocoupled by the teats and the quality ran very constant.

Conaluaions.
Series $A$, being first and containing a large number of teats, ocoupied more time than all the other series attempted. This would not have been true, but for the faot that in repeating some of the runs that looked doubtful when plotted, it was noticed that the points were ooming quite regularly higher, which necessitated an entire repetition of the series. Both ourves are given, as there appeared no way of deciding that either one was better than the other, The
logical conclusion sems to be that the conditions of the engine changed between the first runnine of the test and its repetition, so to require a greater consumption of gasoline. Although a slight difference seems to exist between the shape of the B.H,P, and I.H.P, ourves both show a minimum of consumption between $11^{\circ}$ and $13^{\circ}$ for 305 R.P.M.

Series B.O. and D. Were mun under the belief that the mixture might be made so lean that the inoreased muber of shots resulting would result in an actual increase of fuel consumption, $a$ in other words that the mixture ourves would rise. But during this series this oondition was not attained, and it seems that in this engine the leaneat mixture that will run well, is the most oonomical.

Series F.- A consideration of the data of these runs shows only what every engineer knows: that the efficienoy of a gas engine varies with the compression, sinoe the engine would not run at $100 /$ oompression, only two points were possible and it was not thought worth while to plot these.

Series $G$. corresponds to Series $A$ exoept in speed, which was 350 R.P.M. The ourves have about the same shape but the minimum point comes a little above $17^{\circ}$. More points would have made thia curve more complete but lack of time prevented.

Serles $A$. Compression $60^{\circ}$ except where noted,in all following-

| 1 | No. of ${ }^{\text {meat }}$ | 1 | 1 a | 1 b | 10 | 1 d | 2 | 3 a |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | Duration- |  |  |  |  |  |  |  |
|  | M1n. | 10 | 20 | 20 | 20 | 80 | 15 | 30 |
| 3 | Ignition |  |  |  |  |  |  |  |
|  | Angle or | 14.8 | 14.8 | 14.8 | 14.8 | 14.8 | 14.8 | 17.3 |
| 4 | Advanoe | 245 | 129 | 133 | 137 | 135 | 180 | 196 |
| 4 | Water pds. |  |  |  |  |  |  |  |
| 5 | 1 A Ar | 81 | 81 | 88 | 88 | 86.5 | 82 | 90 |
| 6 | \% Exhaust |  |  | 180 \%) | 183 | 172 | 181 | 258 |
| 7 | \% Jacket In | 53 | 57 | 57 | 54 | 58 | 53 | 56 |
| 8 | - Waterout | 147.3 | 154.6 | 146 | 149.6 | 145 | 151.8 | 158 |
| 9 | Total |  |  |  |  |  |  |  |
|  | Explosions | 1188 | 2302 | 2311 | 2169 | 2255 | 1580 | 3421 |
| 0 | Explosions |  |  |  |  |  |  |  |
|  | per minute | 113.8 | 115.1 | 115.56 | 108.45 | 118.75 | 106 | 114 |


| 11 | M.T.P. | 83.3 | 82 | 83.4 | 87.2 | 75.6 | 82.9 | 79.51 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 12 | I.H.P. | 9.1 | 8.53 | 9.27 | 9.1 | 8.25 | 8.454 | 8.719 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

13 R.P.M. $306.5 \quad 306.5 \quad 304.75295 .25 \quad 307 \quad 304 \quad 304.3$

| 14 | B.H.P. | 6.86 | 6.86 | 6.82 | 6.6 | 6.87 | 6.8 | 6.80 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

15 Total Air

16 Total Gas-
$\begin{array}{llllllll}\text { Oline pts. } & 1.00 & 3.61 & 3.64 & 3.53 & 3.44 & 8.15 & 5.10 \\ \text { Mixture } & - & 9.67 & 9.57 & - & 9.7 & 14.8 & 8.45\end{array}$
Katio (Air

| Pts. per | .66 | 1.87 | 1.178 | 1.163 | 1.853 | 1.02 | 1.17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | I.H.P. per fir.

19 Pts. per $\quad .87 \quad 1.58 \quad 1.60 \quad 1.605 \quad 1.503 \quad 1.865 \quad 1.503$ B.H.P. Der fir.
20 Pts.per
ExploBion .000878 .00157 . $00157.00168 .001525 .00155^{5} .00149$
21 Setting of
Fuel Valve

## Brak-Load 70 7 Gasoline Valve 7

| 1 | 3 b | 30 | 3 d | 4 | 4 a | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 25 | 20 | 20 | 15 | 20 | 80 |
| 3 | 17.3 | 17.3 | 17.3 | 20.8 | 20.2 | 208 |
| 4 | 160 | 155 | 125 | 90 | 187 | 135 |
| 5 | 81 | 86 | 87 | 81 | 80 | 86.3 |
| 6 | 185 | 158 | 191 | 205 | 150 ( \%) | 174,7 |
| 7 | 60 | 58 | 57 | 58 | 57 | 58.3 |
| 8 | 150.5 | 141.4 | 157.6 | 147.5 | 145.8 | 146.4 |
| 9 | 2711 | 2275 | 2305 | 1609 | 2279 | 2286 |
| 10 | 108.4 | 113.75 | 115.8 | 107.3 | 114 | 114.3 |
| 11 | 79.5 | 77.8 | 72 | 79.5 | 81,85 | 77.8 |
| 18 | 8.3 | 8.52 | 8.07 | 8.206 | 8.37 | 8,56 |
| 13 | 299 | 305 | 307 | 256 | 307.25 | 307 |
| 14 | 6.69 | 6.83 | 6.87 | 5.73 | 6.87 | 6.87 |
| 15 | 438 | 391 | 377 | 233 | 397 | 411 |
| 16 | 4.18 | 3.45 | 3.73 | 2.35 | 3.52 | 3.49 |
| 17 | 8.05 | 8.58 | 7.65 | 9.2 | 10.38 | 10.7 |
| 18 | 1.206 | 1.216 | 1.386 | 1.16 | 1.86 | 1.288 |
| 19 | 1.478 | 1.517 | 1.63 | 1.64 | 1.54 | 1.524 |
| 20 | . 00149 | . 00152 | .00162 | . 00146 | . 00155 | . 001526 |

Sarias A,

| 1 | 40 | 5 | 5 a | 5 b | 6 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 80 | 1.5 | 15 | 20 | 85 | 80 |
| 8 | 80.8 | 28 | 18 | 13 | 20.3 | 10.3 |
| 4 | 150 | 88 | 285 | 188 | 158 | 814 |
| 5 | 85.5 | 87 | 76 | 85.5 | 81.6 | 84.5 |
| 6 | 190 | 215 | 862 | 166 (1) | 288 | 818.7 |
| 7 | 57 | 60 | 54 | 62 | 86 | 59.5 |
| 8 | 150 | 160 | 136.2 | 158 | 151 | 145 |
| 8 | 2349 | 1640 | 1671 | 8877 | $88 \% 4$ | 3407 |
| 10 | 112.45 | 100.8 | 111.4 | 114 | 115 | 113.6 |
| 11 | 78.8 | 81 | 82,7 | 74.8 | 78.83 | 79 |
| 18 | 8.85 | 8.8 | 8.86 | 8.8 | 8.71 | 8.41 |
| 13 | 807 | 2977 | 301.3 | 306.6 | 208 | 304.8 |
| 14 | 6.87 | 6.66 | 6.74 | 6.86 | 6.67 | 6.80 |
| 15 | 888 | - | 251 | 885 | - | 568 |
| 18 | 3.77 | 2.45 | 8.55 | 3.58 | 4.4 | 5.1 |
| 17 | 9.00 | - | 0.2 | 9.76 | - | 10 |
| 18 | 1.374 | 1.15 | 1.43 | 1.8 | 1.81 | 1.8 |
| 19 | 1.646 | 1.47 | 1,5 | 1.55 | 1.58 | 1.508 |
| 80 | . 001605 | . 001495 | . 00157 | . 00157 | . 00158 | . 0015 |


| 1 | 6 b | 7 | 78 | 8 | 8 a | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 20 | 30 | 20 | 20 | 20 | 20 |
| 3 | 10.3 | 8.7 | 8.7 | 5.6 | 5.6 | 28.8 |
| 4 | 140 | 320 | 128 | 145 | 135 | 160 |
| 5 | 86 | 75 | 85.3 | 76 | 88 | 87 |
| 6 | 190 | 260 | 194 | 269 | 198 | 195 |
| 7 | 59.5 | 54 | 58.5 | 56 | 57 | 57 |
| 8 | 148.6 | 136.1 | 149.8 | 149.5 | 148.4 | 147.8 |
| 9 | 2291 | 3409 | 2329 | 2308 | 2369 | 2269 |
| 10 | 114,5 | 118.6 | 116.4 | 115.4 | 118.4 | 113.5 |
| 11. | 78.6 | 82.1 | 73 | 80.8 | 74.6 | 73.2 |
| 12 | 86.05 | 8.97 | 8.18 | 8.97 | 8.5 | 8 |
| 13 | 307.75 | 304 | 307 | 304.5 | 307.5 | 307.75 |
| 14 | 6.88 | 6.8 | 6.87 | 6.81 | 6.88 | 6.88 |
| 15 | 408 | 553 | 393 | - | 398 | - |
| 16 | 5.59 | 5.14 | 3.66 | 3.47 | 3.9 | 3.5 |
| 17 | 6.65 | 9.95 | 8.75 | - | 9.43 | - |
| 18 | 1.244 | 1,145 | 1.34 | 1.16 | 1.376 | 1.313 |
| 19 | 1.56 | 1.51 | 1.596 | 1.53 | 1.70 | 1.525 |
| 20 | . 00175 | . 00151 | . 00157 | . 001605 | . 00164 | . 00154 |


| 1 | 1 | 8 | 3 | 4 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 20 | 20 | 15 | 20 | 80 | 20 |
| 3 | 18 | 13 | 13 | 13 | 14.8 | 14.8 |
| 4 | 148 | 138 | 128 | 188 | 130 | 134 |
| 5 | 76 | 78.5 | 72.6 | 85.5 | 78.3 | 81 |
| 6 | 190 | 211 | 208 | $166(9)$ | 212 | 288 |
| 7 | 55 | 55 | 66.5 | 68 | 55 | 55 |
| 8 | 151.8 | 154.8 | 151.5 | 158 | 152.8 | 158 |
| 9 | 2805 | 2348 | 1929 | 2277 | 2580 | 2874 |
| 10 | 115,2 | 117.4 | 128.6 | 114 | 116 | 118.7 |
| 11 | 75.2 | 78 | 76.75 | 74.8 | 76.4 | 77.4 |
| 12 | 0.38 | 8.82 | 9.495 | 8.8 | 8.63 | 2.84 |
| 13 | 308.85 | 308.75 | 307.6 | 306.6 | 309.25 | 308.75 |
| 14 | 6.71 | 6.92 | 6.88 | 6.86 | 6.92 | 6.98 |
| 15 | 367 | 388 | 299 | 385 | 390 | 384 |
| 16 | 3.2 | 2.84 | 2.02 | 3.58 | 2.78 | 2.71 |
| 17 | 10.6 | 12.6 | 18.7 | 9.76 | 12.6 | 13.1 |
| 18 | 1.153 | .96 | .852 | 1.3 | .978 | .92 |
| 19 | 1.39 | 1.23 | 1.175 | 1.55 | 1.805 | 1.175 |
| 20 | .00139 | .00121 | .00105 | .00157 | .00180 | .00114 |
| 21 | 6 | 5.75 | 5 |  | 5.75 | 5.33 |

Vaxying Mixture

| 1 | 3 | 4 | 5 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 80 | 20 | 80 | 20 | 80 | 20 | 10 |
| 3 | 14.8 | 14.8 | 14.8 | 17.3 | 17.3 | 17.3 | 17.3 |
| 4 | 140 | 142 | 189 | 135 | 139 | 126 | - |
| 5 | 98 | 101.5 | 81 | 101.7 | 101 | 100 | 73.3 |
| 6 | 197 | 227 |  | 287.7 | 286.2 | 225 | 804 |
| 7 | 69 | 69.3 | 57 | 70 | 70 | 69.7 | 61.6 |
| 8 | 158.2 | 162.8 | 154.6 | 166 | 160 | 168.2 | 144 |
| 9 | 2548 | 2487 | 2302 | 2359 | 2358 | 2381 | 1143 |
| 10 | 1174 | 121.3 | 115.1 | 117 | 117.6 | 119 | 114.8 |
| 11 | 71. | 71 | 82 | 71 | 69.8 | 70.8 | 77.85 |
| 12 | 8.03 | 8.29 | 8.53 | 8.88 | 7.88 | 8.1 | 8.61 |
| 13 | 308.8 | 308.75 | 306,5 | 309.75 | 309.3 | 310 | 310.8 |
| 14 | 6.92 | 6.98 | 6.86 | 6.93 | 6.98 | 6,95 | 6.95 |
| 15 | 387 | 387 | 381 | 376 | 387 | 578 | 203. |
| 16 | 3.38 | 8.62 | 3.61 | 2.59 | 3.35 | 3.81 | 1.76 |
| 17 | 10.2 | 13.12 | 9.67 | 12.8 | 10.8 | 8.65 | 10.6 |
| 18 | 1.29 | . 948 | 1.27 | . 972 | 1.277 | 1.41 | 1.385 |
| 19 | 1.495 | 1.137 | 2.58 | 1.12 | 1.452 | 1.65 | 1.58 |
| 20 | . 00144 | . 00108 | . 00157 | . 00111 | . 00406 | . 0016 | .00154 |
| 21 | 6.25 | 5.75 | - | - | 6 | 6.75 | 6.35 |

\[

\]

| 1 | 5 | 1 | 2 | 2 | 2 | 3 | 3 a | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 20 | 20 | 20 | 20 | 20 | 15 | 15 | 25 |
| 3 | 17.3 | 14.8 | 14.8 | $3 \quad 13$ | 17.3 | 14.8 | 14.8 | 2.02 |
| 4 | 155 | 130 | 142 | 266 | 132 | 108 | 100 | 105 |
| 5 | 86 | 77 | 1015 | 73.2 | 84 | 83 | 83 | 83 |
| 6 | 158 | 223 | 227 | 221 | 211 | 213 | 224 | 229 |
| 7 | 58 | 71 | 69.3 | 61 | 62.5 | 60 | 60 | 60 |
| 8 | 141.4 | 156.8 | 162.2 | 146.8 | 151.6 | 147 | 146.7 | 147.7 |
| 9 | 2275 | 2541 | 2427 | 2569 | 2470 | 1884 | 1882 | 1856 |
| 10 | 113.75 | 127 | 121.3 | 128.4 | 123.5 | 126.2 | 126.1 | 123.7 |
| 11 | 77.8 | 70.6 | 71 | 75.2 | 75 | 73 | 71 | 69.7 |
| 12 | 8.52 | 8.48 | 8.29 | 9.29 | 8.91 | 8.86 | 8.61 | 8.29 |
| 13 | 305 | 307 | 308.75 | 343.2 | 844.2 | 342.6 | 344 | 246.3 |
| 14 | 6.83 | 6.82 | 6.92 | 6.02 | 6.05 | 6.01 | 6.04 | 6.08 |
| 15 | 391 | 420 | $38 \%$ | 310 | 360 | 266 | 271 | 263 |
| 16 | 3.45 | 2.38 | 2.62 | 3.68 | 3.47 | 2.75 | 2.72 | 27 |
| 17 | 8.58 | 16.3 | 18 | 7.85 | 9.44 | 9.74 | 9.1 | 8.9 |
| 18 | 1.216 | . 842 | . 948 | 1.19 | 1.17 | 1.24 | 1.265 | 1.303 |
| 19 | 1.517 | 1.04 | 1.137 | 1.835 | 1.725 | 1.83 | 1.84 | 1.78 |
| 20. | 00152 | . 000937. | . 00108. | .00143 | .001405 | . 00146 | . 001445 | . 001456 |
| 21 |  | 4.33 | 5.75 |  |  |  |  |  |





Sample Cards


Run*/ Series $A$


Run *3 Series A


Run* 4 SeriesA
$\mathbf{F}_{374}: \mathrm{L}_{5-06}$
SBY STEAM GAGE \& VALVE $C 0$.
sTores:
$93-95$ OLIVER ST., BOSTON, MASS.
21-23 WEST LAKE ST., CHICAGO, ILL.
147, QUEEN VICTORIA ST., LONDON, E. C.
CARD No.................. REVS. PER MIN.............
Taken....................... SCALE.......................


Which Engine...... Pin





Which End. .................



## CROSBY STEAM ENGINE INDICATOR, manupactured solely by CROSBY STEAM GAGE \& VALVE $\mathbf{C O}$. <br> \section*{INDICATOR DIAGRAM}


 M

Run\#5 Series A


Run ${ }^{\#} 6$ Series $A$


Run ${ }^{\text {\# }} 7$ Series $A$


Run \# 8 SeriesA



$$
\text { Run } 1 \text { Series } B
$$



Run \#2 Series B



Run*2 Series $C$


SHY STEAM GAGE \& VALVE CO.
STORES:
93-95 OLIVER ST., BOSTON, MASS.
16 DEY ST., NEW YORK.
93-95 OLIVER ST., BOSTON, MASS.
16 DEY ST., NEW YORK.


Pun 3
Sonic $P$

Run*3 series $C$


Run*4 Series $C$


Run*1 Series $D$



Fion*」 「criesf


Run\#1 SeriesG


$R u n^{\neq 3}$ Series $G$


Run\# $\mathbf{B a}_{a}$ Series $G$


