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 In his article "Indefinite Terminating Points and the Iterated Prisoner's 

Dilemma", John Carroll asserts that there are "only uncooperative equilibria in 

finitely, but infinitely, iterated games," and that this "calls into question 

the significance of the existence of cooperative equilibria in infinitely iterated 

Prisoner's Dilemma games."i  It is the purpose of this note to show that the claim 

is overstated for two reasons: (1) the iterated games he refers to are equivalent 

to finitely and definitely iterated games, of which it is well known that there 

are only uncooperative equilibria; and (2) his notion of an indefinitely iterated 

game is without any philosophical interest beyond that of the definitely iterated 

game. 

 The problem centers around Carroll's notion of an indefinite iteration, 

which he characterizes using what he calls a 'terminating p-function', defined 

as follows.   

p is a terminating p-function if and only if 

(1)    p(t) = 1, and  

(2) there exists a natural number ω such that  

(a) p(ω) > 0, and  

(b) for all natural numbers n > ω, p(n) = 0.ii 
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He tells us that we can think of p(t) as the probability that the game will be 

iterated t times.  Notice that according to this definition the game will not 

be played more than ω times, so that the sense in which the endgame is indefinite 

is that it might be played fewer than ω times.  Since there is an iteration which 

will be the last if the game is iterated even that long, it seems to us that it 

is not at all surprising that a form of the backwards induction proof that shows 

that there are only noncooperative equilibria in finitely repeated Prisoner's 

Dilemma (hereafter, PD) games would apply here, as Carroll demonstrates. 

 We will argue that the indefinite iteration to which Carroll refers is just 

equivalent to a finitely repeated game with a definite final iteration.  This 

would show what we claim, which is that Carroll's result is a trivial extension 

of an already well-known result.  The argument goes as follows.  Suppose we have 

the prisoner's dilemma of the following matrix: 
                                             
                                   player 2   
                                C          D          
                           ┌──────────┬──────────┐  
                           │          │          │  
                        C  │   x,x    │   z,y    │  
             player 1      ├──────────┼──────────┤  
                           │          │          │  
                        D  │   y,z    │   w,w    │  
                           └──────────┴──────────┘  
 
 Figure  1 
 

 

The payoffs are real numbers related as follows: y > x > w > z.  Carroll defines 

a function p*(t) to represent the probability that the game is iterated in period 

t+1.iii  Let <a,b> X i,t be the payoffs to player i in period t given that i plays 

supergame strategy a and the other player plays supergame strategy b. The iterated 

supergame payoff is then given by the sum of the payoffs in each game given the 
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strategy pairs of the players multiplied by the probability that they will be 

played: 

   p*(t-1) <a,b> X i,t   

Note that this is just equivalent to: 

(*)      p*(t-1) <a,b> X i,t ,     

since ω is the last period with a positive probability of being played.  The 

'[infinity sign]' is gratuitous here, and serves only to cloud the issue of whether 

the game is to be repeated finitely but indefinitely (i.e. with a finite upper 

bound on the number of possible iterations) or infinitely but indefinitely (that 

is, with no finite upper bound on the number of possible iterations).  Note also 

that the utility functions which Carroll is presupposing must be von 

Neumann-Morgenstern utility functions, since he assumes in writing the iterated 

game payoff functions this way that they have the expected utility property.iv 

 Finally note that Carroll seems to be supposing that the players have common 

knowledge of the iterated supergame, in particular, of ω, and of the players' 

rationality.v 

 The problem, then, is to find the strategies a and b such that equation 

(*) is maximized for each player, given the payoff matrix.  By the expected utility 

property, we can write the utility of a stochastic game as the utility for the 

same game played with certainty but with the payoffs multiplied by the probability 

of the game being played.  So the problem is equivalent to finding the strategies 

a and b which maximize the equation: 

    <a,b> X* i,t  

where X* represents the payoffs of the following matrices for each period: 
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                                   player 2   
                                C          D          
                           ┌──────────┬──────────┐  
                           │          │          │  
                        C  │p*(0)(x,x)│p*(0)(z,y)│  
             player 1      ├──────────┼──────────┤       Period 1 
                           │          │          │  
                        D  │p*(0)(y,z)│p*(0)(w,w)│  
                           └──────────┴──────────┘  
 
 
                                   player 2   
                                C          D          
                           ┌──────────┬──────────┐  
                           │          │          │  
                        C  │p*(1)(x,x)│p*(1)(z,y)│  
             player 1      ├──────────┼──────────┤        Period 2 
                           │          │          │  
                        D  │p*(1)(y,z)│p*(1)(w,w)│  
                           └──────────┴──────────┘  

 

. 

. 

. 
                                   player 2   
                                C          D          
                         ┌────────────┬────────────┐ 
                         │            │            │ 
                      C  │p*(ω-1)(x,x)│p*(ω-1)(z,y)│ 
             player 1    ├────────────┼────────────┤      Period ω 
                         │            │            │ 
                      D  │p*(ω-1)(y,z)│p*(ω-1)(w,w)│ 
                         └────────────┴────────────┘ 
 
 Figure 2 

 

Furthermore, since these are von Neumann-Morgenstern utilities, we can make a 

linear transformation to each matrix, which can be chosen for each matrix so that 

this supergame is equivalent to ω iterations of the original matrix, without 

changing the iterated game equilibrium strategy. (Just multiply the payoffs of 
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the kth matrix by 1/p*(k-1), which must exist, since by definition p*(k) > 0 for 

all 1 < k < ω.)  Thus Carroll's indefinitely iterated PD supergame is equivalent 

to the definitely finitely iterated PD supergame, and so it is no surprise to 

learn that it has only an uncooperative solution. 

 It is still an interesting question, however, whether situations of 

indefinitely repeated interaction should be modeled as finitely repeated games 

or as the standard sort of indefinitely repeated games.  We would like to conclude 

by giving a few reasons to think that the indefinitely repeated variety is better 

suited to the task of modeling a risky future.  The 'standard indefinitely iterated 

game', as we shall call it, is the game represented by Figure 1 repeated with 

probability d each time, so that the probability that the game will be repeated 

once (i.e. played twice) is d, (0 < d < 1), the probability that it will be repeated 

twice is d2, and in general, the probability that iteration t of the game, gt, 

 will be played is dt-1.  The difference between this and Carroll's finite but 

indefinitely iterated game is that the standard iterated game has a small but 

positive probability of continuing in any finite iteration.  But since it is indeed 

certain that we are all mortal, and thus face only finitely many iterations of 

any decision situation, Carroll claims that the iterated game with a definite 

upper bound on the number of iterations is a better model of reality.  He writes, 

"my definition of the iterated payoff is specifically designed to capture the 

finiteness of genuine iterated Prisoner's Dilemmas."vi  

 There are two problems with Carroll's claim.  First, as we have shown, the 

definiteness induced by the upper bound on the number of iterations in Carroll's 

game, (i.e. clause (ii) of his definition of the terminating p-function), 

overwhelms any indefiniteness in the model, and makes it equivalent to a finitely 
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and definitely iterated game.  That is, by introducing a definite endpoint Carroll 

has trivialized the indefinite nature of the iterations.  Second, in defining 

his terminating p-function as a finite sequence of probabilities which sum to 

1, (clause (i) of his definition), he has effectively fixed the conditional 

probability of future iterations of the game beyond ω.  In particular, the 

conditional probability of playing another game given that one is playing the 

ωth iteration is 0.  But is it realistic to suppose that one is usually, or perhaps 

ever, certain that the current interaction is the last one?  We think that it 

is more realistic to imagine that in any interaction there is a positive probability 

that one will experience another interaction; that's why it is a bad idea (unless 

it is a rationally chosen strategy to precommit yourself) to burn your bridges. 

 An analogy may make our point clearer.  Suppose Ethel lives longer than 

anyone has ever lived before, say 175 years.  We might imagine that a game theorist 

modeling PD iterations in life would set the probability of living 176 years at 

0.  But is it reasonable for Ethel to believe that it is certain that she will 

not live another year?  Given that she has lived 175 years, it seems to us that 

she would be justified in placing a positive, if small, probability on living 

another year.  The same point could be made, we believe, for any interaction 

situation -- it seems to us that it is normally unreasonable to believe with 

certainty that any particular interaction is the last of its kind.  Carroll claims 

that it is certain that we will not face a decision situation for millions of 

centuries, but in order to build this certainty in he must set an arbitrary upper 

bound on the number of iterations, and this is problematic for at least the last 

game.  The standard indefinitely iterated game, on the other hand, would place 
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a very small, vanishing to zero, probability on the chances of interactions continu-

ing for "millions of centuries". 

 An alternative approach, which captures the idea that the probability of 

continuing iterations of the game decreases with time, but doesn't require the 

conditional probability of the game continuing at any stage to be zero, is to 

let the probabilities decrease monotonically with time reaching zero only in the 

limit, if at all.  Let p'(t) be the probability that the game will be played t 

times, such that p' has two properties:  

(1') limitt->   p'(t) = [alpha],  1 > [alpha] > 0 , p'(t) monotonically decreasing; 

(2') 1 > p'(t) > 0. 

Notice that for p'(t) a constant 0 we have the one-shot PD, for p'(t) a constant 

1 we have the infinitely repeated PD, and for p'(t) we have the standard indefinitely 

repeated PD.  From the results of the standard indefinitely iterated PD we know 

that for [alpha] small enough (relative to w,x,y,z) there exists a finite iteration 

t* such that the probability of continuing is very close to [alpha] and it no 

longer pays the players to cooperate, and this is enough to begin the backwards 

induction to show that they will never cooperate for such an [alpha].  Thus for 

some such games Carroll's result would hold despite the potentially infinite 

iteration. 

 Of course, there may be artificial situations which are best modelled by 

the indefinitely finitely iterated PD, such as an Axelrod-type tournament in which 

an upper bound on the number of iterations has been set.  But these situations 

must be manufactured to have the definite upper bound; they are not naturally 

occurring.  And again, such games are equivalent to finitely repeated games. 
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Notes  
i. John Carroll, (1987), pp.255-6. 

ii. Ibid., p.249. 

iii. Carroll claims on p.251 that "p*(t) could be interpreted as the probability 

that game [t] will be played," but we take it that it should read 'p*(t-1)', given 

his definition of it in terms of p(t). 

iv. See John Harsanyi, (1977), p.33, for a discussion of utility functions and the 

expected utility property. 

v. See David Kreps, et.al., (1982), pp.245-252.  They show that there can be 

cooperative equilibria when there is not common knowledge of the players' options 

or motivation. 

vi. Carroll, op. cit., p.250. 
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