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Abstract 

Cardiovascular disease has resulted in an increased risk of premature deaths for 

the 104 million Americans with prediabetes or diabetes and has accounted for 

approximately 65% of total diabetic deaths annually. Clinical manifestations of diabetic 

heart disease include left ventricular hypertrophy, diastolic and systolic dysfunction, and 

diabetic cardiac autonomic neuropathy, which are regularly observed at varying 

severities in persons with type 2 diabetes. The Zucker diabetic fatty (ZDF) rat has 

shown promise as a model of diabetic heart disease since it resembles the blending of 

cardiac diseases seen in humans and as such can be utilized to investigate diabetic 

heart disease and therapeutic interventions. We chose to investigate the impact of 

exercise on diabetic heart disease in the ZDF rat, and to explore a novel mechanism. 

The objectives of the dissertation were to investigate the cardiac dysfunction in 

the ZDF model, determine whether aerobic exercise training can reverse 

electrocardiographic (ECG) and hemodynamic changes induced by diabetes, and 

identify whether cardiac edema may be one of the factors contributing to diabetic 

heart disease and a possible target of exercise. 

Myocardial edema is an imbalance between vascular permeability, lymphatic 

vessels, lymph flow, and cardiac function. It is unknown if diabetes causes myocardial 

edema. Little is known about the impact of diabetes on the lymphatic system and its 

receptors, vascular endothelial growth factor receptor 3 (VEGFR-3) and lymphatic 

endothelial receptor 1(LYVE-1). These receptors are responsible for the uptake of their 

respective ligands, VEGF-C and hyaluronan. Each receptor’s expression is regulated by 

prospero homeobox protein 1(PROX-1), which is the master switch for the 



iv 
 

lymphangiogenesis. Myocardial fluid imbalances have been implicated in the fibrosis 

and hypertrophy associated with common cardiovascular diseases, which makes 

edema a suitable target for possible interventions. 

Diabetes in the ZDF rat caused crucial changes in R wave amplitudes (p<0.001), 

heart rate variability (p<0.01), QT intervals (p<0.001) and QTc intervals (p<0.001). R 

wave amplitude augmentation in sedentary diabetic rats from baseline to termination 

was ameliorated by exercise, resulting in R wave amplitude changes in exercised 

diabetic rats similar to control rats. Of these changes, aerobic exercise training was only 

able to correct R wave amplitude changes. In addition, exercise had beneficial effects in 

this diabetic rat model with regards to ECG correlates of left ventricular mass. 

Of the 24 hemodynamic parameters tested, 15 were negatively affected by 

diabetes. The debility of diabetic heart disease was evident in the diastolic filling, 

isovolumic contraction, ejection, and isovolumic relaxation phases. Importantly, exercise 

training restored 13 of the 15 hemodynamic parameters affected by diabetes. However, 

we did not observe differences in left ventricular weights, a direct measure of 

myocardial edema, or alterations in the levels of VEGF-C, VEGFR-3, LYVE-1, or 

hyaluronan. We were able to observe systemic differences in plasma interleukin (IL)-2 

levels, reductions in dP/dtmax, and differences in PROX-1 protein levels and DNA 

binding activity that were suggestive of the presence of myocardial edema in the ZDF 

rat. However, these alterations are indirect measures of myocardial edema, therefore 

we were unable to conclude in the 19 week old ZDF rat if myocardial edema exists and 

plays a role in diabetic heart disease.  
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Chapter 1 

 

 

 

 

 

 

 

Introduction 
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1.1 Diabetes Mellitus 

 
1.1.1 Epidemiology of diabetes mellitus 

 
The diabetes explosion has resulted in significant global public health concerns 

regarding its impact on lifespan and health care costs. Over 347 million people 

worldwide have diabetes (Tobias, 2011), and the United States (U.S.) accounts for at 

least 7% of all cases (ADA, 2011). Diabetes is classified as type 1 (T1D), type 2 (T2D), 

or gestational (onset during pregnancy). T1D, predominately diagnosed in children, is 

characterized by the lack of insulin production. T2D is identified as poor insulin 

utilization, and is commonly associated with obesity and a sedentary lifestyle. T2D is 

reported as the predominant classification for Americans diagnosed with diabetes, and 

an additional 79 million people are estimated to have prediabetes (ADA, 2011). 

Prediabetes is recognized as an intermediate phase of elevated blood glucose levels, 

which have not met the clinical diagnosis of diabetes, i.e. fasting blood glucose levels 

greater than 110 mg/dL (WHO, 2011). Classically considered adult diseases, 

prediabetes and T2D have exponentially increased in children in the last two decades 

(CDC, 2011b). The World Health Organization (WHO) estimated that diabetic deaths 

will double by 2030 (WHO, 2011) for adults and children affected by the disease. The 

cost associated with the management of diabetes related complications, comorbidities, 

and premature death has presented as a surmounting challenge for several countries, 

including the U.S. where medical costs are the highest in the world (OCED, 2011). 

The U.S. has experienced an outstanding financial burden due to a third of its 

population having diabetes or prediabetes. Approximately 200 billion dollars are spent 

annually for direct and indirect costs associated with diabetic care (ADA, 2011). Direct 
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and indirect costs included medical management of the disease and its complications 

and individual and societal losses of production. Prediabetes has been associated with 

the presentation of complications commonly identified with the disease (Schaefer et al., 

2010; Singleton and Smith, 2006). Those complications include retinopathy, 

neuropathy, nephropathy, and cardiovascular disease. Cardiovascular disease is 

associated with an increased risk of premature death for the 104 million 

Americans with prediabetes or diabetes (ADA, 2011) and accounts for 

approximately 65% of total diabetic deaths annually (Stamler et al., 1993); 

(Clearinghouse, 2011). 

1.2 Diabetic Heart Disease 

1.2.1 Classification of diabetic heart disease 

Cardiovascular disease is stratified into three categories based on the site of 

injury: cardiovascular, cerebrovascular, and peripheral vascular disease 

(Clearinghouse, 2005) as noted in Figure 1. Cardiovascular disease is defined as 

conditions that affect the muscles of the heart or the coronary vessels. 
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Figure 1 Classification of cardiovascular disease and related diabetic heart diseases. The 
clinical progression of cardiovascular disease under the backdrop of diabetes is outlined with 
the common endpoint of heart failure.  
 

The term diabetic heart disease has typically been described as coronary artery 

disease (CAD), diabetic cardiomyopathy, or a combination of the two diseases. CAD  

encompasses the sequlae that occur from the narrowing and dysfunction of the 

coronary arteries that can ultimately result in a myocardial infarction (El-Sherif et al., 

2010). Diabetic cardiomyopathy, or disease of the heart muscle, is considered an 

independent risk factor for the development of CAD (Ueda et al., 2011; Picchi et al., 

2010). Diabetic cardiomyopathy can be defined as ventricular abnormalities under 

diabetic conditions in the absence of hypertension, CAD, or other cardiac diseases 

(Boudina and Abel, 2010; Maisch, Alter, and Pankuweit, 2011). Clinical manifestations 
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of diabetic cardiomyopathy include left ventricular (LV) hypertrophy, diastolic and 

systolic dysfunction, and diabetic cardiac autonomic neuropathy (DAN), which are 

regularly observed at varying severities in persons with T2D (Fang, Prins, and Marwick, 

2004; Murarka and Movahed, 2010). Often diabetic heart disease in humans and 

animals presents as a complex amalgam of multiple cardiovascular diseases, not as a 

solitary condition. Nevertheless, the common endpoint for CAD and diabetic 

cardiomyopathy, independently or as comorbidities, is clinical heart failure (Schainberg, 

Ribeiro-Oliveira Jr, and Ribeiro, 2010). 

1.2.2 Epidemiology of diabetic heart disease 

Population based studies have firmly established the association between T2D 

and CAD. The Atherosclerosis Risk in Communities Study (ARIC) (Folsom et al., 1997), 

Cardiovascular Heart Study (CHS) (Psaty et al., 1999), Multiple Risk Factor Intervention 

Trial (MRFIT) (Stamler et al., 1993), and the Framingham Heart Study (Kannel and 

McGee, 1979; Garcia et al., 1974) reported the concurrent nature of the two diseases. 

The ARIC study showed that the risk of developing CAD was 3.45 times higher for 

women with diabetes and 2.52 for men (Folsom et al., 1997) compared to healthy 

peers. The CHS study showed a significant association between blood glucose levels 

and myocardial infarction. The risk of a myocardial infarction was 10% higher in those 

with diabetes (Psaty et al., 1999). The CHS and ARIC study suggested that diabetes 

may increase the risk of the development of CAD and associated adverse cardiac 

events such as myocardial infarctions. The MRFIT and Framingham studies supported 

these findings, but also emphasized the relationship of diabetes and fatal cardiac 

events. In the MRFIT study, 603 cardiovascular deaths occurred in the sample of 5163 
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men with diabetes. The 12% mortality rate indicated the increased risk in those with 

diabetes compared to the 3% cardiovascular death rate in men without diabetes 

(Stamler et al., 1993). The Framingham Study reinforced these findings with higher 

cardiovascular mortality rates for persons with diabetes compared to the non-diabetic 

group and reported higher mortality risk for diabetic women compared to affected men 

(Kannel and McGee, 1979). 

Interestingly, diabetes is recognized as a “CAD risk equivalent” confirming the 

deleterious, independent impact on the cardiovascular system (NCEP, 2002). People 

with diabetes and no CAD have an equivalent absolute 10 year risk of CAD events as 

those with CAD and no diabetes (NCEP, 2002). Therefore, the American College of 

Cardiology and the American Heart Association have recognized diabetes as a 

precursor for heart failure. This acknowledgement mandated that patients with diabetes 

be classified as having Stage A heart failure (Hunt et al., 2005). The mandate and the 

epidemiological studies have validated the impact of diabetes on cardiovascular health 

independently or in combination with other cardiac diseases.  

1.2.3 Phenotypes of diabetic heart disease 

Multiple detection methods are currently used for phenotyping diabetic heart 

disease (Folsom et al., 1997; Faglia et al., 2002, MiSAD, 1997). The classic 

characteristics of diabetic heart disease include LV hypertrophy, diastolic and 

systolic dysfunction, and DAN. The clinical manifestations are routinely presented as 

a group of abnormalities. 
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1.2.3.1 Left ventricular hypertrophy  

LV hypertrophy is defined as increases in LV mass and is commonly adjusted by 

gender, body surface area, or height (Levy et al., 1990). This augmentation is typically 

due to extracellular matrix alterations (Deschamps and Spinale, 2006). Hypertrophy is 

classified as physiological or pathological (Figure 2). Physiological hypertrophy can 

develop secondary to increased volume in the LV chamber from pregnancy or exercise 

demands. This remodeling is known as eccentric hypertrophy, in which the sarcomeres 

contribute to increased cellular length (Heineke and Molkentin, 2006). The modifications 

result in a uniformed increase in ventricular dimension, which maintains or enhances 

cardiac function. LV hypertrophy can also occur as a pathological response to diabetic 

complications.  

An association between hypertension, obesity, and diabetes is indicative of 

pathological hypertrophy according to clinical research (Sharma et al., 2011). The 

compensatory thickening of the ventricular wall has been shown to maintain cardiac 

function by countering pressure demands related to local or systemic hypertension in 

humans (Lalande and Johnson, 2008). However, this compensatory mechanism will 

convert to a pathological response over time with losses in LV compliance and diastolic 

function. Pathological remodeling is primarily described as concentric hypertrophy with 

greater increases in the width of the cardiomyocyte. Cardiomyocyte remodeling in 

animal models has been shown to increase the thickness of the ventricular wall and 

septum due to collagen accumulation and fibrosis (Heineke and Molkentin, 2006). Such 

pathological changes in ventricular mass coupled with fibrosis are associated with the 

substantial loss of the ventricular chamber volume and advanced stages of diabetic 
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heart disease. The Framingham study reported poor prognosis for individuals with LV 

hypertrophy (Levy et al., 1990). Regardless of the etiology, thickening of the LV wall has 

a direct effect on the diastolic and systolic phases of the cardiac cycle.  

 

Figure 2 Different types of hypertrophy (Heineke and Molkentin, 2006). 
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1.2.3.2 Diastolic and systolic dysfunction  

Diastolic dysfunction typically precedes systolic dysfunction. Decreased filling or 

relaxation of the ventricle is often reported to be a measure of diastolic dysfunction 

(Boudina and Abel, 2010; Lalande and Johnson, 2008). The diastolic phase accounts 

for the time period when the ventricle is at rest. During this phase, the healthy ventricle 

can fill to capacity depending on its compliance. Compliance is defined as the 

comparison of the change in volume of the ventricular chamber to the pressure applied 

to the ventricle or, simply stated, the ability of the chamber to stretch. However the 

fibrotic, thickened, diabetic ventricle cannot adequately fill due to the loss in compliance. 

Diastolic dysfunction can impede the contractile potential of the ventricle, because the 

ability to produce tension depends on the stretching and release of myocardial fibers. 

Elastance is described as the ability of the ventricle to recoil after ejection (Chang, Lo, 

and Tseng, 2002). Ventricular remodeling, such as that observed with diabetes, can 

impair compliance and elastance and result in reduced stroke volume.  

Stroke volume is the amount of blood the ventricle can eject and is typically 

referred to as the expulsion of blood into the body for circulation. The impact of diabetes 

on ventricular contractility or systolic function has been debated in the literature 

(Mbanya et al., 2001; Borow et al., 1990; Palmiero, Macello, and De Pascalis, 2006; 

Alvarez et al., 2004). A strong, coordinated contraction is necessary for modulating the 

stroke volume needed for cardiovascular demand. Systolic dysfunction in diabetic 

humans and animals has been reported as attenuations in fractional shortening, velocity 

of shortening, force production, and cardiac output (Vinereanu et al., 2003; Friedman et 
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al., 1982). Impaired systole has been suggested to be a combination of contractility 

deficits and a lack of sensory regulation (Valensi et al., 2001). 

1.2.3.3 Diabetic cardiac autonomic neuropathy  

DAN is a neuropathy affecting the cardiac afferent nerves that presents as 

contractility and conduction abnormalities (Adamson and Vanoli, 2001; Khoharo et al., 

2009). Electrocardiographic (ECG) assessments have suggested the presence of DAN 

(Valensi et al., 2001) and LV hypertrophy (Ciardullo et al., 2004) in people with 

diabetes. The loss of sympathetic response impairs conduction and contractility. In 

depth observations have shown DAN as regional sympathetic denervation of ventricles 

in humans (Schnell et al., 1995). Positron emission tomography studies have mapped 

proximal hyperinnervation in these regions with distal denervation under diabetic 

conditions in humans and animals (Stevens et al., 1998b; Schmid et al., 1999). Deficits 

in blood flow are also associated with these sensory alterations, but presented primarily 

in the proximal segments in human studies (Stevens et al., 1998a). These reports 

suggested that diabetes cause losses in cardiac sensory response and blood flow 

proximal to the denervated site. While the body attempts to respond with limited 

hyperinnervation, the heterogeneity of innervation predisposes those with diabetes to 

arrhythmias and sudden cardiac death. The increased risk of DAN may be revealed 

through multiple detection methods in people with diabetes and animal models of 

diabetic heart disease. 

1.2.4 Murine models of diabetic heart disease  

Murine models have proven beneficial in the study of diabetic heart disease. Both 

mouse and rat models mimic the characteristics of the human diabetic process. Recent 
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studies have indicated that mechanisms responsible for diabetic heart disease may 

differ between T1D and T2D animal models (Boudina et al., 2007; Bugger and Abel, 

2008). However, diastolic and systolic dysfunction has varied in severity in all models. 

The streptozotocin (STZ) injected rodent has remained a widespread model of T1D 

(Deeds et al., 2011). Yet, the model that resembles human T1D the closest is the 

BioBreeding Diabetes Resistant rat with its autoimmune component (Mordes et al., 

2004). Models of T2D include the ob/ob mouse, db/db mouse, and the Zucker diabetic 

fatty (ZDF) rat. Each of these T2D models stems from alterations in leptin or its 

receptor. Leptin is a polypeptide hormone that controls hunger and metabolism. 

Elevated levels of circulating leptin are associated with obesity (Myers et al., 2010). 

These animal models have the concomitant presentation of obesity and T2D. 

KK mice (Bugger and Abel, 2009), Goto-Kahizaki (Bugger and Abel, 2009) and 

Kob (Igarashi et al., 1994) rats offer alternative models of T2D based on various 

mechanisms. The KK mouse is a polygenic model of obesity and T2D (Portha et al., 

2010). The Goto-Kahizaki rat has genetic alterations related to beta cell metabolism 

(Suto et al., 1998). Hemosiderin deposition may be the mechanism responsible for the 

spontaneous development of diabetes in the Kob rat (Igarashi et al., 1994). The larger 

size and hemodynamic parameters of the rat have made it the preferred murine model 

for cardiac physiology experiments. Although multiple models are available, the ZDF rat 

has had increased use in cardiovascular research in the last decade due to its 

phenotype (Young et al., 2002; Sidell et al., 2002; Boudina and Abel, 2010). 

 The ZDF rat has a leptin receptor deficit due to a mutation in the Fa gene (fa/fa). 

The uptake of leptin by the leptin receptor has been shown to signal satiety (Satoh et 
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al., 1997), but the uptake is diminished in the ZDF rat. The receptor mutation is linked to 

hyperphagia and subsequent obesity as observed in the Zucker fatty rat (Phillips et al., 

1996). For consistent development of diabetes, the male ZDF rat is fed a commercially 

available high fat and protein diet; while the female ZDF rat requires a specialized high 

fat diet for the induction of diabetes. At 8 weeks of age, male ZDF rats develop 

hyperglycemia and hyperinsulinemia by 12 weeks. The rodents have many of the same 

characteristics as humans with T2D, including increased serum free fatty acids (FFAs) 

and triglycerides along with cardiac dysfunction (Clark, Palmer, and Shaw, 1983; 

Golfman et al., 2005; Wang et al., 2005). In 19 week old ZDF rats, cardiomyocytes are 

enlarged and extensive perivascular fibrosis is observed the ventricles (Fredersdorf et 

al., 2004). However, both the absence (Chatham and Seymour, 2002) and the presence 

(Golfman et al., 2005) of cardiac hypertrophy have been reported in the ZDF rat. 

Some research publications have referred to diabetic heart disease in the ZDF 

model as diabetic cardiomyopathy (van den Brom et al., 2010; Forcheron et al., 2009; 

Boudina and Abel, 2007). At the same time, both hypertension (Tikellis et al., 

2004;Oltman et al., 2006; Toblli et al., 2010) and normotension (Cosson et al., 2009) 

have been reported in the ZDF rat. Of interest, despite being on a high fat diet, ZDF rats 

do not appear to develop atherosclerosis (Oltman et al., 2006); although coronary artery 

dysfunction has been noted (Oltman et al., 2006). Regardless, the ZDF rat has shown 

promise as a model of diabetic heart disease (Russell and Proctor, 2006; Poornima, 

Parikh, and Shannon, 2006); since it has resembled the amalgamation of cardiac 

diseases seen in humans and as such can be utilized to investigate diabetic heart 

disease and therapeutic interventions. 
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1.3 Electrocardiographic Assessment of Diabetic Heart Disease 

1.3.1 Normal heart electrical conduction system  

Figure 3 provides a visual representation of the electrical activity of the heart, 

known as the ECG. As the action potential migrates through the heart, the atria and 

ventricles depolarize and repolarize, which is captured as the ECG waveform.  

 

  

Figure 3 ECG waveform Modified from (MacLeod, 2010). The ECG waveform depicting atrial 
depolarization (P wave), followed by ventricular contraction (QRS complex), and ventricular 
repolarization (T wave). The corresponding intervals are identified in the figure.  
 

Atrial changes are masked in the typical ECG, except for the P wave, due to the 

disparities in size and force production compared to the ventricles. The sinoatrial (SA) 

PR Interval 

QT Interval
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node serves as the pacemaker of the heart. When the SA node fires, the atria 

depolarize and are noted electrically as a P wave. In male, healthy Sprague Dawley 

rats, the average P wave amplitude is 0.028 ± 0.012 mV (Normann, Priest, and Benditt, 

1961). As the impulse travels from the SA node to the ventricles, the average elapsed 

time of 51 ± 5 msec (Normann, Priest, and Benditt, 1961) was reported as the PR 

interval in these normal rats.  

As the action potential moves through the ventricles, the QRS complex is 

recorded. The typical R wave amplitude was 0.138 ± 0.006 mV (Normann, Priest, and 

Benditt, 1961) in adult male rats with an average heart rate of 388 ± 29 beats per 

minute (Normann, Priest, and Benditt, 1961). The time between two consecutive R 

waves is measured as the RR interval, which provides the heart rate measurement. 

Heart rate variability (HRV) indicates the balance between sympathetic and 

parasympathetic activity and is calculated by the standard deviation of the RR intervals. 

The QT interval represents a complete cycle of depolarization and repolarization of the 

ventricles and was measured as 54 ± 5 msec in Sprague Dawley rats (Normann, Priest, 

and Benditt, 1961). The QT interval varies inversely with heart rate, for example a lower 

heart rate presents with a longer QT interval. Therefore, QT intervals must be corrected 

to heart rate. Corrected QT (QTc) can be calculated with mean values and the Bazett’s 

formula (QTc = QT Interval/√ (RR interval) (Heffernan, Jae, and Fernhall, 2007). The 

resting phase of the ventricles is represented by the T wave amplitude and signifies the 

end of the normal cardiac cycle.
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1.3.2 Common ECG abnormalities 

Conduction irregularities can occur within any ECG wave, complex, or interval 

from acute and chronic conditions. Sympathetic and parasympathetic input can alter the 

spontaneous depolarization of the SA node located in the right atrial wall. The 

sympathetic induced release of noradrenaline at the SA node leads to tachycardia 

(Mlynarska et al., 2006). In contrast, bradycardia results from increased 

parasympathetic input and the release of acetylcholine (Mlynarska et al., 2006). As 

electrical activity is recorded from the atria, abnormalities in the shape, duration, or 

amplitude of the atrial waveform may indicate pulmonary hypertension, myocardial 

infarction, or mitral valve disease (Liu et al., 2010; Vranka, Penz, and Dukat, 2007).  

As the action potential moves from atria to ventricles, shortened or prolonged PR 

intervals can reveal a lack of coordination between the atria and ventricles and possible 

dysrhythmias. Increased ventricular amplitudes and duration of the QRS complex 

provide early indications of conduction abnormalities and ventricular hypertrophy 

(Grigioni et al., 2002; Iler et al., 2008; Bacharova, Szathmary, and Mateasik, 2010). 

After the systole, the ventricle’s repolarization is reported by QT intervals. The widening 

of the QT intervals can indicate an increased risk of ventricular arrhythmias, syncope, 

and sudden death (Johnson et al., 2011; Liu et al., 2011). The measurement serves as 

a prognostic index for hypertrophic cardiomyopathy and heart failure (Cygankiewicz et 

al., 2008; Bayrak et al., 2007). Non-invasive, surface ECG has proven a valuable tool in 

identifying disruptions in the cardiac conduction system and one’s risk for cardiac 

events and chronic conditions. 
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1.3.3 Diabetes related ECG abnormalities 

ECG changes have been observed in both human and murine diabetic heart 

disease studies (Okin et al., 2004; Stern and Sclarowsky, 2009; Howarth et al., 2009). 

In human, QTc prolongation was presented as a common finding associated with 

diabetes (Matel, Chiochina, and Stratone, 2010; Nagaya et al., 2010a; Laitinen et al., 

2008). ECG assessments in diabetic animal models have supported the abnormalities 

seen in human studies. Bradycardia, decline in HRV, and QTc prolongation were noted 

in STZ rat model (Annapurna et al., 2009; Squadrito et al., 1986; Howarth et al., 2005). 

Reductions in HRV and heart rate were also observed in Goto-Kakizaki and Kob rats 

(Howarth et al., 2008; Sanyal, Arita, and Ono, 2002). ECG investigations of the ZDF 

model were absent in the current literature until our published comprehensive study 

(VanHoose, 2010). In this dissertation work, we have characterized ECG abnormalities 

in the ZDF rat and the recovery of parameters after exercise training as reported in 

Chapter 2.  

1.4 Hemodynamic Assessment of Diabetic Heart Disease 

1.4.1 Normal left ventricular hemodynamics 

The ventricular cycle was first described a century ago by Otto Frank (Frank, 

1895). Starling expanded the concepts in 1914 and developed the current terminology, 

including Starling’s Law of the Heart (Burkhoff, Mirsky, and Suga, 2005; Konhilas, 

Irving, and de Tombe, 2002). The Law states that the amount of blood ejected from the 

ventricles (stroke volume) is dependent on the volume in the chambers (end diastolic 

volumes) (Solaro, 2007). The theory indicates the interplay between the ventricular 

hemodynamic pump and the viscoelastic properties of the cardiac muscle. The 
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interaction is captured by the assessment of the relationship between instantaneous 

ventricular pressures and volumes during the cardiac cycle. Plotting of the relationship 

is commonly described as pressure volume loops. The pressure volume loop provides a 

visual description of the intricate balance between the phases of systole and diastole as 

influenced by intramyocardial and extramyocardial forces and is shown in Table 1.  

Three Phases of Systole Four Phases of Diastole 

Isovolumic contraction Isovolumic relaxation 

Ejection 

Rapid inflow 

Atrial systole  

Rapid inflow 

 Diastasis 

 
Table 1 Phases of systole and diastole. The three phases of systole describe the initial 
development of pressure within the ventricle, followed by the ejection into the aorta, and the 
rapid inflow into the aorta. Systole is trailed by diastole, which accounts for the majority of the 
cardiac cycle duration. During isovolumic relaxation, pressure decreases in the ventricle. The 
contraction of the atrium causes a rapid inflow of blood into the ventricle. Diastasis is the final 
filling phase of the ventricle. 

 

At point A in Figure 4, the mitral valve opens and the atrium fills quickly (rapid 

inflow). Diastasis, middle third to the end of diastole, contributes a small volume to the 

ventricle during interval AB. Atrial contraction is the culmination of interval AB. When 

pressure in the left ventricle is higher than in the left atrium, the mitral value closes as 

indicated by point B, at which time end diastolic volume is measured. The diastolic load 

at the end of ventricular relaxation is defined as preload. The compliance of the ventricle 

will determine the ability of the ventricle to stretch and accommodate variable preloads. 

Interval BC reflects the initial contraction of the ventricles known as the isovolumic 

contraction. During this interval, the ventricular volume remains constant, but pressure 
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increases substantially. At point C, the LV pressure exceeds the aortic root pressure 

and the aortic valve opens.  

 

 
Figure 4 Pressure volume loop Modified from (Burkhoff, Mirsky, and Suga, 2005). The 
diagram depicts the phases and distinct points of the cardiac cycle. Point A is the end of 
isovolumic relaxation. Point B is commonly identified as the end diastolic volume. Point C 
indicates the end of isovolumic contraction and the initiation of ejection. Point D is the end 
systolic volume and initiation of isovolumic relaxation.  
 

Interval CD represents ventricular systole, which includes the ejection of blood 

and rapid inflow into the aorta. The amount of pressure that the ventricle must develop 

for ejection is directly related to peripheral resistance or afterload. Afterload is 

represented by the factors that oppose contraction and ejection fraction, such as 

systemic hypertension. End systolic volume is measured at point D and signifies the 

closure of the aortic valve due to a lower LV pressure than aortic root pressure. Interval 

Point A 
Point B 

Point C 
Point D 

 



19 
 

DA indicates another time in the cardiac cycle where volume is constant, but pressure 

changes. During isovolumic relaxation, pressure decreases in the left ventricle as 

reported by the tau value. The elastance of the ventricle will recoil the ventricle to its 

resting state in preparation for diastole. During ventricular relaxation, the cardiac cycle 

recommences with filling of the chamber. Table 2 outlines the hemodynamic parameters 

attained from the pressure volume loop analysis. 

Cardiac Cycle 
Points 

Hemodynamic 
Parameters 

Cardiac Cycle 
Intervals 

Hemodynamic 
Parameters 

Point A 
Start of ventricular 
filling 

Minimum pressure 
(Pmin) 
Minimum volume 

 

 Interval AB 
Ventricular filling 

dV/dtmax 
P@dV/dtmax 

Point B 
Start of isovolumic 
contraction 

End diastolic volume 
End diastolic 
pressure 

 

 Interval BC 
Isovolumic 
contraction 

dP/dtmax 
V@dP/dtmax 
dV/dtmin 

Point C 
Start of ejection 

  

 Interval CD 
Ejection 

Maximum pressure  
(Pmax) 
Ejection fraction 

Point D 
Start of isovolumic 
relaxation 

End systolic volume  
End systolic pressure 
 

 

 Interval DA 
Isovolumic 
relaxation 

dP/dtmin 
V@dP/dtmin 
Tau 

Table 2 Hemodynamic parameters obtained from the pressure volume loop analysis. 
 

The hemodynamic parameters directly derived from the pressure volume loops 

allow for the calculation of additional measures. Heart rate is based on the number of 

contractions per minute. Stroke volume (SV) is calculated as the difference between 

end diastolic and systolic volumes. Cardiac output (CO) is the product of heart rate and 
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SV. The area within the loop is defined as the stroke work (SW). SV, CO and SW are 

often adjusted for body weight and described as indices (Jin et al., 2000). Maximal 

power and arterial elastance are determined from standard hemodynamic software.  

1.4.2 Common hemodynamic abnormalities  

 The ventricle can respond to chronic volume and pressure overloading with 

physiological and structural changes. Persistent volume increases result in eccentric 

hypertrophy. The heart will respond with slight increases in end diastolic pressure and 

significant expansion of the end diastolic volume. This rightward shift of the pressure 

volume loop will deliver a larger stroke volume to maintain function. Wall thickness also 

increases under chronic pressure conditions and is labeled concentric hypertrophy, 

where the loops will shift upward with increases in end diastolic pressures (Burkhoff, 

Mirsky, and Suga, 2005). The compensated cardiac function results from cardiomyocyte 

hypertrophy in the enlarged ventricles, not direct increases in contractility and stroke 

work (Heineke and Molkentin, 2006). Unfortunately, the heart cannot maintain 

compensation long-term due to afterload mismatches and decline in preload reserve.  

1.4.3 Diabetes related hemodynamic abnormalities 

Diabetes can cause afterload mismatches due to impaired contractility and 

declines in preload related to diastolic dysfunction. Inotropy or contractility is lessened 

under diabetic conditions due to geometrical and hypertrophic alterations (Lee et al., 

1997; Baynes and Murray, 2009). The CHS study reported increased septal and left 

posterior ventricular wall thickness in men and women with T2D without CAD (Lee et 

al., 1997). These alterations impaired cardiac function, which presented as reductions in 

stroke volume and cardiac output. The ZDF rat has shown a decrease in heart rate and 
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CO (Radovits et al., 2009), which supported the loss of cardiac function under diabetic 

condition. In another report on the ZDF rat, systolic pressures, dP/dtmax and dP/dtmin 

decreased with pressure volume analysis (Yue et al., 2005). The diabetic heart could 

not maintain function via the Frank-Starling mechanism, because the heart was 

incapable of producing the necessary pressures for ejection or other compensatory 

responses. An assessment of 16 and 36 week old ZDF rats showed an adaptive 

response in stroke volume in 16 week old animals. This compensatory mechanism was 

lost in the older animals. The progressive loss of ejection fraction was suggested as 

evidence of LV dilatation (Baynes and Murray, 2009).  

Diastolic dysfunction in the diabetic heart may result from myocardial wall 

thickening and fibrosis (Jellis et al., 2011; Ihm et al., 2010). These changes can 

attenuate the lusitropic or filling ability of the diseased ventricle. The upward and 

leftward shift in pressure volume loops confirmed the increased afterload and poor 

ventricular filling reported in biomechanical investigations (Villars et al., 2004). 

Echocardiographic evaluations of asymptomatic subjects with T2D revealed impaired 

diastolic function in 70% of the sample population (Shrestha et al., 2009). To explore 

the mechanisms responsible for diabetic hemodynamic changes, an animal 

model is crucial. The ZDF rat has been characterized with relaxation and contractility 

deficiencies due to increases in LV stiffness (Radovits et al., 2009) and thus is suitable 

for fully exploring cardiac function with and without therapeutic interventions. In Chapter 

3, we will report our successful characterization of the hemodynamic changes of the 

ZDF rat and the beneficial effects of exercise training.  
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1.5 Mechanisms of Diabetic Heart Disease 

Diabetic heart disease has multiple etiologies that occur across organismal to 

cellular levels. Metabolic disturbances (Ku et al., 2011), myocardial fibrosis 

(Mohamad, Askar, and Hafez, 2011), small vessel disease (Mourot et al., 2009), and 

DAN (Spallone et al., 2011) are reported to play a complex and concomitant role in 

the development and progression of the disease (Boudina and Abel, 2007). 

 

Figure 5 Mechanisms involved in diabetic heart disease. The figure outlines the four major 
contributors to the development and progression of diabetic heart disease and the reported 
mechanisms from the current literature.  
 

Diabetic Heart Disease 
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1.5.1 Metabolic disturbances 

A loss in glucose supply and utilization by the cardiomyocyte has been 

suggested as the initial injury in diabetic heart disease (Rodrigues, Cam, and McNeill, 

1998). Under normal conditions, cardiac energy demands are met primarily with FFAs 

and secondarily with glucose metabolism (Taegtmeyer, 1994). Substrate utilization 

switches predominately to glucose under diabetic conditions, but a reduction in glucose 

transporters 1 and 4 has been observed in rat diabetic hearts (Garvey et al., 1993). 

Glucose transporters are necessary for the passage of glucose into the cardiomyocyte 

for energy. Overexpression of glucose transporter 4 restored cardiac function in db/db 

mice (Semeniuk, Kryski, and Severson, 2002). Utilization of glucose is required to 

protect the heart against the deleterious effects of hyperglycemia. The accumulation of 

FFAs, secondary to the metabolic shift, can inhibit glucose utilization leading to or 

exacerbating hyperglycemia (Eckel and Reinauer, 1990). 

Fatty acids are carboxylic acids with long aliphatic tails and they are derived from 

triglycerides. When the fatty acids are unbound, they are called “free”. FFA levels are 

elevated systemically under diabetic conditions (Fang, Prins, and Marwick, 2004). A 

relationship has been reported between diabetic heart disease and carnitine deficiency 

in rats (Malone et al., 1999). Carnitine is a substance required for myocardial FFA 

metabolism. A decline in carnitine availability increases FFA levels. The level of 

circulating FFAs has a direct correlation with the severity of diabetic heart disease 

(Yazaki et al., 1999). The diminished FFA metabolism also has a direct effect on 

glucose utilization. The high circulating FFA levels in the diabetic heart reduces glucose 

oxidation secondary to decreases in glucose transporters (Eckel and Reinauer, 1990); 
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(Garvey et al., 1993) through activation of protein kinase C (Griffin et al., 1999). These 

imbalances in FFA metabolism promote hyperglycemia, morphological changes of the 

ventricle (Nakayama et al., 2001), and cellular insulin resistance (Boden et al., 2002; 

Jiao et al., 2011). 

Insulin resistance can induce DAN and alterations in cardiac structure and 

function (Meyer et al., 2004). Insulin resistance is a metabolic dysfunction in which the 

body has a lowered response to insulin and raises insulin production to counter glucose 

levels. The low grade inflammation commonly associated with T2D and obesity, 

primarily through tumor necrosis factor-alpha (TNF-α) activity, plays a role in the 

development of insulin resistance (Sun et al., 2011; Moon et al., 2010). TNF-α 

suppressed insulin signaling in rodent models of diabetes (Hotamisligil, Shargill, and 

Spiegelman, 1993). Other inflammatory cytokines, such as interleukin (IL)-6, activated 

pathways in cardiomyoctyes that induced insulin resistance through oxidative stress and 

inflammation (Gwechenberger et al., 1999). The literature, however, is inconclusive on 

the independent influence of insulin resistance on functional and structural changes in 

diabetic heart disease (Poornima, Parikh, and Shannon, 2006; de Kreutzenberg et al., 

2000; Galvan et al., 2000; Rutter et al., 2003).  

1.5.2 Myocardial fibrosis 

The replacement of cardiomyocytes by fibrotic tissue is an initial element of 

diabetic heart disease (Mizushige et al., 2000), resulting from the interstitial 

accumulation of glycoproteins, collagen, and hyaluronan. Hyperglycemic conditions can 

increase intracellular and extracellular advanced glycation end (AGE) products 

(Degenhardt, Thorpe, and Baynes, 1998). As early as one week of exposure to high 
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glucose, intracellular AGE levels are increased and ventricular remodeling begins 

(Brownlee, 2001). Collagen levels are upregulated and their function is compromised 

due to AGE formation on various collagens altering extracellular matrix interactions and 

composition (Brownlee, 2001). Cardiac AGE accumulation is related to increases of 

collagen I (Tanaka et al., 1988). Increased collagen I levels have been suggested to 

lead to ventricular dysfunction in rats (Wei 1999, 117). Collagen I has different physical 

characteristics than collagen III. The impact of diabetes on collagen I/III ratios in animal 

and human eye and cardiac samples is currently under debate (Kern, Sebert, and 

Robert, 1986; Kita et al., 1996; Shimizu et al., 1993). AGE crosslinking of these 

collagens decreases the compliance of the ventricle, resulting in declines in cardiac 

function and permanent changes in the ventricle under prolonged hyperglycemic 

conditions (Willemsen et al., 2011). 

Fibrotic alterations can occur in the interstitium (spaces between the cells) or 

around the blood vessels (perivascular). LV mass has been shown to increase 

significantly as a result of fibrosis and increased diameters of ventricular 

cardiomyocytes (Wang et al., 2006). End systolic LV wall diameters were increased with 

echocardiographic evaluation of STZ diabetic rats, likely due to increases in interstitial 

and perivascular fibrosis (Castoldi et al., 2010). Hyperglycemia and increased oxidative 

stress can also contribute to LV hypertrophy and loss of cardiac function through 

cardiomyocyte necrosis and fibrosis (Chen et al., 2000). 

Hyperglycemia can induce cell death through necrotic and apoptotic pathways. 

Apoptosis is controlled programmed cell death (Toldo et al., 2011). Necrosis is cell 

death, which is spontaneous in nature and related to increases in oxidative stress 
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(Frustaci et al., 2000). Both processes occur in the diabetic heart, but necrosis 

transpires more often under diabetic conditions (Frustaci et al., 2000) compared to 

normal cellular environments. Cardiomyocyte cell death, through either necrosis or 

apoptosis, makes way for increased interstitial collagen accumulation (Li et al., 1997, 

Anversa et al., 1998) contributing to fibrosis. An examination of the left ventricles of ZDF 

animals revealed increased collagen deposits consisting of collagen I and III (Huang et 

al., 2005). These morphological changes result in hypertrophy and loss of cardiac 

function under diabetic conditions.  

1.5.3 Small vessel disease 

Debate has existed regarding whether myocardial fibrosis and small vessel 

disease are independent factors of diabetic heart disease (Poornima, Parikh, and 

Shannon, 2006). Physical changes to the microvascular wall can impair the response to 

nitric oxide (Mayhan, Simmons, and Sharpe, 1991). Nitric oxide controls the 

vasodilatation of the vessels, which provides the nutritional support for the myocardium 

and its vessels. The losses in endothelial function are coupled with structural changes in 

the vascular bed as seen in investigations using the STZ diabetic rat model (Messaoudi 

et al., 2009). Histological examinations showed a reduction in surface density and total 

surface area of blood capillaries in the left ventricles of diabetic rats (Warley, Powell, 

and Skepper, 1995). Declines in the number of capillaries and losses in function reduce 

the vascular supply to the myocardium, increase necrosis, and affect neuronal input to 

the myocardium (Yarom, 1994). 
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1.5.4 Diabetic cardiac autonomic neuropathy 

Sympathetic denervation is a common characteristic of diabetic heart disease 

(Nagamachi et al., 1996; Kahn et al., 1986). Regional sympathetic damage can result in 

conduction irregularities and increased mortality risk (Valensi et al., 2002), partially due 

to the impact of DAN on cardiac function. Studies have indicated that DAN limited the 

cardiovascular compensatory responses in diabetes to external stress (Scognamiglio et 

al., 1995; Erbas et al., 1992). The loss of neural response also has a direct relationship 

to declines in myocardial blood flow (Stevens et al., 1998a) causing myocardial 

ischemia that can result in ventricular remodeling, which is triggered by cell death and 

fibrosis (Backlund et al., 2004). Myocardial catecholamine levels increased during the 

early months of diabetes in subjects with T2D (Kondo et al., 2002) and can induce 

prolonged overstimulation of the heart resulting in alterations in ventricular geometry 

(Samuels, 2007). The upregulation of β-adrenergic receptors, in response to myocardial 

catecholamines, can cause increases in fibrosis, cardiomyocyte hypertrophy, and loss 

of cardiac function as shown in transgenic mouse studies (Bisognano et al., 2000). 

1.6 Interventions for Diabetic Heart Disease 

 The complexity and coexistence of the above mentioned mechanisms has 

required the investigation of singular and combined therapeutic approaches to address 

the impairments associated with diabetic heart disease. Interventions have focused on 

delaying the onset and progression of the disease. Glycemic control has altered many 

of the mechanisms responsible for cardiac dysfunction (Hayat et al., 2004). Intensive 

glucose management reduced all diabetic complications by 25% in humans (UKPDS, 

1998). Every 1% reduction in hemoglobin A1C (HbA1C) has been shown to equate to 
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significant declines in mortality, myocardial infarction risk, and microvascular 

complications (Stratton et al., 2000).  

Clinical research focused on pharmaceuticals and diet modification has proven 

successful in normalizing glucose levels (Sprafka et al., 1992; Davis and Edelman, 

2004; Umpierre et al., 2011). Insulin has been shown to reverse hemodynamic 

abnormalities and structural changes in cardiomyocytes (Fang, Prins, and Marwick, 

2004). Other medications have been identified to address biochemical and 

morphological cardiac alterations related to diabetes (Lowes et al., 1999; Afzal et al., 

1988; Cohn and Tognoni, 2001; Hanif, Bid, and Konwar, 2010; Horwich, MacLellan, and 

Fonarow, 2004; Minchenko et al., 2003; Nesto et al., 2004; Packer et al., 1996). 

Numerous factors, including cultural beliefs and finances, may affect adherence to diet 

and pharmaceutical recommendations for long term diabetic care (Schectman, 

Nadkarni, and Voss, 2002; McQuaid et al., 2009). However, aerobic exercise can 

provide a low-cost, non-invasive, and culturally neutral treatment for diabetic heart 

disease. 

1.7 Cardioprotective Effects of Aerobic Exercise for Diabetic Heart Disease 

The American Heart Association has encouraged regular physical activity to 

combat diabetes for decades (Marwick et al., 2009). The current recommendations from 

a collaborative taskforce with the American College of Sports Medicine suggest 150 

minutes per week (Haskell et al., 2007). Medical clearance is necessary, because 

exercise can unmask early, subclinical signs of DAN and other symptoms of diabetic 

heart disease (Jellis et al., 2011;Palmieri et al., 2008). However the benefits of exercise 



29 
 

outweigh the risk. Exercise has a direct impact on the factors related to the 

development and progression of diabetic heart disease. 

1.7.1 Exercise training can normalize metabolic disturbances 

Exercise can improve HbA1C (Umpierre et al., 2011) and blood glucose levels 

(Nyenwe et al., 2011), recover insulin sensitivity (Cederberg et al., 2011), modulate 

inflammation (Colbert et al., 2004; Batista et al., 2009), and improve weight 

management with appropriate dosing (Greaves et al., 2011). Low intensity aerobic 

activity of less than 150 minutes per week has failed to attenuate hyperglycemia (Wing 

et al., 1988; Khan and Rupp, 1995), but moderate level aerobic exercise for 135 to 270 

minutes per week has been shown most effective in lowering HbA1C in adults with T2D 

(Sigal et al., 2007; Snowling and Hopkins, 2006). Resistance exercise has been 

reported as exhibiting greater control of blood glucose than aerobic exercise for humans 

(Bweir et al., 2009). However, a recent publication suggested that exercise of any mode 

must be combined with dietary advice to maximally impact HbA1C levels in humans 

(Umpierre et al., 2011). Thirteen weeks of swimming improved glucoregulation through 

increased beta cell size and metabolism in ZDF rats (Kiraly et al., 2008).The impact of 

exercise on glucose homeostasis is also attributed to its effect on glucose transporters. 

Glucose transporters are necessary for the passage of glucose into the cardiomyocyte 

for energy. Increased activity of the glucose transporters has been reported with muscle 

contractions and accounts for the improved utilization and clearance of glucose in 

diabetic rats (Ploug, Galbo, and Richter, 1984; Lehnen et al., 2010). FFAs, which inhibit 

glucose metabolism, were decreased with treadmill training in ZDF rats (Colombo et al., 

2005). Insulin sensitivity also improved with regular exercise in humans (Borghouts et 
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al., 1999). Glycemic control through exercise has an ancillary advantage of depressing 

oxidative stress and inflammation associated with diabetic heart disease.  

The delicate balance between pro- and anti-inflammatory cytokines can be 

maintained through exercise (Martin-Cordero et al., 2011; Cesar et al., 2011). 

Controversy about the rise in inflammatory cytokines exists in the literature regarding 

acute exercise (Ostrowski et al., 1998), because the amount of exercise can regulate 

the expression of inflammatory cytokines. Pro-inflammatory cytokines such as interferon 

gamma (IFN-γ), tumor necrosis factor (TNF)-α, IL-6, IL-4 and IL-1β are increased in 

plasma and serum under diabetic and/or sedentary conditions (Jankord and Jemiolo, 

2004; Pischon et al., 2003; Colbert et al., 2004; Smith et al., 1999). Exercise training 

has been beneficial in restoring the equilibrium between pro- and anti- inflammatory 

regulation. Fourteen weeks of swimming reduced circulating TNF-α and IL-6 levels in 

ZDF animals (Teixeira de Lemos et al., 2009). Research has suggested that IL-10 and 

IL-1α counter the chronic inflammation observed with diabetes. The cardioprotective 

effects of exercise may be mediated primarily by IL-10 (Batista et al., 2009). 

Obesity is an independent risk factor for heart disease, but obesity and T2D 

typically coexist (Yeung et al., 2011). The increased fat mass can have negative 

influences on oxidative stress, glucose metabolism, and inflammation (Ong et al., 2011; 

Goossens et al., 2011). Regular exercise is a proven intervention for weight 

management (Wong et al., 2011) and obesity related complications, including diabetes 

(Balducci et al., 2006; Bidasee et al., 2008; Bweir et al., 2009). A moderate amount of 

exercise can lessen one’s risk of developing T2D and control the progression of the 

disease (Church, 2011; Psaltopoulou, Ilias, and Alevizaki, 2010). The Look Ahead trial 
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reported improvements in glycemic control and an 8.8% weight loss with an average of 

175 minutes per week of aerobic exercise over 1 year.(Belalcazar et al., 2010; Solomon 

et al., 2010). Even exercise without weight loss has proven beneficial because the 

increase in muscle mass and decrease in fat mass can be cardioprotective (Lee et al., 

2005). Exercise has a positive impact on weight management and other metabolic 

disturbances related to diabetes. 

1.7.2 Exercise training can reduce myocardial fibrosis 

Exercise can reduce the accumulation of collagen and fibrotic appearance of the 

myocardial interstitium. In an alloxan model of T1D in Wistar rats, 8 weeks of swimming 

one hour per day decreased the deposition of collagen I and III (Castellar et al., 2011). 

Nine weeks of treadmill training reduced the cross-sectional surface area of collagen 

fibers in a STZ animal study (Searls et al., 2004). However, habitual exercise of STZ 

rats had no impact on myocardial collagen fluorescence, an indication of the amount of 

collagen in the tissues, but did attenuate myocardial stiffness (Woodiwiss, Kalk, and 

Norton, 1996). These investigations indicate that exercise can reduce collagen 

deposition, myocardial fibrosis, and related cardiac dysfunction. 

1.7.3 Exercise can impact small vessel disease 

 Exercise can improve vascular function for those with diabetes. Increased 

exercise tolerance decreased myocardial infarction risk by 48% for person with diabetes 

(Pierre-Louis et al., 2010). The decline in ischemia may be due to improvements in the 

regulation of nitric oxide. Moderate levels of exercise in db/db mice enhanced nitric 

oxide bioavailability and vascular function (Moien-Afshari et al., 2008). Similar advances 

in vascular function have been observed in humans after 6 weeks of multi-modal 
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exercise training. Arterial compliance improved in both small and large arteries, and the 

authors speculated it was secondary to nitric oxide production (Mourot et al., 2009). A 

cross sectional study of persons with T1D revealed that increased physical activity 

levels have a positive correlation with small artery compliance (Mason et al., 2006). 

Exercise training can improve vascular function in persons with diabetes. 

1.7.4 Exercise training can reverse diabetic cardiac autonomic neuropathy 

Although exercise is commonly recommended as an intervention for diabetic 

complications, studies regarding the effect of exercise on DAN are limited due to 

concerns about abnormal responses and safety. Much of the literature has focused on 

the use of exercise as a screening tool for DAN (Bottini et al., 1995; Endo et al., 2000). 

However, a study evaluating 6 months of aerobic exercise training showed an 

improvement of RR intervals (heart rate) and HRV in T2D subjects (Pagkalos et al., 

2008). The benefits of exercise are duration dependent. Longer durations of training, 

such as 12 months of cycling and treadmill tasks, reversed autonomic dysregulation 

with improvements in HRV of T2D subjects (Sridhar et al., 2010). Although reports are 

minimal in number, early investigations have suggested that exercise has the potential 

to reverse or attenuate DAN. 

1.8 Myocardial Edema as a Possible Target of Exercise 

The benefits of exercise are attributed to changes in the circulatory or endocrine 

systems, such as normalization of blood glucose and insulin levels and improved 

circulation. Also, exercise can address obesity and the chronic inflammation commonly 

observed in persons with T2D. However, researchers must thoroughly identify and 

stratify all possible mechanism(s) of action for the treatment of diabetic heart 
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disease. One potential mechanism that has been completely overlooked is 

myocardial edema. Edema formation in the heart is a delicate balance between 

cardiac function, endothelial permeability, and the cardiac lymphatic system. 

1.8.1 Anatomy and physiology of the lymphatic system 

The body’s lymphatic system is a network of organs and vessels that parallel the 

venous system. Lymphatic organs include the thymus, bone marrow, spleen, lymph 

nodes, tonsils, and lymphoid follicles (von der Weid and Rainey, 2010). The conducting 

portion of the lymphatic system consists of capillaries, collectors, and large ducts that 

drain tissues regionally, ultimately leading to the thoracic or right lymphatic ducts. This 

network is responsible for transporting waste and immune cells along with removing 

interstitial fluid and macromolecules. As plasma escapes the vascular capillary into the 

interstitium, approximately 90% of it is reabsorbed by the vascular capillary and the 

remaining 10% is collected by the lymphatic capillary (Greitz, 2002). When the residual 

interstitial fluid enters the lymphatic capillary, it becomes lymph, which is a clear fluid, 

except in the digestive system where the addition of fats gives lymph a milky, white 

appearance.  

Lymphatic capillaries are open-ended, irregular, shaped vessels with a single 

layer of endothelium, anchoring filaments, and an incomplete basement membrane as 

shown in Figure 6. Anchoring filaments allow the gap junctions in the lymphatic 

capillaries to remain open under pressure for fluid and macromolecule removal (Witte et 

al., 2001). The lymphatic vessels are larger than vascular capillaries to allow for 

macromolecule filtration. The lymphatic capillaries join with larger vessels, the lymphatic 

collectors, which have smooth muscle and adventitia. Lymphatic pre-collectors appear 
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between superficial and deep layers of tissues and provide perpendicular access. As 

the lymphatic vessels become larger and form lymphatic ducts, an increase in the layers 

of smooth muscle and adventitia is observed.  

Figure 6 Lymphatic capillaries and lymph drainage (Jeltsch et al., 2003) 
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Figure 7 The lymphangion (Stucker, 2009) 

The lymphatic network is 

divided into sections drained by 

regional lymph nodes for filtering. 

Efferent lymphatic vessels transport 

the lymph to the node regions, 

depending on anatomical locations, 

through lymphatic collectors and/or 

ducts (Jussila and Alitalo, 2002). 

Within the lymphatic collectors and 

ducts are valves with each section 

identified as lymphangions (Mislin, 

1971), shown in Figure 7. 

Lymphangions are the “hearts” of the vessels, because the lymphatic system is not 

directly connected to the heart, but can respond to muscle contractions and arterial 

pulsations. Alpha-adrenergic sympathetic nerves mediate the lymphangion response. 

Regional vessel differences present in the response to interstitial pressure and flow 

demands. Flow mediated inhibition has been noted in the thoracic duct under chronic 

high lymph conditions including infections, inflammation, and diabetes (Miller, Ellis, and 

Hirsch, 1964; von der Weid and Muthuchamy, 2010). The thoracic and right lymphatic 

ducts empty into the subclavian veins; thereby making the lymphatic system an open 

system as observed in Figure 6. Obstructions, inflammation, and elevated venous 

pressure result in edema due to disruptions in lymphatic flow (Kline, Miller, and Katz, 

1963; von der Weid and Muthuchamy, 2010). The lymphatic system responds to 
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inflammation with dilation of vessels, expansion of lymph nodes, and compensatory 

lymphangiogenesis (Flister et al., 2010).  

1.8.2 The anatomy and physiology of the cardiac lymphatic system 

The cardiac lymphatic system imitates the network seen in the extremities and 

abdominal areas; however its system is more extensive due to the importance of proper 

cardiac function and flow. Early investigations of the cardiac lymphatic system indicated 

a possible connection with conduction due to its close proximity with the conduction 

apparatus (Miller, 1963). Cardiac lymphatic vessels drain the SA and atrioventricular 

(AV) nodes and the bundle of HIS. However, researchers have agreed that the 

primary role of the cardiac lymphatic system is fluid balance (Konuralp, Idiz, and 

Unal, 2001; Shimada et al., 1989). Unlike the vessels in the extremities, the majority of 

lymphatic vessels in the heart lack lymphangions and drainage occurs from the 

endocardium to the epicardium through the contractions (Shimada et al., 1989).   

At rest, the heart has a myocardial interstitial fluid pressure of approximately 15 

mmHg. With each contraction, myocardial pressures increase to approximately 120 

mmHg (Laine and Granger, 1985). The large pressure gradient allows each contraction 

to wring fluid from the base of the heart toward the apex. The endocardium has 

primarily lymphatic capillaries (Johnson and Blake, 1966). These vessels empty into the 

lymphatic pre-collectors located in the myocardium. The self-squeezing motion of the 

heart propels fluid to the surface of the heart, where lymphatic vessels are most 

abundant. Once lymph moves to the epicardium, it is transported in lymphatic vessels 

feeding into progressively larger vessels (Johnson and Blake, 1966). As shown in 

Figure 8, these larger vessels drain into posterior and anterior interventricular trunks 
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(PVT and AVT) and then into the left and right coronary channels (LCC and RCC). The 

coronary channels travel with the vascular system, the coronary veins. The lymphatic 

collectors merge into the primary cardiac lymphatic vessel, main supracardiac channel 

(MSC), which takes fluid to the pretracheal and/or cardiac nodes (CLN) located above 

the aortic arch. Nodes empty into the right lymphatic duct (RLD) draining into the 

venous angle formed by the subclavian vein (Sc V) and the internal jugular vein (IJV) 

(Miller, 1963; Nakamura and Rockson, 2008).   

Figure 8 The epicardial lymphatic system (Miller, 1981). OMT is an obtuse marginal trunk, an 
accessory lymphatic vessel. Posterior and anterior interventricular trunks (PVT and AVT), left 
and right coronary channels (LCC and RCC), main supracardiac channel (MSC), cardiac lymph 
nodes (CLN), right lymphatic duct (RLD), subclavian vein (ScV) and the internal jugular vein 
(IJV) are outlined in the figure. 
 
1.8.3 Pathophysiology of myocardial edema  

Myocardial edema is an imbalance between vascular hyperpermeability, the 

quantity and function of lymphatic vessels, lymph flow, and cardiac function 

(Dongaonkar et al., 2010). Endothelial hyperpermeability of the vascular or lymphatic 

vessels (Huxley and Scallan, 2011) can increase the fluid and protein load in the 
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cardiac interstitium resulting in a significant protein gradient between interstitial and 

lymph fluid. Under normal conditions, the body would respond with a “washdown” to 

decrease interstitial protein concentrations. The washdown is an increase in fluid 

filtration into the interstitium causing enhanced protein uptake into the lymphatic vessels 

(Stewart et al., 2000). This protective mechanism can only occur when the myocardium 

is relaxed, as in diastole, so fluid can flow across the myocardium. Under diseased 

conditions, the myocardial lymphatic vessels cannot adequately absorb interstitial fluid. 

This inefficiency may result from decreased vessel density, hypertension, or diastolic 

dysfunction (Stewart et al., 2000). Edema is further exacerbated when the heart cannot 

adequately pump fluid toward the venous angle. As myocardial edema increases, 

myocardial pressures elevate and chronic dysfunction can result in concentric 

remodeling of the ventricle (Stewart et al., 1997).  

1.8.4 Myocardial edema and heart disease 

Although cardiac dysfunction can induce myocardial edema (Stewart et al., 

2000), myocardial edema can independently diminish diastolic and systolic 

function (Laine and Allen, 1991). Without proper flow, interstitial fluid can accumulate 

and decrease left ventricular compliance. A cycle of edema formation begins with the 

attraction of macrophages, free radicals, and cytokines. Chronic edema can promote 

interstitial fibrosis and permanent losses in ventricular compliance (Rubboli, Sobotka, 

and Euler, 1994; Kong, Kong, and Wang, 2006). Such remodeling results in decreased 

ventricular filling as seen with common LV diseases, diabetes and heart failure. 

Diastolic dysfunction can limit lymphangion contractions and the propulsion of lymph 

(Nakamura and Rockson, 2008), which can result in additional edema formation. 
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Changes in myocardial water content greater than 2% are associated with 

systolic dysfunction (Fischer et al., 2006). Edema resolution is dependent on systolic 

function because strong contractions are needed for lymph flow. The rate and force of 

contractions maintain fluid balance in the heart (Dongaonkar et al., 2010). Inefficient 

contractions cause lymphostasis (stagnation of lymph) and edema (Barsotti et al., 

1993).The edematous myocardium presents with decreased contractility and 

subsequent reductions in cardiac output. Although diastolic and systolic dysfunctions 

are common characteristics of diabetic heart disease, the identification of myocardial 

edema under the backdrop of diabetes is lacking from the current literature. 

1.8.5 Possible relationship between myocardial edema and diabetic heart disease 

 Myocardial edema can be caused by underlying, fundamental, and precipitating 

factors related to diabetes that span different biological levels. These three categories of 

factors are commonly used to describe the causes of heart failure (Dumitru, 2011) and 

provide a structure to discuss the possible relationship between myocardial edema and 

diabetic heart disease. Underlying factors are structural abnormalities in the vascular or 

lymphatic vessel that promote fluid imbalance. Biochemical or physiological changes in 

the myocardial interstitium or lymphatic system are the fundamental factors involved in 

myocardial edema formation. Precipitating factors are external factors, such as obesity 

and inflammation that could impede lymph flow and clearance. By investigating the 

three categories of factors, we chose to identify if diabetes creates an edematous 

state in the heart, which could account for the related ECG and hemodynamic 

changes observed in the diabetic heart disease of the ZDF rat. The results are 

described in Chapter 4.   
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1.8.5.1 Underlying factors  

Structural changes that can promote myocardial edema include endothelial 

permeability and vessel density. Vascular endothelial growth factor C (VEGF-C) is a 

disulfide-linked prepropeptide dimer that regulates endothelial permeability as a full 

length protein, but following proteolytic cleavage the ligand binds with VEGFR-3, its 

receptor, for lymphangiogenic signaling (Partanen and Paavonen, 2001). Diabetes has 

been shown to increase vascular permeability (Kivela et al., 2007) and decrease 

reabsorption through the vascular capillaries (Kumar et al., 2009). However, comparison 

of VEGF-C mRNA expression levels indicated no differences between diabetic and 

control skeletal muscle samples. (Kivela et al., 2007). VEGFR-3 is the receptor for 

VEGF-C. At embryonic day 10, VEGFR-3 activity switches from angiogenesis to 

lymphangiogenesis development and maintenance in normal mice. VEGFR-3 

expression is restricted to lymphatic vessels in the mature mouse and protein levels 

decrease with age (Laakkonen et al., 2007). However, the receptor can be reactivated 

with upregulation of its ligand, VEGF-C (Partanen and Paavonen, 2001) or as a 

response to inflammation. The mature VEGF-C binds to VEGFR-3 to promote 

lymphangiogenesis. In human skeletal muscle, VEGFR-3 mRNA levels mimicked 

VEGF-C levels (Kivela et al., 2007). No change in the ligand or receptor levels was 

observed under diabetic conditions. An examination of lymphatic vessels in skeletal 

muscle revealed no differences in the density between control and diabetic subjects 

(Kivela et al., 2007). The lack of change may have resulted from an insufficient diabetic 

lymphatic load, which did not trigger a response, or from a possible loss of 

lymphangiogenesis in the diabetic skeletal muscle. Although unknown for cardiac 
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tissue, the quantity of lymphatic vessels can be decreased under diabetic conditions as 

reported in evaluations of corneal wound healing in mice (Maruyama et al., 2007). The 

cornea is normally void of lymphatic vessels, which develop during wound healing under 

non-diabetic conditions. Lymphangiogenesis follows angiogenesis during wound healing 

(Cursiefen et al., 2006). The decline in lymphatic vessels in diabetic mice may be 

evidence of an impaired inflammatory response. Diabetes, causing vascular 

hyperpermeability, could increase the risk for myocardial edema. However, the 

evidence regarding the density of both mature and new lymphatic vessels is 

lacking. 

1.8.5.2 Fundamental factors  

 Diabetes related alterations in the physiology and biochemistry of the lymphatic 

system have been discussed in the literature. Vascular permeability has been shown to 

increase systemically due to hyperglycemia in a T1D animal model (Moriguchi et al., 

2005). The study also reported that lymph node activity was decreased in the diabetic 

rats, but the node uptake and lymph flow was improved with glycemic control (Moriguchi 

et al., 2005). In a study of 163 patients with T2D, lymphatic dysfunction or the 

decreased clearance of albumin was present in 72% of patients and the dysfunction 

was present before increased capillary permeability (Valensi et al., 1997). It is 

unknown whether lymphatic dysfunction occurs in the cardiac lymphatic system 

due to changes in the lymphangiogenic signaling pathway under diabetic 

conditions, which would maintain the structure and function of the system. 

PROX-1 is a homologue of the Drosophila homeobox gene prospero and its 

product, a transcription factor, has been reported as the master regulator of 
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lymphangiogenesis and development of the lymphatic system (Al-Rawi, Mansel, and 

Jiang, 2005). This transcription factor can regulate the expression of lymphatic vessel 

endothelial receptor 1(LYVE-1, see below in Section 1.8.5.3) and VEGFR-3 through 

PROX-1 nuclear translocation (Flister, Volk, and Ran, 2011) or possibly through 

NOTCH signaling (Shawber et al., 2007). The influence of diabetes on PROX-1 

expression and function has yet to be investigated. However, inflammation has been 

reported to have a direct effect on PROX-1, by limiting its nuclear translocation (Oka et 

al., 2008). PROX-1 activity is needed for lymphatic vessel development and stability 

(Wigle et al., 2002). The loss of PROX-1 control can result in declines of the LYVE-1 

and VEGFR-3 protein levels, which have direct implications for the structure and 

function of the lymphatic system (Wigle and Oliver, 1999).  

1.8.5.3 Precipitating factors  

 External factors associated with diabetes also increase the risk of myocardial 

edema. Obesity, inflammation, extracellular matrix quality, and cardiac functional 

changes interplay with structural and fundamental factors. Circulating AGE levels were 

elevated in obese db/db mice, contributing to endothelial dysfunction (Gao et al., 2008). 

The binding of AGE to the endothelium increased the microvascular hyperpermeability 

of endothelial cells in diabetic rats (Bonnardel-Phu et al., 1999). Endothelial function is 

further impaired by inflammation induced by hyaluronan fragments (Nanji et al., 1996). 

Hyaluronan is a primary component of the extracellular matrix. This glycosaminoglycan 

is removed from the interstitium by LYVE-1 and it is systematically elevated with 

diabetes (Lewis et al., 2008). Hyaluronidases are responsible for degrading hyaluronan 

into fragments with various molecular weights. Each fragment has a different function, 
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but most are pro-inflammatory and induce oxidative stress and/or endothelial 

dysfunction (Day and de la Motte, 2005). The fragments are removed by the lymphatic 

vessels and transported to the lymph nodes for degradation (Smedsrod, 1991). While 

the relationship between hyaluronan and diabetes has been investigated, studies 

regarding the role of LYVE-1 in diabetic heart disease have yet to be described in the 

literature. 

Finally, weak ventricular contractions limit the efficiency of edema resolution 

through the lymphatic system. Chronic edema is further exacerbated by diastolic and 

systolic dysfunction commonly seen with diabetes (Nakamura and Rockson, 2008). 

Currently, pharmaceutical treatments are limited to address risk factors for myocardial 

edema, but exercise appears promising in addressing myocardial edema and lymphatic 

dysfunction. 

1.8.6 Exercise and the lymphatic system 

Dogma has supported the influence of exercise on circulation, but knowledge 

regarding its impact on vascular permeability and lymph transport is evolving. Exercise 

has been reported to increase microvascular filtration in normal populations (Charles et 

al., 2006). Exercise appears to also have a positive relationship to lymph flow (Knott et 

al., 2005). The lymphatic system responds to various modes and dosages of exercise. 

Upper extremity exercise increased lymphatic clearance in a dose dependent response 

in healthy humans (Lane et al., 2006). In canine models, increases in treadmill speeds 

resulted in significant rises in lymph flow rates (Downey et al., 2008; Knott et al., 2005) 

up to 419% higher than resting flow (Desai et al., 2010). Seated cycle ergometer 

exercise decreased transit time of lymph from the feet to the groin compared to 
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stationary standing in humans (Unno et al., 2008). A study of hyaluronan clearance, 

which is removed from the interstitium by the lymphatic system, showed elevated 

clearance with submaximal and moderate intensity bicycle ergometrical tasks 

(Hinghofer-Szalkay et al., 2002). Each of these studies suggested that exercise does 

improve lymph flow and nodal clearance. Biomechanical experiments revealed that 

when a muscle can reach its shortest length and maximum force production then lymph 

propulsion is most efficient. The lymphatic vessels dilate to accommodate the increased 

lymphatic flow induced by exercise (Kivela et al., 2007). Therefore, aerobic exercise 

may provide a non-invasive, simple intervention for increasing cardiac lymph flow and 

clearance, which could enhance cardiac function. Knowledge about the influence of 

exercise on molecular and structural components of the cardiac lymphatic 

system in general and in diabetes specifically has yet to be obtained and 

disseminated in the literature.  

1.9 Significance of the Proposed Work 

Aerobic exercise has been shown to delay or attenuate cardiac dysfunction in 

other animal models of T2D. An understanding of the exercise response of the ZDF rat 

is limited. Intervention discussions favor gluocoregulation as the primary benefit of 

exercise. However, exercise has an effect on several mechanisms and the 

cardioprotective benefits of exercise are the result of its ability to address the multi-

faceted nature of diabetic heart disease. We chose to investigate the impact of exercise 

on diabetic heart disease in the ZDF rat, and explore a novel mechanism. The 

objectives of the dissertation were to investigate the cardiac dysfunction in the 

ZDF model, report if aerobic exercise training can reverse the ECG and 
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hemodynamic changes induced by diabetes, and identify whether cardiac edema 

may be one of the contributing factors of diabetic heart disease. We hypothesized 

that ZDF rats develop cardiac dysfunction; aerobic exercise would attenuate the cardiac 

dysfunction; and myocardial edema would be present in this model as a possible 

contributor to diabetic heart disease. The subsequent chapters will report the findings of 

the following specific aims:  

Aim 1: To identify electrocardiographic changes induced by diabetes and determine the 

impact of exercise on these changes.  

Aim 2: To identify hemodynamic changes in the left ventricle induced by diabetes and 

determine the impact of exercise on these changes. 

 Aim 3: To identify clinical and subclinical signs of myocardial edema in left ventricular 

tissue induced by diabetes.  
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Chapter 2 

 

 

 

 

 

 

 

Electrocardiographic changes with the onset of diabetes and the impact of 

aerobic exercise training in the Zucker Diabetic Fatty (ZDF) rat 
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2.1 Abstract 

Background: Early markers of diabetic autonomic neuropathy (DAN) in an 

electrocardiogram (ECG) include elevated R wave amplitudes, widening of QTc intervals 

and decreased heart rate variability (HRV). The severity of DAN has a direct 

relationship with mortality risk. Aerobic exercise training is a common recommendation 

for the delay and possible reversal of cardiac dysfunction. Limited research exists on 

ECG measurements for the evaluation of aerobic exercise training in the Zucker 

Diabetic Fatty (ZDF) rat, a model of type 2 diabetes. The objective of this study was to 

assess whether aerobic exercise training may attenuate diabetes induced ECG 

changes.  

Methods: Male ZDF (obese fa/fa) and control Zucker (lean fa/+) rats were assigned to 4 

groups: sedentary control (SC), sedentary diabetic (SD), exercised control (EC) and 

exercised diabetic (ED). The exercised groups began 7 weeks of treadmill training after 

the development of diabetes in the ED group. Baseline (prior to the training) and 

termination measurements included body weight, heart weight, blood glucose and 

glycated hemoglobin levels, and ECG parameters. One way repeated measures 

ANOVA (group) was used to analyze within and between subject differences and 

interactions. Pearson coefficients and descriptive statistics described variable 

relationships and animal characteristics.  

Results and conclusion: Diabetes caused crucial changes in R wave amplitudes 

(p<0.001), HRV (p<0.01), QT intervals (p<0.001) and QTc intervals (p<0.001). R wave 

amplitude augmentation in SD rats from baseline to termination was ameliorated by 

exercise, resulting in R wave amplitude changes in ED animals similar to control rats. 
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Aerobic exercise training neither attenuated QT or QTc interval prolongation nor 

restored decreases in HRV in diabetic rats. This study revealed alterations in R wave 

amplitudes, HRV, QT and QTc intervals in ZDF rats. Of these changes, aerobic exercise 

training was able to correct R wave amplitude changes. In addition, exercise has 

beneficial effect in this diabetic rat model in regards to ECG correlates of left ventricular 

mass.
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2.2 Introduction 

Cardiovascular disease (CVD) accounts for the majority of deaths for people with 

type 2 diabetes mellitus. CVD is a broad term which includes any condition causing 

pathological changes in blood vessels, cardiac muscle or valves, and cardiac rhythm. 

The electrocardiogram (ECG) offers a quick, non-invasive clinical and research 

screening tool for the early detection of CVD. 

Electrocardiographic changes in raw and corrected QT intervals and R wave 

amplitudes are early indicators of evolving CVD and increased risk of 

cardiovascular events. Prolonged QT and QTc intervals are considered reliable 

predictors of heart disease and fatal ventricular arrhythmias (Cardoso, Salles, and 

Deccache, 2003; Christensen et al., 2000; Gorodeski et al., 2009). A positive linear 

relationship exists between QTc interval prolongation and diabetic cardiac autonomic 

neuropathy (DAN) severity in the diabetic population (Mathur, 2006). Heart rate 

variability (HRV), one indicator of DAN, decreases with diabetes, which indicates 

increased mortality risk (Schroeder et al., 2005). QT and QTc interval abnormalities 

reflect changes in cardiac architecture. A positive correlation between QT or QTc 

interval prolongation and left ventricular (LV) mass has been reported (Davey, Barlow, 

and Hart, 2000; Oikarinen et al., 2001; Pshenichnikov et al., 2003). LV hypertrophy 

presents as exaggerated R wave amplitudes on ECG recordings. Elevated R wave 

amplitudes are an independent risk factor for cardiovascular events (Nakamura et al., 

2006). LV hypertrophy and QT interval alterations coupled with decreased cardiac 

function are commonly observed with diabetes related CVD (Zhang et al., 1999). 
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Non pharmacological interventions for CVD focus primarily on lifestyle changes 

with physical activity as the primary focus and as a risk reduction strategy. Physical 

activity reduces QTc interval prolongation and cardiac dysfunction in healthy subjects 

(Genovesi et al., 2007; Perhonen et al., 2006). Exercise lowers heart rate and increases 

HRV in healthy and diseased populations (Sandercock, Bromley, and Brodie, 2005; 

Tuomainen et al., 2005). Physical activity can serve as a potent prescription in the 

delay and attenuation of the CVD complications for persons with type 2 diabetes 

(T2D), but additional comparative studies are needed regarding the cardiac response to 

exercise under diabetic conditions at various time points of the disease. 

The Zucker Diabetic Fatty (ZDF) rat is a model of T2D. The ZDF rat develops 

hyperglycemia and hyperlipidemia by week 8 and overt diabetes by week 12. The 

progression mimics the obesity-related insulin resistance and inflammation seen in 

humans (Leonard et al., 2005; Schmidt et al., 2003). The ZDF rat is commonly used to 

investigate the prevention of diabetes; however, research characterizing diabetic heart 

disease in the model including ECG studies is limited. We hypothesized that ECG 

changes occur in ZDF rats early in the disease process and that aerobic exercise 

training will alleviate these changes. We detected changes in ECG parameters that 

were partially corrected by exercise training. Our findings add to the characterization of 

the ZDF model for studying T2D effects on the heart and explore the benefits of an early 

exercise intervention in the presentation and progression of diabetes related CVD. 
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2.3 Methods 

2.3.1 Animals 

Male Zucker Diabetic Fatty (fa/fa) rats of 11 weeks of age were utilized for this 

study. Male lean, age-matched Zucker (fa/+) rats (both from Charles River Laboratory, 

Saint Louis, MO) served as non-diabetic controls. The animals were allowed food and 

water ad libitum and were placed on a 12:12 light-dark cycle. As per vendor’s 

recommendations, the animals were fed Purina 5008 diet during the entire study for the 

development of a disease process resembling T2D and its complications. All animal 

procedures were performed according to the University of Kansas Medical Center 

Institutional Animal Care and Use Committee guidelines and an approved Animal Care 

and Use Protocol. 

2.3.2 Measurements 

Body weights and blood glucose levels were measured weekly on all animals. 

Blood glucose levels were determined from rat tail blood samples using the Accu-Check 

Active meter (Roche Diagnostics, Indianapolis, IN). Glycated hemoglobin (HbA1c) 

levels were measured at the end of the experiment using an antibody-based A1cNow 

meter (Metrika, Sunnyvale, CA). When rats had blood glucose or HbA1c levels higher 

above the range of detection for the method utilized, the highest detectable value (600 

mmol/L or 13%, respectively) was used in the statistical analyses. Animals were killed 

within 36 hours of the last exercise training episode. 

2.3.3 Aerobic exercise training 

The rats started a treadmill exercise program at 12 weeks of age, immediately 

after the onset of diabetes, and continued exercising for 7 weeks. Four groups of rats 
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were used: sedentary control (SC, n=12), sedentary diabetic (SD, n=10), exercised 

control (EC, n=10), and exercised diabetic (ED, n=12). The exercise training protocol 

has been used by our group previously for a rat model of type 1 diabetes (TID) (Searls 

et al., 2004) and was adapted for the obese diabetic rats as they were unable to 

perform at that intensity level. During the first week of exercise training, the animals ran 

at 10 m/min initially at 10 min per day and increasing to 40 min per day by the end of 

the week. The progression allowed the rats to acclimate to the treadmill during the first 

five training days. Starting at week two and until the completion of the exercise training 

session the rats ran at 15 m/min, for 40 minutes, 5 days per week. To accommodate for 

the disease progression in the diabetic rats, any animals showing signs of fatigue were 

allowed breaks of a few minutes until they were able to continue, for a total run time of 

40 min per day. All rats assigned to the exercise groups completed the exercise training 

protocol. 

2.3.4 Electrocardiogram (ECG) assessment 

Animals received ketamine (60 mg/kg) and xylazine (7 mg/kg) prior to the resting 

ECG recording. ECG leads I, II, III, aVR, aVL, aVF were recorded with surface 

electrodes (ADInstruments, Colorado Springs, CO). Measurements were collected at 

baseline, prior to training, and after 7 weeks of exercise training. The mean value for 

each rat was obtained from four measurements consisting of four consecutive cardiac 

cycles using LabChart software (ADInstruments, Colorado Springs, CO). Corrected QT 

(QTC) was calculated with mean values and the Bazett's formula,QTc = QT Interval / √ 

(RR interval (Heffernan, Jae, and Fernhall, 2007). The heart rate (bpm) for each animal 
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was calculated by dividing 60 by the mean RR interval. HRV was calculated as the 

standard deviation of the RR intervals. 

2.3.5 Statistical analysis 

Descriptive statistical analyses were performed on animals’ means for each 

group. One way repeated measures ANOVA (group) was used to analyze within and 

between subject differences and interactions. Single time point measurements or 

change scores were completed with one way ANOVA (group) with Least Significant 

Difference (LSD) post-hoc analysis. Pearson correlations were utilized to assess 

relationships between variables. Partial eta squared values are reported for the 

proportion of total variability attributed to a factor. Statistics were conducted with PASW 

Version 17 software (SPSS Inc, Chicago, IL, USA). Significance was defined at p<0.05.  

Results are presented as means ± standard errors (SEs). The effect size of baseline 

body weights was large with Cohen’s d = 2.8 and power was greater than 90% with 

sample sizes of 10-12 per group. 

2.4 Results 

2.4.1 Animal characteristics 

A summary of animal characteristics is reported in Table 1 and weekly body 

weights are plotted in Figure 1. A significant difference in body weight between diabetic 

and control animals was observed at both baseline and termination time points, 

F(3,40)=19.37; p<0.001. The mean difference between baseline and termination body 

weights indicated that control animals gained approximately 14% of their baseline body 

weights compared to a 5% gain for diabetic animals (p<0.001). Diabetic animals 

outweighed their control counterparts by 9-12% at termination even with the 
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discrepancy in weight gain. Although ED rats weighed less than SD animals at the 

termination, the ED rats were significantly heavier than SC and EC animals (p=0.016 

and p<0.001, respectively). However, aging  accounted for 64% of the variance in body 

weights as evidenced by average weight gains of 16-57 grams in all animal groups, 

F(1,39)=71.29; p<0.001. 
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Figure 1 Weekly mean body weight measurements. Data are means ± SEs for each group 
with n=12 for sedentary diabetic (SD) and exercised control (EC); and n=10 for sedentary 
control (SC) and exercise diabetic (ED) rats. 
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A moderate relationship between body weight and blood glucose levels existed 

at both baseline, r(44)=0.56; p<0.001 and termination, r(44)=0.41; p<0.01. The main 

effect of the group on blood glucose levels was modified by aging, F(1,39)=3.02; 

p<0.04. Although all animals had an increase in blood glucose levels, ED animals had 

only a 10% change compared to the 21% change of SD rats. HbA1C levels were 

elevated in diabetic groups compared to control groups, F(3,40)=99.27; p<0.001. 

Exercise did not attenuate HbA1C levels in ED animals (p=0.92). Hyperglycemia is a 

factor in LV hypertrophy development and progression, but a correlation between 

HbA1C levels and heart weight/body weight ratios was not observed, r(44)=-0.17 

p=0.27. Heart weight/body weight ratios were similar for the animal groups, 

F(3,40)=1.39; p=0.26. 

 Sedentary Control 
(SC) n=10 

Sedentary Diabetic
(SD) n=12 

Exercised Control
(EC) n=12 

Exercised Diabetic
(ED) n=10 

Baseline Term Baseline Term Baseline Term Baseline Term
Body 
weight (g) 

326±13 381±13 409±34a,b,f 457±41a,b,f 309±30c,f 366±22c,f 374±24b,c,e 390±23b,c 

Blood 
glucose 
(mmol/L) 

115±9 145±9 433±144a,f 579±35a,f 111±11c,f 156±12c,f 491±136c 584±22c,e 

HbA1c 
(%) 

ND 4.2±0.3 ND 13.0±0.0a,f ND 4.7±0.3c,d,f ND 13.0±0.0c,e 

Heart rate 
(bpm) 

355±148 416±190 393±68a,f 423±84 358±139c,f 408±100 397±73c,e 413±81

Heart 
weight (g) 

1.24±0.12 1.29±0.09f 1.15±0.08d,f 1.22±0.10 

Heart 
weight/ 
Body 
weight 
(mg/g) 

3.27±0.04 3.02±0.03 3.16±0.02 3.09±0.03 

Table 1 Animal characteristics at baseline and termination. Data are means ± SEs for each 
group with n as indicated. Statistical significance: Between group differences at baseline or 
termination (term) of p≤0.05; ND – not determined; aSC vs SD, bSD vs ED, cEC vs ED, dSC vs 
EC, eSC vs ED and fSD vs EC. 
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2.4.2 ECG wave amplitudes 

2.4.2.1 R wave amplitude 

R wave amplitudes were similar for groups at baseline except for the SD groups, 

F(3,40)=15.16, p<0.001. Therefore, statistical analyses used the change value for R 

wave amplitude to account for the difference at baseline. Gains in R wave amplitudes 

from baseline to termination of the experiment were only observed in the SD animals as 

reported in Figure 2. The SD rats had a 17% increase in R wave amplitude, suggesting 

left ventricular hypertrophy. A reduction in R wave amplitude was found in ED animals 

at termination. ED rats had change values similar to SC and EC animals, F(3,40)=4.13, 

p=0.84 and p=0.87.
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Figure 2 Mean R wave amplitude changes. Data are means ± SEs for each group with n=12 
for sedentary diabetic (SD) and exercised control (EC); and n=10 for sedentary control (SC) and 
exercise diabetic (ED) rats. aSC vs SD, bSD vs ED and fSD vs EC. 
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2.4.2.2 T wave amplitude 

Due to the significant differences between diabetic groups at baseline (Figure 3), 

we analyzed the change of T wave amplitudes from baseline to termination. T wave 

amplitudes changes were similar in the four groups, F(3,40)=1.81, p=0.16. 
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Figure 3 Mean T wave amplitudes. Data are means ± SEs for each group with n=12 for 
sedentary diabetic (SD) and exercised control (EC); and n=10 for sedentary control (SC) and 
exercise diabetic (ED) rat. bSD vs ED. 
 
2.4.2.3 P wave amplitude 

P wave amplitudes were similar between control and diabetic animals at baseline 

and termination, F(3,40)=0.40, p=0.99 (Figure 4). The amplitudes were decreased 
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between baseline and termination in all four animal groups, as evident by time 

modifying the group effect, F(1,40)=25.05, p<0.001. 
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Figure 4 Mean P wave amplitudes. Data are means ± SEs for each group with n=12 for 
sedentary diabetic (SD) and exercised control (EC); and n=10 for sedentary control (SC) and 
exercise diabetic (ED) rats. Statistical significance (p<0.001) between baseline and termination 
values was found in all four animal groups, but no difference observed between groups. 
 
2.4.3 ECG intervals 

2.4.3.1 RR intervals 

A significant shortening of RR intervals and increased heart rates was observed 

in SD group at baseline when compared to the SC group, F(1,38)=8.83, p<0.01 (Table 

2). At termination, only a trend toward tachycardia was observed SD animals compared 

to SC animals, F(3,36)=2.79, p=0.06. Exercise did not reverse the heart rate pattern for 
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diabetic animals, p=0.92. Table 2 shows that all animal groups had various levels of RR 

interval shortening at termination, age was not a statistically significant effect, 

F(1,38)=0.34, p=0.56. Decreased HRV was observed in all diabetic animals, sedentary 

and exercised, compared to control animals F(1,38)=1662.23, p<0.01. HRV was not 

improved with exercise, p=0.91 as calculated with the termination RR intervals of the 

ED animals. 

 
 Sedentary Control 

(SC) n=10 
Sedentary Diabetic 

(SD) n=12 
Exercised Control 

(EC) n=12 
Exercised Diabetic 

(ED) n=10 
Baseline Term Baseline Term Baseline Term Baseline Term 

RR 
interval 
(sec) 

0.195 
±0.077 

0.152 
±0.041 

0.158 
±0.033 

0.132 
±0.012 

0.191 
±0.073 

0.158 
±0.048 

0.157 
±0.036 

0.135 
±0.012 

QRS 
interval 
(sec) 

0.016 
±0.005 

0.022  
±0.002 

0.020 
±0.002a,f 

0.022 
±0.004 

0.016 
±0.004c,f 

0.023 
±0.003 

0.020 
±0.002c,e 

0.021 
±0.004 

QT 
interval 
(sec) 

0.043 
±0.012 

0.040 
±0.005 

0.064 
±0.013a,f 

0.051 
±0.012a,f 

0.045 
±0.012c,f 

0.041 
±0.006c,f 

0.062 
±0.011c,e

  

0.052 
±0.013c,e 

QTc 
interval 
(sec) 

0.105 
±0.043 

0.105 
±0.020 

0.163 
±0.033a,f 

0.134 
±0.034a,f 

0.111 
±0.043c,f 

0.106 
±0.018c,f 

0.159 
±0.026c,e 

0.134 
±0.037c,e 

PR 
interval 
(sec) 

0.032 
±0.010 

0.030 
±0.006 

0.045 
±0.011a,f 

0.034 
±0.008 

0.036 
±0.012c,f 

0.030 
±0.005 

0.046 
±0.011c,e 

0.034 
±0.009 

Table 2 ECG interval measurements. Data are means ± SEs for each group with n as 
indicated. Statistical significance: Between group differences at baseline or termination (term) of 
p≤0.05; aSC vs SD, cEC vs ED, eSC vs ED and fSD vs EC. 
 
2.4.3.2 QRS intervals 

Widening of QRS intervals, a sign of abnormal intraventricular conduction, was 

found at baseline in diabetic animals, F(3,40)=3.72, p<0.01 (Table 2). An 18% 

difference existed in the duration of QRS intervals between the SC and SD animals. At 

termination, QRS intervals increased 6-9% for SD animals in comparison to 27-29% 

increases in SC animals. These changes imply that aging interacted with the main effect 

of the group, F(1,41)=16.78, p<0.001 and accounted for 29% of the variability of QRS 

intervals at termination. Therefore, the difference between SC and SD animals at 
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baseline was lost at termination, F(3,40)=0.57, p=0.64. An impact of exercise on QRS 

intervals was not observed in the EC and ED animals. 

2.4.3.3 QT and QTc intervals 

SD animals presented with QT intervals (a measure of ventricular repolarization) 

31% wider than SC animals at baseline, F(3,40)=9.37, p<0.001 (Table 2). After 7 weeks 

of exercise, QT intervals in ED animals remained widened, F(3,40)=14.13, p=0.85. At 

termination, the difference between SC and SD animals decreased to 21%. Aging 

accounted for 20% of the variability in termination QT intervals, but the group effect of 

diabetes accounted for 51% of the variability. An interaction between aging and group 

factors was not significant, and QT intervals were not affected by exercise in control or 

diabetic animals, p=0.91 and p=0.61. 

QTc intervals (QT intervals corrected with RR intervals) were analyzed as a 

measure independent of heart rate. SD animals displayed significant widening of QTc 

intervals compared to SC animals, F(1,42)=10.58, p<0.001 (Table 2). Exercise did not 

attenuate the widening of QTc intervals in ED animals, p=0.66. Compared to QT 

intervals, aging accounted for 85% of the variability in QTc intervals and 43% was due to 

group effects at termination. The interaction between time and group was significant, 

F(3,40)=4.54, p<0.01. 

2.4.3.4 PR intervals 

Baseline measurements revealed significant prolongation of PR intervals in SD 

animals compared to SC animals, F(1,39)=5.40, p<0.01 (Table 2). At termination, the 

difference between groups was not observed, p=0.34. Exercise did not impact PR 

intervals in EC and ED animals. 
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2.5 Discussion 

CVD risk is increased up to four-fold in people with diabetes compared with their 

nondiabetic counterparts (Preis et al., 2009). Researchers are aggressively trying to 

identify early detection methods and explore the factors contributing to diabetes related 

heart disease. The ZDF rat model is routinely used to investigate physiological and 

molecular hypotheses regarding diabetes and its related complications. Reports are 

available indicating cardiac dysfunction in the ZDF rat established primarily with 

hemodynamic or echocardiographic measurements or through experiments on the 

isolated heart (Baynes and Murray, 2009; Boudina and Abel, 2007; Radovits et al., 

2009; van den Brom et al., 2010). However, limited information exists about the ECG 

changes that occur in the ZDF rat and its response to physical activity, specifically to 

aerobic exercise that is commonly recommended for those at risk or diagnosed with 

diabetes related heart disease (Chipkin, Klugh, and Chasan-Taber, 2001; Mizuno et al., 

2010). Our project aimed to address this gap in the current literature. 

2.5.1 Diminished heart rate variability in the ZDF rat 

Although we did not measure autonomic function directly, ECG indicators of 

autonomic dysfunction were observed in the ZDF rats at baseline with HRV alterations, 

tachycardia, and QT interval prolongation. Autonomic innervations control HRV and 

cardiac function through a delicate balance of sympathetic and parasympathetic 

responses. Diabetes stimulates the sympathetic nervous system initially, but prolonged 

exposure to hyperglycemia and elevated catecholamine levels cause a decrease in 

adrenergic receptors (Scott and Kench, 2004). As diabetes creates a sympathetic 

predominance, it also produces a corresponding parasympathetic imbalance by 
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denervation of the vagus nerve. Subclinical symptoms of DAN, primarily decreased 

HRV, are believed to appear in humans within one year of T2D diagnosis and clinical 

presentations may not emerge until years into the diagnosis (Vinik et al., 2003). 

Bergstrom et al identified symptoms of DAN in T1D patients with durations of diabetes 

as short as two months (Bergstrom, 2009). In our animal study, diminished HRV was 

noted in ECG recordings as early as within one week of diabetes onset for the ZDF 

rat. 

2.5.2 Tachycardia in the ZDF rat  

Clinical DAN symptoms include resting tachycardia, exercise intolerance, and 

orthostatic hypotension and heart rate syndromes (Vinik and Ziegler, 2007). 

Tachycardia was observed in diabetic animals at baseline, within a week of 

diabetes onset. Tachycardia is also a common finding in humans with uncontrolled 

diabetes (Kitabchi et al., 2006). Similarly, our animals were not treated for their 

hyperglycemia as evident by elevated blood glucose and HbA1C levels. The role of 

tachycardia is controversial because research indicates that it may be a diabetic 

complication or a causative factor of diabetes. Nagaya et al argue that elevated resting 

heart rates and systolic blood pressure increase the risk for T2D (Nagaya et al., 2010b).  

2.5.3 Prolonged QTc intervals in the ZDF rat 

Another study by the same group indicated that prolonged QTc intervals were 

also an independent risk factor for the development of diabetes (Nagaya et al., 2010a). 

Our analysis indicates that widening of QTc intervals was present with the onset of 

diabetes at twelve weeks of age in ZDF rats. Thus abnormalities of ventricular 

repolarization are present at an early stage of diabetes in this model. An earlier time 
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study would be useful to verify the presence of tachycardia and QTc interval 

prolongation during a pre-diabetic state. Of interest, several ECG parameters in our 

study showed an impact of aging in agreement with findings by others (Baynes and 

Murray, 2009) indicating cardiac and renal changes in the ZDF rat model with aging up 

to 36 months. 

2.5.4 Lack of P and T wave amplitude changes in the ZDF rat 

P wave amplitudes were unaffected with the onset of diabetes. Future studies 

need to investigate the relationship between the dispersion of the P wave and the onset 

of diabetes. Obesity is commonly linked to diabetes and is reported to increase the 

dispersion of the P wave (Seyfeli et al., 2006). PR intervals were widened in diabetic 

animals at baseline, but normalized at termination. PR intervals are commonly 

associated with atrial fibrillation (Homoud, 2009; Lorsheyd et al., 2005); however our 

ECG assessments of diabetic animals did not indicate atrial dysfunction. Diabetes and 

exercise appeared to have no effect on T wave amplitudes. T wave amplitudes were 

skewed at baseline and therefore change scores were used for analysis. However, the 

morphology of the T wave has been shown to have prognostic value for CVD, but not so 

for amplitude changes (Huang et al., 2009; Nair et al., 2008). 

2.5.5 The impact of exercise on electrocardiographic changes  

2.5.5.1 Exercise influences R wave amplitudes  

After seven weeks of aerobic exercise, ED animals showed R wave 

amplitudes comparable to control animals. Only SD animals had an increase in R 

wave amplitude. Hyperglycemia is associated with LV hypertrophy in type 2 diabetes 

(Goraksha-Hicks and Rathmell, 2009). The increase in R wave amplitude may indicate 
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a change in left ventricular mass. With diabetes, pathological hypertrophy results from 

myocardial damage and fibrosis (Fukui et al., 2009; Kannel, 1983; Seferovic et al., 

2007). Fibrosis affects the filling and contractility of the ventricles. Subsequently, cardiac 

dysfunction presents as decreased activity tolerance, ejection fraction,  and cardiac 

output resulting in  heart failure (Kannel, Levy, and Cupples, 1987).   

However, other factors can alter R wave amplitudes, including electrical axis 

deviations, altered electrodes position, and differences in chest wall thickness. Ideally, 

the ECG should be correlated with an echocardiography. Unfortunately, we were unable 

to use echocardiography, thus we recognize this as a limitation of our study. In 

analyzing other indicators of heart hypertrophy, we found no difference in the heart 

weight/body weight ratio in our study. Alternatively, the LV weight/tibial length ratio has 

been validated as an index of cardiac hypertrophy in mature rats (Yin et al., 1982). Due 

to the fact that the onset of diabetes in the ZDF rat occurs early in their age, we were 

restricted to using relatively young animals that were still in the latter stages of their 

growth phase. Thus, normalizing heart size to the changing tibial bone length during 

growth would not have provided an accurate index in our study. Darmellah et al 

reported that normalization of the heart weight per body weight or tibial length resulted 

in similar measurements of cardiac hypertrophy in Goto-Kakizaki animals, another rat 

model of T2D (Darmellah et al., 2007).  

Aerobic exercise did not impact the hyperglycemia in the ZDF rat. Exercise is 

postulated to improve glucose uptake and decrease lipid accumulation in persons with 

controlled diabetes, but the protective mechanism of exercise is lost if hyperglycemia 

persists (Sato et al., 2000). A comparative study of fenobirate and metformin validated 
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the role of lipid oxidation in the development and progression of diabetes related heart 

disease, with fenobirate decreasing triglycerides content and fibrosis in diabetic 

myocardium (Forcheron et al., 2009). The switch in myocardial substrate from glucose 

to fatty acids has been shown to result in systolic and diastolic dysfunction in the ZDF 

model (van den Brom et al., 2009). Exercise training has also been suggested to 

improve microcirculation through enhanced endothelial function (Erbs et al., 2010) by 

normalizing glycemic levels. However, the severity of diabetes will determine if the body 

can adapt to the demands of exercise or whether regional flow has already been 

compromised beyond recovery (Joshi et al., 2010). Microcirculatory disturbances or 

small vessel disease may lead to declines in myocardial blood flow which could 

influence ECG parameters (Cosyns et al., 2008). 

2.5.5.2 Exercise does not recover QTc interval prolongation 

A 31% difference in QT intervals was reported between SC and SD animals at 

baseline. We hypothesize that cardiac remodeling was already in the process in the SD 

rats when baseline measurements were taken, as evidenced by the presence of 

hyperglycemia and obesity in the ZDF cohorts. QTc intervals did not respond to 

exercise, but the chronic tachycardia shortened the intervals as a compensatory effect. 

Commonly, exercise may cause a decrease in heart rate and increased ventricular 

relaxation which presents as longer QT intervals. A study investigating the effects of a 

seven month endurance training program in dogs revealed an increase in QT intervals 

(Constable et al., 2000). Acute resistance exercise resulted in a similar effect on QTc 

intervals in humans. (Heffernan et al., 2008). Since our obese, diabetic animals were 

showing early signs of autonomic disturbance, exercise tolerance was lowered and 
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animals required frequent rest breaks during our training program. The mode and 

duration of exercise might not have been sufficient for QTc interval adaptation. In the 

future, we will investigate whether longer durations of exercise training can return heart 

rates to normal or restore HRV in diabetic animals. Pagkalos et al reported 

improvements in cardiac autonomic function with six months of aerobic exercise training 

(Pagkalos et al., 2008). Another alternative is to evaluate HRV during post-exercise 

recovery. Training may not affect resting HRV, but its benefits may be evident during 

the post-exercise recovery. This conclusion is supported by a study investigating 

cardiac autonomic function in women with and without diabetes (Figueroa et al., 2007). 

2.6 Conclusions 

In summary, our investigation showed that ECG alterations do occur with 

diabetes in the ZDF rat. These alterations include prolongation of the QTc interval and 

tachycardia which constitute important electrophysiological alterations in this animal 

model of diabetes. These modifications coupled with the high R wave amplitude 

illustrate the early cardiac anatomic and electrophysiological alterations in this diabetic 

model. After seven weeks of exercise training, R wave amplitude changes from baseline 

to termination were similar in both diabetic and control animals from baseline to 

termination. However, aging may have an impact on several ECG parameters and the 

ZDF model showed changes in atrial and ventricular conduction possibly due to an 

interaction of aging and group effects. Future studies are needed to investigate ECG 

changes in the ZDF model before the onset of diabetes which will provide additional 

information about the use of QTc intervals and HRV in the early detection of DAN. 
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Chapter 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Effects of aerobic exercise on left ventricular hemodynamics  

in Zucker diabetic fatty (ZDF) rats 
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3.1 Abstract 

Introduction: Diabetic heart disease has been described as a hybrid of diastolic and 

systolic dysfunction. Diastolic dysfunction is defined as decreased relaxation and filling 

of the ventricles. Reduced contractility and circulation are recognized as clinical 

manifestations of systolic dysfunction. Aerobic exercise has been suggested to have 

cardioprotective benefits, which delay or lessen the effects of diabetic heart disease. 

We aimed to characterize left ventricular hemodynamics in the Zucker Diabetic Fatty 

(ZDF) rat, a model of type 2 diabetes that resembles the human disease, and to 

evaluate changes induced by exercise training. 

Methods: Male ZDF and Zucker lean (control) rats were assigned to four groups: 

sedentary control (SC, n=16), sedentary diabetic (SD, n=18), exercised control (EC, 

n=12), and exercised diabetic (ED, n=10). Exercise training consisted of seven weeks of 

progressive running on a treadmill. Hemodynamic alterations were determined using left 

ventricular catheterization and analysis of pressure volume loop relationships. 

Results and conclusion: Of the 24 hemodynamic parameters tested, 15 were 

negatively affected by diabetes. The debility of diabetic heart disease was evident in the 

diastolic filling, isovolumic contraction, ejection, and isovolumic relaxation phases. 

Specifically, ventricular filling was impaired in SD rats with a 23% loss in end diastolic 

volume. dP/dtmax, an indicator of contractility, showed a 40% reduction while the ejection 

fraction was 8% lower in SD rats. In addition to compromised ventricular contraction, 

impaired relaxation was present in SD rats with dP/dtmin levels at 59% of those seen in 

controls. Importantly, exercise training restored 13 of the 15 hemodynamic parameters 

affected by diabetes. Specifically, training was beneficial for restoring end diastolic 
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volumes in ED rats. Exercise improved the velocity of the ventricular contraction, 

dP/dtmax, in the ED rats. Volumes at dP/dtmax were restored for ED rats to SC and EC 

levels. Exercise returned maximum pressure, end systolic volume, and end systolic 

pressure to levels of SC rats. Exercise recovered dP/dtmin for ED rats and related 

volumes to levels similar to control animals. We concluded that diastolic and systolic 

dysfunction was present in the ZDF rat model and that exercise had a definite 

cardioprotective effect on left ventricular hemodynamics in these diabetic rats. 
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3.2 Introduction 

Over 100 million people suffered from diabetes mellitus or prediabetes in the 

United States in the last year (ADA, 2011). Almost 95% of the diabetic cases were 

identified as type 2 diabetes (T2D). Stroke and heart disease were reported as the first 

and third leading causes, respectively, of mortality in the United States, for persons with 

T2D, and accounted for the majority of diabetes-related deaths (CDC, 2011a). Heart 

disease in persons with T2D has many concomitant illnesses (Kelly et al., 2009), which 

have normally eluded a single clinical diagnosis. Therefore, diabetic heart research has 

utilized animal models that have a similar fusion of cardiovascular diseases.  

The Zucker diabetic fatty (ZDF) rat has a phenotype that resembles the human 

progression of T2D and its complications. Diabetes in the ZDF rat correlates well with 

the obesity-related insulin resistance and inflammation seen in humans (Leonard et al., 

2005; Schmidt et al., 2003). The rats develop hyperglycemia and hyperlipidemia by 8 

weeks and overt diabetes by 12 weeks of age (Phillips et al., 1996). These metabolic 

disturbances become disastrous for the diabetic heart. Previous hemodynamic studies 

have shown decreases in heart rate and cardiac output along with signs of ventricular 

stiffness and diastolic dysfunction in the ZDF rat (Lavanchy, 2003; Radovits et al., 

2009). In addition, investigations have documented atherosclerosis (Blankenberg et al., 

2001; Vaskonen et al., 2002) and hypertension (Osmond et al., 2009) in the rodents. 

The existence of Impaired systolic function in ZDF rat remains debatable with reports of 

compensation in the early stages of the disease (Baynes and Murray, 2009). This 

complex interaction of cardiovascular diseases is similar to diabetic heart disease 

observed in humans. Consequently, the model has been established as ideal to 
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investigate diabetic heart disease and possible interventions (Clark, Palmer, and Shaw, 

1983; Golfman et al., 2005; Wang et al., 2005). However, the cardioprotective 

influence of exercise on hemodynamic parameters affected by diabetes in the 

ZDF rat model has not been reported. 

Exercise has been designated as one of the major tenets of the T2D treatment 

regimen (Creviston and Quinn, 2001; Schafer et al., 2007). An inverse relationship has 

existed between exercise and diabetic heart disease in humans with higher physical 

activity levels associated with lower cardiovascular risk (Haapanen et al., 1997). 

Metabolic disturbances, oxidative stress, and inflammation are reported to play a 

complex and coexistent role in the development and progression of the disease. 

Therefore, exercise has the potential to address many of the mechanisms responsible 

for diabetic heart disease. Exercise has been suggested to improve glucoregulation in 

humans (Kiraly et al., 2008). Animal studies indicate that exercise reduced inflammation 

(Teixeira de Lemos et al., 2009) and had a dose dependent impact on reducing 

oxidative stress (Fukai et al., 2000; Rush, Turk, and Laughlin, 2003). Our study was 

designed to test the hypothesis that the cardioprotective effects of physical exercise 

would attenuate left ventricular (LV) pressure volume changes seen in ZDF rats.  

3.3 Methods 

3.3.1 Animals 

Male ZDF (fa/fa) rats of 11 weeks were used in the study.  Age-matched male 

Zucker lean (fa/+) rats served as non-diabetic controls. Rats were purchased from 

Charles River Laboratory (Saint Louis, MO) and allowed one week for acclimation. The 

rats received husbandry services at the Laboratory Animal Resources facility at the 
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University of Kansas Medical Center. The rats were allowed food and water ad libitum 

and were maintained on a 12:12 light-dark cycle. As per vendor’s recommendations, the 

rats were fed Purina 5008 during the entire study, for the development of a disease 

process similar to T2D in humans. All animal procedures were performed according to 

the IACUC guidelines of the University of Kansas Medical Center.   

3.3.2 Aerobic exercise training 

Rats were divided into four groups: sedentary control (SC, n=16), sedentary 

diabetic (SD, n=18), exercised control (EC, n=12), and exercised diabetic (ED, n=10). 

Rats in the exercised groups were trained by running on a treadmill starting at 12 weeks 

of age, which is the beginning of diabetes progression. An endurance training protocol 

as described previously was used (VanHoose et al., 2010). Briefly, rats ran at 15 m/min, 

for 40 minutes, 5 days per week. In order to accommodate for diabetic rats showing 

signs of fatigue, breaks were given until the rested rats were able to continue for a total 

run time of 40 minutes per day. All rats assigned to the exercised groups completed the 

exercise training. 

3.3.3 Animal measurements and sample collection 

Body weights were recorded weekly on all rats. Blood samples were collected 

from the tail vein before the hemodynamic assessment. Blood glucose levels were 

assessed by a digital blood glucose meter (Accu-Chek Active, Roche Diagnostics, 

Indianapolis, IN). Hemoglobin A1C (HbA1C) levels were determined by a home 

evaluation unit (A1C Now At Home System, Bayers, Pittsburgh, PA). When rats had 

blood glucose or HbA1c levels higher than the range of detection by the method used, 

we performed the statistical analysis as described previously (Loganathan et al., 2007; 
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VanHoose et al., 2010).  Briefly, we used the highest detectable value for blood glucose 

(600 mmol/L) and HbA1C (13%) levels for statistical analyses. Blood ketone levels were 

assessed using test strips and the Precision Xtra meter (Roche Diagnostics, 

Indianapolis, IN). Urine ketones were measured with test strips (KetoDiastix, Bayers, 

Pittsburgh, PA) as the animal voluntarily voided. Rats were sacrified within 36 hours of 

the last exercise training episode. 

3.3.4 Left ventricular hemodynamic measurements 

Functional evaluation was performed using LV catheterization through the right 

carotid artery with a 2 French microtip pressure volume catheter  (Millar Instruments, 

Houston, TX) under ketamine and xylazine anesthesia (80 mg/Kg and 10 mg/Kg, 

respectively). Rat core temperatures were maintained at 37ºC with a heating lamp. 

Alligator clip electrodes were placed on the upper extremities and left lower extremity to 

monitor heart rate through electrocardiography during the procedure. A 4 cm long 

incision was made from the lower mandible extending to the sternum. The adipose 

tissue and salivary glands were secured to the sides with retractors. The muscles of the 

anterior neck region were cleared by blunt dissection to expose the right carotid artery. 

The vessel was ligated superior to the site of catheter entry. Subsequently, a loose 

inferior suture was applied, in addition to a metal clip close to the inferior suture. A fine 

incision was made close to the superior suture and the catheter was introduced gently 

through that incision. The metal clip was removed as the catheter slid past the inferior 

suture to enter the aorta. Then, the inferior suture was tightened around the catheter. 

The catheter was gently pushed to reach the chamber of the left ventricle, which was 

monitored by the appearance of the pressure volume loops on the computer monitor. 
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After allowing the pressure volume loops to stabilize for 3-5 minutes, steady state 

pressure volume loops were recorded at a sampling rate of 1000 samples per second 

using Millar Pressure Volume System (MPVS-400, ADInstruments, Colorado Springs, 

CO). After recording the measurements for approximately1 minute, the catheter was 

gently removed and the inferior suture was tightened. 

Cardiac Cycle  
Phase 

Hemodynamic Parameters

 Measured at the 
initiation 

Measured throughout 
the phase

Measured at the 
termination 

Diastolic filling Minimum pressure (Pmin)
Minimum volume

dV/dtmax

P@dV/dtmax

End diastolic volume
End diastolic pressure

Isovolumic 
contraction 

 dP/dtmax

P@dP/dtmax 
V@dP/dtmax 

dV/dtmin

 

Ejection  Maximum pressure 
(Pmax) 

 

End systolic volume
End systolic pressure 

 
Isovolumic 
relaxation 

 dP/dtmin

V@dP/dtmin 
 

 

Table 1 Hemodynamic parameters obtained from the left ventricular pressure volume 
relationship analysis.  The parameters are categorized based on the phases of the cardiac 
cycle. 
 

Table 1 specifies the hemodynamic parameters collected as they correspond to 

the cardiac cycle phases. These parameters along with 9 additional parameters (below) 

were extracted and analyzed using the Chart 5.0 software (ADInstruments, Colorado 

Springs, CO). On average, 10-20 loops per animal were used for analysis.  The 

additional parameters included heart rate, ejection fraction, arterial elastance, tau 

(based on the Weiss method), maximal power, and preload adjusted maximal power. 

The Weiss method calculated tau based on the regression of log of pressure versus 

time (Frais et al., 1990). To control for body weight differences, cardiac output, stroke 

volume and stroke work were normalized to body weight and reported as indices: 
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Cardiac Output Index (COI), Stroke Volume Index (SVI) and Stroke Work Index (SWI) 

(Jin et al., 2000). Calibration of the pressure volume catheter was performed per 

manufacturer’s instructions with hypertonic saline and fresh heparinized rat blood. A 

blood sample was taken from each animal group to calculate the formula for volume 

calibration.  

3.3.5 Statistical analysis 

One way ANOVAs (group) with Least Significant Difference (LSD) post-hoc 

analysis detected group differences in hemodynamic parameters. Statistics were 

conducted with PASW Version 18 software (IBM, Somers, NY). Significance was 

determined at p<0.05. Results are described as means ± standard errors (SEs). 

Pressure volume loops were not recorded for all rats due to death during the 

procedures or unstable waveforms. Only those rats with recordable pressure volume 

loops were included in the data analysis (SC, n=13; SD, n=14; EC, n=11; ED, n=8). 

3.4 Results 

3.4.1 Animal characteristics 

Diabetic rats, SD and ED, had higher body weights when compared to the control 

rats from the time the rodents developed diabetes at the age of 12 weeks (baseline) and 

throughout the seven weeks of diabetes duration. In Figure 1, SD rats weighed 22% 

more than SC rats, F(3,52)=40.31, p≤0.001, and 7% more than ED rats (p≤0.02) at 

baseline. SD rats were heavier than other groups throughout the experiment. At 

termination, at week 7, SD rats weighed 13% more than ED rats, F(3,52)=22.75, 

p≤0.001, reflecting the benefits of exercise on weight maintenance. However, increases 
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in body weight were observed in all rodents from baseline to termination. An interaction 

between age and animal group was recognized (p<0.001). 

Figure 1 Weekly rat body weights. Rats in the sedentary diabetic group had greater weekly 
body weights than the rats in the sedentary control and the exercised groups throughout the 
experiment. Sedentary control (SC, n=16), sedentary diabetes (SD, n=18), exercised control 
(EC, n=10), and exercised diabetes (ED, n=12). aSC vs SD, bSD vs ED, cSC vs ED, dEC vs ED. 
 

As expected, blood glucose and HbA1C levels were elevated in SD rats 

compared to the SC group, F(3,51)=154.02, p≤0.001 and F(3,47)=90.07, p≤0.001 

(Table 2). Blood ketones were not impacted by diabetes, F(3,41)=4.71, p=0.09. A 

descriptive analysis revealed no dissimilarity in urine ketones between SC and SD rats. 

Interestingly, the exercise regimen did not lower blood glucose or HbA1C levels (p=0.62 

and p=0.57, SD vs ED, respectively). No differences were noted in blood (p=0.76) or 
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urine ketones levels between SD and ED rats. These results indicate that while our 

exercise regime was beneficial in terms of body weight reduction, it did not impact 

metabolic status. 

 Sedentary 
Control (SC) 

Sedentary 
Diabetic (SD) 

Exercised 
Control (EC) 

Exercised 
Diabetic (ED) 

Number of rats 16 17 12 10

Blood Glucose, 
mg/dL 

180±17 565±15a 156±3d 551±33c,d

Hemoglobin 
A1C, % 

4.3±0.1 11.8±0.5a 4.7±0.1d 12.2±0.8c,d

Blood Ketones, 
mmol/L 

0.41±0.05 0.63±0.11 0.28±0.02d 0.67±0.11d

Urine Ketones, 
qualitative 

Negative Negative Negative Negative

Table 2 Rat characteristics. Rats in the SD and ED groups had indications of persistent 
hyperglycemia when compared to control rats. Exercise had no impact on hyperglycemia. aSC 
vs SD, cSC vs ED, dEC vs ED.  

 

Since a few reports have indicated that Zucker lean and ZDF rats may develop 

hydronephrosis (Baynes and Murray, 2009; Marsh et al., 2007; Vora et al., 1996) that 

affects cardiovascular function, we performed gross analysis of the kidneys of all rats in 

this study. We found evidence of hydronephrosis in only one ZDF rat from the SD 

group.  Data obtained on this rat were subsequently removed from the analysis. 

3.4.2 Left ventricular hemodynamics  

3.4.2.1 Pressure volume loop diagram analysis 

Pressure volume loops were graphed in Figure 2 with the mean values for each 

animal group that corresponded to the 4 major relationships within the cardiac cycle. 

The representative pressure volume loops show a leftward and downward shift for the 

SD rats. A decrease in ventricular volumes and pressures was observed in SD rats 

compared to SC rats. Stroke work is defined as the area inside the loop and 
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qualitatively SD rats had the lowest stroke work compared to the other groups. Aerobic 

exercise increased volumes and pressures for control and diabetic rodents, which was 

evident as the rightward and/or upward shift in the pressure volume loop. A comparison 

of the pressure volume loops from ED and SC rats showed striking similarities in 

pressures, volumes, and stroke work. EC rats had the greatest volume and stroke work 

of the four animal groups. 

Figure 2 Representative pressure volume loops collected from rats in sedentary and 
exercised control and sedentary and exercised diabetic groups. Sedentary diabetic rats 
had the lowest ventricular volumes and pressures compared to the other groups. Pressure 
volume loops were based on four relationship points (mean values): Point 1: Pmin and minimum 
volume; Point 2: End diastolic volume and pressure; Point 3: Pmax and the midpoint of end 
diastolic volume-minimum volume; Point 4: End systolic pressure and volume. Sedentary 
control (n=16), sedentary diabetes (n=17), exercised control (n=12), and exercised diabetes 
(n=10). 
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3.4.2.2 Selected measures of cardiac performance 

As depicted in Figure 3, bradycardia was observed in the SD rats, F(3,42)=4.78, 

p≤0.01, compared to SC rats, but heart rate was normalized with exercise training in 

diabetes (SD vs ED, p≤0.01). SVI, COI and SWI were lower for SD rats (p≤0.001) when 

compared to SC rats, F(3,42)=25.44, F(3,42)= 15.03, F(3,42)=23.11, respectively in 

Figures 4-6. After seven weeks of training, the ED group differed from the SD animals 

(p≤0.001), and had similar indices compared to the SC group (p=0.63, 0.98 and 0.99). 

In Table 3, no difference was observed in maximal power between SC and SD rats, 

F(3,42)=5.40, p=0.15. However, maximal power was two times higher in the ED rats 

(SD vs ED, p≥0.001). Preload adjusted maximal power was not affected by diabetes or 

exercise, F(3,42)=2.18, p=0.10. Peripheral arterial resistance was similar for the SC, SD 

and ED rats as evident by arterial elastance measurements, F(3,42)=3.77, p≥0.05.  
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Figure 3 Heart rate of rats in sedentary (SC, n=13) and exercised (EC, n=11) controls and 
sedentary (SD, n=14) and exercised diabetic (ED, n=8) groups collected at termination.  
Rats in the SD group had lower heart rates than the rats in the SC and the exercised groups. 
Exercise increased heart rate in diabetic rats. aSC vs SD, bSD vs ED. 
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Figure 4 SVI calculated from SV adjusted by rat body weight. Rats in the sedentary diabetic 
(SD, n=14) group had lower SVI than the rats in the sedentary control (SC, n=13) and the 
exercised control (EC, n=11) and diabetic (ED, n=8) groups. Exercise improved SVI in diabetic 
rats. aSC vs SD, bSD vs ED, dEC vs ED, eSC vs EC. 
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Figure 5 COI calculated from CO adjusted by rat body weight. Rats in the sedentary 
diabetic (SD, n=14) group had lower COI than the rats in the sedentary control (SC, n=13) and 
the exercised control (EC, n=11) and diabetic (ED, n=8) groups. Exercise had a positive effect 
on COI in diabetic rats. aSC vs SD, bSD vs ED. 
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Figure 6 SWI calculated from SW adjusted by rat body weight. Rats in the sedentary 
diabetic group (SD, n=14) had lower SWI than the rats in the sedentary control (SC, n=13) and 
the exercised control (EC, n=11) and diabetic (ED, n=8) groups. Exercise increased SWI in 
diabetic rats. aSC vs SD, bSD vs ED, dEC vs ED, eSC vs EC.
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 Sedentary 

Control 
(SC, n=13)

Sedentary 
Diabetic 

(SD, n=14)

Exercised 
Control 

(EC, n=11)

Exercised 
Diabetic 

(ED, n=8)
Maximal power, watts 42±4 30±5b 53±6 65±11b,c

Preload adjusted 
maximal power, watts 

10±0.8 13±2 9±0.8 16±8

Arterial elastance, 
mmHg/ul 

2.1±0.2 2.1±0.2 1.2±0.1d,e 2.0±0.3d

Table 3 Selected LV hemodynamic parameters of rats in sedentary (SC) and exercised 
(EC) control and sedentary (SD) and exercised diabetic (ED) groups. Maximal power, 
preload adjusted maximal power, and arterial elastance were not affected by diabetes. Maximal 
power was two times higher with exercise training. bSD vs ED, cSC vs ED, dEC vs ED, eSC vs 
EC.  
 

3.4.2.3 Diastolic filling  

After isovolumic relaxation, the Pmin of the left ventricle was similar for SD and SC 

rats as noted in Table 4, F(3,42)=1.50, p=0.23. Pmin indicates the relaxation state of the 

ventricle and a lower resting value would have allowed for greater diastolic filling. SD 

rats had a 21% decrease in resting volume (minimum volume, Figure 7) compared to 

the SC group, F(3,42)=6.38, p≤0.001. A loss of compliance in the diseased ventricle 

may have accounted for the decreased minimum volume. The rate of volume change, 

dV/dtmax, signifies the filling of ventricle over time and was comparable between SC and 

SD rats, F(3,42)=5.16, p=0.16, (Table 4). Changes in pressure during the interval were 

not different between SD and SC rats, F(3,42)=3.91, p=0.14. At the completion of filling, 

end diastolic pressures were unchanged by diabetes, F(3,42)=1.50; p=0.23. Diastolic 

dysfunction was observed in the SD rats with end diastolic volumes decreased by 23% 

as compared to SC rats, F(3,42)=11.26; p≤0.001, (Figure 8).  
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Table 4 Hemodynamic parameters related to rat LV diastolic filling. No difference was 
observed between SC and SD rats for either parameter. dEC vs ED, eSC vs EC. 
 
 

Figure 7 Rat LV minimum volumes.  A difference was observed in minimum volumes between 
sedentary control (SC, n=13) and sedentary diabetic (SD, n=14) rats. The exercised diabetic 
(ED, n=8) group had larger volumes than the SD group. ED rats had levels comparable to SC 
and exercised control (EC, n=11) rats. aSC vs SD, bSD vs ED. 
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Figure 8 Rat LV end diastolic pressures volumes.  A difference was observed in end 
diastolic pressures between sedentary control (SC, n=13) and sedentary diabetic (SD, n=14) 
rats. The exercised diabetic (ED, n=8) group had larger volumes than the SD group. ED rats 
had levels comparable to SC and exercised control (EC, n=11) rats aSC vs SD, bSD vs ED, eSC 
vs EC. 
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After 7 weeks of exercise training, no difference was observed in Pmin between 

SD and ED rats, (p=0.23, Table 4). A significant difference (p≤0.01) was observed 

between the minimum volumes of SD and ED rats (Figure 7). Table 4 shows that 

exercise influenced dV/dtmax values in EC rats (p<0.05), but no change was observed in 

ED rats (p=0.78). SC, SD and ED rats had similar dV/dtmax values (SC vs SD, p=0.16 

and SC vs ED, p=0.35). P@dV/dtmax was also comparable for SC, SD and ED rats (SC 

vs SD, p=0.14 and SC vs ED, p=0.11). Likewise, end diastolic pressures were 

unaffected by exercise (p=0.23) in diabetic rats. Figure 8 showed that exercise training 

had a restorative effect on end diastolic volumes, with ED ventricles having higher filling 

capacities compared to SD rats (p ≤0.001) and similar values to SC rats (p=0.81). Our 

results indicate that diastolic dysfunction is present at 19 weeks of age in the ZDF rats 

and 7 weeks of exercise training improved LV compliance as evident by increased end 

diastolic volumes.  

3.4.2.4 Isovolumic contraction  

The initial velocity of the ventricular contraction, dP/dtmax, an indicator of 

contractility is reported in Table 5. A 40% reduction in dP/dtmax was observed in SD rats 

as compared to SC rats, F(3,42)=12.12 p≤0.001, with lower volumes and pressures also 

at this measurement  (Figures 9-10). Calculated from the negative slope of the QRS 

wave, dV/dtmin values indicated no difference between SC and SD rats, F(3,42)=2.06, 

p=0.12.  

Exercise showed a trend toward providing compensation for decreased diabetic 

end diastolic volumes with increases in dP/dtmax, but lacked significance (p=0.07, Table 

5).  In Figure 9, a 24% difference was observed in volumes at dP/dtmax between SD and 
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ED groups (p ≤0.01). Exercise produced 21% increase in P@dP/dtmax in EC rats when 

compared to SD rats in Figure 10 (p≤0.05). In Table 5, exercise had no effect on the 

decay of the ventricular contraction (dV/dtmin, p=0.12) in control or diabetic rats.  

 
 Sedentary 

Control  
(SC, n=13) 

Sedentary 
Diabetic  

(SD, n=14)

Exercised 
Control  

(EC, n=11)

Exercised 
Diabetic  

(ED, n=8)
dP/dtmax, 
mmHg/sec 

9219±536 5591±456a 8022±248 6919±600c

dV/dtmin, ul/sec -4367±765 -3899±504 -5601±565 -5787±625
Table 5 Rat LV hemodynamic measures related to isovolumic contraction. No difference 
was observed between SC and SD rats for either parameter. aSC vs SD, cSC vs ED.
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Figure 9 Rat LV V@dP/dtmax. A difference was observed between sedentary control (SC, n=13) 
and sedentary diabetic (SD, n=14) rats. The exercised diabetic (ED, n=8) group had larger 
volumes than the SD group. ED rats had levels comparable to SC and exercised control (EC, 
n=11) rats. aSC vs SD, bSD vs ED, eSC vs EC.
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Figure 10 Rat LV P@dP/dtmax. A difference was observed in between sedentary control (SC, 
n=13) and sedentary diabetic (SD, n=14) rats. Exercised diabetic (ED, n=8) rats had higher 
pressure levels than the SD group. EC - exercised control (n=11). aSC vs SD, bSD vs ED, eSC 
vs EC. 
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3.4.2.5 Ejection  

After the isovolumic contraction, ventricular pressure quickly rises to push blood 

into the aorta. Maximum pressures in the SD left ventricles were significantly lower than 

SC rats, F(3,42)=5.45, p≤0.001, as measured by the highest point of the pressure 

volume loop (Figure 2) and presented  as Pmax values (Figure 11). As the ventricle 

completed the contraction phase, end systolic pressures and volumes were decreased 

18-19% in SD rats compared to control rats, F(3,42)=5.70, p≤0.01 and F(3,42)=4.85, 

p≤0.01 (Figures 12a-b). SD rats demonstrated lower ejection fractions (46±1%) 

compared to SC rats (50±0.9%), F(3,42)=5.32, p≤0.05.  

 Exercise improved cardiac function in diabetic rats through increases in Pmax. A 

17% increase was observed in ED rats compared to the SD group (p≤0.001, Figure 11). 

Exercise enhanced end systolic pressures and volumes (Figures 12a-b) compared to 

SD rats. Levels were similar to SC values (p= 0.69 and 0.87, respectively). Exercise did 

not improve ejection fraction in ED rats (49±6%, p=0.14). It appeared that exercise 

increased ventricular pressures and end systolic volume. However, these changes did 

not equate to improvements in ejection fractions. 
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Figure 11 Rat LV maximum pressure. Sedentary diabetic (SD, n=14) rats had the lowest 
maximum pressure values. Maximum pressures increased significantly for exercised diabetic 
(ED, n=8) rats. SC - sedentary control (n=13), EC - exercised control (n=11). aSC vs SD, bSD vs 
ED, eSC vs EC. 
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Figures 12 Rat LV end systolic pressures (a) and volumes (b). Sedentary diabetic (SD, 
n=14) rats showed reduced end systolic pressures and volumes. Exercise improved both 
measures for exercised diabetic (ED, n=8) rats. SC - sedentary control (n=13), EC - exercised 
control (n=11). aSC vs SD, bSD vs ED, dEC vs ED; eSC vs EC. 
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3.4.2.6 Isovolumic relaxation 

Impaired relaxation was present in SD rats with dP/dtmin levels 59% of those seen 

in the SC group, F(3,42)=4.45, p≤0.01 (Figure 13). Volumes at dP/dtmin were also 

reduced in the SD rats, (Figure 14), F(3,42)=5.44, p≤0.01. However, the isovolumic 

relaxation constant, tau, was similar across SC (24±5 msec) and SD(28±3 msec) 

groups, F(3,42)=0.25, p=0.86.  

A significant difference was observed in dP/dtmin (p≤0.05) and V@dP/dtmin 

(p≤0.001) between SD and ED groups. Tau values were unchanged with exercise in the 

ED cohort (26±6 msec, p=0.71).
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Figure 13 Rat LV dP/dtmin. Sedentary diabetic (SD, n=14) rats had lower values than sedentary 
control (SC, n=13) rats. Exercise restored levels in diabetes (ED, n=8) to that of SC and 
exercised control (EC, n=11) rats. aSC vs SD, bSD vs ED. 
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Figure 14 Rat LV V@dP/dtmin. Volume was decreased for sedentary diabetic (SD, n=14) rats 
compared to the sedentary control (SC, n=13) group. Exercise significantly improved the 
volume levels in diabetic (ED, n=8) rats. EC - exercised control (n=11). aSC vs SD, bSD vs ED. 
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3.4.2.7 dP/dtmax and end diastolic volume 
 

Due to the loading dependency of dP/dtmax, an assessment of the relationship 

between dP/dtmax and EDV was used to nullify the preload effect. Figure 15 summarizes 

the cardiac function of the four rat groups. The flat fit line of the SC rats indicates that 

the relationship between dP/dtmax and end diastolic volume was unpredictable and 

unrelated. The mean dP/dtmax value was 9219±526 mmHg/sec with a mean end 

diastolic volume of 305±14 µl. The SC rats demonstrated increased contractility to 

maintain cardiac function. SD rats were unable to compensate as shown by decreases 

in end diastolic volume (235±14 µl) and declines in dP/dtmax (5591±456 mmHg/sec). 

These findings suggested that SD rats had losses in systolic and diastolic function. The 

fit line indicated that 75% of variability in dP/dtmax was the result of the end diastolic 

volume. EC rats displayed the highest levels of cardiac efficiency with the highest mean 

end diastolic volume (354±9 µl) and lower contractility measures than other groups. 

Exercise in the diabetic group also improved diastolic and systolic function through the 

Frank-Starling mechanism with a rightward shift in volume measurements (311±13 µl). 

Contractility also improved in ED rats with mean dP/dtmax values of 6919±600 

mmHg/sec, which was higher than in SD rats. Our results supported the presence of 

systolic and diastolic dysfunction in the ZDF rat model and the protective benefits of 

exercise training on both components. 

  



99 
 

 
 
Figure 15 Rat dP/dtmax and end diastolic volume relationship. Sedentary diabetic (SD, n=14) 
rats had the lowest dP/dtmax and end diastolic volumes, which improved with exercise in the 
exercised diabetic (ED, n=8) rats. SC - sedentary control (n=13), EC - exercised control (n=11).  
 

3.5 Discussion 

Exercise training has proved to be a non-invasive intervention, which can 

attenuate the progression of diabetic heart disease. Diabetes had a negative impact 

on 15 of the 24 hemodynamic parameters evaluated in our study. Table 6 shows that 

exercise training restored 13 of those 15 hemodynamic parameters in our model. 

Our findings supported the hypothesis that exercise training could reduce pressure 

volume changes indicative of diabetic heart disease in the ZDF rat model.  
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Hemodynamic Parameters Affected by diabetes Improved with exercise
 

Heart rate Yes Yes 
SVI Yes Yes 
COI Yes Yes 
SWI Yes Yes 
Maximal power No   Yes* 
Preload adjusted maximal 
power 

No No 

Arterial elastance No No 
 

Diastolic filling 
 

Pmin No No 
Minimum volume Yes Yes 
dV/dtmax No No 
P@dV/dtmax No No 
End diastolic pressure No No 
End diastolic volume Yes Yes 

 
Isovolumic Contraction 

 
dP/dtmax Yes No 
P@dP/dtmax Yes Yes 
V@dP/dtmax Yes Yes 
dV/dtmin No No 

 
Ejection 

 
Pmax Yes Yes 
End systolic pressure Yes Yes 
End systolic volume Yes Yes 
Ejection fraction Yes No 

 
Isovolumic Relaxation 

 
dP/dtmin Yes Yes 
V@dP/dtmin Yes Yes 
Tau No No 
Table 6 Summary of results. Diabetes affected 15 of the 24 hemodynamic parameters. 
Exercise improved 13 of the 15 parameters. Exercise increased maximal power, although it was 
not affected by diabetes (*).  
 
3.5.1 The impact of exercise on diabetic bradycardia  

Frank-Starling’s law of the heart states that the normal heart will respond to 

pressure and volume overloads. Research has shown that the heart will adjust 
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hemodynamics to maintain cardiac output (Solaro, 2007). Autonomic regulation and 

contractility are the principal components of cardiac output. SD rats had lower heart 

rates compared to SC rats, which has been reported in other investigations of 19 week 

old ZDF rats (Shoghi et al., 2008). The low heart rate observed in the SD rats has 

been attributed to the sinoatrial node alterations associated with disease progression 

(De Angelis et al., 2000; Li, Culver, and Ren, 2003; Schafer et al., 2006). Changes in 

heart rate have also been identified in Zucker lean and ZDF rats from the ages of 12-24 

weeks indicating a possible effect of aging. However, an independent effect of diabetes 

on heart rate was also determined in that study (Cosson et al., 2009). Exercise training 

induced a tachycardiac response in ED rats possibly due to improved autonomic 

cardiac regulation (Souza et al., 2007). β1-adrenoceptor expression has been shown to 

increase in rat models of type 1 diabetes with exercise and to result in improved cardiac 

function (Bidasee et al., 2008; LaHaye, 2011). Our investigation revealed that exercise 

training returned heart rate in ZDF rats to control rat levels. The definite 

mechanism related to the cardioprotective effects of exercise on heart rate is still 

speculated in the literature.  

3.5.2 The impact of exercise on systolic function in diabetes 

Natural adjustments in ventricular pressures and volumes during the cardiac 

cycle are identified as possible resolutions for preserving cardiac function. In Figure 11, 

SC rats compensated for losses in stroke volumes with elevations of Pmax and increases 

in preload. This rightward shift of the pressure volume loop (Figure 2) of the SC rats 

demonstrates the ability to deliver a larger stroke volume, which maintained cardiac 

output. However, biochemical and morphological changes in the diabetic heart limited 
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cardioprotective adaptations to pressure and volume demands (Castoldi et al., 2010; 

Westermann et al., 2009). We observed a lack of compensation through the Frank-

Starling mechanism in the SD pressure volume loop with decays in systolic and diastolic 

measures, predominantly pressure values in the 19 week old rats (Figures 10, 11, 12a). 

Contrary to our findings, other authors have reported no difference in cardiac output 

between 9-11 week old ZDF and lean Zucker rats (Serpillon et al., 2009). An 

assessment of 16 and 36 week old ZDF rats showed adaptations in the stroke volume 

of 16 week old rats (Baynes and Murray, 2009). This compensatory mechanism was 

lost in the older rats (Baynes and Murray, 2009). Our results indicate that the diabetic 

heart could not maintain function via the Frank-Starling mechanism because the heart 

was incapable of producing the necessary pressures or contractility. The effect of 

diabetes on fractional shortening has been debated in the literature. Fractional 

shortening has not been observed in 18 week old ZDF rats (Shoghi et al., 2008), but 

was overt in 9 month old rats (Toblli et al., 2010). An inverse relationship between 

fractional shortening and the type 2 ryanodine receptor function has been described in 

the left ventricle of STZ rats (Shao et al., 2009). The ryanodine receptor is responsible 

for the release of calcium, which is needed for contractility (Fill and Copello, 2002). 

Altered calcium handling impaired preload and adaptive abilities in diabetic heart 

disease. Exercise training improved systolic function through type 2 ryanodine receptor 

stability and calcium utilization in diabetic rats (LaHaye, 2011; Shao et al., 2009). An 

analysis of the cardiac function of 8 month old ZDF rats also revealed reductions in 

contractility. These rats had significant declines in dP/dtmax compared to lean controls 

(Burgdorf et al., 2009). Exercise was able to return dP/dtmax values of the ED rats to 
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levels comparable to SC rats in our experiments. Our study indicates that stroke 

volume and contractility were impaired in 19 week old sedentary ZDF rats, but 

were improved with 7 weeks of treadmill training along with subsequent increases in 

cardiac output. 

3.5.3 The impact of exercise on diastolic function in diabetes 

Diastolic dysfunction is the earliest cardiac defect seen in diabetes, which is 

characterized by slower rates of myocardial relaxation and decreased compliance 

(Boudina and Abel, 2010; Lalande and Johnson, 2008). Diastolic changes with 

diabetes were noted in the current study as reductions in end diastolic volume 

and dP/dtmin (Figures 8 and 13). Morphological changes are evident in 11 week old 

ZDF rats as they  exhibited increases in LV diameter, which may be due to volume 

overload (Serpillon et al., 2009). Echocardiographic studies of ZDF rats of the same age 

(19 weeks old) reported no cardiac dilation based on measurements of inner diastolic 

diameters (Fredersdorf et al., 2004). However, other researchers have observed 

differences in inner diastolic diameter due to aging and diabetes in the ZDF and Zucker 

lean rats (Shoghi et al., 2008). A leftward shift in pressure volume loops (Figure 2) of 

the SD rats has been suggested to indicate poor ventricular filling (Villars et al., 2004). 

Impairments of dP/dtmin and tau have been reported in 37 week old ZDF rats without 

changes in end diastolic volumes and pressures (Schafer et al., 2006). This finding 

contradicted the reports of increases in end diastolic volumes and pressures in ZDF rats 

with aging (Baynes and Murray, 2009). The authors postulated that diastolic dysfunction 

may be contested by LV dilation, which presented as increases in end diastolic volumes 

and pressures in the ZDF rat (Baynes and Murray, 2009). The seven week aerobic 
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exercise training regimen in our study did reverse diastolic debilities in our model 

as shown by 30% improvement in end diastolic volumes.  

3.5.4 Mechanisms of diabetic heart disease and possible exercise targets 

Many factors are associated with diastolic dysfunction in the ZDF rat, but a single 

causative factor has yet to be determined and is probably unrealistic due to the 

complexity of the disease. Hyperglycemia has been reported as the primary trigger for 

ventricular remodeling and dysfunction (Rodrigues, Cam, and McNeill, 1998). Glucose 

dysregulation in diabetes may be the result of poor protein kinase B regulation in the 

myocardium (Lajoie et al., 2004). Phosphorylation of protein kinase B was partially 

improved with 13 weeks of swimming in the ZDF rat. Exercise improved glycemic 

control (Lajoie et al., 2004), which could delay cardiac deficits and remodeling, however 

the study did not address cardiac function of the rats. In our model, we did not observe 

changes in hyperglycemia for the ED rats although the beneficial effect of exercise on 

heart performance was evident.  

 Myocardial wall thickness and fibrosis may have attenuated the lusitropic or 

relaxation ability of the diseased ventricles in our rats as reported in other studies 

(Shoghi et al., 2008; Toblli et al., 2010). Increased collagen I deposition and 

perivascular fibrosis has been reported in the myocardium of 19 week old ZDF rats 

(Fredersdorf et al., 2004). Similar accumulations of collagen I and III have been 

described in cardiac muscle from 9 month old ZDF rats compared to lean controls 

(Toblli et al., 2010). Cardiomyocyte diameters are also widened according to histological 

assessments (Fredersdorf et al., 2004). However, aging has been associated with 

increases in left ventricular mass in 19 week old lean and ZDF rats. A difference 
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between control and diabetic heart weights was not reported for ZDF rats at 19 weeks 

of age (Shoghi et al., 2008).  

Pressure volume loop analysis has been widely used for collecting in vivo left 

ventricular hemodynamic parameters. Although peripheral resistance was similar across 

SC and SD animal groups, hyperglycemia could increase oxidative stress leading to 

endothelial dysfunction of coronary vasculature (Fatehi-Hassanabad, Chan, and 

Furman, 2010; Wong et al., 2010). Therefore, direct measurements of peripheral 

vasculature changes in the ZDF rat model due to exercise should also be investigated 

in future studies. The cross-sectional design of the study limited the outcomes and 

knowledge of early diabetic heart disease and the cardioprotective effects of an 

exercise program. However, our study was the first to investigate and identify 

improvements in pressure volume relationships with exercise in the ZDF rat 

model. Additional explorations are needed to identify the mechanism(s) by which 

exercise training improved cardiac function. 

3.6 Conclusion 

This study shows that exercise can alleviate some of the detrimental functional 

changes that occur in the diabetic heart in a rat model of T2D. Aerobic exercise proved 

successful in reversing the negative impact of diabetes in 13 of 15 left ventricular 

hemodynamic parameters altered by diabetes. The restorative impact of aerobic 

exercise addressed the systolic and diastolic function commonly seen in diabetic heart 

disease.  
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Chapter 4 

 
 
 
 
 
 
 
 
 
 
 

Does myocardial fluid imbalance leading to edema exist  
in the Zucker diabetic fatty (ZDF) rat? A hierarchical analysis 
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4.1 Abstract 
 
Introduction: Myocardial edema has been suggested as a trigger for the development 

and progression of cardiovascular diseases. Myocardial fluid imbalances have been 

implicated in the fibrosis and hypertrophy associated with common cardiovascular 

diseases. Diabetic heart disease is one of the primary complications of type 2 diabetes 

(T2D) and accounts for a significant proportion of diabetes related deaths. However, it is 

unknown if diabetes causes myocardial edema. Increased vascular permeability has 

been observed in humans and animals with diabetes through quantification of vascular 

endothelial growth factor C (VEGF-C). Little is known about the impact of diabetes on 

the lymphatic system, including effects on the principal receptors, VEGFR-3 and 

lymphatic endothelial receptor 1, LYVE-1. These receptors are responsible for the 

binding of their respective ligands, VEGF-C and hyaluronan. The expression of both 

receptors is regulated by prospero homeobox protein 1 (PROX-1). Through the PROX-1 

signaling pathway, the cardiac lymphatic system maintains cardiac fluid homeostasis. 

We chose to investigate whether myocardial edema was present in the Zucker diabetic 

fatty (ZDF) rat through a hierarchical analysis of factors directly and indirectly 

suggestive of myocardial fluid imbalance. 

Methods: Male ZDF and Zucker lean (control) rats were assigned to two groups. By 12 

weeks of age, this animal model is characterized by marked hyperphagia, obesity, 

hyperlipidemia, polyuria, and polydipsia similar to the type 2 diabetes seen in humans. 

At the organismal level, we measured body weight and analyzed systemic inflammatory 

cytokine levels with a multiplex bead immunoassay. Hemodynamic alterations were 

determined using left ventricular catheterization and analysis of pressure volume 
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relationships for alterations at the organ level. We determined left ventricle dry weight to 

wet weight ratios for further identification of myocardial edema. Subsequently, we 

explored myocardial edema at the tissue level with measurements of lymphatic vessel 

area and levels of VEGF-C and hyaluronan in left ventricular (LV) tissue using ELISA. 

Finally, we explored the lymphatic signaling pathway by analyzing mRNA and protein 

levels of VEGFR-3, LYVE-1, and PROX-1 with quantitative RT-PCR and 

immunoblotting, respectively. We also determined localization of the lymphatic 

transcription factor, PROX-1, and examined its DNA binding activity utilizing a 

transcription factor filter plate assay. 

Results and Conclusion: We did not observe changes in ventricular weights, a direct 

measure of myocardial edema, or alterations in the levels of VEGF-C, VEGFR-3, LYVE-

1, or hyaluronan. However, we were able to observe systemic changes in plasma 

interleukin (IL)-2 levels, reductions in dP/dtmax, increases in lymphatic vessel area, and 

changes in PROX-1 protein levels and DNA binding activity that were suggestive of the 

presence of myocardial edema in the ZDF rat. However, these alterations are indirect 

measures of myocardial edema. Therefore we conclude that in the 19 week old ZDF rat, 

myocardial edema is not evident and may not play a role in the diabetic heart disease 

associated with this model.  
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4.2 Introduction 
 

The heart depends heavily on complex, biological exchanges for fluid 

homeostasis. Subtle alterations in microvascular permeability can lead to fluid 

accumulation and possibly cardiac dysfunction and arrhythmias (Laine and Allen, 1991). 

Hyperpermeability and edema on a cellular level can impact tissue architecture and 

behavior that can initiate a spiral of devastating events on higher organizational levels 

(Miller, 1985). Recent literature has suggested that myocardial edema may play a 

role in heart disease (Miller, 2011; Nakamura and Rockson, 2008). Diabetic heart 

disease is the primary cause of death for persons with type 2 diabetes (T2D) (ADA, 

2011). Multiple mechanisms have been identified in the development and progression of 

diabetic heart disease. Hyperglycemia and its related complications including oxidative 

stress (Gwechenberger et al., 1999) and impaired calcium handling (Mohamad, Askar, 

and Hafez, 2011), are implicated in the hypertrophy, contractility deficits, and impaired 

relaxation of the ventricles. Systolic and diastolic dysfunction can result in poor cardiac 

performance, physical activity declines, and fatal myocardial events (Abe et al., 2002; 

Alvarez et al., 2004; Artenie et al., 2003). These poor health outcomes have 

investigators aggressively exploring mechanisms and possible interventions. Therefore, 

research is needed to identify if myocardial edema may be a novel target for the 

prevention and attenuation of diabetic heart disease.  

Myocardial edema can result from structural and biochemical changes in the 

cardiac vascular and lymphatic systems (Laine and Granger, 1985; Miller, 1985). 

Diabetes has been associated with leaky blood vessels due to increases in vascular 

endothelial growth factor C (VEGF-C) (Kivela et al., 2007). VEGF-C is normally 
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removed from the interstitium by its receptor VEGFR-3, whose expression is regulated 

by prospero homeobox protein 1 (PROX-1), a lymphatic transcription factor (Partanen 

and Paavonen, 2001). It is unknown whether diabetes disrupts this defense mechanism 

and thereby provides an impetus for myocardial edema. External stresses, such as 

obesity, inflammation, and cardiac dysfunction (Laine and Allen, 1991), can also 

exacerbate the fluid load of the myocardium. Hyaluronan is a large glycosaminoglycan 

molecule and component of the extracellular matrix, which plays a role in inflammation 

and interstitial edema (Laurent and Fraser, 1992). Hyaluronan fragments, appearing 

after degradation of the glycosaminoglycan by specific proteases, are commonly 

increased with obesity and diabetes and are associated with inflammation (Lewis et al., 

2008; Nanji et al., 1996). The accumulation of hyaluronan fragments can occur from the 

above mentioned conditions or  via decreased uptake by the lymphatic endothelial 

receptor 1, LYVE-1, whose expression is regulated by PROX-1 (Lewis et al., 2008). 

However, the impact of diabetes on LYVE-1 binding activity and its relation to 

inflammation is still unidentified. Chronic inflammation and edema can alter the 

extracellular matrix composition, induce ventricular remodeling, and cause losses in 

cardiac function (Rubboli, Sobotka, and Euler, 1994; Kong, Kong, and Wang, 2006). 

Diabetic weakening or incoordination of ventricles can result in the inadequate removal 

and propulsion of fluid from the heart (Nakamura and Rockson, 2008). Although the 

effects of diabetes on the circulatory system are well described, knowledge about 

its impact on the lymphatic system and associated signaling pathways is lacking 

in the current literature. 



111 
 

The Zucker diabetic fatty (ZDF) rat has shown promise as a model of diabetic 

heart disease (Russell and Proctor, 2006; Poornima, Parikh, and Shannon, 2006), 

because at 12 weeks of age, the animal model is characterized by marked hyperphagia, 

obesity, hyperlipidemia, polyuria, and polydipsia similar to the T2D seen in humans. The 

animal model has a blending of cardiovascular diseases seen in humans, such as 

diabetic cardiomyopathy (van den Brom et al., 2010; Forcheron et al., 2009; Boudina 

and Abel, 2007), hypertension (Tikellis et al., 2004; Oltman et al., 2006; Toblli et al., 

2010), and coronary artery dysfunction (Oltman et al., 2006), and can be utilized to 

investigate diabetic heart disease and therapeutic interventions. We hypothesized that 

myocardial edema is present in the ZDF rat and investigated this hypothesis through a 

hierarchical analysis of factors directly and indirectly supportive of myocardial fluid 

imbalance. We hypothesized that we would observe evidence of myocardial edema 

from the organismal to the cellular levels. We postulated that diabetes in the ZDF rat 

would lead to myocardial edema as a result of disruptions to the lymphangiogenic 

signaling pathway in the ZDF rat heart.  

4.3 Methods 
 
4.3.1 Animals 

Male Zucker diabetic fatty (fa/fa) rats of 11 weeks of age (n=16) were used in the 

study with age-matched Zucker lean (fa/+) rats (n=18) serving as non-diabetic controls. 

Rats were purchased from Charles River Laboratory (Saint Louis, MO) and allowed one 

week for acclimation. The animals received husbandry services at the Laboratory 

Animal Resources facility at the University of Kansas Medical Center. The animals were 

allowed food and water ad libitum and were maintained on a 12:12 light-dark cycle. As 
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per vendor’s recommendations, the animals were fed with Purina 5008 diet during the 

entire study, for the development of the disease process resembling T2D in humans. All 

animal procedures were performed according to the IACUC guidelines of the University 

of Kansas Medical Center.   

4.3.2 Animal measurements and sample collection 

Body weights and blood glucose levels were measured weekly on all animals 

from 11 to 19 weeks of age. After seven weeks of diabetes, when animals were 19 

weeks of age, pressure volume analysis was completed with left ventricular (LV) 

catheterization. Three randomly selected animals from each group were designated for 

LV weight analysis by dry weight to wet weight ratios. For all animals, hearts were 

excised, rinsed in ice cold phosphate buffered saline (PBS) and blotted dry. Hearts from 

the three animals per group were processed as described in Section 4.3.4 for dry weight 

to wet weight ratios. A small section of the apex was placed in 4% paraformaldehyde for 

histological assessments. The remainder of the heart was frozen in liquid nitrogen and 

stored at -80º C for protein and mRNA analyses.  

Blood samples from all rats were collected with a sterile pipette from the chest 

cavity after excising the heart. Blood was collected in 4 ml heparin coated tubes (BD, 

Franklin Lakes, NJ) and kept on wet ice for 30 minutes. Tubes were centrifuged at 

3,400 rpm at 4ºC for 10 minutes to obtain plasma. Plasma (upper layer of supernatant) 

was placed in 1.5 ml tubes, frozen in liquid nitrogen, and stored at -80º C for analysis.   
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4.3.3 Left ventricular hemodynamic measurements 

Functional evaluation was performed using LV catheterization through the right 

carotid artery with a 2 French microtip pressure volume catheter  (Millar Instruments, 

Houston, TX) under ketamine and xylazine anesthesia (80 mg/Kg and 10 mg/Kg, 

respectively). Rat core temperatures were maintained at 37ºC with a heating lamp.  

Alligator clip electrodes were placed on the upper extremities and left lower extremity to 

monitor heart rate through electrocardiography during the procedure.  

A four centimeter long incision was made from the lower mandible extending to 

the sternum. The adipose tissue and salivary glands were secured to the sides with 

retractors. The muscles of the anterior neck region were cleared by blunt dissection to 

expose the right carotid artery. The artery was ligated superiorly to the site of catheter 

entry. Subsequently, a loose inferior suture was applied, in addition to a metal clip close 

to the inferior suture. A fine incision was made close to the superior suture and the 

catheter was introduced gently through that incision. The metal clip was removed as the 

catheter slid past the inferior suture to enter the aorta. Then, the inferior suture was 

tightened around the catheter. The catheter was gently pushed to reach the chamber of 

the left ventricle and this was monitored by the appearance of the pressure volume 

loops on the computer monitor.  

After allowing the pressure volume loops to stabilize for 3-5 minutes, steady state 

pressure volume loops were recorded at a sampling rate of 1000 samples per second 

using the Millar Pressure Volume System (MPVS-400, ADInstruments, Colorado 

Springs, CO).  After recording the measurements for approximately 1 minute, the 

catheter was gently removed and the inferior suture was tightened. 
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4.3.4 Left ventricular dry weight to wet weight ratios 

Myocardial edema was measured by dry weight to wet weight ratios of the 

ventricles (Desai et al., 2008). The heart was cut from the aorta through the apex for a 

butterfly cut. Then the aorta, atria, right ventricle, and other connective tissues were 

removed. The left ventricle was washed three times in ice cold PBS and blotted dry 

before measuring wet weight. Ventricles were dried in the laboratory oven (Thelco 

Model 130, ThermoScientific, Two Rivers,WI) at 60ºC for 48 hours. Dried weights were 

measured at the following time points: 15 minutes, 30 minutes, 1 hour, 2 hours, 3 hours, 

4 hours, 24 hours, and 48 hours.   

4.3.5 Lymphatic vessel area analysis 

For light microscopy, LV apex sections preserved in 4% paraformaldehyde were 

paraffin embedded. Four micron thick sections were cut from the LV apex with an 

ultramicrotome. Sections were stained with 0.1% toluidine blue, which stains 

proteoglycans and glycosaminoglycans, and then analyzed for lymphatic vessel area 

using light microscopy. Quantification of lymphatic vessel area was performed in nine 

consecutive fields, allowing for a complete analysis of the tissue section, at a final 

magnification of X 4. Field one was identified as the upper left portion of the tissue. The 

viewing field was marked on the photograph and used as a border for the next field. The 

tissue was read from left to right and upper to lower fields. Six tissue sections were 

analyzed for each animal; thus a total of 54 fields were analyzed. Lymphatic vessel area 

was defined as the ratio between the surface area of the lymphatic vessels and the total 

tissue surface area (Rahier et al., 2011). The surface area (length multiplied by the 

width, µm2) of each lymphatic vessel was determined and added together for a total 
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lymphatic vessel area. Total tissue surface area was measured by the area of cardiac 

tissue within the field. A ratio was calculated for each field. An average of the ratios was 

calculated for each animal and expressed as a mean percentage.  

4.3.6 Multiplex bead immunoassay 

The assay was performed with the Cytokine Rat 10-Plex Panel per vendor’s 

instructions (Invitrogen, Camarillo, CA) using the Luminex 200 (Invitrogen, Camarillo, 

CA). Briefly, a filter plate was used containing 5.6 µm polystyrene beads each 

conjugated with an individual antibody against the following antigens: interleukin (IL)-1α, 

IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, granulocyte-macrophage colony-stimulating factor 

(GM-CSF), interferon (IFN)-γ, or tumor necrosis factor (TNF)-α, and dyed with a specific 

fluorophore. The filter plate is a microplate that captures proteins bound to the above 

mentioned antibodies in the filter bottom of the well. 50 µl of the plasma (as prepared in 

Section 4.3.2), incubation buffer, and assay diluent was added to each well in triplicate. 

The plate was allowed to incubate for two hours at room temperature for antibody 

binding. The plate was washed and aspirated with gentle vacuuming of less than 5 mm 

Hg. One hundred µl of antigen-specific, biotinylated detector antibody was added to 

each well followed by an hour of room temperature incubation to bind the detector to the 

complex. After washing and aspiration, 100 µl of streptavidin R-phycoerythin was 

added, followed by 30 minutes of room temperature incubation. After washing and 

aspiration, the filter plate was analyzed for the fluorescence signal intensity with the 

Luminex 200 (Invitrogen, Camarillo, CA). A calibration curve was plotted based on 

seven standards supplied by the vendor for each antigen and was used to determine 

the concentration of the antigens in the samples. 
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4.3.7 Immunoblotting  

LV tissue samples were analyzed for VEGFR-3, LYVE-1, and PROX-1 total 

protein levels using immunoblotting. A 50 mg sample of LV tissue was used from seven 

animals within each of the groups. The tissue was homogenized in a buffer containing 

10 mM Tris HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.2 mM PMSF, 20 mM Na 

molybdate, 50 mM NaF, 0.2 mM Na ortho-vanadate, and 1% Triton X-100 with a tissue 

homogenizer (Arrow Engineering Company, Hillside, NJ). Homogenates were 

centrifuged at 16,000g for 15 minutes at 4°C. The supernatants were collected and 

protein concentrations were measured with the BioRad DC Protein Assay (Life Science 

Research, Hercules, CA). One hundred µg protein samples were loaded per lane on 4-

15% gradient polyacrylamide gels (Life Science Research, Hercules, CA). After 

electrophoretic separation under denaturing conditions in the presence of sodium 

dodecyl sulfate at 200V, 35 µAmps for 60 minutes, proteins were transferred to 

polyvinylidene fluoride (PVDF) membranes using sandwich tank transfer at 15V, 45 

µAmps overnight at 4°C (Burnette, 1981). Membranes with transferred proteins were 

stained with Ponceau’s solution, which non-specifically stains all proteins, to verify equal 

protein loading and efficiency of the transfer. Membranes were blocked in 5% non-fat 

dried milk (Life Science Research, Hercules, CA) in PBS-0.1% Tween 20 for one hour 

at room temperature, and then incubated overnight at 4°C with appropriate primary 

antibodies diluted in 5% non-fat dried milk.  The following rabbit primary antibodies were 

used: VEGFR-3, LYVE-1 (both diluted 1:1,000; Santa Cruz Biotechnology, Santa Cruz, 

CA) and PROX-1 (1:8,000; Abcam, Cambridge, MA). Membranes were then incubated 

with secondary anti-rabbit antibody conjugated with horseradish peroxidase (Santa Cruz 
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Biotechnology, Santa Cruz, CA) diluted 1:2,000 in 5% non-fat dried milk, for 30  minutes 

at room temperature. Signal detection was done using chemiluminescent reagent 

(SuperSignal West Pico Chemiluminescent Substrate, Pierce, Rockford, IL) and X-ray 

film. Densitometry was used to evaluate the intensity of the specific protein bands on X-

ray films. Scanned images of the PVDF membranes stained with Ponceau’s solution 

were collected to use for normalization of intensity of the bands of interest, using the 

most prominent band on the membrane (O'Neill et al., 2007).  

4.3.8 Enzyme-linked immunosorbent assay (ELISA) 

Hyaluronan and VEGF-C levels were measured in plasma samples (preparation 

described in Section 4.3.2) and LV tissue samples (as described in Section 4.3.7) using 

ELISA. ELISA for hyaluronan (Echelon Bioscience, Salt Lake City, UT) and VEGF-C 

(eBioscience, San Diego, CA) were performed per manufacturer’s instructions in 

duplicate. Absorbance readings were measured at 450 and 650 nm for the hyaluronan 

and VEGF-C, respectively using the SpectraMax M5 Absorbance Microplate Reader 

(Molecular Devices, Sunnyvale, CA). Concentrations were calculated based on 

manufacturer supplied standards. Plasma concentrations for VEGF-C were 

undetectable, below the lowest standard concentrations in both control and diabetic 

samples. The vendor confirmed that VEGF-C levels are not detectable in plasma from 

healthy rats, but may increase to detectable levels in some disease states. Therefore, 

plasma VEGF-C results were excluded from analysis and only VEGF-C concentrations 

in tissue samples are reported.  
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4.3.9 Quantitative real time polymerase chain reaction 

VEGFR-3, LYVE-1, and PROX-1 mRNA levels were analyzed with real-time 

quantitative reverse transcription polymerase chain reaction (qRT-PCR). In order to 

isolate total RNA, the following procedures were performed at room temperature. A 100 

mg LV sample was homogenized in Trizol (Invitrogen, Camarillo, CA) as per 

manufacturer’s instructions.  After incubation with Trizol, samples were mixed with 

chloroform. The mixture rested for phase separation followed by centrifugation at 

12,000g for 10 minutes for complete separation. The supernatant was mixed with 

isopropanol and incubated for 10 minutes. Pelleting was completed with 12,000g 

centrifugation for 10 minutes. The pellet was air dried and resuspended in 

diethylpyrocarbonate treated (DEPC) H2O. RNA concentration and integrity were 

determined with the Agilent Bioanalyzer 2000 (Agilent Technologies, Santa Clara, CA), 

and samples with RNA integrity (RIN) values greater than 6 were used for data analysis.  

Reverse transcription (RT) was performed in triplicate with a 50 µl mixture of 

reagents from Invitrogen (Carlsbad, CA) containing 1X First strand buffer, 400 µM of  

deoxyribonucleotide triphosphate, 0.1µg random primer  per µg of total RNA (2 µg 

prepared as described in the preceding paragraph), 4mM dithiothreitol, 4 U/µl Moloney 

Murine Leukemia Virus reverse transcriptase, and 0.5 U/µl “RNAase out” solution. RT 

was performed for 15 minutes at 42oC and then the RT was inactivated at 95oC for five 

minutes in the Peltier Thermal Cycler 100 (BioRad, Life Science Research, Hercules, 

CA). Complementary DNA (cDNA) samples, prepared as a result of the above 

described reaction, were stored at 4oC until needed for qPCR. cDNA samples were 

diluted 5 times with DEPC-H2O. The PCR reaction system included 5 µM primers (Table 
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1), Power SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA), and 

diluted cDNA samples. Power SYBR Green PCR Master Mix is a premix of SYBR 

Green dye, which binds to double stranded DNA and acts as the detection signal for the 

7300 Fast Real Time PCR System (Applied Biosystems, Foster City, CA).  Cycling 

conditions consisted of 40 cycles of 30 seconds at 94˚C, 30 seconds at 58 ˚C, and 1 

minute at 72˚C. Expression levels of the genes of interest were normalized with the 

levels of 18S ribosomal RNA (rRNA) (Fontaine and Guillot, 2003), a reference gene 

supplied by Applied Biosystems (Foster City, CA).  

 Primer sequences Product size 

LYVE-1 
Forward 5’- TGCAGACTTCACCAGAAGGA-3’ 
Reverse 5’-ATGTGCCTGGTTCCAAAGAG-3’ 302 bp 

VEGFR-3 
Forward 5’-AGCCTTTCATCAACAAACCT-3’ 
Reverse 5’-GGGTACAGCTGGATGTCATA-3’ 298 bp 

PROX-1 
Forward 5’-GAGGAGCCTGTGTTCTGTCC-3’ 
Reverse 5’-AGAGGCCTAGCCAGTGTTGA-3’ 299 bp 

Table 1 Primer sequences for qRT-PCR. Primers were designed with PrimerQuest from 
Integrated DNA Technologies.  
 

Cycle threshold (Ct) indicates the cycle at which an increase in amplification is 

observed above the threshold. The threshold is the background fluorescence intensity. 

The higher the copy number of the mRNA of interest, then the amplification occurs 

earlier and is reported as a lower Ct value, preferably below 35. Fold differences in our 

study were calculated by the comparative Ct method = 2-∆∆ Ct. First, the Ct value of the 

reference gene, 18S rRNA, is subtracted from the Ct value of the target gene (i.e., 

PROX-1, LYVE-1 or VEGFR-3) for each replicate of all samples within the two groups 

(i.e., control, n = 8, and ZDF diabetic, n = 7). This value, ∆Ct, is then averaged for each 

sample, and is used to calculate the mean ∆Ct  for each group (control and diabetic). 

The mean ∆Ct values for each gene target are then compared between the diabetic and 
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control conditions to obtain the ∆∆Ct value. Fold differences are calculated by 

substituting the appropriate values into 2-∆∆ Ct.  The mathematical equations and 

processes are summarized below: 

Step 1: For each replicate, ∆Ct  = Ct 
target gene

 - Ct 
18S reference gene

  (where target gene = 

PROX-1, LYVE-1, or VEGFR-3) 

Step 2: Average the ∆Ct value from replicates for each sample 

Step 3: Average the ∆Ct values for the samples within both groups 

Step 4: Compare mean ∆Ct values between diabetic and control groups for each target 

gene by: ∆∆Ct = ∆Ct 
diabetic –∆Ct 

control 

Step 5: Fold difference = 2-∆∆ Ct  

4.3.10 PROX-1 localization 

For localization studies, 50 mg of LV tissue were used. Subcellular fractionation 

to obtain cystolic and nuclear extracts was completed with the NE-PER Nuclear and 

Cytoplasmic Extraction Kit (Thermo Fisher Scientific Inc, Rockford, IL). Briefly, the 

tissue was homogenized with a tissue homogenizer (Arrow Engineering Company, 

Hillside, NJ) in the CER I buffer, based on vendor recommended volumes. The 

microcentrifuge tube was vortexed for 15 seconds at the maximum setting, followed by 

incubation on ice for 10 minutes. CER II buffer was added to the microcentrifuge tube 

based on vendor recommended volumes. The tube was vortexed for five seconds and 

incubated on ice for one minute. Then the tube was vortexed for another five seconds, 

followed by centrifugation for five minutes at 16,000g and 4oC. The supernatant was 

collected in a pre-chilled tube and labeled as the cytosolic extract. The remaining pellet 

was suspended in ice-cold NER buffer. The tube was vortexed for 15 seconds and then 
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incubated for 10 minutes on ice. This process was repeated for four cycles for a total 

incubation time of 40 minutes. The tube was centrifuged for 10 minutes at 16,000g and 

4oC.  The supernatant was collected in a pre-chilled tube and labeled as the nuclear 

extract. Protein concentrations were measured with the Pierce Bicinchoninic acid (BCA) 

Protein Assay (Thermo Scientific, Rockford, IL) for the cytosolic and nuclear fractions. 

One hundred µg of protein for each sample were loaded per lane on 4-15% gradient 

polyacrylamide gels (Life Science Research, Hercules, CA). PVDF membrane 

preparation and PROX-1 detection were completed as described in Section 4.3.7.  

4.3.11 PROX-1 transcription filter plate assay 

A custom transcription factor filter plate assay was designed (Signosis, 

Sunnyvale, CA) to evaluate the DNA binding activity of PROX-1. The filter plate was 

made based on the consensus recognition sequence of the Drosophila transcription 

factor prospero gene, T A/T AG N C/T N (Choksi et al., 2006), which is highly 

homologous with PROX-1. The assay was performed in duplicate as per manufacturer’s 

instructions.  

A DNA complex was formed with transcription factor binding buffer mix, 

transcription factor probe mix, and cytosolic and nuclear extracts (as prepared in 

Section 4.3.10) as the PROX-1 source, in PCR tubes. The mixture was incubated at 

16oC for 30 minutes in the Peltier Thermal Cycler 100 (BioRad, Life Science Research, 

Hercules, CA). Filter binding buffer was added to the transcription factor DNA complex 

and the mixture was transferred to a filter plate for 30 minutes of incubation on ice. The 

filter plate was washed with wash buffer and centrifuged at 600 g for two minutes for a 

total of four washes. Then elution buffer was added and allowed to incubate for five 
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minutes at room temperature. The sample was collected in a 96 well PCR plate after 

centrifuging for two minutes at 600g. The samples were then transferred to a PCR tube 

for denaturing of the double stranded DNA at 95oC for three minutes in the  Peltier 

Thermal Cycler 100 (BioRad, Life Science Research, Hercules, CA) to prepare for 

hybridization. The samples were transferred to the transcription factor hybridization 

plate, which was covered with the PROX-1 probe, along with hybridization buffer for 

overnight hybridization at 42oC. The hybridization plate was washed three times with 

wash buffer. A blocking buffer was added to each well and incubated at room 

temperature for 15 minutes on the Max Q2000 shaker (Thermo Fisher Scientific Inc, 

Rockford, IL). The blocking buffer was removed and diluted streptavidin conjugated 

horse radish peroxidase was added to each well and incubated at room temperature for 

45 minutes on a shaker followed by three washings. Substrate solution was added to 

each well and luminescence intensities were measured over the hour in the microplate 

reader (SpectraMax M5, Molecular Devices, Sunnyvale, CA). 

4.3.12 Statistical analysis  

Descriptive statistics were utilized to characterize the animal groups. For 

differences between two groups, unpaired t-tests were conducted with PASW Version 

18 software (IBM, Somers, NY). Significance was determined at p<0.05. Results are 

described as means ± standard errors (SEs). Pressure volume loops were not recorded 

for all animals due to death during the procedures or unstable waveforms. Only those 

animals with recordable pressure volume loops (control, n=13 and diabetes, n=14) were 

included in the data analysis. 
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4.3.13 Hierarchical analysis 

To determine if myocardial edema was present in the ZDF rat, we chose to use a 

hierarchical analysis to evaluate our hypothesis. The hierarchical analysis was based on 

the levels of organization for organisms (Nurse and Hayles, 2011). We explored 

alterations on the organismal, organ, tissue, and cellular levels that would support or 

suggest the presence of myocardial edema in the ZDF rat. Figure 1 details the workflow 

completed for the hierarchical analysis of myocardial fluid imbalance under the 

backdrop of diabetes.  

 

    Figure 1 Study workflow based on hierarchical design. 
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4.4 Results 

4.4.1 Investigations of myocardial edema at the organism level 

4.4.1.1 Body weight and metabolic analysis 

Diabetic rats had higher body weights, blood glucose, and hemoglobin A1C 

(HbA1C) levels throughout the observation period. At baseline, age of 12 weeks that we 

considered week 0 of diabetes, diabetic rats weighed 10% more than control rats 

(p≤0.001) as shown in Table 2. Blood glucose and HbA1C levels were elevated as 

expected for diabetic rats compared to controls (p≤0.001). Diabetic rats were heavier 

than control rats (p≤0.001) at the termination of the experiment, at 7 weeks of diabetes 

when the rats were 19 weeks old. It was unknown if the body composition changes 

were due to lean mass, fat, or edema. Bioimpedance measurements would address this 

issue; however they were beyond the scope of this study. 

 
 Baseline  

(Week 0) 
Termination 

(Week 7) 
 Control (n=16) Diabetes (18) Control (n=16) Diabetes (n=18)

Body weights, g 313±5 401±8# 377±4 460±12#

Blood glucose, 
mg/dL 

138±10 444±11# 180±17 565±15#

Hemoglobin 
A1C, % 

4.6±0.15 11±0.64# 4.3±0.10 12±0.50#

Table 2 Rat characteristics. Diabetic rats weighed more at baseline (week 0) and termination 
(week 7 of diabetes) than control rats. Blood glucose and HbA1c levels were elevated in 
diabetic rats compared to control rats.  
 
4.4.1.2 Inflammatory cytokine levels 

 
We investigated levels of inflammatory cytokines in the plasma of ZDF rats to 

determine whether there may be systemic inflammation, which could initiate an 

edematous state. Ten cytokines were analyzed, including IL-1α, IL-1β, IL-2, IL-4, IL-6, 
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IL-10, IL-12, GM-CSF, IFN-γ, and TNF-α. Figure 2 illustrates that plasma IL-2 levels 

were significantly increased under diabetic conditions (p≤0.01). No statistical difference 

was observed for the other 9 cytokines (data not shown). The elevation of IL-2 may 

indicate an initial, systemic response of the immune system to an infection or oxidative 

stress (Pipkin et al., 2010).  
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Figure 2 Rat plasma IL-2 levels. ZDF rats had higher circulating IL-2 levels than control rats. 
Control (n=13), diabetes (n=14).  
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4.4.2 Investigations of myocardial edema at the organ level 

4.4.2.1 Hemodynamic analysis 

LV end diastolic pressures were unchanged by diabetes (p=0.14) as seen in 

Figure 3a. The index of myocardial microvascular permeability, dP/dtmax (Laine, 1987) is 

shown in Figure 3b. A 40% reduction in dP/dtmax was observed in diabetic rats (p≤0.001) 

compared to control rats. These results suggest that microvascular permeability was 

increased under diabetic conditions, but perhaps was not sufficient to significantly 

impact ventricular pressure.  
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Figures 3 Rat LV end diastolic pressures (a) and dP/dtmax values (b). No difference was 
observed in end diastolic pressures. Diabetic rats had lower dP/dtmax values compared to control 
rats. Control (n=13), diabetes (n=14). 
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4.4.2.2 Left ventricular dry weight to wet weight ratios 

No difference in baseline left ventricular wet weights was observed between 

control (1,020±38 mg) and diabetic rats (1,050±45 mg; p=0.61). Myocardial edema was 

evaluated by measuring dry weight to wet weight ratios of the left ventricles (Desai et 

al., 2008). Dry weight to wet weight ratios for control and diabetic animals were quite 

similar for both groups throughout the experiment. No statistical significance was 

observed between control (218±1 mg) and diabetic (238±1 mg) groups after 48 hours of 

drying (p=0.22) as shown in Figure 4a. Although ventricles dried to a comparable 

constant weight, an interesting observation was noted during the first 30 minutes of 

drying in Figure 4b. Control samples had a steep decline in ratios during the first 15 

minutes (20% loss in weight) compared to the diabetic left ventricles (15% loss in 

weight). These results suggest that although total LV fluid content was similar between 

the groups (78-79% fluid loss), there may be morphological differences, such as fibrosis 

or fat accumulation, which affected the fluid release from the diabetic tissue and thus 

slowed down the drying of the diabetic ventricles during the initial phases of drying. 
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Figures 4 Dynamics of drying of rat LVs over 48 hours (a) and the first 30 minutes (b). 
Although LVs dried to a similar constant weight, the groups had different drying patterns within 
the first 30 minutes of drying. Control (n=3) and diabetes (n=3). 
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4.4.3 Investigations of myocardial edema at the tissue level 

4.4.3.1 Lymphatic vessel area 

Cardiac tissue samples were stained with 0.1% toluidine blue, which stains 

proteoglycans and glycosaminoglycans and allows for lymphatic vessels to be 

differentiated from blood vessels due to morphological differences in the basement 

membranes and the lumens of the vessels (Figures 5a-b). The tissue sections were 

divided into 9 fields for quantification of lymphatic vessel area as shown in Figure 6a. 

Mean lymphatic vessel area was significantly increased (p≤0.05) in the diabetic LV 

samples (Control 1.63±0.17% and diabetes 3.42±0.23%). The mean vessel area in 

diabetic samples was 52% higher than control samples (Figure 6b). The increased area 

indicates a higher number of lymphatic vessels and/or larger size of vessels in the 

diabetic tissues compared to control tissues. Due to the shape of the heart, we chose to 

stratify vessels into longitudinal or cross-sectional area for additional analysis. Figures 

6c-d shows that longitudinal and cross-sectional vessel areas were also increased in 

diabetic tissues. 
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Figures 5 Tissue sections from control (a) and diabetic (b) rat LV samples. These 
representative samples are from the middle left field of the tissues. Lymphatic vessels lightly 
stained with toluidine blue have an irregular shaped lumen (arrows indicate a representative 
sample in the tissues). The vessels present with an incomplete or absent basement membrane. 
Scale bar equals 1 millimeter. 

(a) Control 

(b) Diabetes 
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Figures 6 Diagram of tissue analysis procedure (a). Total (b), longitudinal (c), and cross-
sectional (d) lymphatic vessel area ratios. Lymphatic vessel area was increased in diabetic 
tissues in the three analyses.  
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4.4.3.2 Hyaluronan levels in LV tissue samples 

An analysis of hyaluronan concentrations in LV tissue samples (Figure 7) 

revealed no difference between control and diabetic rats (p=0.30). We did not observe a 

difference in the plasma samples of control and diabetic groups (data not shown).This 

finding indicates that hyaluronan accumulation in diabetic LV tissue was not present in 

diabetic rats after 7 weeks of diabetes.  
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Figure 7 Hyaluronan levels in LV tissue samples. No difference in hyaluronan concentrations 
was observed between control and diabetic samples. Control (n=6), diabetes (n=6) 
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4.4.3.3 VEGF-C levels in LV tissue samples 

VEGF-C tissue concentrations were similar between the two rat groups (p=0.58; 

Figure 8). We observed no accumulation of VEGF-C, which would trigger increases in 

vascular permeability in diabetic tissues. 
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Figure 8 VEGF-C levels in rat LV tissue samples. No differences in VEGF-C amounts were 
observed between control and diabetic tissue samples. Control (n=6), diabetes (n=6).  
 
 

       Control                       Diabetes           
                         Groups 



135 
 

Groups

Control Diabetes

C
t 

V
al

ue
s

0

5

10

15

20

25

4.4.4 Investigations of myocardial edema at the cell level 

4.4.4.1 VEGFR-3 mRNA and protein levels in LV tissue samples 

VEGFR-3 is responsible for the uptake of VEGF-C from the interstitium. In 

Figures 9a-b, VEGFR-3 mRNA levels determined by qRT-PCR were similar between 

control and diabetic groups (p=0.45). Immunoblotting was used to quantify the VEGFR-

3 protein levels. Multiple bands were observed in Figure 10a, likely due to varying levels 

of glycosylation (Zhang et al., 2010). We analyzed the expected 150 (major), 98, and 64 

kDa bands for the purposes of this study. No statistical significance was observed in the 

total VEGFR-3 protein levels between the two rat groups. The protein levels for the 98 

kDa band are shown in Figure 10b.  The other bands of VEGFR-3 protein had similar 

patterns (not shown, p>0.05).  
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Figures 9a-b VEGFR-3 mRNA levels in LV tissue samples. No difference in Ct values (a) or 
relative expression fold change of VEGFR-3 (b) was observed between control (n=8) and 
diabetic (n=7) samples. 
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Figures 10 Protein levels of VEGFR-3 with immunoblotting (a) and quantified for the 
98kDa band (b) with Ponceau’s staining as a loading control.  No difference in protein 
levels (98kDa) was observed between control and diabetic samples. Control (n=7), diabetes 
(n=7)  
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4.4.4.2 LYVE-1 mRNA and protein levels in LV tissue samples 
 

LYVE-1 mRNA levels determined by qRT-PCR for diabetic rats were also 

comparable to control rats as shown in Figures11a-b (p=0.48). Immunoblotting was 

used to identify the LYVE-1 protein. LYVE-1 has 3 major bands due to post-translational 

modifications: 70, 64 and 50 kDa (Figure 12a). LYVE-1 is a secondary receptor for 

hyaluronan, and hyaluronan levels were not affected by diabetes in our study. Likewise, 

no difference was observed in the protein levels of the three LYVE-1 bands between the 

two animal groups. Figure 12b shows the protein levels observed for the 70 kDa band of 

LYVE-1 with similar patterns for the 64 and 50 kDa bands (not shown, p>0.05).  
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Figures 11a-b LYVE-1 mRNA levels in LV tissue samples. No difference in Ct values (a) or 
relative expression fold change of LYVE-1 (b) was observed between control (n=8) and diabetic 
(n=7) samples. 
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Figures 12 Protein levels of LYVE-1 with immunoblotting (a) and quantified for the 70 kDa 
band (b) with Ponceau’s staining as a loading control.  No difference in protein levels 
(70kDa) was observed between control and diabetic samples. Control (n=7), diabetes (n=7).  
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4.4.4.3 PROX-1 mRNA and protein levels in LV tissue samples 
 

No significant difference was observed in the mRNA levels of PROX-1 as 

determined by qRT-PCR (p=0.37; Figure 13a-b). Immunoblotting revealed a single band 

for PROX-1 at 83 kDa corresponding to the molecular weight of this protein (Figure 14a) 

(Galeeva et al., 2007). Protein levels of the transcription factor, PROX-1, were elevated 

12% under diabetic conditions (p≤0.001; Figure 14b).  

 
Figures 13a-b PROX-1 mRNA levels in LV tissue samples. No difference in Ct values (a) or 
relative expression fold change of PROX-1 (b) was observed between control (n=8) and diabetic 
(n=7) samples. 
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Figures 14 Protein levels of PROX-1 with immunoblotting (a) and quantified (b) with 
Ponceau’s staining as a loading control.  Gene expression was unchanged between the two 
groups. However, protein levels of PROX-1 were increased in diabetic rats compared to 
controls. Control (n=7), diabetes (n=7).  
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To investigate the increase in total protein levels of PROX-1 in diabetic samples, 

we analyzed the cytosolic and nuclear fractions for the presence of the transcription 

factor in order to determine its subcellular localization. Figure 15a shows that PROX-1 

cytosolic levels were higher in diabetic samples compared to controls. Overexposure of 

the X-ray film was required to produce a visible band in the nuclear fraction as seen in 

Figure 15b. Quantification showed that PROX-1 cytosolic protein levels were higher in 

diabetic samples compared to controls (p≤0.05, Figure 16a). This finding is in 

agreement with the increased total protein levels of PROX-1 in diabetic rats described in 

Section 4.4.4.3. Nuclear extracts revealed substantially higher levels of PROX-1 in 

diabetic rats, approximately 59% difference, compared to control rats (p≤0.05; Figure 

16b). RhoGDI, a cytosolic protein, was used to confirm the quality of the subcellular 

fractions (Figure 15c). We did observe the presence of RhoGDI in the diabetic nuclear 

fraction. We postulate that RhoGDI localization may be altered under diabetic 

conditions. However, SP-1, a nuclear protein, was only detected in the nuclear fractions 

of control and diabetic samples (Figure 15d). After confirmation of the purity of 

subcellular fractions, we conclude that PROX-1 nuclear localization is increased under 

diabetic conditions. 
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Figures 15 PROX-1 protein levels in cytosolic (a) and nuclear (b) fractions. Confirmation 
of subcellular fractionation quality using antibody against RhoGDI, a resident cytosolic 
protein (c) and SP1, a resident nuclear protein (d).  Control (n=3), diabetes (n=3), C 
(cytosolic fraction), and N (nuclear fraction). 
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Figures 16 PROX-1 protein levels in cytosolic (a) and nuclear (b) fractions. Cytosolic and 
nuclear fractions revealed higher protein levels of PROX-1 in diabetic samples. Control (n=3), 
diabetes (n=3). 
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4.4.4.4 PROX-1 DNA binding activity 
 

We did not observe differences in PROX-1 DNA binding activity (Figure 17a-b), 

although subcellular protein levels of PROX-1 were significantly higher in diabetic 

animals as shown in Figures 16a-b. Although PROX-1 DNA-binding activity is expected 

to be in the nuclear fraction, we chose to also evaluate the cytosolic fractions due to the 

high PROX-1 protein levels in diabetic rats (Figure 16a). The binding activity observed 

in the cytosolic fractions in Figure 17a may be due to non-specific binding to other 

proteins such as transporters. No difference was observed in PROX-1 specific activity in 

either nuclear or cytosolic fractions as shown in Figures 18a-b. 

 

 

 

 

Figure 17 PROX-1 DNA binding activity in cytosolic (a) and nuclear (b) fractions. No 
difference in DNA binding activity was observed between the control and diabetic samples. 
RLU (Relative luminescence units). Control (n=3), diabetes (n=3).
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Figures 18 PROX-1 specific DNA binding activity in cytosolic (a) and nuclear (b) 
fractions. No difference in the specific DNA binding activity was observed in cystolic (a) and 
nuclear (b) fractions of control and diabetic samples. Control (n=3), diabetes (n=3) for 
cytosolic activity analysis and control (n=1), diabetes (n=2) for nuclear activity analysis. 
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4.5 Discussion 
 

Myocardial edema has been suggested as an instigator of the development and 

progression of cardiomyopathy (Miller, 2011; Nakamura and Rockson, 2008). Animal 

models have shown that cardiac fluid imbalance results in edema, organelle damage, 

and declines in cardiac function (Davis et al., 1995; Rohn et al., 1995). However, it is 

unknown if diabetes in the ZDF rat induces an edematous state in the heart. Our 

results did not provide a clear picture as to whether myocardial edema is present 

in the ZDF model. A direct measure of myocardial edema, left ventricular dry to wet 

weight ratios failed to show a significant difference between control and diabetic groups. 

However, this measurement is fraught with preparation errors. Our power analysis 

indicated that 112 animals would be required to reach statistical significance. Due to this 

limitation, we had to rely on an indirect measure, declines in dP/dtmax in diabetes, which 

were suggestive of myocardial edema as an indirect measure. 

4.5.1 Diabetes causes metabolic changes in the ZDF rat 

 We began our investigation for evidence of myocardial edema at the organismal 

level. Our ZDF rats had significantly higher body weights than lean controls as 

shown in Table 2. This finding is well supported in the literature due to the hyperphagia 

associated with the phenotype (Belobrajdic et al., 2011; van den Brom et al., 2010). We 

were unsure if the gains in body weight were the result of accumulations of edema 

and/or adipose due to unavailability of bioimpedance equipment.  

Hyperglycemia, common in the ZDF rat, resulted in increased activity of nuclear 

factor (NF)-kβ in rat mesangial cells (Ha et al., 2002). NF-kβ expression is increased in 

ZDF rat heart tissue leading to upregulation of several pro-inflammatory cytokines 
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(Huang et al., 2005). Systemic inflammation has been reported in the ZDF rat with 

circulating IL-6 and TNF-α levels elevated in 8 week old ZDF rats (Teixeira de Lemos et 

al., 2009). Increases in TNF-α plasma levels persisted with age in reports of elevated 

TNF-α levels in 26-32 week old ZDF rats (Gao, Picchi, and Zhang, 2010). However, 

other studies have shown no change in circulating IL-10 and TNF-α (Mito et al., 2000), 

or decreases in IL-6 and TNF-α plasma levels (Lamas, Martinez, and Marti, 2004) under 

inflammatory conditions of obesity and hyperglycemia. We observed no change in TNF-

α, IL-6, or IL-10 in our study. In fact, nine of the ten inflammatory cytokines investigated 

were not impacted by diabetes. Only circulating IL-2 was elevated with diabetes in 

our investigations as shown in Figure 2.  

IL-2 has predictive value in cardiovascular disease and may be an initial 

responder of pro-inflammatory cytokines (Mazzone et al., 1999). Elevations of 

circulating IL-2 in humans indicated an increased immune response to infections or 

atherosclerotic lesions (Frostegard et al., 1999; Simon et al., 2001). In humans, 

increases in circulating IL-2 had a direct correlation with carotid artery intima media 

thickness, a predictor of cardiovascular disease (Elkind et al., 2005). Therefore, IL-2 

plasma levels are considered a risk factor for cardiovascular disease. However, 

knowledge regarding the immune response of the ZDF rat is evolving. Although we 

observed increases in circulating IL2, declines in IL-2 plasma levels have also been 

reported in this model (Ruth et al., 2008). However, the lack of a robust response of the 

other inflammatory cytokines may indicate a deficiency in the inflammatory response of 

our cohort. If our observations are confirmed in future studies, an impaired inflammatory 
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response may predispose the ZDF rat to endothelial dysfunction and increased vessel 

permeability, which may play a role in the development of diabetic heart disease.  

IL-2 has also been associated with organ edema (Welbourn et al., 1991). An 

evaluation of 60 patients with burns of 20-40% total body surface area revealed 

elevated circulating IL-2 levels. The severity of edema was correlated to IL-2 levels 

(Kowal-Vern et al., 1997). High doses of IL-2 for cancer treatment can result in 

pulmonary edema and injury. IL-2 toxicity causes increased capillary leakage and  fluid 

accumulation in the interstitium (Schwartz, Stover, and Dutcher, 2002). Although we did 

not observe changes in VEGF-C, the elevation of circulating IL-2 may indicate 

increased microvascular permeability (Funke et al., 1994) under diabetic conditions. 

4.5.2 Diabetic hemodynamic changes suggest increased myocardial fluid 
imbalance, but direct evidence of myocardial edema is lacking in the ZDF rat 
 

Research has suggested that the dP/dtmax may be a sensitive and clinically 

relevant measure of microvascular permeability (Laine, 1987). Commonly considered a 

measure of contractility performance, dP/dtmax values decrease when the ventricle 

stiffens and compliance decreases (Laine, 1987; Tong et al., 2007). However, dP/dtmax 

does not change with acute edematous conditions (Stewart, 2002). We observed a 40% 

decrease in dP/dtmax in diabetic rats compared to the control group, which is 

suggestive of chronic ventricular changes and myocardial edema. We 

acknowledge that the number of studies investigating dP/dtmax and myocardial edema is 

limited in the current literature. Therefore, additional research is needed to validate this 

hemodynamic measure as a true measure of myocardial edema.  

The hypertension (Tikellis et al., 2004; Oltman et al., 2006; Toblli et al., 2010), 

fibrosis (Huang et al., 2005), and LV hypertrophy (Morimoto et al., 2006) observed in 
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the ZDF rat does increase its risk for myocardial edema. The common factor of these 

pathologies is the predisposition for increased ventricular pressure due to changes in 

blood pressure and tissue composition. Ventricular remodeling occurs due to fibrosis 

and hypertrophy related to pressure overload. In our 19 week old ZDF animals, we did 

not observe differences in end diastolic pressures compared to control animals. This 

finding supports the lack of myocardial edema as evident by dry weight to wet 

weight ratios. Myocardial edema has presented with moderate or severe hypertrophy 

or injury (Dall'Armellina et al., 2011; Kozor, Nelson, and Figtree, 2011). At this young 

age, the ZDF rat may lack hypertrophy and edema, which would require increases in 

end diastolic pressures for cardiac compensation. However in another study, 19 week 

old ZDF rats have been reported to have moderate hypertrophy and substantial 

perivascular fibrosis (Fredersdorf et al., 2004). In summary, at the organ level, we 

detected evidence in support of myocardial edema in dP/dtmax values, but additional 

support from end diastolic pressures and ventricular weights was not observed.  

4.5.3 Diabetes causes increases in cardiac lymphatic vessel area in ZDF rat 
 

Investigations at the tissue level revealed that lymphatic vessel area and 

alterations in the extracellular matrix may differ based on tissue type. As shown in 

Figures 5a-b, diabetic LV samples had greater lymphatic vessel area than control 

samples. We observed the difference to be 52% when comparing average values for 

diabetic and control rats. Our results may indicate that LV tissue differs from other 

tissues in terms of changes in lymphatic vessel area or density. No difference in 

lymphatic vessel density was detected in skeletal muscles between control and diabetic 

subjects (Kivela et al., 2007), while a decrease in lymphatic vessel density was 
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observed in the cornea of diabetic mice (Maruyama et al., 2007). The decreased 

response in both studies may have resulted from an insufficient diabetic lymphatic load, 

which did not trigger a response, or from a possible loss of lymphangiogenesis (as 

evident by decreased lymphatic vessel density) in the diabetic skeletal and corneal 

tissues. These differences in vessel area or density may be a result of tissue-specific 

responses. 

Although we observed increased lymphatic vessel area, we could not correlate 

these findings to increases in VEGF-C or pro-inflammatory hyaluronan fragments. 

Diabetes has been shown to increase vascular permeability through increased VEGF-C 

expression in diabetic humans (Kivela et al., 2007). VEGF-C expression is also 

associated with decreased fluid reabsorption through the vascular capillaries (Kumar et 

al., 2009). However, we did not observe any differences in VEGF-C tissue levels 

between diabetic and control LV samples. We speculate that this result may be due to 

our observations being limited to one time point. This limitation may also account for the 

lack of change observed in hyaluronan levels. At 19 weeks of diabetes, hyaluronan 

levels showed no difference in ventricular tissue and plasma samples of diabetic and 

control rats. We could not find literature reporting hyaluronan levels in ZDF cardiac 

samples. In STZ diabetic rat kidney investigations, hyaluronan content was elevated in 

diabetic samples from animals of 26 weeks of age or between 211-325 g (Cohen et al., 

2008; Melin et al., 2006). The presence of hyaluronan accumulation in the STZ rat 

suggests that the phenomenon is insignificant and/or the lymphatic system is intact in 

this ZDF model. An intact lymphatic system would be capable of handling the 

extravasation of fluid and macromolecules into the myocardial interstitium. 
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4.5.4 Diabetes causes alterations in the lymphatic signaling pathway in ZDF 
cardiac tissue 
 

To further explore the function of the lymphatic system, we chose to extend our 

experiments to the cellular level. We focused on the PROX-1 signaling pathway for 

lymphangiogenesis, since we observed increases in lymphatic vessel density. PROX-1 

regulates the expression of LYVE-1 and VEGFR-3. LYVE-1 removes hyaluronan from 

the interstitium, which is normally elevated with diabetes (Lewis et al., 2008). LYVE-1 

expression may increase through inflammatory signaling due to excessive hyaluronan 

fragments. We observed no changes in hyaluronan levels, and reported a similar 

response in the expression of the LYVE-1 receptor. To our knowledge, we are the 

first to study LYVE-1 and VEGFR-3 total protein and mRNA levels in the cardiac tissues 

of the ZDF rat. We also found that VEGFR-3 protein and mRNA levels were 

unaffected by diabetes. VEGFR-3 expression is upregulated by VEGF-C (Partanen 

and Paavonen, 2001). This induction occurs through inflammatory cells expressing 

VEGFR-3 (Saaristo et al., 2006). Since inflammation was minimal in our ZDF rats based 

on inflammatory cytokines levels, it is reasonable to assume that VEGFR-3 may not be 

affected by diabetes at this time point.  

We did observe changes in PROX-1 total, cytosolic and nuclear protein levels, 

which are novel discoveries related to diabetes. The increased total and 

subcellular compartmental protein levels of PROX-1 could be the result of an initial 

response of the lymphatic system. However, the alterations in PROX-1 protein levels 

did not result in increases in VEGFR-3 or LYVE-1 protein levels. When normalized 

to the increased PROX-1 protein levels, PROX-1 DNA binding activity actually 

appeared to be decreased under diabetic conditions but the sample size was too 
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small to indicate significance. The increased total protein levels could be the result of 

cardiomyocyte development during diabetes due to injury. PROX-1 is crucial to cardiac 

development (Karunamuni et al., 2010; Oliver et al., 1993) and research has suggested 

that diabetes may induce fetal protein expression in certain tissues (Taegtmeyer, Sen, 

and Vela, 2010). Additional studies are needed to identify the source (cardiomyocytes 

and/or lymphatic endothelial cells) and the mechanisms responsible for the elevations in 

PROX-1 levels in total and subcellular protein fractions observed under diabetic 

conditions. Recent studies have suggested that Notch signaling may regulate PROX-1 

and VEGFR-3 expression (Kim and Koh, 2010). Cardiomyocyte differentiation is 

regulated by Notch (Ahuja et al., 2004). Notch signaling has been reported as 

cardioprotective for valvular disease (Garg et al., 2005), ventricular remodeling, and 

other myocardial events (Gude et al., 2008).  

4.5.5 Clinical implications of myocardial edema in diabetes 

 Although we cannot conclusively state that myocardial edema was present in our 

ZDF rats, the literature illustrates the deleterious impact that fluid imbalance has on 

cardiovascular diseases and health outcomes. Lymphatic vessels are speculated to 

play a role in multiple cardiovascular diseases, including atherogenesis and congestive 

heart failure (Miller, 2011; Nakamura and Rockson, 2008). Myocardial edema has 

reduced the success of heart transplantation (Chandrasekaran et al., 1987; Geissler et 

al., 2006). Investigations of LV biopsies of persons with terminal heart failure indicated 

an increased lymphatic vessel density, which was due to increased chamber volume 

and edema (Dashkevich et al., 2010). In hypertensive rats, researchers have reported 

fibrotic lymphatic vessels that are unable to maintain fluid flow (Ishikawa et al., 2007; Li 
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et al., 2009). In contrast, newly formed lymphatic vessels assisted with wound healing 

after a myocardial infarction in humans (Ishikawa et al., 2007). Although we have no 

conclusive data to support the presence of myocardial edema in this model of T2D, the 

literature suggests that myocardial edema may have a major influence on the 

development and progression of cardiovascular diseases in humans and other animal 

models. 

4.6 Conclusions 

The hierarchical analysis provides an organized evaluation of variables related to 

myocardial edema. We observed systemic changes in plasma IL-2 levels, reductions in 

dP/dtmax, increases in lymphatic vessel area, and changes in PROX-1 total and 

subcellular compartmental protein levels. These alterations are suggestive of the 

initiation of an inflammatory process, which could be a trigger for myocardial edema. In 

contrast, the increased lymphatic vessel area in diabetic tissue may be the response to 

myocardial edema prior to 19 weeks of age. However, LV weights revealed no 

differences between control and diabetic animals. Therefore, we conclude that in our 

study utilizing the 19 week old ZDF rat, there is no support for myocardial edema 

playing a substantial role in diabetic heart disease. Replication studies are 

recommended in larger animal species to detect the role of myocardial edema in 

diabetic heart disease.  
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Chapter 5 

 

Summary 
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5.1 Summary and findings 
 

The cardiovascular complications related to diabetes have become a major 

health concern worldwide (ADA, 2011). Type 2 diabetes (T2D) has a detrimental impact 

on cardiac function due to the concomitant prevalence of obesity (Galinier et al., 2005; 

Gidding et al., 2004; Radovits et al., 2009; Voller, Schmailzl, and Bjarnason-Wehrens, 

2004). The disease has been shown to cause diastolic and systolic dysfunction resulting 

in decreased cardiac output and loss of physical activity (Barmeyer et al., 2009; 

Boudina and Abel, 2010; Watts and Marwick, 2003). Due to the complexity of diabetic 

heart disease, pharmacological management has been difficult and is often targeted 

toward a specific symptom. However, lifestyle management has proven successful in 

addressing the multifaceted development and progression of diabetic heart disease. 

Physical activity or exercise has demonstrated the ability to normalize glucose, manage 

weight, reduce oxidative stress, and improve cardiac function in human and animal 

studies (Bidasee et al., 2008; Borghouts and Keizer, 2000; Shao et al., 2009; Snowling 

and Hopkins, 2006; Teixeira de Lemos et al., 2009). A greater understanding of the 

mechanisms responsible for the beneficial effects of exercise is needed for public 

awareness and improvements in pharmacological treatments.  

Since this knowledge has often been obtained through invasive or laborious 

techniques, researchers have utilized diabetic animal models for the investigation of the 

cardioprotective benefits and mechanisms related to exercise. The ZDF rat has served 

as a valid model of exploring diabetic heart disease since in this model the disease 

development is comparable to the T2D progression seen in humans (Clark, Palmer, and 

Shaw, 1983; Leonard et al., 2005). Although, we understand the disease progression in 
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the ZDF model, our knowledge of the physiological response of the ZDF rat to exercise 

is lacking. Therefore, the characterization of diabetic heart disease in the ZDF rat and 

the response to exercise would be advantageous in further understanding the disease 

and possible interventional strategies. We chose to investigate electrocardiographic 

(ECG) changes, because the technique is commonly used for clinical evaluations along 

with hemodynamic changes, through left ventricular catheterization, which provide 

detailed information regarding cardiac function. We hypothesized that myocardial 

edema is present in the Zucker diabetic fatty (ZDF) rat and may play a role in diabetic 

heart disease. 

5.1.1 Animal characteristics and metabolic findings 

Our results presented in Chapters 2, 3, and 4 indicated that SD animals had 

significant weight gain over the 7 weeks of diabetes duration compared to SC animals. 

A moderate relationship was observed between body weight and blood glucose levels. 

As expected, blood glucose and HbA1C levels were elevated in the SD animals in 

comparison to SC rats. Interestingly, we observed increases in blood glucose levels in 

all animals group from baseline (week 0) to termination (week 7 of diabetes). 

Development or aging had a statistically significant effect on blood glucose levels 

(Chapter 2). Exercise decreased the body weight of ED animals compared to SD 

animals. The mode of exercise did not influence hyperglycemia in the ED animals as 

blood glucose and HbA1C levels remained comparable to SD rats. This outcome may 

be the result of the rather moderate intensity of training used in our protocol, and the 

multiple rest breaks required for the SD rodents to complete 40 min of aerobic exercise. 

Although the exercise regimen was sufficient to attenuate ECG (Chapter 3) and 
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hemodynamic (Chapter 4) changes resulting from diabetes, it was not adequate for 

normalizing blood glucose levels.  

5.1.2 Electrocardiographic findings 

Although hyperglycemia was observed in SD and ED animals in our study, which 

most likely played a role in ventricular remodeling (Brownlee, 2001; Degenhardt, 

Thorpe, and Baynes, 1998), significant differences in heart weight or heart weight/body 

weight ratios, indicators suggestive of ventricular hypertrophy, were not noted between 

the groups. The study design limited our observations to the early stage of diabetes, in 

which the physical manifestations of hypertrophy may have been harder to decipher 

based on weight measurements. Noteworthy, R wave amplitudes are considered an 

indirect measure of ventricular hypertrophy (Myers et al., 1987). After seven weeks of 

diabetes, SD animals had increases in R wave amplitudes compared to the SC rat 

indicating increases in ventricular remodeling.  

These structural changes may have had an impact on cardiac function and 

conduction. QTc intervals were widened in the SD group, which suggest an increased 

risk of arrthymias and other cardiac events. The increased risk was further supported by 

the loss of heart rate variability in the SD animals. This finding is consistent with a 

possible loss of sympathetic response to external stimuli. Diabetic groups, SD and ED, 

presented with tachycardia at the initiation of the study. Remarkably, heart rates were 

similar between all groups at the conclusion of the study. This result was in line with 

research showing that heart rate elevated with increases in blood glucose levels in 

humans (Kitabchi et al., 2006). Blood glucose levels were increased in all rat groups by 
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Heart rate 
Stroke volume index 
Cardiac output index 

Stroke work index 
Minimum volume 

End diastolic volume 
dP/dtmax 

P@dP/dtmax 
V@dP/dtmax 

P max 
End systolic pressure 
End systolic volume 

Ejection fraction 
dP/dtmin 

V@dP/dtmin 

Table 1 Hemodynamic parameters 
negatively affected by diabetes. 

the termination of the study. Diabetes did not appear to have an impact on T or P wave 

amplitudes. QRS and PR intervals were also unaffected by the disease.  

Seven weeks of exercise training were partially beneficial in attenuating the ECG 

changes described in Chapter 2. ED rats had R wave amplitudes similar to SC and EC 

rats at the conclusion of the study. However, exercise did not improve QTc intervals or 

heart rate variability in our model. These results support the impact of exercise on 

ventricle remodeling as shown by significant differences in R wave amplitudes between 

SD and ED rats.  

5.1.3 Hemodynamic findings 

In Chapter 3, 24 hemodynamic 

parameters were assessed for diabetes 

related alterations in the left ventricle. We 

identified 15 parameters, listed in Table 1 that 

were adversely impacted by diabetes. 

Changes in these parameters confirmed the 

systolic and diastolic dysfunction associated 

with diabetic heart disease. We observed 

declines in each phase of the cardiac cycle: 

diastolic filling, isovolumic contraction, ejection, 

and isovolumic relaxation. Assessment of pressure volume loops (Figure 2) revealed 

that diabetes (SD rats) caused a leftward and downward shift compared to SC animals, 

indicating that SD animals had lower pressure and volumes values throughout the 

cardiac cycle compared to the SC group. Bradycardia was also detected in the SD 
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Heart rate 
Stroke volume index 
Cardiac output index 

Stroke work index 
Minimum volume 

End diastolic volume 
dP/dtmax 

P@dP/dtmax 
V@dP/dtmax 

Pmax 
End systolic pressure 
End systolic volume 

Ejection fraction 
dP/dtmin 

V@dP/dtmin 

Table 2 Hemodynamic parameters 
normalized by exercise. Parameters 
affected by exercise are in bold font. 

animals with pressure volume loop analysis. However in Chapter 2, we reported 

tachycardia in the cohort with ECG analysis. The difference may be a cohort effect, but 

the literature is inconclusive about heart rate changes in the ZDF rat. Reports of 

tachycardia (Zhou et al., 2000), bradycardia (Wang and Chatham, 2004), or no change 

(Daull et al., 2006) have been described in this animal model. General performance 

indices, such as stroke volume, cardiac output, and stroke work were also significantly 

depressed under diabetic conditions in this study. SD animals were unable to utilize the 

Frank-Starling mechanism to maintain cardiac function. In addition, we observed no 

differences in arterial resistance between the SC and SD animals.  

Exercise training restored 13 of the 15 

parameters to levels comparable to SC and/or EC 

animals. Significant differences were observed 

between the bolded parameters in Table 2 in ED 

animals as compared to SD animals after seven 

weeks of exercise training. Exercise also doubled 

the maximal power of the left ventricle of ED rats as 

compared to SD animals. Exercise proved highly 

successful in addressing hemodynamic changes 

related to diabetes. The improvements observed 

strongly favored systolic function. We did not observe robust changes in diastolic 

function with exercise in our model. An assessment of the pressure volume loops did 

indicate that the compensatory responses related to heart rate and systolic function 

were sufficient to improve the cardiac function of ED animals to those of the SC group.  
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5.1.4 Diabetes related myocardial edema findings 

 After the ECG and hemodynamic assessment of the development and 

progression of diabetic heart disease in the ZDF rat, we sought to determine if fluid 

imbalance and resulting myocardial edema could be a factor and possible target of 

exercise. We utilized a hierarchical approach to systematically investigate if the 

hemodynamic burden of ZDF rats coupled with changes in the lymphatic system causes 

a myocardial fluid imbalance. Because so little is known about the interaction of 

diabetes and myocardial edema, basic questions had to be answered before any 

possible effects of exercise training could be evaluated. For this reason, we analyzed 

sedentary diabetic and control animals only to address this question. We identified 

changes in body weight and inflammatory markers in diabetes. The increases in body 

weight of the diabetic animals suggested either an accumulation of body fat or water. 

Elevation of IL-2 in diabetic plasma samples indicated that the animals may be 

responding to an infection or inflammatory condition, which could lead to edema.   

As we proceeded to the next level of analysis, we observed no difference in wet 

ventricle weights between the groups, and the drying weights were also similar. We did 

note that during the first 30 min of drying, the drying patterns varied between control 

and diabetic animals. Diabetic hearts appeared to be drying slower during these early 

time periods, which suggested that there may be differences in the tissue structure 

resulting in a slower release of fluid from the diabetic ventricle. Hemodynamic analysis 

showed that diabetic animals may have increased myocardial microvascular 

permeability with significant declines in dP/dtmax. Increased filtration into the interstitium 

could account for the differences in drying patterns, albeit not sufficient to affect overall 
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ventricular weights. We were interested to identify other changes in diabetic 

myocardium including cellular and extracellular matrix protein levels and activities 

associated with the lymphatic system. VEGF-C tissue levels were not affected by 

diabetes and could not be implicated in increasing the permeability of coronary vessels. 

We observed only a trend toward increased hyaluronan concentrations in the diabetic 

myocardium. Elevated hyaluronan levels would have increased the viscosity of the 

extracellular matrix leading to fluid accumulation in the matrix and possibly triggering 

edema. 

We completed our analysis with an investigation into the receptors for VEGF-C 

and hyaluronan, VEGFR-3 and LYVE-1, respectively. We observed no changes in 

mRNA or protein levels for either receptor. Analysis of the transcription factor, PROX-1, 

which regulates VEGFR-3 and LVYE-1 expression, revealed significantly higher total, 

nuclear, and cytosolic protein levels in the left ventricles of diabetic animal compared to 

control animals. An examination of gene expression and DNA binding activity of PROX-

1 indicated no difference between the groups. The lack of an increase in DNA binding 

activity may actually suggest decreased activity in the diabetic animals considering that 

the protein levels of PROX-1 increased in diabetes. In conclusion, we identified indirect 

clinical signs of edema with hemodynamic changes, but further investigation at the 

tissue and cellular levels revealed that there was no indication of myocardial edema in 

the ZDF rat model. The changes in PROX-1 are of interest and will require further 

investigation as they may be related to other pathological changes associated with 

diabetes.  
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5.2 Clinical implications 

 Our investigations have supported the use of the ZDF rat model in the 

study of diabetic heart disease and possible interventions. The ECG presentation 

of the ZDF rat reported in Chapter 2 (VanHoose et al., 2010) was similar to ECG 

changes seen in human studies (Airaksinen, 1985; Christensen et al., 2000; Laptev, 

Riabykina, and Seid-Guseinov, 2009; Stern and Sclarowsky, 2009). Thus the ZDF rat 

could be used to study QT intervals and heart rate variability abnormalities along 

with pressure volume relationships. The systolic and diastolic dysfunction observed 

in the ZDF rat was also comparable to the pathological modifications in humans with 

diabetes (Johnson et al., 2004; Poirier et al., 2003; Poornima, Parikh, and Shannon, 

2006). The positive response of the ZDF rat to exercise provided additional support for 

the use of exercise as a non-pharmacological treatment of diabetic heart disease for 

people with diabetes. Even with this relatively short duration of exercise we were 

able to observe significant impact on diabetic cardiovascular signs and 

symptoms. Although, other reports have suggested that diabetes increases vascular 

permeability (Kumar et al., 2009; Moriguchi et al., 2005) and researchers have 

postulated that edema may play a role in cardiovascular disease (Miller, 1976; 

Miller, 2011; Miller, DeBoer, and Palmer, 1992; Nakamura and Rockson, 2008) . 

However, we were unable to substantiate this claim in our model under the 

conditions of the study. We acknowledge that our study analyzed one time point, which 

limited our conclusions, and we believe that future research is needed to thoroughly 

address this hypothesis.  
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5.3 Future directions 

 Future research should address the limitations of our one time point analysis and 

the analysis of the fluid composition of the heart in diabetes. Our study design proved 

adequate to attenuate some of the diabetes related ECG alterations and hemodynamic 

changes through exercise training. Since hyperglycemia can appear as early as 5-6 

weeks in the ZDF animal, it is possible that fluid imbalance may occur much earlier than 

at the 19 week termination point in our study. If edema presented earlier than when our 

observation period started, the lymphatic system may have already responded and 

morphological changes related to edema were already presenting as fibrosis. Since 

fibrosis can also occur due to hyperglycemia, it would be hard to differentiate the 

etiology of fibrosis and related cardiac dysfunction in our study design. Therefore, 

longitudinal studies are needed to identify if myocardial edema is present at other time 

points along the ZDF rat lifespan. More advanced methods, such as computed 

tomography or other whole animal imaging techniques could be utilized to answer this 

question. Echocardiograms would provide additional information about the ventricle, 

tissue characteristics, and myocardial performance, which may also suggest changes in 

water content. We would also recommend larger sample sizes since changes in volume 

may be minuscule. Additional investigations of PROX-1 are warranted due to the 

increased protein levels seen in diabetic animals. Our lab has shown that diabetes 

causes reactivation of fetal gene expression in the hearts of T1D animal models 

(Smirnova, unpublished), as confirmed by other researchers (Taegtmeyer, Sen, and 

Vela, 2010). The increased levels of PROX-1 could be due to a reactivation of fetal 

gene expression in the ZDF rat hearts due to its role in fetal heart development. PROX-
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1 could be a signal of cardiomyogenesis in diabetes and a possible target for treatment 

of diabetic heart disease. 
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