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Abstract 

A radio frequency (rf) superconducting quantum interference device (SQUID) is a 

macroscopic quantum object consisting of a superconducting loop interrupted by a 

Josephson junction. Superconducting phase quantum bits (qubits) based on rf SQUIDs 

have been proven to be one of the most promising candidates for building a quantum 

computer. They exploit the unique resources of quantum superposition and 

entanglement and are exponentially faster than classical computers in solving certain 

problems, such as factoring. Compared to other approaches to quantum computing, 

superconducting phase qubits allow stronger and more flexible inter-qubit coupling 

and thus are easier to scale up. However, phase qubits couple to the environment and 

are subject to considerable decoherence. The resulting coherence time (also called 

decoherence time) is on the order of 102 ns, about two orders of magnitude shorter than 

that required for fault-tolerant quantum computing. One possible solution is to develop 

faster quantum gates in phase qubits.  

In this dissertation, coherent manipulation of multi-partite quantum states via 

Landau-Zener (LZ) transitions was investigated in a phase qubit, which was coupled to 

two microscopic two-level systems (TLSs) embedded in the tunnel barrier of the 

Josephson junction. The qubit chip was measured at temperatures below 30 mK in an 

ultra-low noise environment with excellent electrical and magnetic filtering and 

shielding. All parameters of the phase qubit were calibrated independently. The phase 

qubit’s decoherence times have been carefully measured as well. Fast and precise 
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coherent control of the tripartite quantum states has been successfully demonstrated by 

the observation of the Landau-Zener-Stückelberg (LZS) interference in the coupled 

qubit-TLS system. Furthermore, it is shown that utilizing LZ transitions to create 

multi-partite entangled states, such as the W state, is significantly more efficient than 

conventional methods which require a sequence of single-qubit and two-qubit gates. 

Hence, coherent manipulation of multi-partite quantum states via LZ transitions is a 

promising basis for a new family of fast multi-qubit quantum gates.  
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Chapter 1. Introduction 

 

In the past decade, with the development of quantum computation theory 

including the discovery of quantum algorithms, researchers have been looking for 

candidate quantum objects to construct a quantum computer. Superconducting phase 

quantum bit (qubit) based on radio frequency (rf) superconducting quantum 

interference device (SQUID) is one of the most promising candidates. However, short 

coherence time (~ 102 ns) remains the main obstacle for the implementation of 

quantum computing using superconducting phase qubits despite the great efforts to 

investigate the mechanisms of decoherence and improve coherence time. One solution 

to the problem is to develop faster quantum gates. In this dissertation, a novel 

multi-partite quantum gates, realized by the precise coherent control of the quantum 

states via Landau-Zener (LZ) transitions, will be demonstrated in a phase qubit 

coupled to two microscopic two-level systems (TLSs). The results shows that this new 

approach increases gate speed significantly and is much simpler to implement, making 

it an important step toward the realization of quantum computers. 

The content of this dissertation is organized as follows. In Chapter 1, the basics of 

quantum computing and its possible physical realization is introduced, followed by the 

discussion of the phase qubits based on rf SQUIDs. The qubit sample and experimental 

setup are described in Chapter 2. In Chapter 3, we discuss how to calibrate the 

parameters of the phase qubit and measure decoherence times. Chapter 4 presents the 

main experimental results from the coherent control of tripartite quantum states in a 
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coupled qubit-TLSs system via LZ transitions. The results will be summarized and 

discussed in chapter 5. The appendices for the supporting materials and technical 

details are placed after the bibliographic references.             

1.1 Quantum computation 

What is a quantum computer? Why do we need it?  

The answer to the first question is quite straightforward: a quantum computer is a 

device which can perform computation using quantum mechanics. More precisely, it 

makes use of novel quantum phenomena such as superposition and entanglement.  

The main reason for building quantum computers is that they allow us to solve 

certain problems exponentially faster than classical computers. Back into the 1980s, 

building computers based on the principles of quantum mechanics was first suggested 

by Richard Feynman to simulate quantum systems [1]. Later, David Deutsch attempted 

to define a universal quantum computer that would have more computational power 

than any classical computer [2]. Significant progress was made in 1994 when Peter 

Shor demonstrated two famous quantum algorithms for integer factorization and 

discrete logarithms [3]. Another important quantum algorithm for conducting the 

search through some unstructured space was discovered by Grover [4]. Because the 

speed for solving certain problems can be increased exponentially by using quantum 

algorithms, theoretical research on quantum computer continues with interests despite 

the difficulty in discovering new quantum algorithms. Meanwhile, remarkable progress 

has been made by many groups to realize the quantum computer via different quantum 

objects in the past decades. The details of the experimental approaches will be 
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presented in section 1.2 and 1.3.  

1.1.1 Quantum bit 

The basic element of a quantum computer is called “quantum bit” (qubit). Like a 

classical bit, it has two possible logic values, “0” or “1”. However, for qubits the 

“value” here usually refers to the eigenvalue of a physical observable. Physically, a 

qubit is a quantum two-level system. The state of a single qubit could be an arbitrary 

superposition of the computational basis states 0  and 1 . In practice, we usually 

choose the ground state of a qubit as 0  and the excited state as 1 . In general, a 

pure qubit state ψ  can be expressed in Dirac notation as 

0 1α β= +ψ ,               (1.1) 

where α and β are complex numbers, and 1,=ψ ψ  i.e., 2 2 1α β+ = . If the same 

qubit state described by Eq. (1.1) is prepared before each measurement, then after a 

number of measurements the probability of finding the qubit in 0  and 1  would 

be given by 2
0P α=  and 2

1 ,P β=  respectively. More conveniently, the state 

described by Eq. (1.1) can be written as a vector in the form of a matrix 
α
β

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Another 

useful representation of the single qubit state is to map the state to a unit vector on the 

Bloch sphere: 

 cos 0 sin 1
2 2

ie ϕθ θ
= +ψ           (1.2)  

where 0 θ π≤ ≤  is the angle between the state vector and the z-axis, and 0 2ϕ π≤ <  

denotes the angle between the state vector projected into the x-y plane and the x-axis, 

as shown in Fig. 1.1. Consequently, any single qubit can be mapped to a unique vector 

on the Bloch sphere, where the probability of finding the system in 1 , also called the 
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excitation probability, is given by 
2

1 sin
2

P θ⎛ ⎞= ⎜ ⎟
⎝ ⎠

. As an example, a vector located in 

the x-y plane corresponds to the state ( )1 0 1
2

ie ϕ+ . Note that the variable φ is the 

other important degree of freedom, which gives the phase difference between the 

complex probability amplitudes α  and β . Representing the qubit state by a Bloch 

vector is very useful in describing and visualizing the dynamics of a single qubit.  

 

 
Fig. 1.1. A unit vector (in red) representing the qubit state on Bloch sphere. 

 

1.1.2 Multiple qubits  

A number of qubits can be coupled to each other to form a multiple-qubit circuit. 

Generally, for a system of N qubits, the computational basis states have the form 

1 2... Nx x x , where ix = 0 or 1. For simplicity, let’s consider the simplest case: two 

coupled qubits A and B. The basis states for two qubits are 00 , 10 , 01 ,  and 11 .  

x

θ

φ

y 

z

1

0
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Thus the state vector for any two qubits is given by  

    1 2 3 400 10 01 11 .a a a a= + + +ψ       (1.3) 

As mentioned before, quantum entanglement is a novel feature of quantum systems 

having two or more qubits. To demonstrate quantum entanglement, consider one of the 

Bell states 

   ( )1 01 10 .
2

+Ψ = +             (1.4) 

It can be shown that the Bell state +Ψ  can’t be expressed as a direct product of two 

single qubit states, i.e., A B
+Ψ ≠ ⊗ψ ψ . That means in the Bell state the two 

qubits A and B are not separable and thus entangled. As a consequence, the 

measurements of qubit A and B are fully correlated. Supposed a measurement of qubit 

A is performed and the result gives value “0” (or “1”). Then the Bell state will be 

collapsed to the state 01  (or 10 ). Hence, the following measurement of qubit B 

will only yield “1” (or “0”), as a result of quantum correlation.  

1.1.3 Quantum gates 

In the gate model quantum computing [5], the quantum computers are built from 

quantum circuits containing basic quantum logic gates, such as AND, OR, NOT, and 

CNOT. The quantum gates perform unitary transformations on qubit states. As an 

example, consider performing the NOT gate X  on the qubit state 
α
β

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
ψ , i.e., 

X =ψ X
α β
β α

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= ψ' , where 

0 1
1 0

X ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. In addition, because the qubit state 

after any gate A is normalized as well, one has †A A I= , i.e., the transformation is 

unitary.  
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When a single qubit has a time-independent Hamiltonian, i.e., ˆ / 0H t∂ ∂ = , the 

evolution of the qubit state is simply given by 
ˆ /( ) (0)iH tt e− ∆∆ =ψ ψ , where the 

propagator ˆexp( / )iH t− ∆  is a unitary transformation. As an example, for a qubit 

with ˆ ˆ
2 zH ω σ= − , ˆ ˆexp( / ) exp( / 2) ( )z ziH t i t R tω σ ω−− ∆ = ∆ = ∆ , where ˆ zσ  is the 

third Pauli matrix, and ( )zR tω− ∆  is a rotation operator corresponding to a rotation of 

the state vector about the z−  axis by an angle of tω∆  in the Bloch sphere picture. 

Moreover, it is well known that an arbitrary single qubit operation U can be 

decomposed as a product of simple rotations about z and y axes. Consequently, all 

single qubit gates can be realized by a sequence of rotations. 

Among the multiple-qubit quantum gates, the controlled-NOT (CNOT) gate is of 

particular interest because any multiple logic gate may be composed from CNOT and 

single qubit gates [5]. The CNOT gate has two input qubits, where one is the control 

qubit and the other is the target qubit. The operation of a CNOT gate can be described 

as follows. The state of the target qubit will be flipped when the control qubit is in 1 , 

while the state of the target qubit will remain unchanged when the control qubit is in 

0 .    

1.2 Physical qubits 

As mentioned in section 1.1, a quantum computer must be a quantum object 

which is able to demonstrate novel quantum properties such as superposition and 

coherence. In practice, a quantum two-level system is desirable for the physical 

realization of qubits. More importantly, as a candidate for QC, a quantum system must 

satisfy a number of requirements as described below. 
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The critical requirements that a physical system must meet for QC are given by 

the so-called DiVincenzo criteria [6]: 

1) Scalable physical system with well characterized qubits 

2) Initialization to a simple fiducial state, such as 0 0 0⊗ ⊗⋅⋅⋅⊗  

3) Long coherence time, much longer than gate operation time (~ 104-106 times) 

4) Universal quantum gates 

5) Measurement capability.  

Unfortunately, many quantum systems would not be eligible according to these criteria. 

For instance, although long coherence time could be obtained in many microscopic 

systems which are well isolated from the environment, the isolation will also lead to 

insufficient coupling between the qubits or between the qubit and the control 

/measurement circuits. Furthermore, many systems are fundamentally not scalable, 

thus making it impossible to construct useful quantum computers from them.  

With many candidate quantum systems considered and studied in the past decade, 

only a few appear promising for the purpose of scalable quantum computation. Among 

them are optical photons, trapped ions, and superconducting Josephson circuits.  

Qubits can be realized by a single photon which has two optical modes. Optical 

photons do not interact strongly with the environment and are largely free of 

decoherence that plagues other systems. They can be guided along long distances and 

easily combined. Hence, the quantum coherence and entanglement is realized more 

easily. However, the large-scale optical elements widely used to construct the optical 

photon quantum computers are inherently not scalable [7, 8]. Only recently, the 
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potential of scalability has been demonstrated by building an integrated photonic 

circuit on a silicon chip [9].         

Trapped ion qubits are another competitive approach. Isolated in an 

electromagnetic trap, the ions interact with laser beams [10]. The single qubits are 

stored in the internal states of the ions and the inter-qubit coupling is realized by the 

collective quantized motions of the ions. Lasers are applied for single-qubit operations 

and entanglements between the qubits. The advantages of trapped ion qubits are 

negligible decoherence and high measurement fidelity. Multiple-qubit entanglement 

has also been demonstrated in trapped ion qubits [11]. However, it remains challenging 

to make a surface trap based on integrated circuits for scalability [12, 13]. 

The last candidate introduced here is the superconducting qubits based on 

Josephson junctions. Among them is the rf SQUID qubits. In the following, we will 

focus the discussion on superconducting qubits, especially those based on rf SQUIDs.  

1.3 Superconducting qubits 

Unlike many other qubit systems, superconducting qubits are macroscopic in size 

(1 µm to 102 µm) and have macroscopic degree of freedoms [14, 15]. Basically, there 

are three types of superconducting qubits: charge qubit, flux qubit, and phase qubit. 

The macroscopic degrees of freedom for these three types of qubits are the number of 

Cooper pairs in a tiny superconducting island, the total magnetic flux in a SQUID loop, 

and the phase difference across a Josephson junction, respectively. Another interesting 

approach to QC using superconducting circuits is based on circuit quantum 

electrodynamics (QED), where the superconducting qubits are coupled to a microwave 
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cavity [16, 17]. All of these superconducting qubits utilize Josephson junctions as the 

key component. 

A Josephson junction (JJ) consists of two superconductors separated by a thin 

insulating barrier as shown in Fig. 1.2 (a). Practically, the JJs commonly used in 

superconducting qubits are tunnel junctions with two superconducting thin films (~ 

100 nm) separated by a thin oxide barrier (~ 1-2 nm).  

 

 

Fig. 1.2. Schematic of a Josephson tunnel junction (a), modeled as an ideal JJ (cross) 
shunted by a capacitor (b). 

 

The electric current through the junction I and the voltage across the junction V 

are given by the Josephson relations [18] 

sincI I ϕ=                  (1.5) 

,
2

V
e t

ϕ∂
=

∂
                   (1.6)   

where ϕ  represents the wavefunctions’ phase difference of the condensates of Cooper 

pairs in the two superconductors, and cI  is the critical current of the junction, i.e., the 

magnitude of the maximum supercurrent through the junction. When the junction is 

superconductor 
insulator 

(a) 

Ic C

(b) 
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biased at cI I< , it is a non-dissipative device with a nonlinear inductance equal to 

1
2 cosce I ϕ

, where / 2h π=  is the reduced Planck’s constant and e is the elementary 

charge. Note that the separated superconducting films also form a capacitor with the 

capacitance equal to C as shown in Fig. 1.2 (b). Therefore, a JJ can also be treated as a 

non-linear LC resonator. More importantly, the non-linearity will lead to anharmonicity 

in the potential energy of superconducting qubits, which allows one to construct 

effective two-level systems.  

Basically, the variable ϕ  describes the collective motion of the tunneling Cooper 

pairs and thus is a macroscopic degree of freedom. The energy associated with ϕ  is 

called the Josephson coupling energy and is given by cosJE ϕ− , where 0

2
c

J
IE

π
Φ

=  

and 0 / 2h eΦ =  is the magnetic flux quantum. The other important variable to 

characterize a JJ is the charge Q on the junction, resulting in a charging energy 

2
2

2 c
Q E N
C

= , where N is the number of Cooper pairs and 
2(2 )

2c
eE
C

= . A charge qubit 

consists of a tiny superconducting island coupled by a Josephson junction to a 

superconducting reservoir. The charging energy is dominant c JE E  in charge 

qubits while c JE E<  in flux qubits and phase qubits.   

JJ was first proven to be a macroscopic quantum object by the demonstration of 

macroscopic quantum tunneling and energy level quantization in current biased JJs [19, 

20]. In order to investigate JJ on the quantum level, the macroscopic variable ϕ  has 

to be treated as an operator. Define 0
ˆˆ

2
ϕ
π

Φ = Φ  as the normalized phase difference, 

which is conjugate to the momentum operator p̂ iΦ
∂

= −
∂Φ

 with the commutation 
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relation ˆ ˆ,  p iΦ
⎡ ⎤Φ =⎣ ⎦ . According to the classical equation of motion (EOM) for the 

phase difference, a JJ can be treated as a particle of mass C [21]. Consequently, the 

Hamiltonian is given by  

2ˆˆ ˆ( )
2
pH U

C
Φ= + Φ                 (1.7) 

where U is the potential energy. 

To derive the potential energy of a current biased JJ, consider a capacitively 

shunted JJ biased by a current bI  and assume damping from the environment is 

negligible. By using the Josephson relations in Eqs. (1.5) and (1.6), one obtains the 

EOM 

( )
2

02 sin 2 / .b c
d dUC I I
dt d

πΦ
= − Φ Φ = −

Φ
      (1.8) 

Hence, the potential U is given by 

                    0( ) cos(2 / )b JU I E πΦ = − Φ − Φ Φ .          (1.9) 

When the two sides of a JJ are connected by a superconducting loop, forming an 

rf SQUID, the total magnetic flux threading the loop tΦ  is then related to the phase 

difference ϕ  by the fluxoid quantization condition 

                        0 0 ,
2t nϕ
π

Φ + Φ = Φ                 (1.10) 

where n is an integer. Thus the total flux in the rf SQUID loop is also a macroscopic 

degree of freedom. It is much more convenient to choose the total flux as the dynamic 

variable when the rf SQUID is operated as a flux qubit. For convenience, hereafter we 

use Φ  instead of tΦ  to represent the total magnetic flux threading the loop. 

Consider an rf SQUID having a loop inductance L  and biased by an external 
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magnetic flux xΦ . Hence, the potential energy of an rf SQUID is given by  

( )2

0( ) cos(2 / ),
2

x
JU E

L
π

Φ − Φ
Φ = − Φ Φ       (1.11) 

where the first term comes from the magnetic energy stored in the rf SQUID loop. 

Before discussing the details of superconducting qubits based on rf SQUIDs, we 

need to examine the features of superconducting qubits and evaluate them as a 

candidate for implementing quantum computing. 

Compared to many other approaches, the most significant advantage of 

superconducting qubits is the sophisticated fabrication technology of superconducting 

integrated circuits. Superconducting devices are usually made on silicon wafers with 

advanced micro- and nano-fabrication techniques, such as optical or electron beam 

lithography and thin film deposition. The circuit elements include tunnel junctions, 

capacitors, and inductors, all of which are connected by superconducting wires and 

transmission lines. Hence, the design is very flexible and the circuits can be highly 

scalable.  

Second, the coupling between qubits or between a qubit and its control and 

readout circuits is tunable and can be designed to be sufficiently strong. For instance, 

the total flux in a qubit loop could be manipulated by an on-chip loop inductively 

coupled to the qubit. However, on the other hand, the macroscopic degree of freedom 

of the qubit also couples to the parasitic environmental modes and noise, thus inducing 

decoherence.  

In order to use JJ-based devices as qubits, the devices must be cooled down to low 

temperatures. Below the critical temperature of superconductors, JJs become 
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non-dissipative. Furthermore, the thermal fluctuation energy Bk T  needs to be much 

less than the energy level spacing between the qubit states 10 10E ω∆ = , where Bk  is 

Boltzmann’s constant. The typical value of 10 / 2ω π  is in the range of 5 - 20 GHz, 

corresponding to 0.25 - 1 K. Thus to make the effect of thermal fluctuation negligible, 

the qubits must be cooled down to ultra low temperatures (~ 20 mK), which is 

accessible using a dilution refrigerator. 

1.4 Superconducting qubits based on rf SQUIDs 

After the demonstration of macroscopic quantum tunneling (MQT) in 

current-biased JJs [20], more fascinating macroscopic quantum phenomena were 

observed in JJs and rf SQUIDs. Among them are macroscopic resonant tunneling 

(MRT), photon-assisted tunneling (PAT), photon induced transition (PIT), and quantum 

superposition of macroscopic states [22-27]. The macroscopic quantum coherence 

(MQC) in the time domain was first observed in a charge qubit [28]. Subsequently, 

MQC was also successfully demonstrated in JJ phase qubits and 3-JJ flux qubits 

[29-31]. With a fast readout scheme and improved design and fabrication technology, 

the phase qubit based on large inductance rf SQUID has been developed to be one of 

the leading candidates among the superconducting qubits [32-36]. In comparison, the 

pursuit of an rf SQUID flux qubit has encountered considerable difficulties in 

observing MQC in the time domain [26]. The same amount of magnetic flux noise 

would result in much stronger decoherence in an rf SQUID operated as a flux qubit 

instead of as a phase qubit. The resulting dephasing rates in the rf SQUID when 

operated as flux or phase qubit will be shown in subsection 1.5.2. 
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1.4.1 Properties of rf SQUID 

In general, the size of rf SQUID qubits (≥ 50 µm) is 10 to 102 times larger than 

that of charge qubits and 3-JJ flux qubits. The larger size allows higher fabrication 

yield and stronger coupling between the qubits. Physically, an rf SQUID can be 

inductively coupled to an external flux bias circuit (control) and a dc SQUID (readout), 

as shown in Fig. 1.3 (a). The basic parameters of an rf SQUID include the junction 

critical current cI , junction capacitance C , and the SQUID loop inductance L . The 

Hamiltonian is fully determined by those three parameters and thus an rf SQUID qubit 

can be considered as an artificial atom.  

 

Fig. 1.3. Schematic of an rf SQUID coupled to the control and readout lines, where the 
single JJ could be replaced by a compound JJ for a tunable effective critical current (a), 
and a typical double-well potential at βL=3 and Φx=0.55 Φ0 (b). 

 

A very useful variation of the traditional rf SQUID is the compound Josephson 

junction (CJJ) rf SQUID, where the single junction is replaced by a small dc SQUID 

with inductance dcL L<< . Thus the critical current of the CJJ can be adjusted in situ 

detector 
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by applying a magnetic flux to the dc SQUID [37]. 

By defining the parameter 
0

2 c
L

LIπβ =
Φ

, the rf SQUID potential given in Eq. 

(1.11) can be written as 

  

22
0

02
0

1( ) cos(2 / )
2 4

x LU
L

β π
π

⎡ ⎤⎛ ⎞Φ Φ − Φ
⎢ ⎥Φ = − Φ Φ⎜ ⎟Φ⎢ ⎥⎝ ⎠⎣ ⎦

       (1.12) 

where the first term is the magnetic energy stored in the loop inductor and the second 

is the Josephson coupling energy. The shape of the potential is determined by the 

external flux bias xΦ  and Lβ , while the energy scale is given by 2
0 /LU L= Φ . 

When 1 4.6Lβ< < , the potential is a symmetric double-well potential at 0 / 2xΦ = Φ . 

By increasing the flux bias slightly by xδΦ , the left well will be higher than the right 

and the energy difference between the two potential minima is given by 

m2 /p x xI Lε δ δ≅ Φ ≈ ∆Φ Φ , where pI  is the magnitude of the circulating current in 

the rf SQUID loop and m∆Φ  is the distance between the two potential minima, as 

shown in Fig. 1.3 (b). Note that when the system is localized in either the left or right 

well, the corresponding pI  is either clockwise or counterclockwise, which can be 

measured by a detector, such as an inductively coupled dc SQUID magnetometer.  

Given the Hamiltonian described in Eq. (1.7), one can solve the corresponding 

one-dimensional stationary Schrödinger equation to obtain the energy eigenvalues and 

eigenstates. It turns out that many eigenstates are localized in the wells when the 

barrier height is much greater than the energy level spacing between the lowest two 

levels in the same well. In the same well, the energy level spacing between adjacent 

levels decreases at higher levels due to the anharmonicity of the potential. Furthermore, 
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the energy level spacing between the intra-well ground state and first excited state 

10ω  is on the order of 1/ LC , typically 5 - 20 GHz. A typical energy level diagram 

of an rf SQUID is shown as an example in Appendix C. 

1.4.2 Dynamics of a phase qubit under microwave radiation 

In the gate model QC, microwave pulses are applied to rf SQUID qubits to 

perform quantum gate operations. Consider the microwave as a classical 

electromagnetic field described by sinrfA tω , where rfA  is the amplitude and ω  is 

the angular frequency of microwave. Because the linear dimension of the qubit (~ 0.1 

mm) is much smaller than the wavelength of the microwave (~ 1 cm), the spatial 

variation of the field is negligible. The microwave will generate an rf magnetic flux 

sinrf tωΦ  in the SQUID loop, where rfΦ  is proportional to the microwave 

amplitude rfA . From Eq. (1.11), one can find that the interaction Hamiltonian is given 

by ˆsinI rfH I tω= − Φ , where .rf
rfI

L
Φ

≡  By using an IQ mixer, the microwave can 

have both in-phase (I) and quadrature (Q) components, i.e., 1 2sin cos ,A t A tω ω+  where 

the amplitudes 1A  and 2A  are adjustable. 

To operate the rf SQUID as a qubit, the qubit states 0  and 1  need to be 

specified. For phase qubits, the ground and first excited states localized in the same 

well are used as the qubit states. In contrast, a flux qubit utilizes the ground and first 

excited states of the double-well potential around 0 / 2xΦ = Φ . With a “moderate” 

height barrier between the two wells, the qubit states could be “partially” localized in 

the wells. For both types of rf SQUID qubits excited by a resonant microwave, the 

coupling between the qubit states is dominant, while the coupling to the other states is 
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negligible thanks to the anharmonicity of the potential. Hence, an effective two-level 

system is obtained. 

The dynamics of a qubit under microwave radiation is determined by the system 

Hamiltonian. Consider the Hamiltonian of a phase qubit first (refer to Appendix A for 

the details of the derivation). Write the total Hamiltonian as 0 IH H H= + , where 

ˆsinI rfH I tω= − Φ . Choose the qubit states 0  and 1  as the basis states and thus 

10
0

ˆ
2 zH ω σ= − . To calculate the matrix elements of operator Φ̂ , use the fact that the 

potential is approximately harmonic around the bottom of a deep well, where the 

barrier height is much greater than 10ω . Thus 01
ˆ

xσΦ = Φ , where 01
ˆ0 1Φ = Φ . In 

order to obtain a time-independent Hamiltonian, the rotating wave approximation 

(RWA) can be applied when the detuning 10 10.ω ω ω ω∆ = −  Consequently, in the 

ω  rotating frame (rotating about the z-axis), the Hamiltonian is given by  

0
ˆ

2 2
yzH

σσω
⎛ ⎞

= − ∆ + Ω⎜ ⎟
⎝ ⎠

,                (1.13) 

where the angular frequency of the on-resonance Rabi oscillation, 0
10

1
2 rfI
C ω

Ω = , 

is proportional to the microwave amplitude.       

The Hamiltonian given in Eq. (1.13) corresponds to a rotation operation on the 

qubit state vector. As mentioned before, when the system’s Hamiltonian is 

time-independent, the state vector is given by 
ˆ /( ) (0)iH tt e− ∆∆ =ψ ψ . The 

effective two-level Hamiltonian of the qubit can be always expressed in the general 

form of ˆ
2

nH σ⋅
= Ω , where ( , , )x y zσ σ σ σ=  and n  is a unit vector. So the 

propagator is given by exp
2

ni t σ⋅⎛ ⎞− Ω∆⎜ ⎟
⎝ ⎠

( )nR t= Ω∆ , equivalent to a rotation of the 
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state vector about n  with the angular frequency Ω  by an angle tΩ∆ . Hence, the 

Hamiltonian in Eq. (1.13) corresponds to a rotation of the state vector about a unit 

vector 00, ,n ωΩ ∆⎛ ⎞= − −⎜ ⎟Ω Ω⎝ ⎠
, where ( )22

0 ωΩ = Ω + ∆  is the angular frequency of 

Rabi oscillation.  

 

 
Fig. 1.4. Operation of phase qubit state vector using microwave pulses. The system 
Hamiltonian is given in Eq. (1.13). The qubit is initialized in the ground state. Under 
microwave excitation, the state vector (red) is rotating about the unit vector (blue) 
determined by detuning and on-resonance Rabi frequency.    

 

Fig. 1.4 demonstrates such a rotation when the qubit is initially prepared in the 

ground state. A microwave pulse of a duration t∆  is called a π/2-pulse or π-pulse 

when tΩ∆ = π/2 or π. Furthermore, when the microwave has both the in-phase and 

quadrature components with ( )1 2
ˆsin cosIH I t I tω ω= + Φ , the qubit Hamiltonian has 

an extra term 02 2
xσ

− Ω , where 02 2IΩ ∝ . Thus the rotation about the x-axis can be 

realized as well. The rotation of the qubit state vector will result in a periodic 

z 

y 

 

n

1

0
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oscillation in the excitation probability 
2

1 sin .
2

P θ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 For on-resonance Rabi 

oscillations, with (0) 0=ψ , we have 0tθ = Ω  and  

0
1

1 cos( )
2

tP t − Ω
= .                   (1.14) 

For rf SQUID flux qubits, in the basis of qubit eigenstates, the flux qubit 

Hamiltonian has essentially the same form as that of phase qubits. However, the basis 

states are conventionally chosen to be a combination of the qubit states. For instance, 

at 0 / 2xΦ = Φ , the basis states are actually the lowest states localized in each of the 

wells  ( )1 0 1
2

R = +  and ( )1 0 1
2

L = − . Thus the flux qubit Hamiltonian 

before the RWA is expressed as ( )1ˆ
2 z xH εσ σ= − + ∆ , where sinrf tε ω∝ Φ  and ∆  

is the tunnel splitting. Thus it is equivalent to the Hamiltonian of a phase qubit. 

1.5 Decoherence in rf SQUID qubits 

As a macroscopic quantum object, an rf SQUID qubit is subject to considerable 

decoherence resulting from its relatively strong coupling to the environment. In general, 

decoherence in a qubit is related to two processes: the longitudinal relaxation with 

decay rate 11/T  and the transverse relaxation with decay rate 21/T , where 1T  and 

2T  are also called the energy relaxation time and dephasing time, respectively. Here 

we explain how decoherence occurs in phase qubits using the concept of qubit 

“particles”. In general, the occupation probabilities of qubit states are determined by 

performing a number of measurements (N ~104) with the same initialization and gate 

operations. Essentially, it is equivalent to performing measurements on an ensemble of 

N qubit “particles”. Thus the process of the longitudinal or energy relaxation could be 
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described as follows. At first, each qubit particle is prepared in the ground state and 

brought to the excited state by a π-pulse. Then due to the dissipation, some qubit 

particles would dump energy to the environment and decay to the ground state. After 

time t, the number of qubit particles remaining in the excited state is given by 1/t TNe− .  

To describe the transverse relaxation or dephasing process, consider first an 

operation taking the state vectors of the qubit particles into the x-y plane of the Bloch 

sphere. Then the state vectors are allowed to evolve freely so that they will rotate about 

the z-axis in the x-y plane with the angular frequency 10 /E∆ , where 10E∆  is the 

energy level spacing between the qubit states. However, in the presence of dephasing 

during the free evolution, the state vectors of some qubit particles rotate randomly 

faster or slower, which randomizes the phase difference between the qubit particles. In 

order to measure the effect of dephasing, a π/2-pulse following the free evolution is 

required to bring the state vectors into y-z plane and subsequently the measurement of 

state vectors’ z-component is performed. The measured excitation probability 1P  is a 

damped sinusoidal oscillation as a function of free evolution time, i.e., the signal of 

Ramsey fringes. The time constant of the amplitude decay is defined as the 

decoherence time 2T . Note that the energy relaxation also contributes to dephasing 

because it reduces the population of the “coherent” particles in the ensemble. 

Conventionally, the dephasing rate can be written as [38] 

2 1

1 1 1
2T T Tϕ

= +              (1.15) 

where 1/Tϕ  represents the pure dephasing rate. In Eq. (1.15), it is assumed that the 

behavior of pure dephasing can be described by an exponential decay, i.e., 
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( )exp /t Tϕ− . However, the decay is non-exponential in rf SQUID qubits. Actually, it 

will be shown in Chapter 3 that the coherence signal of an rf SQUID phase qubit 

decays as ( ) ( )2
1exp / exp / 2t T t Tϕ

⎡ ⎤− −⎢ ⎥⎣ ⎦
.  

In rf SQUID qubits, the energy level spacing of the qubit states depends on the 

magnetic flux bias and thus it will fluctuate in the presence of flux noise, leading to 

inhomogeneous dephasing during the free evolution of the qubit state. To estimate in 

which frequency range the flux noise could cause inhomogeneous dephasing, consider 

a number of 104
 measurements with the time interval between two consecutive 

measurements typically on the order of 1 ms. Hence, the flux noise with frequency as 

low as 0.1 Hz will contribute to dephasing. Fortunately, dephasing due to the low 

frequency flux noise could be significantly reduced by using the spin echo pulse 

sequence. The details of Ramsey fringe and spin echo measurements will be presented 

in Chapter 3.   

1.5.1 RF SQUID qubits coupled to the environment 

The superconducting qubits, including the rf SQUID qubits, are coupled to the 

electromagnetic environment. The qubit energy is dissipated to the environment and 

thus the lifetime of the excited state is limited by the energy relaxation. On the 

phenomenological level, the electromagnetic environment could be modeled as an 

effective frequency-dependent impedance ( )Z ω  in parallel with the qubit [39, 40], 

where the dissipation is induced by the damping resistor with an effective damping 

resistance 11/ Re ( )R Z ω −⎡ ⎤= ⎣ ⎦ . By noting that a JJ is a non-linear resonator, one could 

model a JJ phase qubit coupled to the environment as a parallel RLC circuit, where the 
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energy stored in the LC resonator is dissipated in the resistor, as shown in Fig. 1.5.  

 

 
Fig. 1.5. Equivalent RLC circuit representation of a JJ coupled to the environment. 

 

The energy loss in a classical parallel RLC circuit is characterized by the quality 

factor CQ R
L

= . In addition, when 1Q >> , the time constant of the circuit is 

approximately equal to 2RC, corresponding to an energy relaxation time 1 .T RC=  

Intensive theoretical work has been done to investigate quantum dissipative systems 

based on the system-plus-reservoir model, where the bath is considered linear and 

described by harmonic oscillators [41-43]. In particular, for an rf SQUID flux qubit 

with ohmic dissipation, it has been predicted that coherent oscillation in the qubit could 

be destroyed when the dimensionless damping parameter ( )2
1

2 2
m R

π
∆Φ

>  [44], where 

m∆Φ  is the distance between the bottoms of the two wells. Thus the damping 

resistance is an important parameter of the system and it could be determined by 

measuring the quality factor Q [45].  

Ic C Z(ω)

RL C
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1.5.2 Low frequency magnetic flux noise 

Consider the state vector of an rf SQUID qubit, which is prepared in the x-y plane 

and allowed to evolve freely. The angular frequency of the rotation about the z-axis is 

10 10 /Eω = ∆ , where the energy level spacing of the qubit 10E∆  is determined by the 

qubit parameters and the external magnetic flux bias xΦ . In the presence of flux noise, 

the instantaneous angular frequency could be written as 10
10 10 N

x

ωω ω δ∂
= + Φ

∂Φ
，where 

NδΦ  represents the magnetic flux noise. We will show later that the pure dephasing 

rate is given by 101/ / 2N
x

Tϕ
ω∂

= ∆Φ
∂Φ

, where N∆Φ  is the root mean square (rms) of 

the flux noise. To estimate the effect of pure dephasing, consider a typical rf SQUID 

qubit with the loop inductance L = 1 nH, qubit capacitance C = 100 fF, and 2Lβ = . If 

it is operated as a phase qubit, then 10
02 70 MHz/m

x

ω π∂
≈ × Φ

∂Φ
. Given that the rms of 

flux noise is typically on the order of 0.1 0mΦ , one obtains ~ 30 nsTϕ . However, 

when the rf SQUID is operated as a flux qubit, the energy level spacing is much more 

sensitive to the flux bias, where 0
0~ 2 3.5 GHz/m .

x

ω π∂
× Φ

∂Φ
 That yields a much 

shorter dephasing time ~ 0.6 nsTϕ . 

The spectral density of magnetic flux noise in superconducting qubits has been 

found to scale as 1/f at low frequency, and the typical flux noise at 1 Hz 1/ 2 (1 Hz)SΦ  is 

on the order of 0 1
010 10 / Hzµ− Φ  [46-49]. Thus the inhomogeneous dephasing in rf 

SQUID qubits is largely caused by the low frequency flux noise. In addition to 

dephasing, the low frequency flux noise also results in inhomogeneous broadening of 



 24

the MRT and microwave absorption resonance peaks. Recently, several theoretical 

models have been suggested to identify microscopic origins of low frequency flux 

noise [50-52]. In general, the magnitude of flux noise does not have a simple 

dependence on the area enclosed by the qubit loop. Instead, it was found to increase 

with /l w , where l and w are the length and width of the superconducting wire 

respectively, indicating that the source of the noise is local [48]. Recent experiment has 

shown that unpaired spins in the superconducting film could generate 1/f magnetic flux 

noise and the area density of the unpaired spins is on the order of 0.4 spins/nm2 [53]. 
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Chapter 2. Qubit samples and experimental setup 

 

2.1 Sample fabrication 

The superconductors used to make superconducting qubits are typically Al or Nb 

deposited on silicon or sapphire substrates. Josephson junctions in many Al-based 

qubits are fabricated by angle shadow evaporation [27, 28]. The other approach to 

fabricate Al/AlOx/Al junction is using an ion-mill cleaning followed by the thermal 

oxidation of the Al base electrode and the sputtering of the counter electrode [54]. The 

Al phase qubit we measured was made from a tri-layer process at Northrop Grumman 

[55]. Compared to the shadow evaporation technique, the tri-layer process provides 

more flexibility in qubit design and is thus more suitable for scalable quantum 

computing.  

2.2 Qubit samples and designs 

An Al qubit chip is illustrated in Fig. 2.1. It was made on a silicon substrate. The 

qubit has single tunnel junction with the junction area of 4.6 µm2. As shown in the 

figure, the rf SQUID has a multi-turn structure, which provides adequate loop 

inductance. The dc SQUID magnetometer is between the rf SQUID and the other 

multi-turn structure with the identical geometry. Separate low frequency and high 

frequency flux bias lines are placed near the rf SQUID to produce sufficient couplings. 

The symmetric design minimizes the crosstalk between the flux bias lines and the dc 

SQUID. Because flux noise level in Al rf SQUID qubits is generally lower than that in 

Nb qubits, Al qubits are more suitable for the gate model quantum computing and are 
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often operated as phase qubits to reduce the dephasing rate. The connectors and cables 

we used for the microwave transmission have a cutoff frequency of 18 GHz. Hence, 

the transition frequency of our phase qubits 10 /E h∆  is typically designed to be 5 - 18 

GHz. The parameters of the Al phase qubit can be determined from the measurement 

of qubit spectroscopy, which will be shown in Chapter 3.  

 

~ 50 µm

dc SQUID

flux bias
line

rf SQUID

microwave 
line

~ 50 µm

dc SQUID

flux bias
line

rf SQUID

microwave 
line

 
Fig. 2.1. Photomicrograph of an Al qubit sample deposited on silicon substrate: rf 
SQUID (the multi-turn structure on the right), dc SQUID magnetometer (the large 
double-loop structure in the center), microwave line and flux bias line (the small 
loops).  

 

To design a superconducting qubit based on rf SQUID, several important 

parameters need to be considered. As introduced in Chapter 1, an rf SQUID is 

characterized by three parameters: the junction critical current cI , the junction 

capacitance C , and the rf SQUID loop inductance L . The junction critical current cI  

is given by the product of the critical current density cJ  and the junction area A while 



 27

the junction capacitance C A∝ . cJ  is determined by the thickness of the AlOx 

tunnel barrier, which is typically ~ 1-2 nm and yielding cJ  ~ 1-100 A/cm2. The size 

of the junction is on the order of 1 µm. The rf SQUID loop inductance depends on its 

geometry and can be modeled accurately by using software such as FastHenry. Note 

that inductance scales with the dimension of the device and the flux bias lines are 

inductively coupled to the target elements of the qubit circuit. Hence, the mutual 

inductances between various circuit elements, which determine the coupling strength, 

need to be modeled when designing the qubit circuit.  

 

 
Fig. 2.2. Sample cells: (a) Nb rf SQUID sample and (b) Al rf SQUID sample. The 
scales shown in both photos are in units of inch. 
 

2.3 Sample packages 

According to the type and size of the qubit chip, a special sample cell or chip 

carrier was used to hold a qubit chip for wiring the chip to external circuits. In Fig. 2.2 

(a), we show a Nb qubit chip mounted in an aluminum sample cell. The qubit chip was 

(a) (b) 
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attached to an oxygen-free copper block by a thin layer of GE varnish, which provides 

thermal contact between the chip and the thermal bath at low temperatures (~ 20 mK). 

Then the chip and the copper block were enclosed in an aluminum box which provides 

additional magnetic shielding below aluminum’s critical temperature (about 1.2 K). 

The cover of the Al box is not shown in the figure. Parts made from oxygen-free 

copper were gold plated for corrosion prevention. 

To connect the qubit to the external electrical circuits for qubit control and 

readout, wire bonding is needed. We use the ultrasonic wire-bonding machine 

Kulicke&Soffa 4526 with 0.05 mm Al bonding wires. The wire bonding is probably 

the most delicate part in the preparation of the sample package. The bonding must be 

durable because the bonded wires will be subject to the tension induced by thermal 

contraction when cooled down from room temperature to low temperatures. The 

quality of wire bonding depends on several conditions including the material and 

surface condition of the sample, and the temperature and humidity of the environment. 

In addition, great care has to be taken when bonding to dc SQUID magnetometers. 

Because the critical current of dc SQUIDs is on the order of 1 µA, they are quite easy 

to be damaged by electrostatic discharge. To protect the dc SQUIDs, all the leads of 

each dc SQUID were connected to ground via 10 MΩ resistors. Coplanar transmission 

lines in the sample package are also shown in Fig. 2.2 (a). The transmission lines are 

formed by copper traces on the dielectric substrate. Two of the transmission lines for 

high frequency signals were connected to the top and bottom SMA connectors. Fig. 2.2 

(b) shows the sample package of an Al phase qubit where all the transmission lines are 
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connected to SMA connectors. The characteristic impedance of these transmission 

lines are designed to be 50 Ω to minimize reflection.  

2.4 Filtering and shielding 

Experiments on superconducting qubits are quite challenging, where an ultra-low 

noise environment and very sensitive measurements of qubit states are required. The 

electrical and magnetic noise from the external control and readout circuit would either 

cause significant decoherence or even overwhelm the qubit signals. Therefore, the 

electrical leads connected to the qubits need to be properly filtered and attenuated, and 

the qubit samples must be adequately shielded.   

Except for the microwave line, the external qubit control and readout lines have a 

bandwidth up to 1 MHz, filtered by low-pass RC, LC, and copper powder filters placed 

at cryogenic temperatures. To eliminate high frequency external noise, a home-made 

integrated LC copper powder filter (CPF) was engineered. The LC-CPF has a cut-off 

frequency of about 5 MHz and provides more than 90 dBm attenuation at the 

frequency greater than 400 MHz. The detail of the design and test of the LC-CPF can 

be found in Appendix B. The bandwidth of the microwave line is up to 18 GHz, 

limited by the bandwidth of the microwave cables and the SMA connectors. To reduce 

the noise in the microwave line, a dc block was used to block low frequency noise 

from room temperature and attenuators were installed.  

With the control and readout circuits adequately filtered and attenuated, great 

efforts were also taken to improve the electrical and magnetic shielding of the system. 

The materials used to construct the sample cell are non-magnetic. The Al or Nb sample 
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cell box provided excellent magnetic shielding below 1 K. The sample package was 

anchored to the bottom of a dilution refrigerator. The inner and outer vacuum cans of 

the fridge were enclosed in a Cryoperm cylinder at 4.2 K and a Mu-metal cylinder at 

room temperature respectively to further enhance the magnetic shielding. The residual 

magnetic field in the sample cell was found on the order of 50 nT [56], indicating an 

excellent magnetic shielding. For electrical shielding, the dilution fridge and the 

battery-powered low-noise preamplifier/isolation amplifiers were placed in a shielding 

room. Coaxial and twin-axial cables with excellent shields were used to carry the 

signals. The electromagnetic noise picked up by the shields was guided to a separate 

customized ground, which is much more stable than the electrical ground of the lab 

building. In addition, isolation amplifiers were used to eliminate the ground loops in 

the circuits. 

2.5 Experimental setup 

The complete experimental setup to measure the Al phase qubit is illustrated in 

the schematic drawing of Fig. 2.3 (a). The sample package was mounted onto the 

mixing chamber of the dilution fridge, where the base temperature is about 20 mK. In 

the figure, different colors are used to distinguish the flux bias lines, the readout lines, 

and the microwave line. All these lines were single-ended. The copper powder filters 

(CPFs) were made from Mini Circuit 80-MHz LC low-pass filters filled with copper 

powder. They were installed in the flux bias lines and the readout lines, and were 

thermally anchored to the mixing chamber. The RC filters (RCFs) anchored to the 1 K 

pot (T = 1.4 K) have the cutoff frequency of up to several hundred KHz. Its design 
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Fig. 2.3. (a) Schematic drawing of the experimental setup, where copper power filters 
(CPFs), RC filters (RCFs), and attenuators were anchored at low temperatures. (b) The 
microwave and readout pulse control unit (in blue box), where double mixers were 

(b) 

(a) 
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used to obtain up to 47 dB on-off ratio in the generated microwave pulse. Refer to 
section 2.5 for more details. 
 

is shown in Appendix B. One of the readout lines (in green) was for the current bias of 

the dc SQUID magnetometer and the other one was used to measure the voltage across 

the dc SQUID. At room temperature, bias resistors of 10 kΩ and 100 kΩ were used to 

reduce the noise current in the flux and dc SQUID bias lines, respectively. Three 

isolation amplifiers were placed in those lines to break the ground loops in the circuits. 

The amplifiers have been tested to have a bandwidth of up to several 100 kHz. The 

arbitrary waveform generators (AWGs) of Agilent 33120 were used to bias the dc 

SQUID and the flux lines. The voltage signal from the dc SQUID was first amplified 

by a pre-amplifier (e.g., an AD524 instrumentation amplifier) and then measured by a 

SR620 timer. All instruments were connected to computers via a GPIB bus and 

programmed to be controlled.   

The microwave line inside the fridge was attenuated by 40 dBm. At low 

temperatures, a semi-rigid coaxial microwave cable of about 2 meters long was used to 

carry both the microwave and readout pulses. The inner material of the cable is BeCu 

and the outer is stainless steel (SS). The cable itself will provide about 12 dBm 

attenuation at 10 GHz. At room temperature, the microwave line consisted of a 2.5 m 

low-loss simi-rigid copper coaxial cable. To reduce the low frequency noise from the 

room temperature components, a dc block with a passing band of 10 MHz to 18 GHz 

was installed. The microwave line was connected to an Agilent E8251A microwave 

synthesizer and high speed Tektronix AWGs (430 and 5014A or 7122B) via the control 

unit. The microwave source is able to generate microwave signal with frequency up to 
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20 GHz and power level up to 20 dBm. The high speed Tektronix AWG 430 and 

7122B (5014A) have the sampling rate up to 0.2 and 12 (1.2) giga samples per second 

(GS/s), sufficient for generating readout pulse and microwave gate pulse, respectively. 

The setup of the microwave and readout control unit is shown in Fig. 2.3 (b). The 

microwave synthesizer outputs continuous microwave while the microwave pulse is 

generated by two double-balanced mixers (M/A-com M79HC) connected in series. The 

high resolution (≤1 ns) gate pulse from the Tektronix AWG 7122 B (or 5014A) was 

first divided by a power divider (Pico-second 5331) and then was fed into the mixers’ 

intermediate frequency (IF) port (labeled “I”). The microwave pulse width is 

determined by the duration of gate pulse when the on-off ratio is high. Therefore, we 

used double mixers to enhance the on-off ratio to 47 dB, sufficient for generating 

accurately defined microwave pulses. The microwave pulse was then attenuated by 

attenuators (Midwest ATT-0290). Subsequently, the microwave pulse was combined 

with the readout pulse by a diplexer (Reactel 2SMX-2G-00) and fed to the qubit 

through the microwave line. The readout pulse is also generated by the Tektronix AWG 

and the duration of the pulse is about 5 ns.   

Another critical issue for the setup is how to thermally ground the qubit chip. 

Although the sample cell is thermally anchored on the mixing chamber at 20mK, the 

local temperature of the qubit chip could be much higher due to the heat conducted 

from the qubit control and readout lines. Notice that superconductors in the 

superconducting state are excellent thermal insulators. Hence, we used the GVL 

flexible superconducting coaxial cables, which have excellent electrical conductance 
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and minimum thermal conductance, for the flux bias and readout lines below the 1 K 

pot. Each of the 1.5-meter superconducting cables is made of NbTi with a CuNi shield 

and has a cutoff frequency of up to several hundred MHz. From 1.4 K to room 

temperature, GVL brass coaxial cable was used in all low frequency lines because of 

its small temperature-coefficient of resistance. The shields of both the superconducting 

and brass cables were well anchored onto various thermal sinks. For the microwave 

line, the semi-rigid BeCu coaxial cable was anchored to 1 K pot and mixing chamber 

via 20 dB attenuators, respectively.  
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Chapter 3. Calibrating qubit parameters and decoherence time 

 

In order to precisely manipulate multipartite quantum states in a phase qubit, it is 

necessary to determine the parameters of the phase qubit and decoherence time. In this 

chapter, the procedures used to calibrate qubit parameters and decoherence time will be 

demonstrated. The sample is the Al phase qubit NG09Q2 and all the measurements 

were performed at about 20 mK. The complete calibration involves several different 

measurements. In the following, the readout of qubit state will be discussed first. 

3.1 Readout of qubit state 

To perform the readout of the qubit state, a readout pulse is used to correlate the 

excitation probability to the probability of tunneling to the lower potential well. The 

readout scheme is demonstrated in Fig. 3.1. Suppose the ground and the first excited 

states in the left (higher) potential well are utilized as qubit states. After a single-qubit 

gate operation, a short readout pulse in flux bias is applied to tilt the potential and 

make the left well shallower, which allows a significant probability of tunneling to the 

right (lower) potential well when the qubit was in the excited state. If the qubit was in 

the ground state, the tunneling probability is about two orders of magnitude smaller 

and thus the qubit will largely remain in the left well after the readout pulse is applied. 

Following the readout pulse, the double-well potential will be tilted back to be 

symmetric. Consequently, the measurement of the tunneling probability would yield 

the occupation probability of the excited state, i.e., the excitation probability. 

Furthermore, the localization of the qubit state in the left or right potential well is 
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characterized by a circulating current in the qubit loop in the clockwise or 

counter-clockwise direction. Hence, by measuring the circulating current using a 

magnetometer, one can determine whether the tunneling happened. The magnetometer 

used in our experiment is an asymmetric 3-JJ dc SQUID, where a small JJ is in parallel 

with two larger ones connected in series, forming the two inductive arms of the 

SQUID. The critical currents of the junctions were chosen so that the Josephson 

inductance of the small junction equals to the sum of those of the two larger junctions. 

The benefit of the small 3-JJ dc SQUID is that it requires virtually no external flux bias 

to make it operate as a magnetometer.  

 

2
1 0/ ~ 10Γ Γb)a)

2
1 0/ ~ 10Γ Γ 2
1 0/ ~ 10Γ Γ 2
1 0/ ~ 10Γ Γb)a)

 
Fig. 3.1. Readout scheme of the rf SQUID phase qubit. (a) The lowest two levels 
localized in the higher well are used as qubit levels (marked in red). (b) A short readout 
pulse (~ 5 ns) is applied to tilt the potential and make the higher well shallower to 
allow the tunneling of the qubit in the excited state to the lower well. Γ1 and Γ0 are the 
tunneling rates when the qubit was in the excited and ground states, respectively.  

 

Experimentally, what we measured directly is the tunneling probability of the 

qubit tP , which can be converted to the excitation probability 1P  as described below. 
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To calibrate the relation between tP  and 1P , we used a 5-ns readout pulse and 

measured tP  as a function of the pulse amplitude with the qubit initialized in the 

ground state and the excited state, respectively. The result is shown in Fig. 3.2. When 

the readout pulse amplitude was increased, the higher potential well became shallower, 

resulting in higher rate of tunneling to the lower well. At the optimum pulse amplitude, 

the difference between the tunneling probabilities of qubit initialized in the ground and 

excited states 1 0t tP P−  reached its maximum value of about 0.5, giving the best 

contrast of the readout signal. Given the measured signal contrast, one can extract the 

excitation probability from the measured tunneling probability by using  

                          0
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1 0

t t

t t

P PP
P P
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−
.                       (3.1) 
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Fig. 3.2. Measured tunneling probability vs. readout pulse amplitude with qubit 
initialized in ground state (black curve) or excited state (red curve). The blue dashed 
line indicates the optimum readout amplitude and signal contrast of ~ 0.5. 

The loss in the tunneling probability of the qubit initialized in the excited state 
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was caused by the dumping of qubit’s energy to spurious two-level systems (TLSs) 

when the readout pulse was applied [57]. While the readout pulse changed the external 

flux bias to make the higher potential well shallower, the qubit’s excited state was 

swept through avoided level crossings, where the qubit was coupled to the TLSs and 

was subject to the loss of the population in the excited state. Hence, the signal contrast 

can be significantly increased by reducing the density of TLS. 

3.2 Determining the phase qubit’s parameters 

Three independent parameters are required to build the Hamiltonian of an isolated 

rf SQUID qubit: the junction’s critical current cI , the junction capacitance C , and the 

SQUID loop inductance L . More conveniently, one can use another set of three 

independent parameters: Lβ , L, and C, where 02 /L cLIβ π= Φ . In this section, we will 

show how to extract these qubit parameters from the spectroscopy and MRT 

measurements.   

The phase qubit used in our experiment was operated in the gate model with 

microwave excitation. Hence, it is efficient to utilize the measured spectroscopy, i.e., 

the transition frequency 10 / 2ω π  vs. the external flux bias xΦ , to extract the qubit’s 

parameters. Consider the double-well potential of a phase qubit at 00.5 xΦ > Φ , where 

the left well is the higher well and is so deep that the barrier height 10U ω∆ >> . Thus 

the potential around the bottom of the well is approximately harmonic and thus the 

small oscillation frequency around the well’s bottom 10pω ω≈ . Using the potential 

( )U Φ  given in Eq. (1.22) and denoting bΦ  as the position of the left well’s bottom, 

we have 
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where 0/b bφ ≡ Φ Φ . Also note that bφ  satisfies the equation 
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2

L
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βφ φ πφ
π

− + =                     (3.3) 

where 0/x xφ ≡ Φ Φ . Consequently, based on Eqs. (3.2) and (3.3), any two data points 

( xφ , 10ω ) on the spectroscopy can be used to set up four equations to solve for bφ  at 

the two data points, Lβ , and LC.  
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Fig. 3.3. Measured spectroscopy of the phase qubit at 20 mK and the calculated one 

(white curve) with 3.23Lβ =  and 51.88 10  pH fFLC = × ⋅ . 

 

Fig. 3.3 shows the measured spectroscopy of the phase qubit. Two obvious 

splittings, also called avoided crossings, in the measured spectroscopy resulted from 

the coupling between the qubit and spurious two level systems (TLSs). By choosing 

two data points away from the avoided crossings, we obtained 3.23Lβ = and 

51.88 10  pH fFLC = × ⋅  by solving the equations described by Eqs. (3.2) and (3.3).  
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The relative deviation in the solved parameters was on the order of 0.1% when 

different data points on the spectroscopy were chosen. The numerically calculated 

spectroscopy based on the solved parameters was also plotted in Fig. 3.3. It went 

through the center of each splitting as expected and excellently matched the measured 

one in the region away from the splittings. The detail of the spectroscopy measurement 

will be given later in this chapter.  
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Fig. 3.4. Tunneling probability of phase qubit without microwave excitation vs. 
external flux bias at T = 20 mK. Peaks due to resonant tunneling are clearly seen. 

 

In order to determine L and C, we performed the measurement of the macroscopic 

quantum tunneling (MRT), from which the value of L/C can be extracted. MRT occurs 

when the energy level of the ground state in one well is aligned with that of the state 

localized in the other well [22, 58]. Hence, when the tunneling probability is measured 

as a function of external flux bias, the maximum enhancement of tunneling probability 

due to MRT, called MRT peak, occurs at the flux biases where the energy levels in 
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opposite wells are aligned. The details of MRT measurement can be found in Refs. 

[59-61]. Theoretically, the flux bias interval between two adjacent MRT peaks around 

0 / 2xΦ = Φ  is given by   

( )_
0

/ f ,
2x MRT L

h L C β∆Φ =
Φ

                  (3.4)  

where h is the Planck’s constant, the function ( ) ( )f f 1 / tan /L m m m mβ ϕ ϕ ϕ ϕ= = − , 

and / sinL m mβ ϕ ϕ= . The derivation of Eq. (3.4) is given in Appendix D. Note that 

( )f Lβ  depends weakly on Lβ . Thus the spacing between adjacent MRT peaks 

_x MRT∆Φ  depends mainly on 0 /Z L C= . 

The measured tunneling probability of qubit to the right well without microwave 

excitation vs. flux bias is shown in Fig. 3.4, where obvious MRT peaks were observed. 

The spacing between adjacent MRT peaks is equal to 2.7 0.1± mΦ0 around 

00.77 .xΦ = Φ  Because the tunneling probability was not measured in the vicinity of 

0 / 2xΦ = Φ , we couldn’t use Eq. (3.4) directly to determine L/C. Therefore, we 

numerically calculated the energy diagram with L/C as an adjustable parameter to fit 

the experimental result. Consequently, by combining the results from spectroscopy and 

MRT measurements, we obtained 770 pHL ≈  and 240 fFC ≈ .  

3.3 Characterizing decoherence in the phase qubit 

The measurement of coherence in time domain is required to characterize 

decoherence in the phase qubit. Hence, in this section, we will first demonstrate the 

measurement of spectroscopy and Rabi oscillations. Then we will show how to extract 

decoherence times from pump-probe, Ramsey fringes, and spin echo experiments.  

3.3.1 Spectroscopy measurement  
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In order to excite the qubit with microwave, one has to measure the transition 

frequency 0 10 /f E h≡ ∆ , where 10E∆  is the energy level spacing of the qubit states. 

As 10E∆  depends on the external flux bias xΦ , it is measured as a function of xΦ . At 

each fixed flux bias, the qubit is excited by a continuous microwave and the excitation 

probability 1P  is measured as a function of microwave frequency. The transition or 

resonant frequency is determined from the position of the maximum 1P . A measured 

spectroscopy is shown in Fig. 3.5. Two large splittings in the figure resulted from 

qubit-TLS coupling. Therefore, to study single phase qubit, we chose the flux bias at 

00.679 xΦ = Φ  where the qubit was not coupled to TLS. 
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Fig. 3.5. Measured spectroscopy of the phase qubit at 20 mK, where the tunneling 
probability was plotted as a function of microwave frequency and flux bias. Two 
splittings on the spectroscopy were caused by the coupling between the qubit and two 
TLSs. 

 

The measured tunneling probability vs. the frequency of applied continuous 
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microwave at 00.679 xΦ = Φ  is given in Fig. 3.6. The resonant peak was well fitted 

to a Gaussian function, yielding 0 16.777 GHzf = and a Gaussian line width of 

3.4 0.2± MHz corresponding to a full width at half maximum (FWHM) of 8.0 MHz. 

Note that low power (-35 dBm) microwave and a 10 dB attenuator installed at room 

temperature were used to minimize the power broadening of the resonant peak. Thus 

the measured tunneling probability was only up to 0.12. Note that the background 

signal of about 0.04 was due to the finite tunneling probability of the ground state. 
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Fig. 3.6. Measured spectrum (blue dots) at 00.679 xΦ = Φ  with -35 dBm microwave 

power and 10 dB attenuation. The data (solid circles) with error bars was fitted to a 

Gaussian function (red curve).  

 

It is well known that the homogeneous line shape for an absorptive transition is 

Lorentzian and under low power microwave radiation the Lorentzian line shape is 
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given by 
( ) ( )

1
2 2

1

1 1/ 2( )
2 1/ 2

TL f
f Tπ π

∆ =
∆ +

, where f∆  is the frequency detuning and 1T  

is the energy relaxation time [62]. However, in the presence of Gaussian noise with 

amplitude distribution 
2

22

1( ; ) exp
22
xG x σ
σπσ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, where σ  is the line width, the 

line shape is given by the convolution of the Gaussian and Lorentzian functions, 

i.e., ( ; ) ( )G x L f x dxσ
∞

−∞
∆ −∫ . Because the measured spectrum fitted well to the Gaussian 

function, the line width of the spectrum is dominated by Gaussian noise. The FWHM 

of the intrinsic Lorentzian line shape is given by 11/ 2 2.2 MHz,Tπ ≈ where 1 73 nsT =  

is the energy relaxation time measured directly in the time domain. Thus the measured 

FWHM (8.0 MHz) is mostly due to the inhomogeneous broadening. For phase qubits, 

the inhomogeneous broadening is caused by the magnetic flux noise because the 

transition frequency 0f  is flux bias dependent.  

More importantly, from the measured spectrum shown in Fig. 3.6, we were able to 

extract the intrinsic Gaussian line width, i.e., the strength of the fluctuations in the 

transition frequency due to the flux noise, 2.8σ ≈ MHz [63]. From the measured 

spectroscopy as shown in Fig. 3.5, we found that at 00.679 xΦ = Φ  the derivative 

0 0/ 33 MHz/mxf∂ ∂Φ ≈ Φ . Thus the rms of the flux noise is about 2.8/33 0.09 ≈ 0mΦ , 

comparable to the values observed by other groups in Al phase qubits with similar 

geometry and size [49]. We will show later how to characterize the pure dephasing 

induced by flux noise. 

3.3.2 Rabi oscillations  

Quantum coherence in time domain can be demonstrated by the observation of 
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Rabi oscillations in qubits. To measure Rabi oscillations, a microwave pulse with 

varying pulse duration is applied to excite the qubit and is followed by a readout pulse 

immediately. When on-resonance microwave is applied, one will observe the 

on-resonance Rabi oscillation, where the excitation probability is given in Eq. (1.14).   
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Fig. 3.7. Rabi oscillations at microwave power of 0 dBm (a) and 6 dBm (b) with the 
microwave frequency f = 16.777 GHz. The data was fitted to a sinusoidal function with 
an exponential decay amplitude (red curve). Inset: a sketch shows the timing of the 
microwave pulse and the readout pulse. 

The flux bias was still set to 00.679 xΦ = Φ . Fig. 3.7 shows the measured Rabi 

oscillations at microwave frequency 16.777 GHzf =  and microwave powers Pmw = 0 
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and 6 dBm, respectively. The measured tunneling probability was converted into 

excitation probability and then was fitted to a sinusoidal function whose amplitude 

decays exponentially with time. The best fit yields both the frequency and decay time 

of the Rabi oscillation. As described in Chap 1, the Rabi frequency scales with the 

microwave amplitude at low power microwave excitation. Note that the microwave 

power needs to be calibrated because two mixers and a diplexer used in the microwave 

line have frequency-dependent insertion losses. Fig. 3.8 shows the measured Rabi 

frequency vs. microwave amplitude at 00.693 xΦ = Φ . The Rabi frequency scales 

with the microwave amplitude linearly, as expected from the theory.  
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Fig. 3.8. Measured Rabi frequency vs. microwave amplitude at low power microwave 
excitation. The red line is the best linear fit to the data. 

 

The Rabi decay time 84 2 nsRT = ±  was obtained from the Rabi oscillations 

shown in Fig. 3.7. Theoretically, RT  is related to the energy relaxation time 1T  by   

  ( )
1

11
1

4 2
3R vT T T

−
−− ⎛ ⎞= +⎜ ⎟

⎝ ⎠
                 (3.5) 
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where the rate 1/ vT  is determined by the flux noise spectral density at the Rabi 

frequency [64].  

Fig. 3.9 shows the Rabi oscillations at f = 16.777 GHz and 16.827 GHz with fixed 

microwave power 9 dBmmwP = at 00.679 xΦ = Φ . Note that 16.777 GHz is the resonant 

frequency extracted from the measured spectrum so that 16.827 GHz is 50 MHz 

detuned from the resonance. Compared to the on-resonance Rabi oscillation, the 

detuned Rabi oscillation at 16.827 GHz has a smaller amplitude and higher frequency. 

The width of the detuned π/2-pulse can be extracted from the best fit to the data and it 

will be used later in the Ramsey fringe experiment.   
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Fig. 3.9. Rabi oscillations at f = 16.777 GHz and 16.827 GHz with fixed microwave 

power = 9 dBm at 00.679 xΦ = Φ . Solid curves are the best fits to the data.  

 

3.3.3 Energy relaxation time 

The energy relaxation time 1T  can be obtained from the pump-probe experiment, 
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where the excitation probability is measured as a function of free evolution time after 

the qubit is prepared in the excited state by a π-pulse. Fig. 3.10 shows the result of such 

a measurement at 00.679 .xΦ = Φ The best fit to an exponential decay gave 

1 73 1 ns.T = ±  In addition, we observed the variation in 1T  at different flux biases. 

When the flux bias was in the region with many small avoided crossings, 1T  was 

found to decrease to about 60 ns. It revealed the energy exchange between the qubit 

and TLSs could reduce 1T .  
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Fig. 3.10. Excitation probability as a function of the delay time between the π-pulse 

and the readout pulse at 00.679 xΦ = Φ . The red curve is the best exponential fit to 

the data. 

 

From the measured 1T , the quality factor Q can be estimated. The homogeneous 

line shape of an absorptive transition is Lorentzian 
( ) ( )2 2

1

1
1/ 2Tω

∝
∆ +

, where 

02 ( )f fω π∆ = −  and the FWHM is given by 11/T . Therefore, T1=73 ns corresponds 
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to 0
0 1 7500

FWHM
Q Tω ω= = ≈ .  

3.3.4 Pure dephasing time determined from Ramsey fringes  

To characterize dephasing in the phase qubit, we measured the rate of the 

free-induced decay using the Ramsey pulse sequence. The Ramsey pulse sequence 

consists of two detuned π/2-pulses separated by a period of t during which the qubit 

state evolves freely. The corresponding evolution of the qubit state on Bloch sphere is 

shown in Fig. 3.11, where a simple case of 0ω∆ Ω  is assumed for the purpose of 

illustration. 
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Fig. 3.11. Manipulation of qubit state for Ramsey pulse sequence is illustrated on the 
Bloch sphere. First, the qubit state vector (red) is brought to the x-y plane by the first 
π/2-pulse. Then it is allowed to evolve freely, where the state vector will rotate about -z 
axis by angle .tω∆  Subsequently, the second π/2-pulse brings the vector to the y-z 
plane.  

 

In the absence of decoherence, when 0ω∆ Ω  the excitation probability after 

the Ramsey pulse sequence is given by 1
1 cos( )

2
tP ω+ ∆

= , where / 2 fω π∆ = ∆  is the 

frequency detuning. Denote / 2fδ δω π≡  as the fluctuation of the transition 

frequency caused by Gaussian flux noise. Thus the average of ( )cos tδω  is given by 
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( ) ( )( ; ) cosG f t d fδ σ δω δ
∞

−∞∫  
( )22

exp
2

tπσ⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
, where ( ; )G fδ σ  is a Gaussian 

function of fδ  with the line width σ . Consequently, in the presence of pure 

dephasing induced by flux noise, by defining 2
2

Tϕ πσ
= , the excitation probability can 

be written as 

 
( ) ( ) ( ) ( ){ }2

1

1 cos cos 1( ) 1 cos exp / ,
2 2
t t

P t t t Tϕ

ω δω
ω

+ ∆ ⎡ ⎤= = + ∆ −⎢ ⎥⎣ ⎦
    (3.6) 

where 1/Tϕ  is the pure dephasing rate. Eq. (3.6) shows that the decay of Ramsey 

fringe signal due to pure dephasing is non-exponential. Note that the Gaussian decay 

described by Eq. (3.6) only requires the noise to be random, thus having a Gaussian 

distribution of amplitude. It doesn’t require the noise spectral density to have a specific 

form, such as the 1/f or white noise. By also considering the effect of homogeneous 

dephasing, finally we have  

              ( ) ( ){ }2

1 1
1( ) 1 cos exp / / 2
2

P t t t T t Tϕω ⎡ ⎤= + ∆ − −⎢ ⎥⎣ ⎦
.           (3.7) 

To our knowledge, the accurate determination of Tϕ  in a phase qubit from 

Ramsey fringes hasn’t been reported before. Thus, experimental confirmation of (3.7) 

is important to have a better understanding of the dephasing process in phase qubits. To 

perform the Ramsey fringe experiment accurately, we carefully calibrated the width of 

the detuned microwave pulse. When the detuning was 50 MHz, the width of the 

detuned π/2-pulse is 4.7 ns. The result of Ramsey fringe measurement is shown in Fig. 

3.12, where the excitation probability was measured as a function of the duration of the 

free evolution at 00.679 xΦ = Φ  and was then normalized. The signal of Ramsey 

fringes was fitted to the function given in Eq. (3.7) with the measured 1 73 1 ns,T = ±  
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yielding 81 2 ns.Tϕ = ±  Thus σ =
2

2 Tϕπ
= 2.78 0.07± MHz, consistent with the value 

of the Gaussian line width (2.8 MHz) extracted from the spectrum measurement, 

corresponding to the rms flux noise of 84 µΦ0. The result shows that the pure 

dephasing rate can be accurately determined from the Ramsey fringe measurement.  
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Fig. 3.12. Signal of Ramsey fringes with 50 MHz detuning. The red curve is the best fit 

to the function described by Eq. (3.7), where T1 = 73 ns. The fit yields 81 2 ns.Tϕ = ±  

 

3.3.5 Decoherence time determined from spin echo experiment  

In nuclear magnetic resonance (NMR), a technique called “spin echo” is used to 

refocus the precessing nuclear spins to eliminate the inhomogeneous dephasing caused 

by magnetic field gradients [65]. As discussed in Chapter 1, the transition frequency of 

the qubit fluctuates due to the low frequency flux noise, resulting in randomization of 

the precession speed of the qubit state vector. Therefore, the spin echo technique can 

also be used here to suppress inhomogeneous dephasing induced by the low frequency 

flux noise in phase qubits. 
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Fig. 3.13. (a) Spin echo pulse sequence followed by a readout pulse, where the total 
free evolution time is t. (b) Refocus of state vectors on the x-y plane by the π-pulse. 
 

A conventional spin echo pulse sequence consists of three on-resonance pulses: 

two π/2-pulses interrupted by a refocusing π-pulse with equal time interval of free 

evolution between consecutive pulses as shown in Fig. 3.13. (a). The first π/2-pulse 

brings the state vector onto the x-y plane. Then the state vector is allowed to rotate 

about the -z axis for a period of t/2. Consider two qubit particles, where the state vector 

of one qubit particles rotates δω  faster than the other. Thus it would be / 2tδω  

ahead after the first period of free evolution. Then the state vector will be rotated by 

180° about the -y axis by a π-pulse and consequently it would be / 2tδω  behind. 

However, after the second t/2 free evolution, it will catch up the state vector of the 

other qubit, as shown in Fig. 3.13. (b). Hence, the states of qubit particles are 

“refocused” and the pure dephasing is eliminated. The second π/2-pulse takes the state 

vector back into the y-z plane, which is followed by the readout pulse. In the above 

description, δω  is assumed to be constant in the time scale of free evolution, 

typically 10 – 102 ns. Obviously, the spin echo pulse sequence can’t suppress 

dephasing induced by the flux noise with frequency greater than 1/t, where δω  varies 

during the period of free evolution.  
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Fig. 3.14 shows the measured signal of spin echo as a function of the total time of 

free evolution t at 00.679 xΦ = Φ . Following the convention, we used 11 P−  as the 

spin echo signal. In Fig. 3.14, the data was fitted to an exponential decay, giving the 

time constant 2 138 5 nsET = ± , which is very close to 12 146 ns.T =  The result 

indicates that the effect of pure dephasing has been significantly reduced in the spin 

echo experiment. 

 

0.8

0.7

0.6

0.5

4003002001000
t (ns)

1 
–

P 1 2 138 5 nsET = ±

0.8

0.7

0.6

0.5

4003002001000
t (ns)

1 
–

P 1

0.8

0.7

0.6

0.5

4003002001000
t (ns)

1 
–

P 1 2 138 5 nsET = ±

 

Fig. 3.14. Spin echo signal vs. the free evolution time at 00.679 xΦ = Φ . The data is 

fitted an exponential decay, yielding 2 138 5 nsET = ± . 

 

Furthermore, to determine the pure dephasing rate 1/ ETϕ , the spin echo signal 

was fitted to the function given in Eq. (3.7) with the detuning 0ω∆ =  and 1T = 73 ns, 

as shown in Fig. 3.15. The fitting yielded 500 100 nsETϕ = ± and the spin echo 

dephasing rate 1/ ETϕ ≈ 6 -12 10 s× , which is about 6 times smaller than the dephasing 

rate extracted from the Ramsey fringe experiment. 
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Fig. 3.15. Signal of spin echo fitted to the function given in Eq. (3.7) with 0ω∆ =  

and 1T = 73 ns. The fit yields 500 100 nsETϕ = ± . 

 

Similar work on decoherence characterization has been done in Al 3-JJ flux qubits 

[47], which had an optimum bias point where the transition frequency is virtually 

independent of small flux noise. A spin echo decoherence time 2 12ET T≈  was reported 

only in the vicinity of the optimum bias point. In other bias regions, the qubit was 

subject to pure dephasing induced by flux noise and significantly greater pure 

dephasing rate in spin echo experiments was observed. It indicated that there was 

substantial high frequency flux noise in 3-JJ flux qubits, where the resulting dephasing 

couldn’t be suppressed by the conventional spin echo pulse sequence. Thus, it is 

interesting to investigate whether there is also significant high frequency flux noise in 

phase qubits. Dephasing induced by high frequency noise can be suppressed by 

dynamical decoupling (DD) pulse sequences [66]. For example, the coherence time of 

electron spins in malonic acid crystals was improved from 6 µs with conventional spin 
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echo sequence to about 30 µs by using a DD pulse sequence to decouple the qubits 

from the high frequency noise [66, 67]. At a different flux bias, we tried the second 

order DD pulse sequence, where the single π-pulse in the conventional spin echo 

sequence was replaced by double π-pulses. However, the measured dephasing rate was 

essentially the same as before, indicating that the pure dephasing induced by high 

frequency (>10 MHz) flux noise in our phase qubit is negligible.  
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Chapter 4. Coherent manipulation of multi-partite quantum states by 

LZ transitions 

 

In this chapter, we will demonstrate the coherent manipulation of multi-partite 

quantum states via LZ transitions in the phase qubit coupled to two TLSs. In addition, 

it will be shown that the multi-qubit gates using LZ transitions have much shorter gate 

time and are easier to be implemented, compared to the conventional quantum gates 

controlled by microwave pulses. The measurement of spontaneous coherent 

oscillations in a coupled qubit-TLS bipartite system will be discussed first, which 

yields the qubit-TLS coupling strength. Next, the experimental result of 

Landau-Zener-Stückelberg (LZS) interference in a tripartite system will be shown and 

compared to the theoretical calculations based on the independently calibrated 

parameters of the phase qubit. Finally, we will discuss how to create the W state in the 

tripartite system by utilizing LZ transitions. 

4.1 Phase qubit coupled to TLSs 

As mentioned in Chapter 3, at certain flux biases, the phase qubit was strongly 

coupled to spurious TLSs, resulting in avoided level crossings in the spectroscopy. In 

general, TLSs are found in amorphous materials due to the random bonding of atoms 

[68]. For superconducting phase qubits, TLSs come from the oxide barrier of the 

tunnel junction and the density of TLS can be reduced by using small-area junctions 

[33, 69]. On the other hand, a qubit coupled to TLSs is also an excellent multi-partite 

quantum system, which can be utilized as a prototypical multi-qubit system to study 
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various interesting quantum phenomena, such as entanglement [32, 70].  

Consider the simplest case where the qubit is coupled to one TLS. Denote 10ω  

as the energy level spacing between the qubit states 0  and 1 , and TLSω  as the 

energy level spacing between the ground state g  and excited state e  of the TLS. 

When 10ω  is close to TLSω , coupling between the qubit and TLS becomes strong and 

leads to avoided level crossing. Note that TLSω  is independent of flux bias while 0ω  

is flux bias dependent. The basis states for the coupled qubit-TLS system are 0g , 

1g , 0e , and 1e . At the degeneracy point where 0e  and 1g  have the same 

energy, the ground and excited states of the coupled qubit-TLS system are given by 

( )1 0 / 2g e+  and ( )1 0 / 2g e− , respectively. The tunnel splitting ∆  is 

defined as the energy difference between the eigenstates at the degeneracy point.  

To realize spontaneous coherent oscillations between 1g  and 0e , we used a 

microwave pulse to excite the qubit from 0g  to 1g . Then the system was allowed 

to evolve freely, as shown in the inset of Fig. 4.1. In general, the coupled qubit-TLS is 

a four-level system. However, 1g  and 0e  are the only two effective basis states 

needed to study the dynamics during the free evolution. The effective Hamiltonian is 

thus given by 

                      
10 / 2ˆ ,
/ 2 TLS

H
ω

ω
−∆⎛ ⎞

= ⎜ ⎟−∆⎝ ⎠
                  (4.1) 

where / 2∆  is the coupling strength between 1g  and 0e . By defining the energy 

difference 10 ,TLSε ω ω= − the effective Hamiltonian can be written as 

( )1ˆ
2 z xH εσ σ= − + ∆ , the same form as the Hamiltonian of a flux qubit. From Eq. (4.1), 

it is straightforward to show that the spontaneous coherent oscillation between 1g  
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and 0e  occurs during the free evolution, where the oscillation frequency 

2 2 /sf hε= ∆ + . Thus at the degeneracy point where 0ε = , the oscillation frequency 

is simply given by / h∆ . Note that the spontaneous coherent oscillation shown here is 

similar to the vacuum Rabi oscillation in an excited atom coupled to a resonator or 

cavity [71]. 
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Fig. 4.1. Observed coherent oscillation between 1g  and 0e  in the phase qubit 

coupled to single TLS, where the data points (crosses) are connected by straight lines 
for eye guidance. Inset shows the energy levels and pulse sequence.  

 

A typical coherent oscillation in the qubit-TLS system is illustrated in Fig. 4.1, 

where the measured occupation probability of 1g  and 1e  at the degeneracy point 

is plotted as a function of the free evolution time. Note that the decreasing amplitude of 

the oscillation was due to the relaxation from 1g  to 0g  and 0e  to 0g . More 

importantly, one can accurately determine the oscillation frequency by fitting the 
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measured spontaneous oscillations and thus obtain the coupling strength between the 

qubit and TLS.  

4.2 Landau-Zener transition 

 A qubit prepared in the ground state could be taken into the excited state by LZ 

transition when the system is quickly manipulated through the avoided level crossing 

between the qubit states. The LZ transition probability is given by  

                      
2

exp
2LZP

v
π⎛ ⎞− ∆

= ⎜ ⎟
⎝ ⎠

,                (4.2) 

where /v dE dt=  is the sweeping rate of energy and ∆  is the tunnel splitting. Hence, 

when the sweeping is fast enough to make 2 / 1v∆ ≤ , the transition is a diabatic 

process where a significant part of the qubit’s wavefunction would be coherently 

transferred to the excited state. Hence, the avoided crossings function as a beam 

splitter due to the significant transition probability. Hereafter, the system will evolve 

adiabatically.  

Fig. 4.2 shows a LZ transition at one avoided crossing in a coupled qubit-TLS 

system. The system is prepared in state 1g  by a π-pulse and then the flux bias is 

swept through the avoided crossing. If the sweep rate is small, the process is adiabatic 

and the system will remain in the higher level state. However, if the sweep rate is 

sufficiently high, the system will have a significant probability of making a transition 

to the lower level state, i.e., taking the path indicated by the blue arrow. In this case, 

the wavefunction after the LZ transition is given by  

                1 0 1si
LZ LZP e e P gϕ−= − −ψ ,              (4.3) 
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where the phase jump sϕ  is related to the so-called Stokes phase sϕ  by 
2s s
πϕ ϕ= −   

[72]. The Stokes phase is given by 

                   [ ](ln 1) arg (1 )
4s iπϕ δ δ δ= + − + Γ − ,        (4.4) 

where 
2

4 v
δ ∆

= and Γ  is the gamma function. Note that sϕ  is a monotonous 

function of δ  with 0sϕ =  in the adiabatic limit ( 1δ >> ) and 
4s
πϕ =  in the 

diabatic limit ( 1δ << ). Eq. (4.3) shows that the avoided crossing acts as an adjustable 

beam splitter for the system’s wavefunction. 

 

Flux bias

 1g

 1g

 0e

 0e

E

Flux bias

 1g

 1g

 0e

 0e

 1g

 1g

 0e

 0e

E

 
Fig. 4.2. Schematic drawing of LZ transition in a qubit-TLS system. The system is 

swept through the crossing between 1g  and 0e  after initialized in state 1g . 

With a high sweeping rate, the probability of LZ transition (taking the path indicated 
by the blue arrow) becomes significant. 

 

4.3 Landau-Zener-Stückelberg (LZS) interference in a tripartite system 

Interesting quantum interference may occur when one sweeps the flux bias forth 

and back through a single avoided crossing, where two LZ transitions occur. Between 

the two LZ transitions, the system will evolve adiabatically. After the second LZ 
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transition, the probability of finding the system in state 1g  is given by 
2

0 1
iC C e ϕ−+ , 

where C0 and C1 are real numbers related to LZP , and ϕ  is the phase difference 

accumulated in the adiabatic evolution and LZ transitions. Consequently, the so-called 

Landau-Zener-Stückelberg (LZS) quantum interference can be observed and the 

extrema of the probability occur at 2Nϕ π= , where N is an integer [72].        

 

 
Fig. 4.3. Two avoided level crossings due to coupling to two TLSs in the measured 
spectroscopy. The first tunnel splitting is much smaller than the second one, i.e., 

1 2∆ < ∆ . 1 / 2TLSω π  and 2 / 2TLSω π  are the transition frequencies of the two TLSs, 

respectively. 

 

Moreover, when one sweeps the flux bias through more than one avoided 

crossings, more interesting phenomenon of quantum interference is expected. As 

shown in the measured spectroscopy of Fig. 4.3, there were two avoided crossings, due 

to the coupling of qubit to two TLSs. In addition, 1 20 MHz∆ = and 2 64 MHz,∆ =  

indicating the coupling to the second TLS was much stronger than that to the first one. 

Hence, the qubit and two TLSs formed a coupled tripartite quantum system and only 
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three excited states 1 2 1 2 1 21 , 0 ,  and 0g g e g g e  were involved, as indicated in Fig. 

4.3. This is strictly true in the absence of energy relaxation since the total energy of the 

system is conserved. With finite dissipation, the system has a finite probability of 

decaying to the ground state. In the following discussion, we denote the transition 

frequencies for the two TLSs as 1 / 2TLSω π  and 2 / 2TLSω π , respectively.   

Based on the measured spectroscopy, we found that for a tunnel splitting of 20 

MHz, the sweeping rate of flux bias is required to be greater than 0.1 0m / nsΦ  to 

have significant LZ transition probability. In addition, the operation time for coherent 

manipulation is limited by the measured decoherence time ~ 100 ns. Thus controlling 

the flux bias via the readout pulse line turned out to be the best way because the 

readout pulse line has a cutoff frequency of up to several GHz and is adequately 

coupled to the phase qubit. Consequently, by applying an isosceles triangle pulse with 

varying pulse duration to sweep the flux bias, we were able to observe the LZS 

interference pattern. Furthermore, by varying the amplitude of the triangle pulse, we 

measured the two dimensional LZS interference pattern [73]. Note that the isosceles 

triangle pulse was used to keep the sweeping rate v  fixed during the flux bias 

sweeping. The time resolution of the triangle pulse is 0.1 ns, sufficient for the precise 

control of the flux bias. 

In the experiment, the system was prepared in 1 21g g  from the ground state 

1 20g g  by a π-pulse. Then the microwave was turned off and the state of this 

tripartite quantum system was manipulated only by the isosceles triangle pulse applied 

to the flux bias. The dc flux bias was set away from the two avoided crossings, as 
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shown in Fig. 4.4 (d). The pulse amplitude was varied from zero to the value which is 

sufficiently large to make the total flux bias pass the second avoided crossing (labeled 

as “M2”). Different energy sweeping rates were obtained with different combinations 

of the pulse duration and pulse amplitude. Fig. 4.4 (a) shows the measured occupation 

probability of 1 21g g  as a function of the pulse duration and amplitude.  

 

 
Fig. 4.4. (a) Measured occupation probability of 1 21g g  vs. the amplitude and 

duration of the triangle pulse. (b) and (c) Predicted positions of constructive 
interference in region I and II, respectively. (d) Schematic drawing of the two avoided 
crossings operating as beam splitters and the triangle pulse of the flux bias.  
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Fig. 4.5. Numerically simulated LZS interference pattern base on the experimentally 
calibrated system parameters. The picture is modified from Ref. [73]. 

 

Define two characteristic sweeping rates 1v  and 2v  given by 

2 / 2 1,  1, 2,i iv iπ∆ = =  and note that 1 2∆ < ∆  as shown in the measured spectroscopy. 

One can analytically investigate the interference fringes in two regions where 1v v≤  

and 2v v≥ . In region I where 1v v≤ , the first avoided crossing (M1) behaved as a 

beam splitter and the second as a total reflector. In region II where 2v v≥ , the first 

avoided crossing was completely transparent and the second functioned as a beam 

splitter, as indicated in Fig. 4.4 (d). For both regions, phase difference was 

accumulated along the two separate paths after passing the beam splitter. Assume the 

phase difference starts to accumulate at t=0. Then after the adiabatic evolution of 

period t∆ , the phase difference is given by  

[ ]1 20

1( ) ( ) ( )
t

t E t E t dtϕ
∆

∆ = −∫ ,         (4.5) 

where 1( )E t  and 2 ( )E t  are the instantaneous eigenenergies along the two paths, 

respectively. By considering both the phase jump in the LZ transitions and the total 

accumulated phase difference during the adiabatic evolutions, the constructive 
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interference fringes can be calculated analytically. The calculated fringes at region I 

and II are shown in Fig. 4.4 (b) and (c), which agree very well with the measured 

interference fringes. The detail of the analytical calculations is described in [73]. 

For the intermediate regions, one has to perform numerical simulations to 

calculate the occupation probability of 1 21g g . The time-dependent density operator 

ρ  can be obtained by solving the Bloch density matrix equation  

                              ˆ , [ ]i Hρ ρ ρ⎡ ⎤= − − Γ⎣ ⎦ ,               (4.6)  

where [ ]ρΓ  is related to the measured decoherence times [74]. By expanding the 

bipartite Hamiltonian in Eq. (4.1) to a tripartite system, we have 

                       

10 1 2

1 1

2 2

/ 2 / 2
ˆ / 2 0

/ 2 0
TLS

TLS

H
ω

ω
ω

−∆ −∆⎛ ⎞
⎜ ⎟= −∆⎜ ⎟
⎜ ⎟−∆⎝ ⎠

.           (4.7)  

The result of the numerical calculation agrees excellently with the measured LZS 

interference pattern, as shown in Fig. 4.5. 

In this section, a new approach to precisely control multi-partite quantum states 

has been demonstrated by the realization of LZS interference in the coupled qubit-TLS 

system and the remarkable agreement between the theoretical and experiment results. 

With all the system parameters carefully calibrated, one can perform precise 

manipulation of quantum states via controlled LZ transitions. Furthermore, this method 

can be developed to realize various fast multi-qubit gates. 

4.4 Creating the W state in a tripartite quantum system via LZ transitions 

 Interestingly, we can manipulate the state of a tripartite system to create 

entangled states such as W state through coherent LZ transitions. The general form of 
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the wavefunction of the tripartite quantum system we studied can be written as 

              =ψ 1 21g gα + 1 20e gβ + 1 20g eγ ,              (4.8) 

where α , β , andγ  are complex numbers.  
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Fig. 4.6. Schematic drawing of sweeping flux bias through two avoided level crossings 
with respective tunnel splittings ∆1 and ∆2 in a tripartite system.  

 

Suppose we prepare the system in 1 21g g  and then sweep the flux bias through 

two avoided level crossings with different sweeping rates, as shown in the Fig. 4.6. 

Denote the LZ transition probabilities at the two avoided crossings as 1LZP  and 2LZP , 

respectively. Based on the state transformation due to one LZ transition as described by 

Eq. (4.3), the final state of the tripartite system after two successive LZ transitions is 

given by 

   ( )1 2
1 2 1 2 1 1 2 1 2 1 21 1 0 1 0 ,i i

LZ LZ LZ LZ LZP P g g e P e g e P P g eϕ ϕ− −= + − + −ψ    (4.9)  

where 1ϕ  and 2ϕ  are the relative phase difference generated by the LZ transitions 

and adiabatic evolutions. It is straightforward to show that when 1
2
3LZP =  and 

2
1 ,
2LZP =  the final state 

              ( )1 2
1 2 1 2 1 2

1 1 0 0 ,
3

i ig g e e g e g eϕ ϕ− −= + +ψ              (4.10)  
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which is essentially a generalized W state. It won’t be difficult to adjust the sweeping 

rates to set 1
2
3LZP =  and 2

1
2LZP =  if the magnitudes of the splittings have been 

accurately calibrated. Therefore, this approach only requires two consecutive linear 

sweepings of the flux bias with different sweeping rates to create the W state. In 

contrast, the conventional method of preparing the W state involves the use of a 

sequence of microwave pulses, which consist of two single-qubit gates and three 

two-qubit gates (CNOT). Thus using LZ transitions to manipulate tripartite quantum 

states is a much simpler approach in this case.  

Furthermore, it is interesting to consider the gate speed using LZ transitions. 

Notice that in region II of the measured LZS interference pattern in Fig. 4.4 (a), 

constructive interference fringes occurred even when the duration of the triangle pulse 

was less than 10 ns. Thus the duration of the two consecutive sweepings of the flux 

bias required to generate the W state can be shorter than 5 ns. On the other hand, the 

time needed for each single-qubit gate and two-qubit gate using microwave pulses are 

typically on the order of 5 ns and 10 ns, respectively [75]. Therefore, the time needed 

to realize a W state using LZ transitions is much shorter than that required by the 

conventional method. It reveals that the coherent manipulation of the multipartite 

quantum states via LZ transitions is a very promising approach for a new family of fast 

multi-qubit quantum gates. 
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Chapter 5. Conclusions  

 

Compared to other approaches to quantum computing, superconducting phase 

qubits based on rf SQUIDs are larger in size and thus allow stronger and more flexible 

inter-qubit coupling required by scalable quantum computing. On the other hand, phase 

qubits also strongly interact with the defects in the materials used to fabricate the qubit 

circuits and spurious environmental electromagnetic modes, resulting in significant 

decoherence. The measured energy relaxation time in our Al phase qubit was up to 73 

ns. The dielectric loss has been considered as the dominant energy loss mechanism in 

superconducting phase qubits and the energy loss could be due to the dissipation from 

the TLS defects in amorphous dielectrics [33, 68]. Hence, in order to obtain longer T1, 

the dielectric loss in the qubit circuits has to be reduced. Furthermore, phase qubits are 

also subject to pure dephasing induced by low frequency magnetic flux noise. From the 

Ramsey fringe experiment, we have accurately determined the pure dephasing time 

81 2 nsTϕ = ± , corresponding to the rms of flux noise of 84 µΦ0. The pure dephasing 

time 500 100 nsETϕ = ±  was extracted from the spin echo signal. In addition, the spin 

echo signal was also well fitted to exponential decay, yielding decoherence time 2ET  

very close to 12T . We also found there was no significant improvement in decoherence 

time when using the optimized second order dynamical decoupling pulse sequence. 

The result indicated that dephasing due to the low frequency flux noise was largely 

suppressed by the use of spin echo pulse and there was no significant effect of high 

frequency (>10 MHz) flux noise in the phase qubit.  
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One solution to the short coherence time problem in phase qubits is to develop 

faster multi-qubit gates. For this purpose, we investigated how to utilize the LZ 

transitions to control the multi-partite quantum states in a coupled qubit-TLS system. 

With the coherence times and all the parameters of the phase qubit carefully calibrated, 

we successfully demonstrated precise coherent manipulation of tripartite quantum 

states in a phase qubit coupled to two TLSs. The state manipulation was achieved by 

applying high-resolution triangle pulse into the readout pulse line to sweep the flux 

bias through two avoided level crossings, where the LZ transitions occurred with 

significant probability. The amplitude and duration of the triangle pulse were varied to 

measure the LZS interference patterns. The results of theoretical calculations based on 

the calibrated coherence times and qubit parameters agreed very well with the 

experimental results, indicating that the coherent control was precise and the 

calibrations were accurate. Finally we showed how to realize the W state in a tripartite 

quantum system by manipulating the quantum state via two successive LZ transitions. 

Compared to the conventional method using microwave pulses, this new method 

allows much simpler operation and much shorter gate time. Hence, coherent 

manipulation of multipartite quantum states via LZ transitions has great potential to be 

the foundation for a new family of fast multi-qubit gates for scalable quantum 

computing.  
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Appendix  

A. Hamiltonian of an rf SQUID phase qubit under microwave radiation 

Consider an rf SQUID interacting with microwave and denote sinrf tωΦ  as the 

induced rf magnetic flux in the SQUID loop. Thus the Hamiltonian of the rf SQUID 

can be written as 0 IH H H= + , where the unperturbed Hamiltonian 0H  is given by 

Eqs. (1.7) and (1.12), and the interaction term ˆsinrf
IH t

L
ω

Φ
= − Φ . By choosing the 

ground state and excited state localized in the higher potential well as the qubit’s 

computational basis states 0  and 1  respectively, one has 0 0
ˆ 0 0H E=  and 

0 1
ˆ 1 1H E= . Thus 10

0
ˆ ,

2 zH ω σ= −  where 10 1 0E Eω = −  is the energy difference 

between the qubit states. To find out the matrix elements of operator Φ̂ , notice that 

around the bottom of a deep well where the potential barrier is much greater than 10ω , 

the potential is approximately harmonic. Hence, the diagonal matrix elements of Φ̂  

are equal ˆ0 0Φ ˆ1 1= Φ , and they only produce an identity matrix, which doesn’t 

change the qubit state and thus is negligible. In the approximation of harmonic 

potential, using the fact that the effective mass of the system is capacitance C, one has 

1
ˆ ,xc σΦ = where 1

ˆ0 1c = Φ ˆ1 0= Φ
102Cω

= . Consequently, the interaction 

Hamiltonian could be written as 

1 ,
2

i t i t

I rf x
e eH c I

i

ω ω

σ
−−

= −              (A.1) 

where / .rf rfI L≡ Φ  In the interaction picture, the interaction Hamiltonian is 

transformed into †
I IH U H U= , where 0 10

ˆexp( / ) exp( / 2)zU iH t i tω σ= − = . Thus  



 75

( )
10

10

10 10

10 10

1

( ) ( )
1

( ) ( )

0
2 0

0
     .

2 0

i t
rf i t i t

I i t

i t i t
rf

i t i t

c I e
H e e

i e

c I e e
i e e

ω
ω ω

ω

ω ω ω ω

ω ω ω ω

−
−

− − +

+ − −

⎛ ⎞
= − − ⎜ ⎟

⎝ ⎠
⎛ ⎞−

= − ⎜ ⎟
−⎝ ⎠

  (A.2)  

Assume the detuning 10 10ω ω ω ω ω∆ = − << + . The fast oscillating terms will be 

averaged out and thus their effects on qubit dynamics are negligible. Such an approach 

is called the rotating wave approximation (RWA). After RWA and back to the 

Schrödinger picture, one has 

1 0
.

2 0

i t
rf

I i t

c I e
H

i e

ω

ω−

⎛ ⎞
= − ⎜ ⎟

−⎝ ⎠
              (A.3) 

The interaction Hamiltonian in Eq. (A.3) is still time-dependent. In order to eliminate 

the time-dependent terms, consider the Hamiltonian in the frame rotating about the 

z-axis with the angular frequency equal to ω. In such a rotating frame, the new qubit 

state vector is then given by ( )zR tω′ =ψ ψ , where ( )zR tω  is a rotation operator 

about the z-axis by an angle of tω . Consequently, the total Hamiltonian of the rf 

SQUID phase qubit becomes time-independent 

                          02 2
yz

qubitH
σσω

⎛ ⎞
= − ∆ + Ω⎜ ⎟

⎝ ⎠
         (A.4)  

where 0
10

1ˆ0 1 /
2rf rfI I
C ω

Ω = Φ =  is the angular frequency of on-resonance 

Rabi oscillation. 
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B. Cryogenic low pass filters 

B.1 Low pass LC filters 

The design of a 3-pole “T” type low pass LC filter with cutoff frequency ~ 2 MHz 

is shown in Fig B.1. The filter was made with ATC wire-wound chip inductors and 

Novacap chip capacitors. The transmission property of the engineered low pass LC 

filter was measured using a network analyzer, as illustrated in Fig B.2. The LC filter 

works well at frequencies lower than 250 MHz. However at higher frequencies, the 

performance became worse due to the parasitic shunting capacitance and serial 

inductance in the circuit at high frequency. Hence, it is necessary to use copper powder 

filter to attenuate the high frequency noise.  

 

 

 

Fig B.1. Design of a circuit including a 3-pole low pass LC filter, which consists of 
two inductances L1= 2.7 µH and L2= 0.82 µH and one capacitor C1= 1 nF. The 
simulation showed that the cutoff frequency of the LC filter is about 2 MHz. 
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Fig. B.2. Measured transmission property of the 3-pole LC filter which has the 
configuration as shown in Fig. B.1.   

 

B.2 Integrated LC-copper powder filters (CPFs) 

The housing of CPF was made of oxygen-free copper tube (OD=6.35 mm, ID≈4.7 

mm). A 1.5 m long and 0.254 mm thick tinned copper wire was wound to form a 9 cm 

long coil with the outer diameter equal to 2.5 mm. The LC filter was integrated in the 

middle of the coil. The coil was then placed inside the tube and insulated from the tube 

by a thin paper tube. Subsequently, the copper powder (Alfa Aesar, 3-5 micron) was 

filled in the tube and hardened by the injected Epoxy (Bipax BA-2115). The ends of 

the filter were sealed with two SMA connectors by soldering.  

As shown in Fig B.3 and B.4, the engineered integrated LC CPF performs very 

well. More than 90 dB attenuation, limited by the instrument’s noise floor, was 

obtained at frequencies higher than 400 MHz. In addition, the measured cutoff 

frequency of the integrated LC-CPF was about 5 MHz. 
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Fig. B.3. Transmission property of LC-CPF measured at frequencies up to 1 GHz at 
room temperature. 
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Fig. B.4. Transmission property of LC-CPF measured at frequencies up to 20 GHz at 
room temperature. 
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B.3 Low pass RC filters  

The LC-CPF was thermally anchored onto the mixing chamber of the dilution 

fridge, while the low pass RC filters were mounted on the 1 K pot where T ~ 1.4 K. 

The designs of the RC filters for flux bias and dc SQUID readout lines are shown in 

Fig. B.5.  

 

 
Fig. B.5. Schematic of low pass RC filters. For those in the flux bias lines, R= 249 Ω, 
C= 680 pF, while for those in the dc SQUID lines, R= 2.49 kΩ, C= 68 pF. 

 

The cutoff frequency for both designs is a few hundred kHz. The resistance of the 

four metal film resistors in the flux bias lines was smaller than that in the dc SQUID 

current bias and voltage sensing lines because the flux bias lines typically carry much 

larger current (~ 1 mA) than the dc SQUID lines (~ 1 µA). Note that the cooling power 

of 1 K pot is on the order of 102 mW. The Joule heating on the resistors could be a 

problem if the resistance is too large.    
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C. L/C dependence of MRT-peak spacing around Φx= Φ0/2 
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Fig. C.1. Energy level diagram of the Nb sample LLC6 where 1.31Lβ = , 267 pH,L =  

and C=110 fF. The energy levels shown here are those below the top of the barrier (the 
top curve).  
 

Before deriving the equation relating the spacing between two adjacent MRT 

peaks to the value of L/C, let’s look at a typical energy level diagram of an rf SQUID, 

as shown in Fig. C.1. The energies of eigenstates were calculated as a function of 

external flux bias by solving the stationary Schrödinger equation. The top curve 

indicates the top of the potential barrier and in the figure we only show the energy 

levels below the barrier top. The curves with positive slopes correspond to the energy 

levels in the left well, while those with negative slopes are in the right well. Actually, 
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the slope represents the circulating current in SQUID loop, i.e., p
x

EI ∂
= −

∂Φ
. When the 

external flux bias is increased from 0 / 2Φ , the potential is tilted so that the left well 

becomes higher and shallower. Meanwhile, the energy level of the ground state in the 

left well, i.e., the lowest curve with positive slope, will be aligned with the energy 

levels in the right well. In this process, MRT occurs at each avoided level crossing.  

As indicated by the blue arrows in Fig. C.1, at the flux bias where the first 

avoided crossing occurs, the energy difference between the lowest two levels in the 

right well 10E∆  is equal to that between the ground states in opposite wells. Thus 

10E∆  is related to pI  by 10 _2 p x MRTE I∆ = ∆Φ , where _x MRT∆Φ  denotes the location 

of the first avoided crossing with respect to 0 / 2Φ  and is equal to the MRT peak 

spacing around xΦ = 0 / 2Φ . On the other hand, in a deep well where the potential 

barrier height 10U ω∆ >> , 10E∆  can be approximated by pω , where pω  is the 

small oscillation frequency at the bottom of the well. According to Eq. (3.2), 

( )1 cos 2L b
p LC

β πφ
ω

+
=  where bφ  is the location of the left well’s bottom 

normalized to 0.Φ  By defining 02
m

pLIϕ
π

Φ = , one can show that / sinL m mβ ϕ ϕ=  and 

0.5
2

m
b

ϕφ
π

= − . Consequently, we have 

_
0

/ 1 / tan /
2x MRT m m m

h L C ϕ ϕ ϕ∆Φ = −
Φ

.    (C.1)   


