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Abstract 

Wei Zhou 
Department of Economics, 

University of Kansas 

 

This paper studies the nonlinear asset pricing kernel approximation by using 

orthonormal polynomials of state variables in which the pricing kernel specification is 

restricted by preference theory. We approximate the true asset pricing kernel for 

monetary assets by considering consumption-based and Fama-French asset pricing 

models in which the consumer is assumed to have inter-temporally non-separable 

preference. We study the classical consumption-based kernels and multifactor 

(Fama-French) kernels in our asset pricing models. Our results suggest that the 

multi-factor pricing kernels with nonlinearity and non-separable utility specifications 

have significantly improved performance. 
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Chapter 1  Introduction 

1.1. Asset Pricing Kernel Approximation 

 

In the traditional approach to investigate the implications of dynamic asset pricing 

models from the framework set forth by Lucas (1978), the underpin economic model 

imposed the following assumptions that markets are complete, the economy is in 

equilibrium, and that the unique state-price discount factor can be interpreted as the 

intertemporal marginal rate of substitution of a representative consumer.  

 

By observing the conditional or unconditional covariation of estimated intertemporal 

marginal rates of substitution with measured asset returns with assumptions imposed 

on the utility function of consumers and on the observability of aggregate 

consumption, the dynamic asset pricing model could be tested for consistency of 

predictions.  

 

The conventional implication of Capital Asset Pricing Model (CAPM) is that the 

pricing kernel is linear in a single factor, the portfolio of aggregate wealth. Numerous 

studies over the past two decades have documented violations of this restriction, and 

the fact that these attempts have been mostly inconsistent with the data on asset 
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returns and consumption. For instance, some economic frameworks assume utility 

function to be intertemporal separable (see, for example, Mehra and Prescott (1985) 

and Weil (1989)), then the absolute and relative levels and variability of the real 

returns on risk-free and risky monetary assets won’t be able to match with the 

model’s predictions.  

 

A number of works have examined the performance of alternative asset pricing 

models. These models could be categorized into two classes: (1) multifactor models 

such as Ross’ APT or Merton’s ICAPM, in which factors in addition to the market 

return determine asset prices; or (2) nonparametric models, such as Bansal et al. 

(1993), Bansal and Viswanathan (1993), and Chapman (1997), in which the pricing 

kernel is nonlinear in market returns. Empirical applications of these models suggest 

that they are much better at explaining cross-sectional variation in expected returns 

than the CAPM. 

 

In this work we conduct an alternative approach to investigate the pricing kernels of 

monetary assets in nonparametric model analysis. We study the asset pricing kernel 

approximation with consumption-based utility function and multifactor (Fama-French) 

kernel specifications. We also investigate the specification of state-price deflator or 
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the “asset pricing kernel” by comparing different polynomial functions of a number 

of state variables.  

1.2. The User Cost of Monetary Asset and Pricing Kernel 

 

Demonstrated under similar economic framework, , Barnett, Liu, and Jensen (1997) 

and Barnett and Liu (2000) showed that a risk adjustment term should be added to the 

certainty-equivalent user cost in a consumption-based capital asset pricing model 

(C-CAPM) in producing the Divisia index approximations to the theory’s aggregator 

functions under risk. And an important covariance term between the rates of return on 

monetary assets and the growth rate of aggregate consumption will determine the 

magnitude of risk adjustment to the certainty-equivalent user cost. However, the 

consumption CAPM based risk adjustment to certainty equivalent user cost of 

monetary asset is slight and the gain from replacing the unadjusted Divisia index with 

the extended index is too trivial to match the observed risk premium consistently 

(Barnett, Liu, and Jensen (1997)).  

 

The primary finding from a large literature testing consumption-based models is that 

the measured consumption is too “smooth” to rationalize the observed level and 

variability of asset returns for “reasonable” parameterizations of time-separable utility 



 

4 

functions.  

 

The small adjustments been questioned are mainly due to the very low 

contemporaneous covariance between asset returns and the growth rate of 

consumption. Under the standard power utility function and a reasonable value of the 

risk-aversion coefficient, the low contemporaneous covariance between asset returns 

and consumption growth implies that the impact of risk on the user cost of monetary 

assets is very small. In other words, the standard power utility function is incapable to 

reconcile the observed large equity premium with the low covariance between the 

equity return and consumption growth. 

 

The consumption CAPM adjustment to the certainty-equivalent monetary-asset user 

costs can similarly be larger under a more general utility function (see, Barnett and 

Wu (2004)) than those used in Barnett, Liu, and Jensen (1997), where a standard 

intertemporal separable power utility function was assumed. Besides, it was found 

that the basic results from Barnett, Liu, and Jensen (1997) still holds under a more 

general utility function. And by introducing intertemporal nonseparable utility 

function, the model can lead to substantial and more accurate consumption CAPM 

risk adjustment, even when a reasonable setting of the risk-aversion coefficient is 
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present. 

 

The risk premium term in CAPM models can be similarly constructed and tracked in 

computing the risk premium adjustment in user cost of individual monetary assets to 

the user cost of consumers’ wealth portfolio (see, Barnett and Wu (2004)). By 

introducing a basic form of pricing kernel, the risk premium adjustment term can be 

presented as the asset’s risk premium exposure to the market portfolio. 

 

In our work, we show that the monetary user cost referenced from pricing kernel can 

be represented as a risk free rate plus a market exposure adjusted risk premium term.
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Chapter 2  Asset Pricing Models and Kernel Specifications 

2.1.  Dynamic Economy Models and Implications  

 

A series of dynamic economy models has been investigated for their implication of 

the asset market data. The differences among the models range from payoffs’ span on 

the tradable securities, heterogeneity of consumers’ preferences and the role of money 

within the consumption goods acquisitions are also studied for their empirical 

implications (Hansen and Jagannathan 1991).  

 

Regardless of these differences, there exist common implications from all these 

models. Those are the expectations of the product of payoffs which represents the 

equilibrium price of a future payoff from any tradable financial security and an 

appropriately rendered intertemporal marginal rate of substitution (IMRS) of any 

consumer (Lucas 1978, Breeden 1979, Harrison and Kreps 1979, Hansen and Richard 

1987). Given these implications, numerous works over the past few decades have 

been carried out to examine the conditional and unconditional covariation of the 

IMRS with measures of financial assets’ payoffs. The very common assumption of 

the intertemporal marginal rate of substitution of a representative consumer, or the 

“asset pricing kernel” of the capital asset pricing model (CAPM), is a linear function 

of a single factor from an aggregate wealth portfolio’s return.  
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2.2. Linear Pricing Kernel Specification and Limitations 

 

The linearity restriction in the asset pricing kernel has been documented for its 

inferior performance from numerous past studies. Similar cases can be seen in the 

poorly fitted data in the consumption-based asset pricing models derived from the 

framework set forth by Lucas (1978). Within the discrete state-space version of Lucas 

model, although it has been augmented by the riskless assets’ rate of return, the 

generated equity risk premium will not be able to match the average premium 

observed in historical U.S data. 

 

2.3. Alternative Kernel Specification Approaches  

 

In order to capture more variation in expected returns, numerous approaches have 

been attempted. These approaches can be categorized into two directions, multifactor 

versions of CAPM and nonparametric asset pricing models with nonlinear pricing 

kernel specifications. Both multifactor versions of CAPM and nonparametric models 

are approved by empirical studies for their better performance in explaining expected 

return variations in CAPM. A multifactor alternative of CAPM will capture more 

variation in expected returns of financial assets than CAPM (Fama and French, 1995). 
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Various nonlinear pricing kernel specifications in monetary asset pricing models 

significantly outperform linear specifications (Bansal and Viswanathan 1993, 

Chapman 1997). 

 

In addition, the choice of factors in multifactor model and the alternative nonlinear 

specifications of pricing kernel are not straightforward. Researchers would need 

considerable discretion over the form of models to be investigated. Either the 

multifactor model or the form of nonlinearity would require ad hoc specifications. As 

pointed out by Dittmar (2002) and Chapman (1997), given a specific assumption on 

investors’ preferences or return distributions, the form of the pricing kernel 

investigated in non-parametric approaches would not follow endogenously. For 

example, in the large literature of consumption based asset pricing models, the 

primary finding is that the consumption based pricing kernel is too smooth to 

rationalize the observed variation in asset returns when the utility function of 

representative consumers are intertemporally separable.  

 

Therefore the absolute and relative levels of real returns from financial assets are 

inconsistent with model predictions (Mehra and Prescott 1985). These nonparametric 

and multifactor approaches are problematic from their ad hoc assumptions and may 
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suffer from over fitting problems, factor dredging and low power (Dittmar 2002, Lo 

and MacKinlay 1990). 

 

In Campbell and Cochrane (1999), a successful approach was attempted. They 

introduced the more general utility function to representative consumers with habit 

persistence assumed, which in other words differs from previous framework in that 

inter-temporally non-separable utility functions should be implemented. A large 

time-varying risk premium similar in magnitude to the data was observed by doing 

so. 

 

In this paper we investigate the approximation of the state-price deflator or the “asset 

pricing kernel” by comparing different polynomial functions of a number of state 

variables. These state variables should be implied by the underlying economic models, 

in which we elect state variables based on a stochastic version of the neoclassical 

growth model, which suggests that aggregate consumption as a necessary state 

variable to be used in approximation of asset pricing kernels. In the same manner, the 

bedrock model implies that consumption is a time-invariant function of the level of 

capital stock and transitory shocks to total factor productivity (i.e., technology 

shocks), which suggests that technology shock growth rates might aid in the 

construction of an approximated kernel. The pricing kernels with polynomial 
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functions assume nonlinearity among the underlying variables and are capable of 

explaining nonlinear asset payoffs, therefore are distinctively advantageous over other 

approximation scenarios. 

 

In our work, we derived statistical tests based on Hansen-Jagannathan bounds as 

many contemporaneous works did. These tests are applied to construct the confidence 

regions for the parameters of dynamic asset pricing models. The approximated 

pricing kernels are examined using an asymptotically chi-square statistic based on the 

mean square distance of the estimated kernel to the H-J bounds introduced in Hansen 

and Jagannathan (1991). By using both graphical evidence and Wald type tests, we 

evaluated the polynomial function approximations through testing the statistical 

significance of marginal polynomial orders and by examining the pricing errors on 

individual assets and groups of related assets. 

 

The approximated asset pricing kernels based on consumption growth from 

one-period ahead of schedule are not mostly rejected by overall measures of model fit, 

however, they produce large pricing errors on individual assets both statistically and 

economically, see Chapman (1997). In our approximate kernel approach, the 

inclusion of additional future value of consumption growth and/or technology shock 
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growth motivated by an appeal to time nonseparable preferences or the durability of 

consumption goods (Barnett and Wu (2005)) induced the largest improvement in the 

performance of approximate kernels. The marginal power of technology shocks is 

difficult to detect directly in these cases, but the inclusion of technology shocks under 

intertemporal nonseparable utility framework generally improves the fit of 

approximated kernels. Especially, the approximated kernel under intertemporal 

nonseparable utility framework is the only specification that is capable of consistently 

reducing the average pricing errors on small market capitalization stocks.  

 

Particularly, as motivated by the analysis in Hansen and Jagannathan (1997), our 

results show that a predetermined weighting matrix equal to the inverse of the second 

moment matrix of returns generally produces smaller pricing errors and the 

approximated kernels that are more consistent with the Hansen-Jagannathan bounds. 

It also shows that the parameters of approximated kernels estimated using this 

“optimal” weighting matrix will minimize the mean-square distance between the 

estimated kernel and the Hansen-Jagannathan bounds. The strong connection of using 

the optimal covariance matrix for pricing errors was also found with strong evidence 

in our results with, as been emphasized in Cochrane (1996), potential problems in 

estimating the polynomial parameters. And of the most importance, if the covariance 
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matrix is misspecified or poorly measured, the resulting kernel can have very 

mediocre performance in small size samples. 

 

Results in our study can be regarded as a similar endeavor in asset pricing kernel 

approximation investigation for user cost of monetary assets based on 

macroeconomic aggregates by comparing different polynomial function scenarios. 

Bansal, Hsieh, and Viswanathan (1993) examine international pricing models using 

market returns based approximate kernels.  

 

The parameters of polynomial functions in approximated kernels are estimated with 

the model by using GMM, as did in Hansen and Singleton (1982), Bansal and 

Viswanathan (1993) and Bansal, Hsieh, and Viswanathan (1993). The similarity 

among our work and the works done in Bansal and Viswanathan (1993) and Bansal, 

Hsieh, and Viswanathan (1993) is that they also approximated nonlinearity in asset 

pricing kernels. However, their approximated kernels are based on asset returns 

instead of on state variables of the economy which can not avoid potential numerical 

problems associated among the asset returns, in other words, the colinearity problems. 

 

In our work, we also derive statistical tests based on Hansen-Jagannathan statistics. 
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And we construct the confidence regions for parameters of approximated pricing 

kernels. The principal implication from our results is that the treatment of model 

sampling error should be carefully managed.  
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Chapter 3  Pricing Kernel for User Cost of Monetary Assets 

3.1. The Economy Framework and the User Cost of Monetary Assets 

 

To develop the specific nonlinear pricing kernel desired, we start with the 

intertemporal consumption and portfolio choice problem for a long lived investor. 

Under a standard set of assumptions, we describe the competitive equilibrium of this 

economic framework as the solution formulated in Stokey and Lucas (1989), and that 

the consumption, labor supply and capital investments will all be represented as 

continuous, time-invariant functions of the model’s state variables. And we setup the 

similar underlying economic framework as in Barnet, Liu and Jensen (1997) that the 

utility function is time nonseparable, caused by either direct utility effects from past 

consumption or from the durability in past consumption. 

 

We define 1 2( , , , ..., )t t t t t nU m c c c c    over current and past consumption and L number 

of current period monetary assets 1, 2, 3, 4, ,( , , , ..., )t t t t t L tm m m m m m . The economic agent 

also holds non-monetary assets, in other words the “investment”, 

1, 2, 3, ,( , , ..., )t t t t J tk k k k k which provide no monetary service other than investment 

returns and therefore don’t enter the utility function.  

 

Within this economic framework, there exists a presumed complete set of contingent 

claims market. Besides, including financial asset market does not change the 

economic agents’ equilibrium decision rules and quantity allocations.  

 

With the monetary assets specified and the assumption that there exists a linearly 
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homogeneous aggregator function ( )tM m , we have the utility function in the 

following, 

 

1 2 1 2( , , , ..., ) ( ( ), , , ,..., )t t t t t n t t t t t nU m c c c c V M m c c c c          (3.1) 

 

Given the investment portfolio tW , the utility maximization problem follows, 

 

1 2
0

( , , , ..., )s
t t s t s t s t s t s n

s

E U m c c c c


       

     (3.2) 

 

which is subject to the following budget constraints, 

 

* * *
, ,

1 1

* *

L K

t t t t i t t j t
i j

t t t t

W p c p m p k

p c p A

 

  

 

 
    (3.3) 

 

and  

 

~
* *

, 11 , 1 , , 1
1 1

L K

j tt i t t i t t j t t
i j

W R p m R p k Y  
 

        (3.4) 

 

 

  is the subjective discount factor, 

tc  is the consumption at period t, 
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,j tk  is the investment in non-monetary asset j at period t, 

*
tp  is the true cost-of-living index, 

* *
, ,

1 1

L K

t t i t t j t
i j

A p m p k
 

    is the real value of the asset portfolio, 

~

, 1j tR   is the gross rate of return from holding non-monetary assets, “investments”, 

from period t to t+1, 

, 1i tR   is the gross rate of return from holding monetary assets, which provide 

monetary services to the representative consumers, 

 

In this case, the chosen state variables for pricing kernel approximation should 

include the current information of technology shocks and aggregate capital stock 

growth rates with lagged values. 
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3.2. IMRS of Representative Consumers 

 

Follow the same procedure in Barnett and Wu (2005), we first deduce the interpreted 

intertemporal marginal rate of substitution (IMRS) of the representative consumer 

(see, e.g., LeRoy (1973); Rubinstein (1976); Lucas (1978); Breeden (1979); Harrison 

and Kreps (1979); Hansen and Richard (1987); Hansen and Jagannathan (1991)). 

 

We initially consider the following simplified consumer decision problem with a 

standard set of assumption. Given the wealth portfolio and consumption level at each 

period, the representative investor maximizes his expected utility for an intertemporal 

separable infinite horizon utility function. 

 

The representative consumer maximizes: 

0
0

( )t
t

t

E u c



 , and 0 1  ,     (3.5) 

Subject to: 

1 1( )t t t tW R W c   , 1 1
1

n
i i

t t t
i

R s R 


 , and 
0

1
n

i
t

i

s


 .   (3.6) 

 

Here tW indicates the wealth portfolio held by representative investor at period t , 

tR indicates the gross portfolio return at period t . The individual asset returns are 

indicated by superscripts with superscript 0 indicating the risk free asset. i
ts  

indicates the portfolio share of individual asset and portfolio shares add to 1 in each 

period. 
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By following the dynamic programming approach, we reformulate the utility 

maximization problem into the following equation: 

 

1
1

max
( ) , [ ( ) ( )]

,{ }t t t ti n
t t i

V W u c E V W
c s

 


      (3.7) 

Subject to the following wealth constraints: 

1 1( )t t t tW R W c   , and 1 1 1 1
1

( )
n

f i i f
t t t t t

i

R R s R R   


   .   (3.8) 

 

The first-order conditions of this decision problem at each period are: 

 

1 1( ) ( )c t t t W tu c E R V W         (3.9) 

and 

1 1 1( ) ( ) 0i f
t t t W tE R R V W         (3.10) 

 

Besides, we have the envelope condition: 

 

1( ) ( )W t t t W tV W E RV W        (3.11) 

It implies that  

 

1 1 2( ) ( )W t t t W tV W E R V W        (3.12) 

Or,  

( ) ( )c t W tu c V W ,       (3.13) 
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Such that, we update the equations in (3.13) with one period and substitute it into 

equation (3.9), it yields the following equation: 

 

1 1( ) ( )c t t t c tu c E R u c       (3.14) 

 

It implies that  

1[ ( ) / ( )] 1t t c t c tE R u c u c         (3.15) 

 

And we deduced the following:   

 

1[ ( ) / ( )]t t t t t t tE Q E u c u c       (3.16) 

 

Equation (3.12) also demonstrates that, 

 

1[ ( ) / ( )]t t t W t W tE Q E V W V W       (3.17) 

 

Here the stochastic discount factor that prices all assets is equal to the marginal rate of 

intertemporal substitution. In equation (3.17), we show that it is also equal to the 

marginal rate of intertemporal substitution in terms of wealth. 

 

In finance literature, a common implication of various asset pricing models is that the 

equilibrium price of a future payoff on any tradable security can be represented as the 

expectation (conditioned or current information) of the product of the payoff and 

IMRS. The equilibrium price is a generalization of the familiar tenet from price 

theory and it states that price should equal marginal rates of substitution. And within 
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our economic framework, this principle implies that the monetary assets are viewed 

as the claims to the numeraire good indexed by future states of the world. 

Since we further defined the utility function to be intertemporal nonseparable, we 

consider the decision problem for the representative investor in the following: 

 

0 1
0

( , ( ))t
t t t

t

E u c E u c 




 , and 0 1       (3.18) 

Subject to: 

1 1( )t t t tW R W c   , 1 1
1

n
i i

t t t
i

R s R 


 , and 
0

1
n

i
t

i

s


 .   (3.19) 

 

Then the utility maximization problem is reformulated into: 

 

 1 1
1

max
( ) , [ ( , ( )) ( )]

,{ }t t t t t ti n
t t i

V W u c E u c E V W
c s

 


        (3.20) 

 

which is subject to the same wealth constraints shown in equation (3.8). 

 

And we have one of the first-order conditions of this decision problem at each period 

in the following: 

 

21 2
1 1

( ) ( ) ( ) ( )
... ( )nt t t t t t t n

t t t
t t t t

u c E u c E u c E u c
E R V W

c c c c
     

 

   
    

   
   (3.21) 

 

Given the envelope condition: 
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1 1( ) ( )W t t t tV W E R V W          (3.22) 

 

We have: 

 

21 2( ) ( ) ( ) ( )
( ) ... nt t t t t t t n

W t
t t t t

u c E u c E u c E u c
V W

c c c c
       

    
     (3.23) 

 

And it follows that: 

 

21 2 3 1
1

1 1 1 1

( ) ( ) ( ) ( )
( ) ... nt t t t t t t n

W t
t t t t

u c E u c E u c E u c
V W

c c c c
      


   

   
    

   
   (3.24) 

 

And we further deduced the following: 

 

1 2 1

1 1 1
1

1

( ) ( ) ( )...

( ) ( ) ( )...

nt t t t t n

t t t
t t t

nt t t t t n

t t t

u c E u c E u c
c c c

E Q E
u c E u c E u c

c c c

 


 

   

  


 

        
          

    (3.25) 

 

Note that when the instantaneous utility function is time separable, the pricing kernel 

boils down to equation (3.16) 

 

1

1
1

t

t
t t t

t

t

U
c

E Q E
U

c







 
 

    

         

 

The pricing kernel was defined as a linear function based on asset returns 
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1 , 1t t t A tQ a b r   , in which , 1A tr   was defined as the gross real rate of return on the 

consumer’s wealth portfolio in Barnett and Wu (2005). Comparable setup and results 

can be found in scenarios applied in related works done by Bansal and Viswanathan 

(1993) and Bansal, Hsieh, and Viswanathan (1993), in which, their approximated 

pricing kernels are nonlinear factor functions based on asset returns.  

 

However, the approximated pricing kernels based on asset return data nest the 

market-based capital asset pricing models (CAPM), their results are still subject to the 

numerical problems associated within different asset returns data, which hasn’t been 

scaled as pointed out in Chapman (1997).   
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3.3. The Derived User Cost of Monetary Asset  

 

In our work, we consider the pricing kernel to be a linear factor function with the 

nonlinear structure of polynomials from various economic state variables and shocks. 

 

We define the pricing kernel to be 

 

0

( , ) ( )
K

t k k t
k

Q x n x 


        (3.26) 

 

The linearity of the pricing kernel can be reflected in the following equation 

 

'
1 0 1t t kQ n           (3.27) 

 

where 1tn   is defined as a ( 1) 1k    vector of orthonormal polynomials with order 

from 0 to k and the pricing kernel ( , )tQ x   is evaluated at tx . 

 

Recall the Proposition 2 in Barnett and Wu (2005), the user cost of asset i given the 

defined pricing kernel in (3.27) can be obtained in the following, 
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where , 1 , 1( , )i t t t i tCov Q r     and , 1 , 1( , )j t t t j tCov Q r     . , 1i tr   is the real rate of 

return on a monetary asset and , 1j tr   is the real rate of return on an arbitrary 

non-monetary asset. 

 

The user cost of asset wealth portfolio can also be obtained in the following: 
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     (3.29) 

 

where , 1A tr   is the gross real rate of return on consumer’s wealth portfolio. 

 

Then with the certainty-equivalent user cost of monetary assets and wealth portfolios 

shown in Barnett (1978) 
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We have the following equations 

 

, , 1 , 1

, , 1 , 1

1 , 1
, , , ,

1 , 1

( , )

( , )

( , )
( )

( , )

e
i t i t t t i t

e
A t A t t t A t

t t i te e
i t i t A t A t

t t A t

Cov n r

Cov n r

Cov n r

Cov n r

 

 

 

 

 

 




 

    

    (3.31) 

Or,  
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On the other hand, for any monetary asset i we have from (3.29) and (3.30) that 
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Using a simple transformation, it follows that 
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We recall Corollary 1 from Barnett and Wu (2004) that under uncertainty we can 

choose any non-monetary asset as the “benchmark” asset, when computing the 

risk-adjusted user-cost prices of the services of monetary assets.  

Therefore we have 1

1
t t f

t

E Q
r  , hence from equation (3.34), we can conclude that 
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Equation (3.35) demonstrates that the user cost of monetary asset can be very 

similarly constructed as the standard CAPM function for asset returns. We also 

consider a special case of a j-th order polynomial with only one state variable from 

money market return. The market return will have very similar volatility to the 

consumer’s wealth portfolio, then our risk adjusted user cost of monetary asset i in 

(3.32) will boil down to: 
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Comparable result to (3.36) could be found in Barnett and Wu (2005), in which they 

defined the pricing kernel as a linear function based on asset returns. 

 

Correspondingly, we consider the Euler equation from the consumer problem, which 

characterizes the equilibrium financial asset prices: 
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(3.37) 

 

Here, for individual financial asset, its rate of return could also be represented as a 

risk free rate plus a market exposure adjusted risk premium. 
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And the market exposure adjusted risk premium can be similarly interpreted by the 
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instantaneous covariance of the aggregate portfolio’s return with the instantaneous 

growth rate in the individual’s consumption as demonstrated by Breeden (1979), 

Duffie and Zame (1989), and Chapman (1997).  

 

In other words, the pricing kernel of the user cost of monetary assets can be similarly 

constructed as that of financial assets. 
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Chapter 4. An Empirical Study of Nonlinear Pricing Kernels  

4.1.   Background 

 

We conduct an alternative approach to investigate the pricing kernels of monetary 

assets in nonparametric model analysis. We study the asset pricing kernel 

approximation with consumption-based utility function and multifactor (Fama-French) 

kernel specifications. Both approaches were explored extensively to identify IMRSs. 

Consumption-based asset pricing models were explored by approximating the true 

pricing kernel with various ordered polynomials based on aggregate consumption 

under different utility function specifications. Particularly, the nonlinearity and time 

nonseparability of these kernel specifications exhibit substantially improved model 

overfit comparing to the principal implication of CAPM with linear function of single 

factor. Various nonlinear pricing kernel specifications were also tested for their 

performance (Bansal and Viswanathan 1993, Bansal et al. 1993, Chapman 1997). 

These approaches have limitations in many ways such as ad hoc assumptions and 

specification errors. 

 

Our approach avoids the limitations in previous studies in both model assumptions 

and polynomial specifications by utilizing an unknown marginal utility function, 

which is augmented with Taylor series expansion in a static setting. The resulted state 
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variable polynomials are transformed into orthonormalized polynomial functions with 

respect to state variables to avoid strong linear relationships over relevant portions of 

the polynomials’ domain. Within this structure, our pricing kernels fall into 2 groups: 

a polynomial function in aggregate wealth and a polynomial function in aggregate 

consumption growth. The marginal utility function augmented by Taylor series 

expansion is restricted by imposing decreasing absolute prudence on representative 

consumers’ preferences (Kimball 1993, Dittmar 2002). 

 

Therefore, our pricing kernels would be free from ad hoc misspecification problems 

and would guarantee the kernel to be an exogenously obtained risky factor function 

with aggregate wealth portfolio or aggregate consumption. Chapman (1997) suggests 

that the inclusion of a temporary technology shock would substantially improve the 

performance of the model analyzed. We also incorporate a temporary technology 

shock into the pricing kernel since many recent works have shown that the pricing 

kernel specification of aggregate wealth would impact the conclusions of empirical 

asset pricing studies. 

 

A multifactor version of Merton's (1973) intertemporal CAPM model is investigated 

in Fama and French (1993), in which the size and (BE/ME) proxy for sensitivity to 
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risk factors are consistent with stock returns and profitability. This model captures the 

common variation in stock returns and explains the cross-section of average returns. 

We further construct the pricing kernel with an aggregate portfolio as the state 

variable by implementing the multifactor model in Fama and French (1993) with the 

augmentation of a momentum factor which has been applied in a few studies. We also 

include the Fama-French 6 portfolio and Fama-French 25 portfolio returns as state 

variables into the pricing kernel. Fama-French portfolio returns will nest a significant 

part of the market risk in asset returns and the augmented Fama-French 3 factors 

model is only capable of explaining excess returns of financial assets. 

 

The remainder of this chapter is organized as the following:  

In section I we describe representative agent’s preference restrictions, and in Section 

II we discuss the specification of the pricing kernel approximation. The empirical 

methods and tests are described in Section III, and in Section IV we describe the 

nature of the data we chose and the estimation process. In section V, we conduct the 

empirical analysis, and in Section VI we conclude the paper.  
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4.2.   Euler Equation and Framework Assumptions 

 

Under a standard set of assumptions, we develop a specific nonlinear pricing kernel 

with an intertemporal consumption and portfolio choice problem for a long-lived 

agent. We also suppose there are n long-lived financial assets. We first assume the 

representative agent’s utility function is additively time separable, then the familiar 

Euler equation as the solution to an investor’s portfolio choice problem that first 

presented in Lucas (1978) and also discussed in Hansen and Jagannathan (1991) will 

characterize the equilibrium asset prices as the following equation: 
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Or, sometimes represented as 
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Where , 11 i tR   and , 1t tR   are a vector of gross returns on assets,   is the discount 

rate and t  represents information set available at time t, 1tQ   is the investors’ 

intertemporal marginal rate of substitution (IMRS). IMRS is represented in equation 

(3) under the assumption of time separable utility function of representative agent, 

and 1tQ   is a strictly positive stochastic process used to price financial assets. 

 

We choose to represent the pricing kernel as a nonlinear polynomial function of the 

chosen state variables, since a suitable representation for the representative agent’s 

utility function is unknown. In addition, numerous research works investigating the 

ideal utility function find that investors’ risk tolerance and risk-free rate were not 

properly supported by data. 

 

The same basic result would also hold when the representative agent’s utility function 

is intertemporally non-separable over time. Under the same framework in Hansen and 

Jagannathan (1991), we extend the time non-separable IMRS that characterizes the 

equilibrium asset prices in the following Euler equation: 

 

, 1 1[(1 ) ] 1t i t t tE R Q           (4.4) 

Such that,  
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   (4.5) 

 

Or, the Euler equation in Ferson and Constantinides (1991) can be expressed as the 

following: 
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Where 
1

t t i
i

s b c





 is the accumulation of all fast consumption expenditure effects 

on current utility, b is the habit formation effect coefficient and also reflects the 

durability of prior consumption purchases,  is the representative agent’s relative risk 

aversion coefficient. With these general and specific utility function forms and 

assumptions, we can estimate the preference parameters and evaluate the models’ 

performance and overfit by using the Generalized Method of Moments (GMM) 

estimation method (Chapman 1997). 
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4.3.  Taylor Series Expansion and Pricing Kernel approximation 

 

The next step in our analysis as a priori is to define the pricing kernel as a nonlinear 

polynomial function of state variables since the nonlinearity specification of pricing 

kernels was suggested from past studies to show exceptional improvement in models’ 

overfit. In order to avoid the data overfitting problem, and low power from ad hoc 

specification of pricing kernel rising from past nonparametric and multifactor 

approaches, we choose to implement a Taylor series expansion in pricing kernel 

specification. 

 

A viable representation for the pricing kernel function with the implementation of a 

Taylor series expansion is proposed in the following form. The pricing kernel is 

represented as a nonlinear function of state variable 1tS  , which can be equivalently 

represented by the aggregate consumption or by the end of period return on 

representative agent’s aggregate wealth under the assumption of static setting. Brown 

and Gibbons (1985) address the assumption of static setting that will allow the 

equivalent implementation of wealth as the aggregate consumption conditionally to 

proxy for the function of intertemporal marginal rate of substitution . 
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'' '''
2

1 0 1 1 2 1' '
...t t t

U U
Q x x

U U
             (4.7) 

 

From the perspective and standpoint of economic theory, this pricing kernel 

specification appears to be attractive. Besides, it may also solve the concerns related 

to the measurement of tentative aggregate consumption proxies as pointed out by 

Breeden, Gibbons, and Litzenberger (1989). Nonetheless, a potential problem is that 

although the pricing kernel follows the nonlinear functional form and may have 

improvement in model fitting, it raises another question of having strong linear 

relationships among certain polynomial domains. The second problem falls on the 

proper determination of the maximum polynomial order that the model should 

include, which is a balance to keep between losing power and improve models’ 

overfitting (Dittmar 2002, Chapman 1997, Bansal and Viswanathan 1993, Bansal et, 

al 1993). 

 

Therefore, we propose the following functional form for pricing kernel. We 

implement a Taylor series expansion with coefficients driven by derivatives of 

consumers’ utility function and a set of orthonormal polynomials of aggregate 

consumption proxies. 
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In equation (4.8), 1tx   represents the state variable which is defined as the aggregate 

consumption proxy.  1( )n t n
P x


  is defined as the set of orthonormal polynomials of 

the state variable with order n. We denote the inner product of orthonormal 

polynomials  1( )n t n
P x


  as ,n mP P   and the orthonormal polynomials satisfy the 

following conditions: 
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The inner products of the orthonormal polynomials 0{ }n nP 
  are defined on the space 

of continuous functions which are defined on some closed and bounded domain D . 

 

The chebyshev polynomials defined over [ 1,1]chv   were used extensively in Judd 

(1992) and has the form shown in equation (4.10), in which the polynomials are 

orthogonal with respected to the weighting function 2( ) 1/ 1w chv chv  . 
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A more efficient approximation algorithm can be constructed by using a set of 

orthonormal polynomials for asset pricing kernels (Chapman 1997). Therefore, we 

propose using Legendre polynomial functions to generate orthonormalized 

polynomials for the state variables. 

 

The Legendre polynomial function is defined as: 
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In which, the sets of orthonormal polynomials are formed by the legendre polynomial 

with weighting function ( ) 1w x  , 
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( ) ( 1)
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l
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d
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In equation (4.12), l is the legendre degree with order l=0,1,2,3,…L. ( )lP x  is a 

orthonormal polynomial vector with dimension (L+1) x 1, with order 0 to l and 

evaluated at state variable tx . 
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Hence the pricing kernel can also be expressed as: 
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Typically, given all these assumption and specifications, we can safely and intuitively 

allow the asset pricing kernel to choose aggregate consumption as the state variable 

which incorporates all market information. A large literature investigating CCAPM 

(consumption based asset pricing model) suggest that aggregate consumption is 

incapable of rationalizing the variability of asset returns. Considerable endeavor is 

given to the application of consumption proxies. An alternative approach is to hold 

Euler equation conditionally in a static setting with aggregate wealth, and then 

aggregate portfolio returns can be used equivalently as the proxy for aggregate 

consumption in pricing kernel approximations.  

 

Therefore the pricing kernels under consideration are in the following equations. 

Equation (4.14) and (4.15) are the tentative forms of pricing kernel with 

orthonormalized polynomials of aggregate consumption and aggregate portfolio 
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returns respectively. 
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A multifactor version of Merton's (1973) intertemporal asset pricing model was 

investigated in Fama and French (1993), in which the firms’ market capitalization and 

(BE/ME) proxy for sensitivity to risk factors are consistent with stock returns and 

profitability. These factors outperform the CAPM beta in capturing the cross sectional 

variation in asset returns and help explain the cross-section of average returns. We 

construct the pricing kernel with aggregate portfolio returns as the state variable by 

implementing the three-factor model in Fama and French (1993). We also augment 

the model with a momentum factor (UMD) which has been applied in a few studies. 

Therefore, in contrast to Fama and French (1993), we propose the following model 

for asset returns, 
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In this model, ( ) -  it ftE R R represents the excess return on representative agent’s 

market portfolio, tMktrf  is the excess return on the market which is calculated as the 

value weighted return on all NYSE, AMEX, and NASDAQ stocks minus the 

one-month Treasury bill rate. tSmb  (Small Minus Big) is the average return on the 

three small portfolios (including small value, small neutral and small growth) minus 

the average return on the three big portfolios (including small value, small neutral and 

small growth). tHml  is the average return on the two value portfolios (that is, with 

high BE/ME ratios) minus the average return on the two growth portfolios (low 

BE/ME ratios) and tUmd is the equally weighted average of the returns on the 

winner1 stock portfolios minus the returns on the loser2 stock portfolios. Therefore, 

the implied linear pricing kernel with the four-factor asset pricing model can be 

expressed as the following, 
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1 Winner: The winner stock portfolio consists of the top 30% of the total stocks with the highest average prior 
performance. 
2 Loser: The loser stock portfolio consists of the bottom 30% of the total stocks with the lowest average prior 
performance. 
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A similar pricing kernel specification is defined in Dittmar (2002) and Jagannathan 

and Wang (1996). In equation (4.17), coefficients ih are intended to capture the prices 

of corresponding risk factors. In a more fledged pricing kernel specification, the 

nonlinearity of the pricing kernel is captured by higher order terms of the polynomial 

function. 

 

We propose a more parsimonious approach to implement F.F four factor model in 

pricing kernel approximation to capture the nonlinearity in pricing kernels. Instead of 

directly including higher order polynomials of asset portfolio returns or factors in 

asset pricing model, we investigate the pricing kernel in a Taylor series expansion 

framework. The higher order polynomials are created by the inner product of 

orthonomalized polynomials to avoid the co-linearity problem. 
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In which, it follows that 
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Based on this kernel specification, we choose aggregate consumption and aggregate 

wealth portfolio returns as the state variables to summarize the state of the economy. 

If the utility function of the representative agent is timely non-separable, we should 

also consider modeling the effects of the intertemporal nonseparability of utility 

function on asset pricing kernels. Enlightened by equation (4.5), we model this effect 

by incorporating future aggregate consumption into the pricing kernel specification. A 

2-fold tensor product of the one dimensional polynomials was proposed in (Judd 

(1992)) and the extension to more folds tensor products were considered and tested in 

(Chapman (1997)). The cross terms of the tensor products were found to provide 

insignificant contribution in models’ overfit, and incorporating cross terms of 

different period also bring additional noise to the models’ sampling error. In this case, 

we define the pricing kernel function by using the two fold tensor product of 

orthonormalized factor polynomials. Therefore, we consider the following form for 

the pricing kernel. 
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  (4.19) 

 

However, to further investigate the ability of the augmented Fama-French 3 factors 

model in approximating the nonlinear pricing kernel, we should consider including 

the Fama-French 6 portfolio and Fama-French 25 portfolio returns as state variable 

components into the pricing kernel in equation (4.19). Since Fama-French portfolio 

returns will nest a significant part of the market risk of asset returns and the 

augmented Fama-French 3 factors model is only capable of explaining the most part 

of excess returns of financial assets. Then, the market based CAPM pricing kernel 

under the intertemporally separable utility framework will follow the following form: 
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However, in the case of intertemporally nonseparable utility framework, the 

corresponding pricing kernel will be tested in the following equation: 
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 (4.21) 

 

As for taking aggregate consumption as the state variable, we can express the timely 

non-separable pricing kernel in the following equation: 
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The pricing kernels with more periods and state variables can be nested similarly. For 

instance, an intertemporally nonseparable specification for pricing kernel with higher 

order polynomials can be shown as the following. 
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Another question in approximating pricing kernels is how to determine the maximum 

order in polynomial functions. As noted in Chapman(1997), choosing the appropriate 

maximum order for the pricing kernel polynomial is equivalent to measuring the 

magnitude of approximation error in any particular application. Nevertheless as noted 

in Judd(1992), the maximum order in the optimal pricing kernel function can not be 

determined at priori and the order should be infinity if it should have been determined 

(Judd 1992). Bansal et al, (1993) use the model to guide the orders truncation, 

however, allowing the data to determine the pricing kernel specification may have the 

risk of potentially overfitting models. 

 

An alternative approach that allows preference theory to determine the maximum 

order is to impose restrictions on representative agent’s utility function with 

decreasing absolute prudence (Dittmar 2002, Bansal et al, 1993). Through imposing 

this restriction in representative agent’s utility function, it will not rule out certain 

counterintuitive risk-taking actions of the agent (Kimball 1993, Pratt and Zeckhauser 

1987). When the agent’s preference is restricted only to have decreasing absolute risk 

aversion, he maybe still willing to take the sequential gambles with negative mean 

even if this agent had already accepted a bet with negative outcome. Then by 

imposing standard risk aversion on agent’s preferences, we will have the following 
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equation, 
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      (4.24) 

 

In equation (4.24), it implies that '''' 0U  , and correspondingly we are able to 

determine the signs of the first three polynomial coefficients in the Taylor series 

expansion. Implementing standard risk aversion restriction on representative agent’s 

utility function implicitly assumes that the covariance between asset returns and 

polynomial terms of chosen state variables with order greater than three is zero. 

Besides, the lost of power from omitting the higher order polynomial terms will be 

reimbursed by the increased power from following preference theory. 

 

Therefore, the asset pricing kernels we proposed above are flexible and parsimonious 

in capturing the nonlinearity of pricing kernels. In contrast to nonparametric modeling 

in prior works, the functional forms are guided by preference theory to determine the 

signs of the coefficients and therefore are free from ad hoc specification problems. 

Furthermore, the effects of the intertemporal non-separability of utility function on 
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asset pricing kernels were also incorporated within the functional form. These 

specifications and restrictions will deliver more statistical power to the model testing.  
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4.4.   Estimation of the Approximated Pricing Kernel  

 

As discussed in section II, the imposition of decreasing absolute prudence on 

representative agent’s utility function implies that the proposed pricing kernels are 

decreasing in the linear terms, increasing in the quadratic polynomial terms and 

decreasing in the cubic polynomial terms. With the guidance of these restrictions, we 

should investigate equation (4.14) and (4.15) in the following form: 
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  (4.26) 

 

We will estimate the parameters of approximated pricing kernels by using the 

generalized method of moments (GMM).  

 

Then the Euler equation (4.1) can be expressed as the following: 



 

49 

 

, 1 1{[(1 )* ] } 1t i t t t N tE R Q            (4.27) 

 

In which, t  is the available information set to agents at period t.  

 

Using aggregate consumption as the state variable and orthonomalized polynomials, 

equation (4.26) and equation (4.27) can be expressed as the following, 
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We approximate the pricing kernel as a static function of risk factors. By assuming 

static kernel settings we implicitly ignore the time variability of function parameters. 

We assume the state variables are time-invariant functions and will encompass all 

available homochronous information. As noted in Campbell (1996), the pricing of the 

time variability of risk factors are found evidently necessary in model specification 

and are proportional to the pricing of their market risk. Therefore, a more 

parsimonious kernel structure that is capable of incorporating the intertemporal 

variability of asset returns should be considered. 
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However, in this analysis we focus on analyzing nonlinearity effect and 

non-separability of utility function effect on models’ performance. Hence, a 

conditionally restricted function will be more sensible comparing to modeling the 

coefficients as intertemporally varying functions of informative or instrumental 

variables. The intuitive configuration for the time-variant parameters would be 

directly modeling the coefficients as linear functions of instrumental variables or a 

specified set of informative variables. Pertinent coefficient structures can be found in 

Ferson and Harvey (1989), Dumas and Solnik (1995) and Dittmar (2002).  

 

Therefore, modeling the intertemporally varying coefficient in pricing kernels will 

remain unanswered as an open question for future studies and we will pursue a 

different approach in this analysis. It was suggested that controlling the state variable 

directly by a set of instrumental variables is equivalently capable of driving the model 

without specifically estimating the time variability of coefficients. On the other hand 

it will restrict our models conditionally on the time risk (Shanken (1991), Cochrane 

(1996)). 

 

The orthogonality condition of the Euler equation augmented by the set of 

instrumental variables t  can be transformed into the following: 
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Therefore, the moment conditions for individual assets can be shown as the 

following: 
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  (4.30) 

 

The gross asset return scaled by instrumental variable set , 1(1 )n t tR    can be 

comprehended as the total return of a well diversified investment portfolio. In other 

words, as noted in Chapman (1997) that investors make their investment decisions or 

choices under the guidance of selectively observed information from a specific 

instrumental information set. Equation (4.30) is a system of NL x 1 sample 

orthogonality conditions, in which, T represents the total number of time series 

observations, N refers to the total number of financial assets for analysis and L refer 

to the number of instrumental variables.  
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Furthermore, we obtain the objective function for GMM estimation of the model 

specification in the following form, 

 

'( ) min ( ) ( )GMM T T TJ g W g        (4.31) 

 

In the objective function, TW  is the optimal weighting matrix of the GMM 

estimators and is defined as the inversed long-run covariance matrix of the moment 

conditions’ sampling errors * ' 1[ ( ) ( )]T T TW g g   . In later works Ferson & Foerster 

(1994) and Chapman (1997), studies suggest that this weighting matrix exhibits poor 

finite sample properties and its large pricing errors in estimation will produce very 

small J-statistics. A large literature has proven that this optimal weighting matrix can 

be consistently estimated with HAC (heteroskedasticity and autocorrelation consistent) 

estimators (Hansen (1982), Ogaki (1993)). In our case, we define the HAC with 

Barttlet kernel weighting matrix and a specified bandwidth. The moment condition 

sampling errors from the approximated pricing kernel will approach zero if the 

pricing kernels we proposed are well defined and the objective function will be 

minimized. With the test statistic defined in Jagannathan and Wang (1991), we test 

the model’s overidentifying restrictions by minimizing the following function: 
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ˆ( )T GMMJ T J          (4.32) 

 

The test statistic is a Chi-square distribution with NL-K degrees of freedom, NL is the 

total number of moment conditions implied in the GMM test and K is the number of 

parameters under estimation. 

 

An alternative approach to evaluate the proposed pricing kernels is to replace the 

efficient estimator weighting matrix with the inversed second moment matrix of the 

asset returns being scaled by instrumental variables. As noted in Hansen and 

Jagannathan (1997), the instrumental variable scaled return weighting matrix can be 

shown as the following: 

 

'
, 1 , 1{[(1 ) ][(1 ) ] }HJ n t t n t tW E R R            (4.33) 

 

Then the minimum mean-square distance from any pricing kernel to the optimal 

bound given by the mean and the standard deviation of a given set of asset returns is 

the square root of the Hansen Jagannathan J-statistics, which is developed by Hansen 

and Jagannathan (1991) and can be expressed as the following: 
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'( ) min ( ) ( )HJ
T HJ TJ g W g         (4.34) 

 

As noted in Jagannathan and Wang (1996) and Dittmar (2002), replacing the inversed 

sampling error covariance weighting matrix with the instrument-scaled returns’ 

weighting matrix will allow direct comparison among nested and non-nested models 

since the weighting matrix is invariant across all models tested. In addition, Dittmar 

(2002) and Cochrane (2001) suggest that parameter estimates using instrument-scaled 

weighting matrix may be more stable and more robust to heteroskedasticity and 

autocorrelation problems than in standard GMM estimation. Nonetheless, it is also 

argued that using the Hansen-Jangannathan estimator rather than standard GMM 

estimators may trade size for power. And using the iterated GMM estimators exhibit 

superior performance in finite samples. 

 

To measure the tradeoff of Hansen-Jagannathan estimators in finite sample and 

compare its robustness and stability with standard GMM estimators, we also estimate 

the models using Hansen-Jangannathan, iterated and standard estimators in our 

analysis. 
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4.5.  Data Description and Estimation Process  

 

Our data set consists of observations on the personal nondurable consumption, 

industry asset portfolio returns from 20 SIC industries, Fama-French 6 and 25 

portfolio returns and the 4 factors used in Fama-French models , and a number of 

instruments used as the conditioning information. Also, as motivated in Chapman 

(1997), we include a temporary technology shock defined as the growth rate of solow 

residuals from an aggregate Cobb-Douglas production function. The function 

specification will be detailed in Appendix.A. All data series cover the period from 

January 1970 to December 1999 in monthly frequency. 

 

We obtain the 20 SIC stock return series from the Center for Research in Security 

Prices (CRSP). The portfolio returns and 4 factors included in Fama-French data 

series were obtained from Kenneth French's web site at Dartmouth and Wharton 

Research Data Services (WRDS). The per capita personal consumption data contains 

real “personal consumption expenditures” on nondurable goods scaled by residential 

population and is obtained from Fed St.louis. The instrumental variables 

& ts pdivyield , tCrspexr  and tTexr  are obtained from Standard & Poor’s 

COMPUSTAT North America monthly database. 
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We construct {1 , & , , , 30 }t NL t t t ts pdivyield Crspexr Texr Tbill  as the instrumental 

variable set, where 1NL  denotes a vector of ones, & ts pdivyield is the dividend yield 

on the S&P 500 composite index, tCrspexr  is the excess return on the CRSP 

value-weighted index at time t, tTexr is the excess yield on the 10-year Treasury bill 

in excess of the yield on 30-day Treasury bill, and 30tTbill  is the Treasury bill yield 

with maturity of 30 days.  

 

All these instrumental variables in our instrumental variable set are investigated to be 

able to predict the asset returns. The 6 Fama-French Portfolios are formed by the 

intersections of two portfolios grouped by size (market equity, ME) and three 

portfolios formed on the ratio of book equity to market equity (BE/ME). The market 

equity or firm size (ME) is measured by a firm’s market capitalization or market 

value of equity. It is in turn defined as the product of stock price and the number of 

outstanding shares at the end of the fiscal year t. The book-to-market equity (BE/ME) 

is measured as the ratio between a firm’s book equity (BE) at the fiscal year-end in 

calendar year t – 1 and its market equity (ME) at the end of December of year t – 1. 

The 25 Fama-French Portfolios are formed by the intersections of five portfolios 

formed on size (market equity, ME) and five portfolios formed on the ratio of book 

equity to market equity (BE/ME). And all the portfolio data were created by 
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combining CRSP market equity data and COMPUSTAT book equity data. The size 

breakpoint for year t is the median NYSE market equity at the end of June of year t. 

(BE/ME) for June of year t is the book equity for the last fiscal year end in t-1 divided 

by ME for December of year t-1. The (BE/ME) breakpoint are the 30th and 70th 

NYSE percentiles. 

 

As noted in Fama and French (1993), the Fama-French factors are the returns on 

Fama-French portfolios constructed from the intersections of two portfolios formed 

on size, as measured by market equity (ME), and three portfolios using, as proxy for 

value, the ratio of book equity to market equity (BE/ME) . 

 

We choose these series to reflect the variations in financial markets and the real 

economy. The instrumental variables have been used in numerous empirical studies to 

investigate the time series properties of asset returns. Summary statistics for the 

instrumental variables are demonstrated in Table I. 

 

In table II, we present a Wald type of test and a F-test on the predictive power of 

instrumental variable set {1 , & , , , 30 }t NL t t t ts pdivyield Crspexr Texr Tbill  for the asset 

returns. The null hypothesis of the Wald test is that the instrumental variables have no 
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predictive power over the asset returns. And the results show that the instrumental 

variable set is well selected and the instrumental variables should be capable of 

predicting asset returns. 
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4.6.   Estimation Results 

 

In this section, we discuss the financial assets used in model specifications and the 

corresponding tests of Euler equations under different pricing kernel settings. The 20 

industry-sorted asset portfolios follow the definitions of the four-digit SIC codes used 

initially in Moskowitz and Grinblatt (1999) and the portfolio returns are widely used 

by U.S. Securities and Exchange Commission (SEC).  

 

In Table I we present the descriptive statistics for the set of state variables. In panel A 

through C in Table I, we show the statistics for the 20 SIC industry portfolio returns 

as in Moskowitz and Grinblatt (1999), the aggregate consumption growth rate, 

technology shock growth rates, the four factors used in Fama-French 3-factor models 

and the 6 and 25 Fama-French selected large portfolio returns. The summary statistics 

of instrumental variable set {1 , & , , , 30 }t NL t t t ts pdivyield Crspexr Texr Tbill   are 

listed in Panel D of Table I.  

 

In Table II, we present a wald test on the predictive power of the instrumental 

variables for the 20 SIC industry portfolio asset returns used in our study. We evaluate 

the predictive power of instrumental variables by following a similar projection of the 

portfolio asset returns onto the instrumental variables as shown in Dittmar (2002): 
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, 1 1'i t t tR u                                  (4.31) 

 

The null hypothesis of the Wald test and F test are that the instrumental variables have 

no predictive power over asset portfolio returns. And the results show that the 

instrumental variables are capable of predicting asset returns and the list of 

instrumental variables is conceivably selected. 

 

The results in Table III through Table V discuss the kernel specifications based on 

aggregate consumption growth rates. In Table III, we show the test results for kernel 

specifications with intertemporally separable utility function. The moment conditions 

are scaled by Hansan Jagannathan return-scaled weighting matrix and the state 

variables contains only the growth rates of aggregate consumption. We also present 

the Hansan Jagannathan distance measure and model specification test results. The 

first row in every Table shows the values of the estimated coefficients, F-value, H-J 

statistics with P-value and H-J distance Measure. 

 

As shown in Table III, the linearly approximated pricing kernel, quadratic and cubic 

pricing kernels in Panel A, B and C are not rejected at 1% level of significance. 
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Besides, the coefficient estimates are significant and marginally significant for linear 

and quadratic pricing kernels respectively. The quadratic term in the quadratic pricing 

kernel is marginally significant at 10% level of significance and the quadratic pricing 

kernel exhibits marginal improvement in model’s fit and the distance measure from 

linear pricing kernels. The distance measurement decreases from 0.8405 to 0.8360, 

dropped by 0.53%. However, in the case of cubic pricing kernel, the pricing kernel 

does not improve the fit of the model and none of the coefficient estimates is 

significant. The distance measure for cubic pricing kernel also shows zero 

improvement from quadratic pricing kernel specification. Therefore under the 

intertemporally separable utility function, incorporating a cubic term of the state 

variable will not improve the kernel specification and will invalidate lower order 

terms’ significance. 

 

Table IV demonstrates the effects of incorporating cross terms into the pricing kernel 

specifications under intertemporally non-separable utility function framework. The 

cross terms of current period consumption growth and the growth of one period ahead 

consumption do not improve the distance measurement, although the coefficient 

estimates in linear and cubic pricing kernel specifications are mostly significant. 

These results are consistent with the findings in Chapman (1997). Therefore, our 
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following analysis will focus on the pricing kernels with orthonormalized state 

variables at different orders without cross terms. We analyze the pricing kernels with 

higher order terms under the intertemporally non-separable utility framework in Table 

V. The outcomes of the specifications improve significantly comparing to the results 

shown in Table III. In the linear and cubic kernel specifications, all coefficient 

estimates are significant at 1% level and the distance measurement is significantly 

improved from 0.8405 to 0.8128. The improvement represents a decrease of 3.3% in 

the distance measurement relative to the linear pricing kernel without incorporating 

the one period ahead consumption growth. In cubic kernel specification, none of the 

coefficient estimates is significant. All these tests demonstrate that in consumption 

based asset pricing models, incorporating cubic terms into pricing kernel 

specifications does not improve the models’ fit. 

 

Thus far, we have discussed the specification tests of the Euler equation under the 

circumstances of consumption based pricing kernels with linear, quadratic and cubic 

time-varying coefficients. And we have observed considerable improvement in 

model’s fit through moving from a linear specification to nonlinear specifications. In 

order to gain more insight of the performance of different kernel specifications, we 

will compare the performance of consumption polynomial pricing kernels to 
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multifactor models in pricing the cross section of financial portfolios. As noted earlier, 

multifactor asset pricing models have been more successful than single factor model 

in pricing the cross section of equities. In the following we will measure the 

performances of the polynomial pricing kernels to price the cross section of financial 

portfolios relative to a popular multifactor model, the Fama and French (1993) 

three-factor model and large portfolio returns.  

 

Although multifactor models will allow researchers with considerable flexibility 

when the models give very little direction for the choice of factors, we explicitly 

define the portfolio of aggregate wealth as the relevant factor for pricing. And we 

impose restrictions on properties of the coefficients on each of pricing kernel 

polynomials by following the preference theory. 

 

In Table VI we show the results for the estimation of the Fama-French three-factor 

model. The three factor model is augmented with the equally weighted average of 

returns on the winner stock portfolios minus the returns on the loser stock portfolios. 

The results suggest that the pricing kernels implied by the model perform poorly in 

describing the cross section of industry returns under the intertemporally separable 

utility framework. In the case of estimating orthonormalized linear pricing kernel, we 
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observe the H-J distance measure improves marginally from 0.831 to 0.828 compare 

to linear pricing kernel settings. In the case of estimating quadratic and cubic pricing 

kernels, although the distance measure improve marginally, the p-value of the 

specification tests are largely insignificant. This indicates that incorporating the 

quadratic and cubic polynomial terms may bring marginal improvement in fitting the 

pricing kernel, however it brings higher risk of losing degree of freedom from adding 

additional terms. More interestingly, the tMktrf  and tSmb  terms continue to be 

significant with a p-value less than 0.005. 

 

Table VII presents the estimation results for pricing kernels based on portfolio returns 

with cross terms of one period ahead asset returns as expressed in equation (19). The 

large portfolio returns are not included in the estimation. The results are consistent 

with our observation in Table IV, The cross terms of current period factors and the 

factors of one period ahead do not significantly improve the distance measurement, 

however, almost none of the coefficient estimates in linear, quadratic and cubic 

pricing kernel specifications is significant. These further prove that adding the cross 

terms in between the state variables will provide insignificant contribution in 

improving models’ overfit, and bring additional noise to the model’s sampling error. 
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In Table VIII and IX we estimate pricing kernels motivated by adding the large 

portfolio asset returns into the four-factor model are examined. In panel A through c 

in Table VIII we show the estimation results for kernels based on one period state 

variable. In this case, incorporating the quadratic and cubic terms of large portfolio 

asset returns barely improves the distance measure and the coefficient estimates for 

the quadratic and cubic terms are mostly insignificant. It is noteworthy that 

incorporating the linear terms of the Fama-French three-factor model augmented with 

the momentum factor exhibit considerable stability. The tSmb  and tHml terms are 

mostly significant and are not impacted by incorporating the quadratic or cubic terms 

of large portfolio asset returns. In Table IX We consider incorporating the technology 

shock growth into kernel estimation. Adding the technology shock growth does 

improve the explanatory power of large portfolio asset returns in the linear and 

quadratic pricing kernels. However, adding higher terms barely improve the distance 

measure and none of the coefficient estimates is significant. It further prove that 

adding the higher terms of large portfolio asset returns and technology shock growth 

would dramatically offsets the degrees of freedom by adding unnecessary noise to the 

model. Consistent with the findings in Table VIII, the terms of the Fama-French 

three-factor model augmented with the momentum factor exhibit considerable 

stability in the linear and quadratic pricing kernel settings. The tSmb  and tHml  
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terms are significant and not impacted by adding the quadratic and cubic terms of 

large portfolio returns and technology shock growth. In the case of adding cubic 

terms of large portfolio returns and technology shock growth, none of the estimates is 

significant. 

 

In Panel A through D in Table X we examine the pricing kernels motivated by the 

time nonseparable utility specification of equation (20) augmented by the technology 

shock growth. In the linear pricing kernel with one period ahead state variables 

augmented by the four factors, contemporary and one period ahead state variables are 

mostly significant except for the one period ahead technology shock growth. In the 

case of Legendre polynomials of the linear pricing kernel, the distance measure is 

significantly improved from 0.822 to 0.818 and the estimates for one period ahead 

technology shock growth are all insignificant, which are consistent with the results 

shown in the linear pricing kernel. The combined effects of large portfolio asset 

returns and technology shock growth are insignificant with higher order pricing 

kernel terms added to the model. As observed in Table VII and Table IX, the 

parameter estimates for tSmb  and tHml  terms are significant and intact by adding 

the higher order polynomial terms of large portfolio returns and technology shock 

growth, even in the case of the existence of cubic pricing kernel terms of one period 
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ahead state variables. 

 

We extend our analysis of pricing kernel specification from technology shock 

augmented two-period portfolio returns and Fama-French three factor models to 

include aggregate consumption growth rates in Table XI. Panel A shows estimation 

results for kernel based on two-period portfolio returns and cross terms of two period 

consumption growth. The results are consistent with Panel A in Table X that 

coefficient estimates for two period portfolio returns and first period technology 

shock are significant except for the one period ahead technology shock growth. The 

coefficient estimates for linear and cubic orthonormalized consumption cross terms 

are insignificant. By adding the two-period consumption polynomial cross terms, the 

H-J distance measure improved from 0.822 to 0.817 and the coefficient estimates for 

tSmb , tHml , and tUmd  terms are still significant. 

In Panel B, the coefficient estimates for most terms are insignificant except for 

current period large portfolio returns and technology shock when two-period 

orthonormalized consumption cross terms are added into the quadratic large portfolio 

return kernel specifications. The improvement in the H-J distance measure is barely 

noticeable however the point estimates for tSmb , tHml , and tUmd  terms are still 

significant. 
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In Table XII, we conduct the similar analysis in Table XI that we include additive 

terms of orthonormalized consumption growth rates to the solow residual augmented 

two-period portfolio return pricing kernel. The coefficient estimates for two-period 

portfolio returns and first period technology shock are significant except for the one 

period ahead technology shock growth in Panel A when only linear terms are present. 

The H-J distance measure is significantly improved from 0.817 to 0.812 and most of 

the orthonormalized consumption terms are insignificant. In Panel B, the H-J distance 

measure is slightly improved from 0.812 to 0.810 and estimates for the polynomial 

terms are very consistent to the results shown in Panel B of Table XI. The linear terms 

of current period large portfolio returns and technology shock are significant when 

the additive terms of orthonormalized consumption growth rates are included in the 

kernel specification. We found that only the linear term of one period ahead 

consumption growth rate remains significant after been included. Beside, the point 

estimates for tSmb , tHml , and tUmd  terms remain highly significant. 
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4.7.   Conclusion 

 

In this paper, we investigate pricing kernels in dynamic asset pricing models and the 

variation in financial asset returns. We implement nonparametric approach in 

parameter approximations and consider for nonlinear specifications in continuous 

pricing kernel functions of the state variables. 

 

We also extend the tests of representative consumers’ asset pricing model by 

approximating the pricing kernel for monetary assets to consumption-based and 

market-based environments in which the consumer is assumed to have intertemporal 

nonseparable utility functions. The classical consumption-based kernels and 

market-based kernels are investigated in our asset pricing models for their empirical 

performance and statistical significance with both kernel functions being guided by 

preference theory. 

 

We propose a Taylor series expansion with coefficients being driven by the 

derivatives of consumers’ utility function and a set of orthonormal polynomials of the 

aggregate state variables to approximate the pricing kernels. This approximation 

approach has the advantage of eliminating the linear relationships over certain portion 

of the state variables’ domain, especially occur in between the higher order terms. In 
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addition, following the preference theory will help us restrict the properties of certain 

terms in the model to avoid ad hoc assumptions and data over fitting problems. 

 

We conducted pricing kernel approximation with industry asset portfolio returns from 

20 SIC industries, Fama-French 6 and 25 portfolio returns. The Fama-French 

three-factor model has been augmented with a momentum term and includes a 

number of instrumental variables as the conditioning information. The specification 

tests and approximations yield results that pricing kernels with intertemporal 

nonseparable utility functions will improve the pricing kernels’ performance in 

measuring large pricing errors observed in asset returns in both cases of consumption 

based and market-based kernel specifications. It will further substantially improve 

pricing kernels’ performance when future value of the state variables and nonlinear 

functions of orthonormalized state variables are incorporated. Particularly, 

incorporating orthonormalized aggregate consumption growth under the specification 

of intertemporal nonseparable utility function in pricing kernels demonstrates the 

most stable and significant performance. Results show that the approximated pricing 

kernels motivated by intertemporal nonseparable utility functions over the durable 

consumption goods and portfolio investments under static setting will outperform the 

pricing kernels with inter-temporally separable preferences in general. More 
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importantly, the marginal contribution of incorporating large portfolio asset returns 

into the Fama and French (1993) three factor model is substantial in improving the 

kernels’ explanatory power over the pricing errors. Furthermore, adding higher order 

terms of the state variables in pricing kernels, the cubic terms for instance will offset 

the degrees of freedom through trading less improvement with losing more power by 

adding noise to the system. This result further necessitates parsimonious nonlinearity 

specifications in pricing kernels, as emphasized in Dittmar (2002) that ad hoc 

nonlinearity specifications will bring disastrous results and should be avoided. 

 

A notable observation from incorporating the Fama and French (1993) three factor 

model in the pricing kernel is that the parameter estimates of the tSmb  and 

tHml terms are statistically significant in general. And the results suggest that linear 

functions of the three factors in the pricing kernels are significantly sufficient to 

account for the admissible pricing errors without restrictions in preferences and 

functional forms. 

 

The results in this paper infer a few interesting questions and directions for future 

research. Since we allow the parameters of pricing kernel vary over time, what ex 

ante specification over the state variables should be imposed in order to track the 
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observed large pricing errors is still an unanswered question, particularly when 

nonlinearity is imposed. Alternative approaches may fall on the approximation of 

coefficient estimates as time-varying functions of the information set, or the time 

variability of pricing kernel parameters. 
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Table I 
Descriptive Statistics for Industry Returns, State Variables 

and Portfolio Returns Statistics Summary: 1970:01 – 1999:12 
Panel A: Industry Return Statistics 

Autocorrelation 
Sic Industry Series Return 

Mean
Std.Dev. 1 2 3 4 5 

Coal & Lignite Mining 0.014 0.178 0.016 -0.097 -0.001 0.107 -0.028
Food & Kindred Products 0.012 0.110 -0.008 -0.007 -0.001 0.026 -0.006
Papers & Allied Products 0.014 0.108 0.102 -0.012 -0.160 -0.002 -0.069
Plastic Materials 0.013 0.101 -0.060 -0.024 0.048 -0.010 0.020
Crude & Natural Gas 0.038 0.108 0.091 0.093 0.093 0.005 0.041
Water, Sewer, Pipeline 0.004 0.142 0.050 -0.094 0.102 0.001 -0.014
Primary Metals 0.019 0.167 0.017 -0.068 -0.033 0.018 0.053
Fabricated Plate 0.028 0.081 0.094 0.118 0.066 0.147 0.048
Construction Machinery 0.019 0.152 -0.127 0.022 -0.016 -0.070 -0.021
Electric Equipment 0.038 0.103 0.094 0.053 0.049 0.132 0.068
Transportation Equipment 0.007 0.145 -0.015 0.003 -0.017 -0.023 -0.067
Manufacturing Industries 0.017 0.123 0.006 -0.033 0.041 -0.122 0.107
Railroads, Line-Haul 0.012 0.153 -0.053 0.082 0.088 -0.022 0.004
Air Courier Services 0.027 0.133 0.030 0.057 0.070 0.072 0.053
Natural Gas Distrib. 0.022 0.111 0.096 0.015 -0.046 0.075 0.085
Retail-Department Stores 0.025 0.080 0.133 -0.057 0.019 0.057 0.097
Other Retail 0.051 0.132 0.293 0.316 0.269 0.124 0.232
Savings Insts., Finance 0.016 0.069 0.104 -0.006 0.023 -0.008 0.022
Real Estate 0.016 0.084 0.031 0.127 0.094 -0.126 -0.067
Other 0.011 0.187 -0.058 -0.037 0.070 -0.156 -0.030
Panel B: C-CAPM State Variables 
Consumption 0.001 0.007 -0.328 0.023 0.121 -0.047 0.034
Technology Shocks 0.002 0.007 0.284 0.192 0.210 0.090 0.065
Panel C: Inflation and M-CAPM State Variables and Fama-French 6&25 Portfolio Returns 
Inflation Rate 0.004 0.003 0.655 0.555 0.500 0.457 0.468
Mktrf 0.006 0.046 0.057 -0.036 -0.004 -0.046 -0.047
Smb 0.001 0.029 0.147 0.039 -0.042 -0.015 0.061
Hml 0.004 0.028 0.203 0.073 0.034 -0.008 0.013
Umd 0.009 0.035 0.089 -0.02 -0.049 -0.056 -0.062
F.F Small-Low P-6 0.009 0.069 0.189 -0.026 -0.033 -0.069 -0.057
F.F Small-High P-6 0.015 0.054 0.198 -0.067 -0.075 -0.075 -0.078
F.F Big-Low P.6 0.011 0.049 0.055 -0.024 0.005 -0.031 -0.023
F.F. Big-High P-6 0.013 0.044 0.004 -0.034 -0.024 -0.089 -0.08
F.F. Large P-25 0.011 0.049 0.048 -0.006 0.022 -0.017 0.004
Panel D: Instrumental Variables 
S&PDivdYield 0.086 0.043 0.991 0.979 0.968 0.959 0.928
CRSPExR 0.006 0.046 0.057 -0.036 -0.004 -0.046 -0.047
TExR 0.001 0.001 0.229 0.032 -0.044 0.014 0.126
Tbill30 0.005 0.002 0.914 0.869 0.851 0.81 0.749
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Table II 
Wald Test for Instrumental Variables 

Table II contains a Wald type of test and an F-test on the predictive power of the instrumental 
variable set for asset returns.  
The instrumental variable set is {1 , & , , , 30 }t NL t t t ts pdivyield Crspexr Texr Tbill  . 
The null hypothesis of the Wald test is that the instrumental variables have no predictive power 
over asset returns. And the results show that the selection of instrumental variables that 
instrumental variable should be capable of predicting asset returns is well satisfied. 

Summary Statistics 
Industry 2  P-value F  P-value 

Coal & Lignite Mining 36.815*** 0.000 9.204*** 0.000 
Food & Kindred Products 72.040*** 0.000 18.010*** 0.000 
Papers & Allied Products 91.986*** 0.000 22.997*** 0.000 
Plastic Materials 32.533*** 0.000 8.138*** 0.000 
Crude & Natural Gas 101.461*** 0.000 25.365*** 0.000 
Water, Sewer, Pipeline 46.152*** 0.000 11.538*** 0.000 
Primary Metals 184.179*** 0.000 46.045*** 0.000 
Fabricated Plate 121.899*** 0.000 30.475*** 0.000 
Construction Machinery 30.404*** 0.000 7.601*** 0.000 
Electric Equipment 239.919*** 0.000 59.980*** 0.000 
Transportation Equipment 91.200*** 0.000 22.800*** 0.000 
Manufacturing Industries 115.697*** 0.000 28.924*** 0.000 
Railroads, Line-Haul 54.868*** 0.000 13.717*** 0.000 
Air Courier Services 171.340*** 0.000 42.835*** 0.000 
Natural Gas Distrib. 48.107*** 0.000 12.027*** 0.000 
Retail-Department Stores 253.005*** 0.000 63.251*** 0.000 
Other Retail 59.741*** 0.000 14.935*** 0.000 
Savings Insts., Finance 77.924*** 0.000 19.481*** 0.000 
Real Estate 112.204*** 0.000 28.051*** 0.000 
Other 39.875*** 0.000 9.969*** 0.000 
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Plot.8 Fitted Asset Returns with Approximated Kernels
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Plot.9 Fitted Returns with Approximated Kernels
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Plot.10 Fitted Raturns with Approximated Kernels
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Plot.11 Fitted User Costs with Approximated Kernels
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Plot.12 Fitted User Costs with Approximated Kernels
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Plot.13 Fitted User Costs with Approximated Kernels
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