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ABSTRACT
Martin K. Dubois, Ph.D.
Department of Geology, April 2007
University of Kansas

The full-field model of the 70-year-old Hugoton field (largest in NA) is a
comprehensive lithologic and petrophysical view of a giant reservoir system in a 108-million
cell model covering 10,000-mi? (26,000-km?). It is a quantitative basis for evaluating
remaining gas, particularly in low-permeability intervals, and will aid field management and
enhance ultimate recovery. The model is also a tool for developing depositional models and
for understanding controls on sedimentation. Both the knowledge gained and the techniques
and workflow employed have implications for understanding and modeling similar reservoir
systems worldwide.

Accurate representation of lithofacies in the model is critical because water saturation
from wireline logs is inaccurate due to filtrate invasion. Lithofacies-based petrophysical
properties are used to estimate water saturation. Neural-network prediction of lithofacies
using wireline logs and two geologic variables is effective in predicting lithofacies at wells.
Between wells, lithofacies and wireline-log porosity, corrected by lithofacies-dependent
algorithms, are reliably represented by stochastic methods. Permeability, water saturation,
and gas in place at the cell level are calculated by lithofacies- and porosity-dependent
petrophysical transforms. Based on the model, 963 billion m® (34 tcf) of the produced gas
represents 65-70% of original gas in place. The reservoir is a layered, differentially depleted
system, and most remaining gas is in intervals having lower permeability.

The model illustrates shifting sedimentation patterns related to glacioeustacy on a
large, stable, gently sloped ramp. The 160-m reservoir comprises thirteen upward-shoaling
carbonate cycles vertically stacked in a low-relief setting. Lithofacies bodies are laterally
extensive and reservoir storage and flow units, mostly grain-supported marine carbonate,
exhibit broad lateral continuity. Carbonate cycles are separated by fine-grained siliciclastic
strata (mostly loess) deposited in a savannah-like setting. Climate variability controlled
sediment supply and delivery. Relatively dry conditions and low vegetative cover during low
sea level allowed fine siliciclastic sediments to be delivered to the ramp by eolian processes
where they were stabilized by vegetation in an aggradational landscape. During high sea
level wetter conditions and increased vegetation curtailed siliciclastic supply to a flooded,
carbonate-dominated ramp. The results illustrate new climate-controlled mechanisms for
cyclicity in fine-grained siliciclastic strata.
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APPENDIX A - Core and lithofacies data

Lithofacies determination is critical to most geologic studies and is the
foundation for Chapters 3 and 4. Methods for describing core and determining
lithofacies, presented elsewhere, are summarized. Examples of lithofacies data and
their distribution are presented and the locations of data that are accessible via the

web are provided.

Data access

Digital core description and measured petrophysical properties are available
as an Appendix (Core Data and Descriptions Database) to Dubois et al. (2006) at
http://www.kgs.ku.edu/PRS/publication/2007/OFR07_06/index.html. Whole core,
core slab, and thin section photomicrographs are available from the Kansas

Geological Survey website, accessible via

http://www.kgs.ku.edu/Magellan/CoreLibrary/image.html.

Core data distribution

Twenty-nine of approximately 100 continuous cores were selected for
lithofacies analysis on the basis of length (longest selected), geographic position
(sampling distribution), and availability of core analysis and wireline log data (Table
A-1 and Figure A-1). In most cases, selected cores included either the entire Chase
(twelve) or Council Grove (twelve) interval, or covered both intervals (five). Twenty-
seven were used as training data for neural networks (Appendix B). In all 7400 ft of
core (2255 m) was examined, approximately equally divided between the Chase and
Council Grove Groups. Dubois described all Council Grove core and some of the
Chase. Nathan Winters, under Dubois close supervision, described most of the Chase

core.

237


http://www.kgs.ku.edu/PRS/publication/2007/OFR07_06/index.html
http://www.kgs.ku.edu/Magellan/CoreLibrary/image.html

Core description methods

Two approaches to the lithofacies determination task were required because of
the nature of the problems being studied. In the balance of this appendix, geomodel
lithofacies are those used in Chapter 3 and core lithofacies are those used in Chapter
4. Building the Hugoton geomodel (Chapter 3) required splitting the lithofacies
spectrum into broad (coarser) lithofacies classes because of the limitations of
recognizing lithofacies with wireline logs. The number of geomodel lithofacies
classes and the criteria for defining classes involved four criteria: (1) maximum
number of lithofacies recognizable by neural networks using petrophysical wireline
log curves and other variables; (2) minimum number of lithofacies needed to
accurately represent lithologic and petrophysical heterogeneity; (3) maximum
distinction of core petrophysical properties among classes; and 4) the relative
contribution of a lithofacies class to storage and flow. Eleven geomodel lithofacies
classes, eight marine and three continental, were determined to be optimal. The
methods for determining geomodel lithofacies were tailored to the primary goal for
the study: develop a geologic and petrophysical model for the Hugoton gas field.
Because petrophysical properties are a function of lithofacies, permeability is a
function of pore throat diameter, and pore throat diameter is a function of primary
texture, the description and classification schemes were designed to split the
lithofacies spectrum by primary texture.

Siliciclastic intervals of predominately continental origin were the subject of
Chapter 4. This studies focus was on determining the depositional controls on
lithofacies required more narrow (finer) lithofacies classes. Digital core description
data compiled for the geomodel study, in conjunction with additional sedimentary and
pedogenic tabulated data, thin sections, and text descriptions of core were employed.
The three dominantly continental geomodel lithofacies were split to nine core
lithofacies in the study.
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Geomodel lithofacies

Slabbed core was examined with the aid of a binocular microscope and data
recorded at 0.5 ft (0.15 m) intervals using a quantitative, digital lithofacies description
system described in Dubois et al., 2003 (Table A-2). In addition to the digital
description, relevant notes and sketches were recorded to supplement the digital
description. The sample rate was chosen because digital wireline logs are typically
sampled at this rate and the interval is approximately the thickness of the thinnest
lithofacies beds in core. Core depths were precisely correlated with wireline logs and
depth corrected. Thin sections for selected samples were used to validate grain size
estimated in core, determine grain composition and biotic constituents, and to
examine finer details of sedimentary structures and pedogenic features for
determining depositional facies. Three of the twelve descriptor digits recorded, rock
type (digit 1), texture (digit 2), and principal pore (digit 6), are sufficient to
discriminate the eleven geomodel lithofacies (Table A-3), although other digits were
considered initially in the process of determining class boundaries. A sample of the

digital lithofacies description available on line is provided in Tables A-4 and A-5.

Core lithofacies for Council Grove Group siliciclastic strata
Thirteen cores were studied in detail and provide the basic data for Chapter 4
(Figure A-2). Core lithofacies were determined in thirteen cores primarily on the
basis of six of the twelve digital descriptor variables recorded in the table described
above and seven additional sedimentary and pedogenic features tabulated (Table A-
6). Thin sections for selected samples were again used, particularly for determining
depositional facies (e.g., delineating nodular carbonate mudstone from pedogenic

caliche). Table A-7 provides a comparison of geomodel and core lithofacies.
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Geomodel
Lithofacies
Code

Oor 11

© 00 N O o b~ W N P

=
o

Description
Code

1/>2
1/2
1/0-1
0,2/<3
3-8/0-1
3-8/2-3
6-8/8/*/*/*/<3
3-8/4-5-6
3-8/7
7-818/**[*[>2
2/3-7

digitL/digit2/digit3

Geomodel Lithofacies

very-fine-grained sandstone (continental)
coarse-grained siltstone (continental)

fine- to medium-grained siltstone (continental)
siltstone or shale (marine)

mudstone or mudstone-wackestone
wackestone or wackestone-packstone
very-fine to fine-crystalline dolomite
packstone or packstone-grainstone
phylloid algal bafflestone

fine- to medium-crystalline moldic dolomite

very-fine-grained sandstone (marine)

....... *indicates skip

Table A-3. Geomodel lithofacies code, digital description code, and geomodel
lithofacies. Three digits are sufficient to discriminate the eleven lithofacies.
Geomodel lithofacies code for very-fine-grained-sandstone (continental) is 11
“outside” of the geomodel because of computer code constraints. Inside the
geomodels it is equal to 0.

243



- 2[qeL Ul panunuod st yamm d[qe)
a2y} 3o uorypod ST} uT paAR[dSTp ST UOT)RULIOIUT [[aM OTSe( "dUT[UO a[qe[Teae 2[qe) uondrosap 2100 [RYSTp Jo ajdweg $-y 3[qe],

i O S1Z8T | bEAT W by dNOHO IA0HO TONNDD| NOLOSNH| 52 M 8 s [k v HIWOTS 4500 13d OMvavhY 1581262151 ARG
S aHW \zez 50282 Wl Ve dNOHO IA0HO TDNNDD. NOLOSNH 52 A [ s 3 W HIWAOTS dH0D 13d OMTaThNT 2501Z-681-51 | ERG
¥ [t 508z |0Ze W b dNOHO AA0MO TDNNDD. NOLOSNH 52 M [ s 3 T3 A0S dH0D 13d OMYTaTNT 2581Z-681-51|Z6G
¥ M 0z8z SEL8T Wl L dNOHS IA0MO TONNDD. NOLOSNH 52 A 8 s LE 1Y HIA0TS 4400 13d OMYTaThNT 1681Z-681-51| | BG
¥ [a)t]] 568 BleT Wl v dNOHS IA0EO TONNDD. NOLOSNH 52 i 2 s I Ve A0S 4500 13d OMYTaThg 1581Z-621-51 [AG
¥ O 6187 58187 Wl v dNOHO IA0E TONNDD. NOLOSNH 52 i 2 s 1 Ve IO 4500 13d OMY7aThg 1581762151 {AG
¥ ]| 5818z Blez Wl v dNOHO IA0HS TONNDD|. NOLOSNH 52 i 8 s I Ve IO 4500 13d OMYTaThT 1581Z-621-51 BAg
¥ O 2187 52187 Wl Ve dNOHS IA0ES TONNDD. NOLOSNH 52 i 2 s [ Ve HIWAOTS 450D 13d OMYT AT 1581762151 /09
¥ [ s418T 18T W v dNOHO IA0HD TONNDD. NOLOSNH, 52 i 8 S IE 3 PELRE 450D 13d OMETaTNT 1581268151 939
¥ s 1187 59187 W by dNOHO IA0HO TDNNDD. NOLOSNH 52T A 8 s LE 3 SIS 450D 13d OMvavhY 1581262151 5A5
¥ aHW sglez gLz W v dNOHO IA0HO TDNNDD. NOLOSNH 52 M [ s 3 W HIWAOTS dH0D 13d OHTaTNT 1561268151 a9
¥ aui 9187 5518z Wl 1 dNOHS IA0H0 TONNDD. NOLOSNH 52 M 8t s 3 i A0S dH00 13d OMYTaThY 2581Z-681-51 /209
[ M 55187 5187 W L dNO¥S IA0M0 TONNDD. NOLOSNH 52 i 8 s IE Iy A0S 4400 13d OMYTaThT 2581Z-681-51/Z89
¥ O 5187 5187 Wl v dNOHO IA0EO TDNNDD. NOLOSNH 52 W 8 s I Ve HIWA0TS 4500 13d OMYTaThT 1581762151 A9
5 [t SPIBT  blez Wl v dNOHO IA0H TONNDD|. NOLOSNH 52 i 8 s I Ve A0S 4500 13d OMYTaThg 1581Z-621-51 099
2z [a]] 187 SELET Wl Ve dNOHO IA0ES TDNNDD,. NOLOSNH 52 i 2 s [ Ve HIWAOTS 450D 13d OMYT AT 1581762151 {9
5 O SEBT  EleT Wl Ve dNOHS IA0EE TONNDD. NOLOSNH 52 W 2 S I 3 PERRE 4500 13d OMYTaThg 1581762151 8/9
5 S]] £187 5218 W v dNOHO IA0HD TONNDD. NOLOSNH 52 i 8 s LE Ve PELRE dH0D 13d OMETaTNT LSBLZERLEL 449
] ] STIBT  TIET Wl by dNOHO IA0HO TONNDD. NOLOSNH 52 A 8 s LE v HIWOTS dH0D 13d OMvavhY 1581262151 9/9
] aHW z16z 5118z W v dNOHO IA0HO TONNDD. NOLOSNH 52 M [ s 3 W HIWAOTS dH0D 13d OMUTaTNT 2561Z-681-515/9
] aui siez L8z W 1y dNOHS IA0H0 TONNDD| NOLOSNH 52 i, 8t s 3 v A0S dH0D 13d OMYTaThY 2581Z-6815L ¥ /G
] M 118z 50182 W L dNOHS IA0MO TONNDD. NOLOSNH 52 A 8 s L I HIA0TS 4400 13d OMYTaThNT 1881768151 E/G
] [y 50187 018z HS 1 dNOHO IA0H TONNDD. NOLOSNH 52 i 8 s I Ve HIWAOTS 4500 13d OMYTaThT 1581768151 7./9
£ O 018z 56087 HS 1 dNOHO IA0ES TDNNDD. NOLOSNH 52 i 2 s [ Iy HIWAOTS 4500 13d OMYT AT 1581762151 |/9
4 [ay]] S608Z  ROET HS 1 dNOHS IA0EO TONNDD. NOLOSNH 52 W 8 S [ Ve HIWAOTS 450D 13d OMYTaThg 1581762151 0/9
Z Qi 087 58087 HS 1 dNOHO IA0ES TONNDD. NOLOSNH 52 W 2 s L 3 HIA0TS 450D 13d OMYTaThg 1581762151 {Ag
z [ 5808 BOBC HS b dNOHO IA0HD TONNDD. NOLOSNH, 52 i 8 s LE 3 PELRE 450D 13d OHETaTNT 1581268151 Bag
z O 8087 52082 HS 1 dNOHO IA0HO TONNDD. NOLOSNH 52 A 8 s LE v HIWoTS dH0D 13d OMvavhY 1581262151 499
g aHW 52082 |08 HS I¥ dNOHO IA0HO TDNNDD|. NOLOSNH 52 A 8 s 3 T3 HIWAOTS dH0D 13d OMUTaTNY £5012-601-51[ 999
z aui 2087 5908z HS I¥ dNOHS IA0HO TDNNDD NOLOSNH 52 M [ s L v A0S dH00 13d OMYTaThNT 2581Z-681-51/599
z M 5908z 908z HS LY dNO¥S IA0MO TONNDD. NOLOSNH 52 A 8 s LE 1Y A0S 4400 13d OM7aThT 1581Z-681-51 |99
£ [at]] 908z 55087 HS 1Y dNOHO IA0HS TONNDD. NOLOSNH 52 i 2 s [ Ve HIWA0TS 4500 13d OMYTaThg 1581762151 £99
4 ]| 55087 5087 HS 1Y dNOHO IA0HE TONNDD. NOLOSNH 52 W 2 S I Ve HIWAOTS 4500 13d OMYTaThg 1581762151 799
i O 5087 54087 HS 1 dNOHO IA0E TONNDD. NOLOSNH 52 W 2 s I Ve HIA0TS 4500 13d OMYTaThT 1581762151 99
3 [a]] SH08Z  bOBT HS 1 dNOHO IA0ES TONNDD. NOLOSNH 52 i 2 ] L Ve HIWA0TS 4500 13d OMYTaThT 1581762151 099
4 A 087 5 E£08C HS V¥ dNOHO IA0HD TONNDD. NOLOSNH, 52 W 8 s LE i PERE 450D 13d OMETaTiNT 1581268151 {59
z S]] SE0BT  £08T HS b dNOHO IA0HO TONNDD. NOLOSNH 52 A 8 s L 3 HIWoTS dH0D 13d OMvavhY 1581262151 955
z ] £08Z 5z082 HS I¥ dNOHO IA0HO TONNDD. NOLOSNH 52 M 8 s 3 i HIWAOTS dH0D 13d OMUTaThNT 2561Z-681-51| /55
z aui szosz  |zoez HS I¥ dNOHS IA0E0 TONNDD NOLOSNH 52 M 8t s IE v IS dH00 13d OMYTaThY 2581Z-681-51/955
£ [ay]] 708z 51082 HS 1Y dNOHO IA0HO TDNNDD. NOLOSNH 52 i 2 s [ Ve HIWA0TS 4500 13d OMYT AT 1581762151 559
4 [at]] 51087 l0ez HS 1Y dNOHS IA0HS TONNDD. NOLOSNH, 52 W 2 S I Ve HIWAOTS 4500 13d OMYTaThT 1581762151 50
! ot 108z 50082 HS 1Y dNOHO IA0ES TONNDD. NOLOSNH 52 W 2 s I Ve A0S 4500 13d OMYTaThT 1581768151 £55
! [ai]] 50082 0087 HS 1Y dNOHO IA0E TDNNDD,. NOLOSNH 52 i 2 s I vy FERE 450D 13d OMYTaThT 1581762151 759
! [at]] 008z 5E6LT HS 1 dNOHO IA0EO TONNDD. NOLOSNH 52 W 8 s L Ve HIWAOTS 4500 13d OMYTaThg 1581762151 |55
! A SBBLZ  BELE HS b dNOHO IA0HS TONNDD|. NOLOSNH 52 i 8 s LE 3 HIWA0S 450D 13d OHETaTNT 1581268151 59
! ] 6.7 5864 HS 1 dNOHO IA0HO TDNNDD. NOLOSNH 52 A 8 s LE 3 W04 4500 13d OMvavhY 1581262151 BFG
! aHW SEBZ BB HS I¥ dNOHO IA0HO TDNNDD. NOLOSNH 52 W 8 s IE v HIWOTS 440D 13d OHYwaviNg 1521262151 arg
tPOWO3s | 3139N0S VIVa [ISvd  (doL WYH LINN JHAYEOILYELS| JWVH 13| HOILDAS | NOILD3dIa | 39HVY | HOILDTWIG | JIHSHMOL |d3gwnn|  JWvH YN 401430 dIGNNN Y| 7
DI90TOHLIT |HL1dID  |H1dI0 | DJIHAVHOILVHLS 39HvY dIHSHMO L THEM I5¥I1
3002 3
SADIVAOHLI ejeq sisfjeuy a1e g uonduasag 2109 1zt xipuaddy

o [u] I W g A i H ] d = a o =] v

244



PAIENSAY]T ST S[BATAIUT (W GT°()) 300]-J[eY 38 2100 Jo uondiiosap [eNSI( panunuod ‘ajqe) uonidirosap 2100 (NS "S-V d[qe].

50 : E 5 B 5 L 0 B L t t ! o] TIZ87 (18T W L
50 ! E B E B L [ L 3 z [3 s o] [Fs:4 S0zaT W L
50 ! t E t E L [ L [3 L [3 t o] SOZez 07e W L
50 ! t s t s 3 [ L 3 L 3 t ] [iT4:74 SEIAT W L
50 ! t s t s L [ L £ L £ t o] TELEZ GO W L
50 ! t B t B L [ L 3 L 3 t ] f18T 8187 W L
50 ! t s t s L [ L 3 L 3 t [ ] CETC AT W L
50 ! t B t B 2 [ L 3 L 3 t o] a1z S8 W L
50 ! t B t B L [ L 3 L 3 t [ ] AT W L
50 ! t B t B L [ L 3 L 3 t o] 2187 F918T W L
50 ! t E t E L [ L [3 L [3 B o] Tolez  9eT W L
50 ! t s t s 3 [ L 3 L 3 t ] aisz §518T W L
50 ! t s t s L [ L 3 L £ t o] T5I8T SLET W L
50 s 3 t 3 t L L L L L a t ] iz S¥laT W L
50 s 3 t 3 t L L L L z a s [ ] SELET FLOT W L
50 a t t t t 2 [ t [ t ! ! o] 18z SLiaT W L
50 a 3 t 3 t L [ L [ z ! E [ ] SEIET £LET W L
50 3 3 t 3 t L [ L [ z 7 s o] iz STIT W L
50 3 L 3 L 3 L [ L [ [ [ a o] CF AT W L
50 £ L 5 L 5 3 [ L [ [ [ a ] 718z 5118 W L
50 3 L 3 A 3 L [ L [ [ [ a o] Lz e W L
50 £ L £ L 3 L [ L [ [ [ 3 ] Y4 s0l8T W L
50 3 [ [ [ z [ t L L z [ ] S018Z 018 HS 1
[ [ [ [ 5 z L t L L z o] niez SE0AT HS 1
[ [ [ [ 5 z L t L L z [ ] TE0GZ GO0OT HS 1
[ [ [ [ 5 t L t L L z o] A08T 5808z HS 1
[ [ [ [ 5 t L B L L z o] TE087 808 HS 1
[ [ [ [ 5 t L t L L z ] a0z & 08T HS 1
[ a [ [ & t A t L L z o] Ti087 /08T HS 1
[ [ [ [ 5 t L t L L z ] 2087 Fanaz HS 1
[ [ [ [ 5 t L t L L z [ ] So0gz  90aT HS 1
[ [ [ [ 5 t L t L L z o] ansz F508T HS 1
[ [ [ [ 5 t L t L L z [ ] T5087 S08T HS 1
[ [ [ [ 5 t L t L L z o] 08z Sp08T HS 1
[ a [ [ 5 t L B L L z o] SP0GZ  P0OT HS 1
[ 3 [ [ 5 t L t L L z ] 08T SE0aT HS 1
[ [ [ [ & t A t L L z o] SE08Z S8 HS 1
[ [ [ [ 5 t L t L L z ] 08z 5z08T HS 1
[ [ [ [ 5 t L t L L z [ ] 57087 Z0oT HS 1
[ [ [ [ 5 t L t L L z o] 08z 51087 HS 1
[ [ [ [ 5 t L t L L z [ ] TI087 | 08T HS 1
[ L [ [ 5 t L [3 z L L o] 4 S00az HS 1
[ L [ [ 5 t L [3 z L L o] 0087 008 HS 1
[ 3 [ [ 5 t L 3 z L L ] 08z SEELT HS 1
[ L [ [ & t A £ z L L o] SEGIZ  BALT HS 1
[ L [ [ 5 t L 3 z L L ] BBLT SBELT HS 1
i | i i & t L 3 z 3 L ] TEEZ BRI HS 1

20701 tPOWoss [ 324N0S viva|asva  |doL ETTT]

SN1d 30D ) H o 6 8 L 9 § € z ' JID0TOHLIT [HIdI0  [H1430 |DIHAVHOILYHLS

HOILITHIO0D [ 40100 39V HLd3Q [9MIA38| omTid | 3dAL3dOd | 3dALIOd | 3ZIS | LNALHOD | SHMNLDVEd | HOILVOMI 3dAL 3002

Hid3d 19MASSY | HILYM J4od | AYVIOISANS | IVdIOHIEd | HIVHD AVID IHOILY -SSW1D HO0d | STIVAOHLIT
VNN TEER) -arosH0D | ID0TOHLI

v av ok gv v z A X Ay A M AL S a| @ N W i

245



‘0 pue g suwnjod ut papraoid a1e sa10BJOURI] [2POWOAT pue 2107) ‘SAILJOYI] 2100 2)JBIUT[2P 03 PISN UOTJRULIOTUT I8 PAAYSIYSTH
‘dno1n) 94015 [TOUNOY) OY) JO STRAIUT OTISEIOTOI[TS AU} UT SATOBJOLT] 2100 AJBUTWLIISTP 0 pasn 9[qe) Jo ojdwrexy ‘9-V Iqel,

(PEEUILIE]-BUDSIS
B8d A} moung JYio - I8 Apprw Aeib Ul fBUEA JOU) SUCHEUILUE] UILY BANSURSIE
MOUNG MEISILBLU BAISBUDE BRONS - S-HNY
MOLNG BEISILBLL BUSBLYPE MO - G-EINY SMOLINg SERSUBYDIS
spop-spad
S8NpoU BLENED-PONE D LHIOTIL PE ) BRIRALUE - o ayf-pad sapisuayI||s
SUMOZI - 24 {papdusco) umozy srqrssed - ¢y sped 4o spad
sefow JydowKopal - Xpy SmMEsd weay -y sooy
WMCUING BIEDSIUIW BuSEYRE -quy  JuaBopagd Buippeq JENpououlsip - QUP
HIED s8{npou paauetlo - uo appfyuy
SNONUBLOD - 7 JUBLLIBD LI - 131N
O[EY WBNS - HS SE{NPOU JUERUNGE - WY juaway JeuEyd - o
DEY UONINPE) - HY ¥opay PE8NpoU PEIBNEDS - NS JaydED JUIE |- o SUOEUNLET
sauneay ojuabopad pue fueuawipas o} Aay
1 0 3 T w i i z 3 G| TULIGHIS0H 1 MEIG ) IAHD ENOD/EHE 2
b L o z L4 b [ z 2 ™ | SEEDT
b L o z £ z b . 3 ™ Ay BEST
] o a Z £ 4 3 ' 3 o -y Secar il
[} 1] ] z £ ] 3 I3 BEEL T FILVOHES0UD &k HENE D AADUD EHNI0D IFBE | DODGCFSOCS 051 |
] c 0 < £ < + 3 o H 52630
b C 2 z 4 z 3 3 ™ Ll 05T
¥ o o z (4 0 r 3 ™ Ll I
¥ 0 o z z 0 L] 3 ™ 4 9T
¥ 0 o z £ 0 L] & ™ £l S'5E0T
¥ o o 4 £ o L & L] £l SEST
) c 9 < £ < + [ S ¥Eal
] c 0 < £ z + [ FEST
b C 2 < [4 T 3 i SEEHR
3 o 2 z £ z 3 i L5
i L o 3 b L4 b b z 4 e STEAT
4 0 o 3 b ¥ b b t4 3 e a5
z 1] a & 3 * 3 3 z 5 e 5 hEaL -
z 1] a 5 3 * 3 3 Z 5 amppad (34 Sh HEIE ) 3ADHS TR0 FESD
s c 0 r r ] < r z + {4 L 58030 . HSWY 2 3A0HO TOHNCD S HIaT
§ C 2 8 r ] z L z 3 ¥ i HSWY D AACHE TWHNCD 1T
§ o 2 2 r [} z ¥ T 3 13 ™ i Ay 1 HSY
b L o L3 L3 b z £ z b i ™ £y Ay HSW
b 0 o ¥ ¥ b z £ z b 3 ™ i Ay HEW
b o o & L3 b 4 Z 4 b 3 HEW
¥ ¢ 9 4 L ¢ 3 t4 o L & HEW
9 c ] r r ] ] r ] + r HSW
] ] ] r r ] T 4 T + 3 HS W
b o 2 8 r 1 z (4 z 3 i HSW
b L o 4 ¥ z £ g £ b 2 i d FENY HSW
b 0 o b ¥ z £ . £ b 2 ATy FENY 4 HEW
b o o b L3 4 £ - £ b 2 Q=v-Iy FENY k] HEW
3 © 9 b L 4 £ ' £ 3 8 Aoty BN £l HEW
] c 0 3 r < £ . £ + 8 b | TENY o HSW
b c 2 b ¥ z £ 03 £ + 2 TP TEY ] HSW
b o 2 3 r z £ . L] 3 # M oo L] HSW
b L o 3 L3 b z z z b i THPoED 4 HSW
3 1] 1] [ 3 3 z £ I 3 L HEW
b o o & L3 4 z t4 4 b 3 HEW
) ¢ a & L < < t4 < + [ HEW
] c o 5 r < < [ < + [ HSW
b C 2 8 ¥ < £ . £ 3 # HEW
b o 2 8 r z £ £ 3 # HSW
b L o + ¥ b £ g £ b 2 YT He 4 HSW
b 0 o + L3 b £ £ b 2 EEAeTd HY FENY L] HEW
b o o b L3 4 £ £ b 2 eI HY FENY k] HEW
b o o b L3 4 £ £ 3 2 Eey-id HY BN £l HEW
) c 0 3 r < £ £ + 3 8 e ki | HY BN H -
e T TS = imira §| kDpSY [seoim | ooy
oo awatiopag
z1 L oL B 8 i 9 L1 ¥ £ z I e = “-M.-mﬂ“w )
e
o AW | HLAI0 SN0 SeTRY | 3dA) | 3dAL | 3FS 0 LM | SeiEn N AL
OO0 SNIESY | H3IWA 033 [ 3404 /1| FH0d | 380d N ANOD | LOWHS OULYDIE | 3004
Ll L E] MERNED | AHVIO | WA | WS AVED [ NOLLY CSEVED O SEara 3L iy sanieay 21
15ENS | IDNI O B00HLT | .
id a hid i A X M L n 1 k3 4 k<] 4 o il L 1 k. " ] L.} @ 3 9 2 a v

246



Core Geomodel

Lithofacies Lithofacies Volumetric
Code Core Lithofacies Code Geomodel Lithofacies proportion

6 Fine- to medium-grained siltstone 2 fine- to medium-grained siltstone 0.28

'rE% 7 Coarse-grained siltstone 1 coarse-grained siltstone 0.44

8 Very-fine-grained sandstone 11 (0) very-fine-grained sandstone 0.12

5 Gray muddy siltstone-blocky mostly 2 mostly fine- to medium-grained siltstone 0.08

4 Gray muddy siltstone-laminated mostly 3 mostly fine- to medium-grained siltstone 0.03

g 2 Primary evaporite lor2 one of "main" siltstones 0.01

§ 3 Laminated sandstone and siltstone mostly 11 (0) | mostly very-fine-grained sandstone 0.01

9 Nodular carbonate mudstone lor2 one of "main" siltstones 0.02

10 Fossiliferous, laminated or burrowed | 3, 4, 5, 7, or 10 | marine lithofacies 0.01

Table A-7. Core lithofacies, corresponding geomodel lithofacies, and volumetric
proportions of lithofacies. Proportion data are from 84 siliciclastic intervals in 13

wells that were studied in detail. Eighty-four percent of core-lithofacies are the same

lithofacies in the geomodel.
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iCore Interval
[] Chase

A Council
Grove

O both

Figure A-1. (Figure C-1B in Appendix C) Core training set for Geomod4 includes
data from 27 wells, four with both Chase Group and Council Grove Group core,
twelve with Chase Group only, and eleven with Council Grove Group only. Two
wells with arrows were not part of the training set. Wireline logs for the one in
Stevens County were not satisfactory and the well in Seward County was added late.
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Figure A-2. (Figure 4-6 in Chapter 4 (A) Core from 17 wells were examined, 13 in
detail for the Council Grove Group siliciclastic intervals study. Abbreviated
descriptions, sufficient for geomodel lithofacies, were obtained in four wells. (B)
Well and core control for Council Grove Group geomodel. Geomodel lithofacies in

1234 wells (smaller well symbols) were predicted by neural networks, trained on core
from 17 wells (larger well symbols).
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Training, implementation, and effectiveness

of neural networks
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APPENDIX B - Training, implementation, and effectiveness of neural networks

Designing neural networks for lithofacies classification and using the predicted
lithofacies in building large cellular geomodels is an iterative process. Chapter 3
describes the complex workflow for the Hugoton project and discusses the iterative
nature of the project. Four iterations of model building have been completed (Table
B-1) with the amount of data increasing with every iteration. Neural networks were
established as the preferred classification tool in Chapter 2 early in the process using
data for geomod1l. Chapter 3 is based on geomod3, and Chapter 4 used the Council
Grove portion of Geomod4. Geomod3 and geomod4 are very similar and are
discussed in Appendix C. The discussion below is for neural network training for
geomod4 based on data from core from 27 wells total, 15 with Council Grove core
and 16 with Chase Core (Figure B-1).

As discussed in Chapter 2, several approaches for predicting lithofacies from
wire-line log variables and geologic constraining variables (GCV). The neural
network approach was determined most effective and was implemented in building
the Hugoton model. Chapter 2 describes the neural network used and why it was
more effective than other methods including parametric (classical multivariate
statistical methods) and other non-parametric methods. Chapter 3 discusses how
neural networks were applied as part of the workflow for building geomodels. This
was a collaborative project and it should be noted that Geoffrey Bohling optimized
neural network parameters through cross-validation, provided guidance on their
implementation and wrote the code for batch processing lithofacies prediction for
large volumes of wells. This appendix provides more details on some aspects of both
chapters:

1) A closer look at how neural networks work, particularly in this application.

2) Description of the workflow for applying neural networks in this project.

3) Discussion on the effectiveness (accuracy).
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Neural networks

Neural networks are non-parametric computational models that may be used
as classification tools that match patterns of multiple variables with a class of objects.
They are particularly useful in classification problems that involve a high number of
dimensions and non-linear relationships between variables, and are well suited for
lithofacies classification problems. Neural networks have been deployed increasingly
over the past twenty years in lithofacies classification (e.g., Baldwin et al., 1990;
Rogers et al., 1992; Kapur et al.1998; Grotsch and Mercadier, 1999; Saggaf and
Nebrija, 2000; Russell et al., 2003). They owe their name to their structure being
similar to that of the human brain’s system of intricately connected neurons, and
neural networks function in a similar manner. Human brains learn to associate
patterns of multiple variables with certain objects. This permits an individual to
differentiate very slight variations in an object’s features, in human faces for an
example, and to use the differences to recognize individuals from a larger population.
Like the human brain, a neural network needs to be trained. The neural network used
is simple single hidden-layer feed-forward network, which is included in Kipling, an

Excel™

add-in developed by Bohling and Doveton (2000). This particular
application was chosen because of the ease of operation, simplicity, viewable input
and output weights, and it required no special software.

Neural networks are comprised of a single input layer, single output layer,
and, theoretically, any number of hidden layers. A simple neural network with a
single hidden layer was used in this project. The number of nodes in the input layer is
equal to the number of variables (input variables) used to define the lithofacies. In
this case six or seven. The number of nodes in the output layer is equal to the number
of possible lithofacies (ten). Number of nodes in the hidden layers is theoretically
limitless; however twenty were determined to be the optimal number in this
classification problem.

Hidden layer node inputs are the sum of the products of the input variables

and a weight (a constant). In each hidden layer node, the weighted sums are passed
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through a sigmoid transfer function that transforms the inputs to output values
ranging between zero and one, forming an S-shaped basis function. These outputs,
multiplied by hidden layer node weights (constants), are the inputs to the output layer.
Like in the hidden layer, the sums of the products are passed through a transfer
function, in this case a softmax function, which scales the output to a value between
zero and one. Output values are the probability of the example being evaluated
belonging to each of the lithofacies classes.

The neural network is trained in a feed-forward, back-propagating process.
Training attempts to find the optimal solution for a set of training data (core-defined
lithofacies and associated predictor variables) by adjusting the weights in an iterative
process. Setting the weights to values between —1 and 1, randomly, initializes the
neural network. During each iteration, input variables are fed forward and outputs are
derived. Outputs are compared with the lithofacies probabilities for the example, a set
of zeros except for a single unit one (representing the known lithofacies). A weight
adjustment factor is computed on the basis of the difference. The weight adjustment
factor is applied to the weights between the nodes (back-propagation) to complete the
first iteration for the given example. The process is performed on all examples in the
training set to complete the iteration. The number of iterations is either defined or the
neural network may be allowed to train until a specified level of error has been
attained. In this application the number of iterations was set at 100. Because the
training process starts from a random set of initial weights there are multiple, equally

likely “realizations” of the trained neural network based on a given training dataset.

Neural network in this application

The neural network implemented in Kipling2.xla (Bohling and Doveton,
2000) is a simple single hidden-layer feed-forward network, as illustrated in Figure
B-2 and described in Chapter 11 of Hastie et al. (2001). In this neural network there
are three parameters to set, number of hidden layer nodes, damping parameter and the

number of iterations in the training session. Increasing the number of hidden layer
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nodes allows the network to more closely reproduce the details of the training dataset,
while fewer hidden layer nodes results in more generalized representation. Increasing
the damping parameter forces the network weights to be smaller in magnitude, which
results in a smoother or more generalized representation of the training data. More
iterations allow a closer reproduction of the training data. However, the number of
hidden layer nodes and damping parameter are the principle controls on the neural
network’s ability to generalize and their values chosen carefully. The neural network
tool uses a simple single hidden-layer neural network with k softmax-transformed
outputs representing probabilities of membership in k different classes, and a

categorical prediction, using a “winner-take-all” rule.

The process
Optimize lithofacies classes, predictor variables, and neural network parameters
Optimize lithofacies classes and predictor variables

Key to the successful application of neural networks is choosing the optimal
lithofacies classification split, predictor variables (e.g., wireline log curves), and
neural network parameters. Determining the number of lithofacies classes and the
criteria for defining classes involved four objectives: (1) maximum number of
lithofacies recognizable by neural networks using petrophysical wireline-log curves
and other variables; (2) minimum number of lithofacies needed to accurately
represent lithologic and petrophysical heterogeneity; (3) maximum distinction of
core-petrophysical properties among classes; and 4) the relative contribution of a
lithofacies class to storage and flow. An optimal solution using these criteria resulted
in 11 lithofacies. Choosing predictor variables was by logic, expert knowledge, and a
trial-and-error process, constrained by availability. Log curves commonly available
in wells drilled since 1970 were used, including gamma ray (GR), neutron porosity
(Nphi), density porosity (Dphi), deep induction log (ILD), and photoelectric effect
(PE). Other log curves such as spectral gamma ray and sonic log carry substantial

property information that would be useful in the classification problem, but their
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availability is limited. Input variables included raw log curves (GR and PE) or
derivatives of the raw curves (neutron and density porosity average, neutron porosity
and density porosity difference (N-D), and log base-10 of ILD). PE is an effective
tool fro determining lithology, but is not available in approximately 30% of the wells
in the1600 well data set. However, neutron porosity and density porosity difference
(N-D) was determined to be an effective surrogate for PE, particularly for delineating
dolomite from limestone and siliciclastics from carbonate. Because Dphi on wire-line
logs uses a limestone matrix density (2.71 g/cc), Dphi in denser dolomite is
underestimated and Dphi in less quartz-rich siliciclastics is slightly over estimated.
Log base-10 of ILD was used rather than raw data to transform skewed raw data
distribution to a more normal distribution.

Two important additional predictor variables derived from geologic data
incorporate geologic knowledge in the variable mix. Formation or member tops
(Figure B-3) segregate the Wolfcampian into alternating nonmarine, marine, or
intertidal half-cycles, fundamentally different depositional environments. Herington
and Holmesville are typically intertidal and the rest of the “Shale” formation and
members are non-marine. A nonmarine-marine (NM-M) depositional environment
indicator variable was assigned to intervals on the basis of the depth of the top and
base of stratigraphic formations or members (1 - nonmarine, 2 - marine, or 3 -
intertidal). Relative position (RPos) is the position of a particular sample with respect
to the base of its respective nonmarine or marine (formation/member) interval. These
two geologic constraining variables (GCV) are important because certain facies are
restricted to broadly define depositional environments (nonmarine, marine, intertidal),
and facies in the Wolfcampian often have predictable vertical stacking patterns
(Dubois et al., 2006).

Two geologic constraining variables (GCV) were included to add geologic
information to the set of log values: a code representing the depositional environment
(1 - nonmarine, 2 - marine, or 3 - intertidal) associated with each of the 25 members

(half-cycles) in the model, and a curve representing the relative vertical position
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within each half-cycle, ranging from 0 at the base to 1 at the top. The depositional
environment indicator variable, MnM, helps to distinguish between lithofacies with
similar petrophysical properties but developed in different broad depositional
environments. Including the relative position curve, RelPos, allowed the network to
encode information regarding the fairly regular succession of lithofacies succession
commonly exhibited within each interval, and thus transfer some of that character to
the sequence of predicted lithofacies in each well. The two curves were computed
from a database of formation tops using Visual Basic code within an Excel
spreadsheet. They were then combined with the wire-line log curves to complete the

feature vector used as input to the neural network.

Optimize neural network parameters

The two neural network parameters to optimize, network size (number of
hidden layer nodes) and damping parameter, were done so by Bohling through cross-
validation methods (Bohling, 2006). Various combinations of the two parameters
were tested by holding out different wells of the full training dataset from the training
process, predicting on the withheld data and comparing predicted and true lithofacies,
and repeating the process many times over. Prediction behavior for different
parameter combinations was then analyzed to determine the optimal parameter
values, in combination. This process was performed on six neural networks, two each,
for the cases with PE and without PE (NoPE), for the Upper Chase (Herington
through Gage), lower Chase (Towanda to top of Wreford), and Wreford and Council
Grove (combined). Training was split stratigraphically to lump cyclothems with
similar characteristics. Although the Wreford is part of the Chase Group, it is more
similar to Council Grove cyclothems and was included with the Council Grove.

Crossvalidation results were compared using two metrics, an objective
function and misallocation costs. The objective function is a measure of accuracy in
the prediction results that is used in the neural network in Kipling2.xls. Misallocation

costs are “costs” assigned to the error. Cost is a function of similarity or dissimilarity
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between actual and assigned facies. The more dissimilar, the higher the cost (Table
B-2). An example of crossvalidation for one example (Wreford and Council Grove
PE) is given in Figure B-4. In this case the optimal parameters for network size and
damping parameter is 20 nodes and 1 for the objective function metric and 10 and 1
for the cost metric. In this case 20 nodes and damping of 1 were chosen because the
20-node option was significantly better than alternatives when considering the
objective function metric and minimally less effective than the 10-node option
considering the cost metric. The same parameter values were determined most
optimal for all but one of the six neural network cases. The one exception is for the
Wreford-Council Grove NoPE case where a damping parameter of 10 was used.

Implementation in Kipling2.xla
Training neural networks and using the trained neural networks to assign
lithofacies at half-foot (0.15 m) intervals was accomplished through the following
workflow:

1. Organize training data in a tabular form with lithofacies and predictor
variables (six or seven) in columns, one example per row (Table B-3).

2. Assemble six sets of files for wells without lithofacies, one set for each of the
six neural network cases (defined in 3). Files contain predictor variables (six
or seven) in a Log Ascii Standard (LAS) format, one file per well.

3. Train six neural networks, two each (PE and NoPE) for three stratigraphic
intervals, upper Chase (Herington through Gage), lower Chase (Towanda to
top of Wreford), and Wreford and Council Grove (combined).

4. Train five neural networks for each case using optimal node and damping
parameters and 100 iterations. Choose neural network with the lowest
objective function.

5. Use the batch process function to predict lithofacies for wells without

lithofacies for each of the six cases.
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6. Assemble the predicted lithofacies for the three stratigraphic intervals in
another application.

Training neural networks in Kipling2.xla is quite simple: 1) Select the training
predictor variables (Figure B-5), and 2) Set neural network parameters (Figure B-6)
and click “OK”. During training, a measure of the mismatch (objective function)
between the actual and predicted lithofacies is recorded after each iteration. Plotting
objective function versus iteration provides a view of the training session (Figure B-
7). Inall cases, the plots approached asymptotic by 40 iterations, and models
improved only slightly over the next 100 iterations. Final weights for inputs to, and
outputs from the hidden layer are also recorded (Tables B-4 and B-5). The weights
are essentially the trained neural network.

Batch process prediction of lithofacies is equally as simple. The neural
network chosen is selected (Figure B-8) and the network is “pointed” to a file folder
containing the LAS files for processing. Match predictor variables in LAS files to be
processed with those in the trained neural network and click “OK” (Figure B-9). The
wells are processed and results are exported in an LAS file format, one per well. An
example of the output is given in Table B-6. Header lines provide summary
information. The first three columns in the table are fields from predictor variable
data file and the next eleven are probabilities that the example is one of the eleven
lithofacies. Probabilities sum to one and the facies determined to be most probable is
the discrete predicted facies that is predicted (winner take all). The “winner” in each
example is shaded. The second most probable lithofacies is usually a similar
lithofacies. When an error is made, the correct lithofacies is usually the next most
probable lithofacies. Probabilities are data that could be used lithofacies prediction

and model building and worthy of further study.
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Lithofacies prediction accuracy

Accurate representation of eleven lithofacies in the model is important
because lithofacies-based petrophysical properties were used to estimate water
saturations. However, accuracy of lithofacies assignment in wells without core cannot
be determined directly. The 1574 wells without core and the 26 with core (1600
“node” wells) are the basis for lithofacies in the geomodel. Node wells are upscaled
from the half-foot (0.15m) to layer scale (2-foot, 0.6 m) and the volume between the
wells is populated with lithofacies using stochastic methods. Both quantitative and
subjective evaluations of lithofacies prediction accuracy at the node well scale were

discussed in Chapters 2 and 3, but addition al detail is given here.

Success metrics

A high degree of absolutely correct classification should not be anticipated
because: 1) lithofacies are based on subjective observations, 2) measured properties
(log predictor variables) of lithofacies overlap in feature space, and 3) measuring
devices tend to average over a two-foot (0.6 m) interval while lithofacies are defined
at the half-foot scale (0.15 m). Having a facies classification that is close to the actual
(within one facies in the continuum) may be deemed satisfactory because the
associated flow capacity as a function of porosity and other physical characteristics of
adjacent facies are similar to the actual facies (Dubois et al., 2006). In addition to
being correct or nearly correct, it is important that the number of a particular facies
predicted by any classifier be relatively close to that in the overall population in order
that the ultimate model accurately represents the volumetric distribution of facies.
Digital lithofacies codes were required for computer applications and were assigned
in a manner that approximates their position in the lithofacies spectrum, but not
perfectly. Because the main gas pay facies (facies code 6-10, very-fine crystalline
dolomite, packstone-grainstone, phylloid algal bafflestone, fine to medium crystalline

dolomite and fine-grained sandstone) are the most important in terms of gas storage
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and flow capacity, their accurate representation is critical. To judge whether the

objectives were met and to compare classifiers five metrics were used:

1.

2
3
4.
5

Close (within one lithofacies) — all lithofacies

Correct — all lithofacies

Close (within one lithofacies) - lithofacies code 6 through 10
Correct - lithofacies code 6 through 10

Representation - ratio of lithofacies code 6 through 10 predicted vs. actual.

What is considered “close” in terms of lithofacies?

Lithofacies in the Wolfcampian represent continuum of sedimentary rock types

that could be lumped and split in many ways. Finer splitting would result in more

refined depositional facies interpretation, provided the finer lithofacies could be

recognized on wireline logs. For example, fine-grained peloidal packstone would

have been deposited in a different environment than a coarse-grained-bioclast

grainstone. However the two lithofacies are indistinguishable by wire-line log

signature and the two sub-lithofacies are lumped with the packstone-grainstone

lithofacies. A delicate balance exists between accuracy and detail required for

maximum utility. An eleven lithofacies split was deemed optimal.

As stated above, digital lithofacies codes approximate their position in the

lithofacies spectrum, but not perfectly. Adjacent lithofacies are generally similar, but

not in every case. Lithofacies are considered close if the lithofacies predicted is

considered a “neighbor”, within one lithofacies. Lithofacies that are considered

“close” to another are listed below in order of lithofacies code assigned:

1.

Coarse-grained siltstone (continental) — 11, very-fine-grained sandstone
(continental); and 2, fine-medium grained siltstone (continental)
Fine-medium grained siltstone (continental) — coarse-grained siltstone
(continental)

Siltstone (marine) — 1, coarse-grained siltstone (continental); 4, carbonate

mudstone; and 10, very-fine-grained sandstone (marine)
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4. Carbonate mudstone — 3, siltstone (marine); and 5, wackestone

5. Wackestone — 4, carbonate mudstone; and 7, packstone-grainstone

6. Very fine to fine crystalline dolomite — 7, packstone-grainstone; and 9,
medium crystalline moldic dolomite

7. Packstone-grainstone — 5, wackestone; 7, packstone-grainstone; 8, phylloid
algal bafflestone; and 9 medium-crystalline moldic dolomite

8. Phylloid algal bafflestone — 6, very fine to fine crystalline dolomite; and 7
packstone-grainstone

9. Medium crystalline moldic dolomite — 6, very fine to fine crystalline
dolomite; and 7 packstone-grainstone

10. Very-fine-grained sandstone (marine) — 3, siltstone (marine); and 11, very-
fine-grained sandstone (continental)

11. Very-fine-grained sandstone (continental) — 10, very-fine-grained sandstone
(marine); and 1, coarse-grained siltstone (continental)

Adjacent lithofacies codes are generally close neighbors in terms of petrophysical
properties, as well as texture and grain type, except for lithofacies 11 (continental
very-fine-grained sandstone). Lithofacies 11 belongs at the other end of the
spectrum, and in the geomodel it is given the code 0. Permeability for a given
porosity is generally greatest with higher numbers starting with code 10 and
descending to lithofacies code 2 (fine-to medium-grained siltstone). Lithofacies code
2 has the lowest permeability for a given porosity. At this point in the spectrum, the
relationship reverses with code = 1 having greater permeability for a given porosity,

and code 11 even greater permeability.

Quantitative measures for lithofacies prediction accuracy
The closest approximation of a true quantitative test of lithofacies prediction
accuracy at the node wells is the comparison of actual versus predicted lithofacies in

wells with core by using a Jackknife approach: data from one well is withheld from
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training, lithofacies is predicted for withheld data and compared with its known
lithofacies, and the process is repeated through the entire data set. Figure B-1
illustrates the distribution of core data for the Chase and Council Grove. A Jackknife
test was completed for the three stratigraphic intervals and summary statistics for
Chase and Council Grove results are given in Table B-7. Also in Table B-7 are
summary statistics for the test where neural networks are trained on all training data
and predictions made on the same training data (train-test-all, or TTA). In the
Jackknife experiment, for each iteration where one well was withheld, three neural
networks were trained for each of the three stratigraphic intervals for each case (PE
and NoPE), nine networks in all. The three having the lowest objective function were
chosen and used to predict lithofacies in the withheld well. The process was repeated
throughout the data set and results of all wells summed for evaluation. For the TTA,
actual geomod4 neural networks were used. The neural networks selected were the
ones having lowest objective function values chosen from a set of five neural network
models.

The Jackknife approach yields the worst possible results because the well
being tested is the furthest possible from the training data. Geographic position was a
primary consideration for core selection, and spacing was purposely fairly wide for
efficiency. Because lithofacies vary across the ramp, removing one well from the
training can significantly reduce the number of examples of certain lithofacies for
training and negatively impact lithofacies prediction for the withheld well. The train-
test-all (TTA) method is likely to yield the best possible results, which are likely too
optimistic. Neither is a direct test of lithofacies prediction in the model, and
lithofacies accuracy in the model probably lies somewhere between the two types of

tests.
Summary statistics

Table 8 provides summary statistics for the Jackknife and TTA tests for the

Chase, Council Grove, and Wolfcampian (combined intervals). Chase sample count is
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6790 and Council Grove is 6504 half-foot (0.15 m) intervals. The Jackknife approach
has consistently lower success metric values than does TTA. If actual model node
well values are somewhere between the two, lithofacies prediction accuracy for the
Wolfcampian is likely 50-66% correct and the predicted lithofacies is within one
lithofacies 83-90% of the time. Accuracy is slightly better for the main gas “pay”
lithofacies, lithofacies codes 6 through 10 (in order: very fine to fine crystalline
dolomite, packstone-grainstone, phylloid algal bafflestone, medium crystalline moldic
dolomite, and marine very-fine-grained sandstone). The pay zone lithofacies are
likely to be correctly predicted 57-74% of the time and are predicted within one
lithofacies 80-90% of the time.

Pivot charts provide more detailed statistics by lithofacies for Jackknife tests
(Table B-8) and the TTA approach (Table B-9). Actual and predicted lithofacies
occurrences are shown with the diagonal indicating the number of correctly predicted
lithofacies in the upper of the two pivot charts in each table. Incorrectly predicted
lithofacies counts are shown in the same row in the predicted lithofacies column. The
representation metric (predicted lithofacies count/actual lithofacies count) is given by
lithofacies is given at the bottom of the upper pivot chart in each table. The lower
pivot chart in each table is the same data expressed as a percent of the row (percent of
actual lithofacies). Proportion of each lithofacies in the training set is shown on the
left of each table. It is important to consider the volumetric proportions when
evaluating the data, particularly when only considering data expressed in terms of
percent. The following general observations are made:

1. In both Jackknife and TTA, the four lithofacies that are most successfully
predicted are continental coarse-grained siltstone continental (1), the most
prevalent lithofacies, and the three most dominant pay lithofacies, packstone-
grainstone (7), medium crystalline moldic dolomite (9), and marine very-fine-
grained sandstone (10).
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2. Carbonate mudstone is poorly predicted and not adequately represented when
evaluated using either approach. However, it comprises a relatively small
volume in the Wolfcampian (6.2%).

3. Lithofacies 6, 8, and 11 (very fine to fine crystalline dolomite, phylloid algal
bafflestone, and continental very-fine-grained sandstone) are poorly predicted
by the Jackknife approach. However, the correct success metric for the three
lithofacies were approximately double and representation metric much
improved in the TTA case.

4. Continental coarse-grained siltstone continental (1) is over represented by
18% in both tests, mostly at the expense of continental fine-medium grained
siltstone (2).

5. Continental very-fine-grained sandstone (11) is under represented in both test
cases mostly due to this lithofacies being predicted as Continental coarse-
grained siltstone continental (1).

Discussion of summary statistics

Lithofacies accuracy in the model node wells is likely to lie somewhere
between the data presented for the two tests. The question is, which is more likely,
particularly in cases where there is significant departure between the two tests
(lithofacies 6, 8, 9, 10, and 11). The answer to the question is not quantitatively
resolvable, but clues to the disparities lie in the distribution of core with respect to the
distribution of these particular lithofacies on the ramp. In all cases, but in particular
lithofacies 8, 9, 10, and 11, the lithofacies are confined to a particular position on the
ramp and are represented in fewer wells than are other more widely distributed
lithofacies. In the Jackknife test, where one well is withheld for testing, the
representation of that particular lithofacies in the training set is significantly reduced.
Phylloid algal bafflestone (8) comprises less than 1% of the rock volume and is
restricted to the Council Grove, and most examples are in three wells in Stevens

county (Figure B-1). Medium crystalline moldic dolomite (9), the most prolific
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Chase pay zone in terms of storage and flow capacity, is more widespread, covering
Stevens and eastern Texas County. However, it is well represented in core from only
six wells. Marine very-fine-grained sandstone (10) dominates in the western third of
the study area in the Chase and continental very-fine-grained sandstone (11) is most
prevalent in only the northwest one-quarter of the study area in the Council Grove. In
both cases, the removal of training data of the test well in the Jackknife approach
appears to significantly impact the accuracy for prediction of lithofacies on the test
well. For these important lithofacies, the accuracy in the node wells could be closer to

that represented by the TTA test, although this cannot be proven.

Porosity and permeability in the node wells

Accurate representation of porosity and permeability, controls the utility of
the Hugoton geomodel for reservoir management. Because both porosity and
permeability are lithofacies dependent, it is important to understand the potential error
that is introduced by error in lithofacies prediction. For a given measured log
porosity, corrected log porosity varies with lithofacies (Table B-10). Porosity
correction algorithms, developed by John Doveton (Chapter 3 and Dubois et al.,
2006), were based on empirical data. Impact of lithofacies error is illustrated in Table
B-11. The greatest potential error is in the cases where dolomite (lithofacies 6 and 9)
or marine very fine-grained sandstone (lithofacies10) is involved. When other
lithofacies are predicted as these lithofacies, porosity is generally higher than actual
and porosity is lowered when the dolomite lithofacies (lithofacies 6 and 9) or marine
very fine-grained sandstone (lithofacies 10) are predicted incorrectly. The potential
for error in pore-volume is —15% to +32% for rocks having 10% porosity, a
significant range in terms of reservoir volume.

As with porosity, permeability varies with lithofacies for given corrected
porosity. Alan Byrnes developed the empirical relationships that define insitu

Klinkenberg permeability as a function of lithofacies and porosity for geomod4:
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perm =IF(Facies=1,Pow(10,(8.00*Log(phi_pct)-9.96)),perm)
perm =IF(Facies=2,Pow(10,(8.00*Log(phi_pct)-10.05)),perm)
perm =IF(Facies=3,Pow(10,(7.74*Log(phi_pct)-9.41)),perm)
perm =IF(Facies=4,Pow(10,(9.20*Log(phi_pct)-10.80)),perm)
perm =IF(Facies=5,Pow(10,(7.61*Log(phi_pct)-8.94)),perm)
perm =IF(Facies=6,Pow(10,(9.70*Log(phi_pct)-11.80)),perm)
perm =IF(Facies=7,Pow(10,(7.09*Log(phi_pct)-7.81)),perm)
perm =IF(Facies=8,Pow(10,(8.65*Log(phi_pct)-8.29)),perm)
perm =IF(Facies=9,Pow(10,(9.70*Log(phi_pct)-10.80)),perm)
perm =IF(Facies=10,Pow(10,(9.75*Log(phi_pct)-11.62)),perm)
perm =IF(Facies=11,Pow(10,(6.65*Log(phi_pct)-7.88)),perm)

Permeability ranges more than two orders of magnitude (0.009 — 2.291) across the
lithofacies spectrum for a given porosity of 10% (Table B-12).

Estimation of error

Error in pore volume

As with lithofacies, it is not possible to determine directly the error in pore
volume (product of porosity and height) in the model, nor even at the node wells.
However, a range of possible error introduced by inaccurate lithofacies can be
estimated by comparing pore volumes calculated for core lithofacies using corrected
log porosity values with pore volumes calculated for lithofacies using the Jackknife
and TTA approaches (Table B-13). Error can be analyzed from two perspectives: 1)
actual pore volume by predicted lithofacies (sum by lithofacies in the table), and 2)
pore volume estimated for the interval (sum by intervals in the table). The first metric
is a comparison of lithofacies pore volume, however the second is more critical for
reservoir modeling because it identifies potential volumetric error in the model. When
summed by lithofacies, potential pore volume error is proportional to lithofacies

prediction error (e.g., carbonate mudstone pore volume is significantly under
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represented in the model). When summed by interval, pore volume error is the error
introduced by error in lithofacies assignment (Table B-11). Pore volume error due to
error in lithofacies is always in the negative direction for dolomite lithofacies and
positive for marine siltstone and carbonated mudstone. On the basis of this analysis,
pore volume in the model is likely to be overestimated by 5.9% to 6.1%, due to error

in lithofacies prediction.

Error in permeability

Flow capacity (product of permeability and height, Kh) and is an important
component of a reservoir model because it represents the capacity of the reservoir to
produce hydrocarbon. It was analyzed in the same manner as pore volume (above)
and data are presented in Table B-14. One difference is that permeability is a power
law function of porosity (above). Thus small error in porosity results in more
substantial absolute error in permeability, as measured by the % difference of actual
versus predicted, than it does for pore volume. Log 10 of the error would be a more
appropriate, however, the results are close enough to actual that it was not necessary
to go to that length to demonstrate that Kh is probably represented accurately in the
model. On the basis of the analysis presented, Kh in the model is likely to be +8.2%

to —8.5% of actual.

Conclusions

A single hidden layer neural network was successfully deployed for
lithofacies prediction in nearly 1600 “node” wells in the Hugoton geomodel.
Accurate lithofacies representation in the model is important because petrophysical
properties (porosity, permeability and water saturation) are lithofacies dependent. A
high degree of absolute accuracy was not expected and being close, assigning a
similar lithofacies, is nearly as good because similar lithofacies have similar
properties. Lithofacies prediction accuracy for node wells in the geomodel are likely

50-66% correct and within one lithofacies 83-90% of the time. Accuracy is slightly
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better for the main gas “pay” lithofacies, very fine to fine crystalline dolomite,
packstone-grainstone, phylloid algal bafflestone, medium crystalline moldic dolomite,
and marine very-fine-grained sandstone. The pay zone lithofacies are likely to be
correctly predicted 57-74% of the time and are predicted within one lithofacies 80-
90% of the time. For reservoir performance prediction, accurate representation of
properties in the model is more important than lithofacies. Pore volume is likely over
predicted by 6% at the node wells and permeability may be off 8% (plus or minus).
The latter is insignificant because permeability is a power law function of porosity.
Although considered tolerable, knowing the expected pore volume error is helpful for
reservoir analysis and management decisions based on the Hugoton geologic and

property model.
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Council Grove core
Chase core
Combined core wells
Wells without core
Number of lithofacies
Model interval

Model area

Chapter

Geomodl Geomod2 Geomod3 Geomod4
8 9 9 15*
0 2 8 16**
8 9 14 27%%*
515 1250 1350 1574
8 10 11 11

Council Grove

Council Grove

Council Grove

Council Grove

and Chase and Chase and Chase
Kansas Kansas Kansas and Kansas and
Oklahoma Oklahoma

2 NA 3 4

* 17 wells in study, 15 in Council Grove neural network training set

** 17 wells in study, 16 in Chase neural network training set
**x 29 wells in study, 27 wells in neural network training set

Table B-1. Data volumes, model intervals, geographic coverage, and chapters where
discussed for four Hugoton geomodel iterations.

Actual Assigned Facies
Facies F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 Fl11
F1 0 1 15 3 4 4 4 4 4 15 1
F2 1 0 2 4 4 4 4 4 4 3 2
F3 15 2 0 1 2 3 4 4 4 1 15
F4 3 4 1 0 1 2 3 3 4 2 3
F5 4 4 2 1 0 2 1 2 3 4 4
F6 4 4 3 2 2 0 1 1 1 4 4
F7 4 4 4 3 1 1 0 1 1 4 4
F8 4 4 4 3 2 1 1 0 2 4 4
F9 4 4 4 4 3 1 1 2 0 4 4
F10 15 3 1 2 4 4 4 4 4 0 1
F11 1 2 15 3 4 4 4 4 4 1 0

Table B-2. Misallocation cost matrix. Cost is a function of dissimilarity between
actual and assigned facies. The more dissimilar, the higher the cost.
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Formation-
Member
Al SH
Al SH
Al SH
Al SH
Al SH
Al SH
Al SH
Al SH
Al SH
Al SH
Al SH
Al SH
Al SH
Al SH
Al LM
Al LM
Al LM
Al LM
Al LM
Al LM
Al LM
Al LM
Al LM
Al LM

Table B-3. Sample of input data for a neural network training session. Half-foot

Well Name
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY
NEWBY

2840.5
2841
2841.5
2842
2842.5
2843
2843.5
2844
2844.5
2845
2845.5
2846
2846.5
2847
2847.5
2848
2848.5
2849
2849.5
2850
2850.5
2851
2851.5
2852

Litho-
Depth| facies

2

ool oo NBBMAMDBRRRERRRRERRN

GR
72.53
67.99
60.31
55.52
56.07
62.67

66.9
68.54

68.7

63.2
60.33
58.16
52.61
45.72
35.92
26.62
24.14
24.36
23.28

25.7

28.2
28.35
3171
35.52

ILD_

0.555
0.542
0.525
0.504
0.486
0.473
0.471
0.477
0.483
0.489
0.493
0.491
0.481
0.464
0.441
0.422
0.398
0.375
0.35
0.334
0.336
0.352
0.377
0.405

6.3
6.1
5.0
6.3
5.0
-2.6
-2.2
3.1
3.3
9.5
11.6
12.7
9.9
5.2
4.5
3.6
5.9
6.5
6.5
7.7
8.2
8.8
9.0
9.1

LOG 10 N-DPHI% PHIND%

13.45
14.35
141
11.55
11
15.8
21.4
24.25
22.85
17.25
15.6
14.35
11.45
8.8
7.95
10.7
12.55
12.95
11.85
10.95
11.2
12.1
12.8
12.75

PE
3.2
3.1
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.4
3.7
3.8
3.9
3.9
4.0
4.3
4.0
3.9
4.1
4.1
3.7
3.7
3.6
3.3

NM M| RELPOS

NN NRNNOMNNNNRNRNNNNRRRRRRPRRP

0.326
0.302
0.279
0.256
0.233
0.209
0.186
0.163
0.14
0.116
0.093
0.07
0.047
0.023
1
0.988
0.976
0.963
0.951
0.939
0.927
0.915
0.902
0.89

(0.15 m) intervals include lithofacies defined in core, five wire-line log curves or their

derivatives and two geologic constraining variables (last two columns).
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Input-to-hidden layer weights

Node

P
RPBoo~ooarwnr

NP R R RR R R R
SWVWO~NOUAMWN

Constant GR ILD_LOG_10 N-DPHI% PHIND% PE NM_M RELPOS
-0.329596643| -0.267277 -1.594384037 1.871736 -2.002115 0.831568 -0.676657 1.115806
0.65441899(-0.275647  1.636556674 -0.07264 -0.341501 1.17123 0.237242 0.937584
-1.564913201( 1.222985 -0.483246109 -0.397916 2.79964 0.941885 -0.860552 -0.796483
-0.990040104| -0.207388  0.078752552 -0.863665 -1.310306 1.24311 1.462427 0.801518
0.645631145( 1.788637  1.851967278 0.230077 -0.155956 -0.471591 -1.111277 0.036138
0.05380495| 0.074359 -0.084250287 -0.094692 0.050045 0.652467 2.728652 2.062532
-0.584758625| 0.236252 -1.624040389 -1.968773 -2.217787 1.296287 -1.03191 -0.103279
-2.448999396| -3.301992  1.035865125 0.50594 1.225348 -0.578483 -0.357206 -0.031313
-0.366314296| 1.33795 -0.937768001 0.228006 0.385172 2.963993 0.635678 1.279707
0.084732115|-0.209047 -0.322168116 -0.251814 -0.890316 -0.714204 -1.483677 1.341003
1.247201616| 1.099817  0.852517688 0.838744 -1.047927 -0.97679 0.327684 -2.286051
0.199832667( 0.046429 -0.31227879 -2.289553 0.94651 0.583575 -0.608837 -0.488652
0.666178848( 0.285035  1.281585461 -0.512088 2.477905 2.114456 -0.849342 0.611696
-0.896025412|-1.109323  1.612677229 -0.504198 1.280544 1.047209 1.313703 -0.299143
-0.739317735| 0.083081 -0.640543547 0.537394 0.478659 0.32588 2.834217 1.553041
0.124993395( -0.17345 -0.90628134 -1.525854 -1.923525 -1.651846 0.004141 -1.30996
-0.870687665| 1.409209 0.766977231 -0.554423  -0.7975 0.328386 1.450828 1.527244
0.268474677| 0.677007 -1.46675301 1.141078 0.141312 -0.856803 -1.482338 3.282297
0.236114805( -0.022666  0.030208025 0.728398 -0.764624 1.407119 1.461846 -0.961055
-0.661501466( -2.457459  -0.269488453 1.326038 -0.712979 1.266612 -0.333818 0.414005

Table B-4. Final weights as determined by training session that are applied at the
input to the twenty hidden layer nodes, and twenty final biasing constants, one for
each input node.

Hidden layer-to-output weights

Node F11gm401 F11gm402 F11gm403 F11gm404 F11gm405 F11gm406 F11gm407 F11gm408 F11gm409 F1lgm410 Fllgm411l
Constant | -0.088116515 0.743405485 0.780914289 0.335209144 -1.565020053 -0.490051549 0.160364165 -0.2455398 -0.778734061 1.017331453 0.114495484
1 0.749064855 1.580235287 -1.098129769 0.229516803 0.382373082  0.50544227 1.134914087 -1.93736531 -0.363388732 -1.31130987 0.062829723
2 -0.537850125 -0.537064216 1.796691146  0.38187121 -0.844114079 -0.430923077 0.615570447 0.001601777 -0.347464184 -0.91964306 0.827350174
3 -0.802595579 1.28558058 -1.556211132 1.023359203 -0.823858691 0.940882666 -0.461067959 2.032098361 -0.36505976 -1.200275949 -0.026941121
4 -1.441315822 0.239443958 -1.424801729 0.658499106 1.066130099 0.406035374 1.578790407 0.447329 -0.242174007 -0.520785918 -0.719356056
5 1941821194 1.589412042 -0.319279894 -0.773398933 1.604082008 -1.338790625 -0.621103723 -1.175639975 -0.388746869 0.011319359 -0.627765125|
6 -1.489035438 -1.138885201 1.037261016 0.261343873 1.751596646 0.400954159 -0.595377297 0.816156504 -0.366987571 1.177245788 -1.917496088
7 1.676213989 -1.177793192 -0.360913211 -1.060432035 0.395839333 -0.329190651 1.120072497 -0.126707085 -0.438733059 -1.219051915 1.539250137
8 -0.527798749 -0.751088547 -2.497819468 -1.570327334 0.755626403  2.17754243 2.6862695 0.198454682 -0.337898663 -0.314722853 0.270401562
9 -0.149436909 0.131693665 -1.057530491 -0.899229581 1.226569637 2.997003633 -0.609532242 1.419067985 -0.360272089 -1.3530845 -1.342785414
10 0.277607674 1.468519313 -0.09954993  0.81924591 -0.863773873 -1.013165777 -1.411619695 -1.692082808 -0.441250943 0.761262903 2.116012114
11 1.765053289 -1.035018197 2.770231323 0.8319374 0.521306347 0.240019547 -0.745370652 -2.000501918 -0.509672431 -1.095955397 -0.771895276
12 0.558588853 -0.274295842 -0.400030982 -1.123417895 -0.195267516 -1.05407274 0.813847913 1.372132786 -0.41294072 0.409163078 0.158328077
13 1.068218746 2.726978354 0.996597048 0.314276465 -1.223723776 -1.705933911 0.845433827 0.435611573 -0.412025728 -0.926599039 -2.209261535
14 0.876622558 0.076944731 -1.368805125 0.272414336  2.12309241 -0.621513353 0.016147553  0.36169665 -0.368418474 -0.574080083 -0.774804985
15 -1.297638979 -1.767028719 2.046958304 1.071247608 -0.07279951 0.492042276 -0.096149957 0.534451754 -0.38038793 1.291890968 -1.737132019
16 -1.401824184 -0.297681353 -1.0418956 -0.044178747 1.127919428 0.862191856 -0.628986868 -1.594333607 -0.392448774 2.051702581 1.400164441
17 -0.560345075 -0.965800474 -0.687723176 2.115044142 0.771449886 -0.525995339 1.333069484 -0.0600166 -0.283054906 -0.18131204 -0.980167939
18 2.217667038 0.122464215 -0.447184866 -2.200681921 -0.457660387 1.069458209 0.074572568 -2.954137867 -0.332231163 0.405774199 2.500149628
19 -1.711254804  -0.45253877 1.092023308 0.016717677 -0.54858085 0.928308571 1.753837545 1.477443107 -0.460281814 -0.497875721 -1.662603155
20 0.163680038 -0.148265906 -1.140538423  1.39990785 1.047660176 -0.252389468 -1.230499588 1.352019166 -0.275568727 -0.704794712 -0.082875645

Table B-5. Final weights as determined by training session that are applied to the
output from each of twenty hidden layer nodes prior to input into the eleven facies
output nodes.
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Prediction results using data sheet Wrf-Cgrv_PE and neural net sheet NNet26_WrCg-PE

User comment on neural net sheet: WICG PE 20/1/100

Number of predictor variables: 7
ILD_

Predictor variables in NNet26_WrCg-PE GR LOG_10 N-DPHI% PHIND% PE NM_M  RELPOS
ILD,

Predictor variables in Wrf-Cgrv_PE: GR LOG_11 N-DPHI% PHIND% PE NM_M  RELPOS

Categorical response variable: Fllgm4

Number of categories: 11

Continuous response variable: [NONE]

Number of variables copied: 3

Variables copied from Wrf-Cgrv_PE: Fllgm4 ElogDeptt Lease_Name

Predicted Max. Prob-

Core Probabilities Fllgm4  ability
Elog
Fllgm4 Depth Lease_Name F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 kpred pmax
2 2806.5 SHRIMPLIN 036 062 001 0.00 000 000 000 000 000 0.00 0.00 2 0.62
2 2807 SHRIMPLIN 032 066 001 0.00 000 000 000 000 000 0.00 0.00 2 0.66
2 2807.5 SHRIMPLIN 036 062 001 0.00 000 000 000 000 000 0.00 0.00 2 0.62
2 2808 SHRIMPLIN 044 = 054 001 0.00 000 000 000 000 000 0.00 0.00 2 0.54
2 2808.5 SHRIMPLIN 0.64 034 000 000 000 000 000 0.00 0.00 0.00 0.01 1 0.64
2 2809 SHRIMPLIN 044 055 0.01 0.00 0.00 000 000 000 000 0.00 0.00 2 0.55
1 2809.5 SHRIMPLIN 0.40 0.58 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.58
1 2810.5 SHRIMPLIN 056 042 001 000 000 000 000 0.00 0.00 0.00 0.01 1 0.56
1 2811 SHRIMPLIN 0.69 026 000 000 000 000 000 0.00 0.00 0.00 0.04 1 0.69
1 2811.5 SHRIMPLIN 0.71 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1 0.71
1 2812 SHRIMPLIN 066 014 000 000 000 000 000 0.00 0.00 0.00 0.19 1 0.66
1 2812.5 SHRIMPLIN 054 007 000 000 000 000 000 0.00 0.00 0.00 037 1 0.54
1 2813 SHRIMPLIN 0.50 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 1 0.50
1 2813.5 SHRIMPLIN 048 005 000 000 000 000 000 0.00 0.00 0.00 047 1 0.48
11 2734 CROSS H CATTLI 0.15 011 0.00 000 000 001 000 0.00 0.00 0.00 @ 0.72 11 0.72
11 27345 CROSSH CATTLI 0.15 0.08 000 000 0.00 0.00 0.00 0.00 0.00 000 0.76 11 0.76
11 2735 CROSS H CATTLI 0.16 0.07 0.00 000 000 000 000 0.00 0.00 0.00 0.76 11 0.76
11 27355 CROSSHCATTLI 0.29 012 000 000 000 0.00 0.00 0.0 0.0 0.00 058 11 0.58
11 2736 CROSSH CATTLI 046 016 0.00 ©0.00 000 000 0.00 0.00 0.00 0.00 0.37 1 0.46
1 2736.5 CROSSHCATTLI 061 018 000 000 000 0.00 0.00 0.00 0.00 000 020 1 0.61
1 2737 CROSS H CATTLI 0.65 019 0.00 000 000 000 000 0.00 0.00 0.00 0.15 1 0.65
11  2737.5 CROSSHCATTLI 0.62 018 000 000 0.00 0.00 0.00 0.00 0.00 000 0.18 1 0.62
11 2738 CROSS H CATTLI 052 011 0.00 000 000 000 000 0.00 0.00 0.00 0.36 1 0.52
11 27385 CROSSHCATTLI 032 005 000 000 000 0.00 0.00 0.00 0.00 000 063 11 0.63
11 2739 CROSSH CATTLI 0.21 0.02 0.00 000 000 000 000 0.00 0.00 0.00  0.76 11 0.76
11  2739.5 CROSSHCATTLI 0.20 0.02 000 000 000 0.00 0.00 0.0 0.00 000 0.77 11 0.77
11 2740 CROSS H CATTLI 0.18 0.02 0.00 000 000 000 000 0.00 0.00 0.00 0.79 11 0.79
11  2740.5 CROSSH CATTLI 0.15 002 000 000 000 0.00 0.00 0.0 0.0 000 0.82 11 0.82
11 2741 CROSS H CATTLI 0.14 0.01 0.00 ©0.00 000 000 0.00 0.00 0.00 0.00 | 0.84 11 0.84
7 29135 NEWBY 000 000 000 004 013 001 081 001 000 0.00 0.00 7 0.81
7 2914 NEWBY 000 000 000 0.06 017 0.01 075 001 000 0.00 0.00 7 0.75
7 2914.5 NEWBY 000 000 0.00 0.07 027 002 063 001 000 0.00 0.00 7 0.63
7 2915 NEWBY 0.00 0.00 0.00 0.09 0.31 0.04 0.55 0.01 0.00 0.00 0.00 7 0.55
6 29155 NEWBY 000 000 001 013 033 011 | 041 000 000 0.01 0.00 7 0.41
6 2916 NEWBY 000 000 002 016 031 025 024 000 000 0.02 0.00 5 0.31
6  2916.5 NEWBY 0.00 0.00 0.03 0.16 0.33 0.27 0.18 0.00 0.00 0.02 0.00 5 0.33
6 2917 NEWBY 000 000 004 014 034 031 015 000 000 0.01 0.00 5 0.34
6  2917.5 NEWBY 000 000 004 015 038 027 014 000 000 0.01 0.00 5 0.38
6 2918 NEWBY 000 000 004 020 047 011 017 001 000 0.01 0.00 5 0.47
4 2957.5 NEWBY 001 002 003 027 030 019 017 000 000 0.01 0.00 5 0.30
7 2958 NEWBY 000 001 001 014 027 013 041 000 000 0.00 0.00 7 0.41
7  2958.5 NEWBY 000 000 001 011 031 005 052 001 000 0.00 0.00 7 0.52

Table B-6. Selected result output of lithofacies prediction session. Header provides
general information regarding the neural network model. Table includes operator
selected fields from the input files (first three columns) and calculated probabilities
for each of the eleven lithofacies. The predicted discrete lithofacies is the one having
the highest probability.
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Jackknife

Chase Council Wolfc_amp

Grove  (combined)
within 1F 79% 88% 83%
% correct 49% 51% 50%
F6-10 w/in 1F 79% 82% 80%
F6-10 %correct 59% 51% 57%
F6-10 pred/actual 114% 96% 108%

Train-test-all

within 1F

% correct

F6-10 w/in 1F
F6-10 %correct
F6-10 pred/actual

Chase Council Wolfc_amp
Grove  (combined)
89% 91% 90%
71% 61% 66%
90% 88% 90%
80% 61% 74%
108% 95% 104%

Table B-7. Summary statistics of neural network prediction accuracy for two cases:
Jackknife and Train-Test-All Metrics for each case are accuracy within one
lithofacies (within 1F), percent correct, lithofacies code 6 through 10 correct within

one lithofacies (F6-10 w/in 1F), lithofacies code 6 through 10 percent correct (F6-10
% correct), and the ratio of lithofacies code 6 through 10 predicted and actual (F6-10

pred/actual).

Wolfcamp (combined) ContCrs  Cont FxIn  Pkst- Mold- Cont
Jacknife Silt_Fn Silt Mar Silt __Mdst __ Wkst Dol __ Grnst PA-Baff Dol Mar SS SS
Count of Pred
PredFacies _|Facies
Proportion |Fligm4 1 2 3 4 5 6 7 8 9 10 11|Grand Tota
21.2% 1 1969 569 37 2 7 14 2 111 105 2816
11.3% 2 743 706 11 5 19 1 12 9 1506
7.6% 3 135 12 358 24 201 7 53 22 186 10 1008
6.2% 4 23 17 99 31 383 17 180 4 43 28 1 826
13.1% 5 22 21 157 86 688 19 609 18 67 57 2 1746
3.5% 6 3 5 33 5 61 108 139 2 47 58 1 462
17.9% 7 13 13 74 38 445 34 1520 24 167 57 2385
0.8% 8 2 35 3 53 18 111
7.4% 9 3 34 12 63 19 172 613 60 6 982
7.0% 10 128 13 59 3 47 8 67 87 505 18 935
3.9% 11 295 11 23 1 3 3 40 141 517
Grand Total 3334 1367 887 202 1935 215 2829 66 1052 1114 293 13294
Pred/Actual 118% 91% 88% 24% 111% 47% 119% 59% 107% 119% 57% within 1F
% correct
F6-10 w/in 1F
F6-10 %correct
F6-10 pred/actual
Wolfcamp (combined) ContCrs  Cont FxIn  Pkst- Mold- Cont
Jacknife Silt _Fn Silt Mar Silt ~ Mdst  Wkst Dol  Grnst PA-Baff Dol Mar SS SS
Count of Pred
PredFacies _|Facies
Proportion [Fligm4 1 2 3 4 5 6 7 8 9 10 11
21.2% 1 70% 20% 1% 0% 0% 0% 0% 0% 0% 4% 4%
11.3% 2 49%  47% 1% 0% 0% 0% 1% 0% 0% 1% 1%
7.6% 3 13% 1%  36% 2%  20% 1% 5% 0% 2%  18% 1%
6.2% 4 3% 2% 12% 4% 46% 2% 22% 0% 5% 3% 0%
13.1% 5 1% 1% 9% 5%  39% 1%  35% 1% 4% 3% 0%
3.5% 6 1% 1% 7% 1% 13% 23% 30% 0% 10% 13% 0%
17.9% 7 1% 1% 3% 2% 19% 1%  64% 1% 7% 2% 0%
0.8% 8 0% 0% 2% 0%  32% 3% 48% 16% 0% 0% 0%
7.4% 9 0% 0% 3% 1% 6% 2%  18% 0% 62% 6% 1%
7.0% 10 14% 1% 6% 0% 5% 1% 7% 0% 9%  54% 2%
3.9% 11 57% 2% 4% 0% 0% 0% 1% 0% 1% 8% 27%
Grand Total 25%  10% 7% 2%  15% 2%  21% 0% 8% 8% 2%

Table B-8. Pivot tables illustrating lithofacies prediction results for the entire
Wolfcamp using a Jackknife approach. The diagonal (highlighted) are lithofacies
predicted correctly. F11 (continental very-fine-grained sandstone) is equal to FO in

geomodels and in Figure B-3.

within 1F
94%
96%
70%
62%
79%
64%
90%
67%
80%
62%
92%

83%
50%
80%
57%
108%
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Wolfcamp (combined) ContCrs  Cont Fxin  Pkst- Mold- Cont
Train-test-all Silt _Fn Silt Mar Silt  Mdst _ Wkst Dol Grnst PA-Baff Dol Mar SS SS
Count of Pred
PredFacies _|Facies
Proportion |Fllgm4 1 2 3 4 5 6 7 8 9 10 11[Grand Total
21.2% 1 2313 340 18 2 4 3 41 95 2816
11.3% 2 614 852 10 6 8 8 8 1506
7.6% 3 111 19 535 17 136 7 42 15 113 13 1008
6.2% 4 20 13 111 107 355 15 157 28 17 3 826
13.1% 5 20 6 129 23 1054 24 397 15 39 35 4 1746
3.5% 6 4 1 30 5 63 201 75 2 56 25 462
17.9% 7 10 9 59 19 365 15 1784 15 96 12 1 2385
0.8% 8 4 12 2 41 52 111
7.4% 9 1 2 12 16 17 64 844 26 982
7.0% 10 53 9 36 2 25 6 54 13 717 20 935
3.9% 11 173 12 5 1 16 310 517
Grand Total 3319 1263 949 191 2037 270 2626 84 1091 1010 454 13294
Pred/Actual 118% 84% 94% 23% 117% 58% 110% 76% 111% 108% 88% within 1F
% correct
F6-10 w/in 1F
F6-10 %correct
F6-10 pred/actual
Wolfcamp (combined) Cont  Cont FxIn  Pkst- Mold- Cont
Train-test-all Crs Silt_Fn Silt Mar Silt  Mdst  Wkst Dol Grnst PA-Baff Dol Mar SS SS
Count of Pred
PredFacies  |Facies
Proportion [Fllgm4 1 2 3 4 5 6 7 8 9 10 11
21.2% 1 82% 12% 1% 0% 0% 0% 0% 0% 0% 1% 3%
11.3% 2 41% 57% 1% 0% 0% 0% 1% 0% 0% 1% 1%
7.6% 3 11% 2% 53% 2% 13% 1% 4% 0% 1% 11% 1%
6.2% 4 2% 2% 13% 13% 43% 2% 19% 0% 3% 2% 0%
13.1% 5 1% 0% 7% 1%  60% 1% 23% 1% 2% 2% 0%
3.5% 6 1% 0% 6% 1% 14% 44% 16% 0% 12% 5% 0%
17.9% 7 0% 0% 2% 1% 15% 1%  75% 1% 4% 1% 0%
0.8% 8 0% 0% 4% 0% 11% 2% 37% 47% 0% 0% 0%
7.4% 9 0% 0% 1% 2% 2% 0% % 0% 86% 3% 0%
7.0% 10 6% 1% 4% 0% 3% 1% 6% 0% 1% 77% 2%
3.9% 11 33% 2% 1% 0% 0% 0% 0% 0% 0% 3% 60%
Grand Total 25%  10% 7% 1%  15% 2%  20% 1% 8% 8% 3%

Table B-9. Pivot tables illustrating lithofacies prediction results for the entire
Wolfcamp using the Train-Test-All method. The diagonal (highlighted) are
lithofacies predicted correctly.

within 1F
98%
97%
7%
69%
84%
2%
95%
86%
92%
83%
97%

90%
66%
90%
74%
104%
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Corrected Porosity = A + B«Dphioq + C+Nphioq

Coefficient Coefficient

Intercept Dphi Nphi
Lithofacies Code A B C
‘;5 Very fine-grained sandstone 11* 0.013516 | 0.8414 0.0000
fE: Coarse-grained siltstone 1 0.017803 | 0.8434 | 0.0000
LS) Fine to medium-grained siltstone 2 0.017803 | 0.8434 0.0000
Marine siltstone 3 0.018539| 0.6619 0.0000
Carbonate mudstone 4 0.018539 | 0.6619 0.0000
Wackestone 5 0.000000 | 0.6151 0.3900
E Very fine- to fine-crystalline dolomite 6 0.047523 | 0.5842 0.2639
§ Packstone-grainstone 7 0.000000| 0.6151 0.3900
Phylloid algal bafflestone 8 0.000000 | 0.6151 0.3900
Medium-crystalline moldic dolomite 9 0.047523| 0.5842 0.2639
Very fine-grained sandstone 10 0.063699 | 0.5610 0.0000

* Lithofacies code is O for very fine-grained sandstone (continental) in the geomodel

Table B-10. Porosity correction algorithms developed by John Doveton (Chapter 3
and Dubois et al., 2006). They are based on empirical relationships between wire-line
log variables and measured core porosity by lithofacies.

Log Nphi 5% 10% 15%
Log Dphi 5% 10% 15%
Corrected Porosity

Lithofacies Code Phi=5% Phi=10% Phi=15%
‘_é‘ Very fine-grained sandstone 11* 5.6% 9.8% 14.0%
é Coarse-grained siltstone 1 6.0% 10.2% 14.4%
é Fine to medium-grained siltstone 2 6.0% 10.2% 14.4%
Marine siltstone 3 5.2% 8.5% 11.8%
Carbonate mudstone 4 5.2% 8.5% 11.8%
Wackestone 5 5.0% 10.1% 15.1%
‘g Very fine- to fine-crystalline dolomite 6 9.0% 13.2% 17.5%
§ Packstone-grainstone 7 5.0% 10.1% 15.1%
Phylloid algal bafflestone 8 5.0% 10.1% 15.1%
Medium-crystalline moldic dolomite 9 9.0% 13.2% 17.5%
Very fine-grained sandstone 10 9.2% 12.0% 14.8%

* Lithofacies code is O for very fine-grained sandstone (continental) in the geomodel

Table B-11. Corrected porosity values by lithofacies for typical porosity range in the
Wolfcamp calculated by empirical equation in Table B-10.
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Insitu K (md) from transform

Lithofacies Code  Phi=5% Phi=10% Phi=15%
Té’ Very fine-grained sandstone 11* 0.000586  0.059 0.87
.§ Coarse-grained siltstone 1 0.000043 0.011 0.28
§ Fine to medium-grained siltstone 2 0.000035 0.009 0.23
Marine siltstone 3 0.000100 0.021 0.49
Carbonate mudstone 4 0.000043 0.025 1.05
Wackestone 5 0.000239 0.047 1.02
_g Very fine- to fine-crystalline dolomite 6 0.000010 0.008 0.41
§ Packstone-grainstone 7 0.001399 0.191 3.38
Phylloid algal bafflestone 8 0.005703 2.291 76.42
Medium-crystalline moldic dolomite 9 0.000096 0.079 4.06
Very fine-grained sandstone 10 0.000016 0.013 0.70

* Lithofacies code is O for very fine-grained sandstone (continental) in the geomodel

Table B-12. Insitu permeability (K) in millidarcies (md) by lithofacies for typical
porosity range in the Wolfcampian.

Porosity (PhiH, phi-ft) Sum by lithofacies Sum by intervals

Count Proportion Lithofacies Code Actual* TTA Jackknife TTA Jackknife
517 0.039 % Very fine-grained sandstone 110 31.0 28.6 17.8 315 31.9
2816 0.212 % Coarse-grained siltstone 1 120.9 144.7 149.3 121.0 122.0
1506 0.113 8 Fine to medium-grained siltstone 2 60.5 50.8 56.0 60.6 60.4
1008 0.076 Marine siltstone 3 36.5 31.3 30.4 422 45.6
826 0.062 Carbonate mudstone 4 22.2 3.8 4.0 28.3 30.1
1746 0.131 Wackestone 5 70.5 75.0 71.3 68.5 67.6
462 0.035 g Very fine- to fine-crystalline dolomite 6 33.2 21.1 16.4 205 276
2385 0179 | 2 |Packstone-grainstone 7 1115 124.8 134.4 111.8 112.2

111 0.008 Phylloid algal bafflestone 8 7.0 6.5 46 6.9 7.0

982 0.074 Medium-crystalline moldic dolomite 9 59.2 64.8 64.5 56.6 53.2
935 0.070 Very fine-grained sandstone 10 69.1 73.7 77.7 68.3 68.7
13294 All 590.5 625.2 626.4 625.2 626.4
Net effect 5.9% 6.1% 5.9% 6.1%

* Corrected porosity and permeability from empirically-derived transforms based on core-defined lithofacies.
** | ithofacies code is O for very fine-grained sandstone (continental) in the geomodel

Table B-13. Comparison of pore volume by lithofacies calculated for the training set
with that using predicted lithofacies for Train-Test-All (TTA) and Jackknife training
methods. Two perspectives are presented: 1) actual pore volume by predicted
lithofacies (sum by lithofacies), and 2) pore volume estimated for the interval (sum by
intervals).
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Count
517
2816
1506
1008
826
1746
462
2385
111
982
935
13294

Proportion
0.039
0.212
0.113
0.076
0.062
0.131
0.035
0.179
0.008
0.074
0.070

Permeability (Kh, md-ft)

Sum by lithofacies

Sum by intervals

Lithofacies Code Actual* TTA Jackknife TTA Jackknife

© ) .

£ Very fine-grained sandstone 11* 140.7 150.0 93.0 134.4 182.8

= | Coarse-grained siltstone 1 424 56.8 84.6 90.7 124.4

c

8 | Fine to medium-grained siltstone 2 8.6 121 285 14.8 14.4
Marine siltstone 3 10.1 5.1 5.2 102.4 190.3
Carbonate mudstone 4 1.9 0.6 1.0 127.9 153.8
Wackestone 5 242.4 1105 91.7 1071.8 1340.4

2 | very fine- to fine-crystalline dolomite 6 990.1 847.2 605.2 2013.8 900.9

3 .

= [ Packstone-grainstone 7 1429.9 14995  1639.9 1784.4  2706.4
Phylloid algal bafflestone 8 64434 | 76531  4220.8 6286.8 25724
Medium-crystalline moldic dolomite 9 6998.3 7300.7 7906.6 5920.2 3390.8
Very fine-grained sandstone 10 1689.7 | 1831.8  1799.6 1920.3 48996

All 179975 194673  16476.2 19467.4  16476.2

* Corrected porosity and permeability from empirically-derived transforms based on core-defined lithofacies.
** Lithofacies code is O for very fine-grained sandstone (continental) in the geomodel

Table B-14. Comparison of flow capacity, expressed as permeability*height (Kh), by

lithofacies calculated for the training set with that using predicted lithofacies for

Train-Test-All (TTA) and Jackknife training methods. Two perspectives are
presented: 1) actual Kh by predicted lithofacies (sum by lithofacies), and 2) Kh

estimated for the interval (sum by intervals).
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Figure B-1. Distribution of Council Grove and Chase core lithofacies for neural
network training. Twenty-seven wells in all, ten with both Chase and Council Grove
core.

Figure B-2. Structure of neural network employed for predicting lithofacies. Seven
predictor variables are the input. Output values are probabilities of membership in
different lithofacies (after Bohling, 2006).
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Figure B-3. Formation- and member-level stratigraphy correlated to wire-line well
log in the Flower A-1 well, Stevens County, Kansas. Commonly used
formation/member letter-number combinations are shown for the Council Grove.
Twelve of the thirteen marine-continental (carbonate-siliciclastic) sedimentary cycles
that are gas productive are shown (Grenola Limestone, C_LM is not logged).
Stratigraphic names that include “Limestone” are marine half cycles when combined
with an adjacent continental half-cycle, intervals with stratigraphic names that include
“Shale,” form a complete cycle. Color-coded lithofacies are derived from core. Three
were deposited in a continental setting, LO- sandstone, L1- coarse siltstone, and L2-
shaly siltstone, and eight in a marine environment, L3- siltstone, L4- carbonate
mudstone, L5- wackestone, L6- very fine-crystalline dolomite, L7- packstone-
grainstone, L8- phylloid algal bafflestone, L9- fine-medium crystalline moldic
dolomite, and L10- sandstone. Wire-line log abbreviations are caliper (CALI),
gamma ray (GR), corrected porosity (PHI_GM3), photoelectric effect (PEF), density
porosity (DPHI), neutron porosity (NPHI), core permeability (K_MAX, and core
porosity (CORE_POR). Logged interval is 520 ft (160 m).
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Wreford-CG, With PE, Objective Function
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Figure B-4. Crossvalidation results for Wreford and Council Grove neural network

with PE curve. Optimal parameters for network size and damping parameter is 20
nodes and 1 as determined by the objective function metric and 10 and 1 by the

misallocation cost metric.
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Kipling Training Phase - Select Variables

Variables in worksheet: Selected Predictor Variables:
1LD_LOG_10 ~ GR ~
N-DPHI%G T ILD_LOG_10 —
PHIND%% N-DPHI%G
PE — PHIND% B
HIM_M PE
RELPOS 3 HM_M 3
Mumber of Variables: 45 Mumber selected: 7
Continuous response variable: ‘[Ngne] w ‘
Categorical response variable: ‘Lithafacies v ‘
Comment: Train NMet Wreford-Council Grove| |
I oK l ’ Cancel ]

Figure B-5. First step in training a neural network is selection of the training data
predictor variables

x
Mumber of hidden laver nodes: 20
Decay (damping) parameker: 1.0|
Maximum number of ikerations: 100
Ok Cancel Help

Figure B-6. Neural network parameters are set in the second step.
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Figure B-7. Objective function versus iteration of a neural network training session.
Obijective function is a measure of mismatch between true and predicted facies.

Select Neural Net Model Sheet @

Neural net sheets:
User Comment:
Categorical Variable:
Continuous Variable:

Predictor Variables:

0K |

NNet2! ~|

Train Wrf-CGRV
Fllgm4
[NONE]

GR, ILD_LOG_10, N-DPHI%, PHIND%, PE, NM_M,

RELPOS
Cancel |

Figure B-8. Neural network selection for batch predicting lithofacies.
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Kipling Batch Predict - Match ¥ariables

Select a log ko match each maodel variable

Lags in File:

DEPT.F
CALLIN
CORE-LITH.
DELTAPHI. dec
DPHI.DEC
FHMG,

R GAPI

ILD. CHM
MM_M,
MPHIDEC
PHIND, DECPHI
RPOS,

04 |

Maodel variable: Matching log

MI_M 3 I _M,

RELPOS | RPOS,

GR : GRLGAPT
ILD_ L 100 LD, OHMM
PHIND%: : PHIND .DECPHI
M-DPHI%: @ DELTAPHI. dec
FE : PE.EJE

Zancel |

Figure B-9. Match predictor variables in LAS files to be processed with those in the

trained neural network.
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APPENDIX C

Comparison between Geomod3 and Geomod4
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APPENDIX C - Comparison between Geomod3 and Geomod4

Introduction

In this appendix, the differences between Geomod3 and Geomod4 are
discussed. Chapter 3 is based on version Geomod3, while Chapter 4 utilized
Geomod4. Models for the Hugoton have evolved over the past several years as data
have been added and lithofacies estimation techniques, free water level, and
petrophysical property transform equations have been refined (Table C-1). The
principal variables that have changed from Geomod3 to Geomod4 were and increase
in data (core and node wells), slight modification in lithofacies classes, minor change
in stratigraphic intervals for neural network training, lithofacies and porosity
variograms, slight modification in the free-water level, and adjustments in porosity
correction algorithms. Model dimensions, cell size, and layering are essentially the
same, although a change in projections resulted in a slightly different orientation for
the model and cell count. Differences between the models are summarized in Table
C-2.

Model building, an iterative process

Building the Hugoton geomodel has been an iterative process where
techniques and tools to manage large data volumes evolved. For details on Hugoton
model building see Dubois et al., 2006a. Chapter 3 discussed a simple four-step
workflow: 1) define lithofacies in core and correlate to electric log curves (training
set), 2) train a neural network and predict lithofacies at non-cored wells, 3) populate a
3D cellular model with lithofacies using stochastic methods, and 4) populate model
with lithofacies-specific petrophysical properties and fluid saturations, and also
presented a more detailed workflow (Figure 3-1, Chapter 3). The workflows imply
the process was linear. In practice, however, it involved feedback loops and multiple
iterations at the subtask level. Experimentation, technique modification, testing, and

validation occurred at several levels in the workflow as well as at the full model scale.
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Data were added and improvements were made in each of the four model
iterations (Table C-1). Geomod3 and Geomod4 are very similar and, although
Geomod4 is viewed as an improvement over Geomod3, the improvements are not
proportional to the amount of data added. Modeling the Hugoton is an ongoing
project at the Kansas Geological Survey in collaboration with industry partners.
Although the current geologic and petrophysical model (porosity and permeability)
are considered satisfactory, refinements in the free-water level and water saturations,

are currently being considered.

Data and model statistics

Core defined lithofacies (neural network training data) and lithofacies,
predicted by neural networks in wells without core (node wells), are the basic data for
building the Hugoton geomodel. Core training data were nearly doubled from
Geomod3 to Geomod4 (Table C-1 and Figure C-1). Nine Council Grove cores and
eight Chase cores were used in Geomod3 while the training set in Geomod4 included
15 Council Grove and 16 Chase core. Wells without core where lithofacies were
predicted by neural networks numbered 1350 in Geomod3 and 1600 in Geomod4.

Most of the additions to Geomod4 were in Texas County Oklahoma.

Lithofacies

Representation of lithofacies at varying scales is similar between the geomodels
(Table C-3 and Figure C-2). Illustrated are the proportions of 11 lithofacies in the
core training set, lithofacies at the node wells, upscaled lithofacies at node wells, and
lithofacies in the cellular model. Node well lithofacies include core lithofacies and
predicted lithofacies at wells without core. Most differences in lithofacies in core
reflect the addition of core with more or less of a particular lithofacies. Four changes
in lithofacies classes were made between modeling efforts:
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1. Very-fined-grained sandstone (continental) was not modeled in the Chase in
Geomod3 due to insufficient training data, but was modeled in Geomod4 after
more core of this lithofacies was added in the Chase.

2. Very-fined-grained sandstone (marine) was not modeled in the Council Grove
in Geomod3 due to insufficient training data, but was modeled in Geomod4
after more core of this lithofacies was added in the Council Grove.

3. Packstone and grainstone lithofacies were separate classes in Geomod3, but
were combined in Geomod4 because trained neural networks were not
effectively discriminating the two classes.

4. Phylloid algal bafflestone was added in Geomod4 after additional core

training data were incorporated.

Lithofacies in the training set

Differences between core lithofacies (training) and predicted lithofacies at
node wells within each model is not only a function of the distribution of the training
data with respect to node well density, but also of neural network prediction accuracy
(Appendix B). Variance in specific lithofacies at node wells between models is
primarily due to differences in representation of the lithofacies in training data
between models. For example, fine- to medium-crystalline moldic dolomite
comprises only 1.4% of the node well volume in Geomod3, but 6.6% in Geomod4.
The new core data for this lithofacies used in Geomod4 happens to be in the area
where node well density is highest (Stevens County). Neural network models,
improved by additional core training data for the lithofacies, more accurately
predicted fine- to medium-crystalline moldic dolomite in Geomod4. An example
where Geomod3 neural networks had higher accuracy a lithofacies is the mudstone
lithofacies. The inter-model discrepancy for the mudstone lithofacies has not been

resolved.

Lithofacies at node wells
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There is little difference between node well lithofacies at the half-foot (0.15
m) scale and upscaled lithofacies at node wells (2-4 ft mean, 0.3-0.6 m scale) within
each model except for the continental siliciclastic lithofacies. The decrease in
proportions between scales is a function of layer thickness in the model and the
upscaling process. Both models have 169 layers and have the same number of layers
per stratigraphic interval. In marine, mostly carbonate intervals, layers are purposely
thinner (mean 2 ft, 0.3 m) than in the continental siliciclastic strata (mean 4 ft, 0.6 m).
Carbonate intervals are the main pay lithofacies. Due to computational constraints,
layer numbers in the siliciclastic intervals were reduced (made thicker). Thus the cell
counts are lower. It should be noted that the siliciclastic layers were doubled and
remodeled in a later model version (Geomod4.4) for analysis of siliciclastic

lithofacies discussed in Chapter 4).

Lithofacies proportions in the model

Lithofacies proportions vary little between upscaled lithofacies at node wells
and the entire cellular model because the modeling process incorporates statistical
lithofacies data from node wells. Sequential indicator simulation relies on data
analysis of lithofacies in the node wells to guide it in the process of populating cells
between node wells. However, node well upscaled lithofacies proportions may be
skewed because of unequal well density in the node well set. No adjustments in
upscaled lithofacies proportions were made in Geomd3 and node-well-upscaled
lithofacies and model proportions are approximately equal. Upscaled lithofacies
proportions in Geomd4 were adjusted downward for fine- to medium-crystalline
moldic dolomite in certain stratigraphic intervals to take into account the effects of
high node well densities in regions where the lithofacies dominates. This resulted in a
reduction of the lithofacies occurrence and a more realistic distribution in the cellular
model.

290



Neural networks

Neural network structure and input parameters are the same for both model
iterations. They do vary, however, in the lithofacies being classified (discussed
above) and a slight variation in the stratigraphic split between models. In both cases,
neural network models were trained for three stratigraphic intervals, upper Chase,
lower Chase, and the Council Grove. However, in Geomod4, the lowermost
formation in the Chase, Wreford, was included in the Council Grove because it has
lithofacies more similar to the Council Grove than to the rest of the Chase.
Additional training data may have improved neural network prediction accuracy
slightly (Table C-4). See Appendix B for details on neural network training.

Variograms

Variograms are important for stochastic simulation because they control, to a
large degree, the distribution of the property being simulated. Variogram parameters
used in both models are summarized in Table C-2. Geomod3 variograms were based

on limited data analysis within Petrel ™

, the modeling application, and subjective
observations of lateral and vertical lithofacies distribution in areas with close well
control. Geomod4 variograms were based on extensive data analysis of data zone-by-
zone, lithofacies-by-lithofacies (24 zones and 11 lithofacies) by Bohling. Variogram
horizontal ranges do not vary significantly between the models. Data analysis
confirmed observations that lithofacies bodies are laterally extensive and that long
horizontal variogram ranges are justified. Vertical ranges are generally larger for
Geomod4, on the basis of data analysis. In both models, the variogram ranges exceed
node well spacing (less than variogram ranges) making the simulations more
deterministic than stochastic in areas with close node well density. More detail on
variograms for Geomoda3 is provided in Chapter 3 and for Geomod4 in Dubois et al.

(2006b).
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Lithofacies in the models

Additional data, slight changes in lithofacies classes and stratigraphic intervals
for trained neural networks resulted in only slight differences in the models overall
(Table C-3). Differences are more apparent when comparing lithofacies by
stratigraphic zone in the models. Figure C-3 is a series of 2-D views of 3-D
connected volumes (CV), representing collections of touching cells in the cellular
model having common properties. The figure shows examples of three important
lithofacies in three stratigraphic intervals.

Figure C-3A illustrates the distribution of continental very-fine-grained
sandstone in the Speiser Shale (A1_SH) having porosity > 12%. Regions where this
sandstone is present is very similar between models, however, the continental very-
fine-grained sandstone lithofacies is more continuous and covers a higher proportion
of the region where it is present. The increase in continental very-fine-grained
sandstone is consistent with data presented in Table C-3 where the cell count
lithofacies in Geomod4 is 64% higher than it is in Geomod3. The model proportion
is also closer to the proportion for upscaled lithofacies at the node wells and in the
training data; however, it appears to be under represented in the model.

Packstone-grainstone (light blue) and very-fine-crystalline dolomite (pink)
having porosity > 8% in the Crouse Limestone (B1_LM) is shown in Figure C-3B.
Regions where these important lithofacies are present are similar, however packstone-
grainstone is more widespread within the areas where it does occur. The differences
in proportions are not reflected in Table C-3, possibly because the table is for the
entire model and the packstone-grainstone lithofacies is the most common lithofacies
in the model.

Two figures illustrate fine- to medium-crystalline moldic dolomite (purple)
and packstone-grainstone (light blue) in the Krider Limestone (Figures C-3C and C-
3D). Figure C-3C3 is for cells with having porosity> 16% in Geomod3 and > 17% in
Geomod4. Figure C-3C4 is for cells with having porosity> 18% in Geomod3 and >

19% in Geomod4. The variation in porosity between models is due to porosity
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correction algorithm changes between the models (Table C-5). Depicted are views of
a known dolomitized ooid-bioclast shoal system, the most prolific reservoir in
Stevens County. The main difference in the models is that there is more fine- to
medium-crystalline moldic dolomite and less packstone-grainstone in Geomod4.
This reflects the addition of core containing fine- to medium-crystalline moldic
dolomite to the training data and better prediction of this lithofacies in the model. In
Geomod3, neural networks predicted much of the dolomite lithofacies as packstone-

grainstone.

Volumetric gas in place

Because water saturation and gas in place are functions of lithofacies and
porosity (Chapter 3), volumetric gas in place is an effective metric for comparing
models (Table C-6). However, comparisons cannot be made directly because
multiple variables were changed between models: 1) lithofacies spectrum split
differently, 2) slight, but important change in free-water level (FWL), and 3)
modification of the porosity correction algorithm. Some of the differences in gas
volume can be accounted for and it is useful to make comparisons, at least
qualitatively. Raising the FWL in the eastern part of the model significantly reduced
gas volume in continental siltstone (*_SH), particularly in the lower part of the gas
column (Council Grove Group) but had almost no effect on other lithofacies higher in
the gas column (Chase Group). Modification in the porosity correction algorithm
increased pore volume (and gas volume) by approximately 3%. Geomod4 has
increased dolomite that had been predicted as limestone in Geomod3. The difference
may account for a 1-2% increase in pore volume. The 3-4% increase in the prediction
in “pay” lithofacies that had been predicted as non-pay lithofacies (Table C-4) may
account for another 1-2% increase in pore volume. As much as half the overall
increase in gas volume (10.5% for the entire Wolfcampian) can be related to the net

increase in pore volume discussed above.
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Conclusions

Lithofacies in Geomod4 and Geomod3 are very similar overall, but do vary at
smaller scales. The significant increase in core training data did improve the neural
network prediction of certain lithofacies (e.g., continental very-fine-grained sandstone
and fine- to medium-crystalline moldic dolomite). These improvements are reflected
in their representation in the model. Water saturation is lower and gas in place is
higher in Geomod4, due in part to higher pore volume because of changes in the
porosity correction algorithm. Overall the models are very similar, but Geomod4 is
considered a slightly improvement over Geomod3.
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Council Grove core
Chase core
Combined core wells
Wells without core
Number of lithofacies
Model interval

Model area

Chapter

Geomodl Geomod2 Geomod3 Geomod4
8 9 9 15*
0 2 8 16**
8 9 14 27%xx
515 1250 1350 1574
8 10 11 11

Council Grove

Council Grove

Council Grove

Council Grove

and Chase and Chase and Chase
Kansas Kansas Kansas and Kansas and
Oklahoma Oklahoma

2 NA 3 4

* 17 wells in study, 15 in Council Grove neural network training set
** 17 wells in study, 16 in Chase neural network training set
**x 29 wells in study, 27 wells in neural network training set

Table C-1. Data volumes, model intervals, geographic coverage, and chapters where
discussed for four Hugoton geomodel iterations.
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major axis (marine)
minor axis (marine)
azimuth (marine)

major axis (continental)
minor axis (continental)
azimuth (continental)
vertical range

nugget

sill

30,000 ft
25,000 ft
11 degrees’®
30,000 ft
30,000 ft
NA
mean layer h X 2
0.1-0.22
1

Geomod 3 Geomod 4
Dimensions Cell count” 107,765,147 108,064,831
Layers 169 169
Cell size XY 660 ft (200 m) 660 ft (200 m)
Data
Neural network training set  Chase wells 9 15
Council Grove wells 8 16
Combined wells 14 27
Node wells* Chase wells 1060 1308
Council Grove wells 1136 1250
Combined wells 1364 1600
Structural framework Well count 8850 8756
Model parameters
limited data analysis and | extensive data analysis
Variograms - lithofacies basis subjective observations by zone by lithofacies

18,000 - 30,000 ft
15,000 - 25,000 ft
11 degrees’®
25,000 - 40,000 ft
25,000 - 40,000 ft
NA
7-21
0
1

Variograms - porosity

major axis (marine)
minor axis (marine)
azimuth (marine)

major axis (continental)
minor axis (continental)

same as lithofacies
same as lithofacies
same as lithofacies
same as lithofacies
same as lithofacies

27,000 - 39,000 ft
23,000 - 33,000 ft
11 degrees®
35,000 - 42,000 ft
35,000 - 42,000 ft

azimuth (continental) same as lithofacies NA
vertical range* same as lithofacies 7-21
nugget same as lithofacies 0
sill same as lithofacies 1
Results
Neural network accuracy” correct (all facies) 63-66% 64-67%
within 1 facies (all) 88-90% 90-91%
correct (F6-10) 64-70% 68-74%
within 1 facies (F6-10) 88-91% 89-90%
predicted/actual (F6-10) 101-101% 106-103%
Model cell lithofacies Continental lithofacies (FO-2 24.5% 24.2%
"Non-pay" marine (F3-5) 35.5% 36.0%
"Pay" marine (F6-10) 40.1% 39.9%
Volumetric gas in place® Chase 20,075 22,474
Council Grove 1,699 1,582
Combined 21,774 24,056

1 different projections caused slightly different cell count
2 includes core wells in count

3 approximate depositional strike

4 not constrained by layer h

5 entire Wolfcampian; first value is for NoPE case and second is for PE case;
accuracy for train on all, predict on all basis (see Appendix B)
6 Grant and Stevens Counties, Kansas. Volume is in trillion cubic feet (TCF)

Table C-2. Summary statistics comparing Geomod3 and Geomod4.

296




Geomod 3

Height 0.5 feet 0.5 feet Variable* Variable*
Source Actual NNet Predicted  Upscaled Modeled (SIS)
Code Lithofacies Training Node Wells Node Wells All cells

0 Cont SS 5.6% 2.2% 1.0% 1.1%

1 Cont Crs Slt 23.3% 19.7% 17.0% 16.7%

2 Cont Fn Slt 12.9% 9.6% 7.1% 6.7%

3 Mar Slt 7.5% 9.6% 9.0% 9.1%

4 Mdst 5.4% 4.3% 3.6% 3.9%

5 Wkst 14.5% 20.1% 22.2% 22.5%

6 Vi-fxIn Dol 2.8% 4.9% 3.9% 3.8%

7 Pkst 14.7% 24.7% 25.9% 25.2%

8 Grnst 2.3% 0.2% 0.2% 0.2%

9 F-mxIn Dol 5.6% 1.4% 3.8% 3.8%

10 Mar SS 5.4% 3.4% 6.3% 7.1%
Count (N) 8,545 993,146 183,949 107,765,147
Geomod 4

Height 0.5 feet 0.5 feet Variable* Variable*
Source Actual NNet Predicted  Upscaled Modeled (SIS)
Code Lithofacies Training Node Wells Node Wells All cells

0 Cont SS 3.8% 2.4% 1.4% 1.8%

1 Cont Crs Slt 21.0% 18.6% 15.0% 14.6%

2 Cont Fn Slt 11.2% 8.9% 7.7% 7.8%

3 Mar Slt 7.6% 9.6% 9.7% 9.9%

4 Mdst 6.1% 1.6% 1.3% 1.6%

5 Wkst 13.4% 19.7% 22.2% 24.5%

6 Vi-fxin Dol 3.4% 3.5% 3.5% 3.6%

7 Pkst-Grnst 18.2% 22.1% 24.7% 23.9%

8 PA Baff 0.8% 0.6% 0.7% 0.7%

9 F-mxIn Dol 7.3% 6.6% 6.9% 4.7%

10 Mar SS 7.0% 6.4% 6.9% 7.0%
Count (N) 13,512 1,383,653 211,720 108,064,831

* Model layer h: Average of mean h = 3.3 ft (1 m). Range of meanh =1.9to0 5.2 ft 0.57-
1.58 m). Lithofacies 0-2 tend to be in thicker layers.

Table C-3. Relative distribution of eleven lithofacies in core, node wells and cellular
models. Core-defined lithofacies for 14 wells were used in neural network
“Training” for lithofacies prediction in 1350 “Node Wells” in Geomod3, while cores
defined lithofacies from 27 core wells and 1574 wells without core were used in
Geomod4. Half-foot (0.15 m) lithofacies in node wells were upscaled to model layer
thickness (Variable Upscaled). Sequential indicator simulation (SIS) was utilized to
populate the cellular model (All Cells) between the node wells. Both models had the
same number of layers (169) and cell width (660 ft, 200 m). Abbreviations include
continental very-fine-grained sandstone (Cont SS), continental coarse-grained
siltstone continental (Cont Crs Slt), continental fine-medium grained siltstone (Cont
Fn Slt), marine siltstone (Mar Slt), carbonate mudstone (Mdst), wackestone (Wkst),
very fine to fine crystalline dolomite (Vf-fxIn Dol), packstone-grainstone (Pkst-
Grnst), phylloid algal bafflestone (PA Baff), medium crystalline moldic dolomite (F-
mxIn Dol), and marine very-fine-grained sandstone (Mar SS).
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Geomod 3

Chase Council Grove Wolfcamp
NoPE PE NoPE PE NoPE PE
All w/in 1F 89% 88% 92% 93% 90% 91%
All % correct 67% 70% 62% 64% 64% 67%
F6-10 w/in 1F 91% 88% 85% 89% 88% 91%
F6-10 %correct 71% 75% 51% 57% 64% 70%
F6-10 pred/actual 107% 106% 89% 88% 101% 101%
Geomod4
Chase Wreford &Council Wolfcamp
Grove
NoPE PE NoPE PE NoPE PE
All w/in 1F 88% 89% 89% 91% 88% 90%
All % correct 67% 70% 58% 61% 63% 66%
F6-10 w/in 1F 90% 91% 86% 88% 89% 90%
F6-10 %correct 74% 79% 57% 60% 68% 74%
F6-10 pred/actual 109% 107% 98% 91% 106% 103%

Table C-4. Compiled summary statistics for neural-network-prediction accuracy.
Data are for neural networks trained on all data by stratigraphic interval and
lithofacies predicted for the same training data. Models were tested for the cases with
PE and without PE curve (NoPE). Upper and lower Chase results are combined.
Wreford from lower Chase is included in Council Grove in Geomod4. Results for the
entire Wolfcampian (Wolfcamp all) are the sums of the results for the three
stratigraphic intervals. See Appendix B for metrics and their discussions.

For NDphi =0.10 Difference

LithCode Geomod4 Geomod3 Absolute %
(FO)Continental ss 11 (0) 0.098 0.100 -0.002 -2.3%
crs silt 1 0.102 0.102 0.000 0.0%
fine silt 2 0.102 0.102 0.000 0.0%
marine silt 3 0.085 0.085 0.000 0.0%
mdst 4 0.085 0.085 0.000 0.0%
wkst 5 0.101 0.099 0.002 1.9%
fxIn dol 6 0.131 0.125 0.007 5.4%
pkst 7 0.101 0.099 0.002 1.9%
grnst 8 0.101 0.099 0.002 1.9%
CxIn dol 9 0.131 0.125 0.007 5.4%
Marine ss 10 0.120 0.115 0.005 4.3%

Table C-5. Impact of the change in porosity correction algorithms used in Geomod3
and Geomod4 for 10% porosity. Algorithm modification resulted in an approximately
3% increase in pore volume in Geomod4.
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Zone Geomod3 ' Gmod4 @ %Change

HRNGTN 1227 1411 15.0%
KRIDER 2795 3368 20.5%
ODELL 295 294 -0.3%
WINF 3215 3500 8.9%
GAGE 807 970 20.2%
TWND 4686 5270 12.5%
HLMVL 663 821 23.8%
FTRLY 5212 5351 2.7%
MATFIELD 127 110 -13.4%
WREFORD 1048 1379 31.6%
Al SH 331 136 -58.9%
Al LM 656 772 17.7%
B1 SH 76 53 -30.3%
B1 LM 143 175 22.4%
B2_SH 9 10 11.1%
B2 LM 167 192 15.0%
B3_SH 56 6 -89.3%
B3 LM 34 39 14.7%
B4 _SH 67 10 -85.1%
B4 LM 22 30 36.4%
B5_SH 3 1 -66.7%
B5 LM 113 138 22.1%
C_SH 2 1 -50.0%
C LM 20 19 -5.0%
Chase | 20075 | 22474 12.0%
cgrv. | 1699 | 1582 -6.9%
Wolfcamp 21774 24056 10.5%

Table C-6. Volumetric gas in place by zone for Grant and Stevens counties, Kansas,
for Gomod 3 and Geomod4. Gas volumes are in billion cubic feet.
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Core Interval Core Interval
[] Chase [[] Chase
Council .
A Grove A 8?3\',-1: il
O Botn O both
Texas Texas

Figure C-1. (A) Core lithofacies for neural network training for Geomod3 includes
data from 14 wells, three with both Chase and Council Grove core, five with only
Chase core, and six with only Council Grove Core. (B) Core lithofacies training set
for Geomod4 includes data from 27 wells, four with both Chase and Council Grove
core, twelve with Chase only, and eleven with Council Grove only. Two wells with
arrows were not part of the training set. Wireline logs for the one in Stevens County
were not satisfactory and the well in Seward County was added late.
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Figure C-2. Graphical representation of lithofacies in upscaled cells at node wells

and all cells in the two geomodels.
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Figure C-3. Comparison of important lithofacies in Geomod3 and Geomod4.
Ilustrated are 2-D views of 3-D connected volumes (CV), collections of touching
cells in the cellular model having common properties. Numbers 3 and 4 in the figure
labels corresponds with the model version. (A3, A4) Fifteen CV of continental very-
fine-grained sandstone in the Speiser Shale (A1_SH) having porosity > 12%.
Geomod3 is on the left and Geomod4 on the right. (B3, B4) Thirty largest CV of
packstone-grainstone (light blue) and very-fine-crystalline dolomite (pink) having
porosity > 8% in the Crouse Limestone (B1_LM). (C3, C4) Twenty largest CV of
fine- to medium-crystalline moldic dolomite (purple) and packstone-grainstone (light
blue) in the Krider Limestone having porosity > 16% in Geomod3 and > 17% in
Geomod4. Stevens County, Kansas is outlined in green. (D3, D4) Same as in C3 and
C4 except for porosity > 18% in Geomod3 and > 19% in Geomod4.
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APPENDIX D
Paleoslope and water depth estimate,
lower Wolfcampian, Hugoton embayment of
the Anadarko basin
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APPENDIX D - Paleoslope and water depth estimate, lower Wolfcampian,
Hugoton embayment of the Anadarko basin

Published as an open-file report. Dubois, M. K., 2006, Paleoslope and water depth
estimate, lower Wolfcampian, Hugoton embayment of the Anadarko basin: Kansas
Geological Survey, Open-File Report 2006-30, 21 p.
http://www.kgs.ku.edu/PRS/publication/2006/OFR06_30/index.html (Accessed March
21, 2007.)

ABSTRACT

Three criteria are used in combination to estimate paleoslope and maximum water
depth during deposition of seven lower Wolfcampian (Council Grove Group)
sedimentary cycles on a low relief shelf in Kansas and Oklahoma. Landward extent of
paleo-shoreline establishes zero water depth at maximum flooding, and the updip
extent of depth-specific fauna (fusulinids) establishes approximate water depth along
a sub parallel linear trace. Slope is the depth divided by the distance between the two
traces. Rate of change in thickness of a large interval of strata (most of Wolfcamp)
serves as another estimate of slope for comparison. Maximum water depth on the
basinward edge of the shelf is estimated by adding the depth along a trace established
by fauna to additional depth determined by applying approximated slope to the
distance between the faunal trace and the shelf margin. Paleoslope on the Kansas
portion of the shelf is estimated to be 1 ft/mi (0.2 m/km). Beyond the shelf margin
the slope increased by a factor of ten. Maximum water depths vary by cycle from a

minimum of <50 ft (15 m) to a maximum of 110 ft (34 m).

Introduction

Shelf geometry (paleoslope) and water depth are important variables for
understanding sedimentation patterns in the lower Wolfcampian Council Grove group
(Figure D-1) in southwest Kansas (Figure D-2), and their determination is the object
of this study. Rocks of the upper seven marine-continental, carbonate-siliciclastic

sedimentary cycles of the Council Grove (Figure D-3) were deposited in a shallow
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shelf setting in the Hugoton embayment of the Anadarko basin (Dubois et al., 2006).
Marine carbonates thin landward and continental siliciclastic strata thin basinward in
nearly reciprocal fashion (Figure D-4). Paleoslope, a function of subsidence and
sedimentation, and glacial eustacy controlled water depth (or elevation above sea
level) on the shallow shelf and the rate of shoreline movement during sea level rise
and fall. Paleoslope and water depth estimates are based on three criteria: 1)
accommodation space indicated by isopachs of relatively large intervals, 2) paleo-
shoreline location (updip extent of marine carbonates), and 3) updip extent of depth-

specific fauna (fusulinids).

Shelf geometry

Present-day structure of Wolfcampian-age rocks was strongly influenced by a
Laramide-age eastward tilt (Figure D-5), whereas the Wolfcampian isopach (Figure
D-6) better reflects the shelf geometry at the time of deposition. From the west field
margin, Wolfcampian strata thicken basinward (eastward) at a rate of approximately
0.24 m/km (1.3 ft/mi) to a position on the shelf where the rate of thickening increases
by a factor of 10 to 24 m/km (13 ft/mi). The axis of thickening is coincident with an
area of present-day steep dip and may mark a shelf margin or axis of a steepened
slope. It is also nearly coincident with the edge of a Virgilian-age starved basin and
transition from marine carbonate to marine shale (Rascoe, 1968; Rascoe and Adler,
1983). The minimum paleoslope estimated for the older Lansing-Kansas City
(Pennsylvanian, Missourian) on the Kansas shelf was 0.1-0.2 m/km (0.5-1.1 ft/mi)
(Watney et al., 1995), however, relief across the Kansas portion of the shelf in the

Hugoton embayment during Council Grove deposition has not been estimated.

Subsidence history and sedimentation record

The Anadarko basin experienced maximum subsidence in early Pennsylvanian
and by Permian subsidence had waned to the point that the entire basin had nearly
filled (Kluth and Coney, 1981; Rascoe and Adler, 1983; Kluth, 1986; Perry, 1989).
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The isopach encompassing most of the Wolfcampian (upper thirteen cycles, from the
top of the Chase Group to the base of the Grenola Limestone formation in the lower
Council Grove Group) thickens only 80 ft (24 m), 480-560 ft (146-170m) in 60 mi
(100 km) across the shelf, a rate of 1.3 ft/mi (0.24 m/km) (Figure D-6). Individual
cycles show considerably less thickening, but the rate of thickening within a single
cycle cannot be considered a proxy for slope because the depositional systems were
not efficient at filling accommodation space that varied rapidly in response to glacial
eustacy. Two marine carbonate half-cycles in the middle of the Council Grove
(B2_LM and B3_LM) pinch out at or near the west updip margin of the Hugoton
field (Figures D-4 and D-7) pinning the water depth as zero along a linear trace, and
marking the maximum extent of marine flooding on the shelf for those cycles. Other

Council Grove cycles thin substantially, especially the B1_ LM and B4_LM.

Fusulinid occurrence on the shelf

The use of fusulinids as paleo-water depth indicators in the Pennsylvanian and
Permian has been debated extensively (e.g., Imbrie et al., 1964; Elias, 1964; Laporte,
1962; Laporte and Imbrie, 1964; McCrone, 1964). Fusulinids may live in a wide
range of water depths and can transported into an even wider range of depths.
Mazzulo et al. (1995) provides an overview of the debate and the writer agrees with
their assessment that a typical minimum depth for Early Permian fusulinids is
approximately 50-60 ft (15-18 m). All Council Grove cycles studied except the Eiss
(B3_LM) and Morrill (B4_LM) have thin, distinctive fusulinid-rich intervals that are
adjacent to or mark the maximum flooding of their respective marine half-cycles
(Figure D-8). Occurrences in cores studied are usually characterized by an abrupt
appearance and disappearance (vertically) of very abundant, large (cm-size)
fusulinids, in contrast with occasional scattered individuals, sometimes present in
adjacent strata. Boardman and Nestell (1993) and Boardman et al. (1995) place the
occurrence of fusulinid biofacies in the transgressive limestone and at the base of the

regressive limestone, which are separated by the deeper-water core shale interval of
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the idealized Pennsylvanian-Permian cyclothem (Heckel, 1977). This places the
biofacies in the approximate middle of the relative depth scale for outcropping cycles
in eastern Kansas and northeastern Oklahoma. Recognized in this study is the notable
absence on the Hugoton shelf of the dark, fissile “core shale” common to
Wolfcampian cycles in outcrop (Mazzullo et al., 1995; Boardman and Nestell, 2000),
suggesting that water depths on the Hugoton shelf were less than those at the present
day outcrop 300 miles (480 km) to the east. The closest equivalent to the typical deep
water lithofacies in Council Grove core in the Hugoton are dark marine siltstones
found near the base of the marine carbonate intervals in two of the seven cycles
studied, the Grenola (C_LM) and Funston (A1_LM).

The maximum updip extent of the fusulinid biofacies (Figure D-7) by cycle
form sub-parallel traces in a sequential pattern that may be related to systematic
variability in sea level amplitude. Of the seven Council Grove cycles studied the
fusulinid facies the furthest updip extent occurs in the two outermost cycles (A1_LM
and C_LM), while the updip limit of fusulinids in the next cycles inward (B1_LM
and B5_LM) are downdip slightly. Maximum updip position for the biofacies in the
B2_LM is further downdip, and neither the B3_LM nor B4_LM have the fusulinid
biofacies present in cores studied. If fusulinids occurred at similar depths from cycle
to cycle water depths would have been at a maximum during A1 LM and C_LM
deposition, and at a minimum during B2 through B4_LM deposition. Relative depths
for B1_LM and B5_LM deposition would have been intermediate to the two
extremes.

Furthermore, the lack of fusulinids in the cores studied for the B3_LM and
B4 LM suggests the water never exceeded 50-60 ft (15-18 m) in the study area where
core data are available (most of the Hugoton in Kansas and Oklahoma), if the
fusulinid biofacies is assumed to be present in all cycles where water depths exceeded
50-60 ft (15-18 m).
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Maximum updip position of shoreline and paleoslope estimate

Based on examination of approximately 200 examples of the transition from
marine carbonate to continental siliciclastic strata in core from 29 wells, thinning and
pinchouts of the Wolfcampian (both Chase and Council Grove) marine carbonates at
the updip margin of the Hugoton are not a result of erosion. The maximum shoreline
extent is defined for two of the Council Grove marine carbonates, B2_LM and
B3 LM, by their updip limit (Figures D-4 and D-7). In the Middleburg (B2_LM)
marine carbonate, the maximum extent of the fusulinid facies is approximately 50
miles (80km) from its pinchout (Figure D-7), suggesting a slope of 1 ft/mi (0.2
m/km), assuming that the minimum water depth for the fusulinid facies is 50ft (15m).
The estimated slope is very close to the rate of thickening in the Wolfcamp (1.3 ft/mi,
0.24 m/km). Noteworthy is the shoreline position for the B3_LM, which is basinward
of that for the B2_LM, and that no fusulinids were observed in the B3_LM. This
suggests that the water depth was shallower during the deposition of the B3_LM
carbonate than for the B2_LM. Marine carbonate in the other four cycles (Al, B4, B5S
and C) does not pinch out in core in the study area, but thins in a westerly direction
(Figure D-4). Based upon the spatial relationship between the updip limit fusulinid
occurrence and paleo-shorelines, and overall rates of change in the Wolfcamp
isopach, the paleoslope shelf is estimated to have been 1 ft/mi (0.2 m/km) during the
deposition of Council Grove Group. Beyond the shelf break the slope may have
increased by a factor of 10 to 10 ft/mi (2 m/km).

Maximum water depth

Based on criterion established above (paleoslope, updip extent of fusulinids
and paleo-shorelines), the maximum water depth for the Council Grove marine
intervals in the study area can be estimated. Points along a trace where the updip limit
of fusulinids are established are assumed to have had a maximum water depth of 50 ft
(15 m). The additional depth from the biofacies trace to the northwest portion of

Seward County (proximal to the shelf margin) can be estimated as the product of
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paleoslope and distance that is added to the depth at the biofacies trace for maximum
depth on the shelf (maximum depth = 50 ft + [1 ft/mi X distance]). Immediately
northwest of the shelf margin in northwest Seward County | estimate water reached a
maximum depth of approximately 110 ft (34m) during deposition of the A1_LM and
C_LM, the outer two of the seven cycles studied. For the B1_LM and B5_LM, one
cycle in from the end cycles, a maximum depth is estimated at 80ft (24m). Water
depths for the middle three cycles are estimated to have reached 50 ft (15m) for the
B2 LM and slightly less than 50 ft (<15m) for the B3_LM and B4_LM.

Inter-cycle variability in sea level and higher order cyclicity

As noted earlier, there appear to be systematic shifts in shoreline position of
marine carbonate (Figures D-4 and D-7), updip extent of the fusulinid biofacies
(Figure D-7), and the estimated maximum water depth, all of which are synchronized.
Within the seven cycles studied, maximums of the three variables occur at the
outermost cycles (Al and C), minimums occur at the inner cycles (B2, B3 and B4),
and the cycles between are intermediate (B1 and B5). The ordered shift in sea level

may reflect a higher order of glacial cyclicity (than for the individual cycles).

Conclusions

Paleoslope and water depths for the Hugoton embayment of the Anadarko
basin can be estimated for the Council Grove by considering three criterion: 1)
Wolfcamp isopach, 2) shoreline position indicated by the landward extent of marine
carbonate, and 3) the updip extent of fusulinids. Paleoslope on the Kansas portion of
the shelf is estimated to be 1 ft/mi (0.2 m/km). Beyond the shelf margin the slope
increased by a factor of ten (10 ft/mi, 2 m/km). Maximum water depth on the shelf
ranges from approximately 50 ft (15 m) in the innermost cycles to 110 ft (34 m) in the
outer most cycles (top and bottom) of the seven cycles studied. Systematic inter-

cycle variability in water depth may indicate higher order glacial-eustatic cyclicity.
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Figure D-1. Lower Permian stratigraphy, Hugoton embayment of the Anadarko basin
(compiled from Zeller, 1968; Sawin et al., 2006). Approximate position of Asselian-
Sakmarian boundary is from Boardman and Nestell (2000). Readers are referred to

Peterson (1980) for correlations to stratigraphic nomenclature in Ancestral Rocky
Mountain basins. Hugoton field produces gas from the Chase while Panoma gas
production is from the Council Grove. The two fields are likely one common

reservoir system (Dubois et al., 2006) and are referred to collectively as the Hugoton
in this study.
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Figure D-3. Formation and member level stratigraphy for the Council Grove,
Hugoton embayment, in the Alexander D well. The upper seven of nine marine-
continental cycles (color-filled wire-line log traces) are the subject of this study.
Stratigraphic names that include “Limestone” are marine half cycles that when
combined with an adjacent continental half cycle, intervals with stratigraphic names
that include “Shale,” form a complete cycle. Informal alphanumeric zone
designations commonly used in the field provide stratigraphic orientation and are
used throughout the paper.
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Figure D-4. Regional stratigraphic cross-section of the Wolfcampian (Chase and
Council Grove Groups) with the top of the Council Grove as the datum. At the wells,
“lumped” lithofacies are from core (large symbols) or those predicted by neural
network models (small well symbols) or and are interpolated in Geoplus Petra™
between wells. The Upper seven cycles of the Council Grove are the subject of the
study and are thinnest at a mid-field position. Log curves are gamma ray (left) and
corrected porosity (right). (Modified after Dubois et al., 2006)
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Figure D-5. A) Present day structure on the top of the Wolfcampian (top of Chase
Group) is mostly a function of eastward tilt during the Laramide orogeny. Note the
“shelf margin” or area of steepened slope at the southeast boundary of the Hugoton
fields. The Council Grove surface parallels the top of the Chase. B) 3-D view of the
same area. Present day structure on the top of the Chase and a surface near the base
of the Council Grove. (After Dubois et al., 2006)
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Grenola Limestone, Council Grove Group). Wolfcampian rate of thickening increases
by a factor of ten at the “shelf margin.” (After Dubois et al., 2006)
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Figure D-7. Study area showing updip limit of B2_LM and B3_LM (zero edge) and
updip extent of fusulinid biofacies in five of seven Council Grove cycles (not present
in B3_LM and B4_LM). Occurrence of fusulinid biofacies in core is indicated by
Council Grove cycle letter code adjacent to 17 wells in study. Asterisk (*) means
interval was not cored but fusulinid biofacies is assumed to be present. No core was

available below the shelf margin.
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Figure D-8. Fusulinid biofacies in core slabs. A) Abundant in fusulinid (white)
dominated silty wackestone (upper part of transgressive limestone, subjacent to
maximum flooding, in Funston, A1 _LM, Flower Al well). B) Scattered in fusulinid
(arrows) -mixed skeletal wackestone (maximum flooding in Crouse, B2_LM,
Crawford 2 well). Depth shown is in feet. Well locations are shown in Figure D-7.
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