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ABSTRACT 

Christopher Jeremy Lipinski 
Department of Geology, November 2009 

The University of Kansas 
 

 This study documents the stratigraphic characterization of the Terminal Carbonate 

Complex (TCC) at two locations within the Cabo de Gata area of southeast Spain, La 

Molata and La Rellana/Ricardillo. The TCC is a distinctive upper Miocene (Messinian) 

unit consisting of oolite, microbialite (stromatolites and thrombolites), and coralgal reefs 

deposited in association with high-amplitude cyclic glacioeustacy and evaporitic 

drawdown of the Mediterranean. The studied locations are approximately 5 km apart and 

were at or below elevations of late Messinian sea level highstands. Data collected 

included geologic mapping, 44 measured stratigraphic sections, tracing geometries on 

photomosaics, petrophysical analysis of 399 core plugs, and petrographic analysis of 87 

thin sections. 

 Four cyclic sequences record four relative rises and falls in sea level with 

amplitudes of 53.6-83.5 m. Sequences commonly have local basal stromatolites overlain 

by local thrombolite boundstone that is overlain by trough cross-bedded ooid grainstone, 

which grades upward to volcaniclastic-rich planar bedded ooid grainstone capped by 

fenestral ooid grainstone. At low elevations, the thrombolite boundstones are thicker and 

laterally more continuous than at higher elevations. Thrombolites that are 

stratigraphically high in sequences may be interbedded with trough cross-bedded ooid 

grainstone. 

At intermediate substrate elevations, sequences have a build-and-fill architecture, 

characterized by a relief-building phase followed by a relief-filling phase, with the 
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relatively thin sequences draping paleotopography. Microbialites dominate deposition 

during the relative sea-level rises and build topographic relief. Oolites dominate 

deposition during the relative sea-level falls and fill topographic relief. Most of the 

deposition is during the relative sea-level falls. At higher substrate elevations, close to the 

highstand position, sequences thicken and yield internal stratigraphic character that is 

inconsistent with a build-and-fill model. Apparently, the build-and-fill model requires an 

intermediate substrate elevation and non-optimal carbonate productivity during rapid sea 

level change. 

Overall, the sequences progressively show increasing diversity and more normal 

marine organisms, which may have been caused by decreasing aridity. Lithofacies of the 

La Molata area evidence more restricted conditions compared to the La 

Rellana/Ricardillo area lithofacies, likely resulting from La Molata deposits forming in a 

protected embayment.  
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INTRODUCTION 

 The Cabo de Gata volcanic province of southeastern Spain has been the focus for 

numerous studies of upper Miocene heterozoan and photozoan (reef) carbonate systems 

(Dabrio et al., 1981; Goldstein and Franseen, 1995; Whitesell, 1995; Esteban, 1996; 

Esteban et al., 1996; Franseen and Goldstein, 1996; Martin et al., 1996; Franseen et al., 

1997a; Franseen et al., 1997b; Brachert et al., 1998; Franseen et al., 1998; Brachert et al., 

2001; Martin et al., 2003; Toomey, 2003; Dillett, 2004; Martin et al., 2004; Johnson et 

al., 2005; Dvoretsky, 2009). Most previous studies in the Cabo de Gata region have 

described general stratigraphic relationships or concentrated on the heterozoan and reef 

systems. In contrast, few studies have focused on the Terminal Carbonate Complex, a 

unit that forms the last record of Miocene basin-margin deposition. 

In the 1970’s, Esteban and collaborators defined the Terminal Carbonate 

Complex (TCC) as a distinctive upper Miocene unit distributed around the Mediterranean 

(Esteban et. al., 1979). In the study area, the TCC consists of four topography-draping 

sequences composed of oolite, microbialite (thrombolite and stromatolite), and minor 

coralgal reefs, deposited in association with high-amplitude cyclic glacioeustacy and 

evaporitic drawdown of the Mediterranean (Franseen et al., 1993; Goldstein and 

Franseen, 1995; Franseen et. al., 1996; Franseen et al., 1998). 

A more detailed understanding of the TCC, utilizing the excellent 3-D exposures 

in the Cabo de Gata area, is warranted for several reasons. Oolites are important 

reservoirs for oil and gas throughout the world (Honda et. al., 1989; Marcal et. al., 1998; 

Al Suwaidi et. al., 2000; Bishop, 2000; Davies et. al., 2000; Al Saad and Sadooni, 2001 
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Llinas, 2002; 2003; Qi and Carr, 2003; Holail et. al., 2006). Microbialite reservoirs have 

been large producers in the past (Hitzman, 1996; Tucker, 1997; Mancini et al., 1998, 

2004, 2008; Mancini and Parcell, 2001; Heydari and Baria, 2005; Buchheim, 2009) and 

have received renewed interest with recent discoveries in the Santos basin, offshore 

Brazil. Microbialite and oolite assemblages are commonly deposited together with 

complex facies geometries and distributions both in the ancient (Riding et al., 1991; Sami 

and James, 1994; Braga et al., 1995; Aurell and Badenas, 1997; Feldman and McKenzie, 

1997; Mancini et al., 1998, 2004, 2008; Grotzinger et al., 2000; Mancini and Parcell, 

2001; Adams et al., 2004, 2005; Batten et al., 2004; Heydari and Baria, 2005) and in the 

modern (Feldman and McKenzie, 1998; Reid et al., 2003; Planavsky and Ginsburg, 

2009).  Therefore, the TCC can provide a useful outcrop analog for better understanding 

similar reservoir systems. 

Similar to the TCC, many other oolite and microbialite-oolite systems formed 

during times of high-amplitude rises and falls in sea level. As demonstrated by (Franseen 

et al., 1993; Franseen et al. 1997a; Franseen and Goldstein, 2004; Franseen and 

Goldstein, 2007) the TCC sequences have sequence-stratigraphic characteristics (i.e. 

stratal and sequence geometries, lithofacies distributions) that are at least partially 

dependent on the interaction between substrate paleotopography and relative sea-level 

history. Therefore, detailed studies will lead to a better understanding of the depositional 

controls on oolite-microbialite systems at differing substrate elevations as sea level rises 

and falls, and can aid in refining sequence stratigraphic models for such systems. 

Specifically, carbonate sequence stratigraphic models (Read, 1985; Handford and 

Loucks, 1993) make excellent predictions for facies expected in highstand and lowstand 
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positions. Sequence stratigraphic models have not been worked out effectively for 

intermediate substrate elevations, however. Franseen and Goldstein (2004) hypothesized 

that carbonate systems characterized by rapid sea-level fluctuations and non-optimal 

carbonate productivity had a significant area, intermediate between highstand and 

lowstand positions, that developed sequences with special characteristics that they termed 

build-and-fill sequences. A build-and-fill sequence is characterized by the following: 

either entirely a carbonate, or mixed carbonate-siliciclastic sequence; laterally extensive 

in distribution, but thin compared to amplitude of sea level change, and typically of even 

thickness; tends to drape paleotopography as an entire unit; is capped by a surface of 

subaerial exposure; has a topographic-relief-building phase; has a topographic-relief-

filling phase (Franseen and Goldstein, 2004). Paleotopography and sea level change seem 

to be primary controls on the development of build-and-fill sequences (McKirahan et. al., 

2003), although non-optimal carbonate productivity is now also thought to be a primary 

control (Franseen and Goldstein, 2007). Previous work on the TCC by Franseen and 

Goldstein, (2004) hypothesized a build-and-fill motif. 

A goal of my study is to test the build-and-fill hypothesis by evaluating how 

substrate elevation, relative sea level, paleotopographic, and paleogeographic conditions 

control sequence stratigraphic characteristics of the TCC at two field locations within the 

Cabo de Gata volcanic province of southeast Spain; La Molata and La Rellana/Ricardillo. 

GEOLOGIC SETTING 

 The La Molata and La Rellana/Ricardillo field areas are located in the 

northeastern portion of the Cabo de Gata volcanic province in southeastern Spain (Figure 
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1). The Betic Mountains to the northwest of the Cabo de Gata region formed during 

Alpine orogenesis and the volcanic highs in the Cabo de Gata region resulted from 

Neogene volcanic activity associated with transtension between the African and Iberian 

plates (Rehault et al., 1985; Sanz de Galdeano and Vera, 1992). The Neogene volcanic 

basement of the Cabo de Gata region is separated from the Mesozoic-Paleozoic 

metamorphic basement of the Betic range by the Carboneras fault, a major sinistral 

strike-slip fault system, to the northwest (Platt and Vissers, 1989; Montenant and Ott 

d'Estevou, 1990; Fernandez-Soler, 2001; Martin et al., 2003). The Neogene calc-alkaline 

volcanics that floor the Cabo de Gata region have been dated at 17 Ma to 6 Ma (Lopez-

Ruiz and Rodriguez-Badiola, 1980; Serrano, 1992). The middle to late Miocene of the 

Cabo de Gata region was characterized by an archipelago of emergent highs and small 

submarine basins with interconnected straits and passageways formed through erosion 

and faulting of the volcanics (Esteban, 1979; Esteban and Giner, 1980; Sanz de Galdeano 

and Vera, 1992; Esteban, 1996; Franseen and Goldstein, 1996; Franseen et al., 1998). 

Heterozoan carbonate associations followed by photozoan carbonate associations, and 

finally TCC (Figure 2) were deposited on the flanks of the Neogene volcanic highs in the 

middle and late Miocene and have been the focus of numerous studies (Dabrio et al., 

1981; Goldstein and Franseen, 1995; Whitesell, 1995; Esteban, 1996; Esteban et al., 

1996; Franseen and Goldstein, 1996; Martin et al., 1996; Franseen et al., 1997a; Franseen 

et al., 1997b; Brachert et al., 1998; Franseen et al., 1998; Brachert et al., 2001; Martin et 

al., 2003; Toomey, 2003; Dillett, 2004; Martin et al., 2004; Johnson et al., 2005; 

Dvoretsky, 2009). 
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Figure 1: A. Location map of Neogene basins within the Betic Cordillera of southern Spain. Red Box 
outlines the Cabo de Gata volcanic province. Modified from: Gibbons and Moreno, 2003. B. Generalized 
geologic map of the Cabo de Gata region and location of the La Molata and La Rellana/Ricardillo field 
areas with the Carboneras fault to the west. Modified from: Dvoretsky (2009). 
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Figure 2: General stratigraphy for Miocene carbonates in the Las Negras area. 
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An interbedded volcanic unit within the lower sequence (DS1A) of the Las Negras area 

gives an Ar/Ar date of 8.5 ± 0.1 Ma, thereby indicating a Tortonian age for earliest 

carbonate deposition in the area (Franseen et al., 1997a; Franseen et al., 1998). That 

radiometric date, integrated with biostratigraphy and magnetostratigraphy, provides a 

detailed chronostratigraphy for the entire section in the Las Negras area and indicates that 

sequences developed during Tortonian and Messinian time. On the basis of 

chronostratigraphy developed by Franseen et al. (1998) for the Las Negras area, and work 

of others, the TCC is approximately 5.8-5.3 MA in age and closely associated with the 

“Messinian Salinity Crisis”. 

During the Messinian of the Mediterranean Sea, Hsu et al. (1973, 1977) proposed 

a salinity crisis in the Mediterranean basin that led to thick evaporite deposition (Lower 

and Upper Evaporite Units) in the basins around the Mediterranean (Dronkert, 1976; 

Montadert, 1978; Esteban, 1979; Esteban and Giner, 1980; Dabrio et al., 1981; Riding et 

al., 1991; Rouchy and Saint Martin, 1992; Braga et al., 1995). The TCC was deposited on 

highs around the Mediterranean in shallow seas after, and possibly during, late stages of 

evaporite deposition in the adjacent basins. The TCC has been interpreted as the 

landward equivalent of the Upper Evaporite deposits during the Messinian based on 

stratigraphic relations, lack of diverse biota, and possible evaporitic molds within 

stromatolites (Montadert, 1978; Esteban, 1979; Esteban and Giner, 1980, Dabrio et al., 

1981; Rouchy and Saint Martin, 1992; Martin and Braga, 1994). A cyclic nature has been 

identified within the Upper Evaporitic deposits throughout the Mediterranean (Dronkert, 

1976; Valles Roca, 1986; Rouchy and Saint Martin, 1992). 
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 Detailed studies of the Miocene carbonate outcrops from the Las Negras area 

(Esteban and Giner, 1980; Franseen and Mankiewicz, 1991; Franseen et al., 1993; 

Franseen and Goldstein, 1996; Franseen et al., 1997a; Franseen et al., 1998; Toomey, 

2003; Johnson et al., 2005) , the Nijar basin (Dabrio et al., 1981; Mankiewicz, 1996), the 

Agua Amarga basin (Franseen et al., 1997b; Dvoretsky, 2009), and the Carboneras basin 

(Dillett, 2004) indicate that little deformation has affected the majority of carbonate strata 

in these areas and that paleotopography is largely preserved. Several studies, however, 

have documented pre-Messinian tectonic deformation in basins of southeastern Spain 

(Braga and Martin, 1988; Calvo et al., 1994; Cornee et al., 1994; Martin and Braga, 1994; 

Martin et al., 1996). It is generally accepted that during the Pliocene, uplift of the Betic 

Cordillera occurred with the interior parts of southeastern Spain uplifted more than the 

coastal regions (Sanz de Galdeano and Vera, 1992). In the Las Negras area, previous 

studies have shown that time-equivalent sequence boundaries are found at consistent 

elevations, there are no angular unconformities in the Messinian, numerous types of 

geopetal fabrics throughout the entire section are consistent with modern up direction, 

and most faults that cut across the Messinian carbonates have a maximum displacement 

of only a few meters (Esteban and Giner, 1980; Franseen and Mankiewicz, 1991; 

Franseen et al., 1993). 

 A regionally significant subaerial exposure surface (SB5 for the Las Negras area 

(Goldstein and Franseen, 1995)) overlies and erosionally truncates (estimated at 10’s of 

meters) the DS3 unit (Reef Complex) of Franseen and Mankiewicz (1991), that formed 

the surface paleotopography for deposition of the TCC (Franseen et al., 1996). Evidence 

for subaerial exposure is well documented in previous studies and includes chalkification, 
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autoclastic brecciation, micritization, rhizoliths, laminated crusts, possible soil 

development, caliche, vertical fissures, circumgranular cracks, meniscus cements, and 

fenestrae (Esteban and Giner, 1980; Dabrio et al. 1981; Franseen and Mankiewicz, 1991; 

Whitesell, 1995; Franseen et al., 1996). In general, the resulting surface dips gently 

seaward and exhibits an irregular, hummocky morphology that likely reflects the local 

resistant lithologies below (Dabrio et al., 1981). In some instances, the surface 

morphology reflects marine terracing with wave cut notches (Dabrio et al., 1981). 

Two field areas, 5 km apart, were studied in the Las Negras area. The La Molata 

field area includes the TCC outcrop on the top of an isolated hill, 0.86 by 0.43 km, on the 

eastern side of the Rodalquilar caldera (Arribas Jr. et al., 1995) with volcanic highs to the 

south, west, and north, and the Mediterranean Sea to the east (Figure 3). The Miocene 

carbonates unconformably overlie the volcanic basement rocks of La Molata. The TCC 

on La Molata ranges in thickness from 4–28.2 m and drapes and onlaps 33 m of relief, as 

traced laterally over the unconformity at its base. Previous studies of upper Miocene 

carbonates at La Molata identified cyclic sequences composed of stromatolite, 

thrombolite, oolite lithofacies (Franseen et al., 1993; Whitesell, 1995). Franseen et al. 

(1993) and Whitesell (1995) identified evidence for subaerial exposure at the top of 

sequences in the form of fenestral fabric, alveolar textures, rhizoliths, caliche-coated 

grains, micritized grains, fissures, truncated grains, laminated crusts, meniscus and 

pendant micrite cements. 
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Figure 3: Topographic and paleogeographic map for the studied field areas. The La Molata field area is 
0.86 X 0.43 km and encompasses the majority of TCC deposition in the area. Lowest elevation of the TCC 
is at 175 meters above present-day sea level.  The basal unconformity climbs from that elevation to 208 m 
elevation. The highest exposure of the TCC crops out at 234 m elevation. La Molata is located on the 
northeastern margin of the Rodalquilar Caldera and surrounded by volcanic highs to the north, west, 
southwest, south, and southeast, with the Mediterranean Sea to the east. The caldera and volcanic highs 
surrounding La Molata created an embayment that protected the area, assuming east-southeast-directed 
swells. This caused marine conditions within the embayment to be more restricted. The La 
Rellana/Ricardillo field area encompasses an elongate area, 1.63 km long and 0.93 km at its widest point. 
The basal TCC surface crops out between 181 m and 257 m elevation with the highest TCC outcrop at 269 
m elevation. Volcanic highs are to the northwest and west. The Agua Amarga basin is to the north with the 
Mediterranean Sea to the south and east. The La Rellana/Ricardillo field area is open to the east and north. 
This provided good connection with the main Mediterranean basin and direct exposure to a possible swell 
from the east-northeast. It also meant that the area would encounter the highest wave energy from the east-
southeast currents. Modified from Mapa Excursionis Y Turistico: Cabo de Gata Nijar Parque Natural; 
Rodalquilar Caldera location after Arribas et al., (1995); Dominant swell direction from modern 
Mediterranean (Lionello and Sanna, 2005). 
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Cerro de Ricardillo is a dacitic volcanic dome that rises to more than 300 m in 

elevation (Fernandez-Soler, 1996). Miocene carbonates were deposited on its flanks and 

unconformably overlie the volcanic basement. The La Rellana/Ricardillo field area 

encompasses an elongate area, 1.63 km long and 0.93 km at its widest point. The TCC at 

La Rellana/Ricardillo ranges in thickness from 3.5–21.1 m and drapes and onlaps 76 m of 

paleotopographic relief as traced laterally along its basal unconformity. Volcanic highs 

are to the northwest and west of La Rellana/Ricardillo and the Mediterranean to the south 

and east (Figure 3). Toomey (2003) identified stromatolites, oolites, and Porites patch 

reefs in the TCC at La Rellana/Ricardillo. 

METHODOLOGY 

 Field work was conducted on La Molata and La Rellana/Ricardillo from May to 

July in the summer of 2007 and consisted of measuring stratigraphic sections, mapping 

surfaces, lithofacies, and geometries on photomosaics, and collecting hand samples for 

core plug petrophysical and petrographic analysis. 

Fifteen stratigraphic sections at La Molata and twenty-nine at La 

Rellana/Ricardillo provide a detailed 3D lithofacies framework for the TCC (Appendix 

I). The distribution of stratigraphic sections was based on the quality of exposure, 

accessibility of the outcrop, and spacing between sections. Contacts, lithofacies, and 

geometries were physically traced out in the field when possible or correlated with 

photomosaics (Appendix II). Approximately 450 hand samples were collected to 

represent the designated lithofacies, and for core plug and petrographic analysis. From 

the 450 hand samples, 399 core plugs were taken with 1 inch diameter and lengths 
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varying from 0.5-2 inches. The plugs were calibrated at the Kansas Geological Survey 

and sent to CoreLabs for Helium porosity, air and liquid permeability, and grain density 

measurements (Appendix III). Eighty-seven thin sections were made from the hand 

samples and core plugs for petrographic analysis. The majority of the thin sections were 

made by Spectrum Petrographics, Inc. with the minority being made at the University of 

Kansas by Wayne Dickerson. The thin sections were studied at the University of Kansas 

using a petrographic microscope. (Appendix IV). 

PALEOTOPOGRAPHY 

 Data for paleotopographic reconstruction of the basement surface of TCC 

deposition (TCC/DS3 contact) included physically tracing and mapping the surface on 

photomosaics, marking the contact on a topographic map using a Brunton compass, and 

collecting UTM coordinates using a hand-held GPS unit. These data were brought into 

Petrel™ within wells created from the 44 measured stratigraphic sections and 125 pseudo 

wells created from the photomosaics, topographic maps, and recorded UTM coordinates. 

Stratigraphic picks were made and correlated for the wells on the TCC/DS3, contact and 

a surface was created from the picks using a convergent interpolation algorithm. 

On La Molata, three possible normal faults cut through the TCC and represent the 

extent of deformation in the area (Appendix V). The largest of the three is found east of 

the central high and can be identified from both the southern and northern sides of the 

hill. The strata are offset by approximately 5 meters and dips of beds increase, locally 

about 20 degrees immediately near the fault. On the south side of the hill there is a 

possible fault that offsets the strata approximately 1.5 meters. The north side has a 
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possible fault with approximately 1 meter of offset. La Rellana/Ricardillo has three 

possible normal faults with two on the south end of La Rellana and one on the 

southwestern end of Cerro de Ricardillo. These faults represent the extent of deformation 

involving TCC strata in the area (Appendix VI). The larger of the two faults at La 

Rellana offsets the strata by just less than 7 meters. The smaller of the two faults offsets 

the strata by less than 4 meters and may affect the dips of the beds near the fault. On 

Cerro de Ricardillo, the possible normal fault offsets the strata by approximately 4 

meters. All the faults in the field areas are post-TCC deposition and were ignored when 

reconstructing the paleotopography for the field areas. 

The paleotopographic maps illustrated in Figure 4 represent the resulting surface 

elevations (in meters above present-day sea level) on top of DS3 at La Molata and La 

Rellana/Ricardillo. Small patches of TCC that may be preserved basinward of La Molata 

between 60–90 m substrate elevations were not included for this study. At La Molata, the 

paleotopographic high point is located on the northern side of the central high at 208 m 

elevation. The surface dips gently to the west, south, and east from the central high and 

averages between 2–5 degrees with local irregularities due to more or less resistant 

lithologies below (Appendix VII). The west side drops to an elevation of 201 m and the 

east side drops to 175 m. Two major paleovalleys are observed, one on the east side and 

the other on the northeast side, that affected subsequent deposition of TCC lithologies 

(Figure 4A). 

 The paleotopographic high point for the La Rellana/Ricardillo field area is at 257 

m elevation in the northwest portion of the Cerro de Ricardillo and the low point is at 181 
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m elevation near the southern margin of La Rellana. In general, the surface dips gently 

(1-9 degrees commonly) from the high to the east and southeast on Cerro de Ricardillo 

(Appendix VIII). In the La Rellana area, the surface dips gently (1-6 degrees commonly) 

to the south and southeast with dips becoming steeper (up to 11 degrees) south of the 

pronounced break in slope at the southern margin (Appendix VIII). Three paleovalleys 

observed in the La Rellana/Ricardillo field area affected subsequent TCC deposition 

(Figure 4B). One paleovalley is in the southwest portion of Cerro de Ricardillo and two at 

La Rellana, one in the central portion and one near the southern margin. 

Interpretation 

 The surface paleotopography that the TCC was deposited on was sculpted by 

subaerial erosion. Reef buttresses within the DS3 unit are locally immediately below the 

TCC basal surface. The erosion surface is locally higher in sections Mol N5 and Rell 04, 

where reef buttresses are located. The less resistant DS3 lithologies are on all sides of the 

buttresses. As the reefs form paleohighs on the surface, those paleohighs likely result 

from the reefal facies’ greater resistance to subaerial erosion than other facies. The 

paleovalleys on the surface likely preserve the paleodrainage system formed during 

subaerial exposure. 

LITHOFACIES 

 As indicated previously, the TCC consists of four cyclic sequences that are 

designated herein as Sequence 1, Sequence 2, Sequence 3, and Sequence 4. Each 

sequence consists of lithofacies that, in general, are repetitive in a vertical sense from the 

base to the top of each sequence, but show differences especially in relation to elevation. 
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Figures 5 and 6 show the generalized stratigraphy for the TCC at the La Molata and La 

Rellana/Ricardillo field areas in relation to elevation. For low elevations, a typical 

sequence has local basal stromatolites overlain by local thrombolite boundstone, that 

upward, becomes interbedded with and eventually overlain by trough cross-bedded ooid 

grainstone. Trough cross-bedded ooid grainstone grades upward to volcaniclastic-rich 

planar bedded ooid grainstone that is capped by fenestral ooid grainstone. For high 

elevations, a typical sequence has local basal stromatolites overlain by local thrombolite 

boundstone that is overlain by trough cross-bedded ooid grainstone. Where stromatolites 

and thrombolite boundstone are absent, trough cross-bedded ooid grainstone is the basal 

lithofacies. Trough cross-bedded ooid grainstone grades upward to volcaniclastic-rich 

planar bedded ooid grainstone that is capped by fenestral ooid grainstone. 

Trough Cross-bedded Ooid Grainstone 

The trough cross-bedded ooid grainstone (Table 1; Appendix IX) is volumetrically the 

most abundant lithofacies at both field areas, and accumulations range in thickness from 

0.66-11.1 m (thickest in Sequence 3). The lithofacies is present in all the sequences at 

both locations. Master bedding is on the meter-scale and drapes or onlaps, 

paleotopography. The trough cross-beds (Figure 7A) are meter-scale (commonly < 2 m 

wide) and the cross-stratification is very thinly bedded. Ooids are the predominant grain 

type, ranging between 80-99 percent. The amount of skeletal grains and volcaniclastic 

grains vary between sequences and field locations. Dominant skeletal grains are 

gastropods and bivalves, with lesser amounts of benthic forams and serpulid worms. 

Skeletal grains are highly abraded, and commonly preserved as fragments with 
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Figure 5: La Molata TCC general stratigraphy and lithofacies distributions in relation to elevation. 
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Figure 6: La Rellana/Ricardillo general stratigraphy and lithofacies distribution in relation to elevation. 
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Lithofacies 
Classification 

Key 
features 

Characteristic grain types Prominent structures, 
bedding, and thickness 

Depositional 
environment 

Trough cross-
bedded ooid 
grainstone  

Trough 
cross-beds 

80-99% ooids (0.4-0.8 mm), 
gastropods (20-90% in 
interbeds), bivalves (5-15% in 
interbeds), serpulid worms (35-
95% in interbeds) 

Troughs generally 
oriented N-S or S-N; S1 
interbeds 1-3 cm thick; 
unit thickness 0.66-11.1 
m 

High energy, 
< 10 m water 
depth, 
shoreface 
beach envir. 

Bioturbate ooid 
grainstone  

Dis-
continuous 
laminations 
and burrows 

80-99% ooids (0.15-0.75 mm), 
gastropods (20-60% interbeds), 
bivalves (10-20 % interbeds), 
serpulid worms (10-95% 
interbeds) 

Common discontinuous 
laminae; interbeds 
commonly 1-4 cm; 
common burrows; unit 
thickness 0.2-1.4 m 

Low-
moderate 
energy, 
offshore 
envir. > 10 m 

Planar bedded 
ooid grainstone 
 

Planar beds; 
<5% 
volcani-
clastic 
grains 

81-99% ooids (.2-1.2 mm), 
gastropods (1-10% interbeds), 
bivalves (5-15% interbeds), 
serpulid worms (45-95% 
interbeds), 0-5% volc. grains 

Decimeter-scale planar 
beds shallowly dip 1-11 
degrees; alternating 
coarser/finer very thin 
beds; unit thickness 0.28-
0.93 m; fenestrae 

Moderate-
high energy, 
< 2 m water 
depth, 
foreshore 
beach envir. 

Massive ooid 
grainstone  

Lack of 
bedding 

79-99% ooids (0.15-2 mm, 
pisoids up to 3mm), bivalves, 
gastropods, serpulid worms 

Common burrows; larger 
grain sizes; poorer 
sorting; unit thickness 
0.83-2.11 m 

Low-
moderate 
energy, > 10 
m depth 

Volcaniclastic-
rich planar 
bedded ooid 
grainstone  

Planar beds; 
>5% 
volcani-
clastic 
grains 

75-95% ooids (0.16-1.2 mm), 5-
16% volc. grains (0.4-12 mm) 

Decimeter-scale planar 
beds shallowly dip 2-7 
degrees, fenestrae high in 
section, unit thickness 
0.24-3.1 m 

Moderate-
high energy, 
< 3 m depth, 
foreshore 
beach envir. 

Fenestral ooid 
grainstone  

Dominant 
fenestral 
fabric 

75-99% ooids (0.2-1.1 mm), 
volc. grains 

Fenestrae; rhizoliths; 
meniscus cements; unit 
thickness 0.1-0.4 m 

Subaerial 
exposure 

Cross-bedded 
oolitic 
gastropod 
grainstone 

Abundant 
gastropods; 
cross-
stratification 

Ooids, 17-72% (commonly 30-
60%) gastropods, peloids 

Tabular cross-beds; 
possible microbial 
influence, unit thickness 
0.47-1.3 m 

Moderate-
high energy, 
shallow, 
near-shore 
envir. 

Trough cross-
bedded ooid 
bivalve 
grainstone  

Abundant 
bivalves; 
trough 
cross-beds 

50-75% ooids (0.15-0.65 mm), 
15-30% (up to 90 locally at 
base) bivalves, 4-12% volc. 
grains 

Trough cross-beds; 
interbedded with 
thrombolite boundstone; 
unit thickness 0.71-5.2 m 

High energy, 
< 10m water 
depth, near-
shore envir. 

Thrombolite 
boundstone 

Dark clotted 
texture 

Commonly 15-60% peloids, 
gastropods, bivalves, ooids, calc. 
red algae, serpulid worms 

Clotted texture made of 
peloids; unit thickness 
0.27-5 m 

High energy, 
shallow, 
near-shore 
envir. 

Stromatolite Fine planar 
laminae; 
rare digitate 
(S4); micrite 

Up to 60% peloids, ooids, 5-15% 
volc. grains 

Finely laminated; clotted 
texture; alternating 
coarser/finer laminae; 
unit thickness 0.05-0.7 m 

Low-high 
energy; 
shallow near-
shore envir. 

Porites 
boundstone 

Abundant 
Porites; 
micrite 

Porites, gastropods, bivalves, 
serpulid worms, ooids, calc. red 
algae, clionid sponges, peloids 

Massive coral heads 1-3 
m wide and 2-3 m thick; 
unit thickness 0.64-6.2 m 

High energy, 
<10 m water 
depth 

Table 1: Summary chart of diagnostic features for lithofacies within the study areas. Detailed lithofacies 
constituents are found in Appendix IX. Grain types are listed in order of abundance. Sx=Sequence X, 
volc.=volcaniclastic, calc.=calcareous, envir.=environment
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Figure 7: Trough cross-bedded ooid grainstone photographs and photomicrograph. Hammer is 32 cm 
long and field scale is marked in centimeter increments with black and white bars. Scale for 
photomicrograph is in the right corner and is 1 mm. A. Troughs are the characteristic feature of the 
lithofacies and are commonly on the meter-scale. B. Tabular cross-stratification is more common higher in 
section of the sequences. C. Trough cross-bedded ooid grainstone laps out against thrombolite boundstone 
that is stratigraphically lower. The contact is sharp and locally erosive. D. Photomicrograph showing the 
common oomolds within the lithofacies. Ooids are commonly 0.4-0.8 mm in size. Benthic forams 
(Quinqueloculina and Spiroloculina) are rare to common within the lithofacies. 
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 rare whole grains. Volcaniclastic grains range from rare to common and peloids are rare. 

The grains are well sorted. In Sequence 1 of both field areas, very thin interbeds average 

1-3 cm in thickness and contain greater concentrations of gastropods, bivalves, and 

serpulid worm fragments. In Sequences 2 and 3 of La Rellana/Ricardillo, skeletal grains 

are more common than at La Molata. Sequence 3 at La Rellana/Ricardillo commonly has 

burrows. 

Interpretation 

Modern ooids are generally deposited in high-energy environments in water 

depths less than 10 m, with the most significant ooid generation occurring in 2 m or less 

water depth (Ball, 1967; Loreau and Purser, 1973; Hine, 1977; Flugel, 1982; Harris, 

1983; Lloyd et al., 1987; Tucker and Wright, 1990; Burchette and Wright, 1992; Major et 

al., 1996). Trough cross beds are a common sedimentary structure above fair-weather 

wave base (Burchette and Wright, 1992; Boggs, 1995; Wright and Burchette, 1996). In 

the modern Mediterranean, fair-weather wave base commonly does not reach below 8 m 

water depth (Fornos and Ahr, 1997). The modern is the best analog for the Mediterranean 

during the Miocene and fair-weather wave base was likely at a similar water depth. The 

lack of mud, abundant ooids, highly abraded grains, and good sorting indicate that the 

lithofacies was deposited in high energy conditions. Trough cross-beds are common in 

the shoreface of beach environments and oolitic coatings are commonly thickest in the 

shoreface (Inden and Moore, 1983). At La Rellana/Ricardillo, Sequence 1 has common 

tabular cross-beds and trough cross-beds that scour into lower beds. Within the cross-
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stratification, alternating coarser and finer very thin beds are similar to features described 

by Inden and Moore (1983) that indicate deposition in a beach environment. 

Given these characteristics, as well as the fact that the volcaniclastic-rich planar 

bedded ooid grainstone lithofacies is the updip equivalent, this lithofacies is interpreted to 

have been deposited in the shoreface of a beach environment within fair-weather wave-

base (likely less than 10 m) (Inden and Moore, 1983). 

Bioturbate Ooid Grainstone 

 The bioturbate ooid grainstone lithofacies (Table 1; Appendix IX) is the basal 

lithofacies in Sequence 1 at La Rellana/Ricardillo and ranges from 0.2-1.4 m in thickness. 

Laminae are common but discontinuous (Figure 8B) due to bioturbation. Ooids are the 

dominant grain type ranging between 80–99 percent. Skeletal grains include abundant 

gastropod, bivalve, and serpulid worm fragments with rare benthic forams. Skeletal 

grains are preserved whole and as fragments with moderate abrasion. Volcaniclastic 

grains and peloids are rare. The bioturbate lithofacies has 1-3 cm thick very thin interbeds 

with greater concentrations of skeletal grains, similar to the trough cross-bedded 

lithofacies of Sequence 1. The grains within the lithofacies are moderate to well sorted. 

Interpretation 

The bioturbate ooid grainstone is a downdip equivalent of the trough cross-bedded ooid 

grainstone, thereby indicating a deeper depositional environment. The planar laminations 

suggest that the ooids were transported. The abundance of ooids suggests that the ooids 

were originally formed in a nearby environment. Bioturbation suggests relatively low  
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Figure 8: Lithofacies photographs for the beach sequence in Sequence 1 at La Rellana/Ricardillo field 
area. Field scale is marked in centimeter increments with black and white bars. A. Textbook beach 
sequence with bioturbate ooid grainstone (BOG) transitioning upward to trough cross-bedded ooid 
grainstone (TCOB) and then to planar bedded ooid grainstone (POG). BOG has discontinuous laminae and 
common burrows. Very thin skeletal-rich interbeds (commonly 1-3 cm) are in all the lithofacies.  B. Closer 
view of the beach sequence showing the discontinuous laminae of the BOG, trough cross-stratification of 
the TCOG and shallowly dipping planar beds of the POG. C. All the lithofacies of the beach sequence 
contain interbeds of gastropods, bivalves, and serpulid worm fragments. This photo is from the TCOG and 
shows the alternating coarse/fine grained laminations. D. Alternating coarse/fine grained laminations in the 
BOG highlighted by darker and lighter color. 
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energy conditions below fair-weather wave base (Inden and Moore, 1983). Given the 

stratigraphic position, similar biota as in the trough cross-bedded ooid grainstone of 

Sequence 1, the abundance of ooids, lack of mud, and bioturbation, this lithofacies is 

interpreted to have been deposited in an offshore beach environment (>10 m water depth) 

with moderate to low energy conditions (Inden and Moore, 1983). 

Planar Bedded Ooid Grainstone 

 The planar bedded ooid grainstone (Table 1; Appendix IX) occurs only in 

Sequence 1 at La Rellana/Ricardillo, and ranges from 0.28-0.93 m in thickness. Planar 

beds are on the decimeter-scale and dip shallowly (1-11°) to the southeast. Ooids are the 

dominant grain type ranging between 80–99 percent. Skeletal grains include abundant 

gastropod, bivalve, and serpulid worm fragments with rare benthic forams. Skeletal 

grains are rarely preserved whole and are highly abraded. The planar bedded ooid 

grainstone lithofacies has 1-3 cm thick very thin interbeds with greater concentrations of 

serpulid worm fragments. Grains are very well to well sorted. Alternating coarser and 

finer grained very thin beds consisting of ooids and skeletal grains are common (Figure 

8C). Cross stratification is rare. Beach bubble fenestrae are rare to common, becoming 

more common stratigraphically higher in the sequence. 

Interpretation 

The planar bedded ooid grainstone is an updip equivalent of the trough cross-

bedded ooid grainstone, indicating deposition in shallower water depths. The abundance 

of ooids, lack of mud, highly abraded grains, and presence of fenestrae indicate deposited 

in shallow water depths (likely < 2 m), with moderate to high energy conditions. The 
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position upslope from trough cross bedded oolite grainstone, shallowly dipping planar 

beds (dipping towards modern Mediterranean), rare cross-beds, and alternating 

coarse/fine grained very thin interbeds, support deposition within the swash zone of a 

foreshore beach environment (Ball, 1967; Inden and Moore, 1983). 

Massive Ooid Grainstone 

 The massive ooid grainstone lithofacies (Table 1; Appendix IX) occurs only in 

Sequence 3 and ranges in thickness from 0.83-2.11 m. The lithofacies is characterized by 

lack of bedding. Faint planar laminations are rare and occur mostly at the La 

Rellana/Ricardillo field location. Burrows are common within the lithofacies. The 

massive ooid grainstone is moderately to well sorted. Ooids are the dominant grain type 

ranging between 80–99 percent. As compared to the other oolite lithofacies, the ooids are 

larger (commonly 0.6-2 mm) and some pisoids occur that are as large as 3 mm. 

Gastropod and bivalve grains are more abundant and larger in size (commonly 6-20% 

and 3-14 mm) as compared to the other oolites (Figure 9B). Serpulid worms, benthic 

forams, volcaniclastic grains, and peloids are all rare to common. Solitary corals, Porites 

boundstone, and Tarbellastrea are rare. The skeletal grains are preserved whole and as 

fragments with moderate abrasion. 

Interpretation 

The massive ooid grainstone is the downdip equivalent of the trough cross-bedded 

ooid grainstone lithofacies, thereby indicating a deeper depositional environment. The 

local preservation of faint planar laminations suggests that the ooids were transported, 

and the abundance of ooids suggests that the ooids were formed nearby. The prevalence  
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Figure 9: Lithofacies photographs and photomicrographs. Hammer is 32 cm long and field scale is 
marked in centimeter increments with black and white bars. Scales for photomicrographs are in the right 
corner and are 1 mm. A. Photograph of the massive ooid grainstone (MOG) lithofacies characterized by 
lack of bedding. Both vertical and horizontal burrows are common. B. Photomicrograph of the MOG 
lithofacies showing abundant large ooids (1.2-2.0 mm common) with some pisoids up to 3 mm. Composite 
grains and oomolds are common. C. Photograph of the volcaniclastic-rich planar bedded ooid grainstone 
(VPOG) showing the decimeter-scale, shallowly dipping planar beds. D. Photomicrograph of VPOG 
distinguished by abundance of volcaniclastic grains. E. Photograph of the fenestral ooid grainstone (FOG) 
lithofacies that locally caps sequences and is characterized by fenestral fabric. Red line marks sequence 
boundary. 
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of burrows suggests relatively low energy conditions below fair-weather wave base 

(Inden and Moore, 1983). This evidence in combination with the lack of mud and poorer 

sorting as compared to the trough cross-bedded ooid grainstone leads to the interpretation 

of deposition in a low to moderate energy environment in water depths greater than 10 m. 

Volcaniclastic-rich Planar Bedded Ooid Grainstone 

The volcaniclastic-rich planar bedded ooid grainstone lithofacies (Table 1; 

Appendix IX) ranges in thickness from 0.24-3.7 m and is present in Sequences 1, 2, and 3 

at both locations. The lithofacies is characterized by gently dipping (~2-7° average, up to 

15°) decimeter-scale planar bedding (rare cross-stratification), and greater than 5 percent 

volcaniclastic grains. Grains are moderately to very well sorted. Ooids are the dominant 

grain type ranging between 75 – 95 percent. Superficial ooids are more common than in 

the trough cross-bedded ooid grainstone lithofacies. This lithofacies contains more 

abundant and larger volcaniclastic grains (5-25% and 0.4-12 mm) than the other oolite 

lithofacies (Figure 9D). Volcaniclastic grains are also more common as cores of ooids 

than in the other oolite lithofacies. Peloids and skeletal grains, including gastropods, 

bivalves, serpulid worms and benthic forams, are rare. Volcaniclastic grains gradually 

become more abundant and larger in size stratigraphically higher in the sequences. 

Fenestrae are rare, but become more common stratigraphically higher in the sequences. 

Interpretation 

The volcaniclastic-rich planar bedded ooid grainstone is the updip equivalent of 

the trough cross-bedded ooid grainstone indicating shallower water depth for deposition 

(likely < 3 m). The greater abundance of volcaniclastic grains indicates deposition in the 
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shallowest waters in a near-shore environment. Lithofacies deposited in the shallowest 

water depths of a near-shore environment would have been nearer to the eroding, exposed 

volcanic highs. These lithofacies would be expected to have higher percentages of 

volcaniclastic grains. The shallowly dipping planar beds, planar bedding with rare cross-

bedding, greater abundance of superficial ooids, and lack of mud indicate moderate to 

high energy of deposition within the foreshore of a beach environment (Ball, 1967; Inden 

and Moore, 1983). The presence of fenestrae suggests that these may be preserved beach 

accretion beds (Inden and Moore, 1983). 

Fenestral Ooid Grainstone 

The fenestral ooid grainstone (Table 1) ranges in thickness from 0.1-0.4 m and 

locally caps the sequences. The lithofacies is characterized by a dominant fenestral fabric 

(Figure 9E). Although mostly obscured by poor outcrop, bedding appears to be 

commonly planar bedded, and cross-bedding is rare. Ooids are the dominant grain type 

ranging between 75-99 percent. Volcaniclastic grains are rare to common. Peloids and 

skeletal grains, including gastropods, bivalves, serpulid worms and benthic forams, are 

rare. The lithofacies is commonly chalky, friable, and contains abundant fenestrae near 

the stratigraphic top of the sequences with less common rhizoliths, meniscus cements, 

possible caliche pisoids, and iron-stained grains. 

Interpretation 

Fenestrae, chalkification, rhizoliths, caliche pisoids, iron-stained grains, and 

meniscus cements can all be interpreted as evidence for subaerial exposure (Esteban and 

Klappa, 1983). The abundance of fenestrae, common planar bedding with rare cross-
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stratification, and lack of mud indicate deposition in the immediate foreshore and 

possible backshore of a beach environment (Ball, 1967; Inden and Moore, 1983). The 

lithofacies is interpreted to be the result of deposition in a beach environment followed by 

alteration during subaerial exposure. 

Cross-bedded Oolitic Gastropod Grainstone 

 The cross-bedded oolitic gastropod grainstone (Table 1; Appendix IX) ranges in 

thickness from 0.47-1.3 m and only occurs in Sequence 4 at La Molata. Tabular cross-

beds are dominant with trough cross-beds less common. Cross-bedding is on the 

decimeter scale. The lithofacies is characterized by the abundance of gastropod grains 

(commonly 30-60%). The gastropods are preserved whole and are moderately abraded 

with < 5% having oolitic coatings. Ooids are abundant and peloids are common. In thin 

section, a clotted texture composed of peloids makes up portions of the lithofacies. 

Interpretation 

The cross-bedded oolitic gastropod grainstone is interbedded with thrombolite 

boundstone. The clotted peloidal texture is interpreted to result from microbial influence, 

which is also supported by the close relationship with thrombolite boundstone. The cross-

stratification and abundant ooids, suggest deposition in shallow water depths (< 10 m) 

with moderate to high energy (Ball, 1967; Inden and Moore, 1983). However, the 

associated thrombolite boundstone, which formed bioherms, may have acted to focus 

current energy between bioherms and resulted in increased energy in water depths greater 

than 10 m. The greater abundance of gastropod grains without oolitic coatings and lesser 

amount of ooids as compared to the other oolite lithofacies may indicate that these grains 
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were transported from shallower water. Therefore, the cross-bedded oolitic gastropod 

grainstone is interpreted to have been deposited in water depths of 10 m or more. 

Trough Cross-bedded Ooid Bivalve Grainstone 

 The trough cross-bedded ooid bivalve grainstone (Table 1; Appendix IX) ranges 

in thickness from 0.71-5.2 m, with the thickest accumulations occurring at the highest 

elevations of La Rellana/Ricardillo, and only occurs in Sequence 2. Master bedding 

thickness is on the meter-scale. The trough cross-beds are meter-scaled (commonly <2 m) 

(Figure 10A). Overall, ooids are the most abundant grain type averaging between 50 – 75 

percent. Bivalves, which characterize this lithofacies (average between 15-30%), are 

more abundant and usually larger (0.5-20 mm) stratigraphically lower in the sequence, 

and can make up 90% of the grains within the lithofacies. The bivalves are commonly 

preserved as individual valves and are moderately abraded. Volcaniclastic grains are 

common, more abundant than in other cross-bedded oolite lithofacies, and are higher in 

concentration stratigraphically lower in the sequence (4-12%). The volcaniclastic grains 

are also more common as cores of ooids than in other cross-bedded oolite lithofacies. 

Gastropods and peloids are rare. 

Interpretation 

The trough-cross beds, lack of mud, abundance of ooids, and thick oolitic coats on 

the grains indicate high-energy and shallow water depths (< 10 m) for deposition (Ball, 

1967; Inden and Moore, 1983). The abundance of volcaniclastic grains as cores for ooids 

and as grains indicates deposition in shallow water depths in a near-shore environment. 

The moderate abrasion of the bivalves suggests deposition outside of the highest energy  
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Figure 10: Lithofacies photographs and photomicrographs. Hammer is 32 cm long and field scale is 
marked in centimeter increments with black and white bars. Scales for photomicrographs are in the right 
corner and are 1 mm. A. Photograph of the trough cross-bedded ooid bivalve grainstone (TCOBG) 
characterized by abundance of bivalves showing meter-scale troughs. B. Photograph of the thrombolite 
boundstone lithofacies. This photo shows the thrombolite boundstone interbedded with TCOG in Sequence 
2 on the west side of La Molata. Dark clots and the morphology allow for identification. C. 
Photomicrograph of a dense thrombolite boundstone (Td) showing peloids and ooids within the peloidal 
clotted matrix. D. Photomicrograph of a vuggy thrombolite (Tv) showing the clotted texture and great 
abundance of vugs. E. Photomicrograph of the stromatolite lithofacies showing fine laminae alternating 
with coarse laminae consisting of common volcaniclastic grains and fenestrae. F. Photograph of finely 
planar laminar stromatolite of Sequence 4 becoming digitate upward. G. Photograph of the Porites 
boundstone lithofacies taken from the lowest elevations of La Rellana where the lithofacies is laterally 
extensive and thick. Massive coral heads consisting dominantly of Porites commonly range from 1-3 m 
wide and 2-3 m thick. 
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of the near-shore environment. 

Thrombolite boundstone 

 The thrombolite boundstone (Table 1; Appendix IX) ranges in thickness from 

 0.27-5 m, with thickest accumulations occurring at low elevations. It is present in 

Sequences 1, 2, 3, and 4 at La Molata and Sequences 2 and 4 at La Rellana/Ricardillo.  

This lithofacies is subdivided into two subfacies on the basis of texture: 1) dense 

thrombolite boundstone (Td), characterized by approximately < 15 percent vugs; and 2) 

vuggy thrombolite boundstone (Tv), characterized by approximately > 15 percent vugs. 

There has yet to be a rationale identified for why and where vugs are more abundant, so 

for the purpose of this study the Td and Tv are lumped together for stratigraphic 

documentation in later portions of this report. The thrombolite boundstone lithofacies 

builds topographic relief. At the low elevations, the lithofacies is laterally extensive (6 m 

to up to 10s of m) and thickest (up to 5 m) stratigraphically low in the sequences. At the 

lowest elevations, the thrombolite boundstone is locally laterally extensive (<1 m up to 

10s of m) and is <2 m in thickness stratigraphically high in the sequences. At high 

elevations, the lithofacies becomes isolated bioherms (1-2 m wide) and thinner 

(commonly <2 m). A dark clotted texture characterizes this lithofacies; it is observable in 

the field and confirmed as clotted (peloids) texture in thin section (Figure 10B, C, D). 

This lithofacies consists of varying amounts of gastropod, bivalve, serpulid worm 

fragments, calcareous red algae, benthic forams, ooids, and peloids; rare volcaniclastic 

grains, Porites, Tarbellastrea, and solitary corals occur. Corals occur only in Sequence 3. 

Calcareous red algae are more abundant in thrombolite boundstone of Sequence 2 at La 
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Molata. Serpulid worm fragments are most abundant in the thrombolite boundstone of 

Sequence 4.  

Interpretation 

Previous studies on thrombolites, and similarly termed microbialites, worldwide 

and across many geologic time periods, have interpreted them to be deposited over a vast 

variety of depths. Interpreted depths of formation have proven hard to constrain, with 

estimates ranging from relatively deep waters (between 50-200 m) to shallow water 

depths (< 10 m), (Braga et al., 1995; Mancini et al., 1998; Grotzinger et al., 2000; 

Mancini and Parcell, 2001; Whalen et al. 2002; Adams et al., 2004; Batten et al., 2004; 

Mancini et al., 2004; Adams et al., 2005; Heydari and Baria, 2005; Mancini et al., 2008; 

Planavsky and Ginsburg, 2009).  

For my study, the occurrence of thrombolite boundstones in association with other 

lithofacies provides some constraints. Where thrombolite boundstone is interbedded with 

the ooid grainstones, a depth of less than 10 m is interpreted. Other occurrences are more 

difficult to constrain, such as where thrombolite boundstone is stratigraphically low in 

sequences. In these occurrences, the inclusion of miliolid forams and ooids in the clotted 

matrix suggests nearby shallow water environments. In addition, the association of many 

thrombolite boundstones with high energy lithofacies, such as trough cross-bedded ooid 

grainstone, trough cross-bedded ooid bivalve grainstone, and cross-bedded oolitic 

gastropod grainstone, suggests a high energy environment for the thrombolites. The 

diverse faunal assemblage included in many of the thrombolite boundstones indicates 

relatively normal marine conditions. 
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Stromatolite 

 The stromatolite lithofacies (Table 1; Appendix IX) ranges from 0.05-0.7 m in 

thickness and is almost exclusively deposited as the basal lithofacies of sequences. 

Stromatolites also occur within the Porites boundstone lithofacies and are rarely found 

within the thrombolite boundstone lithofacies. The lithofacies is very finely laminated 

with a peloidal and clotted texture (Figure 10E). The lamination commonly alternates 

with finer and coarser grains. Stromatolites predominantly consist of abundant micrite 

and peloids with common volcaniclastic grains; rarely, ooids are the dominant grain type. 

At high elevations in Sequence 2, the stromatolites are thicker (0.2-0.7 m) and consist of 

abundant ooid grains. In Sequence 4, the stromatolites become digitate in morphology 

stratigraphically higher in the section (Figure 10F). 

Interpretation 

Stromatolite morphology is affected primarily by environmental factors such as 

water depth, current energy, sediment influx, and lithification (Grotzinger and Knoll, 

1999). The fine planar laminations, abundance of peloids, micrite, and volcaniclastic 

grains, indicates the finely planar laminated micritic peloidal stromatolite was deposited 

in shallow water (<10 m), low energy environments (Hoffman, 1976). The planar 

laminations, abundance of ooids, peloids, micrite, and volcaniclastic grains indicates the 

planar laminated oolitic stromatolite was deposited in shallow water (<10 m) with 

moderate to high energy (Hoffman, 1976). The change from fine planar laminated 

stromatolite to digitate stromatolite is interpreted to show a change to higher energy 

environment of deposition and possible increase of accommodation space (Hoffman, 
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1976). The lack of fauna and preservation of the stromatolites possibly indicates 

restricted marine conditions. 

Porites boundstone 

 The Porites boundstone (Table 1; Appendix IX) is only found in Sequence 3 at 

both locations. At La Molata, the lithofacies occurs as rare, small (generally 1-2 m wide 

and 2 m thick), in-growth or out-of-growth position patch reefs. At La Rellana/Ricardillo, 

the lithofacies occurs as in-growth position patch reefs generally 1-2 m wide and 2-3 m 

thick; at the lowest elevations (181-200 m) the reefs are laterally extensive (up to >10 m) 

and thick (up to 6 m) (Figure 10G). The lithofacies consists of framework-forming 

Porites and Tarbellastrea corals with stick, knobby, and laminar morphology, varying 

amounts of gastropods, bivalves, serpulid worms, calcareous red algae (encrusting, 

fragments, rhodoliths), stromatolite, clionid sponges, ooids, peloids, and micrite. 

Interpretation 

The upper Miocene reefs have been extensively studied throughout the 

Mediterranean (Esteban et al., 1978; Esteban, 1979; Esteban and Giner, 1980; Dabrio et 

al., 1981; Franseen and Mankiewiz, 1991; Martin and Braga, 1994; Goldstein and 

Franseen, 1995; Esteban, 1996; Esteban et al., 1996; Franseen and Goldstein, 1996; 

Toomey, 2003). Zonations within the colonial morphologies of the reefs have been 

proposed by Esteban (1996) with encrusting morphologies dominating in <10 m water 

depth, stick morphologies dominating 10-20 m water depth, and laminar morphologies 

dominating 20-30 m water depth. Observations from my study area are inconsistent with 

this depth zonation. Laminar and stick morphologies of Porites are interbedded with in-
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place trough cross-bedded ooid grainstone, suggesting deposition in <10 m water depth. 

The Porites morphologies, ooids, and interbedding with trough cross-bedded ooid 

grainstone indicate that the Porites boundstone lithofacies was deposited in shallow 

waters (<10 m) with high energy conditions. The diverse fauna assemblage suggests 

relatively normal marine conditions during deposition. 

STRATIGRAPHY 

 The generalized stratigraphy for the La Molata and La Rellana/Ricardillo field 

areas was introduced in the lithofacies section with Figures 5 and 6. The following text 

examines stratigraphic relationships in more detail for each field area.  

La Molata TCC Stratigraphy 

 Figure 11 is a fence diagram showing stratigraphic relationships and lithofacies 

distribution throughout the La Molata field area. A cross-section of La Molata’s north 

side is used as representative for the area (Figure 12). 

Sequence 1 

 Sequence 1 extends for 0.6 km in the La Molata field area and is absent on the 

western margin. The sequence ranges in thickness from 1.35–8.5 m and drapes 

paleotopography. Master beds within the sequence gently dip to the west, south, and east 

at 2–5 degrees, away from the central high. 

The lowest elevations (170-180 m) have local laterally extensive stromatolites 

overlain by local laterally extensive thrombolite boundstone that is interbedded with, and 

subsequently overlain by trough cross-bedded ooid grainstone (Figure 13). Where the 
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stromatolites and thrombolite boundstones are absent, trough cross-bedded ooid 

grainstone forms the basal lithofacies. The trough cross-bedded ooid grainstone grades 

upward locally to volcaniclastic-rich planar bedded ooid grainstone and the sequence is 

capped in places by fenestral ooid grainstone. At elevations above 180 m, trough cross-

bedded ooid grainstone forms the basal lithofacies; it grades upward to volcaniclastic-rich 

planar bedded ooid grainstone locally, and the sequence is capped in places by fenestral 

ooid grainstone. 

Sequence 2 

 Sequence 2 is present in its entirety over all of the paleotopographic elements of 

the La Molata field area. The sequence ranges in thickness from 3.9–7.1 m, and as a 

package, drapes the paleotopography. Master beds gently dip away from the central high 

to the west, south, and east at 2–5 degrees with higher dips on the southern end of the 

western margin that range between 15–23 degrees to the southeast. 

The low elevations (170-190 m) of Sequence 2 have locally laterally extensive 

stromatolites overlain by local thrombolite boundstone that becomes interbedded with, 

and subsequently overlain by trough cross-bedded ooid grainstone. Where stromatolites 

and thrombolite boundstone are absent, trough cross-bedded ooid grainstone forms the 

basal lithofacies. The trough cross-bedded ooid grainstone grades upward locally to 

volcaniclastic-rich planar bedded ooid grainstone, and the sequence is capped in places 

by fenestral ooid grainstone. The thrombolite boundstones are thickest (up to 5 m) and 

laterally extensive (up to 10’s of m) at the lowest elevations (170-180 m, Figure 13) and 

become more isolated (generally <3 m wide and <2 m thick) above 180m. The high 



  41

elevations (190-208 m) of Sequence 2 have local stromatolites overlain by local isolated 

(1-2 m wide and 1-3 m thick) thrombolite boundstone overlain by trough cross-bedded 

ooid grainstone. The trough cross-bedded ooid grainstone locally grades upward to 

volcaniclastic-rich planar bedded ooid grainstone, and the sequence is capped in places 

by fenestral ooid grainstone. A small area just west of the central high has trough cross-

bedded ooid bivalve grainstone (1 m laterally and < 1 m in thickness) overlain by 

thrombolite boundstone at the base of the cycle (Figure 12). The western margin of La 

Molata (201–204 m) has thrombolite boundstone stratigraphically higher in the sequence 

that is interbedded with trough cross-bedded ooid grainstone. 

Sequence 3 

 Sequence 3 is present over the entire La Molata field area. The sequence ranges in 

thickness from 6.3–12.8 m and as a package drapes paleotopography. Master beds gently 

dip to the west, south, and east from the central high at 2–5 degrees, with higher dips on 

the southern end of the western margin at 8–15 degrees to the southeast. 

The low elevations (170-190 m) of Sequence 3 have local laterally extensive 

stromatolites overlain by massive ooid grainstone. Rare, isolated (1 m wide and 1 m 

thick) thrombolite boundstone locally overlies the stromatolites and exhibits a sharp 

contact with the massive ooid grainstone above and on the sides. The massive ooid 

grainstone grades upward to trough cross-bedded ooid grainstone that locally grades 

upward to volcaniclastic-rich planar bedded ooid grainstone. The sequence is capped in 

places by fenestral ooid grainstone. Rare, isolated (0.5-2 m wide and 0.5-3 m thick) 

Porites boundstone patch reefs are interbedded within the trough cross-bedded ooid 
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grainstone and rarely overlain by thrombolite boundstone. The high elevations (190-208 

m) for Sequence 3 have local laterally extensive stromatolites overlain by massive ooid 

grainstone that is interbedded with, and locally overlain by, thrombolite boundstone. The 

contact between the massive ooid grainstone and thrombolite boundstone can be sharp or 

gradational. The massive ooid grainstone grades upward to trough cross-bedded ooid 

grainstone. The trough cross-bedded ooid grainstone is interbedded with local 

thrombolite boundstone stratigraphically lower in the sequence. Rare, isolated (1 m wide 

and 1 m thick) Porites boundstone patch reefs are interbedded with the trough cross-

bedded ooid grainstone and are rarely overlain by thrombolite boundstone. On the eastern 

side of the central high, basal stromatolite is locally overlain by trough cross-bedded ooid 

grainstone that is overlain by massive ooid grainstone; details are limited because of poor 

outcrop exposure (Figure 12). 

Sequence 4 

 Sequence 4 is preserved as an erosional remnant only along 0.22 km of outcrop 

trace (170–197 m in elevation) on the eastern portion of La Molata. The sequence ranges 

in thickness from 1.7–6.2 m (6.2 m is upper thickness limit due to modern erosion) and as 

a package drapes paleotopography. 

Sequence 4 has basal stromatolite overlain by thrombolite boundstone 

interbedded with cross-bedded oolitic gastropod grainstone that is overlain by trough 

cross-bedded ooid grainstone (Figure 13). The contact between the cross-bedded oolitic 

gastropod grainstone and thrombolite boundstone is gradational.  

La Rellana/Ricardillo TCC Stratigraphy 
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 Figure 14 is a fence diagram showing the stratigraphic relationships and 

distribution of lithofacies throughout the La Rellana/Ricardillo field area. Figure 15 is a 

representative cross-section of the La Rellana/Ricardillo field area. 

Sequence 1 

 Sequence 1 at La Rellana/Ricardillo is preserved along 2.65 km of linear outcrop 

in the field area; it is absent on the eastern margin of Cerro de Ricardillo. The sequence 

ranges in thickness from 1.6–5.9 m and drapes paleotopography. In general, master beds 

within the sequence dip gently (1 – 11 degrees) to the south-southeast (towards the 

modern Mediterranean Sea) with local variations due to paleotopography (Appendix X). 

Throughout its exposure, Sequence 1 has bioturbate ooid grainstone that 

gradationally transitions upward and laterally updip to trough cross-bedded ooid 

grainstone. The trough cross-bedded ooid grainstone gradationally transitions upward and 

laterally updip to planar-bedded ooid grainstone. Planar-bedded ooid grainstone locally 

grades upward to volcaniclastic-rich planar bedded ooid grainstone, and the sequence is 

capped in places by fenestral ooid grainstone. Rarely the planar bedded ooid grainstone 

or bioturbate ooid grainstone lithofacies is absent.  

Sequence 2 

 Sequence 2 traces across the entirety of the La Rellana/Ricardillo field area (181–

257 m of elevation). The sequence ranges in thickness from 1.2–5.9 m (5.9 is a minimal 

upper limit to thickness due to erosion after deposition) and drapes paleotopography. 
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Master beds appear to generally dip gently (2-9 degrees) to the south with local variations 

due to paleotopographic highs and lows. 

The low elevations (181-221 m) have local thrombolite boundstone overlain by 

trough cross-bedded ooid grainstone. The trough cross-bedded ooid grainstone locally 

grades upward to volcaniclastic-rich planar bedded ooid grainstone, and the sequence is 

capped in places by fenestral ooid grainstone. At the lowest elevations (181-200 m), the 

thrombolite boundstone is laterally extensive and interbedded with trough cross-bedded 

ooid grainstone stratigraphically higher in the sequence (Figure 16). Rare, isolated (<0.5 

m in thickness and <2 m laterally) trough cross-bedded ooid bivalve grainstone 

accumulations overlain by thrombolite boundstone form the basal lithofacies for the 

sequence. The high elevations (221-257 m) of Sequence 2 have trough cross-bedded ooid 

bivalve grainstone interbedded with thrombolite boundstone and overlain by trough 

cross-bedded ooid grainstone. The contact between the trough cross-bedded ooid bivalve 

grainstone and trough cross-bedded ooid grainstone is commonly sharp, but locally 

gradational. The trough cross-bedded ooid grainstone locally grades upward to 

volcaniclastic-rich planar bedded ooid grainstone, and the sequence is capped in places 

by fenestral ooid grainstone. Only trough cross-bedded ooid bivalve grainstone (thicker 

than at lower elevations) and rare thrombolite boundstone are found at the highest 

elevations (242-257 m). 

Sequence 3 

 Sequence 3 is preserved across the entire La Rellana/Ricardillo field area, except 

at the highest elevations (240–257 m). The sequence ranges in thickness from 10.3–11.8 
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m where fully preserved and 1.1–10.3 m where partially preserved due to modern 

erosion; this sequence drapes paleotopography. Although difficult to identify, master 

beds generally dip gently (2-9 degrees) to the south with local variations due to 

paleotopography. 

The low elevations (181-217 m) of Sequence 3 have local laterally extensive 

stromatolites overlain by massive ooid grainstone that grade upward to trough cross-

bedded ooid grainstone interbedded with Porites boundstone. At the lowest elevations 

(181-200 m), the Porites boundstone is thick (up to 6 m) and laterally extensive (10s of 

m). At these elevations the trough cross-bedded ooid grainstone grades upward to 

volcaniclastic-rich planar bedded ooid grainstone; in places, fenestral ooid grainstone 

caps the sequence (Figure 16). Above 200 m elevation, the Porites boundstone lithofacies 

occurs as isolated patches (generally <3 m thick and <2 m wide). The high elevations 

(217-240 m) of Sequence 3 have laterally extensive stromatolites overlain by trough 

cross-bedded ooid grainstone interbedded with isolated Porites boundstone patches. 

Sequence 4 

 Sequence 4 crops out along a lateral exposure of 0.3 km, and is absent above 200 

m. The sequence ranges in thickness from 0.4–5.1 m (5.1 being a minimal maximum 

thickness due to modern erosion). As a package, it drapes paleotopography. Sequence 4 

has basal stromatolites overlain by thrombolite boundstone that is overlain rarely by 

trough cross-bedded ooid grainstone (Figure 16). 

DEPOSITIONAL CONTROLS 
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Similar stratigraphy at similar elevations, between the two areas, suggests that sea 

level and paleotopography are the primary controls. The stratigraphic differences 

between the two areas show how local paleogeography and currents have a secondary 

effect.  

Relative Sea Level 

 The four TCC sequences that were deposited at both field locations of this study 

have been interpreted in previous studies to result from relative rises and falls in sea level 

(Franseen and Mankiewicz, 1991; Franseen et al., 1993; Goldstein and Franseen, 1995; 

Whitesell, 1995; Franseen et al., 1997a; Franseen et al. 1998; Franseen and Goldstein, 

2004; Franseen and Goldstein, 2007)). In addition to these studies, and the results of my 

work, similar types and number of sequences have been documented by other authors in 

the TCC of southeast Spain (Esteban and Giner, 1980; Valles Roca, 1986; Braga and 

Martin, 1992; Calvet et al., 1996; Esteban et al., 1996) and TCC-like deposits of 

approximately the same age documented around the entire Mediterranean basin (Valles 

Roca, 1986; Cunningham 1995; Calvet et al. 1996; Esteban 1996; Esteban et al., 1996), 

which suggests at least a regional control for sequence development. Furthermore, 

paleomagnetic data collected by Franseen et al. (1998) correlated the four TCC sequence 

boundaries to a similar number of subaerial exposure surfaces at Niue in the South 

Pacific (Lu et al., 1996), suggesting a possible global control on sea-level change 

responsible for TCC cycles. 

 Quantitative relative sea-level curves were created for both field areas using the 

pinning point method of Goldstein and Franseen (1995). Those authors define a pinning 
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point “as a point of quantitative constraint on the position of ancient sea level relative to 

an arbitrarily defined geologically useful starting elevation.” For the purposes of this 

study, modern substrate elevations are used as the geologically useful starting elevation, 

as paleotopography has been shown to be largely preserved for the areas, and modern 

relative elevation differences would largely represent relative differences in the elevation 

of Messinian sea-level positions. Lithofacies and features indicative of the position of sea 

level (pinning points) and the ability to trace these lithofacies across paleotopography 

provided the basis for construction of the sea-level curves for La Molata (Figure 17) and 

La Rellana/Ricardillo (Figure 18). Straight lines were used between pinning points as the 

simplest representation of sea level between data points. Curves are left open between 

rises and falls where there was no evidence that sea level turned around at these points. 

The majority of pinning points were placed where marine inundation of subaerial 

exposure and subaerial exposure of marine rocks occurred. Trough cross-bedded oolite 

lithofacies, deposited in depths of less than 10 m, were used to indicate ancient sea-level 

position with an error bar of 10 m. Certain pinning points are designated at an upslope or 

downslope outcrop limit as evidence that sea level must have passed by the location. The 

data used to construct the sea-level curves and each pinning point for the two areas is 

explained below.   

La Molata Sea Level History 

Figure 12 shows a cross-section of La Molata with each pinning point that was used 

to construct the sea-level curve in Figure 17. 

• Pinning point 1 is located at 175 m substrate elevations where stromatolite was 

deposited over the subaerial exposure surface (SB5) on DS3. 
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Figure 17: Quantitative relative sea-level curve for the La Molata field area based on pinning points. See 
Figure 12 for location of pinning points. Sea-level fluctuations for La Molata range between 32.3 and 43.1 
m. 
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• Pinning point 2 represents a sea-level rise of 5 m with deposition of stromatolite over 

subaerial exposure surface on DS3 at 180 m substrate elevation. 

• Pinning point 3 represents continued sea-level rise of 28 m from pinning point 2 and 

is located at the base of trough cross-bedded ooid grainstone deposited on the 

subaerial exposure surface of DS3 at 208 m substrate elevation. This represents the 

highest marine sedimentations of Sequence 1 over the highest exposure surface on 

DS3 and marks a location that sea level must have passed. 

• Sea level continued to rise with the deposition of thrombolite boundstone at the 

lowest elevations of 175–180 m (Figure 13). Due to lack of depth constraints for 

thrombolite boundstone deposition during sea-level rises, no pinning points are 

indicated. 

•  Sea level rose to an unknown elevation and then began to fall. 

• Pinning point 4 represents the highest preserved sea-level position for Sequence 1 at 

La Molata with fenestral ooid grainstone capping volcaniclastic-rich planar bedded 

ooid grainstone on the central high at 211.5 m substrate elevation. This pinning point 

is designated on the relative fall in sea level because it represents sequence-capping 

subaerial exposure. 

• Sea level continued to fall and thrombolite boundstone deposition either continued or 

was reinitiated, typically atop of previous deposits of thrombolite boundstone that 

likely provided a hard substrate for subsequent thrombolite boundstone deposition, at 

the lowest elevations (175 – 180 m). 
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• Pinning point 5 occurs where a fenestral ooid grainstone caps volcaniclastic-rich 

planar bedded ooid grainstone at 179.2 m elevation representing a sea-level fall of at 

least 32.3 m from pinning point 4. This is the last preserved deposition of Sequence 1. 

• Sea level fell to an unknown elevation and then began to rise. 

• Pinning point 6 is indicated by stromatolites of Sequence 2 overlying fenestral ooid 

grainstone of Sequence 1 at 179.2 m elevation, which represents a relative sea-level 

rise.  

• Pinning point 7 is indicated by oolitic stromatolites of Sequence 2 overlying fenestral 

ooid grainstone of Sequence 1 on the central high at 211.8 m substrate elevation and 

represents 32 m of sea-level rise from pinning point 6.  

• Sea level rose to an unknown elevation and then began to fall. 

• Pinning point 8 represents the highest preserved sea-level position of Sequence 2 at 

La Molata where fenestral ooid grainstone caps volcaniclastic-rich planar bedded 

ooid grainstone on the central high at 216.3 m substrate elevation. This pinning point 

is designated on the relative fall in sea level and not the continued rise in sea level. 

• Pinning point 9 is indicated by fenestral ooid grainstone capping volcaniclastic-rich 

planar bedded ooid grainstone at 183.1 m substrate elevation, which represents a 

minimum sea-level fall of 33.2 m from pinning point 8 and the last preserved 

deposition of Sequence 2.  

• Sea level fell to an unknown elevation and then began to rise. 

• Pinning point 10 is indicated by stromatolites of Sequence 3 overlying fenestral ooid 

grainstone of Sequence 2 at 183.1 m substrate elevation, which represents a sea-level 

rise. 
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• Pinning point 11 is indicated by stromatolite deposition at 216.3 m substrate elevation 

on the central high, immediately above fenestral ooid grainstone of Sequence 2, 

which represents a continued sea-level rise of 33.2 m from pinning point 10. 

• Sea level rose to an unknown elevation and then began to fall. 

• Pinning point 12 represents the highest sea-level position preserved for Sequence 3 at 

La Molata where erosionally truncated trough cross-bedded ooid grainstone 

represents shallow water during time of deposition on the central high at 226.2 m 

substrate elevation. The entire sequence is not preserved here likely due to modern 

erosion. This pinning point is designated on the relative fall in sea level and not the 

continued rise in sea level. 

• Pinning point 13 is indicated by fenestral ooid grainstone capping volcaniclastic-rich 

planar bedded ooid grainstone at 193.1 m substrate elevation, which represents a 

minimum sea-level fall of 33.1 m from pinning point 12 and the last preserved 

deposition of Sequence 3. 

• Sea level fell to an unknown elevation and then began to rise. 

• Pinning point 14 represents a sea-level rise with stromatolites of Sequence 4 

overlying fenestral ooid grainstone of Sequence 3 at 193.1 m substrate elevation.  

• Pinning point 15 represents a continued sea-level rise of 17.3 m from pinning point 

14 with stromatolites of Sequence 4 overlying trough cross-bedded ooid grainstone of 

Sequence 3 at 210.4 m substrate elevation. 

• Pinning point 16 represents continued sea-level rise of 3.3 m from pinning point 15 

where thrombolite boundstone of Sequence 4 overlies trough cross-bedded ooid 
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grainstone of Sequence 3 at 213.7 m substrate elevation at the updip extent for 

sequence deposition in this area. 

• Sea level rose to an unknown elevation and began to fall. 

• Pinning point 17 represents a sea-level fall with erosionally truncated trough cross-

bedded ooid grainstone at 212 m substrate elevation. This pinning point is designated 

on the relative fall in sea level and not the continued rise. 

• Pinning point 18 is indicated by erosionally truncated trough cross-bedded ooid 

grainstone at 200 m substrate elevation, which represents a continued sea-level fall of 

12 m from pinning point 17. 

La Rellana/Ricardillo Sea Level History 

Figure 15 shows a cross-section of La Rellana/Ricardillo with each pinning point that 

was used to construct the relative sea-level curve in Figure 18. 

• Pinning point 1r is located at 181 m substrate elevation at the base of the bioturbate 

ooid grainstone deposited on top of the subaerial exposure surface (SB5) on DS3.  

This is the lowest elevation that initial TCC deposits are found and means that sea 

level must have passed this point. 

• Pinning point 2r is located at 239 m substrate elevation at the base of the bioturbate 

ooid grainstone deposited over SB5. Sea level must have passed this point during the 

rise and represents 58 m of rise from pinning point 1r. 

• Sea level rose to an unknown elevation and began to fall. 

• Pinning point 3r is located at 242.4 m substrate elevation and is the highest 

preservation of Sequence 1 in the area. Paleotopography drops and then rises to the  
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Figure 18: Quantitative relative sea-level curve for the La Rellana/Ricardillo field area based on pinning 
points. See Figure 15 for location of pinning points. La Rellana/Ricardillo field area reaches higher 
elevations and thus recorded greater amplitudes of sea-level fluctuation. Minima for amplitudes ranged 
between 57.8 and 76.6 m. 
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west of this location, but Sequence 1 is not preserved west of this point possibly due 

to past subaerial exposure between sequences. The pinning point is indicated by 

fenestral ooid grainstone capping volcaniclastic-rich planar bedded ooid grainstone 

and represents a minimum sea-level rise of 3.4 m from pinning point 2r. Pinning 

points 2r and 3r are connected by a curved dashed line because no evidence was 

present in the rock record suggesting that sea level rose significantly higher. 

• Pinning point 4r is indicated by fenestral ooid grainstone capping volcaniclastic-rich 

planar bedded ooid grainstone located at 184.6 m substrate elevation and represents a 

sea-level fall of 57.8 m from pinning point 3r. This is the last preserved deposition of 

Sequence 1. 

• Sea level fell to an unknown elevation and then began to rise. 

• Pinning point 5r is located at 184.6 m substrate elevation at the base of thrombolite 

boundstone of Sequence 2, where it overlies fenestral ooid grainstone of Sequence 1. 

This marks the initial deposition of Sequence 2 and sea level must have passed this 

point. 

• Pinning point 6r is indicated by trough cross-bedded ooid bivalve grainstone 

deposited at 196.5 m substrate elevation where it overlies fenestral ooid grainstone of 

Sequence 1 and represents a sea-level rise of 11.9 m from pinning point 5r. 

• Pinning point 7r is indicated by trough cross-bedded ooid bivalve grainstone 

deposited at 257 m substrate elevation where it overlies fenestral ooid grainstone of 

Sequence 1 and represents a sea-level rise of 60.5 m from pinning point 6r. 
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• Pinning point 8r is indicated by erosionally truncated trough cross-bedded ooid 

bivalve grainstone interbedded with thrombolite boundstone at 262.7 m elevation and 

represents a minimum sea-level rise of 5.7 m from pinning point 7r. This point is 

located at the updip extent of TCC deposits in the area. 

• Pinning point 9r is indicated by erosionally truncated trough cross-bedded ooid 

grainstone at 259.7 m substrate elevation and represents a minimum sea-level fall of 3 

m from pinning point 8r. This location represents the highest elevation of preserved 

trough cross-bedded ooid grainstone for Sequence 2 and is much thinner than 

downdip likely due to modern erosion. Pinning points 8r and 9r are connected by a 

curved dashed line because no evidence was preserved in the rock record suggesting 

that sea level rose significantly higher. Both the trough cross-bedded ooid bivalve 

grainstone and trough cross-bedded ooid grainstone are deposited in less than 10 m 

water depth suggesting sea level did not get any higher than approximately 263 m. 

• Pinning point 10r is indicated by fenestral ooid grainstone capping volcaniclastic-rich 

planar bedded ooid grainstone at 186.1 m substrate elevation and represents a 

minimum sea-level fall of 73 m from pinning point 9r. This is the last preserved 

deposition of Sequence 2. 

• Sea level fell to an unknown elevation and then began to rise. 

• Pinning point 11r is indicated by stromatolites of Sequence 3 deposited over the 

fenestral ooid grainstone of Sequence 2 at 186.1 substrate elevation and represents a 

sea-level rise. 
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• Pinning point 12r is indicated by stromatolites above the underlying fenestral ooid 

grainstone of Sequence 2 at 242.4 m elevation and represents a minimum sea-level 

rise of 65.9 m from pinning point 11r. 

• Sea level rose to an unknown elevation and then began to fall. 

• Pinning point 13r is indicated by erosionally truncated trough cross-bedded ooid 

grainstone at 246.7 m elevation. This location is the highest preserved elevation for 

Sequence 3 deposition. Truncation is likely the result of modern erosion. This pinning 

point is designated on the relative fall in sea level and not the continued rise in sea-

level. 

• Pinning point 14r is indicated by fenestral ooid grainstone capping volcaniclastic-rich 

planar bedded ooid grainstone at 197 m elevation and represents a minimum relative 

sea-level fall of 49.7 m from pinning point 13r. This is the last preserved deposition 

for Sequence 3. 

• Sea level fell to an unknown elevation and then began to rise. 

• Pinning point 15r is indicated by stromatolites of Sequence 4 deposited over the 

fenestral ooid grainstone of Sequence 3 at 197 m substrate elevation and represents a 

relative sea-level rise. 

• Pinning point 16r is indicated by stromatolites deposited at 209.2 m elevation 

immediately above the underlying sequence boundary, and represents a sea-level rise 

of 11.7 m from pinning point 15r. 
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• Pinning point 17r is indicated by thrombolite boundstone of Sequence 4 directly 

above subaerial exposure surface of Sequence 3 at 211.5 m substrate elevation and 

represents minimum sea-level rise of 2.3 m from pinning point 15r. 

• Sea level rose to an unknown elevation and then began to fall. 

• Pinning point 18r is at the same location as pinning point 17r and represents the 

location that sea level must have passed during the relative fall. 

• Pinning point 19r is indicated by erosionally truncated trough cross-bedded ooid 

grainstone at 204 m elevation and represents a relative sea-level fall of 7.5 m from 

pinning point 18r. 

• Pinning point 20r is indicated by erosionally truncated thrombolite boundstone at 200 

m elevation and represents a minimum sea-level fall of 4 m from pinning point 19r. 

This is the last and lowest elevation of deposition for Sequence 4 in the area and 

marks the location sea level must have passed. 

Discussion 

Combining the relative sea-level curves from the two field areas provides a more 

complete sea-level history for deposition during the TCC (Figure 19). The sea-level 

curves show a very close and somewhat surprising match, especially where preserved 

elevations overlap. The close match is significant for multiple reasons. Firstly, it supports 

evidence that paleotopography was preserved between the areas. Secondly, it indicates 

that the two studied areas encountered the same sea-level history and that sea level was at 

least a regional control (possible global control as stated earlier). The areas preserved a  



  61

 
 

Figure 19: Combined quantitative relative sea-level curve for the La Molata and La Rellana/Ricardillo 
field areas. The close match of pinning points at overlapping elevations from the two areas indicates 
paleotopography is preserved and that relative sea level in conjunction with paleotopography was a 
dominant control on sequence development and character. 
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similar number of sequences and similar thicknesses, as well as similar lithofacies 

distribution. Thirdly, the differences between the two areas suggest that local 

paleogeographic and current controls were significant along with sea level and 

paleotopography. 

 Table 2 is a quick overview of the minimum amplitudes of rises and falls for the 

field areas. 

Sequence Sea-level rise minimum amplitude (m) Sea-level fall minimum amplitude (m) 
 La Molata La Rellana/Ricardillo Total La Molata La Rellana/Ricardillo Total 

1 36.5 61.4 67.4 32.3 57.8 63.2 
2 37.1 76.6 83.5 33.2 76.2 79.6 
3 43.1 60.2 63.6 33.1 49.7 53.6 
4 20.6 14.5 20.6 13.7 11.5 13.7 

Table 2: Table records the minimum amplitudes of sea-level rises and falls for the studied field areas.  

Amplitudes for total sea-level rises and falls range between 53.6-83.5 m. Sequence 4 

amplitudes are not used due to it only being preserved as a partial sequence. 

Using paleomagnetic data collected from the La Molata field area, Franseen et al. 

(1998) calculated duration of between 400 ky and 100 ky for TCC deposition that yielded 

overall accumulation rates of 7.5 to 30.0 cm /ky. The duration of 400 ky to 100 ky for 

TCC deposition yields an average calculated sequence duration of between 100 ky and 25 

ky for the four preserved sequences (Franseen et al. 1998). The relative sea-level curve 

(Figure 19) shows that relative sea-level rises and falls of 53.6–83.5 m occurred during 

deposition of the sequences. Using the 400 ky to 100 ky estimate for TCC duration 

(Franseen et al., 1998) and assuming symmetrical sequences with linear sea-level change, 

the data indicate rates of relative sea-level rises and falls between 53.6–334 cm/ky. The 

conservative rates presented here fall within the range measured for Holocene glacio-

eustatic rates (Kendall and Schlager, 1981). These calculated rates and amplitudes 
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documented, along with probable global control discussed earlier and known cyclic 

glacial activity during the Late Miocene (Mercer and Sutter, 1982), argue for a glacio-

eustatic origin. 

Results indicate highstand turnaround points for Sequence 1 at approximately 243 

m and for Sequence 2 at 263 m. Lowest continuous outcrop of the sequences fall between 

175 and 200 m. The sequences are extensive in their lateral distribution, drape (and 

partially onlap) paleotopography, are relatively thin in thickness as compared to 

amplitude of sea-level rises and falls, and are relatively uniform in thickness across their 

distribution. 

Paleotopography 

 The four TCC sequences are considered to be time equivalents across the two 

studied field areas because of the close match of the relative sea-level curves and similar 

lithofacies distribution and geometries within the sequences at similar substrate 

elevations.  

Lithofacies Elevation (m)  Significance 
 La Molata La Rellana/Ricardillo  
Massive ooid 
grainstone 

 
175-208 

 
181-217 

 
Only in Sequence 3 

Thrombolite 
boundstone 

 
175-180 

 
181-200 

Thicker, laterally continuous at low elevations; 
interbedded with oolites stratigraphically high 

Sequence 1 
oolites 

 
175-208 

 
181-242.4 

Interbeds with more abundant skeletal grains 
that only occur in Sequence 1 

Porites 
boundstone 

 
175-208 

 
181-246.7 

 
Only in Sequence 3 

Digitate 
stromatolites 

 
175-199 

 
181-197 

 
Only in Sequence 4 

Table 3: Table 3 lists the indicative similarities for lithofacies between the field areas. Elevations used in 
the table are taken from the TCC basement topographic surface. 
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The similar lithofacies distributions and geometries at similar substrate elevations are 

suggestive of largely preserved paleotopography. Certain lithofacies only occur in certain 

sequences and argue for regional depositional changes from sequence to sequence. 

Differences in lithofacies abundance, distribution and geometries between the areas argue 

that local controls are significant. The text below, and in the subsequent Build-and-Fill 

section, discusses the control of paleotopography on the similarities and differences 

between the field areas. 

Local paleotopographic highs and lows in each of the field areas affected 

lithofacies types, distribution, and geometries in the TCC. The paleovalley at the 

northeast corner of La Molata persisted through deposition of Sequence 1 and 2, but was 

subsequently filled by the time of Sequence 3 deposition (Figure 12). The beds within the 

trough cross-bedded ooid grainstone of Sequence 1 dip and thicken towards the center of 

the paleotopographic low. Trough cross-bedded ooid grainstone of Sequence 2 thickens 

in the paleovalley and volcaniclastic-rich planar bedded ooid grainstone fills the 

paleovalley. The east paleovalley of La Molata persisted through deposition of Sequence 

3. Beds within the oolites of Sequence 1, 2, and 3 dip and thicken towards the center of 

the paleovalley (Figure 13). The northern paleovalley at La Rellana persisted through 

Sequence 3 deposition, with bedding of Sequence 1 dipping and thickening towards the 

center of the paleovalley (Figure 14). The southern paleovalley at La Rellana persisted 

through deposition of Sequences 1 and 2; these sequences lap-out against the southern 

margin of the paleovalley and Sequence 3 deposits fill in the remaining relief (Figure 16). 

Where the sequences are deposited over local paleotopographic highs, the beds become 

thinner and overall thickness of the sequences is decreased (Figure 12). There is a 
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pronounced steepening at the break in slope of the La Rellana southern margin where 

paleotopography dips change from 2–5 degrees to more than 11 degrees (Figure 15). At 

this steeper margin the Porites boundstone becomes thicker (up to 6 m) and more 

laterally continuous (10’s of m). The steepening may have concentrated currents at the 

locations and increased energy allowing for conditions conducive to Porites reef 

production. 

Understanding the position of substrate paleotopography relative to sea-level 

position may allow for prediction of lithofacies distributions and stratal geometries, and 

is discussed in the subsequent Build-and-Fill section. 

Build-and-Fill 

Franseen and Goldstein (2004) introduced the concept of build-and-fill sequences. 

They described a build-and-fill sequence as a laterally extensive sequence that 

maintained an even thickness, was thin compared to amplitude of sea-level change, 

tended to drape paleotopography as an entire unit, was capped by a surface of subaerial 

exposure, and has a complex internal architecture resulting from a topographic building 

phase and a topographic filling phase. Franseen and Goldstein (2004, 2007) indicated that 

build-and-fill sequences develop when carbonate production is not optimal, and 

especially in icehouse systems characterized by high-frequency, high-amplitude sea-level 

fluctuations. In icehouse ramp/shelf systems, build-and-fill sequences develop in middle 

or intermediate locations that lie between highstand and lowstand positions, which are 

areas subjected to the most rapid rates of rises and falls. These settings have a relief-

building phase, during sea-level rise, and a relief-filling phase, during sea-level falls. 
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Franseen and Goldstein (2004, 2007) used the TCC as an example of build-and-fill 

sequence development, noting that the time of deposition was characterized by extensive 

glaciation in the southern hemisphere, which created high-frequency high-amplitude sea-

level fluctuations, and that the Mediterranean area was a restricted basin; TCC sequences 

were deposited just after, and perhaps concurrently with evaporite deposition in the main 

basin and sub-basins. Evaporation may have led to conditions in which carbonate 

productivity was not optimal. 

In this section I use the results of my study to further evaluate the hypothesized 

build-and-fill model for the TCC, and present a generalized model for TCC sequence 

development in relation to the well-constrained sea-level curve. 

Sequence Thickness, Sea Level Change, and Substrate Elevation 

The development of the pinning point curve provides quantitative data on 

magnitudes of sea-level fluctuations and rates of rise and fall. Minimum amplitudes of 

sea-level rises and falls ranged between 53.6–83.5 m., whereas the thicknesses of the 

sequences range from 1.7–12.8 m. The thicknesses of sequences are thin in comparison to 

the amplitude of sea-level change, meaning that accommodation was left unfilled during 

deposition. Overall accumulation rates for the sequences were 7.5 to 30.0 cm/ky. 

Carbonate systems with optimal carbonate productivity have been shown to have 

accumulation rates that keep up with sea level fluctuations on the order of 200-900 cm/ky 

(Kendall and Schlager, 1981). Therefore, it appears that carbonate productivity was less 

than optimal during TCC deposition.   
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Unlike the other sequences, Sequence 2 in the two areas shows near-complete 

preservation, without erosion. It captures the highstand turnaround point on La 

Rellana/Ricardillo (approximately 263 m elevation); La Molata’s highest substrate 

elevations (211.8 m) were too low to provide a shallow water substrate during the 

highstand turnaround. Neither area preserves sequences at the lowstand turnaround point. 

On La Molata, Sequence 2 preserves even thickness (3.8-6.7 m) throughout its lateral 

extent. At the highest elevation of Sequence 2’s sea level, the water depth of the 

shallowest part of La Molata would have been 54 m. Thus, the La Molata substrate was at 

an intermediate elevation between highstand and lowstand. On La Rellana/Ricardillo this 

sequence shows abrupt thickening to 5.9 m near the highstand turnaround elevation 

(between 242 and 257 m). Below those elevations, Sequence 2 is thinner (1.2-3 m), 

preserves a relatively constant thickness throughout its lateral extent, and drapes 61 m of 

paleotopography.  These observations offer strong support for the build-and-fill model.  

Where shallow-water substrates exist at the highstand turnaround, sequences thicken.  

Where substrates lie at intermediate elevations between highstand and lowstand, 

sequences are thin, drape paleotopography, and maintain constant thickness throughout 

their lateral extent. This supports the idea of a build-and-fill zone at intermediate 

elevations between highstand and lowstand. 

TCC cyclic sequences appear to be asymmetrical. Oolites are volumetrically the 

most abundant lithofacies of the TCC and dominate the deposition during the relative 

falls in sea level. Thrombolite boundstone and Porites boundstone deposition are minor 

components deposited during falls. The relative rises in sea level are dominated by 

stromatolite and thrombolite boundstone deposition with minor oolite deposition. As will 
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be discussed below, the TCC sequences at intermediate substrate elevations are 

characterized by a relief-building phase during relative rises in sea level followed by a 

relief-filling phase during relative falls in sea level. Limited accommodation due to 

relative sea-level falls resulted in relatively uniform thicknesses for the sequences across 

their lateral distribution.  

Relative Sea-Level Rise 

Sequence 2 at La Molata is used as diagnostic due to its complete sequence 

preservation across the field area. This sequence is used to build a possible predictive 

model for sequences that form under the following set of conditions: 1) microbialite-

oolite sequences; 2) high-amplitude and high-frequency sea-level fluctuations; 3) with 

non-optimal carbonate productivity; and 4) at an intermediate elevation relative to sea-

level turn-around points (Figure 20). Variations on this model are included from other 

sequences on La Molata and La Rellana/Ricardillo (below and Appendix XI). These 

variations can be attributed to paleogeographic controls discussed in the subsequent 

section. 

Sea-level fall after deposition of Sequence 1 left the area exposed subaerially and 

provided the substrate topography for Sequence 2 deposition (Figure 20A). Sea-level rise 

over the lowest elevations (179.2-190 m) flooded the area with shallow seas, and 

deposited stromatolites. The stromatolites are the initial transgressive lithofacies and are 

deposited in <10 m water depth. Continued sea-level rise flooded the intermediate 

elevations (190-200 m) of La Molata with shallow seas, and stromatolite deposition 

continued (Figure 20B). Continued sea-level rise flooded the highest elevations (200- 
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211.8 m) of La Molata with shallow seas where stromatolites are deposited. After 

freshening of the water, thrombolite deposition began throughout the area. At the lower 

elevations, water would have been at least 33 meters deep for deposition of thrombolite 

boundstone at these elevations. Common ooid grains within the clotted matrix of the 

thrombolites suggest a nearby source for ooid production existed, perhaps upslope. The 

thrombolite boundstones at the lowest elevations are laterally extensive (6 to 10s of m 

wide) and thick (up to 5 m). Accommodation space created from sea-level rise allowed 

for the thrombolite boundstones to build vertically and form constructional relief. 

Continued sea-level rise would have the highest elevations of La Molata under about 54 

m of water by comparison to the highstand elevation on La Rellana/Ricardillo. As sea 

level rose toward those elevations, thrombolite boundstone deposition at La Molata may 

have continued with thrombolite deposition building relief (Figure 20C). Thrombolite 

boundstone at the intermediate and high elevations are more isolated (<3 m wide) and 

thinner (<2 m) possibly reflecting more limited accommodation space to grow vertically. 

As sea level rose to its highest position, it is hypothesized that water was so deep, that 

there was little or no deposition on La Molata (Figure 20D), but this hypothesis cannot be 

confirmed. At the same time at the high elevations (220-262.7) of La Rellana/Ricardillo, 

accumulating lithofacies were isolated thrombolite boundstone interbedded with trough 

cross-bedded ooid bivalve grainstone. The trough cross-bedded ooid bivalve grainstone is 

interpreted to be deposited in <10 m water depth indicating that the thrombolite 

boundstones deposited at the high elevations of La Rellana/Ricardillo were deposited in 

<10 m water depth. 
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The contact between the stromatolites and overlying thrombolite boundstone can 

be gradational, and in rare instances within Sequence 4, the lithofacies are interbedded 

stratigraphically low in the sequence. Minor oolites are interpreted to have been 

deposited during the relative rises in sea level. Sequence 2 has trough cross-bedded ooid 

bivalve grainstone interbedded with thrombolite boundstone forming the basal lithofacies 

at high elevations of La Rellana/Ricardillo (Figure 15). The low elevations for Sequence 

2 at La Rellana/Ricardillo have rare trough cross-bedded ooid bivalve grainstone forming 

the basal lithofacies. Sequence 2 at La Molata has one location with the trough cross-

bedded ooid bivalve grainstone lithofacies forming the base of the sequence, which 

would have eroded the stromatolite lithofacies (Figure 12). Where the trough cross-

bedded ooid bivalve grainstone occurs as the basal lithofacies at these locations, 

thrombolite boundstone overlies it. On the eastern margin of the central high at La 

Molata, Sequence 3 has stromatolite overlain by trough cross-bedded ooid grainstone 

overlain by massive ooid grainstone that grades upward to trough cross-bedded ooid 

grainstone (Figure 12). The trough cross-bedded ooid grainstone above the stromatolite 

may have been deposited during the relative rise in sea level. Overall, however, the 

relative rises in sea level are dominated by microbialites that build topographic relief. 

Relative Sea-Level Fall 

From the sea level highstand in Sequence 2 (263 m) sea-level fell at least 41 m, 

renewing shallow-water deposition on the highest substrates on La Molata and depositing 

trough cross-bedded ooid grainstone as the initial regressive lithofacies. The trough cross-

bedded ooid grainstone fills in the topographic relief of the thrombolite boundstones and 
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beds lap out against them. The contact between thrombolite boundstone and trough cross-

bedded ooid grainstone is a sharp, and in places, erosive contact. As sea level continued 

to fall, trough cross-bedded ooid grainstone deposition migrated downdip, and updip 

deposits were overlain by shallower water volcaniclastic-rich planar bedded ooid 

grainstone and then fenestral fabrics, indicating subaerial exposure. Continued sea-level 

fall to intermediate elevations led to downdip deposition of volcaniclastic-rich planar 

bedded ooid grainstone and subsequent subaerial exposure. At lower elevations, trough 

cross-bedded ooid grainstone is deposited along with thrombolite boundstone (Figure 

20E). The thrombolite boundstones deposited during the relative falls in sea level 

accumulate laterally (1 m up to 10’s of m) with little vertical component (commonly 1 m 

thick) due to limited accommodation (Figure 13). The trough cross-bedded ooid 

grainstone thickens in paleotopographic lows and thins over paleotopographic highs due 

to limited accommodation (Figure 14). Continued sea-level fall resulted in deposition of 

volcaniclastic-rich planar bedded ooid grainstone, fenestral ooid grainstone, and subaerial 

exposure (Figure 20F). 

The relative sea-level falls are dominated by oolite deposition with trough cross-

bedded ooid grainstone commonly as the initial regressive deposits. Sequence 3, 

however, has massive ooid grainstone as the initial regressive lithofacies and Sequence 1 

at La Rellana/Ricardillo has bioturbate ooid grainstone as the initial regressive 

lithofacies. The oolites drape paleotopography and fill limited accommodation during the 

relative falls in sea level. Also, minor thrombolite boundstone and Porites boundstone 

were deposited during the relative sea-level falls. At the lowest elevations in Sequences 1 

and 2 at La Molata and Sequence 2 at La Rellana/Ricardillo, thrombolite boundstone is 
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interbedded with trough cross-bedded ooid grainstone stratigraphically high in the 

sequences. Sequence 3 at La Molata has thrombolite boundstone interbedded with 

massive ooid grainstone stratigraphically low in the sequence and interbedded with 

trough cross-bedded ooid grainstone above massive ooid grainstone. Sequence 3 at both 

locations has Porites boundstone interbedded with trough cross-bedded ooid grainstone. 

These thrombolite boundstones and Porites boundstones built minor topographic relief 

during the relative sea-level falls. Overall, however, the relative falls in sea level are 

predominated by oolites filling in topographic relief. 

Climate, Paleogeography, and Currents 

Biota through Time 

Lithofacies and biotic constituents in the sequences from both areas indicate that 

regional marine conditions changed from more restricted to more normal from Sequence 

1 through Sequence 3 (Sequence 4 is excluded due to only partial preservations). This 

change from more restricted to more normal marine conditions is evidenced by the 

following characteristics from the areas. Calcareous red-algae are much more abundant in 

the thrombolite boundstone of Sequence 2 at La Molata (up to 70% with averages 

between 20 – 50%) than thrombolite boundstone of Sequence 1 (0-10%) indicating more 

normal marine conditions during deposition of Sequence 2. Overall, the oolites of 

Sequence 2 have much more abundant skeletal grains (commonly 10-20%) than the 

oolites of Sequence 1 (commonly 5-15%) at La Rellana/Ricardillo. The Porites 

boundstone lithofacies is found only in Sequence 3 at both field locations and consists of 

a diverse biota assemblage indicating the most normal marine conditions during TCC 

deposition. 
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One hypothesis to explain this biotic development can be by increasing 

circulation of open ocean waters successively with each sequence. This could be induced 

tectonically by progressively opening deeper straits into the Mediterranean (Rouchy and 

Saint Martin, 1992; Esteban, 1996), but this hypothesis remains untested. Alternatively, 

increasing biotic diversity can be explained by having each successive sea level highstand 

be higher than the previous one. The highstand position for Sequence 2 is indeed higher 

than for Sequence 1, and the highstand elevation of Sequence 3 is unknown. On the other 

hand, if biotic diversity were related to elevation of sea level, then one would expect 

decreasing diversity and evidence for increased restriction during regressive parts of 

sequences. The biotic diversity, on the contrary is preserved late in the regressive parts of 

the sequences, thus arguing against this control. 

Another hypothesis to explain increasing diversity is climate control with 

decreasing aridity through time. It is well known that the TCC forms immediately after 

deposition of evaporites in the Mediterranean (Esteban, 1979; Esteban and Giner, 1980, 

Dabrio et al., 1981; Rouchy and Saint Martin, 1992; Martin and Braga, 1994). It is also 

well known that the latest Messinian phase in the Mediterranean is dominated by the 

Lago Mare fresh-to-brackish deposits. This long-term decrease in aridity could easily be 

reflected in increasing biotic diversity in the TCC.  

Paleogeographic Controls 

 There are four major biotic, lithofacies, and architectural differences between the 

two field areas, indicating that local paleogeography and currents were important in 

controlling sequence character.  
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(1) The stromatolite boundstone lithofacies varies in distribution, preservation, 

and morphology within sequences and between field areas. In Sequence 1 of La Molata 

(Figure 12), the lowest elevations (175-180 m) have laterally continuous stromatolites, 

but at La Rellana/Ricardillo (Figure 15) there are no stromatolites at the lowest elevation 

(181 m). Sequence 2 at La Molata has laterally continuous stromatolites at the low 

elevations with local stromatolites at intermediate to high elevations. La 

Rellana/Ricardillo has no stromatolites throughout Sequence 2.  

(2) Sequence 3 shows significant differences in lithofacies between the two areas, 

which appears to highlight current circulation differences between the two areas. 

Thrombolite boundstone is more abundant in Sequence 3 on La Molata as compared to 

La Rellana. Porites boundstone only occurs in Sequence 3 in both areas, but its 

abundance and nature of occurrence is significantly different between the areas. At La 

Molata, only four isolated (up to 1.7 m wide and 2 m thick) Porites boundstone patch 

reefs occur. In contrast, Porites boundstone is more abundant at La Rellana/Ricardillo 

where the Porites boundstone is laterally continuous and thick (up to 10’s of m wide and 

6.2 m thick) at the lowest elevations and small (commonly <3 m wide and 2 m thick), 

isolated patch reefs at intermediate to high elevations.  

(3) At the lowest elevations, Sequence 1 at La Molata has laterally continuous 

thrombolite boundstone that is interbedded with trough cross-bedded ooid grainstone 

stratigraphically higher in the section, whereas La Rellana/Ricardillo has no thrombolite 

boundstone. Only beach lithofacies were deposited at the lowest elevations of La 

Rellana/Ricardillo. 
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(4) The greater abundance of skeletal grains in several sequences in the La 

Rellana/Ricardillo area, compared to La Molata, is suggestive of more normal marine 

conditions in the La Rellana/Ricardillo area. Skeletal grains in the form of bivalves and 

gastropods are rare (0-5%) within the trough cross-bedded ooid grainstone of Sequence 2 

at La Molata. At La Rellana/Ricardillo, the skeletal grains are common to abundant (3-

37%) within the trough cross-bedded ooid grainstone of Sequence 2. Skeletal grains are 

rare (0-8%) within the trough cross-bedded ooid grainstone of Sequence 3 at La Molata. 

At La Rellana/Ricardillo, skeletal grains in the form of bivalves, gastropods, and serpulid 

worms are common to abundant (2-44%). 

Overall, it appears that local paleogeographic differences between the two areas 

led to more restricted conditions for the La Molata area and more open marine conditions 

for the La Rellana/Ricardillo area.  Presence of more stromatolites at La Molata may 

indicate more restriction, whereas beach lithofacies at La Rellana/Ricardillo indicate an 

open connection. The more abundant, thicker, and more laterally continuous Porites 

boundstone deposits at La Rellana/Ricardillo, as opposed to thrombolites at La Molata, 

argue that conditions were more conducive to coral development at La 

Rellana/Ricardillo. This is likely caused by more normal marine conditions with better 

wave energy at the La Rellana/Ricardillo field areas as opposed to the relatively more 

restricted waters at La Molata.  

The paleogeography that led to open marine conditions and high wave energy at 

La Rellana/Ricardillo, and more restriction at La Molata, can be inferred from the 

regional geology, and by inferring a dominant swell direction similar to that of the 

modern system coming from the east and northeast. La Rellana/Ricardillo carbonates are 
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essentially facing east and paleohighs existed to the west and northwest. An embayment 

caused by topography from the Rodalquilar caldera protruded west into the coast line just 

south of this area. La Molata was located within the northern margin of this reentrant, 

most likely sheltered from much of the east-southeast-directed currents (Figure 3). 

CONCLUSIONS 

1) Upper Miocene microbial (thrombolite, stromatolite), oolitic, coral reef, and 

bioclastic carbonate sequences in two southeast Spain study locations were deposited 

in association with high-amplitude glacioeustacy and evaporitic drawdown. Both 

study areas preserve paleotopography; La Molata has 33 m of paleotopographic relief 

over 0.86 km and La Rellana/Ricardillo has 76 m of paleotopographic relief over 1.63 

km. Taken together, the two areas have a total of 82 m of paleotopographic relief 

preserved.  

2) Each area preserves four cyclic sequences that are laterally extensive, and some 

maintain uniform thicknesses. The four sequences at the La Molata and La 

Rellana/Ricardillo field areas are considered to be time-equivalents. The close match 

of the quantitative relative sea-level curves and similar lithofacies distribution is 

suggestive of largely preserved paleotopography.  

3) For low elevations a sequence has basal stromatolite overlain by local laterally 

continuous thrombolite boundstone that becomes interbedded with and eventually 

overlain by trough cross-bedded ooid grainstone. The trough cross-bedded ooid 

grainstone grades upward to volcaniclastic-rich planar bedded ooid grainstone capped 

by fenestral ooid grainstone.  
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4) For high elevations a sequence has local stromatolite, overlain by local isolated 

thrombolite boundstone, overlain by trough cross-bedded ooid grainstone. The trough 

cross-bedded ooid grainstone grades upward to volcaniclastic-rich planar bedded ooid 

grainstone capped by fenestral ooid grainstone.  

5) Quantitative relative sea-level curves created for both areas show a close match and 

indicate similar sea-level histories. Amplitudes of total sea-level rise and fall ranged 

from 53.6-83.5 m and were induced by glacio-eustacy. During the sea-level rises, 

microbialites draped and built topographic relief. During the sea-level falls, oolites 

filled in topographic relief. Minor thrombolite boundstones deposited during the sea-

level fall accumulated more laterally than vertically due to limited accommodation. 

Some Porites reefs also formed during a relative sea-level fall, and built minor relief. 

6) Where the substrates were in shallow water at highstand, the sequence thickens. 

Downslope, in areas where substrate elevation was intermediate between highstand 

and lowstand, sequences are thinner and of even thickness. This supports the idea that 

much of the substrate is within the intermediate elevation build-and-fill zone 

proposed by Franseen and Goldstein. 

7) The sequences are depositionally asymmetrical, with the majority of the deposition 

occurring during the relative fall in sea-level. A build-and-fill model is proposed for 

oolite-microbialite systems forming during high-amplitude high-frequency sea-level 

fluctuations at intermediate substrate elevations relative to sea-level turn-around 

points. Possibly predictive lithofacies distributions and geometries from the model 

include: 
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a) Stromatolites are the initial transgressive lithofacies of the sequences. They are 

more laterally continuous at the low elevations where they are commonly overlain 

by thrombolite boundstone. 

b) Thrombolite boundstones are the later transgressive deposits and are thicker and 

more laterally continuous at the low elevations. 

c) At intermediate to high elevations, thrombolite boundstones become more 

isolated. 

d) Trough cross-bedded ooid grainstones are commonly the initial regressive 

lithofacies that fill in topographic lows and drape (partially onlap) 

paleotopography. 

e) At low elevations, regressive thrombolite boundstones are interbedded with 

trough cross-bedded ooid grainstone and accumulate more laterally than 

vertically. 

f) Volcaniclastic-rich planar bedded ooid grainstones are the latest regressive 

deposits that preserve the last depositional lithofacies of the sequences. 

g) Sequences are commonly capped by fenestral ooid grainstones representing 

subaerial exposure. 

8) Increasing biotic diversity through time is best explained by decreasing aridity during 

the latest parts of the Messinian. 
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9)  Areas within an embayment were protected from waves and more restricted than 

areas open to the east and northeast. Open areas preserve more coral reefs and oolite 

whereas restricted areas favor thrombolites and stromatolites.   

10) Results from this study can aid in predicting lithofacies distribution and geometries in 

outcrop and the subsurface for cyclic oolite-microbialite-coralgal reef systems. 

11)  Comprehension of the depositional controls of paleotopography, relative sea level, 

and paleogeography are essential to understanding and predicting lithofacies 

distributions and geometries for the TCC. 
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