
A Distributed, Architecture-Centric Approach to Computing
Accurate Recommendations from Very Large and Sparse

Datasets

Serhiy Morozov

B.A., Computer Science, Westminster College, 2005
M.S., Computer Science, University of Kansas, 2007

Submitted to the graduate degree program in Electrical Engineering & Computer
Science and the Graduate Faculty of the University of Kansas School of Engineering

in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Dr. Hossein Saiedian
Professor and Chairperson

Dr. Arvin Agah
Professor

Dr. Jerzy Grzymala-Busse
Professor

Dr. Bo Luo
Assistant Professor

Dr. Saul Stahl
Professor

Date Defended

ii

The Dissertation Committee for Serhiy Morozov certifies
that this is the approved version of the following dissertation:

A Distributed, Architecture-Centric Approach to Computing
Accurate Recommendations from Very Large and Sparse

Datasets

Dr. Hossein Saiedian
Professor and Chairperson

Dr. Arvin Agah
Professor

Dr. Jerzy Grzymala-Busse
Professor

Dr. Bo Luo
Assistant Professor

Dr. Saul Stahl
Professor

Date Approved

Abstract

The use of recommender systems is an emerging trend today, when user behavior in-

formation is abundant. There are many large datasets available for analysis because

many businesses are interested in future user opinions. Sophisticated algorithms that

predict such opinions can simplify decision-making, improve customer satisfaction,

and increase sales. However, modern datasets contain millions of records, which rep-

resent only a small fraction of all possible data. Furthermore, much of the information

in such sparse datasets may be considered irrelevant for making individual recommen-

dations. As a result, there is a demand for a way to make personalized suggestions

from large amounts of noisy data.

Current recommender systems are usually all-in-one applications that provide one

type of recommendation. Their inflexible architectures prevent detailed examination

of recommendation accuracy and its causes. We introduce a novel architecture model

that supports scalable, distributed suggestions from multiple independent nodes. Our

model consists of two components, the input matrix generation algorithm and multiple

platform-independent combination algorithms. A dedicated input generation compo-

nent provides the necessary data for combination algorithms, reduces their size, and

eliminates redundant data processing. Likewise, simple combination algorithms can

iii

iv

produce recommendations from the same input, so we can more easily distinguish

between the benefits of a particular combination algorithm and the quality of the

data it receives. Such flexible architecture is more conducive for a comprehensive

examination of our system.

We believe that a user’s future opinion may be inferred from a small amount of

data, provided that this data is most relevant. We propose a novel algorithm that gen-

erates a more optimal recommender input. Unlike existing approaches, our method

sorts the relevant data twice. Doing this is slower, but the quality of the result-

ing input is considerably better. Furthermore, the modular nature of our approach

may improve its performance, especially in the cloud computing context. We imple-

ment and validate our proposed model via mathematical modeling, by appealing to

statistical theories, and through extensive experiments, data analysis, and empirical

studies.

Our empirical study examines the effectiveness of accuracy improvement tech-

niques for collaborative filtering recommender systems. We evaluate our proposed

architecture model on the Netflix dataset, a popular (over 130,000 solutions), large

(over 100,000,000 records), and extremely sparse (1.1%) collection of movie ratings.

The results show that combination algorithm tuning has little effect on recommenda-

tion accuracy. However, all algorithms produce better results when supplied with a

more relevant input. Our input generation algorithm is the reason for a considerable

accuracy improvement.

Contents

1 Introduction 1

1.1 Importance of the Study . 3

1.2 Recommendation Accuracy Problem 5

1.3 Research Hypothesis . 8

1.4 Conceptual Model of a Recommender System 8

1.5 Recommendation Accuracy Metrics 9

1.6 Source of the Experimental Data . 11

1.7 Contributions and Organization . 13

1.8 Conclusion . 15

2 An Overview of Recommender Techniques 16

2.1 Content-Based Recommendations . 18

2.1.1 The Limited Content Analysis Problem 18

2.1.2 The Overspecialization Problem 20

2.1.3 The New User Problem . 21

2.2 Collaborative Filtering Recommendations 22

2.2.1 The Sparsity Problem . 22

v

CONTENTS vi

2.2.2 The New User Problem . 24

2.2.3 The New Item Problem . 26

2.3 Hybrid Recommendations . 27

2.4 Conclusion . 29

3 Collaborative Filtering Algorithms 31

3.1 Model-Based Algorithms . 31

3.1.1 Association Rules Model . 32

3.1.2 Probabilistic Models . 33

3.1.3 Singular Value Decomposition Model 35

3.1.4 Neural Network Model . 37

3.2 Memory-Based Algorithms . 40

3.3 Conclusion . 46

4 The Proposed System Architecture 47

4.1 Distributed Computation with Accessible Data 48

4.2 Multi-Platform Implementation with Minimal Client Requirements . 50

4.3 Complexity Management with Layers 52

4.4 System Adaptability with Strict Interfaces 55

4.5 Future Extensibility with Prebuilt Components 57

4.6 System Dataflow Bottlenecks . 59

4.6.1 Efficient Communication Utilization 60

4.6.2 Efficient Computation Utilization 63

4.6.3 Efficient Space Utilization . 64

CONTENTS vii

4.7 Input Generation System Specification 65

4.8 Conclusion . 70

5 Improving the Quality of Recommender Input 73

5.1 The Standard Input Generation Approach 74

5.2 Two Ways of Establishing Neighbor Influence 79

5.3 Candidate Input Generation Algorithms 81

5.4 Desired Input Qualities . 83

5.4.1 Bigger Net Weights Produce More Reliable Results 83

5.4.2 Sorting Before Truncating for Maximum Net Weight 86

5.4.3 Global Similarity does not Imply Local Similarity 86

5.4.4 Second Pass Local Similarities are Higher 88

5.5 Similarity Refinement Simulation . 90

5.6 The Effects of Input Resorting on Estimation Accuracy 92

5.7 Conclusion . 96

6 A Novel Input Generation Model 97

6.1 Formalism Motivation, Scope, and Goals 98

6.1.1 Static Model Structure . 99

6.1.2 Data Access Behavior Specification 105

6.1.3 Data Processing Behavior Specification 106

6.2 Static Model Implementation and Analysis 112

6.3 Behavioral Model Implementation and Analysis 117

6.3.1 Compatibility with the Rest of the Architecture 117

CONTENTS viii

6.3.2 Correct Implementation of the Existing Specification 118

6.3.3 The Rao Blackwell Theorem Implementation 127

6.4 Conclusion . 128

7 Evaluation of Recommendation Accuracy 129

7.1 Evaluation Assumptions . 130

7.2 Accuracy Goals . 131

7.3 Combination Algorithm Tuning Effects on Recommendation Accuracy 132

7.3.1 Robust Singular Value Decomposition Recommender Model . 133

7.3.2 K Nearest Neighbors Recommender Method 136

7.3.3 Neural Network Recommender Model 138

7.4 Input/Output Tuning Effects on Recommendation Accuracy 141

7.5 Input Data Selection Effects on Recommendation Accuracy 146

7.6 Recommendation Accuracy of the Final Prototype Configuration . . . 147

7.7 Conclusion . 149

8 Conclusions and Future Work 150

8.1 Summary . 151

8.2 Conclusion . 152

8.3 Limitations of the Study . 155

8.4 Future Work . 158

Appendices 163

A Input Generation Procedure 163

CONTENTS ix

B Matrix Reservation Function 165

C Matrix Setup Procedure 167

D Load Matrix Procedure 169

E Sort Matrix Procedure 171

F Truncate Matrix Procedure 173

G Save Matrix Procedure 175

H Cosine Similarity Procedure 177

I Pearson’s Correlation Procedure 179

J Save Similarities Procedure 181

Bibliography 183

List of Figures

1.1 Typical Recommender System Input/Output 9

1.2 Netflix Dataset Structure . 12

2.1 Classification of Recommender Systems [1] 30

3.1 RSVD Matrix Estimation Process . 37

3.2 Prototype Neural Network Segment 39

3.3 Netflix Movie Vote Count Distribution 43

3.4 Netflix User Vote Count Distribution 43

4.1 Layered Client-Server Architecture 53

4.2 Layer Interaction During a Recommendation Process 55

4.3 Proposed Component Communication Interfaces 58

4.4 Proposed System Data Flow . 59

4.5 Recommendation Process with an Embedded Combination Algorithm 62

4.6 Input Generation Algorithm Order of Execution 67

4.7 Input Generation Architecture in Acme ADL 72

5.1 Input Generation Process Activities 75

x

LIST OF FIGURES xi

5.2 Input Matrix Generation – Initial State 76

5.3 Input Matrix Generation – Load Matrix 77

5.4 Input Matrix Generation – Sorting by Items/Rows 77

5.5 Input Matrix Generation – Sorting by Users/Columns 78

5.6 Input Matrix Generation – Truncate Matrix 78

5.7 A Matrix with Five Vectors and Five Dimensions 91

5.8 Truncated Matrices and Their Net Weights 92

5.9 Typical Similarities of the First 30 Vectors in an Item-Oriented Matrix 93

5.10 Typical Similarities of the First 30 Vectors in a User-Oriented Matrix 93

6.1 Examples of Inappropriate Minimum Datasets 103

6.2 An Appropriate Minimum Dataset 104

6.3 Matrix State Changes During the Input Generation Process 111

6.4 Matrix Shape Effects on Algorithm Selection 112

6.5 Permanent Database Schema . 113

6.6 Temporary Database Schema . 113

7.1 RSVD Features and Cycles Tuning 135

7.2 RSVD Static Learning Rate Tuning 136

7.3 RSVD Learning Rate Reduction Tuning 136

7.4 KNN-Item Tuning . 137

7.5 KNN-User Tuning . 137

7.6 NN-Item with No Hidden Nodes Tuning 140

7.7 NN-User with No Hidden Nodes Tuning 140

LIST OF FIGURES xii

7.8 NN-Item with 10 Hidden Nodes Tuning 140

7.9 NN-User with 10 Hidden Nodes Tuning 140

7.10 NN-Item Learning Rate Reduction Tuning 142

7.11 NN-User Learning Rate Reduction Tuning 142

7.12 Rating Normalization Benefit . 142

7.13 RSVD Preprocessing Benefit . 142

7.14 Recommendation Cap Benefit . 143

7.15 Recommendation Rounding Benefit 143

7.16 Recommendation Aggregation Benefit 144

7.17 Recommendation Combination Benefit 145

7.18 Faster Methods of Selecting Recommender Input 146

7.19 More Accurate Methods of Selecting Recommender Input 147

7.20 Recommendation Accuracy of the Final Prototype Configuration . . . 148

Chapter 1

Introduction

Modern technology advances increased the amount and the rate of information being

exchanged online. For instance, broadband Internet access adoption has been consis-

tently rising over the past years [69]. Additionally, previously inaccessible technology

has become more affordable, e.g., wireless and mobile Internet. As a result, people

spend more time online – as much as 40 additional minutes per day [66]. Such ag-

gressive adoption rates have also influenced the consumption of online content. In

fact, faster Internet access can deliver high bandwidth content like entertainment,

advertising, images, music, and games. As a result, more and more people use the

Internet to access information they need and for many it has become an integral part

of their lifestyle.

Browsing the ever-expanding Internet in hopes of finding something interesting

can be a never-ending process. The amount of content grows quickly because modern

technology makes it easy for anyone to publish online. In fact, only a few reputable

organizations had the necessary resources during the early stages of the Internet.

1

CHAPTER 1. INTRODUCTION 2

Today, virtually anyone can create a wiki page, post on their blog, or tweet about

anything. Millions of people, registered at popular social networking websites, gener-

ate terabytes of data in status updates, pictures, videos, and podcasts. With so much

information, there is a good chance that one’s favorite content exists somewhere on

the Internet.

However, the Internet also contains more irrelevant data that makes it progres-

sively harder to find pertinent information. Fortunately, modern computers can

quickly scan vast amounts of data for particular keywords and phrases, but unless

users know exactly what those keywords are, they will probably not find anything

useful. Unfortunately, most people have difficulty describing their preferences to a

computer, which is often the reason it takes so long to find relevant information.

Furthermore, computers have a limited ability to understand users’ requests. For

example, a “bass drum” query makes sense as a musical instrument to another hu-

man, but it could mean a “barrel of fish” to a machine. Despite these difficulties,

effective search engines do exist, e.g., google.com, bing.com, yahoo.com. These sys-

tems successfully search much of the World Wide Web by correctly identifying a user’s

information need and locating relevant content, despite user errors.

Recommender systems take a different approach to the information overload prob-

lem. They do not require a user to know exactly what he/she is looking for or be

capable of expressing it in a query. Instead, recommender systems guess user pref-

erences and suggest content that he/she is likely to enjoy. Unlike search engines,

recommender systems cannot locate the sought-after content. However, they can

recommend serendipitous items that could not be otherwise located [64]. Therefore,

CHAPTER 1. INTRODUCTION 3

recommender systems do not attempt to replace, but rather complement the informa-

tion retrieval research [8, 33, 76, 80, 120]. They are especially useful for large content

repositories like youtube.com, flickr.com, and wikipedia.com, where users would most

appreciate personalized content suggestions.

Recommender system research arose from users’ need to process large amounts of

information, i.e., the information overload problem. Therefore, the main purpose of a

recommender system is to automatically examine large amounts of data and present

the user with a more sensible list of recommendations [99]. Naturally, such recom-

mendations are most appreciated for news, where the amount of emerging data may

be overwhelming. In fact, some of the first recommender systems prioritized Usenet

news messages for individual users [55, 136]. The purpose of modern recommender

systems remains the same – they help alleviate the information overload problem and

simplify the decision-making process.

1.1 Importance of the Study

Recommender systems are becoming increasingly popular online, especially on high-

traffic social networking and e-commerce sites. These organizations are literally trans-

forming archives of past consumer behavior into increased revenues and higher reten-

tion rates because they can better anticipate their customers’ needs [17, 94]. Almost

all leading entertainment and e-commerce sites like amazon.com, yahoo.com, and net-

flix.com employ some kind of a recommender system [147]. Furthermore, many spe-

cialized recommenders for web pages, movies, music, and restaurants evolved into

CHAPTER 1. INTRODUCTION 4

commercial products [62, 64, 124]. Some Internet companies like Net Perceptions are

in the business of providing recommendation services [124, 147]. Because there is a

commercial demand for good recommendations, we believe this research will find an

application.

Even though recommender systems are usually built to improve sales, e.g., sug-

gesting items that a user would not have discovered otherwise, they can also offer

non-monetary benefits. For example, many people enjoy browsing recommendations

as a guided way to explore the library of available items [63]. Some users enjoy an

opportunity to express their opinion and a recommender system provides a forum to

do so. Therefore, recommender systems can collect and produce interesting data as

well as foster an online community development.

Recommender systems can either make or break the business-customer relation-

ship. Businesses are interested in increasing the amount of products sold, and well-

placed recommendations help accomplish that. Consumers want to make smart pur-

chases and try to avoid buying something they might regret later. A trustworthy

recommender system can suggest items that consumers will enjoy, thus improving

customers’ satisfaction and ensuring their loyalty.

User satisfaction is important for commercial applications. In particular, users ex-

perience recommendation accuracy and system performance first-hand. For instance,

a user will always remember the time when he/she was convinced to buy something

as a result of a poor recommendation. Additionally, a user will not bother waiting

for a slow recommendation, which could lead to a sale. Accurate and fast suggestions

improve user satisfaction, but they are also the most difficult. The following section

CHAPTER 1. INTRODUCTION 5

list the requirements for a recommender system that can make such suggestions.

1.2 Recommendation Accuracy Problem

There is a demand for recommender systems that can consistently produce accurate

recommendations, but there are few systems that successfully do so. On the one hand,

humans are notoriously unpredictable, and on the other hand, there are technical

limitations that prevent detailed dataset analysis. User behavior data is not perfect

and there is usually little of it. However, it is often the only source of information

available. Therefore, we need a way to infer user behavior patterns from sparse data

with limited resources.

The unpredictable nature of human behavior is the reason high recommendation

accuracy is so difficult to achieve. In fact, one study showed a natural tendency of

its participants to vary their answer when repeatedly asked to evaluate the same set

of movies [65]. The authors conclude that each rating contains a random component

and that it is impossible to predict true user opinions perfectly. However, opinions

are not completely random, and common behavior patterns do exist.

Even though making assumptions and drawing conclusions from a dataset of seem-

ingly random opinions is difficult, good recommendations are possible. In fact, sophis-

ticated probability estimation and behavior-based algorithms can successfully guess

users’ future preferences based on previous ones. For example, the most success-

ful algorithm can predict a user’s rating within a 0.8567 unit on a five-unit rating

scale [81]. Furthermore, many systems can recommend over 95% of the items using

CHAPTER 1. INTRODUCTION 6

only 2% of all possible opinions [16, 142, 171]. Existing algorithms can be accurate,

yet they cannot consistently perform on different datasets. Below, we outline desired

system requirements that overcome this limitation.

Interoperability. Existing recommender systems are usually all-in-one applications

that provide one type of recommendation from a single dataset. In many cases,

it is difficult to substitute a different recommendation algorithm or make recom-

mendations from a different dataset schema. Such flexibility is often necessary

because a combination of different recommendations is usually more accurate

than any one of them [23]. Traditionally, this combination has been performed

as a post-processing task, so the recommender system would repeatedly search

the dataset and construct the same input for a different approach. Consequently,

we need an architecture that supports multiple recommender algorithms and

eliminates such redundant data processing.

Performance. Perfectly adequate algorithms may produce poor recommendations

due to physical constraints such as memory and processor limitations. As the

number of items and users in the system increase, the performance require-

ment becomes more critical. Previous recommender system techniques that

have been successful for small datasets are not usually adequate, because large

datasets have higher storage and processing requirements that may not always

be met [3,63,142]. Therefore, we need a recommender system that can produce

consistently quick recommendations regardless of the dataset size.

Data Sparsity. In small datasets, a larger portion of all possible data is available, so

CHAPTER 1. INTRODUCTION 7

the recommender system has a better understanding of the true user preferences.

Even though data sparsity is a common problem, it is especially prominent in

large datasets where the amount of available information may not be sufficient

to accurately model the user population. Data sparsity is the reason previously

successful recommender system techniques fail on large datasets [153]. As a

result, we need a new approach that can handle large amounts of data and

make more conclusions from little evidence.

Recommendation Accuracy. The usefulness of the entire recommender system

relies on the accuracy of suggestions it makes. However, humans are difficult

to predict because, unlike machines, they exercise free will. No system can

perfectly predict future user behavior, no matter how much historical data is

available. However, it can be wrong less often and create an illusion of pre-

dictable future. Even a small accuracy improvement in a system with thou-

sands of users would result in a tremendous revenue increase. Therefore, we

need a recommender system that can meet accuracy expectations of modern

applications.

Performance and accuracy are opposing qualities, as good recommendations gen-

erally take a long time to generate. However, prediction accuracy is a more important

problem to address because users can tolerate waiting for consistently good results

instead of receiving bad recommendations instantly [142]. We focus this research on

improving recommendation accuracy, while addressing data sparsity and technical

limitations as causes of this problem.

CHAPTER 1. INTRODUCTION 8

1.3 Research Hypothesis

Recent studies show that it is increasingly difficult to make substantial progress in

prediction accuracy. For instance, a 1% improvement on the Netflix Prize challenge

took nearly two years [16]. We believe it is because most effort has been directed

toward optimizing algorithms instead of improving their input data. One of the most

common ways to do so is to supplement the dataset [63]. However, users are usually

hesitant to provide additional ratings, third party data might not be available, and

implicit rating analysis is unreliable [12,102]. Accordingly, we do not add more data,

but remove data we know is irrelevant. The main contribution of our work is an

algorithm that identifies only the most relevant data for recommender input. Even

though it is difficult to make accurate assumptions from little evidence, we believe

that better input selection can lead to more accurate recommendations, regardless of

the algorithm.

1.4 Conceptual Model of a Recommender System

The goal of a recommender system is to learn user preferences from the past and

apply this knowledge to predict the future. Figure 1.1 demonstrates the input and

output of a typical recommender system. It trains on a set of known ratings and

produces predictions for a set of unknown ones. At this level, the exact calculations

inside a recommender system are irrelevant, as long as it produces suggestions in the

desired format.

More formally, the recommender system may be described as a set of m users

CHAPTER 1. INTRODUCTION 9

dataset predictions

item_id
user_id
rating

item_id
user_id
rating

Recommender
System

predictions

item_id
user_id

Figure 1.1: Typical Recommender System Input/Output

U = {u1, u2, ..., um} and a set of n items I = {i1, i2, ..., in}. Each user u has an

associated set of items Iu ⊆ I , which he/she has rated. Each rating r is assumed

to be on a discrete numerical scale, even though continuous rating scales are also

common [112]. The user and item for which the prediction is to be made are called

active user and active item [29, 142]. A recommender system guesses the opinion of

user u on item i , Pu,i . Usually, production systems predict opinions that have not

been previously recorded, Pu,i | i 6∈ Iu . Development systems guess a set of known

ratings, so that the error of each prediction may be computed, Pu,i − ru,i .

1.5 Recommendation Accuracy Metrics

The most appropriate way to evaluate the quality of a recommender system is to

survey its users. Their confidence and satisfaction with recommendations are two

CHAPTER 1. INTRODUCTION 10

qualitative ways of evaluating a recommender system. However, the only way to ac-

quire such high quality feedback is through live human evaluations, which are difficult

to arrange and provide a limited amount of test cases.

An alternative way to evaluate a recommender system is to quantitatively measure

its accuracy. One popular measure is the Mean Absolute Error (MAE), which is the

average absolute deviation between a predicted user opinion and the actual one. It

is a simple measure that gives all errors the same importance, regardless of their

size. Another popular measure is the Root Mean Squared Error (RMSE), which is

the square root of the average of squared deviations [29, 142]. It is a slightly more

complex measure that is more sensitive to large errors. In fact, RMSE values are

usually the same or slightly greater than MAE values because the squaring process

gives larger errors more importance. The formulas for MAE and RMSE are as follows:

MAE =

∑
u∈U ,i∈I

|Pu,i − ru,i |

|P |

RMSE =

√√√√√
∑

u∈U ,i∈I

(Pu,i − ru,i)
2

|P |

Usually, it is best to choose a metric that uses the same units as data, i.e., it

represents the size of a typical error. Both MAE and RMSE satisfy this criteria.

Additionally, they are both negatively oriented, so lower values are considered better.

However, neither measure has an absolute value that is considered best [64,142,146].

Instead, recommender systems are ranked according to their typical error size within

a dataset.

CHAPTER 1. INTRODUCTION 11

The creators of our dataset deem large errors to be particularly undesirable, i.e.,

the cost of an error is greater than its size. Therefore, the RMSE measure is most

appropriate for our dataset. Furthermore, because it is impossible to compare accu-

racy on different rating scales, recommendations on the same dataset use the same

metric. Our dataset has a list of 130,000 RMSE scores available [16]. Therefore, we

use the RMSE measure to evaluate our prototype.

1.6 Source of the Experimental Data

We evaluate the fitness of our recommender prototype on a recent and widely pub-

lished dataset provided by Netflix. In fact, Task 1 of the leading Data Mining and

Knowledge Discovery competition in the World (KDD CUP 2007), is based on this

dataset [15]. One of the most obvious reasons for such popularity is the dataset size.

It contains over 100,000,000 actual movie ratings on a discreet scale from one to five.

It represents opinions of over 480,000 users and almost 18,000 movies [15]. It is more

than 30 times larger than any other available dataset. However, it represents only

1.1% of all possible ratings [15], so approaches that rely on a higher data density may

not apply. We choose to use this challenging dataset because it is large, sparse, and

it has a number of published RMSE scores.

Before the Netflix dataset was available, researchers used a number of smaller and

denser datasets. The three most published datasets are EachMovie, MovieLens, and

Jester [63]. EachMovie is the most common of the three. It contains over 2,800,000

movie ratings on a discreet scale from zero to five from almost 73,000 users on 1,600

CHAPTER 1. INTRODUCTION 12

movies [9, 31, 63]. Only 2.4% of all possible ratings are captured in this dataset.

The MovieLens dataset extracts usually contain 100,000 ratings on a discreet scale

from one to five from about 900 users and 1,500 movies [3, 27, 40, 142]. Only 6.3%

of all possible ratings are captured in this dataset. A more recent dataset comes

from Jester joke recommendation website. Some of the most popular versions of this

dataset contain almost 900,000 ratings on a continuous scale from -10 to +10 from

17,000 users on 100 jokes [87, 112]. This dataset contains over 50% of all possible

ratings. No previously listed dataset provides the size or the sparsity level of the

Netflix dataset.

The structure of our dataset is fairly standard. Figure 1.2 shows how the informa-

tion about every movie is available in a single file. The ratings are grouped by movie

and stored in separate files. The dataset contains a list of 2,800,000 withheld ratings

(qualifying/test set). Netflix evaluates estimates of these opinions. The dataset also

contains 1,400,000 known ratings (probe/quiz set) intended for local evaluation. We

use the quiz set for our case study.

movie_titles.txt mv_*.txt probe.txt

movie_id
movie_year
movie_title

movie_id
user_id
rating
date

movie_id
user_id
date

Figure 1.2: Netflix Dataset Structure

CHAPTER 1. INTRODUCTION 13

1.7 Contributions and Organization

Data sparsity is often cited as the primary reason for poor recommendations, yet we

believe that accurate recommendations can be made with little data. The purpose of

this research is to find a way for a recommender system to train on a sparse dataset

and predict future user opinions with maximum accuracy. Our work is documented in

the following chapters that contain theoretical and technical contributions for current

and future recommender system research.

In Chapter 1, we establish the motivation, importance, and background of our

work. We then outline the evolution of recommendation techniques and present mod-

ern ways of making personalized suggestions in Chapter 2. We discuss different ways

such recommendations may be done and identify common obstacles within each ap-

proach. Content-based recommendations suffer from the finite nature of machines,

whereas collaborative filtering approaches monopolize on human ability to compre-

hend abstract concepts. For this reason, we conclude that collaborative filtering

approach is more applicable for further investigation.

Chapters 3 and 4 focus on collaborative filtering recommendations. Chapter 3

provides a survey of popular algorithms, describes how they generate recommen-

dations, and compares their reported accuracy. We later implement three popular

combination algorithms described here. Chapter 4 formulates the requirements of a

scalable system that can efficiently produce multiple types of recommendations. We

also propose an architecture that satisfies these requirements. This architecture is

necessary for our experiments, because it allows recommender input to be computed

asynchronously to the recommendation process. As a result, we can perform quick

CHAPTER 1. INTRODUCTION 14

experiments with different algorithms without regenerating the same input.

The main hypothesis of this research is that a small number of relevant ratings is

sufficient to make an accurate recommendation. We believe that such ratings may be

chosen with local similarity, instead of a more traditional global similarity. Chapter 5

compares two ways of computing vector similarity. We describe the standard process

of generating recommender input and make some observations regarding the desired

qualities of such input. Finally, we present a statistical justification for input resorting

as a way to improve recommender input quality.

Our novel input generation algorithm implements the input resorting approach.

The input quality is the essence of our research because it has the most influence

on recommendation accuracy. To encourage future development around the input

generation component, we formalize its design in Chapter 6. We use the Z notation

to identify the restrictions that must be met at each stage of the input generation

process. Such formal model of the component behavior serves as a blueprint for

implementation. We also use the model to confirm that the implementation corre-

sponds to earlier specification. We verify its compatibility, consistency, correctness,

and completeness.

To determine the effectiveness of our hypothesis, we perform an empirical eval-

uation of three popular combination algorithms in Chapter 7. We examine their

accuracy over a wide range of configurations. Some of these algorithms are more

effective because of the rating patterns in a particular dataset. We analyze the Net-

flix dataset and outline such patterns. Additionally, we evaluate the claim that a

committee of recommenders produce better results than any one of them. We also

CHAPTER 1. INTRODUCTION 15

test the benefit of normalizing the input and output of a recommender. Finally, we

examine the benefit of inout quality on recommendation accuracy.

We conclude our research with the discussion of our work and suggestions for

future research in Chapter 8. Our results show that tuning recommender algorithms

has little effect on recommendation accuracy. However, all methods produce better

predictions when supplied with more relevant input data. Our recursive input genera-

tion approach sorts the input twice to decide which ratings are relevant. This method

is the reason our prototype can achieve better recommendation accuracy. The results

support our hypothesis that good suggestions may come from little evidence.

1.8 Conclusion

Recommender systems are software applications that help address the problem of

information overload. They go through large amounts of content and recommend

only the most interesting items. Recommender systems are particularly useful for

commercial applications, where customers enjoy the personal shopping assistance

and stores increase sales. This research is important to both parties, as people who

produce and receive recommendations prefer them to be accurate. Many existing

algorithms can successfully predict opinions with reasonable accuracy. However, as

the amount of content grows, we need more sophisticated systems that consistently

match unknown user opinions within a small margin of error. The next chapter

describes the different techniques capable of such recommendations.

Chapter 2

An Overview of Recommender

Techniques

The problem of information overload is not new, and there are many techniques

that address this subject. In fact, recommender system research developed alongside

other related computer science disciplines. For example, Herlocker shows how person-

alized suggestions relate to information retrieval, information filtering, and machine

learning work [64]. Ricci and Werthner further elaborate on the historical overlap of

recommender system research with artificial intelligence and human-computer inter-

action [138]. In Figure 2.1 we show how Adomavicius and Tuzhilin [1] classify many

known recommenders in terms of well-established computer science techniques. We

summarize the existing research on recommender systems in this chapter. In particu-

lar, we discuss the progression of recommender systems from original implementations

to modern state-of-the-art techniques.

Early recommender systems were basic and lacked personalization. Such systems

16

CHAPTER 2. AN OVERVIEW OF RECOMMENDER TECHNIQUES 17

aggregated community opinions and produced global recommendations [64, 98]. For

example, the New York Times Best-Seller List suggests popular books ranked by their

sales volume. These items are popular and many people enjoy them, however popular

content does not necessarily appeal to all users. To alleviate this problem, some

recommendations are organized in categories, e.g., fiction, nonfiction, and children’s

books. Such categorized suggestions also have limited personalization because they

assume that complex user preferences may be characterized by a single book genre.

The first personalized recommender system was called Tapestry, an e-mail recom-

mender system [55]. It allowed users to leave comments regarding the perceived value

of messages and filter topic discussions based on specified criteria. Unfortunately,

this system was not easy to use because it relied on a proprietary query language.

Furthermore, Tapestry could not automatically identify users with similar interests.

Instead, each user had to manually set up a list of trusted peers [55, 124, 142]. The

Tapestry project was meant to be used in a small community, where every user per-

sonally knew everyone else. Therefore, it could not be scaled to larger organizations

with thousands of users.

The first automated recommender systems, like GroupLens [136] and Ringo [148],

automatically identified potentially useful sources of recommendations. In fact, the

GroupLens project was the first to introduce similarity measures as a way to establish

trust and reputation among users. In this case, trust represents the perceived compe-

tence of a user providing a recommendation for a particular item [168]. However, such

concept is complex and difficult to model. As a result, modern recommender systems

often employ simplified versions of such relationships, e.g., rating overlap [116, 118].

CHAPTER 2. AN OVERVIEW OF RECOMMENDER TECHNIQUES 18

Despite these sacrifices, similarity measures made automatic recommendations pos-

sible. The following three sections outline common personalized recommendation

approaches.

2.1 Content-Based Recommendations

Content-based systems recommend items that are similar to items that the user has

previously liked. The assumption is that once a user has expressed interest in an

item, he/she is likely to enjoy a different item with similar content. For example,

SiteHelper actively communicates with the user, asking for document keywords and

their importance [113, 167]. This system helps the user formulate a search query by

suggesting new keywords. Letizia is a similar recommender system, except it locates

similar documents in the background, while the user reads [91]. It assumes that since

the user bothers to inspect a document, it must be interesting. These systems focus

on two different types of feedback, but provide purely content-based recommendations

and rely on their ability to recognize and locate keywords. Therefore, the ability of

content-based recommenders to categorize content is essential.

2.1.1 The Limited Content Analysis Problem

Content-based recommender systems require detailed information regarding items

and a way to compare them. For instance, restaurant recommender systems need to

understand the difference between various cuisines [1, 28, 70]. Learning that kind of

information is difficult, especially in abstract domains. Alternatively, content may

CHAPTER 2. AN OVERVIEW OF RECOMMENDER TECHNIQUES 19

be described in a set of features that are either manually assigned or automatically

extracted from machine-readable content [50, 58, 161]. Unfortunately, even the most

sophisticated data analysis techniques cannot produce a complete description of cer-

tain items [82, 84, 126]. For example, a web page may be parsed for keywords and

links, but purely aesthetic qualities such as image content, embedded music/video,

loading time, and page layout are ignored [5]. As a result, an inappropriate or illegible

web page may be recommended to a user just because its keywords match his/her

preferences.

The limited nature of item descriptions is the root of poor content-based recom-

mendations. Such systems may not distinguish between two different items that have

the same set of features, e.g., two articles on the same topic, with the same set of

keywords, but opposing viewpoints [5, 148]. As a rule, content-based systems can-

not capture abstract properties such as publisher’s reputation, quality of references,

writing style, and author’s point of view.

To overcome this, a system may introduce more features to better describe each

item, but doing so does not address the root of the problem. Computers cannot accu-

rately characterize abstract attributes, regardless of how many features are available.

Some systems employ human experts to fill in abstract features [1, 148]. However,

manual feature assignment by a single person is likely to be biased and a committee

evaluation would be too slow. Therefore, this approach is not applicable for large

systems with thousands of items.

CHAPTER 2. AN OVERVIEW OF RECOMMENDER TECHNIQUES 20

2.1.2 The Overspecialization Problem

Content-based recommender systems can recommend known favorites, but cannot

make serendipitous recommendations. This phenomenon is usually referred to as

the overspecialization problem [1, 64, 148]. It occurs when recommendations form a

homogeneous set of interchangeable suggestions as opposed to good recommendations

that are diverse and cover a large number of potentially interesting topics.

The source of the overspecialization problem may be the dynamic nature of user

preferences. A recommendation process that assumes static preferences will fail to

accurately model user behavior. To accommodate this limitation, some systems em-

ploy a genetic algorithm, i.e., an artificial ecosystem of competing and cooperating

agents that represent users’ continuously evolving interests [108, 149]. This kind of

“survival of the fittest” approach reduces the overspecialization effect by creating a

dynamic model. However, maintaining a complex model like this for thousands of

users may not be feasible.

Other solutions emphasize data age as the cause of recommender overspecializa-

tion. For instance, some believe that recommendations based on the most recent feed-

back form a more accurate representation of users’ changing preferences [24, 45, 46].

Thus, introducing a positive bias toward more recent user feedback or establishing a

time-window that limits relevant votes should improve accuracy. One solution that

implements the latter approach is Daily-Learner, a news classification system that

monitors users’ short-term and long-term interests [24]. It limits the amount of rec-

ommendations that are too similar to existing short-term preferences, while suggesting

items that are similar to long-term favorites [1]. As a result, its recommendations

CHAPTER 2. AN OVERVIEW OF RECOMMENDER TECHNIQUES 21

change continuously, while still appealing to users’ core tastes.

Content itself may also cause overspecialization. Zhang, Callan, and Minka ar-

gue that documents created at or around the same time are more likely to contain

redundant information [173]. Therefore, suggested items should be similar to previ-

ous recommendations, yet offer new information. However, this work is limited to

news recommendations, where same events are likely to be covered in various sources

around the same time. The proposed measures of novelty and redundancy do not

apply to art, where multiple highly acclaimed works may be released during the same

period. Therefore, each content-based system must deal with limited content analysis

and overspecialization problems within their domain.

2.1.3 The New User Problem

Content-based systems can recommend items with interesting content, even before

anyone rates them. However, they cannot recommend content to new users, who have

few or no preferences. Previous rating history helps justify future recommendations,

so a user with no history has no established preferences and no recommendations.

Furthermore, the overspecialization problem is more substantial for new users with

very few favorite items because the system assumes that previously rated content is

the only type of content they enjoy [1,134]. The new user problem is also common in

collaborative filtering systems. We discuss it in more detail in the following section.

CHAPTER 2. AN OVERVIEW OF RECOMMENDER TECHNIQUES 22

2.2 Collaborative Filtering Recommendations

Collaborative filtering systems recommend items that other users enjoyed, essentially

automating the “word-of-mouth” suggestions [64, 136]. The assumption is that one

user’s favorite items may be inferred by observing other users with similar interests.

As the name implies, an algorithm derives personalized recommendations from filter-

ing all available items through preferences of similar users [5]. Unlike the content-

based approach, which relies on item similarity, this approach computes similarity

between users, i.e., shared opinions.

However, user opinions are subjective and have little to do with content similar-

ity. In fact, a pure collaborative filtering system has no knowledge of item content,

which makes it ideal for abstract domains, e.g., paintings, music, and poetry [39,86].

The lack of content analysis also allows collaborative filtering recommenders to make

serendipitous suggestions. If another user enjoyed a particular item, it may be rec-

ommended to you, despite the fact that you have never expressed interest in such

content.

2.2.1 The Sparsity Problem

Recommendations made from a sparse dataset lack clarity and certainty because

there is little evidence to justify them, i.e., it is difficult to find similar users in sparse

data [79,122]. Modern datasets contain thousands of items, so it is unlikely that any

user will rate every item. However, there exists a subset of users, called the critical

mass, that contributes a sufficient amount of ratings [1,5]. Before a system reaches the

CHAPTER 2. AN OVERVIEW OF RECOMMENDER TECHNIQUES 23

critical mass, it is difficult to produce accurate recommendations [71,142]. Therefore,

collaborative filtering recommendations may not apply to extremely sparse datasets.

The most popular way to reduce data sparsity is to add default ratings to the

dataset. Some of the easiest default ratings to compute include mean item rating,

mean user rating, majority item rating, and majority user rating [29]. However,

aggregate defaults are usually poor approximations of the actual user opinions. They

generalize unique preferences, so they are usually neutral or negatively skewed to

ensure a more conservative prediction [26,63].

Often, default ratings come from external sources. For example, the Movie-

Lens project populated missing values with existing ratings from a different movie

dataset [146]. Likewise, Basu, Hirsh, and Cohen used the Internet Movie Database

website to supplement their dataset [10]. Using external sources of default ratings is

a simple and effective way to reduce data sparsity, but such resources may not always

be available.

Implicit user feedback is always available, which makes it a popular way to sup-

plement a sparse dataset. For example, the GroupLens research group used the time

spent reading a message as an indicator of preference [103]. Likewise, the PHOAKS

system used links in Usenet messages [157] and the Siteseer system analyzed browser

history [139] to identify user interest. However, just because a user has expressed in-

terest in an item does not mean he/she necessarily liked it. For example, even though

bookmarking a page would generally be considered as an indication of interest, it

could also mean that the user does not have time to read a potentially irrelevant

page [167]. Therefore, implicit feedback is an abundant, but not reliable source of

CHAPTER 2. AN OVERVIEW OF RECOMMENDER TECHNIQUES 24

default data.

The Singular Value Decomposition (SVD) algorithm can estimate missing data

in a sparse dataset. It is a well-known dimensionality reduction technique that can

estimate a dataset modeled as a matrix, where each cell contains a numeric value

representing a user’s vote on a particular item [1, 23, 133, 145]. The resulting esti-

mate is a complete matrix that may supplement a sparse dataset or produce recom-

mendations [16, 112, 140, 145]. Unfortunately, the original SVD approach is meant

to approximate a complete matrix [13]. However, there are more robust SVD ap-

proaches [101, 125] that can accurately estimate a matrix with some of its ratings

missing.

2.2.2 The New User Problem

The new user problem occurs when a recommender system cannot make a recom-

mendation for a user with little or no preference history. The easiest solution is

to recommend universally liked items. Such suggestions can be accurate, but only

in small subdomains with a relatively static ranking of best items [97]. Universally

liked items may not appeal to everyone in a larger domain, where individual user

preferences are less likely to be aligned. However, many domains have a myriad of

subjective categories that often overlap, e.g., music. Therefore, making suggestions

to new users in such domains would be difficult.

Collaborative filtering systems may fail to recognize the similarity of two new

users who agree on the same kind of content because they have not rated the same

items [118]. Huang, Chen, and Zeng propose a way to locate similar users through

CHAPTER 2. AN OVERVIEW OF RECOMMENDER TECHNIQUES 25

transitive properties of rating histories [1]. For example, if Anne and Bob have some

ratings in common, while Bob and Charlie also share some ratings, a conventional

approach ignores a possible relationship between Anne and Charlie. The authors

propose a way that relates Anne to Charlie through Bob, which is a more natural

way to compare users. This approach does not change the dataset, but improves the

way data is selected.

Alternatively, one can convert a new user into an established user through an

expedited orientation. For example, Rashid et al. force all new users to answer a few

key questions [134]. This way the recommender system has the initial knowledge on

which to base its suggestions. The choice of questions determines the effectiveness

of this approach. The goal is to minimize the burden on the user, by asking fewer

questions, and maximize the system’s understanding of the user’s preferences, by

covering a broad range of interests [77,124]. After comparing different ways to select

questions, the authors recommend asking new users to rate popular items with a wide

rating variance.

However, new users may be hesitant to fill out long questionnaires. Therefore,

some systems learn faster by noting which questions the users skip [134, 167]. Fur-

thermore, Yu et al. [171] implement an algorithm that considers user like-mindedness

to ask questions a person is most likely to answer. As a result, new users are not

forced to answer as many questions and the system has enough information to produce

initial suggestions.

New user recommendations can also be inferred from a cluster of users with similar

tastes [57,115]. For example, the GroupLens project clustered users together based on

CHAPTER 2. AN OVERVIEW OF RECOMMENDER TECHNIQUES 26

their preferences [79]. As a result, each cluster appeared as a user with a rich rating

history. Such clusters provide good default ratings, but require a way to determine

user membership. In order to group users with no expressed preferences, some systems

consider additional properties, e.g., age, gender, and education [1,123]. This approach

is an effective way to reduce sparsity and improve performance [44, 133, 144, 162].

However, clustering similar data prevents personalized recommendations.

2.2.3 The New Item Problem

When new items are added to the system, few users have had a chance to rate them.

Since the collaborative filtering approach makes recommendations based on what

other users liked, new items do not have enough supporters to be considered [1, 18].

This is particularly problematic for recommender systems with a continuous flow of

new arrivals, as potentially great new items are likely to be disregarded in favor of

older ones.

One solution is to employ several rating programs that populate the dataset with

default values. Such programs, called filterbots, represent legitimate users of a col-

laborative filtering system [56, 134]. In fact, sparse datasets enhanced with a set of

simple filterbots, e.g., all comedies receive a four star rating, provide better results

than users alone. They accelerate the new item settling process by generating ratings

users are likely to provide. As a rule, individual filterbots are usually poor predic-

tors, but a collection of them could reduce dataset sparsity without introducing much

noise.

Items may also be clustered according to their content. For instance, GroupLens

CHAPTER 2. AN OVERVIEW OF RECOMMENDER TECHNIQUES 27

clustered related news articles [79]. Once clusters are established, a new item receives

a set of default ratings approximated from items in the same cluster [29, 40, 162].

However, content classification relies on domain-specific knowledge, which is rarely

available [134, 142]. Alternatively, items may be clustered according to their rat-

ings [119], but such clusters may not have clear-cut boundaries. Therefore, clustering

new items may get them noticed faster, but it does not guarantee that they will be

recommended properly

Clustering items by content is similar to the hybrid approach that combines the

content-based and collaborative filtering methods. For example, one algorithm uses

sentiment analysis to estimate a numeric opinion from an unstructured, natural lan-

guage review [89]. The result is a collaborative filtering recommendation based on

the content-based input.

2.3 Hybrid Recommendations

Hybrid recommendations combine content-based and collaborative filtering meth-

ods. In fact, both pure approaches may be considered as special cases of the hy-

brid method [5, 150]. If the content-based component cannot find any items with

similar content, the recommendation becomes a purely collaborative filtering prob-

lem. If the collaborative filtering component cannot find any users with similar

preferences, the recommendation becomes a purely content-based problem. Many

hybrid recommenders are more accurate than pure content-based and pure collabo-

rative filtering approaches, especially in the context of new user and new item prob-

CHAPTER 2. AN OVERVIEW OF RECOMMENDER TECHNIQUES 28

lems [5, 39, 123, 152, 162]. Such systems are more robust and suffer from fewer draw-

backs, but they are considerably more complex and difficult to maintain.

Keeping content-based and collaborative filtering suggestions separate simplifies

the system. This way each component can specialize in a particular kind of recom-

mendations. For example, ProfBuilder is a website recommender that provides two

separate lists of recommendations [134]. Content-based list contains other websites

on the current topic, even if they have not been visited before. Collaborative filtering

list contains websites other people visited, even if they are on different topics [167].

This way the user always has some recommendations, even if one list is empty.

However, user experience may improve if he/she does not have to choose between

two sets of recommendations. One way to automate this choice is to choose the best

available recommendation according to the biggest confidence measure or biggest con-

gruency with existing user ratings [1]. Unfortunately, these metrics are inconsistent

and cannot guarantee the choice correctness.

Instead of choosing the best one, multiple recommendations may be combined

together for a more consistent result. For example, Claypool et al. propose a hy-

brid recommender system that combines recommendations as a weighted average

of collaborative filtering and content-based suggestions [39]. Pazzani also studied

the different ways to combine five recommendation methods [123]. His experiments

showed that combined results were in fact better than any one method. Computing

different recommendations independently and combining them as the final step has

definite advantages. A practitioner may choose the leading implementation in each

category and aggregate the results without the burden of developing a comprehensive

CHAPTER 2. AN OVERVIEW OF RECOMMENDER TECHNIQUES 29

recommendation algorithm.

Alternatively, the collaborative filtering and content-based recommendations may

be fused together into a unified model that considers them both. Popescul et al.

perform experiments with such a recommender on extremely sparse datasets and

show it to be more effective than pure collaborative filtering and pure content-based

recommenders [129]. However, developing and improving such a system is tedious

because it is large, complex, and tightly coupled.

2.4 Conclusion

This chapter provides an overview of the main recommender techniques and problems

that are inherent to each approach. We believe that the collaborative filtering method

is most appropriate for our research. It can recommend any type of content and has

milder drawbacks. In fact, all disadvantages are related to data sparsity. In many

cases, asking users a few additional questions may solve the issue. However, we focus

on cases where the dataset may not be supplemented by users or content analysis.

This is one of the most common and most difficult problems in recommender systems

research. The next chapter outlines the popular solutions to this problem.

CHAPTER 2. AN OVERVIEW OF RECOMMENDER TECHNIQUES 30

discussed above, recommender systems can be categorized
as being 1) content-based, collaborative, or hybrid, based on the
recommendation approach used, and 2) heuristic-based or
model-based, based on the types of recommendation techni-
ques used for the rating estimation. We use these two
orthogonal dimensions to classify the recommender systems
research in the 2! 3 matrix presented in Table 2.

The recommendation methods described in this section
have performed well in several applications, including the
ones for recommending books, CDs, and news articles
[64], [88], and some of these methods are used in the
“industrial-strength” recommender systems, such as the
ones deployed at Amazon [61], MovieLens [67], and
VERSIFI Technologies (formerly AdapiveInfo.com) [14].

However, both collaborative and content-based methods
have certain limitations, described earlier in this section.
Moreover, in order to provide better recommendations
and to be able to use recommender systems in arguably
more complex types of applications, such as recommend-
ing vacations or certain types of financial services, most of
the methods reviewed in this section would need
significant extensions. For example, even for a traditional
movie recommendation application, [3] showed that, by
extending the traditional memory-based collaborative
filtering approach to take into consideration the contextual
information, such as when, where, and with whom a
movie is seen, the resulting recommender system could
outperform the pure traditional collaborative filtering

742 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 6, JUNE 2005

TABLE 2
Classification of Recommender Systems Research

Figure 2.1: Classification of Recommender Systems [1]

Chapter 3

Collaborative Filtering Algorithms

This chapter presents a literature review on collaborative filtering recommenders.

These systems suggest items that similar users enjoyed because people who agreed

in the past are likely to agree in the future. The collaborative filtering approach can

recommend new and interesting items that content-based systems fail to recognize

due to their overspecialization tendency. In fact, item content is completely irrele-

vant, because collaborative filtering recommendations are based exclusively on user

opinions. We focus on this approach because it applies to a wide variety of domains.

The following sections describe two types of collaborative filtering recommenders and

explain how they produce personalized suggestions.

3.1 Model-Based Algorithms

Model-based systems create an offline model to represent the dataset. This provides

a considerable online performance improvement, because the dataset is not referenced

31

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 32

for making recommendations. Instead, a model can quickly generate predictions ac-

cording to the conjectures encoded within it [67,83,142]. Furthermore, a model may

be used to understand and imitate user behavior through highlighting preference cor-

relations and rating patterns [124]. However, a model is a generalized approximation

of original data, with assumptions that may not be true for the entire dataset. In

fact, model accuracy is proportional to the amount of data missing [26,74].

A model can concisely represent a large dataset, yet model creation is a resource-

intensive task. It is usually performed offline, which prevents new data from influ-

encing recommendations until after the model is rebuilt [29, 99]. These drawbacks

affect recommendation accuracy, so we need a simple model that can capture many

detailed conjectures. Below is an overview of how some collaborative filtering systems

model their datasets. We discuss four different approaches but focus on the latter

two, because research shows them to be more accurate.

3.1.1 Association Rules Model

The association rules approach applies rule discovery algorithms to detect rating

patterns and associations among items [10,90,93,142]. The first recommender system

to use association rules was Lens, an email recommender system [96]. There, each user

specified a set of conditions an email had to meet in order to be read. These manual

rules made up the social filtering component that was responsible for recommending

only the most important emails.

Modern association rule models discover such rules automatically. For instance,

Mobasher et al. developed a web page recommending algorithm that identified asso-

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 33

ciation rules by mining users’ browser histories [107]. However, this algorithm only

used high confidence associations, so it did not produce many of them. In fact, many

association rule models generate too many irrelevant or too few solid rules because

they use a static support threshold [141, 143]. Lin, Alvarez, and Ruiz propose a

method that produces more rules by adjusting the required support for individual

users [92]. This approach guarantees association rule discovery at the cost of variable

certainty.

Association rules provide a clear and concise explanation for each recommenda-

tion. This is an attractive characteristic for many applications, but this model fails

to acknowledge the user’s individuality and lacks personalization that other models

offer. Despite this, versions of association rules model can make accurate recommen-

dations, e.g., clustered association rules model [43, 44]. Therefore, association rules

model is not effective on its own, but it can be combined with other approaches to

improve accuracy.

3.1.2 Probabilistic Models

Probabilistic models use probability distributions to encode and make conclusions

about the dataset. For instance, Bayesian networks represent the dataset as a set

of interdependent nodes, where the order in which users rate items establishes node

dependencies [26, 44]. Alternatively, nodes can represent users and edges between

nodes – their predictability [2,174]. Each node has several states for ratings and their

probabilities. Therefore, following a path that best describes the active user will lead

to a recommendation. This model ca make quick recommendations and it does not

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 34

require a long learning phase.

Because of their simple structure, Bayesian network models can produce fast re-

sults. However, as the amount of items and users increases, the model grows expo-

nentially. In fact, if new users and items are added frequently, the model may be too

large to rebuild every time. One solution is a dependency network with bidirectional

edges [44, 59]. It is not as accurate as the Bayesian approach, but it learns more

efficiently and requires less space. Alternatively, a model does not have to store every

possible path, but instead record only the best ones [26,142]. This reduces the storage

requirement, but does not reduce the amount of computations.

Bayesian clustering addresses this problem by grouping similar nodes together.

This approach assumes that all users may be distinguished across a small number

of predefined tastes. Since the tastes are independent, a recommendation may be

inferred from a set of participating clusters that best describe the active user [10,

74, 162]. The probability of a user belonging to a particular cluster as well as the

individual cluster preference distribution is usually observed from empirical data [26,

44,142]. This approach is compact, fast, and it may be updated continuously, without

reducing performance. However, it does not produce personalized conclusions because

users within a cluster are indistinguishable.

Similarly to Bayesian clustering, the personality diagnosis model also classifies

users, but it treats each user as a separate model. Each rating is assumed to be

drawn from a normal distribution centered around the item’s true rating [74,124]. The

recommendation is then a product of independent rating probabilities from users who

already rated the item. This model is more accurate than the Bayesian network and

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 35

clustering approaches. However, since it relies on normal distributions, the accuracy

may suffer from the new item problem, i.e., less than 30 ratings per item.

The aspect model also assumes that every rating is a combination of multiple

probability distributions. Unlike previous attempts that focused exclusively on users

or items, it represents each rating with three preference factors: the base probability

of a rating occurring anywhere in the dataset and probabilities that this user and item

will have such a rating [68]. However, users with similar opinions do not necessarily

rate items the same way. Jin, Si, and Zhai extend this model by introducing two

more hidden variables: the probability that a user has the same preferences and the

probability that these preferences are expressed the same way [74]. The experiments

on the EachMovie dataset show that this model performs better than Bayesian and

the original aspect model.

3.1.3 Singular Value Decomposition Model

Singular Value Decomposition (SVD) model approximates a matrix of ratings (users

× items) as a product of two smaller matrices (users × features and items × features).

One of the most popular versions of this approach, Robust SVD (RSVD) may be

trained incrementally on a sparse dataset. Because this approach examines all signals,

including the weak ones, it provides a more complete model of the dataset [12].

Furthermore, it requires little storage and does not involve complex operations, which

makes the RSVD model an effective, fast, and scalable solution for large datasets. In

fact, one of the biggest improvements in the Netflix Prize challenge has been due to

this algorithm [15,140].

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 36

The goal of this approach is to produce an estimate that most closely resembles

existing data. It repeatedly adjusts values in composite matrices until the individual

approximation error is minimal. This error is the difference between the actual rating

and the product of user and item features:

E = ri ,j − xi ,k ∗ yj ,k

The best estimate is reached by following the gradient of an error function (MSE)

across a set of known ratings, R. Because the amount of known ratings is constant,

we can simplify the error function and determine its gradient. The formulas for the

original MSE, the simplified error function, it’s gradient, and two partial derivatives

are as follows:

MSE =

∑
E 2

|R|

F (xi ,k , yj ,k) = E 2

∇F (xi ,k , yj ,k) = (2E ∗ dE/dxi ,k , 2E ∗ dE/dyj ,k)

dE/dxi ,k = −yj ,k

dE/dyj ,k = −xi ,k

Note that partial derivatives of the error function show the relationship between item

and user features. In other words, an approach that focuses on only one kind of

vector will ignore an important part of this dynamic relationship. Finally, the model

updates composite matrices in the direction opposite of the gradient, thus adjusting

their product to reduce the approximation error. In order to speed up this process,

adjustments are multiplied by a learning speed, γ:

xi ,k = xi ,k + γ(2E ∗ yj ,k)

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 37

yj ,k = yj ,k + γ(2E ∗ xi ,k)

Figure 3.1 shows the RSVD approximation of a 2 × 2 matrix after 10 and 100

iterations. Our goal is to estimate it as a product of two smaller 2 × 1 matrices

with a 0.1 learning speed. Since the rating scale is discrete, we can round the model

estimate to achieve a perfect matrix approximation. We implement this model as one

of our combination algorithms.

x2x1

y2

y1

3

1

4

2

1.81.1

1.7

1.3

2.3

1.4

3

1.8

1.81.3

2.1

.9

2.7

1.2

3.8

1.7

Original 10 Iterations 100 Iterations

Figure 3.1: RSVD Matrix Estimation Process

3.1.4 Neural Network Model

Neural network (NN) models are effective at function approximation, information

classification, data filtering, and clustering. Because they were originally designed to

mimic the human brain, neural networks can model user behavior. For instance, Bill-

sus and Pazzani develop a neural network recommender for EachMovie dataset [23].

It models the recommendation process as a classification problem that separates fa-

vorable items from unfavorable ones. Experimental results show good accuracy and

prove that neural networks may be used for recommendation purposes.

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 38

Neural networks can be trained to recognize rating patterns. In fact, trained

models demonstrate rapid default reasoning, insensitivity to inconsistent input, and

quick learning ability [36]. The greatest advantage of neural networks is their ability

to stereotype users into categories that were not previously defined. This model can

respond to novel input that is only slightly similar to previously learned examples.

Such systems can handle partial and erroneous cues without making major errors.

They can consistently associate an incomplete rating pattern with a complete test

case that has a known opinion. We implement this model as one of our combination

algorithms.

The ability of neural networks to recover complete data based on a partial key is

called associative learning. We plan to use this property to predict unknown ratings

by feeding a partial rating vector into the network and receiving a recommendation

as output. Some researchers have already used Restricted Boltzmann Machines, a

neural network with a fixed amount of hidden binary nodes, to make such recommen-

dations [12,83,140]. The experiments on Netflix dataset show that a neural network

based recommender can perform better than the SVD model.

Figure 3.2 shows a neural network segment for a single rating on a five point

scale. Each discreet rating value is represented by a single excited binary node. A

missing rating does not excite any input nodes. During the training stage, we feed

known ratings into the model and expect known answers to come out. Otherwise,

the back-propagation algorithm updates link weights in order to receive the desired

output. The training continues until it converges to within an error threshold. To

make a recommendation, we feed known ratings from an active vector and record the

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 39

NN output.

1
2
3

1
2
3

4 4

5 5

Figure 3.2: Prototype Neural Network Segment

More formally, the neural network training process may be described as follows.

Each node of a network takes in a set of weighted inputs and produces a single

value [158,175]. To make sure it is within range, the net input is fed into a bounded

activation function, σ. The formulas for computing the net input and output are as

follows:

net =
n∑

i=0

wixi

o = σ(net)

We use a sigmoid function because its range is (-1..1) and it has a convenient deriva-

tive, which allows for easier gradient descent on an estimation error surface [100,114].

Below are the formulas for the original sigmoid function and its derivative:

σ(x) =
1

1 + e−x

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 40

∂σ(x)

∂x
= σ(x)(1− σ(x))

We can measure the error by comparing the desired output td and the actual output

od over a set of training cases D :

E [~w] =
1

2

∑
d∈D

(td − od)2

We can now compute the gradient of this error with regards to individual weights.

Due to the sigmoid function properties, we can further simplify the formula [100]:

∂E

∂wi

=
∂

∂wi

1

2

∑
d∈D

(td − od)2

∂E

∂wi

= −
∑
d∈D

(td − od)od(1− od)xi ,d

Finally, we update link weights after each training case, t [72]. The formula for

computing the next weight of a particular link is as follows:

wj (t + 1) = wj (t) + ηo(1− o)ei ,j xi ,j

Here, η is the learning speed, ei ,j is the error for that link, o is the output of the

node, and xi ,j is the input sent over the link. The initial error may be observed on

the network output directly. It is then propagated backwards and adjusted by the

links’ weights, i.e., strong links that transmit large errors should be adjusted more.

As a result, the error of a particular node is a weighted sum of the errors of the nodes

in the following layer.

3.2 Memory-Based Algorithms

Memory-based approach does not create or maintain a model. This method works

directly with the dataset, inspecting it before each recommendation. As a result, the

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 41

most recent information is used as soon as it becomes available. However, because cal-

culations are done on-demand, memory-based approaches are notoriously slow when

applied to large datasets [44, 61]. In fact, input selection is the slowest and most

crucial part of this algorithm. Fortunately, this approach requires the same amount

of data for each recommendation [142]. Therefore, we can preprocess the input and

improve performance of our prototype.

We focus this research on memory-based algorithms because they offer superior

accuracy to many model-based recommenders [26, 31, 142]. Furthermore, this pop-

ular recommender approach is simple and intuitive, does not require many tuning

parameters or long training sessions, and can justify recommendations [12], which is

one of our future research directions. This approach may not be the fastest, but it

is the most appropriate for improving recommendation accuracy in large and sparse

datasets.

Memory-based recommenders identify a subset of all users, called neighbors, which

are similar to the active user. Because of the neighborhood concept, this method is

often called the K Nearest Neighbors (KNN) approach [83, 170]. Some versions of

this approach view a dataset as a collection of user vectors with a specific number of

dimensions, corresponding to items they rated [61, 143, 163]. However, item vectors

are also possible [44, 94, 104]. In fact, previous research shows that the item-based

approach produces more accurate results [70, 94, 142, 145, 148] because item vectors

better capture the opinions of a neighborhood.

Our analysis of the Netflix dataset shows why item-oriented input is most accurate.

Figures 3.3 and 3.4 show the vote counts for movies and users. In fact, 56% of all

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 42

movies have over one thousand ratings. An average movie has 5,654.5 ratings, which

increases the possibility of rating overlap and provides more potential neighbors. Few

users have this many ratings. In fact, half of the user population has 100 ratings

or less, with an average user rating only 209.2 movies. With the exception of a few

extremely active accounts, user vectors are usually sparse, which reduces the chance

of finding similar neighbors.

Once the neighborhood is identified, the item-based KNN method combines items’

ratings and their similarities to calculate a predicted rating for the active item. A

more formal example of this algorithm is presented below. The mean vote for an

item is defined as the sum of its ratings divided by their count. Here, ru,i is the vote

submitted by a user u on an item i and Ui is a set of users who rated the item i :

r̄i =

∑
u∈Ui

ru,i

|Ui |

The predicted vote for a user u on active item a is then a weighted sum of other

items’ ratings adjusted by their mean [26,29]. In this formula, n is the neighborhood

size, w(a, i) is the similarity of a neighbor i , and k is a tuning coefficient:

Pu,a = r̄a + k

n∑
i=1

w(a, i)(ru,i − r̄i)

n∑
i=1

w(a, i)

An accurate similarity measure is an essential part of the KNN approach. In fact,

it is often the distinguishing characteristic of an algorithm. In general, a recommender

system considers vectors with similar ratings as neighbors. To quantify the similarity

between any two vectors, it must first identify common dimensions, i.e., vote overlap.

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 43

200-300
10%

300-500
11%

500-1,000
12%

1,000-12,000
31%

0-200
26%

12,000-232,944
10%

Figure 3.3: Netflix Movie Vote Count Distribution

200-500
20%

0-100
50%

1,000-17,653
3%

500-1,000
9%

100-200
18%

Figure 3.4: Netflix User Vote Count Distribution

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 44

Then it applies a similarity measure to the two sets of ratings to determine how close

they are.

Two popular similarity measures are normalized Manhattan distance and nor-

malized Euclidean distance. Normalized Manhattan distance is the mean absolute

difference among commonly rated items between active user a and its neighbor u,

i ∈ Ia ∩ Iu :

w(a, u) =

∑
i∈Ia∩Iu

| ra,i − ru,i |

| i ∈ Ia ∩ Iu |

Normalized Euclidean distance is the Euclidean distance between the two user vectors

divided by the amount of commonly rated items:

w(a, u) =

√ ∑
i∈Ia∩Iu

(ra,i − ru,i)
2

| i ∈ Ia ∩ Iu |

Both measures quantify the similarity of two vectors, but they do not consider the var-

ious rating scales that users may employ. These measures vary with vector magnitude,

so two users with similar rating patterns could be considered different just because

their vectors have different lengths. This could be problematic in large datasets with

a wide variety of users and their individual rating scales.

Another popular measure that does not take vector length into account is cosine

similarity. It compares two users by taking a cosine of the angle between their rating

vectors [105,143,173]. It is the sum of products of commonly rated items divided by

the product of vector lengths:

w(a, u) =

∑
i∈Ia∩Iu

ra,iru,i√ ∑
i∈Ia∩Iu

r 2
a,i

∑
i∈Ia∩Iu

r 2
u,i

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 45

The individual rating scales may be different, but users with similar preferences will

have their rating vectors pointing in approximately the same direction. Cosine similar-

ity is accurate because it considers the agreement among ratings to be more important

than vector lengths [29, 142]. We consider this similarity measure in our empirical

study.

The original cosine similarity measure is effective and has been widely used in

information retrieval research. However, it does not explicitly adjust to users’ rating

scales [11]. For instance, a three star rating could mean “average” to one person and

“good” to another. Standard cosine similarity uses actual ratings, so unless two users

have the same rating scales, their similarity is lost. Alternatively, linear regression

approximations can recognize similarity in such situations. For example, Pearson’s

correlation measures linear dependence between two sets of ratings:

w(a, u) =

∑
i∈Ia∩Iu

(ra,i − r̄a)(ru,i − r̄u)√ ∑
i∈Ia∩Iu

(ra,i − r̄a)2
∑

i∈Ia∩Iu

(ru,i − r̄u)2

This measure is similar to cosine similarity, except individual ratings are normalized

by the vector average [13, 61]. This adjustment improves accuracy of even the most

basic recommenders. In fact, it is most effective in sparse datasets, where linear

regression is more easily established [15,142]. We consider this similarity measure in

our empirical study.

CHAPTER 3. COLLABORATIVE FILTERING ALGORITHMS 46

3.3 Conclusion

In this chapter, we discuss two types of collaborative filtering recommendations. Ex-

isting research shows that memory-based approach is superior to probabilistic and

associative rule models. These models are too general to make personalized recom-

mendations, whereas memory-based methods are simple, accurate, and use new data

immediately. We focus the rest of this research on memory-based recommendations.

However, our experiments include RSVD and NN models for comparison purposes.

Since dataset size and sparsity are the primary reasons for memory-based algorithm

deficiencies, we address them in the following chapters.

Chapter 4

The Proposed System Architecture

Current recommender systems do not allow flexibility, which is required for improved

recommendation accuracy. They are usually implemented as proprietary applications

with a particular dataset in mind. Many of them rely on a single combination algo-

rithm to produce recommendations [65,136,148], so choosing a different algorithm at

runtime requires multiple updates to a tightly coupled and inflexible software. Sugges-

tions based on a consensus of algorithms are often more accurate than any individual

approach [12,14,56,107], but combining different recommendations is usually a post-

processing task, which is slow and redundant. Therefore, studying recommendation

accuracy in such environments is a cumbersome process.

To achieve desired flexibility, we divide our system into an input generation al-

gorithm and multiple combination algorithms. This separates data management, the

slowest and most demanding part of the system, into a dedicated component. It

also simplifies the combination algorithms and eliminates redundant data processing

previously required to combine recommendations. The nature of our research de-

47

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 48

fines the architecture of our system. We develop a simple model that can perform

complex analysis of a large dataset and produce thousands of recommendations with

slightly different parameters. Our architecture allows structured development and

rapid experiments in the finished prototype.

The previous chapter described the ways of making a recommendation from a

set of ratings. This and the following chapter focus on the system architecture that

delivers such ratings and the input generation component that selects them from the

dataset. The architecture explains the primary components of our system, their func-

tionality, interactions among them, and the reasoning for such composition. We also

formulate a detailed specification of the input generation algorithm with a set of de-

sired properties. Finally, we discuss the satisfaction of our system requirements, which

range from functional aspects to various non-functional constraints like performance,

efficiency, scalability, adaptability, and ease of future development.

4.1 Distributed Computation with Accessible Data

We propose using the benefits of the network-centric software architecture to create

a highly accessible, multi-platform recommender system. Network-centric systems

consist of multiple computers working together to accomplish a common goal. In our

case, they produce thousands of recommendations quickly and accurately. The net-

work plays a central role in this approach because it helps synchronize the computing

nodes. The network is the only thing these computers have in common, so there

are no requirements for computer hardware, operating system, or software. Network-

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 49

centric systems will admit anyone, as long as they comply with the communication

protocol, which results in great implementation flexibility.

Large network-centric systems have access to vast computing resources, which

could be used to solve previously impossible problems. For example, the PocketLens

recommender system uses a central server to instruct individual nodes to build their

own models and compute recommendations [105]. In fact, its task is easily decom-

posable into individual recommendations to be computed by separate machines. A

similar architecture is implemented in the SETI@Home project, where a screensaver

software analyzes radio signals in search of extraterrestrial intelligence. This dis-

tributed system is considered one of the most powerful computers in the world and

we adopt its architecture to achieve performance and scalability.

The implementation of a network-centric system usually involves developing an

overlay network over the existing communication structure. In most cases, the indi-

vidual processing components are connected via the Internet [110]. Therefore, low

bandwidth and high latency systems would be unusable. We address the bandwidth

requirement by reducing the amount of data that travels between a user and a server.

We also decrease latency by preprocessing some of the data. As a result, we can

produce fast recommendations while retaining the flexibility of a network-centric ar-

chitecture.

We incorporate many best practices of the effective distributed systems. For

example, we physically separate the software components that request services from

the components that provide such services [156]. This allows us to scale the number

of input generation instances, combination algorithm instances, or both. We also

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 50

make the service providers unaware of the requesters’ identity [156]. This allows the

input generation component to service many combination algorithms as if they were

one. Finally, we insulate the requesters from one another [156]. Because combination

algorithms depend only on the input, we can add, remove, or modify them without

affecting the rest of the system. Note that these generic practices may apply to many

different distributed architectures, but their rationale justifies the following design

decisions.

4.2 Multi-Platform Implementation with Minimal

Client Requirements

Client-server architecture is the most frequently used style for network applications.

As the name suggests, it consists of two components: a server that offers a set of

services and a client in need of such services [49]. This architecture is a perfect exam-

ple of separation of concerns. Clients usually handle the user interface functionality,

which keeps the server-side code simple. Servers perform intensive computations and

store the data, so clients have minimal performance and storage requirements. The

client-server separation also improves system modifiability as both components may

be updated independently. We adopt this architecture to structure and simplify our

development efforts.

The choice of client software has major consequences on the future performance

of a recommender system. Distributed recommender systems usually employ smart

clients to process and store recommendation data [105, 165, 166, 169]. Smart clients

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 51

Server Processor Quad 3.2 Xeon EM64T
Server Memory 16GB

Server Operating System Redhat Linux x86 64
Database Server MySQL 5.0.22

Web Server Apache 2.2.16
Web Client Chrome 8.0.552

Table 4.1: Prototype Software and Hardware Configuration

offer more computational performance, but require custom software to be installed on

each computer, which limits deployment options. We use existing Web client software,

which has limited processing and storage abilities. However, we design our system

such that the clients perform only lightweight computations on minuscule amounts

of data. As a result, our prototype can produce recommendations on virtually any

Internet-ready device, regardless of the processor architecture or operating system.

Building our system on top of an existing infrastructure helps us focus on the

main purpose of this research without sacrificing performance, robustness, or reliabil-

ity. Fortunately, there are many reliable implementations for both client and server

software, e.g., Apache server and Chrome client. We outline details of our server

hardware and software configuration in Table 4.1. We use the latest stable software

to manage the dataset and access it through the Web. Furthermore, our system can

work with any Web client, but we use Google Chrome because it offers the fastest

client-side performance.

Some quality attributes promoted by the client-server architecture include scala-

bility, availability, and performance. Our system is scalable because additional clients

can easily join and contribute their recommendations. It remains available even if a

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 52

client quits during the recommendation process. The reserved recommendation will be

unprocessed, but all remaining suggestions will be completed by other clients. Finally,

our system allows multiple clients to make concurrent recommendations. This qual-

ity is especially beneficial for our case study, where we evaluate the recommendation

accuracy of multiple algorithm configurations over thousands of recommendations.

4.3 Complexity Management with Layers

One of the most popular ways to organize a complex software system is to break it

down into layers, because their strict communication rules encourage solid software

design. This architecture reduces coupling, as the communication for a layer is usually

restricted exclusively to the layers adjacent to it [54]. Loosely coupled components

may be implemented and tested independently, which is a desirable quality for our

system. Layered architecture also improves component cohesiveness as each layer

usually contains functionality related to a particular level of abstraction [54, 159].

Layers force us to group similar functionality together, so any issues are more likely

to be contained within a single layer. We use this architecture style to visualize our

system and build it one layer at a time.

We divide the business logic between a server and a set of clients, unlike a tradi-

tional approach where all functionality resides on the server side. Figure 4.1 shows

the logical and physical structure of our system. The figure also shows a dependency

that clients have on servers, i.e., a client may not generate a recommendation unless it

has a server to provide it with input data. This architecture implements all three best

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 53

practices of an effective distributed system, the components are physically separate,

the clients appear indistinguishable to the server, and clients are unrelated to each

other.

Client

Presentation

Client-Side Logic

Server

Server-Side Logic

RDBMS

Figure 4.1: Layered Client-Server Architecture

Starting from the top of our stack, the presentation layer interacts with a user

directly. It displays each recommendation and helps request new ones. As far as the

user is concerned, the entire system is abstracted by this layer. It contains no business

logic, so it can change radically, without affecting the rest of the system [132]. Such

flexibility allows us to easily change the “skin” of our system or incorporate it into

an existing application.

Below, a traditional application layer is broken down by two tiers into client-

side logic and server-side logic layers. Together, they are responsible for extracting,

optimizing, transmitting, and processing the dataset into a recommendation. The

processor-intensive data manipulation functionality resides on the server side, next

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 54

to the data. Lightweight processing resides on the client side and has nothing to do

with the original dataset. Its sole purpose is to combine a small matrix of ratings into

a single recommendation. The performance improvement of such separation might

be negligible for individual recommendations, but it allows us to produce multiple

types of recommendations simultaneously. For example, the server could send the

same input to a KNN client and an RSVD client to receive two recommendations in

the time it takes to generate one.

The bottom layer is reserved for a relational database management system (RDBMS).

Its responsibility is to store and retrieve ratings from the dataset. This layer con-

tains no business logic either, which keeps the coupling down. It also abstracts any

load balancing, caching, or clustering that a database management system may em-

ploy [34, 60]. Managing data in a separate layer is beneficial because we can use an

existing database management system. There are faster ways to access the dataset,

but we prefer the convenience and reliability of a relational database over the speed

of a proprietary data management system. In fact, standard database connectivity

is often preferable to custom data structures and access methods [54]. We use the

MySQL database because it lets us focus on the main goal of this research rather than

on optimizing data access. Once a satisfactory solution has been developed, we plan

to improve its performance by implementing it in a more optimized environment.

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 55

4.4 System Adaptability with Strict Interfaces

The flow of data and control through the layers defines our recommendation process.

Figure 4.2 breaks it down into distinct steps. It starts with a recommend function call

at the presentation layer in Step 1. The user may choose to provide a user and item

ID for a desired recommendation. However, since both parameters are optional, the

system may automatically choose an input matrix that has not yet been processed.

The recommendation request is then encoded into an HTTP packet and sent to the

server. During Step 2, the request is parsed, validated, and populated with any

necessary lookups. At this step, a specific user and item ID must be established

because the recommendation process may only continue when it is centered around

a single rating by a known user on a known item.

Presentation

1. Procedure Call

Server-Side Logic RDBMS

3. SQL Query

6.1 Procedure Call

Client-Side Logic

2. HTTP GET

5. HTTP OK

6.2 HTTP GET

4. SQL Resultset

7. SQL Query

int recommend([int $user_id, [int $item_id]])

int $recommendation

[int $user_id, [int $item_id]]
int $user_id, int $item_id

int $ratings[900]

int $user_id, int $item_id,
int $recommendation

int $user_id, int $item_id,
int $recommendation

string(900) $ratings

Figure 4.2: Layer Interaction During a Recommendation Process

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 56

Step 3 of the recommendation process is time-consuming because the server-side

logic must process a large amount of data. It is also a place where most performance

enhancements occur. For instance, if the dataset is partitioned across multiple ma-

chines, each one of them will receive the same query and their results will be combined.

Furthermore, the dataset may be distributed across several hard drives and multi-

ple virtual tables to improve response time [34, 60]. Regardless of the performance

considerations, the RDBMS layer returns a set of ratings in Step 4.

These ratings are organized in a string, which is then sent to the client in Step

5. Once the input matrix reaches the client, the data inside it gets combined into a

suggestion that is presented to the user or sent back to the server in Step 6. The input

matrix is bound to 30 user and item vectors, which makes the largest possible matrix

of 900 characters. The size of the data moving from server to client is extremely small,

which makes it ideal for slow networks as well as lightweight combination algorithms.

To reduce coupling, layer communication occurs only through explicit, public

interfaces. For example, the RDBMS layer does not expose its internal state other

than via operations intended to modify that state in server-side logic layer [156]. As

a result, combination algorithms are completely oblivious to the input generation

process, what algorithm was used to perform it, or what database the data came

from.

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 57

4.5 Future Extensibility with Prebuilt Components

The component-based architecture is very similar to the layered approach in a sense

that each part of the system serves a single purpose. The main idea behind this style is

that complex systems may be constructed by assembling a number of simple building

blocks, abstracting implementation details and separating the architect and devel-

oper concerns [42, 51, 52]. However, architectural mismatch is a major problem with

component-based development. In fact, the effort to join the different components

usually exceeds that of writing the entire system from scratch.

We address this issue by describing a strict communication interface, thus remov-

ing any ambiguity regarding our component interaction. Figure 4.3 shows the two

main components of the system, input generation algorithm and multiple combina-

tion algorithms. Each combination algorithm understands the get matrix and recom-

mend interfaces. The make matrix interface has two required parameters (user id

and item id) and returns a newline-separated string of item ratings. The recommend

interface accepts this string and returns a single numerical recommendation.

One quality we are particularly interested in is the ability for different implemen-

tations of the same component to be used interchangeably. In fact, the flexibility

of our prototype comes from replacing combination algorithm implementations [159].

Likewise, the input generation component is compatible with any collaborative fil-

tering combination algorithm. If a recommender can work with a dataset of ratings,

it can work with our input generation component, because our algorithm produces a

matrix that is essentially a smaller version of the dataset.

Our architecture simplifies future recommender system development. A large

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 58

<<Component>>
Input Matrix Generation

RSVD:recommender

KNN:recommender

NN:recommender

get_matrix make_matrixrecommend

Figure 4.3: Proposed Component Communication Interfaces

number of existing systems use similar functionality for the data management part of

the recommendation process [61]. Since there is not much variability in the way the

ratings move from the dataset into the combination algorithm, it would be beneficial

to include all of the related functionality into a single unit. Our input generation com-

ponent represents a considerable portion of the entire system, so new recommenders

may be constructed quickly.

Our architecture also makes it possible for the prototype to become a commer-

cial product. However, it does not have to be Web-based. Our data management

component coupled with a combination algorithm could form a standalone unit to be

distributed across a number of processing nodes. As long as each node has a copy

of the dataset, all recommendations could then be combined and used in a business

model or presented to users. In fact, the entire recommender system could be ab-

stracted by a load-balanced cluster of high-performance computers that populate a

single table of recommendations.

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 59

4.6 System Dataflow Bottlenecks

We model recommender input as a matrix where items are rows and users are columns.

Each cell contains a rating that is associated with a single user and an item. Figure 4.4

shows our prototype data flow. The input generation component locates all relevant

ratings and chooses the best ones for the input matrix. The matrix is fed into a

combination algorithm that, as the name implies, combines ratings to produce a

recommendation.

Original Dataset

3344 424 35 345 3454 4443
44 5 44 5554 534 5 5545555
33 442433 54 2343 45243454
 4344 44 353445333 333 343552
4555 5555 55 54 45455 355 4555
55 5555 554555 554 555
3454 55 5 35 555 3544 44 345
 45 44543 423 44 4544445
3445 442 53 44343 3543
44 54 45 543 45 444434 44455
 444534 5 545 5553 445345 455
5554 455 55 4454445455 3553555
45 4 45 5555 555554 4444555
3354344 445 334 3 43344334545
45555 55 54454445 454 55 55
 4455435435344543431 334234445
33 343 33 434542444234533343
4455 55 45 44 354 5453 3344455

Rating
Combination

Input Matrix

55554544445
5 54 4555 5
55 4 44 44
45 544 435
4 4 55 4

recommendation

Input Matrix
Generation

Relevant Dataset

534444243353452
445 54 4 55 555
335 4 43 54 43
3434 43 3 33
4555 555 44545
555 5 5 555 5
34 54 455 5

Figure 4.4: Proposed System Data Flow

To generate an input matrix, we first identify all relevant ratings on items rated

by the active user and by users who have rated the active item. For example, if

making an input matrix for Alice on Titanic, we consider all movies Alice rated and

all users who rated Titanic. This data access task is time-consuming because a large

portion of the dataset may be relevant. However, the relevant dataset may contain

opinions that are not as valuable as others. Therefore, the input matrix generation

algorithm chooses only the most valuable ratings and places them into the input

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 60

matrix. This data processing task is also time-consuming because all relevant ratings

must be sorted.

Different matrices take a different amount of time to produce. To standardize

the time it takes to receive the recommender input, we employ multiple replicas of

the input generation algorithm to preprocess the data. They produce consistently

sized, small, and highly valuable input matrices that enable quick and accurate rec-

ommendations in a fixed amount of time, regardless of the user/item popularity. To

generate them efficiently, we must consider the communication, computation, and

space utilization of our approach.

4.6.1 Efficient Communication Utilization

The more layers a system has, the slower it operates. All communications must pass

through the layers linearly, which means that middle layers must be involved during

the request and response phase of each recommendation. A finished recommendation

does not have to travel through all layers, including the HTTP stack on top of which

our system is built. Since no layers may be skipped, the performance of our system

may suffer [54,132,159]. However, keeping the layers unaware of each other outweighs

the performance benefits of passing data directly to the database, because the burden

of submitting a single rating is negligible.

We employ a multi-layer architecture for its customization properties, but some

layers may be removed to improve performance. To make sure that our system can

adapt to such a change, we keep only interaction facilities inside connectors. In other

words, the HTTP and MySQL connectors contain no logic, but rather the means

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 61

of transmitting requests and their responses. For example, we can implement our

recommender system on a different database management system by replacing the

MySQL connection. Likewise, we can change how a matrix travels to a combination

algorithm, so when we replace the HTTP connector, the system remains operational.

For example, Figure 4.5 shows an embedded recommender system with no Web

interface. It eliminates the overhead of two additional layers by sending the recom-

mendation directly to the database. Such configuration exhibits the most optimal

use of the communication medium, but it is more difficult to change algorithms and

their configurations at runtime. Therefore, we reserve this configuration for produc-

tion systems and implement a more customizable architecture for our case study.

However, we use a version of this approach to precompute input matrices.

Our client-server responsibilities are guided by communication efficiency. We

keep frequently interacting components close because latency affects interaction effi-

ciency [156]. For example, it is inefficient for a combination algorithm to communicate

with a remote dataset. If the input generation component resides on the client side,

a single recommendation will produce a large amount of network traffic, which would

decrease performance and limit scalability. Therefore, we limit the amount of infor-

mation that goes through a slow network connection and abstract the data with a

dedicated component.

The input generation component needs frequent and resource-intensive access to

the dataset. We place it on the same host as the database, with a direct connection

to the data. Our server has a more powerful processor and more memory than an

average personal computer. Therefore, we use its resources to perform the most

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 62

intensive operations, i.e., data management.

If we could not physically separate the two components, we would have to use

a slow connection to do a time-consuming task or we would have to sacrifice mod-

ifiability. Our proposed architecture accomplishes several things at once, we can

modify combination algorithms independently of the recommendation process, their

interactions with the server are minimal, and all data intensive processing occurs on

a dedicated machine with the best available resources and the most optimal data

access.

Server-Side Logic RDBMS

1. SQL Query

3. SQL Query

2. SQL Resultset
int $ratings[900]

int $user_id, int $item_id

int $user_id, int $item_id,
int $recommendation

Figure 4.5: Recommendation Process with an Embedded Combination Algorithm

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 63

4.6.2 Efficient Computation Utilization

Previous configurations show a more linear approach to making recommendations.

They provide a logical organization for a sequence of events that must occur before

a user receives a suggestion. However, previous discussion also identifies the two

bottlenecks in the recommendation process, data access and data processing. To

improve online performance, these time-consuming tasks may be performed offline.

If we precompute the data necessary to make a recommendation, we can improve

recommendation performance, producing thousands of recommendations in minutes

instead of hours.

We model the server-side code such that the resource-intensive data processing

functionality is contained in a standalone unit available only through a strict interface.

This allows us to keep the most complex and slowest part of the system separate from

everything else. Additionally, we do not want the slowest component to dictate the

overall performance. In other words, we want to prevent the combination algorithms

from waiting idly for their input.

We maximize computational resource utilization with multiple instances of the

input generation algorithm. They synchronize through a shared database table, which

adds to the complexity of the system. However, we limit the amount of information

shared among input generation instances and enforce local computation within each

instance. The resulting architecture can efficiently use all of the available server

resources to quickly preprocess the recommender input.

Our architecture also allows efficient evaluation of multiple recommendation ap-

proaches due to a dedicated input generation component. Each recommendation is

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 64

based on the same input data, so the most resource-intensive task is not performed

redundantly. Furthermore, because combination algorithms are decoupled from the

input generation algorithm, multiple clients may produce different kinds of recom-

mendations simultaneously. Likewise, multiple input generation processes may work

concurrently to generate input matrices. Both recommendation and input generation

tasks lend themselves to distribution because their responsibilities are independent

and clearly defined. Therefore, we replicate both components to scale our system.

4.6.3 Efficient Space Utilization

Caching input matrices increases our memory footprint, but it also results in a faster

system. We address the space utilization issue by separating the data from the meta-

data, which reduces the system’s memory footprint and makes it more efficient. In

other words, every time we make a recommendation it is not necessary to know the

movie title, its genre, or release date. Such data may be useful for presentation pur-

poses, but it is completely irrelevant in the input generation component. The data

structure of our system represents the lowest common denominator of any collab-

orative filtering system. Therefore, we can accommodate a variety of datasets by

adjusting the meta-data, which does not participate in the recommendation process,

but does enhance the presentation.

We design our recommender system to maintain a major advantage of collabora-

tive filtering, i.e., its ability to make suggestions on virtually any data. We model

users, items, and numerical ratings as separate entities. Their relationships are fixed

and are unlikely to change in other domains as long as the user, item, and rating

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 65

information is available. Our generic naming convention as well as the simplicity of

the collaborative filtering approach effectively guarantee that our research may apply

to a great number of domains.

4.7 Input Generation System Specification

This section presents a more detailed view of the input generation component. We

describe it with Acme, an Architecture Description Language (ADL) developed at

Carnegie Mellon University. It is a simple and generic language that is based on

the premise that there is sufficient commonality among other ADLs. Acme embodies

these commonalities while also allowing ADL-specific details [53]. Therefore, our

Acme specification may be easily converted to a broad variety of other ADLs.

The core ontology of Acme includes components, connectors, systems, ports, and

roles. Components represent the primary computations elements and data stores of

a system. They correspond to the boxes in box-and-line descriptions. Connectors

represent interactions among components. They mediate the communication among

components and correspond to the lines in box-and-line descriptions [53]. In our case,

connectors are the SQL links between the database and the functions. Component

interfaces are defined by a set of ports. Each port identifies a point of interaction

between the component and its environment. Connectors also have interfaces that

are defined by roles. Each role defines a participant of the interaction represented

by the connector [53]. Finally, systems represent configurations of components and

connectors. The rest of this section describes the input generation system in terms

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 66

of these structural elements.

First, we define three types of roles in our system: provider, receiver, and con-

troller (Listing 4.1). The idea is that the provider points to the source of the data, the

receiver points to its destination, and the controller points to the component spec-

ifying which data to move. Note that all logic resides in the controller component,

which ensures future adaptability. Each role has two rules that ensure that the role is

attached to a matching port and that such attachment is unique. These constraints

prevent the same connection from being used for different purposes, thus enforcing

system consistency.

Listing 4.1: Role Types of the Input Generation Algorithm
1 Role Type r_provider=

2 {

3 rule CountCheck=invariant size(self.ATTACHEDPORTS) == 1;

4 rule TypeCheck=invariant forall r:Role in self.ATTACHEDPORTS |

5 declaresType(r, p_provide);

6 }

7

8 Role Type r_receiver=

9 {

10 rule CountCheck=invariant size(self.ATTACHEDPORTS) == 1;

11 rule TypeCheck=invariant forall r:Role in self.ATTACHEDPORTS |

12 declaresType(r, p_receive);

13 }

14

15 Role Type r_controller=

16 {

17 rule CountCheck=invariant size(self.ATTACHEDPORTS) == 1;

18 rule TypeCheck=invariant forall r:Role in self.ATTACHEDPORTS |

19 declaresType(r, p_control);

20 }

We use different connectors for control and data exchange. Our components in-

teract through shared data access, which is a very efficient way to exchange large

amounts of information. Such interaction is asynchronous, or distributed in time,

which means that we need to establish the order in which writers and readers access

shared data. The thread controller uses procedure calls to invoke the functions in a

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 67

predefined order, documented in Figure 4.6. Procedure calls synchronously exchange

control between procedures and clearly illustrate the interaction paths among the sys-

tem’s components. We choose specialized connectors for exchanging data and control

because they make our system efficient.

Input Generation
Thread Controller

3.2. Save
Similarities

3.1. Compute
Similarities

5. Save
Matrix

4. Truncate
Matrix

3. Sort
Matrix

2. Load
Matrix

1. Setup
Matrix

Figure 4.6: Input Generation Algorithm Order of Execution

We use two types of shared data connectors, data access and data moving (Listing

4.2). The access connector links a provider and controller components that interact

among themselves, but the data they exchange remains in the provider component.

The moving connector is the same, except it also links the receiver component. The

controller interacts with the provider, but the resulting data is sent to the receiver

component. Both connectors contain rules that ensure that each connection has

appropriately typed roles, that there is a correct number of roles, that there are no

two roles of the same type, and that the connecter has no dangling roles.

We also define three types of ports that a component may have: provide, receive,

or control (Listing 4.3). Each port name describes whether the component provides,

receives, or controls the data exchange. Each port contains two rules that ensure that

it is connected to a properly typed connection role. Note that a single provide or use

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 68

Listing 4.2: Connector Types of the Input Generation Algorithm
1 Connector Type DataAccessConnT=

2 {

3 Role controller:r_controller=new r_controller

4 Role provider:r_provider=new r_provider

5

6 rule TypeCheck=invariant forall r:Role in self.ROLES |

7 exists t in {r_provider , r_controller} declaresType(r, t);

8

9 rule CountCheck=invariant size(self.ROLES) == 2;

10

11 rule UniqueTypeCheck=invariant forall r1:Role in self.ROLES |

12 forall r2:Role in self.ROLES |

13 r1 != r2 <-> ! exists t in {r_provider , r_controller} |

14 declaresType(r1 , t) AND declaresType(r2 , t);

15

16 rule NoDangling=invariant forall r:Role in self.ROLES attachedOrBound(r);

17 }

18

19 Connector Type DataMovingConnT=

20 {

21 Role receiver:r_receiver=new r_receiver

22 Role provider:r_provider=new r_provider

23 Role controller:r_controller=new r_controller

24

25 rule TypeCheck=invariant forall r in self.ROLES |

26 exists t in {r_provider , r_receiver , r_controller} declaresType(r, t);

27

28 rule CountCheck=invariant size(self.ROLES) == 3;

29

30 rule UniqueTypeCheck=invariant forall r1:Role in self.ROLES |

31 forall r2:Role in self.ROLES |

32 r1 != r2 <-> ! exists t in {r_provider , r_receiver , r_controller} |

33 declaresType(r1 , t) AND declaresType(r2 , t);

34

35 rule NoDangling=invariant forall r:Role in self.ROLES attachedOrBound(r);

36 }

port may have multiple connections to accommodate different interaction with the

same data. However, a single control port may only be used for a single purpose. This

rule ensures that each computational component is dedicated to a single purpose.

Our system has two types of components, data controller and shared data (Listing

4.4). Because each component type has a different purpose, each type contains rules

that prevent us from accidentally declaring the wrong components. The controller

component must provide exactly one port of type control. The data component must

provide at least one port of either provide or receive type, but there may not be

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 69

Listing 4.3: Port Types of the Input Generation Algorithm
1 Port Type p_provide=

2 {

3 rule CountCheck=invariant size(self.ATTACHEDROLES) >= 1;

4 rule TypeCheck=invariant forall r:Role in self.ATTACHEDROLES |

5 declaresType(r, r_provider);

6 }

7

8 Port Type p_receive=

9 {

10 rule CountCheck=invariant size(self.ATTACHEDROLES) >= 1;

11 rule TypeCheck=invariant forall r:Role in self.ATTACHEDROLES |

12 declaresType(r, r_receiver);

13 }

14

15 Port Type p_control=

16 {

17 rule CountCheck=invariant size(self.ATTACHEDROLES) == 1;

18 rule TypeCheck=invariant forall r:Role in self.ATTACHEDROLES |

19 declaresType(r, r_controller);

20 }

two ports of the same type. Note that we explicitly state that each component must

provide a port, thus eliminating a possibility of a component with missing or unknown

interface.

Listing 4.5 shows the entire system with connected components. The graphical

view of this system is available in Figure 4.7. We have two shared data components

and four data controllers. Note that the temporary data component is shared only

among the functions of the active input generation instance, but the permanent data

component is also shared among all instances of this algorithm. All components

are connected with four connectors, two for data access and two for data moving.

The system also contains rules that enforce its correctness. There must be at least

one component and all components must be either controllers or data. Likewise,

there must be at least one connector and all connectors must be either access or

moving. Finally, port and connector rules ensure everything is connected and their

type checks ensure that connections are properly aligned. For example, the number of

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 70

Listing 4.4: Component Types of the Input Generation Algorithm
1 Component Type DataControllerT=

2 {

3 Port control:p_control=new p_control

4

5 rule CountCheck=invariant size(self.PORTS) == 1;

6 rule TypeCheck=invariant forall p:Port in self.PORTS declaresType(p, p_control);

7 rule NoDangling=invariant forall p:Port in self.PORTS attachedOrBound(p);

8 }

9

10 Component Type SharedDataT=

11 {

12 Port provide:p_provide=new p_provide

13 Port receive:p_receive=new p_receive

14

15 rule CountCheck=invariant size(self.PORTS) >= 1;

16

17 rule TypeCheck=invariant forall p:Port in self.PORTS |

18 exists t in {p_provide , p_receive} declaresType(p, t);

19

20 rule NoDangling=invariant forall p:Port in self.PORTS attachedOrBound(p);

21

22 rule UniqueTypeCheck=invariant forall p1:Port in self.PORTS |

23 forall p2:Port in self.PORTS |

24 p1 != p2 <-> ! exists t in {p_provide , p_receive} |

25 declaresType(p1, t) AND declaresType(p2 , t);

26 }

controllers should match the number of connections because otherwise the r controller

or p control rules will be violated.

4.8 Conclusion

This chapter summarizes the architectural properties of our recommender prototype.

Classic solutions lack the flexibility of the proposed architecture. Therefore, we de-

scribe applicable architectural patterns and show how they enhance fast and accurate

experiments. We also document the communication lines between different compo-

nents of our system and identify performance bottlenecks. Our main contribution

is the separation of common functionality among multiple recommender approaches

into a single component. We describe this module because it is the most important

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 71

part of our recommender system. We do not consider the internal behavior of the

components yet, thus abstracting the complexity away. Such an architecture view

should simplify further system design and aid its development.

Listing 4.5: Input Generation System Specification
1 System InputGenerationInstance=

2 {

3 Component PermanentSchema:SharedDataT=new SharedDataT

4 Component TemporarySchema:SharedDataT=new SharedDataT

5

6 Component LoadMatrix:DataControllerT=new DataControllerT

7 Component SaveMatrix:DataControllerT=new DataControllerT

8 Component SortMatrix:DataControllerT=new DataControllerT

9 Component TruncateMatrix:DataControllerT=new DataControllerT

10

11 Connector Conn0:DataMovingConnT=new DataMovingConnT

12 Connector Conn1:DataAccessConnT=new DataAccessConnT

13 Connector Conn2:DataAccessConnT=new DataAccessConnT

14 Connector Conn3:DataMovingConnT=new DataMovingConnT

15

16 Attachment TemporarySchema.receive to Conn0.receiver;

17 Attachment PermanentSchema.provide to Conn0.provider;

18 Attachment LoadMatrix.control to Conn0.controller;

19

20 Attachment SortMatrix.control to Conn1.controller;

21 Attachment TemporarySchema.provide to Conn1.provider;

22

23 Attachment TruncateMatrix.control to Conn2.controller;

24 Attachment TemporarySchema.provide to Conn2.provider;

25

26 Attachment PermanentSchema.receive to Conn3.receiver;

27 Attachment TemporarySchema.provide to Conn3.provider;

28 Attachment SaveMatrix.control to Conn3.controller;

29

30

31 rule ComponentCountCheck=invariant size(self.COMPONENTS) >= 1;

32 rule ConnectorCountCheck=invariant size(self.CONNECTORS) >= 1;

33

34 rule ComponentTypeCheck=invariant forall c:Component in self.COMPONENTS |

35 exists t in {SharedDataT , DataControllerT} declaresType(c, t);

36 rule ConnectorTypeCheck=invariant forall c:Connector in self.CONNECTORS |

37 exists t in {DataMovingConnT , DataAccessConnT} declaresType(c, t);

38 }

CHAPTER 4. THE PROPOSED SYSTEM ARCHITECTURE 72

Temporary
Schema

p r

Load Matrix

c

Save Matrix

c

Truncate Matrix

c

Sort Matrix

c

Permanent
Schema

u r

Legend:
p: p_provide port
r: p_receive port
c: p_control port

DataAccessConnT connection
DataMovingConnT connection

Figure 4.7: Input Generation Architecture in Acme ADL

Chapter 5

Improving the Quality of

Recommender Input

Many effective combination algorithms are based on existing statistical, mathemati-

cal, or data mining principles. Some research focused on adjusting these formulas for

improved accuracy [13,73,142]. However, most approaches assume that the amount of

ratings is the sole reason for poor recommendation quality. We suggest that it is not

the amount, but rather the relevance of ratings, that determines recommendation ac-

curacy. In fact, many studies show dramatic recommendation quality improvements

due to changes in the input data [29,63,146]. In a sense, optimizing the combination

algorithm is comparable to fixing the symptoms, while improving the input data is

addressing the root of a problem.

This chapter provides a more in-depth view of our data management component.

We consider two different ways of establishing vector similarity within a dataset,

which is a crucial step in the process of making collaborative filtering recommenda-

73

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 74

tions. First, we offer an informal conjecture as to why our way of locating similar

neighbors is better than existing approaches. Then, we demonstrate the essence of

our hypothesis through a simulation. We consider the different processes involved

in making input matrices and justify their organization. Finally, we examine the

statistical implications of our approach to show how it reduces the effects of random

variability in the data, which leads to more accurate recommendations.

5.1 The Standard Input Generation Approach

Because our dataset contains millions of records, combining all relevant ratings is

not feasible. Instead, we make recommendations from a subset of the most relevant

ratings. Figure 5.1 shows how we identify the users and items that comprise an input

matrix. This process consists of a series of simple operations, many of which could be

executed in parallel to increase performance. However, there are two synchronization

points in this workflow, when only one operation is running. Therefore, we break it

down in two tasks at the synchronization boundary. This division is not necessary

in a production system, but it helps us separate a strictly data access task from a

strictly data processing task.

The standard input generation approach creates a larger matrix first and then

reduces its size. This may be described in four steps. We start with a single cell

matrix for the active user and item. Figure 5.2 shows the initial state of an input

matrix. In this case, we are predicting a rating by user U1 on item I1. This step

makes sure that the active user and item vectors are in the matrix, regardless of

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 75

D
at

a
A

cc
es

s
D

at
a

Pr
oc

es
si

ng

Load Relevant Users

Identify all users who rated the
active item

Load Relevant Items

Identify all items rated by the
active user

Load Relevant Ratings

Identify all ratings by any
relevant user on any relevant
item

Compute User Similarity

Apply the similarity metric to the
active user vector and every
neighboring vector

Compute Item Similarity

Apply the similarity metric to the
active item vector and every
neighboring vector

Truncate Users

Delete all but 30 of the most
similar users

Truncate Items

Delete all but 30 of the most
similar items

Populate Matrix

Load all ratings by top 30 users
on top 30 items

Figure 5.1: Input Generation Process Activities

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 76

whether we know the active rating. If the active rating is unknown, the two vectors

would be an exception to the following step.

I1

U1
Users

Ite
m
s

Figure 5.2: Input Matrix Generation – Initial State

The second step populates the matrix with all relevant user and item vectors as

well as any ratings they have. At this point, columns are all users who rated the

active item and rows are all items that the active user rated. Figure 5.3 shows the

populated matrix. In this case, the active user has rated five items, and five other

users rated the active item. Note that the first row and the first column of the input

matrix always have values, with the exception of the rating we are trying to predict.

This happens because the active vectors define the shape of the matrix, so a particular

dimension is not considered unless it occurs within one of the active vectors.

The next step sorts columns and rows, while preserving rating association. In

other words, rearranging the movies does not affect users’ opinions about them. A

variety of similarity metrics may establish the sort order. We use the cosine similarity

and Pearson’s correlation measures to move similar vectors closer to the active vector.

Figures 5.4 and 5.5 show the third step of the input generation process.

Finally, we remove the least similar rows and columns. Figure 5.6 shows the

final truncated matrix, where we keep the top three vectors. Since all neighbors

are organized in order of decreasing similarity from the active vector, truncating the

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 77

matrix deletes only the least relevant data. The finished matrix is not necessarily

more dense, but it contains more relevant ratings.

5I5 34

4 2I4 3 4

I3 3 2 21

4I2 43 3

3

U5

1I1 2

U4U3U2U1

2

Users

Ite
m
s

Figure 5.3: Input Matrix Generation – Load Matrix

4I2 33 4

4 3I5 5

I4 3 4 24

2I3 21 3

3

U5

1I1 2

U4U3U2U1

2

Users

Ite
m
s

Figure 5.4: Input Matrix Generation – Sorting by Items/Rows

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 78

3I2 43 4

4I5 5 3

I4 4 3 24

22I3 31

3

U5

2I1 2

U3U2U4U1

1

Users

Ite
m
s

Figure 5.5: Input Matrix Generation – Sorting by Users/Columns

I4 4 34

2I3 1

2I1

U2U4U1

1

Users

Ite
m
s

U5U3

32

3 2

2

3

3

44

54

3I2

I5

Figure 5.6: Input Matrix Generation – Truncate Matrix

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 79

5.2 Two Ways of Establishing Neighbor Influence

A major assumption in many collaborative filtering approaches is that similar users

agree on a majority of items, regardless of their domain. We refer to this type of

comparison as “global similarity” because ratings from every domain contribute to

the similarity of any two users. This concept establishes strong connections among

neighbors, but it eliminates potentially good vectors because they are not similar

enough. On the other hand, a neighbor could be chosen because he/she shares many

similar ratings in unrelated domains, yet offers little useful information in the active

item domain.

It is natural for people to agree on some items and disagree on others. In fact,

Bell and Koren suggest that the reason so many recommender systems fail is because

they assume that the similarity between any two users is fixed across all items [13].

This is unlikely, because each user has a unique set of preferences. For instance, it is

possible for two users to be considered similar in horror and drama genres, yet have

nothing in common in their comedy preferences. Therefore, we should compute user

similarity only in the context of the active item.

Our proposed solution satisfies this need as it only considers users to be similar if

they agree on a subset of all items. In other words, our approach sorts the columns of

a matrix according to the most relevant rows. We refer to this type of comparison as

“local similarity” because it considers the information from only a few locally relevant

domains. We loosen user similarity requirements and allow for more potentially good

neighbors. Neighbors are also more relevant, since they explicitly demonstrate their

similarity in the active item domain.

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 80

The large size and extreme dataset sparsity is the reason global similarity is inac-

curate. In fact, existing research compared standard, whole-matrix recommendations

to three local similarity approaches to discover that accurate suggestions may be

made with a small, but relevant, fraction of the available data [6,21]. One of the ap-

proaches relies on a heuristic assumption that similar users remain similar across all

user models, i.e., movie genres. We claim that this assumption is false because there

are far less people who agree on everything than there are people who share some

preferences. The authors support our claim and show that this particular approach

does not provide accurate recommendations.

The local similarity approach offers more flexibility over the global similarity

method. Other publications also advocate using local similarity as opposed to the

traditional approach [38, 130]. However, there is no automatic way to identify the

most relevant items by which the users should be compared. One way to do so is to

partition the dataset according to items and to consider all items in the same parti-

tion to be relevant to each other [35]. This way, when making a suggestion about an

item, all users are compared according to items in the same partition. For example,

Berkovsky, Kuflik, and Ricci partition the dataset according to eight movie genres

and consider each partition to be a distinct user model [19, 21, 22]. The partitions

are essentially smaller user-item matrices containing all user vectors and a subset of

item vectors. Such a composite model of a user is accurate, especially if partitions

are allowed to overlap to represent mixed genre movies.

The manual partition approach is similar to the one we are proposing. Both meth-

ods rely on local similarity to compare vectors on the dimensions that matter the most.

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 81

The manual partitioning approach uses items within the same partition to compare

users. We use more explicit item similarities to determine the most important dimen-

sions. Instead of using static domain boundaries, our approach dynamically creates

a single partition around the active rating. We form our partition across items as

well as users. As a result, our algorithm generates an input matrix with a carefully

selected set of ratings.

Another way to discriminate dimensions is to weigh them. The weighted approach

considers some properties of the vector to be more important than others [106]. For

example, when comparing two user vectors, their opinions of certain items matter

more than others. The items that are most similar to the active item should receive the

most weight. Therefore, we use item similarities as dimension weights for computing

user similarities and we use user similarities as dimension weights for computing item

similarities.

5.3 Candidate Input Generation Algorithms

Our empirical study considers three different input selection methods and two simi-

larity measures. Some approaches use raw cosine similarity to sort the matrix:

sim(a, u) =

∑
i (ra,i ∗ ru,i)√∑

i (ra,i)2
√∑

i (ru,i)2

Other approaches compute the similarity among vectors as a Pearson’s correlation. It

is similar to cosine similarity, except each vector property is normalized by the mean

of that vector:

sim(a, u) =

∑
i (ra,i − r̄a)(ru,i − r̄u)√∑

i (ra,i − r̄a)2
√∑

i (ru,i − r̄u)2

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 82

Note that if i goes through every property of the active vector, we refer to this measure

as global similarity. Otherwise, if i goes through some of the properties, we refer to

this measure as local similarity.

The standard approach sorts the matrix according to either of the similarity met-

rics and truncates it down. It uses global similarity to rank matrix dimensions. It is

similar to other methods of selecting input with one notable exception, bidirectional

truncation. Existing approaches compute vector similarity and truncate the matrix

across only one dimension, i.e., either users or items [14, 56, 107]. We truncate both

dimensions. Our approach is slower, but it allows the same input to be used by user

and item-oriented algorithms.

The weighted approach considers some properties of the vector to be more impor-

tant than others. We use item similarities as weights for computing user similarities

and user similarities as weights for computing item similarities. The weighted ap-

proach users existing global similarities as weights [7]. Furthermore, we can use the

cosine similarity or Pearson’s correlation measure to compare vectors with weighted

dimensions. We consider all four possibilities in our case study.

The recursive approach recursively selects the top 30 vectors among users and

items. On the first iteration we compare vectors on all shared properties, i.e., global

similarity. However, with each additional iteration the similarity within one dimension

is based exclusively on the top vectors in the other dimension, i.e., local similarity.

For instance, user similarity is determined only along the top item opinions. Likewise,

item similarity is computed only from the top users’ opinions. We make a new list of

the top 30 vectors with each iteration. The vectors may be chosen based on either

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 83

similarity metric. We consider five different configurations of this approach over two,

three, and four iterations.

5.4 Desired Input Qualities

In this section we make a few observations regarding an algorithm input that usually

results in an accurate recommendation. We derive some observations from the under-

lying assumptions of the KNN approach. Some observations are based on empirical

data from previous research and our own experiments. However, all these observations

are necessary to support the theory behind our recursive input generation algorithm.

5.4.1 Bigger Net Weights Produce More Reliable Results

The concept of collaborative filtering is built on the idea that users who agreed in

the past are likely to agree in the future. As a result, users who agree more tend

to have a bigger influence. Ideally, the opinions are unanimous and every neighbor

has a weight of 1. In the worst case scenario, everyone’s weight is 0, which means

that neighbors have no similar opinions. In reality, the weights are somewhere in the

middle, with no irrelevant vectors, because at least one shared opinion is required to

be considered a neighbor.

Consider a neighborhood of n vectors, where each one has a weight wi ∈ (0, 1].

The net weight of the neighborhood will be
∑n

i=1 wi ∈ (0, n]. Therefore, a good

input generation algorithm should aim to produce a neighborhood with a maximum

net weight, because that is closer to the best case scenario. One way to do that

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 84

is to discard the vectors with the lowest weights. Such vectors do not contribute

enough weight to justify the additional noise they produce. Therefore, it is sometimes

beneficial to ignore certain neighbors, even if their vectors increase the net weight of

a matrix.

Low weights reduce recommendation accuracy. To prove this, consider a user-

oriented KNN recommendation that computes the expected value of a rating r by a

user a on an item i , E [ra,i]. The estimate, Pa,i , is an average of neighbors’ ratings

on the active item, weighted by their respective similarities:

Pa,i = E [ra,i] =

∑
u∈Ui

ru,iw(a, u)∑
u∈Ui

w(a, u)

Note that this formula does not contain the k parameter, i.e., k = 1. It adjusts overly

optimistic/pessimistic estimates and has no effect on the averaging procedure. The

simplified formula also uses raw ratings instead of normalized values. Normalization

reduces the scale of the estimation, with no effect on the recommendation process.

The Mean Squared Error (MSE) of such recommendation is proportional to the

variance of the estimate:

MSE = E (Pa,i − ra,i)
2 = Var(Pa,i) + Bias(Pa,i , ra,i)

2

We assume that bias term is zero or constant, because the KNN algorithm always

produces the same recommendation from the same neighborhood. In other words, this

approach cannot distinguish between two vectors with similarity of 1. Furthermore,

a constant bias may be neutralized with the k term. Therefore, prediction variance

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 85

is a good indicator of recommendation accuracy, i.e., MSE:

MSE = var(Pa,i) = E (P2
a,i)− E (Pa,i)

2

Consider a recommendation based on two neighbors and its variance:

Pa,i =
r1w1 + r2w2

w1 + w2

var(Pa,i) =
r 2
1 w1 + r 2

2 w2

w1 + w2

−
(

r1w1 + r2w2

w1 + w2

)2

After simplifying this equation we get the following:

var(Pa,i) =
r 2
1 w1 + r 2

2 w2

w1 + w2

− r 2
1 w 2

1 + 2r1r2w1w2 + r 2
2 w 2

2

(w1 + w2)2
=

w1w2(r1 − r2)
2

(w1 + w2)2

Taking a partial derivative of the estimation variance with respect to one of the

weights gives us an idea of how the individual weights affect recommendation accu-

racy:

d

dw1

var(Pa,i) = (r1−r2)
2

[
w2

(w1 + w2)2
− 2w1w2

(w1 + w2)3

]
=

(r1 − r2)
2

(w1 + w2)3
[
−w1w2 − w 2

2

]
< 0

The partial derivative with respect to any one weight is going to be negative for any

rating scale, as long as the weights are positive. In other words, the variance will

increase as individual vector similarities become smaller. Likewise, higher weights

produce smaller variance and result in a more accurate recommendation, i.e., smaller

MSE. By induction, the same principle applies to cases with any number of weights.

In other words, we can regroup a set of n weights into two new weights, w ′1 and w ′2:

Pa,i =

n∑
u=1

ru,iw(a, u)

n∑
u=1

w(a, u)

=

n−1∑
u=1

ru,iw(a, u) + rn,iw(a, n)

n−1∑
u=1

w(a, u) + w(a, n)

=
r ′1w ′1 + r ′2w

′
2

w ′1 + w ′2

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 86

Taking a partial derivative with respect to the last weight would also produce a

negative result, thus proving that smaller weights harm recommendation accuracy.

5.4.2 Sorting Before Truncating for Maximum Net Weight

A set of vectors ordered by their influence will always produce a net weight greater

than that of a random sample of neighbors. Consider two cases: a list of sorted

weights S = w ′1,w
′
2,w

′
3, ...,w

′
n such that w ′1 >= w ′2 >= w ′3... >= w ′n−1 >= w ′n and

the same set of weights in no particular order R = w1,w2,w3, ...,wn . Let us choose

the first m elements from both sets and order them in descending order. Then,∑m
i=1 wi <=

∑m
i=1 w ′i because w ′i >= wi for all i . Sorting ensures that after truncation

the neighborhood contains most similar vectors as opposed to a random sample of

them. Without sorting, a matrix may still have a high net weight, but such an

outcome is unlikely.

5.4.3 Global Similarity does not Imply Local Similarity

The standard approach incorrectly assumes that high global similarity guarantees

high local similarity in every domain. For instance, two globally similar vectors may

disagree on a few dimensions. As long as the number of such dimensions is sufficiently

small, the global similarity remains high. However, local similarity according to

these dimensions would conclude them to be less similar. Likewise, one can choose

dimensions from globally dissimilar vectors and get high local similarity.

Consider a case with two vectors of three dimensions, ~a =< 1, 2, 1 > and ~b =<

1, 2, 5 >. The global cosine similarity between these two vectors compares them on

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 87

all three dimensions:

sim(a, b) =
1 ∗ 1 + 2 ∗ 2 + 1 ∗ 5√

12 + 22 + 12
√

12 + 22 + 52
=

10√
6
√

30
= 0.745

However, the local cosine similarity between the same two vectors may be lower or

higher, depending on which dimensions are used. The local similarity between the two

vectors across the first and second dimension is higher than their global similarity:

sim(a, b) =
1 ∗ 1 + 2 ∗ 2√

12 + 22
√

12 + 22
=

5√
5
√

5
= 1

However, the local cosine similarity between the two vectors across the first and third

dimension is lower than their global similarity:

sim(a, b) =
1 ∗ 1 + 1 ∗ 5√

12 + 12
√

12 + 52
=

6√
2
√

26
= 0.48

A neighborhood with a great global similarity net weight does not necessarily have a

great local similarity net weight.

This distinction is important because the KNN algorithm weighs neighbors’ opin-

ions according to the data in the input, not the original dataset. The input matrix

contains just the ratings, so vector similarities must be recomputed. In other words,

the global similarities are lost between the input generation and combination algo-

rithms. Because the input matrix is a truncated version of the original dataset, any

similarities that are computed from it are based on a subset of all shared dimensions.

Therefore, local similarity determines a neighbor’s influence, but since high global

similarity does not guarantee high local similarity, the net weight of an input matrix

is not as high as it could be.

The standard approach produces low local similarity net weights because the

neighbors are not explicitly selected to exhibit high local similarity according to a

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 88

subset of shared dimensions. As a result, the input matrix contains a random sample

of local similarities. Since these weights were not chosen in order of decreasing value,

their sum is not guaranteed to be maximum. In other words, a matrix that has been

sorted only once will not have the maximum local similarity net weight. In order to

guarantee that only the most influential neighbors are considered, the matrix needs

to be resorted. Our recursive approach recomputes local similarity and rearranges

the vectors such that the net weight of the input matrix is maximized. The resulting

neighborhood is closer to the ideal scenario, so the resulting recommendations should

be more trustworthy.

5.4.4 Second Pass Local Similarities are Higher

Since global and local similarities are unrelated, it is possible that comparing two

vectors on fewer dimensions could produce a higher similarity. Consider a case where

we sort the matrix by rows and columns such that the most similar vectors are

positioned closer to the top left corner of the matrix. In this example, the sum of row

Pearson’s correlations decreases with n, if the similarity of columns decreases:

∑ ∑n
i (ra,i − r̄a)(ru,i − r̄u)√∑n

i (ra,i − r̄a)2
√∑n

i (ru,i − r̄u)2
>=

∑ ∑n+1
i (ra,i − r̄a)(ru,i − r̄u)√∑n+1

i (ra,i − r̄a)2
√∑n+1

i (ru,i − r̄u)2

Assuming that dimensions are sorted, considering less similar dimensions will cause

ru,i − r̄u to grow, thus allowing outliers on a neighbor’s rating scale to affect his/hers

similarity. Extreme opinions on different scales are less likely to agree, so the similar-

ity of such vectors would decrease. If this is false, then considering an extra dimension

will result in higher similarity. If that were the case, the additional dimension should

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 89

be considered more similar than the first n, since all rows tend to agree on it. How-

ever, this is impossible because the dimensions are considered in order of decreasing

similarity.

Consider two vectors with two dimensions each, ~a =< a1, a2 > and ~b =< b1, b2 >.

Assuming that their dimensions have been sorted according to their cosine similarity

with the first column, the following inequality is true:

a1a2 + b1b2√
a2
1 + b2

1

√
a2
2 + b2

2

≤ a1a1 + b1b1√
a2
1 + b2

1

√
a2
1 + b2

1

In other words, the first column’s similarity to itself is greater than its similarity with

the second column. By definition, when a vector is compared to itself, its cosine

similarity should be 1. After simplification, we derive the following inequality:

(a1a2 + b1b2)
2 ≤ (a2

1 + b2
1)(a2

2 + b2
2)

2a1a2b1b2 ≤ a2
2b2

1 + a2
1b2

2

Such inequality works for any vector a and b:

0 ≤ a2
2b2

1 − 2a1a2b1b2 + a2
1b2

2 ≤ (a2b1 − a1b2)
2

Taking a square root of both sides, we get:

0 ≤ ±(a2b1 − a1b2)

a1b2 ≤ a2b1

a1b2 ≥ a2b1

The above two inequalities cover the entire number range. Therefore, the original

assumption holds true for any value of a1, a2, b1, b2.

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 90

Given sorted dimensions, we can prove that considering additional dimensions

reduces ~b vector similarity:

a1b1 + a2b2√
a2
1 + a2

2

√
b2
1 + b2

2

≤ a1b1√
a2
1

√
b2
1

In other words, the similarity between vectors a and b will be greater when we compare

them on a single dimension than if we compare them on two dimensions, provided

that dimensions are considered in order of decreasing similarity:

a2
1b2

1 + 2a1a2b1b2 + a2
2b2

2

a2
1b2

1 + a2
2b2

1 + a2
1b2

2 + a2
2b2

2

≤ 1

2a1a2b1b2 ≤ a2
2b2

1 + a2
1b2

2

Furthermore, according to the previous proof, this inequality holds true for any two

vectors. Likewise, comparing higher-dimension vectors would produce similar results.

The individual vector weights may change differently, but their net sum will decrease

as we consider more dimensions with lower similarities.

5.5 Similarity Refinement Simulation

To simulate the recursive input generation algorithm, consider five vectors with five

dimensions < a, b, c, d , e > in Figure 5.7. The net weight of such matrix is 3.56,

where the weight of each row is computed as its Pearson’s correlation to the first row.

The net weights of four truncated versions of this matrix, with one of the dimensions

removed, are as follows: no e = 3.87, no d = 4.08, no c = 3.38, no b = 2.94. Clearly,

considering all dimensions except d produces the biggest net weight, but how does

one know which dimensions reduce the net weight?

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 91

! " # $ %
& ' () &
(&)) &
& ' & & '
' ' (('
& & (& (

Figure 5.7: A Matrix with Five Vectors and Five Dimensions

Let us consider the similarity of each dimension to a: a = 1.00, b = 0.65, c =

0.50, d = 0.35, e = 0.42. The d and e dimensions have the smallest correlations

and removing them increases the net weight. In fact, there is a negative correlation

between the similarity of a dimension and the net weight of a truncated matrix that

does not contain it. Figure 5.8 shows this relationship.

To verify this phenomenon, we examined the local weights of input matrices gen-

erated by the two algorithms on the Netflix dataset. Figures 5.9 and 5.10 show typical

similarities of the first 30 vectors in an item and user-oriented matrix. The first vec-

tor is always the active vector, so its similarity to itself is always 1. However, as we

inspect the similarity of the neighbors, the vectors selected by the recursive algorithm

are consistently more similar. Both graphs demonstrate that the recursive approach

generates higher similarities with greater net weights, which produce more confident

recommendations.

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 92

b	

c	

e	

d	

2.5	

2.7	

2.9	

3.1	

3.3	

3.5	

3.7	

3.9	

4.1	

4.3	

0.3	
 0.35	
 0.4	
 0.45	
 0.5	
 0.55	
 0.6	
 0.65	
 0.7	

Tr
un

ca
te
d	

M
at
rix

	
 N
et
	
 W

ei
gh
t	

Dimension	
 Similarity	

Figure 5.8: Truncated Matrices and Their Net Weights

5.6 The Effects of Input Resorting on Estimation

Accuracy

To further support the benefits of our recursive algorithm, we considered a statistical

justification of this approach. The Rao-Blackwell theorem states that if g(x) is an

estimator for θ, then conditional expectation of g(x) given a sufficient statistic T (x)

is a better estimator of θ and never worse [25]. At its core level, this theorem em-

ploys a well-known relationship between conditional and unconditional variance, i.e.,

var(E (g(x) | T (x))) <= var(E (g(x))) [32]. In practice, averaging over a sufficient

statistic does not lead to an increase of the mean squared error [32], which represents

the accuracy of a recommender system. Therefore, in order to improve the accuracy,

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 93

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1	
 3	
 5	
 7	
 9	
 11	
 13	
 15	
 17	
 19	
 21	
 23	
 25	
 27	
 29	

Ve
ct
or
	
 W

ei
gh
t	

Vector	
 Posi.on	

Standard	
 Recursive	

Figure 5.9: Typical Similarities of the First 30 Vectors in an Item-Oriented Matrix

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1	
 3	
 5	
 7	
 9	
 11	
 13	
 15	
 17	
 19	
 21	
 23	
 25	
 27	
 29	

Ve
ct
or
	
 W

ei
gh
t	

Vector	
 Posi.on	

Standard	
 Recursive	

Figure 5.10: Typical Similarities of the First 30 Vectors in a User-Oriented Matrix

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 94

we should look for estimators which are functions of the sufficient statistic.

A sufficient statistic is a function of data that describes it in such a way that

a sample generated according to this statistic would be as useful as a data sample

for estimating θ [78]. In the context of our input generation algorithm, θ is the

actual rating we are trying to predict and the initial vector similarities represent the

sufficient statistic. The purpose of the sufficient statistic is to capture all of the useful

information necessary for estimating θ, so that the data may be discarded in favor of

the statistic. Our recursive algorithm computes vector similarities on the first pass

and discards the data because we already have all the useful information about it,

i.e., which dimensions are best for predicting this active rating.

The purpose of statistical sufficiency is to ensure that the resulting conditional

expectation is a reliable estimator. If the statistic is not sufficient, the result could

depend on some unknown parameters, which would defeat the purpose of this ap-

proach [117]. A nice property of the sufficient statistic is that its expected value is

equal to θ, yet the statistic may not depend on θ. The first pass of the recursive algo-

rithm is a sufficient statistic for the relevant ratings dataset. Global vector similarities

provide all the information necessary for estimating the active rating. However, they

do not depend on the active rating because it is possible to make two input matrices

with the same global similarities, but different active ratings.

Our algorithm uses global similarities to partition the relevant dataset. It essen-

tially categorizes the matrix dimensions into two groups, the top 30 and everybody

else. Vectors from the first group receive a weight of T (x) = 1 and everyone else re-

ceives a weight of T (x) = 0. In other words, the first pass of the recursive algorithm

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 95

decides which dimensions are the most relevant. Doing so improves the accuracy of an

existing estimator g(x), i.e., a weighted average of known ratings and local similarity

weights.

The existing estimator does not have to be perfect. As we have demonstrated

in section 5.4.3, computing local similarity often leads to different results, depending

on the choice of matrix dimensions. However, combining local similarity with global

similarity partitioning, or Rao-Blackwellisation of g(x), produces a more optimal

estimator.

Relying on either similarity approach individually will not produce accurate esti-

mates, but their combination will. The local similarity weights do not carry all the

information that is useful for estimating θ, but this information is available in the

relevant dataset and is therefore captured by T (x). The global similarity does have

all the information for estimating θ, but it is not an estimator [109]. The conditional

expected value of a rough estimator given a sufficient statistic E (g(x) | T (x)) is an

average of all ratings that have the same value for T (x). This combination reduces

sensitivity to any particular rating and utilizes all useful information in the dataset

because T (x) is a sufficient statistic and its value is fixed throughout the averaging

procedure [48]. Our approach takes advantage of this statistical property by com-

puting local similarity weights according to the dimensions selected by their global

similarity ranking.

CHAPTER 5. IMPROVING THE QUALITY OF RECOMMENDER INPUT 96

5.7 Conclusion

This chapter describes our process for identifying relevant ratings. One of the key

concepts of this approach is the requirement for two neighbors to be similar in some,

but not all domains. We observe this quality in our simulation as well as best-

case scenario considerations for the collaborative filtering approach. Therefore, we

incorporate local similarity measure into our input generation algorithm. In order to

generate a high quality input, we first organize all ratings in a matrix and identify a

few valuable dimensions. We then reorder the matrix according to these dimensions

and truncate it to size. Establishing the important dimensions first reduces random

variability within the data, which gives us a better idea of true user preferences. As

a result, our algorithm can reduce the size and increase the quality of recommender

input.

Chapter 6

A Novel Input Generation Model

Previous chapters presented a theory that explains how our approach could improve

recommendation accuracy. They identified the overall structure of our system, its

components, and connections. Such a high-level view of our system raised the level

of abstraction at which we reasoned about the desired functionality. With no imple-

mentation details to worry about, we focused on other important system properties

like scalability, performance, and adaptability. To achieve them, we used well-known

architecture styles that have recognizable benefits with established implementations.

The architecture we presented earlier is informal for a reason. It is a simple and

intuitive way to characterize our system, without imposing unnecessary restrictions

on how it should work. However, the informal model provides little information

about the actual computations represented by boxes, their interfaces, or the nature

of interactions between them [4]. The lack of such details means that our input

generation component may be implemented in many different ways. In order to

simplify and encourage future development around our input generation component,

97

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 98

we formalize its design.

6.1 Formalism Motivation, Scope, and Goals

In order for the input generation component to achieve its goals, its interfaces must

be consistent, the functions within it must agree on the order of execution, and the

purpose of each function should be explicit [151]. To accomplish this, we develop

a collection of Z schemas that comprise the semantic model of the input generation

component. These simple, compact, and informative models use standard mathemat-

ical notation to document the design of the most important part of our system. They

also form a solid blueprint for future system construction, deployment, and execution.

A formal notation communicates our design decisions without committing to a

particular implementation. The Z schemas highlight each function’s contributions

to the overall component functionality and provide a unique perspective on how the

algorithm works. They suppress implementation details, so we can concentrate on

the analysis and decisions that are most crucial to satisfying the component’s require-

ments [4]. They also make implementation considerably easier because our decisions

and rationale are explicitly documented.

A typical Z specification, called schema, is a named predicate that constrains

some aspect of the application. It consists of two parts that describe the structure

and behavior of the model. The static schemas provide a fixed view of the model [47]

and refine our existing entity-relationship diagrams. The behavior schemas show how

the state of the model changes [47] and refine the existing procedural descriptions.

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 99

Each change is described in terms of preconditions existing before that change and

postconditions that must be true after the change. The following sections describe

our input generation component in terms of structure and behavior specifications.

6.1.1 Static Model Structure

First, we establish the types of variables in our system. We identify every user and

item with a positive integer. This is a compact and convenient way to refer to both

kinds of vectors. Additionally, the generic naming convention allows us to represent

various datasets regardless of their domain. Furthermore, numeric IDs are not related

to other vector properties, which makes them ideal unique identifiers. The following

is a formal definition of the ID and rating types:

ID : N

RATING : N

ID > 0

RATING = 0..5

We require that opinions are expressed as numerical ratings. For this particular

dataset, the ratings must be on a scale from one to five. We reserve the value of zero

for missing ratings that must participate in the similarity computation. However, the

scale may change independently of the rest of the model. In other words, our model

will perform equally well on a dataset with discrete or continuous ratings.

The following definition builds on the previous one and introduces two new con-

cepts. Vector is a collection of ratings identified by dimension IDs. For instance, a

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 100

user vector would be a collection of item ratings. Each rating in such a vector is

related to a particular item ID. Likewise, an item vector is a collection of ratings

identified by user IDs. The sim function compares two vectors by quantifying the

difference among related ratings on a continuous scale from -1 to 1. This restriction

admits cosine similarity range of [0..1], because all ratings are positive, whole num-

bers. It also allows Pearson’s correlation with the range of [-1..1], because normalized

ratings may be negative. We define the vector data type and the sim function as

follows:

VECTOR : ID 7→ RATING

SIM : VECTOR × VECTOR → R

ran SIM = −1..1

a, b : VECTOR | a ∩ b = ∅ ⇔ SIM (a, b) = 0

a : VECTOR | SIM (a, a) = max {ran SIM }

Sim is a total function, which means that it should be able to compute the sim-

ilarity between any two vectors. If the intersection between two vectors is empty,

the similarity must be zero. Likewise, if the similarity between two vectors is zero,

they have no dimensions in common. Also, when a vector is compared to itself, its

similarity must be maximum. This ensures that sorting does not discard the active

vectors, which form a point of reference for further similarity computations.

We plan to store the dataset in a relational database, which is a collection of

relations. Each relation has a rigid structure, which may be viewed as a set of

records. Each record may be decomposed into a set of simple atomic values [47].

Previous schemas established the types of data we work with. The record schema

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 101

uses these data types to establish the structure of our dataset:

RECORD
user id : ID

item id : ID

rating : RATING

The following schema describes the original read-only dataset. It is a set of records

that associate a user-item tuple with a particular rating. Each tuple is unique within

this dataset, so there should be as many unique tuples as there are ratings. A sparse

dataset does not contain a rating for every possible user-item combination, yet each

user and item vector must contain at least one rating. Likewise, every rating in the

dataset must belong to a known user and item. The dataset schema captures all of

these constraints:

dataset
users : P ID

items : P ID

ratings : PRECORD

A : ratings • #(A.user id ,A.item id) = #ratings

u : ID ,A : ratings | ∀ u ∈ users • #{A.user id = u} ≥ 1

i : ID ,A : ratings | ∀ i ∈ items • #{A.item id = i} ≥ 1

r : RECORD | ∀ r ∈ ratings • {r .user id ∈ users} ∧ {r .item id ∈ items}

To ensure reliable experiment results, the input generation algorithm should never

modify the dataset. This way, we can compare the accuracy of different approaches

under the same conditions. Also, the dataset should never be empty. In fact, it

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 102

should represent at least two user and item vectors. Even though it is possible to

make generic recommendations from as little as two vectors and a single rating, such

dataset does not contain enough information to establish vector similarity. Therefore,

we require more data to establish personalized recommendations. Figures 6.1 and 6.2

show the minimum amount of data necessary for our approach. These constraints are

also encoded in the following schema:

Ξdataset
dataset

users ′ = users

items ′ = items

ratings ′ = ratings

#users ≥ 2

#items ≥ 2

#ratings ≥ 3

Our model requires the dataset to contain at least two user vectors, two item

vectors, and three ratings. Such dataset requirements enable the similarity measure,

so we can reason about the relevancy of the available data. In other words, the

similarity measure will be non-zero for some vectors because they are bound to have

common dimensions. For example, the cosine similarity measures the cosine of the

angle between two vectors. Therefore, there must be at least two vectors to compare.

Furthermore, each vector must have more than one dimension, because the angle

between any two scalar values is always zero.

The matrix schema describes the model of the actual recommender input. It is

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 103

xx

U1 U2

I1

Users

Ite
m
s

U1

x

x

I2

I1

Users

Ite
m
sxI1

U1
Users

Ite
m
s

I2 x

x

U1 U2

I1

Users

Ite
m
s

Figure 6.1: Examples of Inappropriate Minimum Datasets

similar to the original dataset in a sense that it keeps track of the users, items, and

their ratings. However, unlike the original read-only dataset, matrices may shrink. In

other words, once the matrix has been initialized, the data within it may be removed.

The matrix also keeps track of the best dimensions, which may not be empty. As

the name implies, best users form a subset of all relevant users and best items form

a subset of all relevant items. Note that best dimensions contain a sequence of IDs,

because the order in which they are removed makes a difference. The matrix structure

is defined in the following schema:

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 104

I2 x

xx

U1 U2

I1

Users

Ite
m
s

Figure 6.2: An Appropriate Minimum Dataset

matrix
users : P ID

items : P ID

ratings : PRECORD

best users : seq ID

best items : seq ID

A : ratings • #(A.user id ,A.item id) = #ratings

u : ID ,A : ratings | ∀ u ∈ users • #{A.user id = u} ≥ 1

i : ID ,A : ratings | ∀ i ∈ items • #{A.item id = i} ≥ 1

r : RECORD | ∀ r ∈ ratings • {r .user id ∈ users} ∧ {r .item id ∈ items}

best users 6= ∅

best items 6= ∅

best users ⊆ users

best items ⊆ items

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 105

6.1.2 Data Access Behavior Specification

When working with little data, the generated input would essentially contain the

entire dataset. However, there are cases when some data is purposefully omitted.

The following schema describes the process of selecting relevant ratings. According

to the previously established architecture, the request must contain two IDs, which

represent the active user ID and active item ID. The output contains a set of users

with a rating on the active item and a set of items with a rating by the active user,

i.e., matrix dimensions. The algorithm should also return all ratings associated with

these matrix dimensions. The following schema specifies the behavior of the first step

of the matrix generation process:

get matrix
Ξdataset

active user id? : ID

active item id? : ID

users ! : P ID

items ! : P ID

ratings ! : PRECORD

users ! = {A : ratings | A.item id = active item id? • A.user id}∪
active user id?

items ! = {A : ratings | A.user id = active user id? • A.item id}∪
active item id?

ratings ! = {A : ratings | A.user id ∈ users ! ∧ A.item id ∈ items !}
⊕{active user id?, active item id?, 0}

The matrix should always contain the active vectors, even if the active rating

is unknown. To ensure this, we include the active user ID in the users list and

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 106

active item ID in the items list. To prevent a known active rating from affecting the

recommendation process that attempts to guess it, we add an extra relation to the

ratings set that overwrites the known rating, if there is one. Note that a value of zero

is reserved for a missing rating. Therefore, we are forcing the system to pretend like

the active rating does not exist.

The following schema describes the initial state of the matrix. It accepts a set of

users, items, and rating records generated from the original dataset. Note that the

best dimensions may not be empty, even in the initial version of the matrix. Therefore,

we initialize the best users and best items lists with every available dimension. This

way, the best dimensions satisfy all matrix requirements:

∆init matrix
matrix

users? : P ID

items? : P ID

ratings? : PRECORD

users ′ = users?

items ′ = items?

ratings ′ = ratings?

best users ′ = users?

best items ′ = items?

6.1.3 Data Processing Behavior Specification

The matrix may change in two ways, sorting or truncation. The purpose of sorting

is to compute the new best dimensions. The sorting process uses the data in the

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 107

matrix to do that, but that data should remain unchanged. This way, any subsequent

sorting procedures will resort the matrix according to the same evidence. Only the

best dimensions can change during the sorting procedure, but their number can never

increase.

The sorting schema requires the active user and item ID, so we can establish

a point of reference for the similarity computation. Note that both active vectors

must be in the best dimensions before the sorting and they must be the first in their

respective lists after the sorting. This requirement ensures that we do not accidentally

remove the active vector IDs:

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 108

sort matrix
matrix

active user id? : ID

active item id? : ID

matrix size? : N

active user id? ∈ best users

active item id? ∈ best items

matrix size? > 0

uv [u : ID] == {A : ratings | A.user id = u ∧ A.item id ∈ best items
• A.item id → A.rating}

iv [i : ID] == {A : ratings | A.item id = i ∧ A.user id ∈ best users
• A.user id → A.rating}

best users ′ = {u : best users , j = 1..#best users − 1 |
SIM (uv [active user id?], uv [u(j)]) ≥
SIM (uv [active user id?], uv [u(j + 1)])}

best items ′ = {i : best items , j = 1..#best items − 1 |
SIM (iv [active item id?], iv [i(j)]) ≥
SIM (iv [active item id?], iv [i(j + 1)])}

#best users ′ ≤ matrix size?

#best items ′ ≤ matrix size?

active user id? = best users ′(1)

active item id? = best items ′(1)

users ′ = users

items ′ = items

ratings ′ = ratings

#best users ′ ≤ #best users

#best items ′ ≤ #best items

All user and item vectors in this matrix should be organized in order of decreas-

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 109

ing similarity to the active vector, according to the best dimensions. The new best

users and items should correctly reflect that ordering. To simplify the specification,

we define two parameterized shortcuts that look up user and item vectors by their

respective IDs. These shortcuts return a portion of the vector, specified by the best

dimensions, which guarantees that we sort the matrix according to the specified di-

mensions. We also reduce the size of the best dimensions according to the matrix size

parameter. Note that matrix size must be any positive number with no upper bound.

If the matrix is already small enough, the best dimensions will not change. This way,

accidentally sorting or resorting a small matrix does not affect it.

Once the matrix has been sorted, we can remove irrelevant data. The purpose of

matrix truncation is to reduce the matrix to its final dimensions, specified by best

users and items. Note that truncation removes irrelevant users, items, and ratings,

but does not introduce any new ones. Also, note that the best dimensions must stay

the same during the truncation process. This behavior is defined as follows:

truncate matrix
matrix

users ′ = best users

items ′ = best items

ratings ′ = {A : ratings | A.user id ∈ best users ∧ A.item id ∈ best items}

users ′ ⊆ users

items ′ ⊆ items

ratings ′ ⊆ ratings

best users ′ = best users

best items ′ = best items

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 110

Since we keep track of users/items and best users/items separately, the best di-

mensions may change as we sort and resort the matrix. However, we do not discard

any data until we are certain about the final shape of the matrix. Therefore, the

truncation procedure should be the last state of the matrix.

To guarantee that the input is generated properly, we establish the correct order

of matrix states. The state transition diagram in Figure 6.3 relates the three main

states of a matrix as we refine the ratings within it. The initial matrix contains all

relevant ratings, which are only sorted if the matrix is large enough. If the matrix is

small, sorting accomplishes nothing because no data is removed. If the matrix is large,

sorting establishes vector relevance, so the least valuable data may be discarded. If

one of the matrix dimensions is small enough, resorting the matrix does not affect

the result because rearranging vector dimensions does not change vector similarities.

In either case, the matrix is truncated to a uniform size as the last step of the input

generation process.

Note that we may want to sort the matrix multiple times. This model of the input

generation component supports such behavior. The constraint on the size of the best

dimensions will cause the algorithm to resort the vectors according to local similarity.

In fact, each subsequent sorting iteration depends on the best dimensions established

during the previous iteration, which is the essence of the recursive input generation

algorithm.

This model can perform standard and recursive sorting, which is a major require-

ment for our case study. Table 6.4 outlines the proper course of action for the initial

matrix of every shape. In case there are not enough ratings, the algorithm does not

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 111

init_matrix

truncate_matrixsort_matrix

sort
#users > 30

OR
#items > 30

no sort
#users <= 30

AND
#items <= 30

resort
#users > 30

AND
#items > 30

truncated
#users <= 30

AND
#items <= 30

done sorting
users' != users

OR
items' != items

Figure 6.3: Matrix State Changes During the Input Generation Process

apply. Fortunately, there are no such matrices in our dataset. If there are less than

30 users and 30 items, we do not sort the matrix. If there are less than 30 users

or items, we sort the matrix only once. Every large matrix should be sorted twice.

This is the only case when our recursive algorithm affects the quality of recommender

input, but it applies to 83% of all recommendations.

A sorted and truncated matrix is ready for combination algorithm consumption.

The matrix may be serialized or formatted in a way that facilitates matrix trans-

portation to the combination algorithms. However, this responsibility is outside of

the scope of the input generation component, which keeps coupling down and en-

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 112

!" "##$% &$%
!" '() '() '()

!"#$%& "##$% '() *+,- ./0,1021
&$% '() ./0,1021 3-452678-

!'&$(&

Figure 6.4: Matrix Shape Effects on Algorithm Selection

courages reuse. The primary concern of this component is the content of the input

matrix. This way, the matrix transportation method can change according to the

overall architecture of a recommender system, without affecting the component that

produced it.

6.2 Static Model Implementation and Analysis

This section presents the implementation details of the data within our input genera-

tion component. We use a relational database to store the dataset and produce input

matrices. These related tasks require two kinds of database schemas. Permanent re-

lations always exist in the database and their only purpose is to store data. Figure 6.5

shows our permanent database schema. Temporary relations are created on-demand

by individual input generation processes. These relations exist only within the con-

text of the executing process and therefore disappear as soon as it stops. Figure 6.6

shows our temporary database schema.

We store the original dataset in the tbl ratings table of three columns: user id,

item id, and rating. This is the largest table in the entire system, because it takes

up over 1.5GB for data and 3GB for index. To speed up vector normalization, we

precompute user and item averages in two dedicated tables, tbl users and tbl items.

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 113

tbl_items
item_id MEDIUMINT(8) P+/-
avg_rating DECIMAL(4,3) N+/-
rating_count MEDIUMINT(8) +/-

tbl_users
user_id MEDIUMINT(8) P+/-
avg_rating DECIMAL(4,3) N+/-
rating_count MEDIUMINT(8) +/-

tbl_recommendations
user_id MEDIUMINT(8) F+/-i
item_id MEDIUMINT(8) F+/-i
rsvd DECIMAL(4,3) N+/-
knn_item DECIMAL(4,3) N+/-
knn_user DECIMAL(4,3) N+/-
nn_item DECIMAL(4,3) N+/-
nn_user DECIMAL(4,3) N+/-

Legend
i Indexed
+/- Unsigned
P Primary Key
F Foreign Key
N Not Null
D Default Value

tbl_matrices
user_id MEDIUMINT(8) F+/-i
item_id MEDIUMINT(8) F+/-i
matrix MEDIUMTEXT D
session INT(10) D+/-

tbl_ratings
user_id MEDIUMINT(8) F+/-i
item_id MEDIUMINT(8) F+/-i
rating TINYINT(1) N+/-

Figure 6.5: Permanent Database Schema

tmp_items_calc
item_id MEDIUMINT(8) FP+/-
length DECIMAL(8,3) N+/-
product DECIMAL(8,3) N

tmp_items_best
item_id MEDIUMINT(8) FP+/-

tmp_users
user_id MEDIUMINT(8) P+/-
rating TINYINT(1) N+/-
similarity DECIMAL(4,3) DN

tmp_users_best
user_id MEDIUMINT(8) FP+/-

tmp_users_calc
user_id MEDIUMINT(8) FP+/-
length DECIMAL(8,3) N+/-
product DECIMAL(8,3) N

tmp_matrix
user_id MEDIUMINT(8) F+/-i
item_id MEDIUMINT(8) F+/-i
rating TINYINT(1) N+/-

Legend
i Indexed
+/- Unsigned
P Primary Key
F Foreign Key
N Not Null
D Default Value

tmp_items
item_id MEDIUMINT(8) P+/-
rating TINYINT(1) N+/-
similarity DECIMAL(4,3) DN

Figure 6.6: Temporary Database Schema

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 114

When making recommendations, combination algorithms request a precomputed ma-

trix from the tbl matrices table and mark it as processed in the session field. The

resulting recommendation is added to the tbl recommendations table under the ap-

propriate field (rsvd, knn item, knn user, nn item, or nn user). Once all recommen-

dations are recorded, we can compute the RMSE of individual combination algorithms

by comparing their guess in tbl recommendations to an actual rating in tbl ratings.

To generate matrices, we populate the user id and item id fields of the tbl matrices

table and launch an instance of the input generation procedure (See Appendix: List-

ing A). Multiple parallel processes can execute this code on the same machine, which

improves scalability. Each simultaneous process uses the session field to reserve a

matrix it is currently making, thus forcing others to avoid it (See Appendix: Listing

B). A finished matrix is cached in the matrix field for future consumption.

Each instance works with both database schemas because some of the dataset must

be copied to the temporary schema and the finished matrix is stored in the permanent

schema. Each instance creates its own copy of the temporary schema (See Appendix:

Listing C). As a result, all instances share the permanent schema, while maintaining

a duplicate of the temporary one. Because the temporary schema only exists within

the session that created it, multiple copies of it could exist independently.

Once the temporary schema is created, an input generation process populates

tmp users with all user ids that rated the active item as well as the actual rating that

was given. A similar process populates tmp items. The similarity field is initialized

to zero because no vectors have been loaded yet. To compute vector similarities, we

first construct a matrix of ratings by populating tmp matrix with all records from

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 115

tbl ratings that contain user id from tmp users and item id from tmp items.

Once we have some ratings in tmp matrix, we can compute the similarity of

every vector inside it. Due to a MySQL limitation, this process has to be done in

two steps, with intermediate results stored in tmp users calc and tmp items calc.

Each instance uses both tables to determine the similarity between the active vector

and its neighbors. Initial sorting is the second slowest step of the process because

tmp matrix could get very large for popular items and involved users. However,

subsequent sorting should be faster because it is based on a subset of all dimensions

captured in tmp users best and tmp items best tables.

We employ a consistent naming convention to identify the shared data. Table 6.1

relates the structure of our formal model and its implementation. Every property is

implemented by a database relation with an appropriate name. We use prefixes to

distinguish between the permanent dataset and temporary matrix implementations.

All permanent relations have a tbl prefix and all temporary relations have a tmp

prefix. This practice ensures that we store all of the necessary data and that we can

easily determine its purpose.

Since our system works with large amounts of data, it is also important to ensure

that our data is properly modeled, implemented, and transmitted. Fortunately, the

structure of our data is simple, so it is easy to verify that we have modeled it correctly

and consistently. The IDs of both users and items are modeled and implemented as

positive integers. All ratings are on a discrete scale from one to five and they are

modeled and implemented as such.

We also formalized a record data type and we implement it the same way in

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 116

Model Implementation

dataset.users tbl users
dataset.items tbl items
dataset.ratings tbl ratings

matrix.users tmp users
matrix.items tmp items
matrix.ratings tmp matrix
matrix.best users tmp users best
matrix.best items tmp items best

Table 6.1: Static Model Structure Consistency

Model Implementation

user id: N, ID>0 @user id MEDIUMINT(8) unsigned NOT NULL
item id: N, ID>0 @item id MEDIUMINT(8) unsigned NOT NULL
rating: N, rating=0..5 @rating TINYINT(1) unsigned NOT NULL

Table 6.2: Record Data Type Consistency

both permanent and temporary schemas. Table 6.2 shows more details on our data

modeling consistency. The medium integer data type provides a sufficient amount

of space to record all IDs. The unsigned property means that only positive numbers

may be recorded. The not null property means that the field is required. In other

words, there may not be any partial records. This implementation mirrors the formal

specification data types.

We also consistently implement our input parameters. Table 6.3 shows the inputs

used in the formal specification and their implementation with the same types. The

active user/item IDs are modeled and implemented with the same type and range as

the data they represent. Therefore, we can address any user/item tuple in the dataset

and produce an input matrix for it.

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 117

Model Implementation

active user id?: N, ID>0 @active user id unsigned MEDIUMINT(8)
active item id?: N, ID>0 @active item id unsigned MEDIUMINT(8)
matrix size?: N, matrix size?>0 @matrix size unsigned TINYINT(3)

Table 6.3: Input Parameter Consistency

6.3 Behavioral Model Implementation and Analy-

sis

Our input generation algorithm is the essence of our research, so its formal specifi-

cation is definitely relevant, especially as a design specification. Even though there

may be other designs and various ways to implement them, we present one possible

solution that matches our model. To verify its correctness, we compare our model to

the final implementation and explain any inconsistencies. We use our formal model

to confirm that the implementation corresponds to earlier plans and that all func-

tions are carried out as planned. In this section, we verify our implementation’s

compatibility, correctness, and completeness.

6.3.1 Compatibility with the Rest of the Architecture

The previous chapters presented the input and output interface requirements for

the input generation component. The input interface requires each recommendation

request to identify a user-item tuple. The get matrix schema models this interface

and a procedure implementing it (See Appendix: Listing D). The output interface

requires the set of ratings corresponding to at most 30 user and 30 items vectors.

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 118

The truncate matrix schema and its implementation satisfy this requirement (See

Appendix: Listing F). In other words, we can be sure that the input generation

component receives and produces data in the correct format and satisfies the interface

requirements imposed by other layers.

There has to be a way to deliver the matrix to the combination algorithms. We

implement a matrix serialization procedure that produces a newline-separated string

of single digit ratings, where zeros represent missing ratings (See Appendix: Listing

G). However, other implementations do not have to rely on this particular format. For

example, one may combine our input generation component with a single combination

algorithm that works on the matrix directly. As long as the surrounding code agrees

on the input generation component interfaces, a recommender system may be built

around it. In fact, our formal specification provides all of the necessary information

for such integration.

6.3.2 Correct Implementation of the Existing Specification

Sometimes the functions implement services with names and interfaces that match,

but behaviors that do not. To make sure each function works as required, our formal

model includes behavioral specification for the input generation component. The

get matrix and init matrix interfaces represent the first two steps of the matrix

generation process. This functionality is implemented with a single procedure called

load matrix (See Appendix: Listing D). It implements the data access task.

The data processing task is modeled by the matrix schema and its two behav-

iors. We implement the matrix sorting behavior in the sort matrix procedure (See

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 119

Appendix: Listing E). It computes vector similarities and keeps track of the best

dimensions, thus implementing step three of the input generation process. The trun-

cate matrix procedure reduces the matrix to its final size and implements the last

step of the input generation algorithm (See Appendix: Listing F).

Our input generation algorithm can adapt to a number of input selection strate-

gies. For example, it may return a matrix with just the relevant ratings, a matrix

that has been sorted only once, i.e., the standard approach, or a matrix that has

been sorted multiple times, i.e., the recursive approach. The way we accomplish

such configuration flexibility is through separation of concerns that distinguish these

approaches. In fact, all three algorithms represent incremental additions of function-

ality. To ensure efficiency, we implement each behavior separately. This section covers

the individual procedure implementations and explains how they satisfy the formal

specification.

Load Matrix Implementation

The get matrix and init matrix schemas identify the read and write operations that

locate the relevant ratings. We implement the write and read functionality with a

single query using the INSERT ... SELECT construct (See Appendix: Listing D).

However, we first truncate the existing tables to make sure that the only data they

contain is the data we explicitly add. As a result, we can guarantee that all data

selected from the dataset will appear in the matrix. Furthermore, this procedure

reads from the dataset and never writes to it, thus satisfying the Ξ dataset schema

requirements.

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 120

The Z and SQL conditions on relevant vectors match. For example, the init matrix

schema specifies a restriction of only those user records that contain the active item

ID:

A : ratings | A.item id = active item id?

We implement it with an identical restriction in the SQL implementation:

1 WHERE item_id=@active_item_id

This query also guarantees that each user has at least one rating associated with

them.

However, the get matrix schema suggest that there may be one exception to this

rule. For example, the active user may not have a rating on the active item, yet the

active user should be in the users list. We use the REPLACE query to accomplish

two things at once, make sure that the active user ID is in the tmp users table and

overwrite the known rating with a zero. Since we cannot remove the user’s record,

we neutralize its rating by giving it a value that will not participate in the similarity

computation:

1 REPLACE INTO tmp_users(user_id , rating) VALUES(@active_user_id , 0);

Note that the matrix is initialized with the best dimensions as all available di-

mensions. We copy all relevant user IDs into tmp users best with the INSERT ...

SELECT statement. This procedure satisfies the matrix schema requirement because

initially the two sets are identical. Furthermore, because we initialize the best dimen-

sions after adding the active vectors to the matrix dimensions, we can be certain that

the active vectors are part of the best dimensions. In other words, our code satisfies

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 121

the following sort matrix schema requirement:

active user id? ∈ best users

Finally, we populate the matrix with relevant ratings. The get matrix schema

specifies them as any rating that belongs to a relevant user and a relevant item:

A : ratings | A.user id ∈ users ! ∧ A.item id ∈ items !

We accomplish this as a dual join of the relevant users and relevant items on the

dataset:

1 FROM tbl_ratings ratings

2 JOIN tmp_items items ON ratings.item_id=items.item_id

3 JOIN tmp_users users ON ratings.user_id=users.user_id

Note that if the active user has rated the active item, their IDs will be in the tmp users

and tmp items respectively, so the matrix will contain the active rating. However,

active vectors record the active rating as missing, so it will not participate in the

similarity computation. Therefore, we can be certain that the integrity of our recom-

mendations has not been compromised.

The way we load the matrix satisfies all conditions of the formal model. The

purpose of the load matrix procedure is to make a smaller version of the original

dataset, so if the dataset satisfies its requirements, a properly selected subset will too.

For example, assuming that the ratings are unique in the original dataset, selecting

a subset of them is going to be unique as well. Also, because we load users and items

first, each selected rating is guaranteed to belong to a known user and item. As a

result, load matrix procedure correctly implements the get matrix and init matrix

schemas.

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 122

Sort Matrix Implementation

The sort matrix procedure contains the logic for deciding whether to sort the matrix

(See Appendix: Listing E). Note that the matrix dimensions are equal to the number

of ratings for the respective active user and active item. For example, if Alice has a

total of 10 ratings and Titanic has a total of 15 ratings, the relevant matrix about her

existing opinion about this movie will be exactly 10x15. The rating count information

is static for this particular dataset, so there is no need to inspect the matrix. In fact,

we can determine whether sorting is necessary just by comparing the precomputed

vector rating counts:

1 IF (relevant_item_count > @matrix_size OR relevant_user_count > @matrix_size) THEN

2 ...

3 IF (relevant_item_count > @matrix_size AND relevant_user_count > @matrix_size)

THEN

4 ...

5 END IF

6 END IF

Note that the outer condition is only true if one or both of the matrix dimensions

are larger than the desired matrix size, which is exactly when the standard approach

applies. If neither dimension is large enough, no sorting occurs and the entire relevant

dataset is returned. The inner condition is only true when both of the dimensions

are greater than the desired matrix size. In that case, the matrix will be sorted one

more time, which corresponds to the recursive approach. As a result, the sort matrix

procedure correctly implements the state diagram.

This procedure relies on the correct implementation of the two similarity measures,

cosine similarity and Pearson’s correlation. The formulas for computing the two types

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 123

of similarity are as follows:

Cosine(a, b) =

∑
i∈a∩b

aibi√∑
i∈a∩b

a2
i

∑
i∈a∩b

b2
i

=
a · b
| a || b |

Pearson(a, b) =

∑
i∈a∩b

(ai − ā)(bi − b̄)√∑
i∈a∩b

(ai − ā)2
∑
i∈a∩b

(bi − b̄)2
=

a ′ · b ′

| a ′ || b ′ |

Note that both similarity measures share the same form, with the only exception

being that Pearson’s correlation formula uses relative ratings instead of the actual

ones.

To eliminate redundant code, we separate the common parts of the two similarity

measures. The compute similarities procedure computes the top and bottom parts

of the fraction, i.e., the dot product and magnitudes of the two vectors. These values

are different for the two similarity measures (See Appendix: Listings H and I). The

save similarities procedure computes the decimal equivalent of the fraction for each

vector, saves their similarities, and updates the best dimensions tables (See Appendix:

Listing J). These operations are the same for both similarity measures.

The cosine implementation uses the following code to figure out the length and

dot product of each neighbor, b, with the active vector, a:

1 SQRT(SUM(POW(b.rating , 2))),

2 SUM(a.rating*b.rating)

Pearson’s correlation uses the same formula, except the ratings are normalized by

that vector’s average rating:

1 SQRT(SUM(POW(b.rating -c.avg_rating , 2))),

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 124

2 SUM((a.rating -active_user_avg_rating)*(b.rating -c.avg_rating))

Both implementations correctly mirror the formula for the magnitude of a neighbor’s

vector as well as its dot product with the active vector.

Note that these computations depend on the amount of shared ratings and are

restricted by the best dimensions. For example, sort matrix schema specifies how

the user vectors should be compared:

uv [u : ID] == {A : ratings | A.user id = u ∧ A.item id ∈ best items}

Our implementation matches the formal specification:

1 FROM tmp_items as a

2 JOIN tmp_items_best as best ON a.item_id=best.item_id

3 JOIN tmp_matrix as b ON a.item_id=b.item_id

4 JOIN tbl_users as c ON b.user_id=c.user_id

5 WHERE a.rating > 0

Here, tmp items represents the active user vector and tmp items best table restricts

which items participate in the comparison. This list is very small, so it is faster to

join it first. However, it is not smaller then tmp items because otherwise there would

be no need for sorting. Then we join the tmp matrix table on the same item IDs to

produce a set of user vectors across their common dimensions.

We also join tbl users so we can use their rating averages. Finally, we restrict the

computation to only positive ratings in this active vector. This restriction explicitly

prevents a known active rating from affecting a neighbor’s similarity. The last two

lines are not necessary for the cosine similarity measure because it does not use vector

averages and a zero rating does not affect the dot product nor vector magnitude.

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 125

Once all components of the similarity fraction have been computed we store and

sort them with the save similarities procedure. It computes the similarity of each

user neighbor according to the following formula, in line with the cosine similarity

and Pearson’s correlation specifications:

1 SET a.similarity=b.product /(active_user_length*b.length)

The purpose of this procedure is to compute the similarity of every neighbor to the

active vector and then record the top vectors as the new best dimensions:

1 INSERT INTO tmp_users_best(user_id)

2 SELECT user_id

3 FROM tmp_users

4 WHERE similarity >0

5 ORDER BY similarity DESC

6 LIMIT ?

Here, the question mark is a placeholder for the @matrix size value. Because we

select the best users from the relevant users the resulting list is guaranteed to be a

subset of the original:

best users ⊆ users

The sort matrix schema also specifies that a limited number of best users must be

chosen according to their decreasing similarity:

{SIM (uv [active user id?], uv [u(j)]) ≥ SIM (uv [active user id?], uv [u(j + 1)])}

#best users ′ ≤ matrix size?

We establish the ordering with the ORDER BY clause and specify the size of the list

with the LIMIT clause. Therefore, this procedure correctly implements the sorting

and dimension reduction properties of our algorithm.

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 126

According to the sort matrix schema, the active user and item IDs must be part

of the matrix before and after the sorting:

active user id? ∈ best users

active user id? = best users ′(1)

The precondition is satisfied by load matrix procedure, which explicitly includes

them. The postcondition is satisfied by the save similarities procedure. By defi-

nition, the cosine similarity and Pearson’s correlation of a vector compared to itself

must be 1, which is the maximum similarity:

w(a, a) =

∑
i∈a

aiai√∑
i∈a

a2
i

√∑
i∈a

a2
i

=

∑
i∈a

a2
i∑

i∈a

a2
i

= 1

Note that because the active vector has the maximum possible similarity, it is guaran-

teed to be the first of the best dimensions, since they are chosen in order of decreasing

similarity. Therefore, we can guarantee that the active vectors will always be part of

the matrix.

Truncate Matrix Implementation

The truncate matrix implementation is a little different than its specification. Instead

of truncating and populating the users and items of the matrix like we have done

before, we delete those IDs that are not in the best dimensions (See Appendix: Listing

F). We keep vector similarities of the final matrix because such information may

be useful for serializing it (See Appendix: Listing G). Finally, we repopulate an

empty matrix with only the best dimensions to satisfy the final matrix requirement.

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 127

Doing so is a faster and more reliable way of loading ratings. The constraints on the

truncate matrix schema and its implementation are identical:

ratings ′ = {A : ratings | A.user id ∈ best users ∧ A.item id ∈ best items}

1 INSERT INTO tmp_matrix(user_id , item_id , rating)

2 SELECT users.user_id , items.item_id , ratings.rating

3 FROM tbl_ratings ratings

4 JOIN tmp_items_best items ON ratings.item_id=items.item_id

5 JOIN tmp_users_best users ON ratings.user_id=users.user_id;

6.3.3 The Rao Blackwell Theorem Implementation

We also correctly implement the Rao Blackwell theorem, i.e., two passes of the sorting

algorithm that establish the sufficient statistic and improved local similarity weights.

Note that load matrix procedure initializes the best dimensions to the initial dimen-

sions of the matrix. In other words, the first iteration of the sort procedure compares

vectors according to all dimensions of the matrix, i.e., global similarity. Also note that

the best dimensions are not modified until after the similarity has been computed,

which means that the best dimensions will be restricted on the second iteration, i.e.,

local similarity.

The same local similarity is used in the combination algorithm, except the com-

bination algorithm computes it from the serialized matrix instead of the database.

However, this local similarity does not depend on just any set of dimensions, but

rather the best dimensions that were chosen according to the their global similarity

ranking. Therefore, we can say that the local similarities of the final matrix have

been conditioned by the global similarity. According to the Rao Blackwell theorem,

CHAPTER 6. A NOVEL INPUT GENERATION MODEL 128

the expected value of the neighbor’s opinions weighted by such local similarities will

be better than the opinions weighted by the local similarities computed across any

other set of common dimensions.

6.4 Conclusion

This chapter presents a more explicit model of the input generation component. We

use the Z notation to describe the model and identify the restrictions that must be met

at each stage of the input generation process. We establish the procedure interfaces,

their internal behavior, and legal interactions. We also address the input, intermediate

results, and output data for our input generation component. The formal model of

the system behavior provides the essential details, enhances our understanding, and

serves as a blueprint for implementation. We also evaluate the quality of our input

generation model and its implementation. We validate the correctness, completeness,

and compatibility of our model to justify the implementation that meets all of our

system requirements.

Chapter 7

Evaluation of Recommendation

Accuracy

In order to research ways to improve recommendation accuracy, we develop a dis-

tributed architecture that allows quick accuracy evaluations with no rework. Our

architecture consists of a single input generation component and multiple combina-

tion algorithms. Previous chapters outlined our input generation component, the

combination algorithms, and dataset properties. This chapter evaluates the benefits

of combination algorithm tuning, data normalization, and input selection. Our goal

is to find out whether the latter practice improves recommendation accuracy more

than the rest.

Our research method is fairly standard across the available literature. First, we

build the framework to import and manage the dataset. Details of our data man-

agement component are described in the previous chapter. We also create routines

to calculate RMSE values for our predictions. Our reasons for choosing this particu-

129

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 130

lar metric are available in the first chapter. Our experiments evaluate recommender

accuracy with this measure and investigate the techniques that minimize it.

The experiments are organized in a particular order. First, we implement differ-

ent combination algorithms and generate standard input recommendations for each

one. We then try different variations of the algorithms and compare the resulting

RMSE values. We tune combination algorithms to maximize their accuracy. Once

tuned algorithms are in place, we evaluate the benefits of data normalization and

recommendation combination/aggregation. Finally, we combine the most accurate

recommender configurations with a set of input generation component implementa-

tions. Each stage of the evaluation procedure introduces only one new method of

improving accuracy so we can easily identify its benefit.

7.1 Evaluation Assumptions

Rating an item on a numerical scale is an enormous simplification of a complex human

phenomenon. However, for the purposes of this research, we assume that each rating

is an accurate indication of the user’s true opinion about an item. In other words,

if a person rated one item as five stars and another as four stars, we assume he/she

liked the first item more. Even though each rating is highly personal and could

be determined by a myriad of related stimuli, we assume that the ratings may be

accurately determined by a community of similar users who have rated similar items.

Our analysis of the dataset shows one user who submitted 17,653 ratings, which

is 47 votes short of rating every single movie in the dataset. These votes are unlikely

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 131

to be the actual opinion of a single person. It is probably a base approximation of

the Netflix recommender. However, for the purposes of this research we assume that

this user profile is completely legitimate. We also assume that all ratings are real,

i.e., submitted by actual people. Likewise, we assume that rating patterns and biases

are the result of user preferences and are not influenced by other aspects, e.g., user

interface. Therefore, we assume that the dataset is an accurate representation of the

actual user opinions.

7.2 Accuracy Goals

To establish a point of reference for our experiments, we examine some of the well-

known results from the Netflix website, www.netflixprize.com. It lists the typical

prediction errors of many trivial recommendation approaches that suggest the same

rating for every item. For instance, recommending a four star rating for each movie

is the most accurate (RMSE = 1.1748), because each recommendation is close to the

overall average rating of 3.6 stars. Likewise, recommending 3.6 stars for everyone

gives an even smaller error of 1.1287. This value may be reduced further by recom-

mending the movie or user average for each movie and user request. This results in a

typical error of 1.0533 for an average movie and 1.0651 for an average user approach.

In general, any recommender that is consistently off by one or more units is consid-

ered inferior. These figures establish the lowest accuracy threshold below which the

recommendations are no longer useful.

However, the highest accuracy threshold is still largely unknown. Thousands of

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 132

contestants spent years trying to reduce a typical error of their recommender on

the Netflix dataset. On July 26th, 2009 a team named “BellKor’s Pragmatic Chaos”

reached a previously impossible RMSE value of 0.8567. The authors of the winning al-

gorithm published three papers detailing their approach [81,127,160]. Their work has

motivated our research by showing that a significant improvement in recommendation

accuracy is possible on large and sparse datasets. We believe that recommendation

accuracy can be improved even further. We try to get closer to the lowest possible

error, dictated by the unpredictable human nature.

7.3 Combination Algorithm Tuning Effects on Rec-

ommendation Accuracy

Studies of Web usability show that user satisfaction depends on the service latency.

Ideally the recommendation is generated in under one second, which would result

in a truly interactive user experience [137]. However, this kind of performance is

difficult to achieve. Therefore, we do not consider configurations that take over five

seconds to produce a single recommendation, because they are too slow for practical

purposes [105]. In fact, we precompute input matrices to produce quick recommen-

dations with consistent latency, because each algorithm consumes small matrices of

fixed size.

To tune combination algorithms, we repeatedly produced 1,000 random recom-

mendations with different parameters. For this experiment we used the cosine stan-

dard input generation approach with a 30 × 30 truncation. In other words, each

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 133

matrix contains at most 30 users and items as determined by the standard cosine

similarity. Previous work suggests using no more than 30 neighbors when making a

recommendation. Our experiments confirm that a neighborhood of this size produces

the most accurate suggestions.

We use three different combination algorithms in our recommender system proto-

type: K Nearest Neighbors (KNN), Robust Singular Value Decomposition (RSVD),

and Neural Network (NN). The KNN and NN methods have two subtypes, user-based

and item-based [95,164]. The subtype of a method depends on how the input matrix

is interpreted. By default, rows in a matrix represent item vectors. However, rows

represent user vectors in a transposed matrix. Therefore, if the recommendation was

done on the original matrix, we refer to an algorithm as item-based and if the matrix

was rotated, we call it user-based. The RSVD algorithm does not have any subtypes

because its purpose is to estimate the entire matrix, with no distinction between rows

and columns. Therefore, we compare the root mean squared errors of five algorithms:

RSVD, KNN-Item, KNN-User, NN-Item, and NN-User. The results help us formulate

and justify final algorithm configurations.

7.3.1 Robust Singular Value Decomposition Recommender

Model

The RSVD algorithm approximates an incomplete matrix of ratings from data within

it. It locates a set of numbers within two composite matrices, the product of which

produces an estimate that most closely resembles the set of known ratings. Unknown

ratings are estimated within the same matrix. We tuned three parameters within this

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 134

approach: the learning rate, the number of features, and the number of iterations.

The number of iterations represents how many times the approximation will be

recalculated. Since cells of a matrix are adjusted to reduce the approximation error

with each iteration, a large number of iterations is not efficient, unless the learning

rate is sufficiently small. The learning rate controls how fast the cells of the approxi-

mated matrix change. It also affects how many iterations are necessary to complete

a satisfactory estimate. If the learning rate is large, the estimation is fast, but it is

more likely to get out of local minima on the approximation error surface. A large

learning rate will dramatically change the estimates, thus jumping around the esti-

mation error surface. If the learning rate is small, the estimation is slow, but it is

more likely to converge. Therefore, gradually decreasing the learning rate is often

required to achieve continuously improving estimates. We consider this adjustment

in one of the following experiments.

The number of features affects the dimensions of two composite matrices. More

features improve accuracy because they provide more space for estimating rating

patterns. In fact, some authors have successfully predicted the entire Netflix dataset

in a single RSVD estimate with over 96 features [121]. However, we cannot set the

number of features too high because such a model would take too long to train. Since

our combination algorithms reside in a browser, we do not have the computational

resources to train that many features. Therefore, we have to reduce the number of

features to achieve appropriate performance.

We start with a static learning rate to find out the most optimal number of

features and cycles. In general, a small learning rate and a large number of iterations

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 135

is necessary to achieve the best estimate. We test this claim with a 0.02 learning rate.

Figure 7.1 shows that the best estimate contained only two features over 10 cycles

(RMSE = 0.9785). Our RSVD algorithm estimates small matrices with at most 900

cells, so it does not require a large number of features or learning cycles. Considering

a higher number of features and cycles did not produce interactive results. This

configuration approximates the rating matrix quickly, and the small learning rate

helps the algorithm converge to an accurate estimate.

10 50 100 200
Features 1 0.9837 0.9845 0.9845 0.9845

2 0.9785 1.0212 1.0265 1.0235
3 0.9842 1.0861 1.1389 1.1970
4 0.9907 1.1518 1.3335 1.4015
5 1.0062 1.1896 1.3337 1.5773

Cycles

Figure 7.1: RSVD Features and Cycles Tuning

Our next experiment identified the most optimal learning rate and confirmed that

only 10 iterations are sufficient to approximate a matrix. We considered six different

configurations of the RSVD algorithm with one and two features over 10, 25, and

50 learning cycles, because these configurations showed the most promising results

in the previous experiment. Figure 7.2 shows that an RSVD configuration with two

features over 10 cycles and a 0.01 static learning rate produces the lowest error (RMSE

= 0.9688).

Our previous experiments only used a static learning rate, but reducing the learn-

ing rate with each cycle could produce better results. A large learning rate covers

a greater number of close estimates and a small learning rate can find the closest of

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 136

1x10 1x25 1x50 2x10 2x25 2x50
Static 0.01 0.9726 0.9712 0.9715 0.9688 0.9713 1.0047

Learning Rate 0.02 0.9842 0.9840 0.9844 0.9801 1.0171 1.0248
0.03 0.9997 1.0006 1.0006 1.0536 1.0422 1.0256
0.04 1.0185 1.0192 1.0193 1.0483 1.0385 1.0271

Features x Cycles

Figure 7.2: RSVD Static Learning Rate Tuning

each one. For the final experiment we considered eight different configurations that

performed best in the previous experiment. Figure 7.3 illustrates the relative benefit

of progressively reducing the learning rate. The results show that the best configura-

tion involves two features over 25 cycles with 0.01 initial learning rate reduced by 15%

with each cycle (RMSE = 0.9657). However, our final RSVD configuration includes

one feature over 25 cycles with a 0.02 initial learning rate reduced by 25% with each

cycle (RMSE = 0.9660). We chose a different set of parameters as our final RSVD

combination algorithm because it produces faster results with comparable accuracy.

1x10x0.02 1x25x0.02 2x10x0.01 2x25x0.01 2x10x0.02 2x25x0.02
0% 0.9842 0.9840 0.9688 0.9713 0.9801 1.0171

Learning Rate 5% 0.9716 0.9713 0.9683 0.9689 0.9694 0.9894
Reduction % 10% 0.9698 0.9676 0.9713 0.9667 0.9691 0.9688

15% 0.9681 0.9671 0.9762 0.9657 0.9696 0.9661
20% 0.9710 0.9677 1.0027 0.9687 0.9703 0.9677
25% 0.9764 0.9660 1.0059 0.9670 0.9704 0.9658

Features x Cycles x Learning Rate

Figure 7.3: RSVD Learning Rate Reduction Tuning

7.3.2 K Nearest Neighbors Recommender Method

The KNN algorithm produces recommendations as a weighted average of neighbors’

ratings. It has only two parameters, K and N. K adjusts extremely optimistic/pes-

simistic estimates and N limits the number of neighbors to consider. A greater number

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 137

of neighbors does not necessarily improve accuracy. In fact, the recommended number

of neighbors is 30 [142]. We tested two subtypes of the KNN algorithm and recorded

RMSE scores of each approach in Figures 7.4 and 7.5.

0.5 0.625 0.75 0.875 1 1.5
N 10 0.9719 0.9680 0.9681 0.9725 0.9833 1.0523
20 0.9686 0.9620 0.9591 0.9593 0.9634 1.0126
30 0.9685 0.9617 0.9587 0.9574 0.9603 1.0035

K

Figure 7.4: KNN-Item Tuning

0.5 0.625 0.75 0.875 1 1.5
N 10 1.0228 1.0069 0.9942 0.9851 0.9795 0.9934
20 1.0184 1.0017 0.9873 0.9762 0.9685 0.9725
30 1.0195 1.0019 0.9874 0.9760 0.9680 0.9696

K

Figure 7.5: KNN-User Tuning

As expected, both subtypes produce their lowest errors at N=30. Therefore, it is

not necessary to control N, but rather process the entire matrix. The KNN-User needs

no adjustment, with K = 1 (RMSE = 0.9680). However, the KNN-Item approach

will naturally produce recommendations that are too optimistic, so we set K = 0.875

(RMSE = 0.9574).

Consistent with previously reported results, the KNN-Item is more accurate than

the KNN-User approach because item vectors usually have more ratings than user

vectors. Therefore, vector averages, which are used in KNN algorithms, will be more

accurate for item-based approaches. Furthermore, the KNN-Item approach is the

best of all five algorithms we consider. This proves that a combination algorithm

does not need to be complex to be accurate.

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 138

7.3.3 Neural Network Recommender Model

The NN approach predicts unknown ratings by classifying a vector into one of the

previously learned patterns. Both subtypes of this approach have a standard architec-

ture, with an optional hidden layer, five binary output nodes, and a variable number

of input nodes. Five binary nodes are required to represent a single rating on a scale

from one to five. We examine effects of three tuning parameters: the number of nodes

in a hidden layer (0 meaning no hidden layer), the number of training cycles, and the

learning rate.

The number of input nodes depends on the amount of input vectors. For instance,

when creating a network for a matrix with 10 rows and 20 columns, 95 binary input

nodes would be created (five for each of the 19 inputs). Once the network is con-

structed, it would receive 9 training cases and expected responses. Once the network

was trained, it would accept an active vector as input and produce a recommendation

by exciting the output node associated with the recommended rating.

Ideally, only one output node would light up in a trained network. However, when

the network could not reliably classify the active vector, multiple output nodes lit up,

some brighter than others. In such cases, we can reach a decision by choosing the

brightest node and ignoring the rest, or by taking a weighted average of all output

nodes. Because our experiments show that a weighted average decision produced

recommendations that were 20% more accurate, the following experiments use this

type of conclusion.

Our first experiment identified the most appropriate learning rate and amount of

training cycles. Figure 7.6 shows that the NN-Item works best with 0.1 learning rate

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 139

at 50 training cycles (RMSE = 1.024) and Figure 7.7 demonstrates that the NN-User

should be used with the same learning rate but 30 training cycles (RMSE = 1.012).

Note that the NN-User consistently produces better recommendations than the NN-

Item, which is the opposite in the KNN approach. This is because a typical movie

has hundreds of viewers, so there are usually many user vectors in a matrix, i.e., more

training cases. On the other hand, a typical user has seen fewer movies, so there are

not enough item vectors to sufficiently train the network.

Our next experiment isolated the benefit of having a hidden layer in a neural

network. Figures 7.8 and 7.9 show the RMSE results of the two types of NN algorithms

with 10 nodes in the hidden layer. Adding 15 or more nodes in the hidden layer

produced results that were too slow. The NN-Item works best with 0.1 learning rate

at 40 training cycles (RMSE = 1.062), which is actually worse than the previous

configuration with no hidden nodes. The NN-User should be used with the same

learning rate, but 40 training cycles (RMSE = 0.987). In fact, additional hidden

nodes in the NN-User increased training time, but caused a significant improvement

in the recommendation quality.

Finally, we consider the effects of reducing the learning rate with each training

cycle. Figures 7.10 and 7.11 show that there is no benefit to reducing the learning rate

for either type of NN. The final configuration for the NN-Item algorithm includes no

hidden nodes with a 0.1 static learning rate over 50 iterations. The final configuration

for the NN-User algorithm includes 10 hidden nodes with a 0.1 static learning rate

over 40 iterations.

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 140

20 30 40 50 60
Static 0.05 1.049 1.035 1.036 1.030 1.033

Learning Rate 0.10 1.042 1.042 1.027 1.024 1.035
0.20 1.043 1.031 1.044 1.029 1.032
0.30 1.035 1.048 1.029 1.034 1.033
0.40 1.040 1.046 1.036 1.042 1.036

Cycles

Figure 7.6: NN-Item with No Hidden Nodes Tuning

20 30 40 50 60
Static 0.05 1.017 1.037 1.031 1.041 1.0339

Learning Rate 0.10 1.024 1.012 1.030 1.030 1.0232
0.20 1.031 1.029 1.028 1.027 1.0267
0.30 1.016 1.025 1.019 1.037 1.0275
0.40 1.023 1.041 1.045 1.031 1.0153

Cycles

Figure 7.7: NN-User with No Hidden Nodes Tuning

30 40 50
Static 0.10 1.078 1.062 1.068

Learning Rate 0.20 1.071 1.074 1.092
0.30 1.078 1.094 1.086

Cycles

Figure 7.8: NN-Item with 10 Hidden Nodes Tuning

20 30 40 50
Static 0.05 1.010 1.011 1.001 0.999

Learning Rate 0.10 1.001 0.994 0.987 1.001
0.20 0.993 1.014 1.037 1.028
0.30 1.016 1.049 1.065 1.048

Cycles

Figure 7.9: NN-User with 10 Hidden Nodes Tuning

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 141

7.4 Input/Output Tuning Effects on Recommen-

dation Accuracy

Data normalization can make vectors more similar and reduce recommendation er-

rors. In order to compensate for the different ways users rate movies, we normalize

ratings in a matrix by vector average. Results in Figure 7.12 show that normalizing

the data by item average produces more accurate results because item averages are

usually better predictors [13]. However, normalized matrices produce less accurate

recommendations than the original ones. This could be because the KNN approach

already has data normalization functionality and RSVD fails to accurately estimate a

matrix with small values. Figure 7.12 does not contain Neural Network recommenders

because they are designed to receive a matrix of discreet values so normalized ratings

could not be accepted.

Another way to normalize the matrix is to preprocess it with the RSVD algorithm.

Because the RSVD model can estimate multiple missing ratings at the same time,

it is often used to normalize input data for other recommenders [23]. Figure 7.13

shows that preprocessing the input matrix makes recommendations worse for every

algorithm. This could be because preprocessed matrices no longer represent actual

user ratings, but rather an estimate of those ratings. The matrices are less sparse, so

each algorithm has more available data. However, the lack of actual ratings makes it

difficult for any algorithm to accurately model rating patterns.

To ensure that each algorithm produces a recommendation that falls within the

rating scale, we adjust the outputs that are less than one and greater than five on

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 142

0x50x0.1 0x50x0.2 0x40x0.3 0x40x0.1 10x40x0.1
0% 1.024 1.029 1.029 1.027 1.062

Learning Rate 5% 1.028 1.040 1.037 1.028 1.056
Reduction % 10% 1.053 1.030 1.026 1.060 1.081

15% 1.069 1.045 1.034 1.058 1.084
20% 1.082 1.035 1.029 1.084 1.089
25% 1.127 1.061 1.046 1.128 1.096

Hidden Nodes x Cycles x Learning Rate

Figure 7.10: NN-Item Learning Rate Reduction Tuning

0x30x0.1 0x30x0.2 10x40x0.1 10x40x0.2 10x20x0.2
0% 1.012 1.029 0.987 1.037 0.993

Learning Rate 5% 1.028 1.028 1.011 0.992 0.994
Reduction % 10% 1.030 1.026 1.029 1.007 0.998

15% 1.078 1.027 1.031 1.009 1.008
20% 1.092 1.046 1.042 1.013 1.016
25% 1.135 1.062 1.061 1.017 1.019

Hidden Nodes x Cycles x Learning Rate

Figure 7.11: NN-User Learning Rate Reduction Tuning

RSVD KNN-Item KNN-User
No Normalization 0.9659 0.9575 0.9679
Active User Average 1.1941 1.2865 1.3056
Active Item Average 1.1530 1.2527 1.3005

Figure 7.12: Rating Normalization Benefit

RSVD KNN-Item KNN-User NN-Item NN-User
No RSVD 0.9685 0.9575 0.9679 1.0405 1.0010

RSVD 0.9878 0.9620 0.9651 1.2996 1.2996

Figure 7.13: RSVD Preprocessing Benefit

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 143

a one to five scale. Figure 7.14 shows that the KNN algorithm is the only one that

does not benefit from this, because its recommendations fall within the rating scale

by design. For other algorithms, 80% of the time a recommendation that is outside

the rating scale is accurate when capped. In the remaining 20%, the over-confident

recommendation is wrong, so adjusting it actually reduces the recommendation error.

RSVD KNN-Item KNN-User NN-Item NN-User
Uncapped 0.968 0.958 0.968 1.049 0.995
Capped [1..5] 0.966 0.957 0.968 1.016 0.993

Figure 7.14: Recommendation Cap Benefit

Recommender systems often provide a discrete recommendation on a discrete rat-

ing scale. To accomplish this, we test recommendation rounding benefits. Figure 7.15

shows that, similar to the previously published research [29], rounding off recommen-

dations hurts prediction accuracy. The error is especially high for the NN approach

because rounding decreases the benefit of a weighted average conclusion used in this

algorithm.

Rounding Threshold RSVD KNN-Item KNN-User NN-Item NN-User
None 0.9685 0.9575 0.9679 1.0150 0.9952
0.1 0.9872 0.9763 0.9978 1.0550 0.9997
0.2 0.9906 0.9768 0.9988 1.0587 1.0032
0.3 0.9927 0.9770 1.0004 1.0789 1.0160
0.4 0.9963 0.9859 1.0034 1.0563 1.0311
0.5 1.0095 0.9967 1.0161 1.0770 1.0394

Figure 7.15: Recommendation Rounding Benefit

Our experiments show that KNN-Item approach is better than KNN-User. This

reflects the conclusion by Sarwar et al., who showed that item-oriented collaborative

filtering recommendations are more accurate [142]. Bell and Koren also support this

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 144

claim with their extensive work on the Netflix dataset [13, 81]. The authors report

a RMSE value of 0.9157 for user-oriented and 0.9086 for item-oriented methods.

Most importantly, they suggest that the two methods are not mutually exclusive

and are expected to produce better results when combined together. In fact, the

authors report a slight decrease in RMSE value to 0.9030 by taking a very simple

combination of the two suggestions with static weights [13]. Furthermore, Bell and

Koren suggest that a more sophisticated combination algorithm could potentially

produce even better results.

We test this hypothesis and record the results in Figure 7.16. The upper section

contains individual algorithm RMSE scores. The lower section contains the RMSE

scores of the minimum, maximum, median, and mean of the five available suggestions.

Averaging all recommendations produces the best results, but it is less accurate than

the individual KNN-Item predictions.

RMSE
RSVD 0.982
KNN-Item 0.963
KNN-User 0.973
NN-Item 1.058
NN-User 0.998
MIN 1.053
MAX 1.052
MEDIAN 0.989
MEAN 0.976

Figure 7.16: Recommendation Aggregation Benefit

We also consider every possible pair of recommender combinations in Figure 7.17.

The KNN-Item and KNN-User algorithms make the best pair, but they are less

accurate than the individual KNN-Item predictions. However, combining KNN-Item

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 145

and NN-User with 4.555 and 0.78 coefficients, produces an RMSE of 0.9614, which is

the best score thus far. Similar to previous research [14,56,107], combining item and

user information has shown better quality recommendations.

RMSE
KNNI-KNNU 0.9669
KNNI-NNI 0.9881
KNNI-NNU 0.9678
KNNI-RSVD 0.9692
KNNU-NNI 0.9928
KNNU-NNU 0.9686
KNNU-RSVD 0.9748
NNI-NNU 0.9986
NNI-RSVD 0.9984
NNU-RSVD 0.9737

Figure 7.17: Recommendation Combination Benefit

In order to form a baseline of the range of the achievable accuracy, we manually

choose the best combination algorithm for 1,000 recommendations. If we somehow

know the best algorithm for each recommendation, we can reach an RMSE of 0.761.

Choosing among the minimum, average, and maximum of five recommenders produces

an RMSE of 0.763. Choosing the best between the minimum and the maximum of the

five recommendations produces an RMSE of 0.770. These assumptions show us great

potential for recommendation accuracy. However, there is no correlation between

the minimum/maximum recommendation and the errors they produce. Furthermore,

different algorithms may be considered best under similar circumstances, so there is

no reliable way to reach these RMSE scores.

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 146

7.5 Input Data Selection Effects on Recommenda-

tion Accuracy

Previous sections demonstrate that even though some combination algorithms are

better than others, tuning them has little effect on recommendation accuracy. We

believe that the substance of input data affects recommendation accuracy the most.

Therefore, our final solution does not include rating normalization or RSVD prepro-

cessing, but we restrict the recommendation value to the rating scale without rounding

it. This section shows how the choice of an input matrix generation algorithm affects

recommendation accuracy.

To improve recommendation performance, we consider some faster alternatives to

generating the input rating matrix. For example, instead of calculating the similarity

of vectors across the entire matrix and then choosing the most similar ones, we pick

the first 30 vectors with the most ratings. We can also select 30 vectors with the most

similar rating counts and the most similar average rating. These methods are faster

than the standard approach because they include less similarity computations, which

is the second slowest step of the matrix generation process. Figure 7.18 shows that

none of them produce better results.

RSVD KNN-Item KNN-User NN-Item NN-User
Standard Approach 0.967 0.957 0.968 1.040 0.997

Highest Rating Count 1.134 1.138 1.140 1.151 1.199
Similar Rating Count 1.690 1.018 1.074 1.237 1.085

Closest Average Rating 1.478 1.024 1.040 1.110 1.042

Figure 7.18: Faster Methods of Selecting Recommender Input

To improve recommendation accuracy, we considered three alternatives to the

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 147

standard similarity method. Figure 7.19 shows that using Pearson’s correlation is

considerably better than using cosine similarity. Also, weighting properties did not

improve recommendation accuracy. However, the Pearson’s Recursive approach sig-

nificantly reduced the RMSE score for all recommenders. In fact, reselecting top

vectors according to their local similarity was more accurate for both similarity met-

rics. Finally, anything over two iterations of the Pearson’s Recursive algorithm did

not improve accuracy.

Method RSVD KNN-Item KNN-User NN-Item NN-User
Cosine Standard 1.291 1.301 1.305 1.344 1.317

Pearson's Standard 0.867 0.786 0.826 1.144 0.868

Pearson's - Pearson's Weighted 1.805 1.318 1.319 1.384 1.372
Pearson's - Cosine Weighted 1.787 1.306 1.306 1.362 1.365
Cosine - Pearson's Weighted 1.806 1.314 1.310 1.369 1.363
Cosine - Cosine Weighted 1.805 1.326 1.321 1.384 1.372

Cosine Recursive (2) 0.923 0.980 0.945 1.164 0.998
Cosine Recursive (3) 0.985 0.975 0.989 1.177 1.008

Pearson's Recursive (2) 0.665 0.423 0.465 1.010 0.611
Pearson's Recursive (3) 0.762 0.465 0.528 0.949 0.623
Pearson's Recursive (4) 0.722 0.456 0.519 0.938 0.600

Figure 7.19: More Accurate Methods of Selecting Recommender Input

7.6 Recommendation Accuracy of the Final Pro-

totype Configuration

Our final recommender system chooses its ratings according to two passes of the

Pearson’s Recursive method. The first pass computes global similarities across user

and item vectors. It also records the top 30 most similar users and items. This is

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 148

equivalent of establishing a list of expert users and most informative items [37]. The

second pass recalculates local user and item similarities, but only according to the

top items/users established in the first pass. The final input matrix contains the

most relevant ratings provided by the best users on the best items. The list below

summarizes the final configuration options of our recommender system prototype.

1. RSVD: [features=1, cycles=25, learning rate=0.02, learning rate reduction=0.25]

2. KNN-Item: [K=0.875]

3. KNN-User: [K=1]

4. NN-Item: [hidden nodes=0, training cycles=50, learning rate=0.1]

5. NN-User: [hidden nodes=10, training cycles=40, learning rate=0.1]

To ensure the trustworthiness of our prototype, we performed multiple experi-

ments with 1,000, 10,000, and 50,000 recommendations. Figure 7.20 shows the RMSE

scores of each experiment. The results demonstrate that more recommendations raise

a typical error slightly. However, these results also show the effectiveness of our ap-

proach on increasingly larger samples of the dataset.

Rating Count RSVD KNN-Item KNN-User NN-Item NN-User
1k 0.6342 0.4054 0.4239 0.7079 0.6150

10k 0.6817 0.4470 0.4537 0.7782 0.6352
50k 0.6719 0.4105 0.4281 0.7466 0.6096

Figure 7.20: Recommendation Accuracy of the Final Prototype Configuration

CHAPTER 7. EVALUATION OF RECOMMENDATION ACCURACY 149

7.7 Conclusion

This chapter outlines our experiments and demonstrates the tuning process of our

recommender system prototype. We perform focused observations that isolate vari-

ous parameters over a wide range of possible values. For each experiment we analyze

the results and chose the most accurate and responsive algorithm configuration. In

some cases, we choose a less accurate configuration because it produced faster results

at a negligible accuracy loss. Our experiments on multiple subsets of the Netflix

Quiz dataset show excellent recommendation accuracy with the Pearson’s Recursive

approach. These results support our hypothesis that relevant data improves recom-

mendation accuracy more than combination algorithm tuning.

Chapter 8

Conclusions and Future Work

The amount of online content has been continuously increasing over the past decade.

As a result, users spend much more effort accessing the information they need. For

example email management is a common task, where most of the messages are often

irrelevant. Recommender systems were first introduced in the mail filtering context as

a tool that helped users identify only the most relevant messages without reading each

one. Since then, recommender systems evolved into more sophisticated algorithms

that are now applied to virtually every information domain available.

The increasing popularity and growth of the World Wide Web provided the two

things that make recommender systems necessary: a large catalog of content and

a community of users willing to share their opinions. Therefore, now is the time

to research recommender systems. The information they require is widely available

and there is a great need for their services. Recommender systems are particularly

useful for e-commerce applications, where customers benefit from personal shopping

assistance and stores increase sales.

150

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 151

8.1 Summary

Recent research shows that it is possible to make accurate recommendations from

content analysis, user behavior interpretation, and collaborative filtering techniques.

We focus this research on the latter approach. However, the main obstacle in making

such recommendations is the size and sparsity of modern datasets. It takes a long

time to thoroughly analyze large amounts of data, so recommendation accuracy is

often sacrificed to improve performance. Additionally, sparse datasets contain little

usable information and establish unreliable evidence for making recommendations.

Therefore, the challenge is to find a way to make accurate suggestions from sparse

datasets regardless of their size.

One company that takes this challenge seriously is Netflix, a DVD rental website.

In 2006, Netflix published some of its movie rating data and challenged the data min-

ing community to produce a set of recommendations within a small error threshold.

The winning algorithm would have to consistently predict actual user ratings within

a 0.8572 margin on a scale from one to five. The Netflix Prize challenge became

popular, and thousands of participants from major research institutions all over the

world submitted their work.

We attempt to produce accurate recommendations on the Netflix dataset, one of

the biggest and most sparse datasets available. This particular dataset is notoriously

difficult, as many approaches fail to consistently predict its data within a small margin

of error. However, the domain is very common and almost everyone can relate to and

appreciate the quality of movie recommendations. Finally, major recommendation

accuracy improvements have a real-life application in the Netflix system, so thousands

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 152

of customers may enjoy a more personalized DVD renting experience.

We started this research in the winter of 2008 before a significant improvement

on the Netflix dataset was achieved. Previously, careful tuning of various statistics,

machine learning, and information retrieval techniques provided the initial progress

in the Netflix Prize challenge. On July 26th, 2009, the team named “BellKor’s Prag-

matic Chaos” reached the lowest error value of 0.8567.

We researched many successful solutions like this one and attempted to improve

them. However, unlike existing approaches that focused on clever ways of combining

input ratings, we looked for ways to select a better input. In August 2010, our

prototype successfully predicted a set of 50,000 randomly chosen ratings with a typical

error of 0.4105. Our method is considerably slower, but it offers better accuracy than

the currently leading approach. We document our path to a low recommendation

error in this dissertation.

8.2 Conclusion

Before we propose a new way to make accurate recommendations, we research the

background and motivation for recommender systems. They fill an important niche

in our everyday lives, much of which are spent online. Instead of manually inspecting

gigabytes of online content, we often rely on recommender systems to simplify the

information overload problem and act as an advisor, suggesting only the most rele-

vant data. We trace the evolution of recommender systems from simple aggregation

functions to personalized suggestions and identify the ways this may be achieved, be

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 153

it through explicit recommendations by your peers, information inferred from your

own behavior, or item content analysis.

We focus our research on collaborative filtering recommendations because they

most closely resemble the natural “word-of-mouth” suggestions. This approach ap-

plies to any kind of data and has milder limitations. In fact, all disadvantages of the

collaborative filtering approach are related to dataset sparsity, which forms the basis

of our research. Our goal is to develop an accurate collaborative filtering solution

for sparse datasets that may not be supplemented with external data, implicit user

feedback, or content analysis. This is one of the most common and most difficult

problems in recommender system research today.

In order to produce recommendations from arbitrarily large datasets, we propose

an architecture that can asynchronously generate recommender input. It consists of

a single input generation and multiple combination algorithms. Our prototype can

generate inputs once and use them multiple times, thus addressing the performance

problem of memory-based collaborative filtering. Additionally, because we have a

dedicated component for generating recommender input, our prototype can accom-

modate many datasets with various structure. Our architecture provides improved

performance, modifiability, and scalability. However, it may not support certain

resource-intensive combination algorithms.

Such limitation is acceptable because the accuracy of our system comes from the

input data and not the combination algorithm. We research available collaborative

filtering approaches and implement three popular methods: Robust Singular Value

Decomposition, K Nearest Neighbors, and Neural Network. We choose these algo-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 154

rithms because they are simple and fast. Since these algorithms reside on a client

side, which is within a browser application that has limited processing abilities, speed

and simplicity are crucial.

We inspect the accuracy of different recommender configurations and choose the

best set of parameters for our experiments. Once tuned recommender algorithms

are in place, we perform initial measurements on standard input matrices, i.e., in-

put generated according to global similarity, the way other researchers have done it.

Unfortunately, even the best approach is typically within 0.9574 of an actual rating.

This supports our hypothesis that algorithm tuning has little to do with recommenda-

tion accuracy. However, our hypothesis also states that good input data can produce

accurate suggestions, regardless of the algorithm used.

We believe that a small number of relevant ratings is sufficient to make an accurate

recommendation. Such ratings may be chosen with local similarity, instead of a more

traditional global similarity. This metric requires two neighbors to be similar in

some, but not all domains. It relaxes similarity constraints, so more data becomes

available. It also establishes more pertinent evidence for vector similarity, so that

selected ratings are more relevant. To test this claim we develop an algorithm that

organizes ratings in matrices sorted by user/item similarities.

The main purpose of our input generation approach is to produce small and dense

input matrices. It selects relevant vectors according to various similarity measures.

One of them relies on relative ratings or opinions normalized by that vector’s mean

rating. The experiments show that relative ratings produce better results because

similar vectors contain matching opinions more often. We also experiment with re-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 155

cursively resorting the input matrix, since local similarities of users and items are

mutually dependent. The experiments show that just two rounds of similarity com-

putations produce the best results. This process of generating the matrix is slow,

because a large number of ratings must be retrieved, compared, and sorted multiple

times. However, the resulting recommendation accuracy justifies the performance

drawback.

The benefits of local similarity are the basis for our input generation algorithm.

To determine the effectiveness of our hypothesis, we perform an empirical evaluation

of three combination algorithms paired with our input generation component. The

results show that tuning recommender algorithms has little effect on recommendation

accuracy. However, all algorithms produce better results when supplied with more

relevant input. Our prototype shows excellent recommendation accuracy on a number

of random samples from the Netflix dataset. These results support our hypothesis that

relevant data improves recommendation accuracy more than combination algorithm

tuning.

8.3 Limitations of the Study

Recommender systems can model as well as shape user preferences. People often value

recommended items more than they would otherwise, simply because items were sug-

gested. Sundar, Oeldorf-Hirsch, and Xu refer to this phenomenon as the bandwagon

effect, e.g., “if others think that something is good, then I should, too” [154, 155].

Furthermore, Cosley et al. empirically demonstrate that user ratings are biased in

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 156

the direction of presented recommendation [41]. The authors discover that users tend

to rate toward a recommendation whether it is accurate or not, e.g., rating a rec-

ommended movie as four stars, even though you would normally give it three stars.

In fact, users have an inherent trust towards recommender systems [63]. We focus

on the accuracy of recommendations, regardless of the content or intended purpose

of suggestions. However, future research into the use and abuse [88, 135, 137] of the

recommender system influence would be very interesting.

User privacy is also often abused. Privacy is especially relevant for domains where

users express opinions on controversial topics, e.g., politics, religion, and relation-

ships. Moreover, people also have the right to prevent their less passionate opinions

from becoming widely known. In November 2010, Google settled a $8.5 million law-

suit against its news recommender system. This system helped Gmail users share

updates, pictures, and videos with other Gmail accounts. However, sharing prefer-

ences automatically included most often used contacts without the owner’s explicit

permission. This feature was meant to enhance user experience but instead threat-

ened their privacy. As a result, ignoring privacy considerations turned out to be a

costly mistake.

To protect themselves, some recommender systems employ user pseudonyms or

cryptographic techniques that encrypt data [20, 99, 131]. However, even when these

provisions are in place, it is possible to uniquely identify different users simply by

capturing a few of their votes [111]. This issue has motivated further research on

improving privacy in existing recommender systems [30, 31, 85, 105, 128, 172]. This

particular project does not involve privacy considerations, because Netflix protects

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 157

users’ identities with arbitrary numeric IDs within its dataset.

Recommender systems need to know users’ preferences to operate. This informa-

tion is not abundantly available, but there are always customers willing to share their

explicit opinion, e.g., rating a restaurant on a five-star scale. Some recommender

systems also use implicit user opinions, or data inferred from user behavior, e.g., the

most often visited restaurant is probably a favorite [26]. These estimates can rein-

force the recommendation model, which leads to better suggestions [12,63]. However,

using implicit feedback invades user privacy since the users did not explicitly provide

that information. Our prototype only considers explicit user opinions, but future

research into making effective conclusions from both types of user feedback would be

interesting.

Although our research is built around predicting explicit opinions, our work could

also be beneficial for Top-N recommenders, or systems that estimate a ranking of

items. The focus of such systems is not to recommend the best possible item, but to

predict a set of items that fit well together [44, 75, 83, 142]. For example, omitting a

good song from a music playlist has little effect on user experience, yet recommend-

ing a list of great songs can be considered a poor recommendation if they do not

complement each other. With systems like Pandora Radio gaining popularity, Top-N

recommender research is interesting, but we focus on making individual recommen-

dations because they have more applications across a wider range of domains.

The quality of individual recommendations is often characterized by the prediction

error, yet reducing this error has little effect on improving the overall quality of the

system. Observing and surveying the users of a system would be a much better way

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 158

to evaluate its quality because a set of completely useless recommendations may be

accurate [65]. For example, paper towels and trash bags are popular items in any

grocery store because customers often need them, and a recommender system that

suggests these obvious items does not provide any value to the customers. Since we

have no access to the users, we are limited to offline analysis of the prediction error,

i.e., we can only verify the presence of existing preferences [99]. However, considering

the popularity of Netflix, we could put together a test group of actual users in the

future.

8.4 Future Work

We plan to extend our research in two distinct directions, serendipitous recommenda-

tions and recommendation explanations. These two attributes contribute to customer

satisfaction as much as recommendation accuracy. However, unlike recommendation

accuracy, there are less limitations to how effective they can be. These research prob-

lems may be difficult to solve, but they would be instantly recognized and appreciated

by the users. In fact, serendipitous recommendations and recommendation explana-

tions are both recurring topics at the ACM Conference on Recommender Systems.

Ability to make serendipitous recommendations is one of the reasons we focused

our research on the collaborative filtering recommender systems. Recommendation

novelty and serendipity directly affect user satisfaction [63]. Therefore, in addition to

calculating the likelihood that a user will enjoy an item, a good recommender system

will suggest items that are novel and serendipitous. Serendipitous recommendations

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 159

allow a user to appreciate the content that they might not have otherwise discov-

ered [17, 63]. However, the challenge with making such recommendations is that by

definition serendipitous suggestions have no evidence to support their existence.

Accurate and surprisingly interesting recommendations may be entertaining to a

casual user, but they may not inspire trust from a highly invested user. Recommen-

dation explanations clarify suggestions and build the user’s trust with the system [62].

Both of these qualities positively affect user satisfaction. This is particularly evident

in recommender systems where the cost of a bad recommendation is significant, e.g.,

purchasing a worthless piece of real estate as opposed to renting a boring movie. In

fact, serendipitous recommendations improve user satisfaction only if the cost of a bad

suggestion is negligible. However, as the user’s investment becomes more substan-

tial, the novelty of the recommended item becomes secondary to the recommendation

accuracy [63]. Therefore, any future research must balance the recommendation ac-

curacy and novelty in order to pleasantly surprise users with useful and accurate

recommendations.

When receiving serendipitous recommendations, a user may be curious as to why

the recommender system would make these suggestions. Recommendation explana-

tions reveal such reasoning, which may not be obvious. The user can then judge the

trustworthiness of a suggestion and make an informed decision. For example, if there

is not enough information about the active user and the recommendation is based

on a global average, he/she should be made aware of that fact. This way, the user

is informed and not discouraged when the first few recommendations turn out to be

poor [13,63]. Our future research will help recommender systems justify their sugges-

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 160

tions so that users are satisfied and aware of the reasons why such recommendations

were made.

Finally, we would like to improve the performance of our recommender system

design. A major disadvantage of our current prototype is the recommendation speed

of about 400 suggestions per hour. Fortunately, the architecture allows us to pre-

process the input data, thus making the user interface more responsive. However,

we would like to generate the same recommendations interactively without sacrific-

ing the quality. To achieve this, we plan to research cloud computing, clustered

database implementations, and different hardware configurations that may improve

recommendation performance.

In particular, Amazon Elastic Compute Cloud Web service provides a cost effec-

tive way to interactively produce recommendations with our prototype. For instance,

High-CPU or Cluster Compute instances provide vast processing ability with in-

creased network performance. They are well suited for high performance computing

applications like ours. Furthermore, the auto scaling feature automatically adjusts

the number of computing instances depending on the amount of incoming requests

and the elastic load balancing feature automatically distributes incoming traffic across

multiple computing instances. Amazon’s service is ideal for our future prototype im-

plementation because it provides high performance along with the elasticity, flexibility,

and cost advantages.

Recommender system research is a relatively new field and there are plenty of

unresolved problems within it. Nevertheless, it already encompasses a large amount

of research on a variety of recommendation approaches. We focus on collaborative

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 161

filtering recommendations and outline some of our most prominent research aspira-

tions. However, applying recommender systems to more abstract domains could lead

to even more interesting questions. For instance, a healthcare organization, called

Heritage Provider Network, recently announced a $3 million challenge to predict the

likelihood of an individual’s future hospitalization. A successful solution could im-

prove patient lives and support the economy. Therefore, our present and future work

is relevant and applicable to many non-trivial applications. –

Appendix: Source Code

162

Appendix A

Input Generation Procedure

The input generation procedure requests the next available user/item tuple, produces

an input matrix for it, and marks it as done. It uses get next tuple procedure to

reserve a tuple and then calls the necessary procedures. It first creates the temporary

database schema, then loads the relevant ratings, sorts the matrix, truncates it, and

saves it. This process may also mark all tuples as available with the reset flag option.

Multiple instances of this procedure may execute simultaneously, because the

permanent database schema is used for reading only. There are no time-consuming

writes, so multiple instances may search the dataset at the same time. Likewise,

simultaneous processes write to temporary schema instances that exists only within

their respective sessions, so there is no competition for the write access to a shared

resource. The only such resource is the tbl matrices table, which gets accessed with

infrequent (every 1-3 seconds), lightweight (single digit) updates of the matrix status.

Any possible delay due to a read/write lockout on this table is negligible relative to

the overall component latency.

163

APPENDIX A. INPUT GENERATION PROCEDURE 164

Listing A.1: Input Generation Procedure – make matrices.sh
1 #!/ bin/bash

2

3 # make matrices for all user -item tuples in tbl_matrices

4 # session field stores the state of a matrix making process

5 # matrix states: 0 - no matrix , 1 - in progress , 2 - done

6 # usage ./ make_matrices .sh reset_flag

7

8 DB_NAME="morozosl"

9 DONE_FLAG =0

10

11 if ["$1" = "reset"]

12 then

13 mysql $DB_NAME -e "UPDATE tbl_matrices SET session =0"

14 fi

15

16 while [$DONE_FLAG -eq 0]

17 do

18 # ask for the next user -item tuple

19 output=‘mysql $DB_NAME -Ne "SELECT get_next_tuple ()"‘

20

21 # set internal field separator and separate user -item tuple

22 IFS="_"

23 declare -a tuple=($output)

24

25 if [‘echo "${tuple [0]}" | grep "^[0 -9]\+$"‘]

26 then

27 if [‘echo ${tuple [1]} | grep "^[0 -9]\+$"‘]

28 then

29 # make one matrix with user_id = ${tuple [0]} , item_id = ${tuple [1]}

30 sql="

31 # enable large (5GB) memory tables

32 SET max_heap_table_size = 5368709120;

33 SET tmp_table_size = 5368709120;

34

35 # set session variables

36 SET @active_user_id = ${tuple [0]};

37 SET @active_item_id = ${tuple [1]};

38 SET @matrix_size = 30;

39

40 CALL create_tmp_tables ();

41 CALL load_matrix ();

42 CALL sort_matrix ();

43 CALL truncate_matrix ();

44 CALL save_matrix ();

45 "

46 #echo $sql

47

48 mysql $DB_NAME -Ne "$sql"

49 else

50 DONE_FLAG =1

51 fi

52 else

53 DONE_FLAG =1

54 fi

55 done

Appendix B

Matrix Reservation Function

The matrix reservation procedure selects a single unprocessed user/item tuple and

marks it with the connection ID. Every database connection has an ID that is unique

among currently connected clients. Therefore, there should be only one tuple with

such a mark. The function then saves the selected user and item IDs, removes the

mark to ensure next tuple marked with this connection ID will be unique, and returns

the reserved user/item IDs as an underscore-separated string. We use session variables

so that this function may be executed manually. This way, we can “step through”

the matrix generation process for debugging purposes.

165

APPENDIX B. MATRIX RESERVATION FUNCTION 166

Listing B.1: Matrix Reservation Function – get next tuple.sql
1 FUNCTION get_next_tuple () RETURNS varchar (17)

2 BEGIN

3

4 # matrix states: 0 - no matrix , 1 - in progress , 2 - done

5

6 # mark one available tuple with this connection id

7 UPDATE tbl_matrices

8 SET session=CONNECTION_ID ()

9 WHERE session =0

10 LIMIT 1;

11

12

13 # get the user and item ids

14 SELECT user_id , item_id

15 INTO @active_user_id , @active_item_id

16 FROM tbl_matrices

17 WHERE session=CONNECTION_ID ();

18

19

20 # mark the tuple as reserved

21 UPDATE tbl_matrices

22 SET session =1

23 WHERE session=CONNECTION_ID ();

24

25 RETURN CONCAT(@active_user_id , ’_’, @active_item_id);

26

27 END

Appendix C

Matrix Setup Procedure

The setup process creates a temporary database schema. The schema consists of

seven relations, three user-related, three item-related, and one matrix relation. The

user-related relations use user id as the primary key. Likewise, item-related relations

rely on item id as a way to uniquely identify records. The matrix relation does

not need a primary key because we never search for a particular rating. Instead, it

contains two indices, because we usually search for a set of ratings that belong to a

particular user or item vector.

We store these tables in memory, because this storage engine provides the fastest

data access. We also declare the tables as temporary, which means they exist only

within the context of the active database session. In fact, multiple database ses-

sions running this procedure will create individual copies of the temporary schema.

As a result, each matrix generation process can refer to different data by the same

name. This practice enforces naming consistency and reduces the complexity of our

recommender system.

167

APPENDIX C. MATRIX SETUP PROCEDURE 168

Listing C.1: Matrix Setup Procedure – setup matrix.sql
1 PROCEDURE create_tmp_tables ()

2 BEGIN

3

4 # similarity and product could be negative

5

6 CREATE TEMPORARY TABLE tmp_items (

7 item_id mediumint (8) unsigned NOT NULL ,

8 rating tinyint (1) unsigned NOT NULL ,

9 similarity decimal (4,3) NOT NULL default ’0.000’,

10 PRIMARY KEY (item_id)

11) ENGINE=MEMORY DEFAULT CHARSET=latin1;

12

13 CREATE TEMPORARY TABLE tmp_items_best (

14 item_id mediumint (8) unsigned NOT NULL ,

15 PRIMARY KEY (item_id)

16) ENGINE=MEMORY DEFAULT CHARSET=latin1;

17

18 CREATE TEMPORARY TABLE tmp_items_calc (

19 item_id mediumint (8) unsigned NOT NULL ,

20 length decimal (8,3) unsigned NOT NULL ,

21 product decimal (8,3) NOT NULL ,

22 PRIMARY KEY (item_id)

23) ENGINE=MEMORY DEFAULT CHARSET=latin1;

24

25 CREATE TEMPORARY TABLE tmp_matrix (

26 user_id mediumint (8) unsigned NOT NULL ,

27 item_id mediumint (8) unsigned NOT NULL ,

28 rating tinyint (1) unsigned NOT NULL ,

29 KEY user_id (user_id),

30 KEY item_id (item_id)

31) ENGINE=MEMORY DEFAULT CHARSET=latin1;

32

33 CREATE TEMPORARY TABLE tmp_users (

34 user_id mediumint (8) unsigned NOT NULL ,

35 rating tinyint (1) unsigned NOT NULL ,

36 similarity decimal (4,3) NOT NULL default ’0.000’,

37 PRIMARY KEY (user_id)

38) ENGINE=MEMORY DEFAULT CHARSET=latin1;

39

40 CREATE TEMPORARY TABLE tmp_users_best (

41 user_id mediumint (8) unsigned NOT NULL ,

42 PRIMARY KEY (user_id)

43) ENGINE=MEMORY DEFAULT CHARSET=latin1;

44

45 CREATE TEMPORARY TABLE tmp_users_calc (

46 user_id mediumint (8) unsigned NOT NULL ,

47 length decimal (8,3) unsigned NOT NULL ,

48 product decimal (8,3) NOT NULL ,

49 PRIMARY KEY (user_id)

50) ENGINE=MEMORY DEFAULT CHARSET=latin1;

51

52 END

Appendix D

Load Matrix Procedure

Load matrix procedure creates the initial matrix with all potentially relevant ratings.

First, it determines a list of all users who rated the active item in tmp users and a

list of all items rated by the active user in tmp items. These lists also form the initial

best dimensions of the matrix. Finally, this process populates tmp matrix with all

ratings associated with relevant users in tmp users and relevant items in tmp items.

Note that tmp items table represents the active user vector and tmp users table

represents the active item vector. We ensure that the active user is part of the active

item vector, but replace its rating, if there is one. The same applies to the active user

vector. The two active vectors form a point of reference for the sorting procedure.

Note that both vectors contain the active rating, but because it is zero, it does not

participate in similarity computations. Therefore, even if tmp matrix contains the

active rating, it does not affect the contents of the matrix.

169

APPENDIX D. LOAD MATRIX PROCEDURE 170

Listing D.1: Load Matrix Procedure – load matrix.sql
1 PROCEDURE load_matrix ()

2 BEGIN

3

4 # populate tmp_users and tmp_items

5 TRUNCATE tmp_users;

6

7 INSERT INTO tmp_users(user_id , rating)

8 SELECT user_id , rating

9 FROM tbl_ratings

10 WHERE item_id=@active_item_id;

11

12 TRUNCATE tmp_items;

13

14 INSERT INTO tmp_items(item_id , rating)

15 SELECT item_id , rating

16 FROM tbl_ratings

17 WHERE user_id=@active_user_id;

18

19

20 # guarantee a record for active user and active item

21 REPLACE INTO tmp_users(user_id , rating) VALUES(@active_user_id , 0);

22 REPLACE INTO tmp_items(item_id , rating) VALUES(@active_item_id , 0);

23

24

25 # initially all vectors are considered best

26 TRUNCATE tmp_users_best;

27

28 INSERT INTO tmp_users_best(user_id)

29 SELECT user_id

30 FROM tmp_users;

31

32 TRUNCATE tmp_items_best;

33

34 INSERT INTO tmp_items_best(item_id)

35 SELECT item_id

36 FROM tmp_items;

37

38

39 # populate tmp_matrix with ALL relevant ratings

40 TRUNCATE tmp_matrix;

41

42 # smaller table (items) should go first

43 INSERT INTO tmp_matrix(user_id , item_id , rating)

44 SELECT users.user_id , items.item_id , ratings.rating

45 FROM tbl_ratings ratings

46 JOIN tmp_items items ON ratings.item_id=items.item_id

47 JOIN tmp_users users ON ratings.user_id=users.user_id;

48

49 END

Appendix E

Sort Matrix Procedure

The sort procedure computes vector similarities and keeps track of the best vectors in

dedicated tables. It calls two sub-procedures, compute similarities and save similarities,

to perform this task. Furthermore, this procedure determines if resorting is necessary

for this particular matrix shape. We precompute users’ and items’ rating counts to

improve performance. Sorting and resorting may not be required for small matrices.

In such cases, this procedure may choose to skip one or both sorting cycles.

171

APPENDIX E. SORT MATRIX PROCEDURE 172

Listing E.1: Sort Matrix Procedure – sort matrix.sql
1 PROCEDURE sort_matrix ()

2 BEGIN

3

4 DECLARE relevant_item_count MEDIUMINT (8);

5 DECLARE relevant_user_count MEDIUMINT (8);

6

7 # save rating counts for active vectos

8 SELECT rating_count

9 INTO relevant_item_count

10 FROM tbl_users

11 WHERE user_id=@active_user_id;

12

13 SELECT rating_count

14 INTO relevant_user_count

15 FROM tbl_items

16 WHERE item_id=@active_item_id;

17

18

19 IF (relevant_item_count > @matrix_size OR relevant_user_count > @matrix_size) THEN

20

21 # sort the matrix for the first time (global similarity)

22 CALL compute_similarities ();

23 CALL save_similarities ();

24

25 IF (relevant_item_count > @matrix_size AND relevant_user_count > @matrix_size)

THEN

26

27 # sort the matrix one more time (local similarity)

28 CALL compute_similarities ();

29 CALL save_similarities ();

30

31 END IF;

32

33 END IF;

34

35 END

Appendix F

Truncate Matrix Procedure

Truncate procedure reduces the matrix to its final dimensions. It removes all users

and items that are not listed in tmp users best and tmp items best respectively.

The resulting matrix is considerably smaller and consists of the most relevant data.

Note that it is faster to truncate the matrix and repopulate it then to delete irrelevant

ratings that make up most of the matrix. However, matrix truncation is only necessary

for serialization. In some production systems, truncation could be omitted in favor of

performance. For instance, the KNN approach could generate recommendations as a

weighted average of the ratings in tmp users or tmp items. This method does not

require a matrix, but it does need vector similarities. Therefore, some recommender

systems may discard the matrix as soon as it has been sorted.

173

APPENDIX F. TRUNCATE MATRIX PROCEDURE 174

Listing F.1: Truncate Matrix Procedure – truncate matrix.sql
1 PROCEDURE truncate_matrix ()

2 BEGIN

3

4 # delete all but the best users

5 DELETE tmp_users

6 FROM tmp_users

7 LEFT JOIN tmp_users_best

8 ON tmp_users.user_id=tmp_users_best.user_id

9 WHERE tmp_users_best.user_id IS NULL;

10

11 # delete all but the best items

12 DELETE tmp_items

13 FROM tmp_items

14 LEFT JOIN tmp_items_best

15 ON tmp_items.item_id=tmp_items_best.item_id

16 WHERE tmp_items_best.item_id IS NULL;

17

18

19 # repopulate tmp_matrix , with BEST relevant ratings

20 # this is faster than deleting non -relevant rows

21 TRUNCATE tmp_matrix;

22

23 # smaller table (items) should go first

24 INSERT INTO tmp_matrix(user_id , item_id , rating)

25 SELECT users.user_id , items.item_id , ratings.rating

26 FROM tbl_ratings ratings

27 JOIN tmp_items_best items ON ratings.item_id=items.item_id

28 JOIN tmp_users_best users ON ratings.user_id=users.user_id;

29

30 END

Appendix G

Save Matrix Procedure

Save matrix procedure accomplishes two things, it marks the matrix as done in

tbl matrices and saves its contents as a newline-delimited set of item ratings, where

missing ratings are replaced with a zero. Note that row/column sorting is not neces-

sary, but it does help us verify that the active user and item vectors represent the first

column and row in a serialized matrix. In a production system, caching the matrix

may not be necessary, as recommendations may be generated from tmp matrix di-

rectly. However, for the purposes of our empirical study, precomputed and serialized

input matrices prevent redundant processing.

175

APPENDIX G. SAVE MATRIX PROCEDURE 176

Listing G.1: Save Matrix Procedure – save matrix.sql
1 PROCEDURE save_matrix ()

2 BEGIN

3

4 # mark the matrix as done and save its contents

5 # matrix states: 0 - no matrix , 1 - in progress , 2 - done

6 # record ITEM vectors in order of decreasing similarity

7 # replace missing ratings with 0

8

9 UPDATE tbl_matrices

10 SET session=2,

11 matrix=

12 (

13 SELECT GROUP_CONCAT(line SEPARATOR "\n")

14 FROM (

15 SELECT GROUP_CONCAT(

16 IF(matrix.rating IS NULL , 0, matrix.rating)

17 ORDER BY users.similarity DESC

18 SEPARATOR ’’

19) as line

20 FROM tmp_users as users

21 JOIN tmp_items as items

22 LEFT JOIN tmp_matrix as matrix

23 ON users.user_id=matrix.user_id

24 AND items.item_id=matrix.item_id

25 GROUP BY items.item_id

26 ORDER BY items.similarity DESC

27) as a

28)

29 WHERE user_id=@active_user_id

30 AND item_id=@active_item_id;

31

32 END

Appendix H

Cosine Similarity Procedure

The cosine similarity implementation of the compute similarities procedure computes

the dot product and vector length of every neighbor and the active vector. For every

user vector, we take each rating and multiply it by a corresponding rating on the

same item by the active user. The sum of such products constitutes the dot product

of the two vectors. This quantity may then be divided by the two vector magnitudes

to arrive at the cosine of the angle between them.

Note that this procedure only computes the two components of the cosine simi-

larity, but not the measure itself. We do so because Pearson’s correlation uses a very

similar structure. To avoid redundancy, we separate the common functionality into

a separate procedure, save similarities. Also, vector comparison is restricted to the

best common dimensions. For example, two users are compared only across their

opinions on items listed in tmp items best. Likewise, items are compared only across

the best users.

177

APPENDIX H. COSINE SIMILARITY PROCEDURE 178

Listing H.1: Cosine Similarity Procedure – compute similarities.sql
1 PROCEDURE compute_similarities ()

2 BEGIN

3

4 # compute length and product from raw ratings

5 # we can not update tmp_users and tmp_items directly

6 # because update statements can not have a "group by" clause

7

8 TRUNCATE tmp_users_calc;

9

10 INSERT INTO tmp_users_calc(user_id , length , product)

11 SELECT b.user_id ,

12 SQRT(SUM(POW(b.rating , 2))),

13 SUM(a.rating*b.rating)

14 FROM tmp_items as a

15 JOIN tmp_items_best as best ON a.item_id=best.item_id

16 JOIN tmp_matrix as b ON a.item_id=b.item_id

17 GROUP BY b.user_id;

18

19 TRUNCATE tmp_items_calc;

20

21 INSERT INTO tmp_items_calc(item_id , length , product)

22 SELECT b.item_id ,

23 SQRT(SUM(POW(b.rating , 2))),

24 SUM(a.rating*b.rating)

25 FROM tmp_users as a

26 JOIN tmp_users_best as best ON a.user_id=best.user_id

27 JOIN tmp_matrix as b ON a.user_id=b.user_id

28 GROUP BY b.item_id;

29

30 END

Appendix I

Pearson’s Correlation Procedure

The Pearson’s correlation implementation of the compute similarities procedure also

computes the dot product and vector length of every neighbor and the active vector.

It is identical to cosine similarity in every way, except the ratings are normalized by

the vector average. Instead of using raw ratings, this procedure uses their deviations

from the average rating. We precompute users’ and items’ average ratings to improve

performance.

Note that even though original ratings are positive, their deviations from the

mean may be negative. For example, a person rating a movie as three stars, when

they typically rate movies as four stars, will result in a 3 − 4 = −1 normalized

rating. Negative ratings may produce negative similarities, which is why we model

the similarity field as a signed decimal in tmp users and tmp items (See Appendix:

Listing C)

179

APPENDIX I. PEARSON’S CORRELATION PROCEDURE 180

Listing I.1: Pearson’s Correlation Procedure – compute similarities.sql
1 PROCEDURE compute_similarities ()

2 BEGIN

3

4 DECLARE active_user_avg_rating DECIMAL (4,3);

5 DECLARE active_item_avg_rating DECIMAL (4,3);

6

7 # save average ratings for active vectos

8 SELECT avg_rating

9 INTO active_user_avg_rating

10 FROM tbl_users

11 WHERE user_id=@active_user_id;

12

13 SELECT avg_rating

14 INTO active_item_avg_rating

15 FROM tbl_items

16 WHERE item_id=@active_item_id;

17

18

19 # compute length and product from normalized ratings

20 # we can not update tmp_users and tmp_items directly

21 # because update statements can not have a "group by" clause

22

23 TRUNCATE tmp_users_calc;

24

25 INSERT INTO tmp_users_calc(user_id , length , product)

26 SELECT b.user_id ,

27 SQRT(SUM(POW(b.rating -c.avg_rating , 2))),

28 SUM((a.rating -active_user_avg_rating)*(b.rating -c.avg_rating))

29 FROM tmp_items as a

30 JOIN tmp_items_best as best ON a.item_id=best.item_id

31 JOIN tmp_matrix as b ON a.item_id=b.item_id

32 JOIN tbl_users as c ON b.user_id=c.user_id

33 WHERE a.rating > 0

34 GROUP BY b.user_id;

35

36 TRUNCATE tmp_items_calc;

37

38 INSERT INTO tmp_items_calc(item_id , length , product)

39 SELECT b.item_id ,

40 SQRT(SUM(POW(b.rating -c.avg_rating , 2))),

41 SUM((a.rating -active_item_avg_rating)*(b.rating -c.avg_rating))

42 FROM tmp_users as a

43 JOIN tmp_users_best as best ON a.user_id=best.user_id

44 JOIN tmp_matrix as b ON a.user_id=b.user_id

45 JOIN tbl_items as c ON b.item_id=c.item_id

46 WHERE a.rating > 0

47 GROUP BY b.item_id;

48

49 END

Appendix J

Save Similarities Procedure

The save similarities procedure completes the similarity computation process and

saves all item and user similarities. It also ensures that the two active vectors receive

the highest possible similarities. In other words, the active item vector should be

considered most similar to itself. The same requirement apples to the active user

similarity. This adjustment is necessary to neutralize the rounding error which may

cause other, very similar, vectors to appear as the first row/column of the serialized

matrix. Finally, this procedure records the vectors with highest similarities as best

matrix dimensions. Note that the size of these lists is restricted by the matrix size

session variable and they contain vectors with positive similarities only.

181

APPENDIX J. SAVE SIMILARITIES PROCEDURE 182

Listing J.1: Save Similarities Procedure – save similarities.sql
1 PROCEDURE save_similarities ()

2 BEGIN

3

4 DECLARE active_user_length DECIMAL (8,3);

5 DECLARE active_item_length DECIMAL (8,3);

6

7 # save active vector lengths

8 SELECT length

9 INTO active_user_length

10 FROM tmp_users_calc

11 WHERE user_id=@active_user_id;

12

13 SELECT length

14 INTO active_item_length

15 FROM tmp_items_calc

16 WHERE item_id=@active_item_id;

17

18

19 # compute similarities with every vector

20 UPDATE tmp_users as a, tmp_users_calc as b

21 SET a.similarity=b.product /(active_user_length*b.length)

22 WHERE a.user_id=b.user_id;

23

24 UPDATE tmp_items as a, tmp_items_calc as b

25 SET a.similarity=b.product /(active_item_length*b.length)

26 WHERE a.item_id=b.item_id;

27

28

29 # active vectors should always be most similar

30 UPDATE tmp_users

31 SET similarity =9.999

32 WHERE user_id=@active_user_id;

33

34 UPDATE tmp_items

35 SET similarity =9.999

36 WHERE item_id=@active_item_id;

37

38

39 # make a list of @matrix_size best vectors

40 # EXECUTE command only works with session variables

41 PREPARE record_best_users

42 FROM "INSERT INTO tmp_users_best(user_id)

43 SELECT user_id FROM tmp_users WHERE similarity >0

44 ORDER BY similarity DESC LIMIT ?";

45

46 PREPARE record_best_items

47 FROM "INSERT INTO tmp_items_best(item_id)

48 SELECT item_id FROM tmp_items WHERE similarity >0

49 ORDER BY similarity DESC LIMIT ?";

50

51 TRUNCATE tmp_users_best;

52 EXECUTE record_best_users USING @matrix_size;

53

54 TRUNCATE tmp_items_best;

55 EXECUTE record_best_items USING @matrix_size;

56

57 DEALLOCATE PREPARE record_best_users;

58 DEALLOCATE PREPARE record_best_items;

59

60 END

Bibliography

[1] G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender
systems: A survey of the state-of-the-art and possible extensions. IEEE Trans-
actions on Knowledge and Data Engineering, 17(6):734–749, 2005.

[2] Charu C. Aggarwal, Joel L. Wolf, Kun-Lung Wu, and Philip S. Yu. Horting
hatches an egg: A new graph-theoretic approach to collaborative filtering. In
Proceedings of the Fifth ACM SigKDD International Conference on Knowledge
Discovery and Data Mining, pages 201–212, New York, NY, USA, 1999. ACM.

[3] Adam LaPitz George Karypis Al Mamunur Rashid, Shyong K. Lam and John
Riedl. Towards a scalable kNN CF algorithm: Exploring effective applications
of clustering. In Web Mining and Web Usage Analysis, 2008.

[4] Robert J. Allen. A Formal Approach to Software Architecture. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA 15213, May 1997.

[5] Marko Balabanović and Yoav Shoham. Fab: Content-based, collaborative rec-
ommendation. Communications of the ACM, 40(3):66–72, 1997.

[6] Linas Baltrunas and Francesco Ricci. Locally adaptive neighborhood selection
for collaborative filtering recommendations. In AH ’08: Proceedings of the
5th international conference on Adaptive Hypermedia and Adaptive Web-Based
Systems, pages 22–31, Berlin, Heidelberg, 2008. Springer-Verlag.

[7] Linas Baltrunas and Francesco Ricci. Knowledge Discovery Enhanced with Se-
mantic and Social Information, volume 220/2009. Springer Berlin / Heidelberg,
2009.

[8] Shumeet Baluja, Rohan Seth, D. Sivakumar, Yushi Jing, Jay Yagnik, Shankar
Kumar, Deepak Ravichandran, and Mohamed Aly. Video suggestion and discov-
ery for youtube: Taking random walks through the view graph. In Proceedings
of the 17th International Conference on World Wide Web, pages 895–904, New
York, NY, USA, 2008. ACM.

183

BIBLIOGRAPHY 184

[9] Justin Basilico and Thomas Hofmann. Unifying collaborative and content-
based filtering. In Proceedings of the Twenty-First International Conference on
Machine Learning, page 9, New York, NY, USA, 2004. ACM.

[10] Chumki Basu, Haym Hirsh, and William Cohen. Recommendation as classi-
fication: Using social and content-based information in recommendation. In
Proceedings of the Fifteenth National/Tenth Conference on Artificial Intelli-
gence/Innovative Applications of Artificial Intelligence, pages 714–720, Menlo
Park, CA, USA, 1998. American Association for Artificial Intelligence.

[11] Robert Bell, Yehuda Koren, and Chris Volinsky. Modeling relationships at mul-
tiple scales to improve accuracy of large recommender systems. In Proceedings
of the 13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 95–104, New York, NY, USA, 2007. ACM.

[12] Robert M. Bell and Yehuda Koren. Lessons from the netflix prize challenge.
ACM SIGKDD Explorations Newsletter, 9(2):75–79, 2007.

[13] Robert M. Bell and Yehuda Koren. Scalable collaborative filtering with jointly
derived neighborhood interpolation weights. In Proceedings of the Seventh IEEE
International Conference on Data Mining, pages 43–52. IEEE Computer Soci-
ety, 2007.

[14] Robert M. Bell, Yehuda Koren, and Chris Volinsky. The bellkor solution to the
netflix prize. Technical report, AT&T Labs - Research, 2007.

[15] James Bennett, Charles Elkan, Bing Liu, Padhraic Smyth, and Domonkos Tikk.
KDD cup and workshop 2007. ACM SIGKDD Explorations Newsletter, 9(2):51–
52, 2007.

[16] James Bennett and Lanning Stan. The netflix prize. In KDD Cup and Workshop
2007, 2007.

[17] Jim Bennett. The Cinematch system: Operation, scale coverage, accuracy,
impact. Summer School on the Present and Future of Recommender Systems,
2006.

[18] Joel Bennett. A collaborative filtering recommender using SOM clustering on
keywords. Master’s thesis, Rochester Institute of Technology, 2006.

[19] Shlomo Berkovsky. Decentralized mediation of user models for a better per-
sonalization. In Adaptive Hypermedia and Adaptive Web-Based Systems, 4th
International Conference, AH 2006, Dublin, Ireland, June 21-23, 2006, Pro-
ceedings, pages 404–408, 2006.

BIBLIOGRAPHY 185

[20] Shlomo Berkovsky, Yaniv Eytani, Tsvi Kuflik, and Francesco Ricci. Enhancing
privacy and preserving accuracy of a distributed collaborative filtering. In Pro-
ceedings of the 2007 ACM Conference on Recommender Systems, pages 9–16,
New York, NY, USA, 2007. ACM.

[21] Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. Cross-domain mediation
in collaborative filtering. In UM ’07: Proceedings of the 11th international
conference on User Modeling, pages 355–359, Berlin, Heidelberg, 2007. Springer-
Verlag.

[22] Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. Distributed collaborative
filtering with domain specialization. In Proceedings of the 2007 ACM Conference
on Recommender Systems, pages 33–40, New York, NY, USA, 2007. ACM.

[23] Daniel Billsus and Michael J. Pazzani. Learning collaborative information
filters. In Proceedings of the Fifteenth International Conference on Machine
Learning, pages 46–54, San Francisco, CA, USA, 1998. Morgan Kaufmann Pub-
lishers Inc.

[24] Daniel Billsus and Michael J. Pazzani. User modeling for adaptive news access.
User Modeling and User-Adapted Interaction, 10(2-3):147–180, 2000.

[25] David Blackwell. Conditional expectation and unbiased sequential estimation.
The Annals of Mathematical Statistics, 18(1):105–110, 1947.

[26] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predic-
tive algorithms for collaborative filtering. In Proceedings of the 14th Conference
on Uncertainty in Artificial Intelligence, pages 43–52, 1998.

[27] Lukas Brozovsky. ColFi - recommender system for a dating service. Master’s
thesis, Charles University in Prague, 2006.

[28] Robin Burke. Knowledge-based recommender systems. In Encyclopedia of Li-
brary and Information Systems, volume 69, 2000.

[29] L. Candillier, F. Meyer, and M. Boullé. Comparing state-of-the-art collaborative
filtering systems. In Proceedings of the 5th International Conference on Machine
Learning and Data Mining in Pattern Recognition, volume 4571 of LNCS, pages
548–562. Springer, 2007.

[30] John Canny. Collaborative filtering with privacy. In Proceedings of the 2002
IEEE Symposium on Security and Privacy, page 45, Washington, DC, USA,
2002. IEEE Computer Society.

BIBLIOGRAPHY 186

[31] John Canny. Collaborative filtering with privacy via factor analysis. In Proceed-
ings of the 25th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 238–245, New York, NY, USA,
2002. ACM.

[32] George Casella and Christian P. Robert. Rao-blackwellisation of sampling
schemes. Biometrika, 83(1):81–94, March 1996.

[33] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue
Moon. I tube, you tube, everybody tubes: Analyzing the world’s largest user
generated content video system. In Proceedings of the 7th ACM Sigcomm Con-
ference on Internet Measurement, pages 1–14, New York, NY, USA, 2007. ACM.

[34] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.
Bigtable: a distributed storage system for structured data. In OSDI ’06: Pro-
ceedings of the 7th symposium on Operating systems design and implementation,
pages 205–218, Berkeley, CA, USA, 2006. USENIX Association.

[35] Annie Chen. Context-aware collaborative filtering system: Predicting the user’s
preferences in ubiquitous computing. In Extended Abstracts on Human Factors
in Computing Systems, pages 1110–1111, New York, NY, USA, 2005. ACM.

[36] Qiyang Chen. Modeling a user’s domain knowledge with neural networks. In-
ternational Journal of Human-Computer Interaction, 9(1):25–40, 1997.

[37] Jinhyung Cho, Kwiseok Kwon, and Yongtae Park. Collaborative filtering using
dual information sources. IEEE Intelligent Systems, 22(3):30–38, 2007.

[38] Stefan Schaal Chris Atkeson, Andrew Moore. Locally weighted learning. AI
Review, 11:11–73, April 1997.

[39] Mark Claypool, Anuja Gokhale, Tim Miranda, Pavel Murnikov, Dmitry Netes,
and Matthew Sartin. Combining content-based and collaborative filters in an
online newspaper. In Proceedings of ACM SIGIR Workshop on Recommender
Systems, August 1999.

[40] M. Connor and J. Herlocker. Clustering items for collaborative filtering, 2001.

[41] Dan Cosley, Shyong K. Lam, Istvan Albert, Joseph A. Konstan, and John
Riedl. Is seeing believing? how recommender interfaces affect users’ opinions.
CHI Letters, 5:585–592, 2003.

[42] I. Crnkovic. Component-based software engineering - new challenges in software
development. In Information Technology Interfaces, 2003. ITI 2003. Proceed-
ings of the 25th International Conference on, pages 9–18, 2003.

BIBLIOGRAPHY 187

[43] Ayhan Demiriz. Enhancing product recommender systems on sparse bi-
nary data. Data Mining and Knowledge Discovery, 9:147–170, 2004.
10.1023/B:DAMI.0000031629.31935.ac.

[44] Mukund Deshpande and George Karypis. Item-based top-n recommendation
algorithms. ACM Transactions on Information Systems, 22(1):143–177, 2004.

[45] Yi Ding and Xue Li. Time weight collaborative filtering. In Proceedings of the
14th ACM International Conference on Information and Knowledge Manage-
ment, pages 485–492, New York, NY, USA, 2005. ACM.

[46] Yi Ding, Xue Li, and Maria E. Orlowska. Recency-based collaborative filtering.
In Proceedings of the 17th Australasian Database Conference, pages 99–107,
Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc.

[47] David Edmond. Refining database systems. In Proceedings of the 9th Inter-
national Conference of Z Usres on The Z Formal Specification Notation, pages
25–44, London, UK, 1995. Springer-Verlag.

[48] Charles Elkan. Rao-blackwell theorem: Rao-blackwell theorem: Intuition, lem-
mas and start of proof, 2005.

[49] Roy Thomas Fielding. Architectural styles and the design of network-based
software architectures. PhD thesis, University of California, Irvine, 2000. Chair-
Taylor, Richard N.

[50] Dan Frankowski, Shyong K. Lam, Shilad Sen, F. Maxwell Harper, Scott Yilek,
Michael Cassano, and John Riedl. Recommenders everywhere: The WikiLens
community-maintained recommender system. In Proceedings of the 2007 Inter-
national Symposium on Wikis, pages 47–60, New York, NY, USA, 2007. ACM.

[51] D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch: Why Reuse
is so Hard? IEEE Software, 12(6):17–26, 1995.

[52] David Garlan. Software architecture: a roadmap. In ICSE ’00: Proceedings
of the Conference on The Future of Software Engineering, pages 91–101, New
York, NY, USA, 2000. ACM.

[53] David Garlan, Robert Monroe, and David Wile. Acme: An architecture descrip-
tion interchange language. In in Proceedings of CASCON’97, pages 169–183,
1997.

[54] David Garlan and Mary Shaw. An introduction to software architecture. Tech-
nical report, Carnegie Mellon University, Pittsburgh, PA, USA, 1994.

BIBLIOGRAPHY 188

[55] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using col-
laborative filtering to weave an information tapestry. Communications of the
ACM, 35(12):61–70, 1992.

[56] Nathaniel Good, J. Ben Schafer, Joseph A. Konstan, Al Borchers, Badrul Sar-
war, Jon Herlocker, and John Riedl. Combining collaborative filtering with
personal agents for better recommendations. In Proceedings of the Sixteenth Na-
tional Conference on Artificial Intelligence, pages 439–446. AAAI Press, 1999.

[57] Vu Ha and Peter Haddawy. Toward case-based preference elicitation: Similarity
measures on preference structures. In Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence, pages 193–201, 1998.

[58] Eui-Hong (Sam) Han and George Karypis. Feature-based recommendation sys-
tem. In Proceedings of the 14th ACM International Conference on Information
and Knowledge Management, pages 446–452, New York, NY, USA, 2005. ACM.

[59] David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Roun-
thwaite, and Carl Kadie. Dependency networks for inference, collaborative fil-
tering, and data visualization. Journal of Machine Learning Research, 1:49–75,
2001.

[60] Joseph M. Hellerstein, Michael Stonebraker, and James R. Hamilton. Architec-
ture of a database system. Foundations and Trends in Databases, 1(2):141–259,
2007.

[61] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An
algorithmic framework for performing collaborative filtering. In Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 230–237, New York, NY, USA,
1999. ACM.

[62] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining collab-
orative filtering recommendations. In Proceedings of the 2000 ACM Conference
on Computer Supported Cooperative Work, pages 241–250, New York, NY, USA,
2000. ACM.

[63] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T.
Riedl. Evaluating collaborative filtering recommender systems. ACM Transac-
tions on Information Systems, 22(1):5–53, 2004.

[64] Jonathan Lee Herlocker. Understanding and Improving Automated Collabora-
tive Filtering Systems. PhD thesis, University of Minnesota, 2000. Adviser-
Joseph A. Konstan.

BIBLIOGRAPHY 189

[65] Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending
and evaluating choices in a virtual community of use. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages 194–201,
New York, NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co.

[66] Lorin M. Hitt and Prasanna (Sonny) Tambe. Broadband adoption and content
consumption. Information Economics and Policy, 2007.

[67] Thomas Hofmann. Latent semantic models for collaborative filtering. ACM
Transactions on Information Systems, 22(1):89–115, 2004.

[68] Thomas Hofmann and Jan Puzicha. Latent class models for collaborative filter-
ing. In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, pages 688–693, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc.

[69] John B. Horrigan. Home broadband adoption 2008. Technical report, Pew
Internet & American Life Project, 2008.

[70] Zan Huang, Hsinchun Chen, and Daniel Zeng. Applying associative retrieval
techniques to alleviate the sparsity problem in collaborative filtering. ACM
Transactions on Information Systems, 22(1):116–142, 2004.

[71] Il Im and Alexander Hars. Does a one-size recommendation system fit all? the
effectiveness of collaborative filtering based recommendation systems across dif-
ferent domains and search modes. ACM Transactions on Information Systems,
26(1):4, 2007.

[72] Anil K. Jain, Jianchang Mao, and K. Mohiuddin. Artificial neural networks: A
tutorial. IEEE Computer, 29:31–44, 1996.

[73] Rong Jin and Luo Si. A study of methods for normalizing user ratings in collab-
orative filtering. In Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 568–
569, New York, NY, USA, 2004. ACM.

[74] Rong Jin, Luo Si, and Chengxiang Zhai. Preference-based graphic models for
collaborative filtering. In Proceedings of the 19th Conference in Uncertainty in
Artificial Intelligence, pages 329–336, 2003.

[75] George Karypis. Evaluation of item-based Top-N recommendation algorithms.
In cikm, pages 247–254, 2001.

[76] Noriaki Kawamae and Katsumi Takahashi. Information retrieval based on col-
laborative filtering with latent interest semantic map. In Proceedings of the
Eleventh ACM SIGKDD International Conference on Knowledge Discovery in
Data Mining, pages 618–623, New York, NY, USA, 2005. ACM.

BIBLIOGRAPHY 190

[77] Arnd Kohrs and Bernard Mérialdo. Improving collaborative filtering for new-
users by smart object selection. In ICME 2001, International Conference on
Media Futures, May 2001.

[78] A. N. Kolmogorov. Unbiased estimates. Izv. Akad. Nauk SSSR Ser. Mat.,
14(4):303–326, 1950.

[79] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker,
Lee R. Gordon, and John Riedl. GroupLens: Applying collaborative filtering
to usenet news. Communications of the ACM, 40(3):77–87, 1997.

[80] Jonathan Koren, Yi Zhang, and Xue Liu. Personalized interactive faceted
search. In Proceedings of the 17th International Conference on World Wide
Web, pages 477–486, New York, NY, USA, 2008. ACM.

[81] Yehuda Koren. The BellKor solution to the netflix grand prize, August 2009.

[82] Bruce Krulwich and Chad Burkey. The infofinder agent: Learning user interests
through heuristic phrase extraction. IEEE Expert: Intelligent Systems and
Their Applications, 12(5):22–27, 1997.

[83] Chuck P. Lam. Collaborative filtering using associative neural memory. In
Bamshad Mobasher and Sarabjot S. Anand, editors, Itwp, volume 3169 of Lec-
ture Notes in Computer Science, pages 153–168. Springer, 2003.

[84] Ken Lang. Newsweeder: Learning to filter netnews. In Proceedings of the 12th
International Machine Learning Conference, 1995.

[85] Neal Lathia, Stephen Hailes, and Licia Capra. Private distributed collaborative
filtering using estimated concordance measures. In Proceedings of the 2007 ACM
Conference on Recommender Systems, pages 1–8, New York, NY, USA, 2007.
ACM.

[86] Neal Leavitt. Recommendation technology: Will it boost e-commerce? Com-
puter, 39(5):13–16, 2006.

[87] Daniel Lemire. Scale and translation invariant collaborative filtering systems.
Information Retrieval, 8(1):129–150, January 2005.

[88] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. The dynamics
of viral marketing. In Proceedings of the 7th ACM Conference on Electronic
Commerce, pages 228–237, New York, NY, USA, 2006. ACM.

[89] Cane Wing-ki Leung, Stephen Chi-fai Chan, and Fu-lai Chung. Integrating
collaborative filtering and sentiment analysis: A rating inference approach. In
Proceedings of the Ecai 2006 Workshop on Recommender Systems, pages 62–66,
Riva del Garda, I, 2006.

BIBLIOGRAPHY 191

[90] Cane Wing-ki Leung, Stephen Chi-fai Chan, and Fu-lai Chung. Applying cross-
level association rule mining to cold-start recommendations. In Proceedings of
the 2007 IEEE/WIC/ACM International Conferences on Web Intelligence and
Intelligent Agent Technology - Workshops, pages 133–136, Washington, DC,
USA, 2007. IEEE Computer Society.

[91] Henry Lieberman. Letizia: an agent that assists web browsing. In IJCAI’95:
Proceedings of the 14th international joint conference on Artificial intelligence,
pages 924–929, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers
Inc.

[92] Weiyang Lin, Sergio A. Alvarez, and Carolina Ruiz. Collaborative recommen-
dation via adaptive association rule mining. In Data Mining and Knowledge
Discovery, 2000.

[93] Weiyang Lin, Sergio A. Alvarez, and Carolina Ruiz. Efficient adaptive-support
association rule mining for recommender systems. Data Min. Knowl. Discov.,
6(1):83–105, 2002.

[94] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76–80,
2003.

[95] Hao Ma, Irwin King, and Michael R. Lyu. Effective missing data prediction for
collaborative filtering. In Proceedings of the 30th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval, pages
39–46, New York, NY, USA, 2007. ACM.

[96] Thomas W Malone, Kenneth R Grant, Franklyn A Turbak, Stephen A Brobst,
and Michael D Cohen. Intelligent information-sharing systems. Communica-
tions of the ACM, 30(5):390–402, 1987.

[97] David Maltz and Kate Ehrlich. Pointing the way: Active collaborative filtering.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems, pages 202–209, New York, NY, USA, 1995. ACM Press/Addison-Wesley
Publishing Co.

[98] David A. Maltz and David A. Maltz. Distributing information for collaborative
filtering on usenet net news. Technical report, MIT Department of EECS MS
Thesis, 1994.

[99] P. Massa. Trust-Aware Decentralized Recommender Systems: PhD Research
Proposal. PhD thesis, University of Trento, May 2003.

BIBLIOGRAPHY 192

[100] Darrell D. Massie. Neural network fundamentals for scientists and engineers. In
Proceedings of the International Congress on Efficiency, Costs, Optimization,
Simulation and Environmental Aspects of Energy Systems and Processes, pages
123–128, July 2001.

[101] Bhaskar Mehta, Thomas Hofmann, and Wolfgang Nejdl. Robust collaborative
filtering. In Proceedings of the 2007 ACM Conference on Recommender Systems,
pages 49–56, New York, NY, USA, 2007. ACM.

[102] Stuart E. Middleton. Capturing Knowledge of User Preferences with Recom-
mender Systems. PhD thesis, Faculty of Engineering and Applied Science De-
partment of Electronics and Computer Science, 2003.

[103] Bradley N. Miller, John T. Riedl, and Joseph A. Konstan. Experiences with
GroupLens: Making usenet useful again. In Proceedings of the 1997 Usenix
Winter Technical Conference, pages 219–231, 1997.

[104] Bradley Norman Miller. Toward a Personal Recommender System. PhD thesis,
University of Minnesota, 2003.

[105] N. Miller, Bradley, A. Konstan, Joseph, and John Riedl. PocketLens: Toward
a personal recommender system. ACM Trans. Inf. Syst., 22(3):437–476, 2004.

[106] Sung-Hwan Min and Ingoo Han. Optimizing collaborative filtering recom-
mender systems. In Piotr S. Szczepaniak, Janusz Kacprzyk, and Adam
Niewiadomski, editors, Advances in Web Intelligence, volume 3528, pages 313–
319, 2005.

[107] Bamshad Mobasher, Honghua Dai, Tao Luo, Miki Nakagawa, Yuqing Sun, and
Jim Wiltshire. Discovery of aggregate usage profiles for web personalization. In
Proceedings of the WebKDD Workshop, 2000.

[108] Alexandros Moukas and Pattie Maes. Amalthaea: An evolving multi-agent
information filtering and discovery system for the WWW. Autonomous Agents
and Multi-Agent Systems, 1(1):59–88, 1998.

[109] Ulrich Müller. Notes on sufficient statistics and the rao-blackwell theorem, 2008.

[110] K Nadiminti, MD De Assunção, and R Buyya. Distributed systems and recent
innovations: Challenges and benefits. InfoNet Magazine, 16(3):1–5, 2006.

[111] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large
sparse datasets. In IEEE Symposium on Security and Privacy, pages 111–125.
IEEE Computer Society, 2008.

BIBLIOGRAPHY 193

[112] Tavi Nathanson, Ephrat Bitton, and Ken Goldberg. Eigentaste 5.0: Constant-
time adaptability in a recommender system using item clustering. In Proceedings
of the 2007 ACM Conference on Recommender Systems, pages 149–152, New
York, NY, USA, 2007. ACM.

[113] Daniel Siaw Weng Ngu and Xindong Wu. Sitehelper: a localized agent that
helps incremental exploration of the world wide web. Comput. Netw. ISDN
Syst., 29(8-13):1249–1255, 1997.

[114] D. Nguyen and B. Widrow. Improving the learning speed of 2-layer neural
networks by choosing initial values of the adaptive weights. In Proceedings of
the International Joint Conference on Neural Networks, volume 3, pages 21–26,
1990.

[115] Hien Nguyen and Peter Haddawy. The decision-theoretic video advisor. In
AAAI-98 Workshop on Recommender Systems, pages 77–80, 1998.

[116] John O’Donovan and Barry Smyth. Trust in recommender systems. In Proceed-
ings of the 10th International Conference on Intelligent User Interfaces, pages
167–174, New York, NY, USA, 2005. ACM.

[117] Louis Olshevsky. Two properties of sufficient statistics. The Annals of Mathe-
matical Statistics, 11(1):pp. 104–106, 1940.

[118] Panagiotis and Yannis Manolopoulos. Collaborative filtering: Fallacies and
insights in measuring similarity, 2006.

[119] Andrew R. Pariser and Willard L. Miranker. Dimensionality reduction via
self-organizing feature maps for collaborative filtering. In International Joint
Conference on Neural Networks, pages 1941–1946. IEEE, 2007.

[120] Seung-Taek Park and David M. Pennock. Applying collaborative filtering tech-
niques to movie search for better ranking and browsing. In Proceedings of
the 13th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 550–559, New York, NY, USA, 2007. ACM.

[121] Arkadiusz Paterek. Improving regularized singular value decomposition for col-
laborative filtering. In Proc. KDD Cup Workshop at SIGKDD’07, 13th ACM
Int. Conf. on Knowledge Discovery and Data Mining, pages 39–42, 2007.

[122] P. Paulson and A. Tzanavari. Combining collaborative and content-based filter-
ing using conceptual graphs. In Words: Learning, Fusion, and Reasoning within
a Formal Linguistic Representation Framework, volume 2873, pages 168–185,
2003.

BIBLIOGRAPHY 194

[123] Michael J. Pazzani. A framework for collaborative, content-based and demo-
graphic filtering. Artificial Intelligence Review, 13(5-6):393–408, 1999.

[124] David M. Pennock, Eric Horvitz, Steve Lawrence, and C. Lee Giles. Collab-
orative filtering by personality diagnosis: A hybrid memory and model-based
approach. In Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence, pages 473–480, San Francisco, CA, USA, 2000. Morgan Kaufmann
Publishers Inc.

[125] Gregory Piatetsky. Interview with simon funk. ACM SIGKDD Explorations
Newsletter, 9(1):38–40, 2007.

[126] Gregory Piatetsky-Shapiro, Chabane Djeraba, Lise Getoor, Robert Grossman,
Ronen Feldman, and Mohammed Zaki. What are the grand challenges for data
mining?: KDD-2006 panel report. ACM SIGKDD Explorations Newsletter,
8(2):70–77, 2006.

[127] Martin Piotte and Martin Chabbert. The pragmatic theory solution to the
netflix grand prize. Pragmatic Theory Inc., Canada, August 2009.

[128] Huseyin Polat and Wenliang Du. SVD-based collaborative filtering with privacy.
In Proceedings of the 2005 ACM Symposium on Applied Computing, pages 791–
795, New York, NY, USA, 2005. ACM.

[129] Rin Popescul, Lyle H. Ungar, David M. Pennock, and Steve Lawrence. Prob-
abilistic models for unified collaborative and content-based recommendation in
sparse-data environments. In Proceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence, pages 437–444, 2001.

[130] Seppo Puuronen and Alexey Tsymbal. Local feature selection with dynamic
integration of classifiers. Fundam. Inf., 47(1-2):91–117, 2001.

[131] Naren Ramakrishnan, Benjamin J. Keller, Batul J. Mirza, Ananth Y. Grama,
and George Karypis. Privacy risks in recommender systems. IEEE Internet
Computing, 5(6):54–62, 2001.

[132] Ralf Rantzau and Holger Schwarz. A multi-tier architecture for high-
performance data mining. in: Buchmann, A. P. (ed.): Datenbanksysteme in
Büro, technik und wissenschaft. Technical report, University of Stuttgart, 1999.

[133] Al M. Rashid, Shyong, George Karypis, and John Riedl. ClustKNN: A highly
scalable hybrid model- & memory-based cf algorithm. In WebKDD 2006,
Philadelphia, Pennsylvania, USA, August 2006.

BIBLIOGRAPHY 195

[134] Al Mamunur Rashid, Istvan Albert, Dan Cosley, Shyong K. Lam, Sean M. Mc-
Nee, Joseph A. Konstan, and John Riedl. Getting to know you: Learning new
user preferences in recommender systems. In Proceedings of the 7th Interna-
tional Conference on Intelligent User Interfaces, pages 127–134, New York, NY,
USA, 2002. ACM.

[135] Al Mamunur Rashid, George Karypis, and John Riedl. Influence in ratings-
based recommender systems: An algorithm-independent approach. In Sdm,
2005.

[136] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. GroupLens: An open architecture for collaborative filtering of netnews.
In Proceedings of the 1994 ACM Conference on Computer Supported Coopera-
tive Work, pages 175–186, New York, NY, USA, 1994. ACM.

[137] Paul Resnick and Rahul Sami. The influence limiter: Provably manipulation-
resistant recommender systems. In Proceedings of the 2007 ACM Conference
on Recommender Systems, pages 25–32, New York, NY, USA, 2007. ACM.

[138] Francesco Ricci and Hannes Werthner. Introduction to the special issue: Rec-
ommender systems. Int. J. Electron. Commerce, 11(2):5–9, 06-7.

[139] James Rucker and Marcos J. Polanco. Siteseer: Personalized navigation for the
web. Communications of the ACM, 40(3):73–76, 1997.

[140] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltz-
mann machines for collaborative filtering. In Proceedings of the 24th Interna-
tional Conference on Machine Learning, pages 791–798, New York, NY, USA,
2007. ACM.

[141] J. J. Sandvig, Bamshad Mobasher, and Robin Burke. Robustness of collabo-
rative recommendation based on association rule mining. In Proceedings of the
2007 ACM conference on Recommender systems, RecSys ’07, pages 105–112,
New York, NY, USA, 2007. ACM.

[142] Badrul Sarwar, George Karypis, Joseph Konstan, and John Reidl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
International Conference on World Wide Web, pages 285–295, New York, NY,
USA, 2001. ACM.

[143] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Analysis of
recommendation algorithms for e-commerce. In Proceedings of the 2nd ACM
Conference on Electronic Commerce, pages 158–167, New York, NY, USA, 2000.
ACM.

BIBLIOGRAPHY 196

[144] Badrul M. Sarwar, George Karypis, Joseph Konstan, and John Riedl. Recom-
mender systems for large-scale e-commerce: Scalable neighborhood formation
using clustering. Technical report, University of Minnesota, 2002.

[145] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T. Riedl.
Application of dimensionality reduction in recommender systems–a case study.
In ACM WebKDD Workshop, 2000.

[146] Badrul M. Sarwar, Joseph A. Konstan, Al Borchers, Jon Herlocker, Brad Miller,
and John Riedl. Using filtering agents to improve prediction quality in the
GroupLens research collaborative filtering system. In Proceedings of the 1998
ACM Conference on Computer Supported Cooperative Work, pages 345–354,
New York, NY, USA, 1998. ACM.

[147] J. Ben Schafer, Joseph Konstan, and John Riedi. Recommender systems in E-
Commerce. In Proceedings of the 1st ACM Conference on Electronic Commerce,
pages 158–166, New York, NY, USA, 1999. ACM.

[148] Upendra Shardanand and Patti Maes. Social information filtering: Algorithms
for automating “word of mouth”. In Proceedings of ACM CHI’95 Conference
on Human Factors in Computing Systems, volume 1, pages 210–217, 1995.

[149] B. Sheth and P. Maes. Evolving agents for personalized information filtering. In
Proceedings Of the Ninth Conference on Artificial Intelligence for Applications,
pages 345–352, Orlando, FL, 1993.

[150] Ian M. Soboroff and Charles K. Nicholas. Combining content and collaboration
in text filtering. In Proceedings of the IJCAI’99 Workshop on Machine Learning
for Information Filtering, pages 86–91, 1999.

[151] J. M. Spivey. The Z notation: a reference manual. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[152] Xiaoyuan Su, Russell Greiner, Taghi M. Khoshgoftaar, and Xingquan Zhu. Hy-
brid collaborative filtering algorithms using a mixture of experts. In Proceedings
of the IEEE/WIC/ACM International Conference on Web Intelligence, pages
645–649, Washington, DC, USA, 2007. IEEE Computer Society.

[153] Xiaoyuan Su, Taghi M. Khoshgoftaar, Xingquan Zhu, and Russell Greiner.
Imputation-boosted collaborative filtering using machine learning classifiers. In
Proceedings of the 2008 ACM Symposium on Applied Computing, pages 949–
950, New York, NY, USA, 2008. ACM.

[154] S. Shyam Sundar, Anne Oeldorf-Hirsch, and Qian Xu. The bandwagon effect
of collaborative filtering technology. In Extended Abstracts on Human Factors
in Computing Systems, pages 3453–3458, New York, NY, USA, 2008. ACM.

BIBLIOGRAPHY 197

[155] Shyam S. Sundar. The MAIN Model: A Heuristic Approach to Understanding
Technology Effects on Credibility. The John D. and Catherine T. MacArthur
Foundation Series on Digital Media and Learning, -:73–100, December 2007.

[156] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software Archi-
tecture: Foundations, Theory and Practice. Addison-Wesley, 2007.

[157] Loren Terveen, Will Hill, Brian Amento, David McDonald, and Josh Creter.
PHOAKS: A system for sharing recommendations. Communications of the
ACM, 40(3):59–62, 1997.

[158] N. A. Thacker. Tutorial: Supervised neural networks in machine vision, De-
cember 1998.

[159] F. Tichy, W. A catalogue of general-purpose software design patterns. In
TOOLS ’97: Proceedings of the Tools-23: Technology of Object-Oriented Lan-
guages and Systems, page 330, Washington, DC, USA, 1997. IEEE Computer
Society.

[160] Andreas Tos̈cher, Michael Jahrer, and Robert M. Bell. The BigChaos solution
to the netflix grand prize, September 2009.

[161] Karen H. L. Tso-Sutter, Leandro Balby Marinho, and Lars Schmidt-Thieme.
Tag-aware recommender systems by fusion of collaborative filtering algorithms.
In Proceedings of the 2008 ACM Symposium on Applied Computing, pages 1995–
1999, New York, NY, USA, 2008. ACM.

[162] L. Ungar and D. Foster. Clustering methods for collaborative filtering. In
Proceedings of the Workshop on Recommendation Systems. AAAI Press, Menlo
Park California, 1998.

[163] Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. Unifying user-based
and item-based collaborative filtering approaches by similarity fusion. In Pro-
ceedings of the 29th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 501–508, New York, NY,
USA, 2006. ACM.

[164] Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. Unified relevance
models for rating prediction in collaborative filtering. ACM Transactions on
Information Systems, 26(3):1–42, 2008.

[165] Jun Wang, Johan Pouwelse, Reginald L. Lagendijk, and Marcel J. T. Reinders.
Distributed collaborative filtering for peer-to-peer file sharing systems. In Pro-
ceedings of the 2006 ACM Symposium on Applied Computing, pages 1026–1030,
New York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 198

[166] Jun Wang, Marcel J. T. Reinders, Reginald L. Lagendijk, and Johan Pouwelse.
Self-organizing distributed collaborative filtering. In Proceedings of the 28th
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 659–660, New York, NY, USA, 2005. ACM.

[167] Ahmad M. Ahmad Wasfi. Collecting user access patterns for building user
profiles and collaborative filtering. In Proceedings of the 4th International Con-
ference on Intelligent User Interfaces, pages 57–64, New York, NY, USA, 1999.
ACM.

[168] Jianshu Weng, Chunyan Miao, and Angela Goh. Improving collaborative filter-
ing with trust-based metrics. In Proceedings of the 2006 ACM Symposium on
Applied Computing, pages 1860–1864, New York, NY, USA, 2006. ACM.

[169] Bo Xie, Peng Han, Fan Yang, Rui-Min Shen, Hua-Jun Zeng, and Zheng Chen.
DCFLA: A distributed collaborative-filtering neighbor-locating algorithm. In-
formation Sciences, 177(6):1349–1363, March 2007.

[170] Jin-Min Yang and Kin Fun Li. An adaptive user-genre-item model for collabora-
tive filtering. In IEEE Pacific Rim Conference on Communications Computers
and Signal Processing, pages 257–262, 2007.

[171] Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu, and Hans-Peter
Kriegel. Probabilistic memory-based collaborative filtering. IEEE Transactions
on Knowledge and Data Engineering, 16(1):56–69, 2004.

[172] Sheng Zhang, James Ford, and Fillia Makedon. A privacy-preserving collab-
orative filtering scheme with two-way communication. In Proceedings of the
7th ACM Conference on Electronic Commerce, pages 316–323, New York, NY,
USA, 2006. ACM.

[173] Yi Zhang, Jamie Callan, and Thomas Minka. Novelty and redundancy detection
in adaptive filtering. In Proceedings of the 25th Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval, pages
81–88, New York, NY, USA, 2002. ACM.

[174] Yi Zhang and Jonathan Koren. Efficient bayesian hierarchical user model-
ing for recommendation system. In Proceedings of the 30th Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 47–54, New York, NY, USA, 2007. ACM.

[175] Cai-Nicolas Ziegler. Applying feed-forward neural networks to collaborative
filtering. Master’s thesis, Universität Freiburg, 2006.

