A Study of Terpeneless Lemon Extracts

by C. Clay Spilman

1912

Chemical Engineering senior thesis project of the University of Kansas

$$
\begin{aligned}
& \text { A } \underline{S} \underline{T} \underline{U} \underline{Y} \underline{O} \underline{F}
\end{aligned}
$$

$$
\begin{aligned}
& \text { SUBMITTED TO } \\
& \text { THE SGHOOL OF ENGINEERING, } \\
& \text { UNIVARSITY OF KANSAS. } \\
& \text { MAY } 27 \text {, 1912。 } \\
& \cdot
\end{aligned}
$$

> 1208 Mississippi st. Lawrence, Kansas. May $27,1912$.

To the Falculty of the
School of Chemical Engineering.
University of Kansas, Lawrence, Kansas.
Sirs:-
I desire to offer the accompanying
paper for credit as a Senior Thesis, such as is required of all applicants for a degree in the school of Engineering,

> Very respectfully subinitted,

TERPENELESS LEMON EXTRACTS.

There are two extracts which have the flavor of lemon and which have approximately the same citral content. They are Lemon Extract and Terpeneless Lemon Extract. These extracts are both standardized by the government.

Lemon extract, so labeled, which is placed on the market must, in order to comply with the Kansas Pure Food Law, contain five (5) per cent. by volune of oil of lemon. In order to contain this amount of lemon oil in the extract it is necessary to dissolve the oil in about eighty (80) per cent. ethyl alcohol.

Ethyl alcohol is very expensive so in order to make cheaper extracts the manufacturers have placed on the market an extract made with about fifty (50) per cent. alcohol. This is called a Terpeneless Lemon Extract for the reason that the terpenes in the lemon oil are insoluble in this strength alcohol and hence are removed mechanically from the extract. The Kansas Pure Food Law has the following regulation in regard to terpeneless lemon extracts;"Terpeneless Extract of Lemon is the flavoring extract prepared by shaking oil of lemon with dilute alcohol,U.S.P., or by dissolving terpeneless oil of lemon in dilute alcohol,U.S.P., and contains not less than two-tenths (0.2) per cent. by weight of citral derived from oil of lemon." By U.S.P.
is meant 50% alcohol.
The terpenes can be removed from lemon oil by vacuum distillation and this terpeneless oil is easily dissolved in dilute alcohol so as to obtain a standard extract. This terpeneless oil is very expensive and the vacuum distillation is not easy for a small manufacturer to handle.

1
It has been found by Jackson that all the terpeneless lemon extracts as found on the market fall below the standard above mentioned in the per centage of citral. This fact is evidently not due to a desire to defraud but to an ignorance of the conditions which go to make a legal terpeneless lemon extract. aims
This thesis, to investigate the conditions which are necessary to make terpeneless lemon extracts and to find out the most economical manner of preparing a legal terpeneless extract of lemon.

In analyzing lemon extracts the criterion is the per centage of citral. In this work Hiltner's method for the determination of citral was used on account of its rapidity and also the fair degree of accuracy which could be obtained. A cony of this method is as follows:METAPHENYLENE DIAMIN HYDROCHLORID SOLUTION. Prepare a 1% solution of metaphenylene diamin 1. Kansas State Board of Health Bulletin.March 1911. 2. Bulletin No.132, U.S. Departnent of Agriculture.
hydrochlorid in 50% alcohol. Decolorize by shaking with fuller's earth or animal charcoal and filter through a double filter. The solution should be bright and clear, free froin suspended matter, and practically colorless. It is well to prepare only enough solution for the days work, as it darkens on standing.

ALCOHOL. For the analysis of lemon extracts 90 to 95% alcohol should be used but for terpeneless extracts alcohol of 40 to 50% strength is sufficient. Filter to remove any suspended matter. The alcohol need not be purified from aldehyde. If not practically colorless, render slightly alkaline with NaOH and distill.

APPARATUS. Use any convenient colorimeter.
MANIPULATIONS. All of the operations may be carried on at room temperature. Weigh into a 50 cc. graduated flask 25 gm . of the extract and make up to the mark with alconol ($90-95 \%$). Stopper the flask and mix the contents thoroughly. Pipette into the colorimeter tube 2 cc . of the solution, add 10 cc . of metaphenylene dianin hydrochlorid reagent, and complete the volume to 50 cc . (or other standard volune) with alcohol. Compare at once the color with that of the standard which should be prepared at the same time, using 2 cc . of standard citral solution and 10 cc . of the metaphenylene diamin hydrochlorid reagent and making up to the standard voluae with alconol. From the result of thins first determination calculate aporoximately the amount of standard citral solution that should be used in order to give approxiraately the saine citral strength of the sample
under determination, then repeat the detemination.
The metaphenylene dianin hydrochlorid solution was not treated with fuller's earth or animal charcoal 1 because it has been found that this treatinent sometimes aumants the color rather than reduces it. The salt was weighed within a hundreth of a grain, dissolved in 50% alcohol in a graduated flask and the solution then filtered.

A Schreiner colorimeter was used. The tubes used were calibrated for 50 cc . On the first tube the distance from the bottom to the 50 cc . mark was divided into 100 parts and on the second into 50 parts. The unknown extract was placed in the first tube and the standard citral solution was placed in the second. The standard was set at the 50 eemark and the unknown tube varied. When the colors were equal and the unknown tube read 100 then the strengths of the solutions were said to be equal. This reading is not percentage of citral but is an arbitrary number. The method of analysis above given was followed exactly except for the following changes. It was found that when 10 cc . of the one per cent. metaphenylene diamin hydrochlorid were used that the volume in the tubes was not large enough to permit reading through a large enough range. This difficulty

1. Jackson, Mory, Bulletin 132,U.S.Dept.Agri. Page 170.
was overcome by using 20 cc . of a . 5% solution. The procedure for the analysis of an extract was as follows. The solutions were placed in the tubes which mere then brought to the 50 cc. mark with alconol, taking care that this alconol was stronger than the alconol in which the standard or extract was made. The 20 cc . of $.5 \%$ metaphenylene diainin hydrochlorid solution was then added using a 20 cc . pipette. The tubes were then mixed by covering the open end by the paim of the hand and inverting twice. The tubes were then placed in the colorimeter and several minutes were allowed to elapse before making a reading in order to allow the air in the tubes to escape. Great trouble was experienced in obtaining sufficient alcohol to carry on the work. The University did not receive any alcohol during the term in which this investigation was carried out and the delay which this occasioned is given as the reason why more data was not obtained. The alcohol was recovered as soon as used. A still was set up consisting of two electric hot plates upon which were placed two one liter Gernan flasks. These two flasks were connected to the same small Liebig condenser.

It is not stated in the method of citral analysis whether both tubes shall be made upith contain the same strength of alcohol. The alcoholic strength of the metaphenylene diamin hydrochlorid solution is stated and it is also stated that the alcohol used in the tubes must be as strong as that in which the extract or standard
were made in but it is not stated whether both tubes need to be made up with the same strength. This was the first point that was investigated.

A standard of 11 gin. of citral in lioo cc. of 92% alcohol was made up. Two cubic centimeters of this standard were placed in each tube and the tubes brought to the mark with different strentths of alconol. The standard tube was set at 50 for the reasons above mentioned and the other tube compared with it.

In all the tables given in this work the following is to be noted. The strength of alcohol mentioned is not the real alconolic strength of the solutions in the tubes but it is the strength of the alcohol which was used in completing the volume to 50 cc . Also the 100 stated on the standard tube is really 50 but since it ia equivalent to 100 on the unknown tube it is so stated. TABLE 1.
(a) 3-8-12.

Standard tube. 86% alconol 70% alcohol. 86% alcohol. 40% alconol 2cc.standard. 2cc.standard. 2cc.standard. 2cc.standard 100

109	100	112
102		108
110		115
100		$\frac{114}{559}$
$\frac{106}{\frac{527}{105}}$		av.
av.11.8		

(b) $3-8-12$.

Standard tube. Unknown tube
$100 \quad 112$
108
115
110
114
av. $\frac{5111}{118}$
(c) 3-8-18.
(d) 3-8-12.

Standard tube. Unknown tube. standard tube. Unknown tube. 86% alconol. 20% alconol. 20% alcoinol. 20% alcohol. 2cc.standard. 2cc.standard. 2cc.standard. 2cc.standard.

100

120	100	103
112		96
118		97
117		$\frac{101}{496}$
$\frac{120}{587}$	av.	
av.		

This shows a decrease in the strength of the color of the unknown solution as the alconolic strength decreases. (d) was run to see if a check could be obtained with equal strength in both tubes. A decrease from 70% to 40% gave a difference of 6.4 ; while a decrease from 40% to 20% gave a difference of 5.6. The first bottle of metaphenylene diamin hydrochlorid which was used was at rather old and gave a solution which was sufficiently colored to enable one to read without having any citral present. To see the result without citral being present the following data was obtained.

T A B L E 2.

(a) 3-9-12.
(b) 3-9-12.
standard tube. Unknown tube. Standard tube. Unknown tube. 94.5I\% alcohol 70\% alcohol. 94.51% alcohol 50% alcohol. No citral nocitral no citral no citral.

100
94 100
90.

92 94
91 93
93 96
90
$\frac{4 \overline{60}}{292}$
av. $\frac{\frac{98}{471}}{94.2}$
(c) 3-9-12.
(d) 3-9-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 94.51% alcohol 40\% alcohol. 94.51% alcohol 20% alcohol. no citral. no citral. no citral. no citral.

100
109
100
78
101
72
113 71
108 72 109
540
av. $\overline{108}$
80
373
av. 74.6
(e) 3-9-12.

Standard tube. Unknown tube.
94.5I\% alcohol 94.51\% alcohol.
no citral. no citral.
100103
102
100
102
102
509
av.101.8

Table 2 shows a variation in the same direction as table 1 with the exception of (d)2. This result is in the wrong direction and it is doubtful whether any weight should be given to it.

The following results were obtained with 2 cc . of standard citral in each tube and varying per cents of alcohol.

$$
\text { TABIE } 3
$$

(a) 3-9-12.
(b) 3-9-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 94.51% alcohol 50% alcohol. 94.51% alcohol 40% alcohol. 2 cc.standard. 2oc.standard. 2cc.standard. 2cc.standard.

100
118100
126
114124
$116 \quad 127$
113
120
113
$\frac{1}{574}$
av. 114.8
124
621
av. $\frac{621}{124} .2$
(c) 3-9-12.

Standard tube. Unknown tube. 94.51% alcohol 20% alcohol.

2cc.standard. 2ce.standard. 100 122

Other read-
ings off
the scale.
This shows a weakening of color with decrease of strength of alcohol in the same direction as the previous experiments.

To see if a reading of 100 or there abouts could be obtained when both tubes were made up with the same strength of alcohol the following experiments were made.

$$
T A B L E 4
$$

(a) 3-15-12.
(b) 3-3.5-12.

Standard tube. Unknown tube. Sane as (a) but tubes 90% alcohol. 90% alcohol. changed in colorimeter. no citral. no citral.

100	101	100
99	100	
104	97	
98	106	
	$\frac{99}{501}$	100
		$\frac{93}{100.2}$

(c) 3-15-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 80% alcohol. 80% alcohol. 50% alcohol. 50% alcohol. no citral. no citral. no citral. no citral.

100
96
100
98 104
93 94 91 $\frac{472}{94}$
(e) 3-15-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 80% alcohol. 80% alcohol. 40% alcohol. 40% alcohol. no $\underset{100}{ }$ no citral. no $\underset{100}{ }$ no citral. 97 96
100 93
(g) 3-15-12.
(h) 3-15-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 90% alcohol. 90% alcohol. 80% alcohol. 80% alconol. no citral. no citral. no citral. no citral.

100

99
100
99
99
102
98 97
94
102
100
96
104
690
av. 98.5
(i) 3-15-12.
standard tube. Unknown tube. standard tube. Unknown tube. 50\% alcohol. 50% alcohol. 40% alcohol. 40% alcohol. no citral. no citral. no citral. no citral. 100 $\begin{array}{r}96 \\ 97 \\ 104 \\ 106 \\ 97 \\ \hline \frac{500}{100}\end{array}$

$$
100
$$102 102

95
97
94 av. $\frac{\overline{49 I}}{98} .2$

The fact that these readings did not come closer to 100 is probably due to errors of the eye but the variation is not near as large as when a different strength of alcohol is used in each tube.

A continuation of the work in Table 2 is
given in Table 5.

TABLE 5.
(a) 3-22-12.
(b) 3-22-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 90\% alcohol. 80% alcohol. 90\% alcohol. 50% alcohol. no citral. no citral. no citral. no citral.

100

108
101
98
101
$\frac{100}{508}$
av. 101.6

100

104 104 102 102 $\frac{106}{518}$ av. $\overline{103.6}$
(c) 3-22-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 90% alcoñol. 40\% alconol. 90\% alconol. 80\% alconol. no citral.

100
(d) 3-23-12.
no citral.
$\begin{array}{r}100 \\ 108 \\ 111 \\ 100 \\ 106 \\ \hline \frac{525}{105}\end{array}$

104
98
104
106
103
$\frac{515}{103}$

The variation obtained in Table 5 while not as lasge as obtained previously is still in the same direction. A new bottle of metaphenylene dianin hydrochlorid was used. There was so little color developed that no readings could be obtained.

Since no readings could be obtained with the new metaphenylene dianin solution standard citral solution was used to develope the color.

In Table 6 the solutions were made with the sane strength of alconol. 2cc. of standard were used.

$$
\text { TABLE } 6 .
$$

(a) 3-23-12.
(b) 3-23-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 80\% alconol. 80% alconol. 50% alconol. 50% alconol. 2cc.standard. 2cc.standard. 2cc.standard. 2cc.standard. 100

96 100

102
97 98
$96 \quad 116$
98 100
av. $\frac{\frac{95}{482}}{96.4} \quad$ av $\frac{\frac{116}{532}}{106.4}$
(c) 3-23-12.
(d) 3-23-12.

Standard tube. Unknown tube. Standard tube. Unk nown tube 40% alcohol. 40% alcohol. 30% alochol. 30% alcohol. 2cc.standard. 2cc.standard. 2cc.standard. 2co.standard 100 $96 \quad 100$ 109 $90 \quad 100$
90 99
96
103
av. $\frac{\frac{98}{464}}{92.8}$
96
$\frac{507}{101} .4$
(e) 3-23-12.
(f) 3-23-12.

Standard tube. Unknown tube. standard tube. Unknown tube. 80% alcohol. 80% alconol. 50% alcohol. 50% alconol. 2cc.standard. 2cc.standard. 2cc.standard. 2cc.standard. 100 $96 \quad 100$ 97
99 97
10298
99
101
94
$\frac{490}{98}$
av. 98
94
487
av. 97.4
(g) 3-23-12.
(h) 3-23-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 40% alconol. 40% alconol. 30% alconol. 30% alconol. 2cc.standard. 2cc.standard. 2cc.standard. zcc.standard. 100 97
100
100
98
98
av. $\frac{493}{98} .6$

100
94
100
106 104
106
av. $\frac{510}{102}$
(i) 3-25-12.
(J) 3-25-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 80% alconol. 80% alconol. 50% alconol. 50% alcohol. 2cc.standard. 2cc.standard. 2cc.standard. 2cc.standard.

100	103
	96
94	
	95
	97
	av. $\frac{485}{97}$

100
103
92
94
98
95
98
av. $\frac{\frac{97}{485}}{97}$
$\operatorname{av} . \frac{\frac{103}{494}}{98.8}$
(k) 3-25-12.
(1) 3-25-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 40\% alcohol. 40% alcohol. 80% alcohol. 80% alconol. 2cc.standard. 20c.standard. 2cc.standard. 2cc.standard. 100

$$
\begin{array}{r}
106 \\
103 \\
98 \\
93 \\
103 \\
\frac{503}{} \\
\text { av. } 100.6
\end{array}
$$

$$
100
$$

$$
102
$$

$$
97
$$

$$
100
$$

94
96
489
(m) 3-25-12.
(n) 3-25-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 50% alcohol. 50% alcohol. 40% alcohol. 40% alconol. 2cc.standard. 2cc.standard. 2cc.standard. Rcc.standard.
100
93
100
91
102
94
93
95
98
97
96
$\frac{101}{478}$
av. 96.4
av. 95.6
(o) 3-25-12.
(p) 3-25-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 30% alconol. 30% alcohol. 80% alcohol. 80% alcohol. 2cc.standard. 2cc.standard. 2cc.standard. 2cc.standard.

100
96 100 100
96 96
98 93
101 99
96
487 97
av. $\frac{487}{97.4}$
av. $\frac{-97}{97}$

> (q) 3-25-12.
(r) 3-25-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 50% alconol. 50% alconol. 40% alconol. 40% alcohol. 2cc.standard. 2cc.standard. 2cc.standard. 2cc.standard. 100

97
100
98
$97 \quad 100$
94
91
95 93
av. $\frac{\frac{90}{473}}{94.6} \quad$ av. $\frac{\frac{93}{475}}{95}$.

The results given in Table 6 are not very close to 100 but the error is evidently a personal one due very prooably to the eyes.

In T able 7 the solutions were brought to the mark with different strengthe of alconol and they contained 2cc. of standard citral solution.

TABLE 7.
(a) 3-28-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 50\% alconol. 80% alcohol. 50% alcohol 50% alcohol. 2cc.standard. 2cc.standard. 2cc.standard. 2cc.standard.

200

66
70
67
65
64
$\frac{34}{332}$
66

(c) 3-28-12.
(d) 3-28-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 50\% alcohol. 40% alcohol. 50% alcohol. 30% alcohol. 2cc.standard. 2cc.standard. 2cc.standard. 2cc.standard.

100

100
11.6

110
120
110
118
574 av. 114.8
(e) 3-28-12.
(土) 3-28-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 50% alcohol. 80% alcohol. 50% alcohol. 50% alcohol. 2cc.standard. 2cc.standard. 2cc.standard. zcc.standard.

100
74
100
97
65
72
96
97
74
102
$\frac{66}{351}$
av. $\frac{70.2}{}$
(g) 3-28-12.
standard tube. Unknown tube. Standard tube. Unknown tube.
50% alcohol. 40% alcohol. 50% alcohol. 30% alcohol.
2cc.standard. 2cc.standard. 2cc.standard. 2cc.standard.
100
108
106
100
113
110
114
110
104
105
529
av. 105.8

114
561
av. 112.2

In Table 7 the same thing is found as in Tables $1-2-3$ and 5 namely that the strength of the color decreases as the strength of the alcohol decreases.

To make sure that the above was a correct 1 conclusion the writer was assis申ted by Jackson in making some readings. The procedure was as follows. The writer macie up the tubes and read them. Then Jackson, who had no knowledge of the contents of the tubes, read them and recorded his results on a separate paper. In several instances, as is noted, the writer read the tubes before 1. Ibid.
and then after Jackson's reading. The following results were obtained.
TABLE 8.
spilman. Jackson.(a) 3-29-12.
standard tube. Unknown tube.
80\% alcohol. 80% alcohol.
2cc.standard. 2cc.standard. 95
100 94 979496
90 9494
92
92 94
..... 9262av. $\frac{462}{92.4}$660
av. 94.3
(b) 3-29-12.
Standard tube. Unknown tube.
80\% alcohol. 80% alcohol.
2cc.standard. 2cc.standard. 98 10397
100 96 1019497
94 103
93 100
92 102801
av. 94.2 av.100.1
(c) 3-29-12.
Standard tube, Unknown tube.
50% alcohol. 50\% alcohol.
2cc.standard. 2cc.standard.
100
9298
91 98
95 99
93 102
96 $\frac{101}{498}$

$$
\text { av. } \frac{401}{93.4} \quad \text { av. } \frac{.49}{99.6}
$$

Spilman. Jackson. After
(d) 3-29-12.
Jackson.
Standard tube. Wnknown tube.
40% alcohol. 40% alcohol.
2cc.standard. 2cc.standard.
100
98 100
9899
99 106 98
10010295
90
av. $\frac{\frac{92}{486}}{97.2}$
av. $\frac{\frac{92}{486}}{97.2}$ 100 100
$\frac{499}{99.8}$
$\frac{499}{99.8}$ 94

$$
\text { av. } \frac{400}{95.2}
$$

(e) 3-29-12.
Standard tube. Unknown tube.
80\% alcohol. 50% alcohol.
2cc.standard. 2cc.standard.
100

78	74
78	72
79	74
71	72
$\frac{74}{\frac{380}{76}}$	av. $\frac{74}{366}$
av.	

69 68 72 69 75 353 av. 70.6
(f) 3-29-12.
Standard tube. Unknown tube.
30% alcohol. 30% aloohol.
2cc.standard. 2cc.standard.
100
$\begin{array}{rr}103 & 103 \\ 98 & 101 \\ 95 & 100 \\ 98 & 101 \\ \frac{98}{483} & \frac{102}{507} \\ \text { av. } \frac{96.6}{96} & \text { av. } 101.4\end{array}$

97
100 97 98 94 486 av. 97.2
spilman.
(g) 3-29-12.

Tackson.
After
Jack8017.
Standard tube, unknown tube.
30% alconol. 50% alcohol.
2cc.standard. 2cc.standard. 120 121
$100 \quad 110 \quad 117$
$101 \quad 119$
114116
107116
$\frac{114}{546} \quad \frac{116}{825}$
a4.109.? \&V. 118
(in) $3-29-12$.
standard tube. Unknown tube.
50% alcohol. 50% alcohol.
2cc.standasd. 2cc.standard.

100 | 89 | 100 | 93 | |
| ---: | ---: | ---: | ---: |
| | 88 | 103 | 93 |
| | 89 | 100 | 93 |
| | 92 | 99 | 95 |
| | $\frac{95}{453}$ | $\frac{98}{90}$ | $\frac{91}{400}$ |
| | av. $\frac{100}{466}$ | av. 93.2 | |

(i) 3-29-12.
standard tube. Unknown tube.
40% alconol. 40% alcohol.
2cc.standard. 2cc.standard.
100

99
98
98
98
95
av. 97.6
spilman.
(j) 3-29-12.

Standard tube. Unknown tube. 50% alcohol. 50% alcohol.

2cc.standard. 2cc.standard.

Jackison.
After Jackson.

100 $\begin{array}{r}99 \\ 95 \\ 92 \\ 97 \\ 94 \\ \hline \frac{477}{95} .4\end{array}$
(k) 3-29-12.

Standard tube. Unknown tube. 40\% alconol, 50% alcohol,

2cc.standard. 2cc.standard. 100 $\begin{array}{r}100 \\ 101 \\ 107 \\ 106 \\ 106 \\ \hline \frac{520}{104}\end{array}$
(1) 3-29-12,
standard tube. Unknown tube.
80\% alconol. 50% alconol.
zcc.standard. 2ce.standard. 100

	71	
66	70	67
68	75	64
73	68	65
68	73	67
$\frac{70}{345}$	$\frac{74}{69}$	av. $\frac{441}{73} .5$

spilman.
(in) 3-29-12.

Jackson.
After
Jackson.
standard tube. Unknown tube.

80\% alcohol. 80% alcohol.
2cc.atandard. 2ce.standard.
100
$\begin{array}{r}94 \\ 89 \\ 96 \\ 92 \\ 89 \\ \hline \frac{460}{92}\end{array}$

95	
100	
104	91
98	92
98	90
101	95
102	$\frac{91}{105}$
$\frac{459}{803}$	av. $\frac{91.8}{100.4}$

From this Table 8 it can be concluded without a doubt that decreasing the strength of alconol decreases the strength of color of the solution and that for accurate results both tubes must be brought to the mark with the same strength of alcohol.

The second point to be investigated was the terpeneless lemon extracts thenselves. The object was to determine the method of making a legal terpeneless extract of lemon in the most economical manner. Several series of extracts were made, containing different percentages of lemon oil and different strengths of alcohol. In making an extract the lemon oil, 5, 10 or 15 cc., was pipetted into a 100 cc . graduated flask and the amount of strong alcohol necessary to make the strength desired added by means of a burette. This strong alcohol dissolved the oil but when water was added to complete the 100 cc. , the more insoluble terpenes were thrown out of solution. The flask was fitted with a two hole rubber stopper through which was a short glass tube ending with the cork and a longer glass tube extending to the bottom of the flask. A small mubber tube with a pinch cock was atiached to the shorter glass tube and the flask inverted. The flask was allowed to remain so for a day and the insoluble oil rose to the top. The clear extract was drawn off by means of the pinch cock and filtered. Twenty five grans of the clear solution were weighed into a 50 ce. graduated flask and the volume completed to the mark with string alcohol.

The citral used in making the standard solution and the lemon oil from which the extracts were made were both purchased from Fritzsche Brothers of New York.

Three series of extracts were made. The first contained 5% of lemon oil and the extracts were made with $90-80-70-60-50-40-30-20 \%$ alcohol. The second contained 10% lenon oil and had $80-60-40-20 \%$ alcohol. The third was 15% lemon oil and also had $80-60$ 40 and 20% alcohol. The analyses of these extracts are now given.

$$
\text { 5\% LEMON OIL. } 90 \% \text { ALCOHOL. }
$$

(a) 3-2-12.
(b) 3-2-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 2cc.extract. 2cc.standard. 2cc.extract. 100

103
96 100 96 94
101
99 93 89
94.

493 92 464 av. 98.6
av. 92.8
(c) 3-4-12.
(d) 3-8-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 1.7 cc . ext. 2cc.standard. 1.6 cc . ext.
(e) 3-8-12.

Standard tube. Unknown tube.
2cc.standard. 1.5 co. ext.
100
99
98
100
97
av. $\frac{\frac{102}{496}}{99.2}$
Per cent of citral equals . 26%.
5% LEMON OIL. 80% ALCOHOL.
(a) 3-8-12.
(b) 4-12-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 2cc.extract. 2cc.standard. 2cc.extract. 100 95
90
94
90
95
90
91
94
92
av. $\frac{831}{92} .3$
(c) 4-12-12.
(d) 4-12-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 1.5 cc. ext. 2co.standard. 1.5 cc . ext. 100

100	100	105
101		98
102		100
97		104
$\frac{100}{500}$	104	
av. 100		$\frac{106}{721}$
		av. 103

(e) 4-19-12.
(f) 4-19-12.

Standard tube. Unknown tube. Standerd tube. Unknown tube. 2cc.standard. 1.5 cc. ext. 2cc.standard. 1.2 cc . ext.

100

90	100	109
90		106
89		110
88		114
$\frac{92}{439}$		110
av.		$\frac{111}{89.8}$
		av. 170

(g) 4-19-12.
(h) 4-19-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc. standard. 1.3 co. ext. 2cc.standard. 1.5 cc . ext. 100
$110 \quad 100$
96
109
92
112
100
111
94
110
96
552
96
av. 110.4
$\operatorname{av.} \frac{\frac{100}{674}}{96.3}$
(i) 4-19-12.

Standard tube. Unknown tube.
zcc.standard. 1.4 cc. ext.
100
100
97
101
98
101
98
ev. $\frac{\frac{102}{697}}{99.5}$

Percentage of citral equals. 26%.
5% LEMON OIL. 70% ALCOHOL.
(a) 3-8-12.
(b) 3-8-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 2.1 cc. ext. 2cc.standard. 1.8 cc. ext. 100

90	100	96
96		93
98		99
92		95
94		$\frac{96}{49}$
$\frac{470}{94}$		4 479
av. 94.		av. 95.

(c) 4-12-12.
(d) 4-12-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 2cc.extract. 2cc.standard. 1.7 cc. ext. 100

90
94
92
89
90
91
92
638
av. 91.1

100
100
98
100
99
100
497
av. 99.4

Percentage of citral equals . 235% 5% LEMON OIL. 60% ALCOHOL.
(a) 3-7-12.
(b) 4-15-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 2.2 cc . ext. 2cc.standard. 2cc.extract. 100

100
100
89
91
97
86
93
86
94
(c) 4-15-12.
(d) 4-15-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 1.5 cc. ext. 2cc.standard. 1.7 cc. ext.

100
1 I4 100
199
103
118
106
119 97
116
105
112
118
810
av. 115.7

(e) 4-1512.

Standard tube. Unknown tube.
2cc.standard. 1.8 cc. ext.
$100 \quad 104$ 96
97
102
101
102
$\frac{101}{703}$

$$
a v \cdot \frac{\frac{1}{703}}{100.4}
$$

Percentage of citral equals . 22%.
5% LEMON OIL. 50% ALCOHOL.
(a) 4-15-12.
(b) 4-15-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 2cc.extract. 2cc.standard. 2.2 cc . ext. 100 $\begin{array}{r}120 \\ 114 \\ 120 \\ 121 \\ 118 \\ 120 \\ 118 \\ \hline \text { av. } \frac{831}{118.7}\end{array}$

100
104
110
106
107
106
533
av. $\frac{\overline{1} 06.6}{}$
(c) 4-15-12.
(d) 4-15-12

Standard tube. Unknown tube. Standard tube. Unknown tybe. 2cc.standard. 2.3 cc. ext. 2cc.standard. 2.4cc.ext.

100100100102
104103
102100
$99 \quad 100$
100101
$102 \quad 99$
100

$$
\begin{array}{r}
99 \\
100
\end{array}
$$

708
av. $\overline{101}$.

$$
\frac{\frac{100}{705}}{\text { av. }}
$$

Percentage of citral equals . 16%.
5% I EMON OIL. 40% ALCOHOL.
(a) 4-15-12.
(b) 4-18-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 3cc.extract. 2cc.standard. 4cc.extract.

100

100
97
94
93
92
91
92
av. $\frac{\frac{90}{649}}{92} \cdot 7$
(c) 4-18-12.

Standard tube. Unknown tube.
2cc.standard.t 3.6cc. ext.
100100
101
99
101
98
499

Percentage of citral equals .11\%.

5% LEMON OIL. 30\% ALCOHOL.

(a) 4-18-12.
(b) 4-18-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 7ccextract. 2cc.standard. 7.5 cc. ext. 100

118
100
118
112
108
110
117

107
108
105
768
av.109.7
(c) 4-19-12.
(d) 4-1.9-12.

Standard tuide. Unknown tube. Standard tube. Unknown tube. 2cd.standard. 8cc.extract. 2cc.standard. 8.4cc.ext. 100108100106 106106
110106
$108 \quad 108$
106 106
538
av. $\overline{107} .6$
(e) 4-19-12.

Standard tube. Unknown tube.
Icc.standard. 4.7 cc. ext.
100
98
96
96
100
av. $\frac{\frac{99}{489}}{97.8}$

Percentage of citral equals .04\%.
5% LEMON OIL. 20% AICOHOL.
(a) 4-19-12.
(b) $4=19-12$.

Standard tube. Unknown tubf. Standard tube. Unknown tube. lcc.standard. 8cc.extract. lcc.standard. 10cc. ext.

Percentage of citral equals . 02%.
10% LEMON OIL. 80% ALCOHOL.
(a) 5-3-12.
(b) 5-6-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. .75cc. ext. 2cc.standard. .75cc. ext.
$\begin{array}{llll}100 & 104 & 100 & 107\end{array}$ $98 \quad 107$
103 108
$97 \quad 1.03$
100
97
av. $\frac{\frac{100}{699}}{99.8}$

(c) 5-6-12.

Standard tube. Unknown tube.
zcc.standard. . 8 cc. ext.
100

$$
\begin{array}{r}
104 \\
107 \\
104 \\
105 \\
\frac{107}{527} \\
\text { av. } \frac{105.4}{}
\end{array}
$$

Percentage of citral equals . 53%.
(a) 5-3-12.
(b) 5-3-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 1.5 cc. ext. 2cc.standard. loceextract.

100
$74 \quad 100$
99
74
106
74
103
75
103
70
100
$\overline{367}$
av. 73.4
103
av. $\frac{\frac{100}{714}}{102}$.
(c) 5-3-12.

Standard tube. Unknown tube.
2cc.standard. 1.1 cc. ext.
100
92
94
96

Percentage of citral equals . 40\%.
10% LEMON OII. 40% ALCOHOL.
(a) 5-3-12.
(b) 5-3-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 2.5 cc. ext. 2cc.standard. 3cc.extract.

100

112
110
112
110
112
556

av. 111.2

100
94
94
96
$\begin{array}{r}92 \\ 94 \\ \hline 470 \\ \hline\end{array}$
av. 94.
(c) $5-3-12$.
(d) 5-3-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 2.7 cc. ext. 2cc.standard. 2.8 cc. ext. 100 106100 98 $106 \quad 97$
104102
103104
102103
100 96
106
av. $\frac{.727}{103.8}$
$\frac{\frac{102}{702}}{\text { av. } 100.2}$
Percentage of citral equals . 14%.
10% LEMON OIL. 20% ALCOHOL.
(a) $5-3-12$.

Standard tube. Unknown tube.
Icc.standard. 9cc.extract.
100
110
108
100
102
96
108
102
av. $\frac{\overline{726}}{103.7}$
Percentage of citral equals . 02%.
15% LEMON OIL. 80% ALCOHOL.
(a) 5-6-12.
(b) 5-6-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. . 5 cc. ext. 2cc.standard. . 6 cc. ext.

100
107100
93
107 93
98 93
98 95
100
98
90
104
464
712
av.101.7
Percentage of citral equals $.80 \%$.
15% LEMON OIL. 60% ALCOHOL.
(a) 5-6-12.
(b) 5-6-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. . 75 cc. ext. 2cc.standard. . 6 cc. ext. 100

88
89
88
88
av. $\frac{89}{442}$

108
107
1]. 3
109
108
545
(c) 5-6-12.
standard tube. Unknown tube. 2cc.standard. . 65 cc. ext.

100
102
100
101
101
101
$\frac{505}{101}$
Percentage of citral equals . 61%. 15% LEMON OIL. 40% ALCOHOL.
(a) 5-6-12.

Standard tube. Unknown tube.
2cc.standard. 2cc.extract.
100101
100
100
100
102
503
av. $\overline{100.6}$
Percentage of citral equals . 2%.
(a) 5-6-12.
(b) 5-6-12.

Standard tube. Unknown tube. Standard tube. Unk nown tube. lec.standard. 7cc.extract. lcc.standard. 6.5 cc . ext.

100

89	100	100
90		97
96		95
90		96
$\frac{92}{457}$		92 96
av. 91.4		97
		673

Percentage of citral equals . 03%.
The perdentages of citral were calculated from the number of cubic centimeters of extract solution used by the following formula.

$$
\text { y : } 2 \text { :: . } 2: x
$$

y is number of cc. of extract solution.
x is per cent. of citral in original extract. This formula is based on using 2cc.standard citral solution.

The results of the analyses of the extracts just given are collected in the form of a table and of a plot. In this plot the per cent. of citral is plotted against the per cent. of alcohol for the three different per cents of lemon oil.

$$
\begin{aligned}
& \text { More exact resuits of some of These extracts. }
\end{aligned}
$$

Table showing variation of citral per cent. in extracts containing aifferent per cents of lemon oil and alcohol. A sumary of the previous data.
5% LEMON OIL. $\quad 10 \%$ LEMON OIL. 15% LEMON OIL.

$\begin{gathered} \% \\ \text { alco } \end{gathered}$	$\stackrel{\text { citrgb. }}{\text { cis }}$	$\begin{aligned} & \% \\ & \text { citre } \\ & \text { founal. } \end{aligned}$	$\begin{aligned} & \% \\ & \text { citral } \\ & \text { cal. } \end{aligned}$	$\begin{gathered} \% \\ \text { citrel } \\ \text { found. } \end{gathered}$	G citra cal.
90	. 26				
80	. 26	.53	. 52	. 80	. 78
70	. 23				
60	. 22	. 40	. 44	. 61	. 66
50	. 16				
40	. 11	. 14	. 22	. 20	. 33
30	. 04				
20	. 02	. 02	. 04	. 03	. 06

A study of this table and plot shows several things. There seems to be a per cent of alcohol which is about 17% in which no citral is dissolved. In other words the solubility of citral in 17% alcohol is zero. The solubility of citral in 20% alconol is shown to be . 02%. When the strength of alcohol is along between 80 and 90% the citral content varies directly as the percentage of lemon oil which shows that the lemon oil was entirely dissolved.

In the plot the line representing the $.2 \%$ citral is the border line between a legal or an illegal terpeneless lemon extract. No combination below this line can be considered. Froin Merk's Report of May 1912 the follow-
:
ing data was oitained. Lemon oil costs $\$ 2.00$ for one pound. Ethyl alcohol, 95%, costs $\$ 3.10$ for one gallon. From this data the cost of one liter of extract was calculated. The specific gravity of the lemon oil was 1 taken as .859.

Taking 454 as the number of grams in one pound and assuming that 1 cc. weighs .859 gn . the cost of 1 cc . ori lemon oil is

$$
\frac{.859 \times 200}{454}=.378 \text { cents } / \mathrm{cc} .
$$

Since there are 3780 cc . in one galion, i cc. of 95% alcohol costs . 082 cents. 1.052 cc . of 95% alconol equals I cc. of absolute alconol. The following are the calculated costs of lemon oil and alconol for one liter of extract that would be above standard.

5\% lemon oil.	$50 \times .378$	18.90
60% alcohol.	$60 \times 1.052 \times .082$	$\frac{51.76}{70.66}$ cents.
10\% lemon oil.	$100 \times .378$	37.80
50% alcohol.	$500 \times 1.052 \times .082$	$\frac{43.13}{80.93}$ cents.
15\% lemon 0il.	$150 \times .378$	56.70
40% alconol.	$400 \times 1.052 \times .082$	$\frac{34.50}{91.20}$ cents.
5\% lemon 0il.	$50 \times .378$	18.90
55% alconol.	$550 \times 1.052 \times .082$	$\frac{47.44}{66.34}$ cents.

1. Parry, Ernest J. The Chemistry of Sssential 0ils, 1908, page 528.

An increase of 1% of lemon oil per liter costs 3.78 cents while an increase of 5% of alcohol costs 4.4 cents.

The above figures indicate that a 5% lemon oil 55% alcohol extract would be the cheapest. Such an extract was made and tested for strength with the following results.
(a) 5-13-12.
(b) 5-13-12.

Standard tube. Unknown tube. Standard tube. Unknown tube. 2cc.standard. 2cc.extract. 2cc.standard. 2.2cc. ext. 100 $\begin{array}{ccc}110 & 100 & 100 \\ 106 & 100 \\ 104 & & 104 \\ 106 & & 90 \\ \frac{105}{531} & & \frac{98}{502} \\ \text { av. } & & \text { av. } 106.200 .4\end{array}$

This gives a citral per cent. of . 182. This does not miss the standard far and probably would not be conteated.

An extract containing 6% lenon oil and 55% alconol was analized as follows.
(a) 5-15-12.

Standard tube. Unknown tube. zcc.standard. 2cc.extract.

100

$$
\begin{array}{r}
90 \\
91 \\
86 \\
87 \\
88 \\
88 \\
\hline \frac{530}{88} .3
\end{array}
$$

This shows that this extract is well above standard. The cost of this extract is 70.08 cents per Iiter.

An extract was made which contained 6% lemon oil and 50% alconol. Its analysis is as follows.

Standard tube. Unknown tube.
2cc.standard. 2cc.extract.
100

$$
101
$$

$$
101
$$

$$
102
$$

$$
100
$$

$$
102
$$

$$
\operatorname{av.\overline {506}}
$$

This is so near standard that no oijections to it could be raised. The lemon oil and alconol for thid extract costs 65.68 cents.ior one liter. From this data this is the cheapest extract that is standard that can be made. Additional data might show a slight lowering.

Experiments were next conducted along the lines of distillation. When lemon oil is freed wholly or in part from its terpenes it dissolves easily in dilute alcohol. If some easy method of separating the citral from the terpenes could be obtained it would effect a great saving in the alconol.

Distillation in vacuum was attempted. Two 50 cc. Jena distilling flasks were connected together with a rubber cork and connected through a manometer to a filter prmp. A pressure of 27 mm . of mercury was obtained. The lemon oil boiled at from 79 to 82 degrees C. The distilling flask was heated in an oil bath and the receiving
flask was cooled by running water. The distillation was continued until the temperature began to recede from 82 degrees G. Twenty five cubic centineters of lemon oil were taken to start with and there were 1.6 ac. in the residue and 23 cc. in the distillate. One fifth of the residue and distillate were each taken and made into extracts of 100 cc . with alcohol strong enough to dissolve them. These extracts were analized in the usual way. The extract from the residue contained . 12% citral while the extract from the distillate contained. 09%. This shows that a great concentration of citral was effeected but hardly great enough to be profittable. Distillation under atmospheric pressure resulted in the residue decomposing into a dark red, gumn liquid. Fractionation under dininished pressure was next tried.

A straight adapter was filled with metallic, scrap tin and fitted by rubber stoppers into a 50 cc. balloon flask. At a pressure of 67 mm . of mercury the distillate began coming over at 32 degrees C. The temperature gradually rose to 84 degrees C. and then receded. Twenty five cubic centimeters of lemon oil were taken to begin with and the residue contained 2.6 cc . and the distillate 18 cc . A fifth of each was taken and made inte into an extract. The analysis seened to show that the extract from the residue contimned. 30% of citral while 10 cc. of the extract solution from the aistillate failed to deepen the color of the meta phenylene diamin solution.

Lack of time prevented this thesis from being continued. These last results seem to show that this problen may be solved by some simple fractionation method.

In conclusion it can be said that witis thesis has shown that in the Hiltner method for the determination of citral both tubes must be made up with the same strength of alcohol since the color of the meta phenylene diamin solution decreases as the strength of alcohol decreases. It has also shown that a standard terpeneless lemon extract can be made containing 6% lemon oil and 50% alcohol at a cost for these materials of 65.68 cents for one liter of extract.

