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ABSTRACT 
Martin K. Dubois, Ph.D. 

Department of Geology, April 2007 
University of Kansas 

 
The full-field model of the 70-year-old Hugoton field (largest in NA) is a 

comprehensive lithologic and petrophysical view of a giant reservoir system in a 108-million 
cell model covering 10,000-mi2 (26,000-km2).  It is a quantitative basis for evaluating 
remaining gas, particularly in low-permeability intervals, and will aid field management and 
enhance ultimate recovery.  The model is also a tool for developing depositional models and 
for understanding controls on sedimentation.  Both the knowledge gained and the techniques 
and workflow employed have implications for understanding and modeling similar reservoir 
systems worldwide. 

Accurate representation of lithofacies in the model is critical because water saturation 
from wireline logs is inaccurate due to filtrate invasion.  Lithofacies-based petrophysical 
properties are used to estimate water saturation.  Neural-network prediction of lithofacies 
using wireline logs and two geologic variables is effective in predicting lithofacies at wells.  
Between wells, lithofacies and wireline-log porosity, corrected by lithofacies-dependent 
algorithms, are reliably represented by stochastic methods. Permeability, water saturation, 
and gas in place at the cell level are calculated by lithofacies- and porosity-dependent 
petrophysical transforms.  Based on the model, 963 billion m3 (34 tcf) of the produced gas 
represents 65-70% of original gas in place.  The reservoir is a layered, differentially depleted 
system, and most remaining gas is in intervals having lower permeability. 

The model illustrates shifting sedimentation patterns related to glacioeustacy on a 
large, stable, gently sloped ramp.  The 160-m reservoir comprises thirteen upward-shoaling 
carbonate cycles vertically stacked in a low-relief setting. Lithofacies bodies are laterally 
extensive and reservoir storage and flow units, mostly grain-supported marine carbonate, 
exhibit broad lateral continuity.  Carbonate cycles are separated by fine-grained siliciclastic 
strata (mostly loess) deposited in a savannah-like setting.  Climate variability controlled 
sediment supply and delivery. Relatively dry conditions and low vegetative cover during low 
sea level allowed fine siliciclastic sediments to be delivered to the ramp by eolian processes 
where they were stabilized by vegetation in an aggradational landscape.  During high sea 
level wetter conditions and increased vegetation curtailed siliciclastic supply to a flooded, 
carbonate-dominated ramp.  The results illustrate new climate-controlled mechanisms for 
cyclicity in fine-grained siliciclastic strata. 
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APPENDIX A – Core and lithofacies data 

 

Lithofacies determination is critical to most geologic studies and is the 

foundation for Chapters 3 and 4. Methods for describing core and determining 

lithofacies, presented elsewhere, are summarized.  Examples of lithofacies data and 

their distribution are presented and the locations of data that are accessible via the 

web are provided. 

 

Data access 

Digital core description and measured petrophysical properties are available 

as an Appendix (Core Data and Descriptions Database) to Dubois et al. (2006) at 

http://www.kgs.ku.edu/PRS/publication/2007/OFR07_06/index.html.  Whole core, 

core slab, and thin section photomicrographs are available from the Kansas 

Geological Survey website, accessible via 

http://www.kgs.ku.edu/Magellan/CoreLibrary/image.html. 

 

Core data distribution 

Twenty-nine of approximately 100 continuous cores were selected for 

lithofacies analysis on the basis of length (longest selected), geographic position 

(sampling distribution), and availability of core analysis and wireline log data (Table 

A-1 and Figure A-1).  In most cases, selected cores included either the entire Chase 

(twelve) or Council Grove (twelve) interval, or covered both intervals (five). Twenty-

seven were used as training data for neural networks (Appendix B).  In all 7400 ft of 

core (2255 m) was examined, approximately equally divided between the Chase and 

Council Grove Groups.  Dubois described all Council Grove core and some of the 

Chase.  Nathan Winters, under Dubois close supervision, described most of the Chase 

core. 
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Core description methods 

Two approaches to the lithofacies determination task were required because of 

the nature of the problems being studied.  In the balance of this appendix, geomodel 

lithofacies are those used in Chapter 3 and core lithofacies are those used in Chapter 

4. Building the Hugoton geomodel (Chapter 3) required splitting the lithofacies 

spectrum into broad (coarser) lithofacies classes because of the limitations of 

recognizing lithofacies with wireline logs. The number of geomodel lithofacies 

classes and the criteria for defining classes involved four criteria: (1) maximum 

number of lithofacies recognizable by neural networks using petrophysical wireline 

log curves and other variables; (2) minimum number of lithofacies needed to 

accurately represent lithologic and petrophysical heterogeneity; (3) maximum 

distinction of core petrophysical properties among classes; and 4) the relative 

contribution of a lithofacies class to storage and flow.  Eleven geomodel lithofacies 

classes, eight marine and three continental, were determined to be optimal. The 

methods for determining geomodel lithofacies were tailored to the primary goal for 

the study: develop a geologic and petrophysical model for the Hugoton gas field.  

Because petrophysical properties are a function of lithofacies, permeability is a 

function of pore throat diameter, and pore throat diameter is a function of primary 

texture, the description and classification schemes were designed to split the 

lithofacies spectrum by primary texture. 

Siliciclastic intervals of predominately continental origin were the subject of 

Chapter 4.  This studies focus was on determining the depositional controls on 

lithofacies required more narrow (finer) lithofacies classes.  Digital core description 

data compiled for the geomodel study, in conjunction with additional sedimentary and 

pedogenic tabulated data, thin sections, and text descriptions of core were employed. 

The three dominantly continental geomodel lithofacies were split to nine core 

lithofacies in the study. 
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Geomodel lithofacies 

Slabbed core was examined with the aid of a binocular microscope and data 

recorded at 0.5 ft (0.15 m) intervals using a quantitative, digital lithofacies description 

system described in Dubois et al., 2003 (Table A-2).  In addition to the digital 

description, relevant notes and sketches were recorded to supplement the digital 

description. The sample rate was chosen because digital wireline logs are typically 

sampled at this rate and the interval is approximately the thickness of the thinnest 

lithofacies beds in core.  Core depths were precisely correlated with wireline logs and 

depth corrected.  Thin sections for selected samples were used to validate grain size 

estimated in core, determine grain composition and biotic constituents, and to 

examine finer details of sedimentary structures and pedogenic features for 

determining depositional facies. Three of the twelve descriptor digits recorded, rock 

type (digit 1), texture (digit 2), and principal pore (digit 6), are sufficient to 

discriminate the eleven geomodel lithofacies (Table A-3), although other digits were 

considered initially in the process of determining class boundaries. A sample of the 

digital lithofacies description available on line is provided in Tables A-4 and A-5. 

 

Core lithofacies for Council Grove Group siliciclastic strata 

Thirteen cores were studied in detail and provide the basic data for Chapter 4 

(Figure A-2). Core lithofacies were determined in thirteen cores primarily on the 

basis of six of the twelve digital descriptor variables recorded in the table described 

above and seven additional sedimentary and pedogenic features tabulated (Table A-

6). Thin sections for selected samples were again used, particularly for determining 

depositional facies (e.g., delineating nodular carbonate mudstone from pedogenic 

caliche). Table A-7 provides a comparison of geomodel and core lithofacies. 
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Geomodel 
Lithofacies 

Code
Description 

Code Geomodel Lithofacies

0 or 11 1/>2 very-fine-grained sandstone (continental)

1 1/2 coarse-grained siltstone (continental)

2 1/0-1 fine- to medium-grained siltstone (continental)

3 0,2/<3 siltstone or shale (marine)

4 3-8/0-1 mudstone or mudstone-wackestone

5 3-8/2-3 wackestone or wackestone-packstone

6 6-8/8/*/*/*/<3 very-fine to fine-crystalline dolomite

7 3-8/4-5-6 packstone or packstone-grainstone

8 3-8/7 phylloid algal bafflestone

9 7-8/8/*/*/*/>2 fine- to medium-crystalline moldic dolomite

10 2/3-7 very-fine-grained sandstone (marine)

digit1/digit2/digit3…….*indicates skip  
 
Table A-3.  Geomodel lithofacies code, digital description code, and geomodel 
lithofacies.  Three digits are sufficient to discriminate the eleven lithofacies.  
Geomodel lithofacies code for very-fine-grained-sandstone (continental) is 11 
“outside” of the geomodel because of computer code constraints.  Inside the 
geomodels it is equal to 0.   
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Core 

Lithofacies 
Code  Core Lithofacies

Geomodel 
Lithofacies 

Code  Geomodel Lithofacies
Volumetric 
proportion

6  Fine- to medium-grained siltstone 2  fine- to medium-grained siltstone 0.28

7  Coarse-grained siltstone 1  coarse-grained siltstone 0.44

8  Very-fine-grained sandstone 11 (0)  very-fine-grained sandstone 0.12

5  Gray muddy siltstone-blocky mostly 2  mostly fine- to medium-grained siltstone 0.08

4  Gray muddy siltstone-laminated mostly 3  mostly fine- to medium-grained siltstone 0.03

2  Primary evaporite 1 or 2  one of "main" siltstones 0.01

3  Laminated sandstone and siltstone mostly 11 (0)  mostly very-fine-grained sandstone 0.01

9  Nodular carbonate mudstone 1 or 2  one of "main" siltstones 0.02

10  Fossiliferous, laminated or burrowed 3, 4, 5, 7, or 10  marine lithofacies 0.01

M
ai

n
Le

ss
er

 
 
Table A-7. Core lithofacies, corresponding geomodel lithofacies, and volumetric 
proportions of lithofacies. Proportion data are from 84 siliciclastic intervals in 13 
wells that were studied in detail. Eighty-four percent of core-lithofacies are the same 
lithofacies in the geomodel. 
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Figure A-1. (Figure C-1B in Appendix C)  Core training set for Geomod4 includes 
data from 27 wells, four with both Chase Group and Council Grove Group core, 
twelve with Chase Group only, and eleven with Council Grove Group only.  Two 
wells with arrows were not part of the training set.  Wireline logs for the one in 
Stevens County were not satisfactory and the well in Seward County was added late. 
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A B 

 
Figure A-2.  (Figure 4-6 in Chapter 4 (A) Core from 17 wells were examined, 13 in 
detail for the Council Grove Group siliciclastic intervals study.  Abbreviated 
descriptions, sufficient for geomodel lithofacies, were obtained in four wells. (B) 
Well and core control for Council Grove Group geomodel.  Geomodel lithofacies in 
1234 wells (smaller well symbols) were predicted by neural networks, trained on core 
from 17 wells (larger well symbols). 
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APPENDIX B – Training, implementation, and effectiveness of neural networks  

 

Designing neural networks for lithofacies classification and using the predicted 

lithofacies in building large cellular geomodels is an iterative process. Chapter 3 

describes the complex workflow for the Hugoton project and discusses the iterative 

nature of the project. Four iterations of model building have been completed (Table 

B-1) with the amount of data increasing with every iteration.  Neural networks were 

established as the preferred classification tool in Chapter 2 early in the process using 

data for geomod1.  Chapter 3 is based on geomod3, and Chapter 4 used the Council 

Grove portion of Geomod4.  Geomod3 and geomod4 are very similar and are 

discussed in Appendix C. The discussion below is for neural network training for 

geomod4 based on data from core from 27 wells total, 15 with Council Grove core 

and 16 with Chase Core (Figure B-1). 

As discussed in Chapter 2, several approaches for predicting lithofacies from 

wire-line log variables and geologic constraining variables (GCV). The neural 

network approach was determined most effective and was implemented in building 

the Hugoton model.  Chapter 2 describes the neural network used and why it was 

more effective than other methods including parametric (classical multivariate 

statistical methods) and other non-parametric methods. Chapter 3 discusses how 

neural networks were applied as part of the workflow for building geomodels.  This 

was a collaborative project and it should be noted that Geoffrey Bohling optimized 

neural network parameters through cross-validation, provided guidance on their 

implementation and wrote the code for batch processing lithofacies prediction for 

large volumes of wells. This appendix provides more details on some aspects of both 

chapters:  

1) A closer look at how neural networks work, particularly in this application. 

2) Description of the workflow for applying neural networks in this project. 

3) Discussion on the effectiveness (accuracy). 
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Neural networks 

Neural networks are non-parametric computational models that may be used 

as classification tools that match patterns of multiple variables with a class of objects.  

They are particularly useful in classification problems that involve a high number of 

dimensions and non-linear relationships between variables, and are well suited for 

lithofacies classification problems.  Neural networks have been deployed increasingly 

over the past twenty years in lithofacies classification (e.g., Baldwin et al., 1990; 

Rogers et al., 1992; Kapur et al.1998; Grotsch and Mercadier, 1999; Saggaf and 

Nebrija, 2000; Russell et al., 2003). They owe their name to their structure being 

similar to that of the human brain’s system of intricately connected neurons, and 

neural networks function in a similar manner. Human brains learn to associate 

patterns of multiple variables with certain objects.  This permits an individual to 

differentiate very slight variations in an object’s features, in human faces for an 

example, and to use the differences to recognize individuals from a larger population.  

Like the human brain, a neural network needs to be trained.  The neural network used 

is simple single hidden-layer feed-forward network, which is included in Kipling, an 

ExcelTM add-in developed by Bohling and Doveton (2000).  This particular 

application was chosen because of the ease of operation, simplicity, viewable input 

and output weights, and it required no special software. 

Neural networks are comprised of a single input layer, single output layer, 

and, theoretically, any number of hidden layers.  A simple neural network with a 

single hidden layer was used in this project.  The number of nodes in the input layer is 

equal to the number of variables (input variables) used to define the lithofacies.  In 

this case six or seven.  The number of nodes in the output layer is equal to the number 

of possible lithofacies (ten).  Number of nodes in the hidden layers is theoretically 

limitless; however twenty were determined to be the optimal number in this 

classification problem.   

Hidden layer node inputs are the sum of the products of the input variables 

and a weight (a constant).  In each hidden layer node, the weighted sums are passed 
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through a sigmoid transfer function that transforms the inputs to output values 

ranging between zero and one, forming an S-shaped basis function.  These outputs, 

multiplied by hidden layer node weights (constants), are the inputs to the output layer.  

Like in the hidden layer, the sums of the products are passed through a transfer 

function, in this case a softmax function, which scales the output to a value between 

zero and one. Output values are the probability of the example being evaluated 

belonging to each of the lithofacies classes. 

The neural network is trained in a feed-forward, back-propagating process. 

Training attempts to find the optimal solution for a set of training data (core-defined 

lithofacies and associated predictor variables) by adjusting the weights in an iterative 

process. Setting the weights to values between –1 and 1, randomly, initializes the 

neural network. During each iteration, input variables are fed forward and outputs are 

derived. Outputs are compared with the lithofacies probabilities for the example, a set 

of zeros except for a single unit one (representing the known lithofacies).  A weight 

adjustment factor is computed on the basis of the difference. The weight adjustment 

factor is applied to the weights between the nodes (back-propagation) to complete the 

first iteration for the given example. The process is performed on all examples in the 

training set to complete the iteration.  The number of iterations is either defined or the 

neural network may be allowed to train until a specified level of error has been 

attained.  In this application the number of iterations was set at 100.  Because the 

training process starts from a random set of initial weights there are multiple, equally 

likely “realizations” of the trained neural network based on a given training dataset. 

 

Neural network in this application 

The neural network implemented in Kipling2.xla (Bohling and Doveton, 

2000) is a simple single hidden-layer feed-forward network, as illustrated in Figure 

B-2 and described in Chapter 11 of Hastie et al. (2001).  In this neural network there 

are three parameters to set, number of hidden layer nodes, damping parameter and the 

number of iterations in the training session. Increasing the number of hidden layer 
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nodes allows the network to more closely reproduce the details of the training dataset, 

while fewer hidden layer nodes results in more generalized representation. Increasing 

the damping parameter forces the network weights to be smaller in magnitude, which 

results in a smoother or more generalized representation of the training data. More 

iterations allow a closer reproduction of the training data. However, the number of 

hidden layer nodes and damping parameter are the principle controls on the neural 

network’s ability to generalize and their values chosen carefully. The neural network 

tool uses a simple single hidden-layer neural network with k softmax-transformed 

outputs representing probabilities of membership in k different classes, and a 

categorical prediction, using a “winner-take-all” rule. 

 

The process 

Optimize lithofacies classes, predictor variables, and neural network parameters 

Optimize lithofacies classes and predictor variables 

Key to the successful application of neural networks is choosing the optimal 

lithofacies classification split, predictor variables (e.g., wireline log curves), and 

neural network parameters.  Determining the number of lithofacies classes and the 

criteria for defining classes involved four objectives: (1) maximum number of 

lithofacies recognizable by neural networks using petrophysical wireline-log curves 

and other variables; (2) minimum number of lithofacies needed to accurately 

represent lithologic and petrophysical heterogeneity; (3) maximum distinction of 

core-petrophysical properties among classes; and 4) the relative contribution of a 

lithofacies class to storage and flow. An optimal solution using these criteria resulted 

in 11 lithofacies.  Choosing predictor variables was by logic, expert knowledge, and a 

trial-and-error process, constrained by availability.  Log curves commonly available 

in wells drilled since 1970 were used, including gamma ray (GR), neutron porosity 

(Nphi), density porosity (Dphi), deep induction log (ILD), and photoelectric effect 

(PE). Other log curves such as spectral gamma ray and sonic log carry substantial 

property information that would be useful in the classification problem, but their 
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availability is limited. Input variables included raw log curves (GR and PE) or 

derivatives of the raw curves (neutron and density porosity average, neutron porosity 

and density porosity difference (N-D), and log base-10 of ILD).  PE is an effective 

tool fro determining lithology, but is not available in approximately 30% of the wells 

in the1600 well data set. However, neutron porosity and density porosity difference 

(N-D) was determined to be an effective surrogate for PE, particularly for delineating 

dolomite from limestone and siliciclastics from carbonate.  Because Dphi on wire-line 

logs uses a limestone matrix density (2.71 g/cc), Dphi in denser dolomite is 

underestimated and Dphi in less quartz-rich siliciclastics is slightly over estimated. 

Log base-10 of ILD was used rather than raw data to transform skewed raw data 

distribution to a more normal distribution. 

Two important additional predictor variables derived from geologic data 

incorporate geologic knowledge in the variable mix. Formation or member tops 

(Figure B-3) segregate the Wolfcampian into alternating nonmarine, marine, or 

intertidal half-cycles, fundamentally different depositional environments.  Herington 

and Holmesville are typically intertidal and the rest of the “Shale” formation and 

members are non-marine. A nonmarine-marine (NM-M) depositional environment 

indicator variable was assigned to intervals on the basis of the depth of the top and 

base of stratigraphic formations or members (1 - nonmarine, 2 - marine, or 3 - 

intertidal).  Relative position (RPos) is the position of a particular sample with respect 

to the base of its respective nonmarine or marine (formation/member) interval. These 

two geologic constraining variables (GCV) are important because certain facies are 

restricted to broadly define depositional environments (nonmarine, marine, intertidal), 

and facies in the Wolfcampian often have predictable vertical stacking patterns 

(Dubois et al., 2006). 

Two geologic constraining variables (GCV) were included to add geologic 

information to the set of log values: a code representing the depositional environment 

(1 - nonmarine, 2 - marine, or 3 - intertidal) associated with each of the 25 members 

(half-cycles) in the model, and a curve representing the relative vertical position 
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within each half-cycle, ranging from 0 at the base to 1 at the top.  The depositional 

environment indicator variable, MnM, helps to distinguish between lithofacies with 

similar petrophysical properties but developed in different broad depositional 

environments.  Including the relative position curve, RelPos, allowed the network to 

encode information regarding the fairly regular succession of lithofacies succession 

commonly exhibited within each interval, and thus transfer some of that character to 

the sequence of predicted lithofacies in each well.  The two curves were computed 

from a database of formation tops using Visual Basic code within an Excel 

spreadsheet.  They were then combined with the wire-line log curves to complete the 

feature vector used as input to the neural network. 

 

Optimize neural network parameters 

The two neural network parameters to optimize, network size (number of 

hidden layer nodes) and damping parameter, were done so by Bohling through cross-

validation methods (Bohling, 2006). Various combinations of the two parameters 

were tested by holding out different wells of the full training dataset from the training 

process, predicting on the withheld data and comparing predicted and true lithofacies, 

and repeating the process many times over.  Prediction behavior for different 

parameter combinations was then analyzed to determine the optimal parameter 

values, in combination. This process was performed on six neural networks, two each, 

for the cases with PE and without PE (NoPE), for the Upper Chase (Herington 

through Gage), lower Chase (Towanda to top of Wreford), and Wreford and Council 

Grove (combined). Training was split stratigraphically to lump cyclothems with 

similar characteristics. Although the Wreford is part of the Chase Group, it is more 

similar to Council Grove cyclothems and was included with the Council Grove. 

Crossvalidation results were compared using two metrics, an objective 

function and misallocation costs.  The objective function is a measure of accuracy in 

the prediction results that is used in the neural network in Kipling2.xls.  Misallocation 

costs are “costs” assigned to the error. Cost is a function of similarity or dissimilarity 
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between actual and assigned facies.  The more dissimilar, the higher the cost (Table 

B-2).  An example of crossvalidation for one example (Wreford and Council Grove 

PE) is given in Figure B-4. In this case the optimal parameters for network size and 

damping parameter is 20 nodes and 1 for the objective function metric and 10 and 1 

for the cost metric. In this case 20 nodes and damping of 1 were chosen because the 

20-node option was significantly better than alternatives when considering the 

objective function metric and minimally less effective than the 10-node option 

considering the cost metric.  The same parameter values were determined most 

optimal for all but one of the six neural network cases.  The one exception is for the 

Wreford-Council Grove NoPE case where a damping parameter of 10 was used. 

 

Implementation in Kipling2.xla 

Training neural networks and using the trained neural networks to assign 

lithofacies at half-foot (0.15 m) intervals was accomplished through the following 

workflow: 

1. Organize training data in a tabular form with lithofacies and predictor 

variables (six or seven) in columns, one example per row (Table B-3). 

2. Assemble six sets of files for wells without lithofacies, one set for each of the 

six neural network cases (defined in 3). Files contain predictor variables (six 

or seven) in a Log Ascii Standard (LAS) format, one file per well. 

3. Train six neural networks, two each (PE and NoPE) for three stratigraphic 

intervals, upper Chase (Herington through Gage), lower Chase (Towanda to 

top of Wreford), and Wreford and Council Grove (combined). 

4. Train five neural networks for each case using optimal node and damping 

parameters and 100 iterations. Choose neural network with the lowest 

objective function. 

5. Use the batch process function to predict lithofacies for wells without 

lithofacies for each of the six cases. 
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6. Assemble the predicted lithofacies for the three stratigraphic intervals in 

another application. 

  

Training neural networks in Kipling2.xla is quite simple: 1) Select the training 

predictor variables (Figure B-5), and 2) Set neural network parameters (Figure B-6) 

and click “OK”.  During training, a measure of the mismatch (objective function) 

between the actual and predicted lithofacies is recorded after each iteration. Plotting 

objective function versus iteration provides a view of the training session (Figure B-

7).  In all cases, the plots approached asymptotic by 40 iterations, and models 

improved only slightly over the next 100 iterations.  Final weights for inputs to, and 

outputs from the hidden layer are also recorded (Tables B-4 and B-5).  The weights 

are essentially the trained neural network. 

Batch process prediction of lithofacies is equally as simple.  The neural 

network chosen is selected (Figure B-8) and the network is “pointed” to a file folder 

containing the LAS files for processing.  Match predictor variables in LAS files to be 

processed with those in the trained neural network and click “OK” (Figure B-9).  The 

wells are processed and results are exported in an LAS file format, one per well. An 

example of the output is given in Table B-6.  Header lines provide summary 

information.  The first three columns in the table are fields from predictor variable 

data file and the next eleven are probabilities that the example is one of the eleven 

lithofacies. Probabilities sum to one and the facies determined to be most probable is 

the discrete predicted facies that is predicted (winner take all).  The “winner” in each 

example is shaded.  The second most probable lithofacies is usually a similar 

lithofacies. When an error is made, the correct lithofacies is usually the next most 

probable lithofacies.  Probabilities are data that could be used lithofacies prediction 

and model building and worthy of further study. 
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Lithofacies prediction accuracy 

Accurate representation of eleven lithofacies in the model is important 

because lithofacies-based petrophysical properties were used to estimate water 

saturations. However, accuracy of lithofacies assignment in wells without core cannot 

be determined directly.  The 1574 wells without core and the 26 with core (1600 

“node” wells) are the basis for lithofacies in the geomodel.  Node wells are upscaled 

from the half-foot (0.15m) to layer scale (2-foot, 0.6 m) and the volume between the 

wells is populated with lithofacies using stochastic methods. Both quantitative and 

subjective evaluations of lithofacies prediction accuracy at the node well scale were 

discussed in Chapters 2 and 3, but addition al detail is given here.  

 

Success metrics 

A high degree of absolutely correct classification should not be anticipated 

because: 1) lithofacies are based on subjective observations, 2) measured properties 

(log predictor variables) of lithofacies overlap in feature space, and 3) measuring 

devices tend to average over a two-foot (0.6 m) interval while lithofacies are defined 

at the half-foot scale (0.15 m).  Having a facies classification that is close to the actual 

(within one facies in the continuum) may be deemed satisfactory because the 

associated flow capacity as a function of porosity and other physical characteristics of 

adjacent facies are similar to the actual facies (Dubois et al., 2006). In addition to 

being correct or nearly correct, it is important that the number of a particular facies 

predicted by any classifier be relatively close to that in the overall population in order 

that the ultimate model accurately represents the volumetric distribution of facies.  

Digital lithofacies codes were required for computer applications and were assigned 

in a manner that approximates their position in the lithofacies spectrum, but not 

perfectly. Because the main gas pay facies (facies code 6-10, very-fine crystalline 

dolomite, packstone-grainstone, phylloid algal bafflestone, fine to medium crystalline 

dolomite and fine-grained sandstone) are the most important in terms of gas storage 
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and flow capacity, their accurate representation is critical. To judge whether the 

objectives were met and to compare classifiers five metrics were used: 

1. Close (within one lithofacies)  – all lithofacies 

2. Correct  – all lithofacies 

3. Close (within one lithofacies) - lithofacies code 6 through 10  

4. Correct - lithofacies code 6 through 10 

5. Representation - ratio of lithofacies code 6 through 10 predicted vs. actual. 

 

What is considered “close” in terms of lithofacies? 

Lithofacies in the Wolfcampian represent continuum of sedimentary rock types 

that could be lumped and split in many ways.  Finer splitting would result in more 

refined depositional facies interpretation, provided the finer lithofacies could be 

recognized on wireline logs. For example, fine-grained peloidal packstone would 

have been deposited in a different environment than a coarse-grained-bioclast 

grainstone.  However the two lithofacies are indistinguishable by wire-line log 

signature and the two sub-lithofacies are lumped with the packstone-grainstone 

lithofacies.  A delicate balance exists between accuracy and detail required for 

maximum utility.  An eleven lithofacies split was deemed optimal.   

As stated above, digital lithofacies codes approximate their position in the 

lithofacies spectrum, but not perfectly. Adjacent lithofacies are generally similar, but 

not in every case. Lithofacies are considered close if the lithofacies predicted is 

considered a “neighbor”, within one lithofacies.  Lithofacies that are considered 

“close” to another are listed below in order of lithofacies code assigned: 

1. Coarse-grained siltstone (continental) – 11, very-fine-grained sandstone 

(continental); and 2, fine-medium grained siltstone (continental) 

2. Fine-medium grained siltstone (continental) – coarse-grained siltstone 

(continental) 

3. Siltstone (marine) – 1, coarse-grained siltstone (continental); 4, carbonate 

mudstone; and 10, very-fine-grained sandstone (marine) 
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4. Carbonate mudstone – 3, siltstone (marine); and 5, wackestone 

5. Wackestone – 4, carbonate mudstone; and 7, packstone-grainstone 

6. Very fine to fine crystalline dolomite – 7, packstone-grainstone; and 9, 

medium crystalline moldic dolomite 

7. Packstone-grainstone – 5, wackestone; 7, packstone-grainstone; 8, phylloid 

algal bafflestone; and 9 medium-crystalline moldic dolomite 

8. Phylloid algal bafflestone – 6, very fine to fine crystalline dolomite; and 7 

packstone-grainstone 

9. Medium crystalline moldic dolomite – 6, very fine to fine crystalline 

dolomite; and 7 packstone-grainstone 

10. Very-fine-grained sandstone (marine) – 3, siltstone (marine); and 11, very-

fine-grained sandstone (continental) 

11. Very-fine-grained sandstone (continental) – 10, very-fine-grained sandstone 

(marine); and 1, coarse-grained siltstone (continental) 

 

Adjacent lithofacies codes are generally close neighbors in terms of petrophysical 

properties, as well as texture and grain type, except for lithofacies 11 (continental 

very-fine-grained sandstone).  Lithofacies 11 belongs at the other end of the 

spectrum, and in the geomodel it is given the code 0.  Permeability for a given 

porosity is generally greatest with higher numbers starting with code 10 and 

descending to lithofacies code 2 (fine-to medium-grained siltstone). Lithofacies code 

2 has the lowest permeability for a given porosity.  At this point in the spectrum, the 

relationship reverses with code = 1 having greater permeability for a given porosity, 

and code 11 even greater permeability. 

 

Quantitative measures for lithofacies prediction accuracy 

The closest approximation of a true quantitative test of lithofacies prediction 

accuracy at the node wells is the comparison of actual versus predicted lithofacies in 

wells with core by using a Jackknife approach: data from one well is withheld from 

 261



training, lithofacies is predicted for withheld data and compared with its known 

lithofacies, and the process is repeated through the entire data set. Figure B-1 

illustrates the distribution of core data for the Chase and Council Grove. A Jackknife 

test was completed for the three stratigraphic intervals and summary statistics for 

Chase and Council Grove results are given in Table B-7. Also in Table B-7 are 

summary statistics for the test where neural networks are trained on all training data 

and predictions made on the same training data (train-test-all, or TTA). In the 

Jackknife experiment, for each iteration where one well was withheld, three neural 

networks were trained for each of the three stratigraphic intervals for each case (PE 

and NoPE), nine networks in all.  The three having the lowest objective function were 

chosen and used to predict lithofacies in the withheld well.  The process was repeated 

throughout the data set and results of all wells summed for evaluation.  For the TTA, 

actual geomod4 neural networks were used. The neural networks selected were the 

ones having lowest objective function values chosen from a set of five neural network 

models. 

The Jackknife approach yields the worst possible results because the well 

being tested is the furthest possible from the training data.  Geographic position was a 

primary consideration for core selection, and spacing was purposely fairly wide for 

efficiency.  Because lithofacies vary across the ramp, removing one well from the 

training can significantly reduce the number of examples of certain lithofacies for 

training and negatively impact lithofacies prediction for the withheld well.  The train-

test-all (TTA) method is likely to yield the best possible results, which are likely too 

optimistic.  Neither is a direct test of lithofacies prediction in the model, and 

lithofacies accuracy in the model probably lies somewhere between the two types of 

tests. 

 

Summary statistics 

Table 8 provides summary statistics for the Jackknife and TTA tests for the 

Chase, Council Grove, and Wolfcampian (combined intervals). Chase sample count is 
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6790 and Council Grove is 6504 half-foot (0.15 m) intervals. The Jackknife approach 

has consistently lower success metric values than does TTA.  If actual model node 

well values are somewhere between the two, lithofacies prediction accuracy for the 

Wolfcampian is likely 50-66% correct and the predicted lithofacies is within one 

lithofacies 83-90% of the time. Accuracy is slightly better for the main gas “pay” 

lithofacies, lithofacies codes 6 through 10 (in order: very fine to fine crystalline 

dolomite, packstone-grainstone, phylloid algal bafflestone, medium crystalline moldic 

dolomite, and marine very-fine-grained sandstone).  The pay zone lithofacies are 

likely to be correctly predicted 57-74% of the time and are predicted within one 

lithofacies 80-90% of the time. 

Pivot charts provide more detailed statistics by lithofacies for Jackknife tests 

(Table B-8) and the TTA approach (Table B-9).  Actual and predicted lithofacies 

occurrences are shown with the diagonal indicating the number of correctly predicted 

lithofacies in the upper of the two pivot charts in each table.  Incorrectly predicted 

lithofacies counts are shown in the same row in the predicted lithofacies column.  The 

representation metric (predicted lithofacies count/actual lithofacies count) is given by 

lithofacies is given at the bottom of the upper pivot chart in each table. The lower 

pivot chart in each table is the same data expressed as a percent of the row (percent of 

actual lithofacies). Proportion of each lithofacies in the training set is shown on the 

left of each table. It is important to consider the volumetric proportions when 

evaluating the data, particularly when only considering data expressed in terms of 

percent. The following general observations are made: 

1. In both Jackknife and TTA, the four lithofacies that are most successfully 

predicted are continental coarse-grained siltstone continental (1), the most 

prevalent lithofacies, and the three most dominant pay lithofacies, packstone-

grainstone (7), medium crystalline moldic dolomite (9), and marine very-fine-

grained sandstone (10). 
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2. Carbonate mudstone is poorly predicted and not adequately represented when 

evaluated using either approach. However, it comprises a relatively small 

volume in the Wolfcampian (6.2%). 

3. Lithofacies 6, 8, and 11 (very fine to fine crystalline dolomite, phylloid algal 

bafflestone, and continental very-fine-grained sandstone) are poorly predicted 

by the Jackknife approach.  However, the correct success metric for the three 

lithofacies were approximately double and representation metric much 

improved in the TTA case.   

4. Continental coarse-grained siltstone continental (1) is over represented by 

18% in both tests, mostly at the expense of continental fine-medium grained 

siltstone (2). 

5. Continental very-fine-grained sandstone (11) is under represented in both test 

cases mostly due to this lithofacies being predicted as Continental coarse-

grained siltstone continental (1).  

 

Discussion of summary statistics 

Lithofacies accuracy in the model node wells is likely to lie somewhere 

between the data presented for the two tests.  The question is, which is more likely, 

particularly in cases where there is significant departure between the two tests 

(lithofacies 6, 8, 9, 10, and 11).  The answer to the question is not quantitatively 

resolvable, but clues to the disparities lie in the distribution of core with respect to the 

distribution of these particular lithofacies on the ramp.  In all cases, but in particular 

lithofacies 8, 9, 10, and 11, the lithofacies are confined to a particular position on the 

ramp and are represented in fewer wells than are other more widely distributed 

lithofacies.  In the Jackknife test, where one well is withheld for testing, the 

representation of that particular lithofacies in the training set is significantly reduced.  

Phylloid algal bafflestone (8) comprises less than 1% of the rock volume and is 

restricted to the Council Grove, and most examples are in three wells in Stevens 

county (Figure B-1).  Medium crystalline moldic dolomite (9), the most prolific 
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Chase pay zone in terms of storage and flow capacity, is more widespread, covering 

Stevens and eastern Texas County.  However, it is well represented in core from only 

six wells. Marine very-fine-grained sandstone (10) dominates in the western third of 

the study area in the Chase and continental very-fine-grained sandstone (11) is most 

prevalent in only the northwest one-quarter of the study area in the Council Grove.  In 

both cases, the removal of training data of the test well in the Jackknife approach 

appears to significantly impact the accuracy for prediction of lithofacies on the test 

well. For these important lithofacies, the accuracy in the node wells could be closer to 

that represented by the TTA test, although this cannot be proven. 

 

Porosity and permeability in the node wells 

Accurate representation of porosity and permeability, controls the utility of 

the Hugoton geomodel for reservoir management.  Because both porosity and 

permeability are lithofacies dependent, it is important to understand the potential error 

that is introduced by error in lithofacies prediction.  For a given measured log 

porosity, corrected log porosity varies with lithofacies (Table B-10).  Porosity 

correction algorithms, developed by John Doveton (Chapter 3 and Dubois et al., 

2006), were based on empirical data.  Impact of lithofacies error is illustrated in Table 

B-11.  The greatest potential error is in the cases where dolomite (lithofacies 6 and 9) 

or marine very fine-grained sandstone (lithofacies10) is involved.  When other 

lithofacies are predicted as these lithofacies, porosity is generally higher than actual 

and porosity is lowered when the dolomite lithofacies (lithofacies 6 and 9) or marine 

very fine-grained sandstone (lithofacies 10) are predicted incorrectly. The potential 

for error in pore-volume is –15% to +32% for rocks having 10% porosity, a 

significant range in terms of reservoir volume.   

As with porosity, permeability varies with lithofacies for given corrected 

porosity.  Alan Byrnes developed the empirical relationships that define insitu 

Klinkenberg permeability as a function of lithofacies and porosity for geomod4: 
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perm =IF(Facies=1,Pow(10,(8.00*Log(phi_pct)-9.96)),perm) 

perm =IF(Facies=2,Pow(10,(8.00*Log(phi_pct)-10.05)),perm) 

perm =IF(Facies=3,Pow(10,(7.74*Log(phi_pct)-9.41)),perm) 

perm =IF(Facies=4,Pow(10,(9.20*Log(phi_pct)-10.80)),perm)  

perm =IF(Facies=5,Pow(10,(7.61*Log(phi_pct)-8.94)),perm)  

perm =IF(Facies=6,Pow(10,(9.70*Log(phi_pct)-11.80)),perm)  

perm =IF(Facies=7,Pow(10,(7.09*Log(phi_pct)-7.81)),perm)  

perm =IF(Facies=8,Pow(10,(8.65*Log(phi_pct)-8.29)),perm)  

perm =IF(Facies=9,Pow(10,(9.70*Log(phi_pct)-10.80)),perm)  

perm =IF(Facies=10,Pow(10,(9.75*Log(phi_pct)-11.62)),perm)  

perm =IF(Facies=11,Pow(10,(6.65*Log(phi_pct)-7.88)),perm) 

 

Permeability ranges more than two orders of magnitude (0.009 – 2.291) across the 

lithofacies spectrum for a given porosity of 10% (Table B-12).   

 

Estimation of error 

Error in pore volume 

As with lithofacies, it is not possible to determine directly the error in pore 

volume (product of porosity and height) in the model, nor even at the node wells.  

However, a range of possible error introduced by inaccurate lithofacies can be 

estimated by comparing pore volumes calculated for core lithofacies using corrected 

log porosity values with pore volumes calculated for lithofacies using the Jackknife 

and TTA approaches (Table B-13).  Error can be analyzed from two perspectives: 1) 

actual pore volume by predicted lithofacies (sum by lithofacies in the table), and 2) 

pore volume estimated for the interval (sum by intervals in the table).  The first metric 

is a comparison of lithofacies pore volume, however the second is more critical for 

reservoir modeling because it identifies potential volumetric error in the model. When 

summed by lithofacies, potential pore volume error is proportional to lithofacies 

prediction error (e.g., carbonate mudstone pore volume is significantly under 
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represented in the model). When summed by interval, pore volume error is the error 

introduced by error in lithofacies assignment (Table B-11).  Pore volume error due to 

error in lithofacies is always in the negative direction for dolomite lithofacies and 

positive for marine siltstone and carbonated mudstone. On the basis of this analysis, 

pore volume in the model is likely to be overestimated by 5.9% to 6.1%, due to error 

in lithofacies prediction. 

 

Error in permeability 

Flow capacity (product of permeability and height, Kh) and is an important 

component of a reservoir model because it represents the capacity of the reservoir to 

produce hydrocarbon.  It was analyzed in the same manner as pore volume (above) 

and data are presented in Table B-14. One difference is that permeability is a power 

law function of porosity (above).  Thus small error in porosity results in more 

substantial absolute error in permeability, as measured by the % difference of actual 

versus predicted, than it does for pore volume. Log 10 of the error would be a more 

appropriate, however, the results are close enough to actual that it was not necessary 

to go to that length to demonstrate that Kh is probably represented accurately in the 

model.  On the basis of the analysis presented, Kh in the model is likely to be +8.2% 

to –8.5% of actual. 

 

Conclusions 

A single hidden layer neural network was successfully deployed for 

lithofacies prediction in nearly 1600 “node” wells in the Hugoton geomodel.  

Accurate lithofacies representation in the model is important because petrophysical 

properties (porosity, permeability and water saturation) are lithofacies dependent. A 

high degree of absolute accuracy was not expected and being close, assigning a 

similar lithofacies, is nearly as good because similar lithofacies have similar 

properties. Lithofacies prediction accuracy for node wells in the geomodel are likely 

50-66% correct and within one lithofacies 83-90% of the time. Accuracy is slightly 
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better for the main gas “pay” lithofacies, very fine to fine crystalline dolomite, 

packstone-grainstone, phylloid algal bafflestone, medium crystalline moldic dolomite, 

and marine very-fine-grained sandstone.  The pay zone lithofacies are likely to be 

correctly predicted 57-74% of the time and are predicted within one lithofacies 80-

90% of the time. For reservoir performance prediction, accurate representation of 

properties in the model is more important than lithofacies.  Pore volume is likely over 

predicted by 6% at the node wells and permeability may be off 8% (plus or minus).  

The latter is insignificant because permeability is a power law function of porosity.  

Although considered tolerable, knowing the expected pore volume error is helpful for 

reservoir analysis and management decisions based on the Hugoton geologic and 

property model. 
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Geomod1 Geomod2 Geomod3 Geomod4

Council Grove core 8 9 9 15*

Chase core 0 2 8 16*

Combined core wells 8 9 14 27**

Wells without core 515 1250 1350 1574

Number of lithofacies 8 10 11 11

Model interval Council Grove Council Grove 
and Chase

Council Grove 
and Chase

Council Grove 
and Chase

Model area Kansas Kansas Kansas and 
Oklahoma

Kansas and 
Oklahoma

Chapter 2 NA 3 4

*  17 wells in study, 15 in Council Grove neural network training set
**  17 wells in study, 16 in Chase neural network training set

***  29 wells in study, 27 wells in neural network training set

*

*

 
 
Table B-1. Data volumes, model intervals, geographic coverage, and chapters where 
discussed for four Hugoton geomodel iterations. 
 

014444431.521F11

10444442131.5F10

44021134444F9

44201123444F8

44110113444F7

44111022344F6

44321201244F5

32433210143F4

1.51444321021.5F3

23444444201F2

11.54444431.510F1

F11F10F9F8F7F6F5F4F3F2F1Facies

Assigned FaciesActual

014444431.521F11

10444442131.5F10

44021134444F9

44201123444F8

44110113444F7

44111022344F6

44321201244F5

32433210143F4

1.51444321021.5F3

23444444201F2

11.54444431.510F1

F11F10F9F8F7F6F5F4F3F2F1Facies

Assigned FaciesActual

 
Table B-2. Misallocation cost matrix.  Cost is a function of dissimilarity between 
ctual and assigned facies.  The more dissimilar, the higher the cost. a
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Formation-
Member Well_Name Depth

Litho-
facies GR

ILD_ 
LOG_10 N-DPHI% PHIND% PE NM_M RELPOS

A1 SH NEWBY 2840.5 2 72.53 0.555 6.3 13.45 3.2 1 0.326
A1 SH NEWBY 2841 2 67.99 0.542 6.1 14.35 3.1 1 0.302
A1 SH NEWBY 2841.5 1 60.31 0.525 5.0 14.1 3.2 1 0.279
A1 SH NEWBY 2842 1 55.52 0.504 6.3 11.55 3.2 1 0.256
A1 SH NEWBY 2842.5 1 56.07 0.486 5.0 11 3.2 1 0.233
A1 SH NEWBY 2843 1 62.67 0.473 -2.6 15.8 3.2 1 0.209
A1 SH NEWBY 2843.5 1 66.9 0.471 -2.2 21.4 3.2 1 0.186
A1 SH NEWBY 2844 1 68.54 0.477 3.1 24.25 3.2 1 0.163
A1 SH NEWBY 2844.5 1 68.7 0.483 3.3 22.85 3.2 1 0.14
A1 SH NEWBY 2845 4 63.2 0.489 9.5 17.25 3.4 2 0.116
A1 SH NEWBY 2845.5 4 60.33 0.493 11.6 15.6 3.7 2 0.093
A1 SH NEWBY 2846 4 58.16 0.491 12.7 14.35 3.8 2 0.07
A1 SH NEWBY 2846.5 4 52.61 0.481 9.9 11.45 3.9 2 0.047
A1 SH NEWBY 2847 2 45.72 0.464 5.2 8.8 3.9 1 0.023
A1 LM NEWBY 2847.5 5 35.92 0.441 4.5 7.95 4.0 2 1
A1 LM NEWBY 2848 5 26.62 0.422 3.6 10.7 4.3 2 0.988
A1 LM NEWBY 2848.5 6 24.14 0.398 5.9 12.55 4.0 2 0.976
A1 LM NEWBY 2849 6 24.36 0.375 6.5 12.95 3.9 2 0.963
A1 LM NEWBY 2849.5 6 23.28 0.35 6.5 11.85 4.1 2 0.951
A1 LM NEWBY 2850 6 25.7 0.334 7.7 10.95 4.1 2 0.939
A1 LM NEWBY 2850.5 6 28.2 0.336 8.2 11.2 3.7 2 0.927
A1 LM NEWBY 2851 6 28.35 0.352 8.8 12.1 3.7 2 0.915
A1 LM NEWBY 2851.5 6 31.71 0.377 9.0 12.8 3.6 2 0.902
A1 LM NEWBY 2852 6 35.52 0.405 9.1 12.75 3.3 2 0.89

 
Table B-3. Sample of  input data for a neural network training session. Half-foot  
(0.15 m) intervals include lithofacies defined in core, five wire-line log curves or their 

erivatives and two geologic constraining variables (last two columns). 
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Input-to-hidden layer weights
Node Constant GR ILD_LOG_10 N-DPHI% PHIND% PE NM_M RELPOS

1 -0.329596643 -0.267277 -1.594384037 1.871736 -2.002115 0.831568 -0.676657 1.115806
2 0.65441899 -0.275647 1.636556674 -0.07264 -0.341501 1.17123 0.237242 0.937584
3 -1.564913201 1.222985 -0.483246109 -0.397916 2.79964 0.941885 -0.860552 -0.796483
4 -0.990040104 -0.207388 0.078752552 -0.863665 -1.310306 1.24311 1.462427 0.801518
5 0.645631145 1.788637 1.851967278 0.230077 -0.155956 -0.471591 -1.111277 0.036138
6 0.05380495 0.074359 -0.084250287 -0.094692 0.050045 0.652467 2.728652 2.062532
7 -0.584758625 0.236252 -1.624040389 -1.968773 -2.217787 1.296287 -1.03191 -0.103279
8 -2.448999396 -3.301992 1.035865125 0.50594 1.225348 -0.578483 -0.357206 -0.031313
9 -0.366314296 1.33795 -0.937768001 0.228006 0.385172 2.963993 0.635678 1.279707
10 0.084732115 -0.209047 -0.322168116 -0.251814 -0.890316 -0.714204 -1.483677 1.341003
11 1.247201616 1.099817 0.852517688 0.838744 -1.047927 -0.97679 0.327684 -2.286051
12 0.199832667 0.046429 -0.31227879 -2.289553 0.94651 0.583575 -0.608837 -0.488652
13 0.666178848 0.285035 1.281585461 -0.512088 2.477905 2.114456 -0.849342 0.611696
14 -0.896025412 -1.109323 1.612677229 -0.504198 1.280544 1.047209 1.313703 -0.299143
15 -0.739317735 0.083081 -0.640543547 0.537394 0.478659 0.32588 2.834217 1.553041
16 0.124993395 -0.17345 -0.90628134 -1.525854 -1.923525 -1.651846 0.004141 -1.30996
17 -0.870687665 1.409209 0.766977231 -0.554423 -0.7975 0.328386 1.450828 1.527244
18 0.268474677 0.677007 -1.46675301 1.141078 0.141312 -0.856803 -1.482338 3.282297
19 0.236114805 -0.022666 0.030208025 0.728398 -0.764624 1.407119 1.461846 -0.961055
20 -0.661501466 -2.457459 -0.269488453 1.326038 -0.712979 1.266612 -0.333818 0.414005  

 
Table B-4. Final weights as determined by training session that are applied at the 
input to the twenty hidden layer nodes, and twenty final biasing constants, one for 
each input node. 
 
 
Hidden layer-to-output weights

Node F11gm401 F11gm402 F11gm403 F11gm404 F11gm405 F11gm406 F11gm407 F11gm408 F11gm409 F11gm410 F11gm411
Constant -0.088116515 0.743405485 0.780914289 0.335209144 -1.565020053 -0.490051549 0.160364165 -0.2455398 -0.778734061 1.017331453 0.114495484

1 0.749064855 1.580235287 -1.098129769 0.229516803 0.382373082 0.50544227 1.134914087 -1.93736531 -0.363388732 -1.31130987 0.062829723
2 -0.537850125 -0.537064216 1.796691146 0.38187121 -0.844114079 -0.430923077 0.615570447 0.001601777 -0.347464184 -0.91964306 0.827350174
3 -0.802595579 1.28558058 -1.556211132 1.023359203 -0.823858691 0.940882666 -0.461067959 2.032098361 -0.36505976 -1.200275949 -0.026941121
4 -1.441315822 0.239443958 -1.424801729 0.658499106 1.066130099 0.406035374 1.578790407 0.447329 -0.242174007 -0.520785918 -0.719356056
5 1.941821194 1.589412042 -0.319279894 -0.773398933 1.604082008 -1.338790625 -0.621103723 -1.175639975 -0.388746869 0.011319359 -0.627765125
6 -1.489035438 -1.138885201 1.037261016 0.261343873 1.751596646 0.400954159 -0.595377297 0.816156504 -0.366987571 1.177245788 -1.917496088
7 1.676213989 -1.177793192 -0.360913211 -1.060432035 0.395839333 -0.329190651 1.120072497 -0.126707085 -0.438733059 -1.219051915 1.539250137
8 -0.527798749 -0.751088547 -2.497819468 -1.570327334 0.755626403 2.17754243 2.6862695 0.198454682 -0.337898663 -0.314722853 0.270401562
9 -0.149436909 0.131693665 -1.057530491 -0.899229581 1.226569637 2.997003633 -0.609532242 1.419067985 -0.360272089 -1.3530845 -1.342785414

10 0.277607674 1.468519313 -0.09954993 0.81924591 -0.863773873 -1.013165777 -1.411619695 -1.692082808 -0.441250943 0.761262903 2.116012114
11 1.765053289 -1.035018197 2.770231323 0.8319374 0.521306347 0.240019547 -0.745370652 -2.000501918 -0.509672431 -1.095955397 -0.771895276
12 0.558588853 -0.274295842 -0.400030982 -1.123417895 -0.195267516 -1.05407274 0.813847913 1.372132786 -0.41294072 0.409163078 0.158328077
13 1.068218746 2.726978354 0.996597048 0.314276465 -1.223723776 -1.705933911 0.845433827 0.435611573 -0.412025728 -0.926599039 -2.209261535
14 0.876622558 0.076944731 -1.368805125 0.272414336 2.12309241 -0.621513353 0.016147553 0.36169665 -0.368418474 -0.574080083 -0.774804985
15 -1.297638979 -1.767028719 2.046958304 1.071247608 -0.07279951 0.492042276 -0.096149957 0.534451754 -0.38038793 1.291890968 -1.737132019
16 -1.401824184 -0.297681353 -1.0418956 -0.044178747 1.127919428 0.862191856 -0.628986868 -1.594333607 -0.392448774 2.051702581 1.400164441
17 -0.560345075 -0.965800474 -0.687723176 2.115044142 0.771449886 -0.525995339 1.333069484 -0.0600166 -0.283054906 -0.18131204 -0.980167939
18 2.217667038 0.122464215 -0.447184866 -2.200681921 -0.457660387 1.069458209 0.074572568 -2.954137867 -0.332231163 0.405774199 2.500149628
19 -1.711254804 -0.45253877 1.092023308 0.016717677 -0.54858085 0.928308571 1.753837545 1.477443107 -0.460281814 -0.497875721 -1.662603155
20 0.163680038 -0.148265906 -1.140538423 1.39990785 1.047660176 -0.252389468 -1.230499588 1.352019166 -0.275568727 -0.704794712 -0.082875645  

 
Table B-5. Final weights as determined by training session that are applied to the 
output from each of twenty hidden layer nodes prior to input into the eleven facies 
output nodes. 
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Prediction results using data sheet Wrf-Cgrv_PE and neural net sheet NNet26_WrCg-PE
User comment on neural net sheet: WrfCG PE 20/1/100
Number of predictor variables: 7

Predictor variables in NNet26_WrCg-PE:GR
ILD_ 
LOG_10 N-DPHI% PHIND% PE NM_M RELPOS

Predictor variables in Wrf-Cgrv_PE: GR
ILD_ 
LOG_11 N-DPHI% PHIND% PE NM_M RELPOS

Categorical response variable: F11gm4
Number of categories: 11
Continuous response variable: [NONE]
Number of variables copied: 3
Variables copied from Wrf-Cgrv_PE: F11gm4 ElogDepthLease_Name

Core Probabilities
Predicted 
F11gm4

Max. Prob-
ability

F11gm4
Elog 

Depth Lease_Name F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 kpred pmax
2 2806.5 SHRIMPLIN 0.36 0.62 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.62
2 2807 SHRIMPLIN 0.32 0.66 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.66
2 2807.5 SHRIMPLIN 0.36 0.62 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.62
2 2808 SHRIMPLIN 0.44 0.54 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.54
2 2808.5 SHRIMPLIN 0.64 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1 0.64
2 2809 SHRIMPLIN 0.44 0.55 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.55
1 2809.5 SHRIMPLIN 0.40 0.58 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 0.58
1 2810.5 SHRIMPLIN 0.56 0.42 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1 0.56
1 2811 SHRIMPLIN 0.69 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 1 0.69
1 2811.5 SHRIMPLIN 0.71 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1 0.71
1 2812 SHRIMPLIN 0.66 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 1 0.66
1 2812.5 SHRIMPLIN 0.54 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 1 0.54
1 2813 SHRIMPLIN 0.50 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 1 0.50
1 2813.5 SHRIMPLIN 0.48 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.47 1 0.48

11 2734 CROSS H CATTLE 0.15 0.11 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.72 11 0.72
11 2734.5 CROSS H CATTLE 0.15 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76 11 0.76
11 2735 CROSS H CATTLE 0.16 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76 11 0.76
11 2735.5 CROSS H CATTLE 0.29 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58 11 0.58
11 2736 CROSS H CATTLE 0.46 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.37 1 0.46

1 2736.5 CROSS H CATTLE 0.61 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 1 0.61
1 2737 CROSS H CATTLE 0.65 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 1 0.65

11 2737.5 CROSS H CATTLE 0.62 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 1 0.62
11 2738 CROSS H CATTLE 0.52 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.36 1 0.52
11 2738.5 CROSS H CATTLE 0.32 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 11 0.63
11 2739 CROSS H CATTLE 0.21 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.76 11 0.76
11 2739.5 CROSS H CATTLE 0.20 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 11 0.77
11 2740 CROSS H CATTLE 0.18 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.79 11 0.79
11 2740.5 CROSS H CATTLE 0.15 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 11 0.82
11 2741 CROSS H CATTLE 0.14 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.84 11 0.84

7 2913.5 NEWBY 0.00 0.00 0.00 0.04 0.13 0.01 0.81 0.01 0.00 0.00 0.00 7 0.81
7 2914 NEWBY 0.00 0.00 0.00 0.06 0.17 0.01 0.75 0.01 0.00 0.00 0.00 7 0.75
7 2914.5 NEWBY 0.00 0.00 0.00 0.07 0.27 0.02 0.63 0.01 0.00 0.00 0.00 7 0.63
7 2915 NEWBY 0.00 0.00 0.00 0.09 0.31 0.04 0.55 0.01 0.00 0.00 0.00 7 0.55
6 2915.5 NEWBY 0.00 0.00 0.01 0.13 0.33 0.11 0.41 0.00 0.00 0.01 0.00 7 0.41
6 2916 NEWBY 0.00 0.00 0.02 0.16 0.31 0.25 0.24 0.00 0.00 0.02 0.00 5 0.31
6 2916.5 NEWBY 0.00 0.00 0.03 0.16 0.33 0.27 0.18 0.00 0.00 0.02 0.00 5 0.33
6 2917 NEWBY 0.00 0.00 0.04 0.14 0.34 0.31 0.15 0.00 0.00 0.01 0.00 5 0.34
6 2917.5 NEWBY 0.00 0.00 0.04 0.15 0.38 0.27 0.14 0.00 0.00 0.01 0.00 5 0.38
6 2918 NEWBY 0.00 0.00 0.04 0.20 0.47 0.11 0.17 0.01 0.00 0.01 0.00 5 0.47
4 2957.5 NEWBY 0.01 0.02 0.03 0.27 0.30 0.19 0.17 0.00 0.00 0.01 0.00 5 0.30
7 2958 NEWBY 0.00 0.01 0.01 0.14 0.27 0.13 0.41 0.00 0.00 0.00 0.00 7 0.41
7 2958.5 NEWBY 0.00 0.00 0.01 0.11 0.31 0.05 0.52 0.01 0.00 0.00 0.00 7 0.52  

 
Table B-6. Selected result output of lithofacies prediction session.  Header provides 
general information regarding the neural network model.  Table includes operator 
selected fields from the input files (first three columns) and calculated probabilities 
for each of the eleven lithofacies.  The predicted discrete lithofacies is the one having 
the highest probability. 
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Jackknife
Chase Council 

Grove
Wolfcamp 

(combined) Chase Council 
Grove

Wolfcamp 
(combined)

within 1F 79% 88% 83% within 1F 89% 91% 90%
% correct 49% 51% 50% % correct 71% 61% 66%

F6-10 w/in 1F 79% 82% 80% F6-10 w/in 1F 90% 88% 90%
F6-10 %correct 59% 51% 57% F6-10 %correct 80% 61% 74%

F6-10 pred/actual 114% 96% 108% F6-10 pred/actual 108% 95% 104%

Train-test-all

 
 
Table B-7. Summary statistics of neural network prediction accuracy for two cases: 
Jackknife and Train-Test-All  Metrics for each case are accuracy within one 
lithofacies (within 1F), percent correct, lithofacies code 6 through 10 correct within 
one lithofacies (F6-10 w/in 1F), lithofacies code 6 through 10 percent correct (F6-10 
% correct), and the ratio of lithofacies code 6 through 10 predicted and actual (F6-10 
pred/actual). 
 
 

Cont Crs 
Silt

Cont 
Fn Silt Mar Silt Mdst Wkst

Fxln 
Dol

Pkst-
Grnst PA-Baff

Mold-
Dol Mar SS

Cont 
SS

Count of 
PredFacies

Pred 
Facies

Proportion F11gm4 1 2 3 4 5 6 7 8 9 10 11 Grand Tota within 1
21.2% 1 1969 569 37 2 7 14 2 111 105 2816 94%
11.3% 2 743 706 11 5 19 1 12 9 1506 96%
7.6% 3 135 12 358 24 201 7 53 22 186 10 1008 70%
6.2% 4 23 17 99 31 383 17 180 4 43 28 1 826 62%

13.1% 5 22 21 157 86 688 19 609 18 67 57 2 1746 79%
3.5% 6 3 5 33 5 61 108 139 2 47 58 1 462 64%

17.9% 7 13 13 74 38 445 34 1520 24 167 57 2385 90%
0.8% 8 2 35 3 53 18 111 67%
7.4% 9 3 34 12 63 19 172 613 60 6 982 80%
7.0% 10 128 13 59 3 47 8 67 87 505 18 935 62%
3.9% 11 295 11 23 1 3 3 40 141 517 92%

Grand Total 3334 1367 887 202 1935 215 2829 66 1052 1114 293 13294
Pred/Actua

F

l 118% 91% 88% 24% 111% 47% 119% 59% 107% 119% 57% within 1F 83%
% correct 50%

F6-10 w/in 1F 80%
F6-10 %correct 57%

F6-10 pred/actual 108%

Wolfcamp (combined) 
Jacknife

 
Cont Crs 

Silt
Cont 

Fn Silt Mar Silt Mdst Wkst
Fxln 
Dol

Pkst-
Grnst PA-Baff

Mold-
Dol Mar SS

Cont 
SS

Count of 
PredFacies

Pred 
Facies

Proportion F11gm4 1 2 3 4 5 6 7 8 9 10
21.2% 1 70% 20% 1% 0% 0% 0% 0% 0% 0% 4% 4%
11.3% 2 49% 47% 1% 0% 0% 0% 1% 0% 0% 1% 1%
7.6% 3 13% 1% 36% 2% 20% 1% 5% 0% 2% 18% 1%
6.2% 4 3% 2% 12% 4% 46% 2% 22% 0% 5% 3% 0%

13.1% 5 1% 1% 9% 5% 39% 1% 35% 1% 4% 3% 0%
3.5% 6 1% 1% 7% 1% 13% 23% 30% 0% 10% 13% 0%

17.9% 7 1% 1% 3% 2% 19% 1% 64% 1% 7% 2% 0%
0.8% 8 0% 0% 2% 0% 32% 3% 48% 16% 0% 0% 0%
7.4% 9 0% 0% 3% 1% 6% 2% 18% 0% 62% 6% 1%
7.0% 10 14% 1% 6% 0% 5% 1% 7% 0% 9% 54% 2%
3.9% 11 57% 2% 4% 0% 0% 0% 1% 0% 1% 8% 27%

Grand Total 25% 10% 7% 2% 15% 2% 21% 0% 8% 8% 2%

Wolfcamp (combined) 
Jacknife

11

 
 
Table B-8. Pivot tables illustrating lithofacies prediction results for the entire 
Wolfcamp using a Jackknife approach.  The diagonal (highlighted) are lithofacies 
predicted correctly. F11 (continental very-fine-grained sandstone) is equal to F0 in 
geomodels and in Figure B-3. 
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Cont Crs 

Silt
Cont 

Fn Silt Mar Silt Mdst Wkst
Fxln 
Dol

Pkst-
Grnst PA-Baff

Mold-
Dol Mar SS

Cont 
SS

Count of 
PredFacies

Pred 
Facies

Proportion F11gm4 1 2 3 4 5 6 7 8 9 10 11 Grand Total within 
21.2% 1 2313 340 18 2 4 3 41 95 2816 98%
11.3% 2 614 852 10 6 8 8 8 1506 97%
7.6% 3 111 19 535 17 136 7 42 15 113 13 1008 77%
6.2% 4 20 13 111 107 355 15 157 28 17 3 826 69%
13.1% 5 20 6 129 23 1054 24 397 15 39 35 4 1746 84%
3.5% 6 4 1 30 5 63 201 75 2 56 25 462 72%
17.9% 7 10 9 59 19 365 15 1784 15 96 12 1 2385 95%
0.8% 8 4 12 2 41 52 111 86%
7.4% 9 1 2 12 16 17 64 844 26 982 92%
7.0% 10 53 9 36 2 25 6 54 13 717 20 935 83%
3.9% 11 173 12 5 1 16 310 517 97%

Grand Total 3319 1263 949 191 2037 270 2626 84 1091 1010 454 13294
Pred/Actua

1F

l 118% 84% 94% 23% 117% 58% 110% 76% 111% 108% 88% within 1F 90%
% correct 66%

F6-10 w/in 1F 90%
F6-10 %correct 74%

F6-10 pred/actual 104%

Wolfcamp (combined) 
Train-test-all

 
Cont 

Crs Silt
Cont 

Fn Silt Mar Silt Mdst Wkst
Fxln 
Dol

Pkst-
Grnst PA-Baff

Mold-
Dol Mar SS

Cont 
SS

Count of 
PredFacies

Pred 
Facies

Proportion F11gm4 1 2 3 4 5 6 7 8 9 10
21.2% 1 82% 12% 1% 0% 0% 0% 0% 0% 0% 1% 3%
11.3% 2 41% 57% 1% 0% 0% 0% 1% 0% 0% 1% 1%
7.6% 3 11% 2% 53% 2% 13% 1% 4% 0% 1% 11% 1%
6.2% 4 2% 2% 13% 13% 43% 2% 19% 0% 3% 2% 0

13.1% 5 1% 0% 7% 1% 60% 1% 23% 1% 2% 2% 0
3.5% 6 1% 0% 6% 1% 14% 44% 16% 0% 12% 5% 0%

17.9% 7 0% 0% 2% 1% 15% 1% 75% 1% 4% 1% 0%
0.8% 8 0% 0% 4% 0% 11% 2% 37% 47% 0% 0% 0%
7.4% 9 0% 0% 1% 2% 2% 0% 7% 0% 86% 3% 0%
7.0% 10 6% 1% 4% 0% 3% 1% 6% 0% 1% 77% 2%
3.9% 11 33% 2% 1% 0% 0% 0% 0% 0% 0% 3% 60%

Grand Total 25% 10% 7% 1% 15% 2% 20% 1% 8% 8% 3%

Wolfcamp (combined) 
Train-test-all

11

%
%

 
 
Table B-9. Pivot tables illustrating lithofacies prediction results for the entire 
Wolfcamp using the Train-Test-All method.  The diagonal (highlighted) are 
lithofacies predicted correctly. 
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Corrected Porosity = A + B*Dphilog + C*Nphilog Coefficient Coefficient

Intercept Dphi Nphi

Lithofacies Code A B C
 Very fine-grained sandstone 11* 0.013516 0.8414 0.0000

 Coarse-grained siltstone 1 0.017803 0.8434 0.0000

 Fine to medium-grained siltstone 2 0.017803 0.8434 0.0000

 Marine siltstone 3 0.018539 0.6619 0.0000

 Carbonate mudstone 4 0.018539 0.6619 0.0000

 Wackestone 5 0.000000 0.6151 0.3900

 Very fine- to fine-crystalline dolomite 6 0.047523 0.5842 0.2639

 Packstone-grainstone 7 0.000000 0.6151 0.3900

 Phylloid algal bafflestone 8 0.000000 0.6151 0.3900

 Medium-crystalline moldic dolomite 9 0.047523 0.5842 0.2639

 Very fine-grained sandstone 10 0.063699 0.5610 0.0000

* Lithofacies code is 0 for very fine-grained sandstone (continental) in the geomodel
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Table B-10. Porosity correction algorithms developed by John Doveton (Chapter 3 
and Dubois et al., 2006).  They are based on empirical relationships between wire-line 
log variables and measured core porosity by lithofacies. 
 

Log Nphi 5% 10% 15%

Log Dphi 5% 10% 15%

Lithofacies Code Phi=5% Phi=10% Phi=15%

 Very fine-grained sandstone 11* 5.6% 9.8% 14.0%

 Coarse-grained siltstone 1 6.0% 10.2% 14.4%

 Fine to medium-grained siltstone 2 6.0% 10.2% 14.4%

 Marine siltstone 3 5.2% 8.5% 11.8%

 Carbonate mudstone 4 5.2% 8.5% 11.8%

 Wackestone 5 5.0% 10.1% 15.1%

 Very fine- to fine-crystalline dolomite 6 9.0% 13.2% 17.5%

 Packstone-grainstone 7 5.0% 10.1% 15.1%

 Phylloid algal bafflestone 8 5.0% 10.1% 15.1%

 Medium-crystalline moldic dolomite 9 9.0% 13.2% 17.5%

 Very fine-grained sandstone 10 9.2% 12.0% 14.8%

* Lithofacies code is 0 for very fine-grained sandstone (continental) in the geomodel
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Table B-11. Corrected porosity values by lithofacies for typical porosity range in the 
Wolfcamp calculated by empirical equation in Table B-10. 
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Lithofacies Code Phi=5% Phi=10% Phi=15%
 Very fine-grained sandstone 11* 0.000586 0.059 0.87

 Coarse-grained siltstone 1 0.000043 0.011 0.28

 Fine to medium-grained siltstone 2 0.000035 0.009 0.23

 Marine siltstone 3 0.000100 0.021 0.49

 Carbonate mudstone 4 0.000043 0.025 1.05

 Wackestone 5 0.000239 0.047 1.02

 Very fine- to fine-crystalline dolomite 6 0.000010 0.008 0.41

 Packstone-grainstone 7 0.001399 0.191 3.38

 Phylloid algal bafflestone 8 0.005703 2.291 76.42

 Medium-crystalline moldic dolomite 9 0.000096 0.079 4.06

 Very fine-grained sandstone 10 0.000016 0.013 0.70

* Lithofacies code is 0 for very fine-grained sandstone (continental) in the geomodel

Insitu  K (md) from transform
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Table B-12. Insitu permeability (K) in millidarcies (md) by lithofacies for typical 
porosity range in the Wolfcampian. 
 
 
 

Count Proportion Lithofacies Code Actual* TTA Jackknife TTA Jackknife

517 0.039  Very fine-grained sandstone 11** 31.0 28.6 17.8 31.5 31.9

2816 0.212  Coarse-grained siltstone 1 120.9 144.7 149.3 121.0 122.0

1506 0.113  Fine to medium-grained siltstone 2 60.5 50.8 56.0 60.6 60.4

1008 0.076  Marine siltstone 3 36.5 31.3 30.4 42.2 45.6

826 0.062  Carbonate mudstone 4 22.2 3.8 4.0 28.3 30.1

1746 0.131  Wackestone 5 70.5 75.0 71.3 68.5 67.6

462 0.035  Very fine- to fine-crystalline dolomite 6 33.2 21.1 16.4 29.5 27.6

2385 0.179  Packstone-grainstone 7 111.5 124.8 134.4 111.8 112.2

111 0.008  Phylloid algal bafflestone 8 7.0 6.5 4.6 6.9 7.0

982 0.074  Medium-crystalline moldic dolomite 9 59.2 64.8 64.5 56.6 53.2

935 0.070  Very fine-grained sandstone 10 69.1 73.7 77.7 68.3 68.7

13294 All 590.5 625.2 626.4 625.2 626.4

Net effect 5.9% 6.1% 5.9% 6.1%
* Corrected porosity and permeability from empirically-derived transforms based on core-defined lithofacies.
** Lithofacies code is 0 for very fine-grained sandstone (continental) in the geomodel

Sum by intervals
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Table B-13. Comparison of pore volume by lithofacies calculated for the training set 
with that using predicted lithofacies for Train-Test-All (TTA) and Jackknife training 
methods. Two perspectives are presented: 1) actual pore volume by predicted 
lithofacies (sum by lithofacies), and 2) pore volume estimated for the interval (sum by 
intervals).   
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Count Proportion Lithofacies Code Actual* TTA Jackknife TTA Jackknife

517 0.039  Very fine-grained sandstone 11* 140.7 150.0 93.0 134.4 182.8

2816 0.212  Coarse-grained siltstone 1 42.4 56.8 84.6 90.7 124.4

1506 0.113  Fine to medium-grained siltstone 2 8.6 12.1 28.5 14.8 14.4

1008 0.076  Marine siltstone 3 10.1 5.1 5.2 102.4 190.3

826 0.062  Carbonate mudstone 4 1.9 0.6 1.0 127.9 153.8

1746 0.131  Wackestone 5 242.4 110.5 91.7 1071.8 1340.4

462 0.035  Very fine- to fine-crystalline dolomite 6 990.1 847.2 605.2 2013.8 900.9

2385 0.179  Packstone-grainstone 7 1429.9 1499.5 1639.9 1784.4 2706.4

111 0.008  Phylloid algal bafflestone 8 6443.4 7653.1 4220.8 6286.8 2572.4

982 0.074  Medium-crystalline moldic dolomite 9 6998.3 7300.7 7906.6 5920.2 3390.8

935 0.070  Very fine-grained sandstone 10 1689.7 1831.8 1799.6 1920.3 4899.6

13294 All 17997.5 19467.3 16476.2 19467.4 16476.2

* Corrected porosity and permeability from empirically-derived transforms based on core-defined lithofacies.
** Lithofacies code is 0 for very fine-grained sandstone (continental) in the geomodel
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Table B-14. Comparison of flow capacity, expressed as permeability*height (Kh), by 
lithofacies calculated for the training set with that using predicted lithofacies for 
Train-Test-All (TTA) and Jackknife training methods. Two perspectives are 
presented: 1) actual Kh by predicted lithofacies (sum by lithofacies), and 2) Kh 
estimated for the interval (sum by intervals).   
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Figure B-1. Distribution of Council Grove and Chase core lithofacies for neural 
network training. Twenty-seven wells in all, ten with both Chase and Council Grove 
core. 
 
 

 
Figure B-2. Structure of neural network employed for predicting lithofacies. Seven 
predictor variables are the input. Output values are probabilities of membership in 
different lithofacies (after Bohling, 2006). 
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(See caption on next page.) 
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Figure B-3. Formation- and member-level stratigraphy correlated to wire-line well 
log in the Flower A-1 well, Stevens County, Kansas. Commonly used 
formation/member letter-number combinations are shown for the Council Grove.  
Twelve of the thirteen marine-continental (carbonate-siliciclastic) sedimentary cycles 
that are gas productive are shown (Grenola Limestone, C_LM is not logged).  
Stratigraphic names that include “Limestone” are marine half cycles when combined 
with an adjacent continental half-cycle, intervals with stratigraphic names that include 
“Shale,” form a complete cycle. Color-coded lithofacies are derived from core. Three 
were deposited in a continental setting, L0- sandstone, L1- coarse siltstone, and L2- 
shaly siltstone, and eight in a marine environment, L3- siltstone, L4- carbonate 
mudstone, L5- wackestone, L6- very fine-crystalline dolomite, L7- packstone-
grainstone, L8- phylloid algal bafflestone, L9- fine-medium crystalline moldic 
dolomite, and L10- sandstone. Wire-line log abbreviations are caliper (CALI), 
gamma ray (GR), corrected porosity (PHI_GM3), photoelectric effect (PEF), density 
porosity (DPHI), neutron porosity (NPHI), core permeability (K_MAX, and core 
porosity (CORE_POR). Logged interval is 520 ft (160 m). 
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Figure B-4. Crossvalidation results for Wreford and Council Grove neural network 
with PE curve.  Optimal parameters for network size and damping parameter is 20 
nodes and 1 as determined by the objective function metric and 10 and 1 by the 
misallocation cost metric. 
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Figure B-5. First step in training a neural network is selection of the training data 
predictor variables 
 
 

 
 
Figure B-6. Neural network parameters are set in the second step. 
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Figure B-7. Objective function versus iteration of a neural network training session. 
Objective function is a measure of mismatch between true and predicted facies. 
 
 
 
 

 
Figure B-8. Neural network selection for batch predicting lithofacies. 
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Figure B-9. Match predictor variables in LAS files to be processed with those in the 

ained neural network.  tr
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APPENDIX C – Comparison between Geomod3 and Geomod4 

 

Introduction 

In this appendix, the differences between Geomod3 and Geomod4 are 

discussed. Chapter 3 is based on version Geomod3, while Chapter 4 utilized 

Geomod4. Models for the Hugoton have evolved over the past several years as data 

have been added and lithofacies estimation techniques, free water level, and 

petrophysical property transform equations have been refined (Table C-1).  The 

principal variables that have changed from Geomod3 to Geomod4 were and increase 

in data (core and node wells), slight modification in lithofacies classes, minor change 

in stratigraphic intervals for neural network training, lithofacies and porosity 

variograms, slight modification in the free-water level, and adjustments in porosity 

correction algorithms. Model dimensions, cell size, and layering are essentially the 

same, although a change in projections resulted in a slightly different orientation for 

the model and cell count. Differences between the models are summarized in Table 

C-2.  

 

Model building, an iterative process 

Building the Hugoton geomodel has been an iterative process where 

techniques and tools to manage large data volumes evolved. For details on Hugoton 

model building see Dubois et al., 2006a.  Chapter 3 discussed a simple four-step 

workflow: 1) define lithofacies in core and correlate to electric log curves (training 

set), 2) train a neural network and predict lithofacies at non-cored wells, 3) populate a 

3D cellular model with lithofacies using stochastic methods, and 4) populate model 

with lithofacies-specific petrophysical properties and fluid saturations, and also 

presented a more detailed workflow (Figure 3-1, Chapter 3).  The workflows imply 

the process was linear. In practice, however, it involved feedback loops and multiple 

iterations at the subtask level.  Experimentation, technique modification, testing, and 

validation occurred at several levels in the workflow as well as at the full model scale.  
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Data were added and improvements were made in each of the four model 

iterations (Table C-1).  Geomod3 and Geomod4 are very similar and, although 

Geomod4 is viewed as an improvement over Geomod3, the improvements are not 

proportional to the amount of data added.  Modeling the Hugoton is an ongoing 

project at the Kansas Geological Survey in collaboration with industry partners. 

Although the current geologic and petrophysical model (porosity and permeability) 

are considered satisfactory, refinements in the free-water level and water saturations, 

are currently being considered.   

 

Data and model statistics 

Core defined lithofacies (neural network training data) and lithofacies, 

predicted by neural networks in wells without core (node wells), are the basic data for 

building the Hugoton geomodel.  Core training data were nearly doubled from 

Geomod3 to Geomod4 (Table C-1 and Figure C-1). Nine Council Grove cores and 

eight Chase cores were used in Geomod3 while the training set in Geomod4 included 

15 Council Grove and 16 Chase core.  Wells without core where lithofacies were 

predicted by neural networks numbered 1350 in Geomod3 and 1600 in Geomod4.  

Most of the additions to Geomod4 were in Texas County Oklahoma. 

 

Lithofacies 

Representation of lithofacies at varying scales is similar between the geomodels 

(Table C-3 and Figure C-2).  Illustrated are the proportions of 11 lithofacies in the 

core training set, lithofacies at the node wells, upscaled lithofacies at node wells, and 

lithofacies in the cellular model. Node well lithofacies include core lithofacies and 

predicted lithofacies at wells without core. Most differences in lithofacies in core 

reflect the addition of core with more or less of a particular lithofacies.  Four changes 

in lithofacies classes were made between modeling efforts: 
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1. Very-fined-grained sandstone (continental) was not modeled in the Chase in 

Geomod3 due to insufficient training data, but was modeled in Geomod4 after 

more core of this lithofacies was added in the Chase. 

2. Very-fined-grained sandstone (marine) was not modeled in the Council Grove 

in Geomod3 due to insufficient training data, but was modeled in Geomod4 

after more core of this lithofacies was added in the Council Grove. 

3. Packstone and grainstone lithofacies were separate classes in Geomod3, but 

were combined in Geomod4 because trained neural networks were not 

effectively discriminating the two classes. 

4. Phylloid algal bafflestone was added in Geomod4 after additional core 

training data were incorporated. 

 

Lithofacies in the training set 

Differences between core lithofacies (training) and predicted lithofacies at 

node wells within each model is not only a function of the distribution of the training 

data with respect to node well density, but also of neural network prediction accuracy 

(Appendix B).  Variance in specific lithofacies at node wells between models is 

primarily due to differences in representation of the lithofacies in training data 

between models. For example, fine- to medium-crystalline moldic dolomite 

comprises only 1.4% of the node well volume in Geomod3, but 6.6% in Geomod4.  

The new core data for this lithofacies used in Geomod4 happens to be in the area 

where node well density is highest (Stevens County). Neural network models, 

improved by additional core training data for the lithofacies, more accurately 

predicted fine- to medium-crystalline moldic dolomite in Geomod4.  An example 

where Geomod3 neural networks had higher accuracy a lithofacies is the mudstone 

lithofacies. The inter-model discrepancy for the mudstone lithofacies has not been 

resolved.   

 

Lithofacies at node wells 
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There is little difference between node well lithofacies at the half-foot (0.15 

m) scale and upscaled lithofacies at node wells (2-4 ft mean, 0.3-0.6 m scale) within 

each model except for the continental siliciclastic lithofacies. The decrease in 

proportions between scales is a function of layer thickness in the model and the 

upscaling process.  Both models have 169 layers and have the same number of layers 

per stratigraphic interval. In marine, mostly carbonate intervals, layers are purposely 

thinner (mean 2 ft, 0.3 m) than in the continental siliciclastic strata (mean 4 ft, 0.6 m).  

Carbonate intervals are the main pay lithofacies. Due to computational constraints, 

layer numbers in the siliciclastic intervals were reduced (made thicker).  Thus the cell 

counts are lower. It should be noted that the siliciclastic layers were doubled and 

remodeled in a later model version (Geomod4.4) for analysis of siliciclastic 

lithofacies discussed in Chapter 4). 

 

Lithofacies proportions in the model 

Lithofacies proportions vary little between upscaled lithofacies at node wells 

and the entire cellular model because the modeling process incorporates statistical 

lithofacies data from node wells.  Sequential indicator simulation relies on data 

analysis of lithofacies in the node wells to guide it in the process of populating cells 

between node wells.  However, node well upscaled lithofacies proportions may be 

skewed because of unequal well density in the node well set. No adjustments in 

upscaled lithofacies proportions were made in Geomd3 and node-well-upscaled 

lithofacies and model proportions are approximately equal. Upscaled lithofacies 

proportions in Geomd4 were adjusted downward for fine- to medium-crystalline 

moldic dolomite in certain stratigraphic intervals to take into account the effects of 

high node well densities in regions where the lithofacies dominates. This resulted in a 

reduction of the lithofacies occurrence and a more realistic distribution in the cellular 

model. 
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Neural networks 

Neural network structure and input parameters are the same for both model 

iterations.  They do vary, however, in the lithofacies being classified (discussed 

above) and a slight variation in the stratigraphic split between models.  In both cases, 

neural network models were trained for three stratigraphic intervals, upper Chase, 

lower Chase, and the Council Grove.  However, in Geomod4, the lowermost 

formation in the Chase, Wreford, was included in the Council Grove because it has 

lithofacies more similar to the Council Grove than to the rest of the Chase.  

Additional training data may have improved neural network prediction accuracy 

slightly (Table C-4).  See Appendix B for details on neural network training. 

 

Variograms 

Variograms are important for stochastic simulation because they control, to a 

large degree, the distribution of the property being simulated.  Variogram parameters 

used in both models are summarized in Table C-2.  Geomod3 variograms were based 

on limited data analysis within PetrelTM, the modeling application, and subjective 

observations of lateral and vertical lithofacies distribution in areas with close well 

control. Geomod4 variograms were based on extensive data analysis of data zone-by-

zone, lithofacies-by-lithofacies (24 zones and 11 lithofacies) by Bohling.  Variogram 

horizontal ranges do not vary significantly between the models. Data analysis 

confirmed observations that lithofacies bodies are laterally extensive and that long 

horizontal variogram ranges are justified.  Vertical ranges are generally larger for 

Geomod4, on the basis of data analysis. In both models, the variogram ranges exceed 

node well spacing (less than variogram ranges) making the simulations more 

deterministic than stochastic in areas with close node well density. More detail on 

variograms for Geomod3 is provided in Chapter 3 and for Geomod4 in Dubois et al. 

(2006b). 
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Lithofacies in the models 

Additional data, slight changes in lithofacies classes and stratigraphic intervals 

for trained neural networks resulted in only slight differences in the models overall 

(Table C-3).  Differences are more apparent when comparing lithofacies by 

stratigraphic zone in the models.  Figure C-3 is a series of 2-D views of 3-D 

connected volumes (CV), representing collections of touching cells in the cellular 

model having common properties.  The figure shows examples of three important 

lithofacies in three stratigraphic intervals.   

Figure C-3A illustrates the distribution of continental very-fine-grained 

sandstone in the Speiser Shale (A1_SH) having porosity > 12%. Regions where this 

sandstone is present is very similar between models, however, the continental very-

fine-grained sandstone lithofacies is more continuous and covers a higher proportion 

of the region where it is present.  The increase in continental very-fine-grained 

sandstone is consistent with data presented in Table C-3 where the cell count 

lithofacies in Geomod4 is 64% higher than it is in Geomod3.  The model proportion 

is also closer to the proportion for upscaled lithofacies at the node wells and in the 

training data; however, it appears to be under represented in the model.  

Packstone-grainstone (light blue) and very-fine-crystalline dolomite (pink) 

having porosity > 8% in the Crouse Limestone (B1_LM) is shown in Figure C-3B.  

Regions where these important lithofacies are present are similar, however packstone-

grainstone is more widespread within the areas where it does occur.  The differences 

in proportions are not reflected in Table C-3, possibly because the table is for the 

entire model and the packstone-grainstone lithofacies is the most common lithofacies 

in the model. 

Two figures illustrate fine- to medium-crystalline moldic dolomite (purple) 

and packstone-grainstone (light blue) in the Krider Limestone (Figures C-3C and C-

3D).  Figure C-3C3 is for cells with having porosity> 16% in Geomod3 and > 17% in 

Geomod4. Figure C-3C4 is for cells with having porosity> 18% in Geomod3 and > 

19% in Geomod4.  The variation in porosity between models is due to porosity 
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correction algorithm changes between the models (Table C-5). Depicted are views of 

a known dolomitized ooid-bioclast shoal system, the most prolific reservoir in 

Stevens County. The main difference in the models is that there is more fine- to 

medium-crystalline moldic dolomite and less packstone-grainstone in Geomod4.  

This reflects the addition of core containing fine- to medium-crystalline moldic 

dolomite to the training data and better prediction of this lithofacies in the model.  In 

Geomod3, neural networks predicted much of the dolomite lithofacies as packstone-

grainstone. 

 

Volumetric gas in place 

Because water saturation and gas in place are functions of lithofacies and 

porosity (Chapter 3), volumetric gas in place is an effective metric for comparing 

models (Table C-6).  However, comparisons cannot be made directly because 

multiple variables were changed between models: 1) lithofacies spectrum split 

differently, 2) slight, but important change in free-water level (FWL), and 3) 

modification of the porosity correction algorithm. Some of the differences in gas 

volume can be accounted for and it is useful to make comparisons, at least 

qualitatively.  Raising the FWL in the eastern part of the model significantly reduced 

gas volume in continental siltstone (*_SH), particularly in the lower part of the gas 

column (Council Grove Group) but had almost no effect on other lithofacies higher in 

the gas column (Chase Group).  Modification in the porosity correction algorithm 

increased pore volume (and gas volume) by approximately 3%. Geomod4 has 

increased dolomite that had been predicted as limestone in Geomod3.  The difference 

may account for a 1-2% increase in pore volume.  The 3-4% increase in the prediction 

in “pay” lithofacies that had been predicted as non-pay lithofacies (Table C-4) may 

account for another 1-2% increase in pore volume. As much as half the overall 

increase in gas volume (10.5% for the entire Wolfcampian) can be related to the net 

increase in pore volume discussed above.   
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Conclusions 

Lithofacies in Geomod4 and Geomod3 are very similar overall, but do vary at 

smaller scales. The significant increase in core training data did improve the neural 

network prediction of certain lithofacies (e.g., continental very-fine-grained sandstone 

and fine- to medium-crystalline moldic dolomite).  These improvements are reflected 

in their representation in the model. Water saturation is lower and gas in place is 

higher in Geomod4, due in part to higher pore volume because of changes in the 

porosity correction algorithm.  Overall the models are very similar, but Geomod4 is 

considered a slightly improvement over Geomod3. 
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Geomod1 Geomod2 Geomod3 Geomod4

Council Grove core 8 9 9 15*

Chase core 0 2 8 16*

Combined core wells 8 9 14 27***

Wells without core 515 1250 1350 1574

Number of lithofacies 8 10 11 11

Model interval Council Grove Council Grove 
and Chase

Council Grove 
and Chase

Council Grove 
and Chase

Model area Kansas Kansas Kansas and 
Oklahoma

Kansas and 
Oklahoma

Chapter 2 NA 3 4

*  17 wells in study, 15 in Council Grove neural network training set
**  17 wells in study, 16 in Chase neural network training set

***  29 wells in study, 27 wells in neural network training set

*

 
 
Table C-1. Data volumes, model intervals, geographic coverage, and chapters where 
discussed for four Hugoton geomodel iterations. 
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Geomod 3 Geomod 4
Dimensions Cell count1 107,765,147 108,064,831

Layers 169 169
Cell size XY 660 ft (200 m) 660 ft (200 m)

Data
Neural network training set Chase wells 9 15

Council Grove wells 8 16
Combined wells 14 27

Node wells2 Chase wells 1060 1308
Council Grove wells 1136 1250
Combined wells 1364 1600

Structural framework Well count 8850 8756

Model parameters

Variograms - lithofacies basis
limited data analysis and 
subjective observations

extensive data analysis 
by zone by lithofacies

major axis (marine) 30,000 ft 18,000 - 30,000 ft
minor axis (marine) 25,000 ft 15,000 - 25,000 ft
azimuth (marine) 11 degrees3 11 degrees3

major axis (continental) 30,000 ft 25,000 - 40,000 ft
minor axis (continental) 30,000 ft 25,000 - 40,000 ft
azimuth (continental) NA NA
vertical range mean layer h X 2 7-21
nugget 0.1 - 0.22 0
sill 1 1

Variograms - porosity major axis (marine) same as lithofacies 27,000 - 39,000 ft
minor axis (marine) same as lithofacies 23,000 - 33,000 ft
azimuth (marine) same as lithofacies 11 degrees3

major axis (continental) same as lithofacies 35,000 - 42,000 ft
minor axis (continental) same as lithofacies 35,000 - 42,000 ft
azimuth (continental) same as lithofacies NA
vertical range4 same as lithofacies 7-21
nugget same as lithofacies 0
sill same as lithofacies 1

Results
Neural network accuracy5 correct (all facies) 63-66% 64-67%

within 1 facies (all) 88-90% 90-91%
correct (F6-10) 64-70% 68-74%
within 1 facies (F6-10) 88-91% 89-90%
predicted/actual (F6-10) 101-101% 106-103%

Model cell lithofacies Continental lithofacies (F0-2) 24.5% 24.2%
"Non-pay" marine (F3-5) 35.5% 36.0%
"Pay" marine (F6-10) 40.1% 39.9%

Volumetric gas in place6 Chase 20,075 22,474
Council Grove 1,699 1,582
Combined 21,774 24,056

1 different projections caused slightly different cell count
2 includes core wells in count
3 approximate depositional strike
4 not constrained by layer h
5 entire Wolfcampian; first value is for NoPE case and second is for PE case; 
   accuracy for train on all, predict on all basis (see Appendix B)
6 Grant and Stevens Counties, Kansas. Volume is in trillion cubic feet (TCF)  

 
Table C-2.  Summary statistics comparing Geomod3 and Geomod4. 
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Geomod 3
Height 0.5 feet 0.5 feet Variable* Variable*
Source Actual NNet Predicted Upscaled Modeled (SIS)

Code Lithofacies Training Node Wells Node Wells All cells
0 Cont SS 5.6% 2.2% 1.0% 1.1%
1 Cont Crs Slt 23.3% 19.7% 17.0% 16.7%
2 Cont Fn Slt 12.9% 9.6% 7.1% 6.7%
3 Mar Slt 7.5% 9.6% 9.0% 9.1%
4 Mdst 5.4% 4.3% 3.6% 3.9%
5 Wkst 14.5% 20.1% 22.2% 22.5%
6 Vf-fxln Dol 2.8% 4.9% 3.9% 3.8%
7 Pkst 14.7% 24.7% 25.9% 25.2%
8 Grnst 2.3% 0.2% 0.2% 0.2%
9 F-mxln Dol 5.6% 1.4% 3.8% 3.8%

10 Mar SS 5.4% 3.4% 6.3% 7.1%

Count (N) 8,545 993,146 183,949 107,765,147

Geomod 4
Height 0.5 feet 0.5 feet Variable* Variable*
Source Actual NNet Predicted Upscaled Modeled (SIS)

Code Lithofacies Training Node Wells Node Wells All cells
0 Cont SS 3.8% 2.4% 1.4% 1.8%
1 Cont Crs Slt 21.0% 18.6% 15.0% 14.6%
2 Cont Fn Slt 11.2% 8.9% 7.7% 7.8%
3 Mar Slt 7.6% 9.6% 9.7% 9.9%
4 Mdst 6.1% 1.6% 1.3% 1.6%
5 Wkst 13.4% 19.7% 22.2% 24.5%
6 Vf-fxln Dol 3.4% 3.5% 3.5% 3.6%
7 Pkst-Grnst 18.2% 22.1% 24.7% 23.9%
8 PA Baff 0.8% 0.6% 0.7% 0.7%
9 F-mxln Dol 7.3% 6.6% 6.9% 4.7%

10 Mar SS 7.0% 6.4% 6.9% 7.0%

Count (N) 13,512 1,383,653 211,720 108,064,831

* Model layer h: Average of mean h = 3.3 ft (1 m).  Range of mean h = 1.9 to 5.2 ft 0.57-
1.58 m). Lithofacies 0-2 tend to be in thicker layers.  

 
Table C-3.  Relative distribution of eleven lithofacies in core, node wells and cellular 
models.  Core-defined lithofacies for 14 wells were used in neural network 
“Training” for lithofacies prediction in 1350 “Node Wells” in Geomod3, while cores 
defined lithofacies from 27 core wells and 1574 wells without core were used in 
Geomod4.   Half-foot (0.15 m) lithofacies in node wells were upscaled to model layer 
thickness (Variable Upscaled).  Sequential indicator simulation (SIS) was utilized to 
populate the cellular model (All Cells) between the node wells.  Both models had the 
same number of layers (169) and cell width (660 ft, 200 m).  Abbreviations include 
continental very-fine-grained sandstone (Cont SS), continental coarse-grained 
siltstone continental (Cont Crs Slt), continental fine-medium grained siltstone (Cont 
Fn Slt), marine siltstone (Mar Slt), carbonate mudstone (Mdst), wackestone (Wkst), 
very fine to fine crystalline dolomite (Vf-fxln Dol), packstone-grainstone (Pkst-
Grnst), phylloid algal bafflestone (PA Baff), medium crystalline moldic dolomite (F-
mxln Dol), and marine very-fine-grained sandstone (Mar SS). 
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Geomod 3

NoPE PE NoPE PE NoPE PE
All w/in 1F 89% 88% 92% 93% 90% 91%

All % correct 67% 70% 62% 64% 64% 67%
F6-10 w/in 1F 91% 88% 85% 89% 88% 91%

F6-10 %correct 71% 75% 51% 57% 64% 70%
F6-10 pred/actual 107% 106% 89% 88% 101% 101%

Geomod4

NoPE PE NoPE PE NoPE PE
All w/in 1F 88% 89% 89% 91% 88% 90%

All % correct 67% 70% 58% 61% 63% 66%
F6-10 w/in 1F 90% 91% 86% 88% 89% 90%

F6-10 %correct 74% 79% 57% 60% 68% 74%
F6-10 pred/actual 109% 107% 98% 91% 106% 103%

Chase Council Grove Wolfcamp

Chase Wreford &Council 
Grove Wolfcamp

 
 
Table C-4.  Compiled summary statistics for neural-network-prediction accuracy.  
Data are for neural networks trained on all data by stratigraphic interval and 
lithofacies predicted for the same training data.  Models were tested for the cases with 
PE and without PE curve (NoPE).  Upper and lower Chase results are combined.  
Wreford from lower Chase is included in Council Grove in Geomod4. Results for the 
entire Wolfcampian (Wolfcamp all) are the sums of the results for the three 
stratigraphic intervals.  See Appendix B for metrics and their discussions. 
 
 

For NDphi = 0.10
LithCode Geomod4 Geomod3 Absolute %

(F0)Continental ss 11 (0) 0.098 0.100 -0.002 -2.3%
crs silt 1 0.102 0.102 0.000 0.0%

fine silt 2 0.102 0.102 0.000 0.0%
marine silt 3 0.085 0.085 0.000 0.0%

mdst 4 0.085 0.085 0.000 0.0%
wkst 5 0.101 0.099 0.002 1.9%

fxln dol 6 0.131 0.125 0.007 5.4%
pkst 7 0.101 0.099 0.002 1.9%

grnst 8 0.101 0.099 0.002 1.9%
Cxln dol 9 0.131 0.125 0.007 5.4%

Marine ss 10 0.120 0.115 0.005 4.3%

Difference

 
Table C-5.  Impact of the change in porosity correction algorithms used in Geomod3 
nd Geomod4 for 10% porosity. Algorithm modification resulted in an approximately 

3% increase in pore volume in Geomod4. 
 

a
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Zone Geomod3 Gmod4 %Change
HRNGTN 1227 1411 15.0%
KRIDER 2795 3368 20.5%
ODELL 295 294 -0.3%
WINF 3215 3500 8.9%
GAGE 807 970 20.2%
TWND 4686 5270 12.5%
HLMVL 663 821 23.8%
FTRLY 5212 5351 2.7%
MATFIELD 127 110 -13.4%
WREFORD 1048 1379 31.6%
A1_SH 331 136 -58.9%
A1_LM 656 772 17.7%
B1_SH 76 53 -30.3%
B1_LM 143 175 22.4%
B2_SH 9 10 11.1%
B2_LM 167 192 15.0%
B3_SH 56 6 -89.3%
B3_LM 34 39 14.7%
B4_SH 67 10 -85.1%
B4_LM 22 30 36.4%
B5_SH 3 1 -66.7%
B5_LM 113 138 22.1%
C_SH 2 1 -50.0%
C_LM 20 19 -5.0%

Chase 20075 22474 12.0%
Cgrv 1699 1582 -6.9%

Wolfcamp 21774 24056 10.5%
 
Table C-6. Volumetric gas in place by zone for Grant and Stevens counties, Kansas, 
for Gomod 3 and Geomod4.  Gas volumes are in billion cubic feet. 
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Figure C-1. (A) Core lithofacies for neural network training for Geomod3 includes 
data from 14 wells, three with both Chase and Council Grove core, five with only 
Chase core, and six with only Council Grove Core.  (B) Core lithofacies training set 
for Geomod4 includes data from 27 wells, four with both Chase and Council Grove 
core, twelve with Chase only, and eleven with Council Grove only.  Two wells with 
arrows were not part of the training set.  Wireline logs for the one in Stevens County 
were not satisfactory and the well in Seward County was added late. 
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Figure C-2.  Graphical representation of lithofacies in upscaled cells at node wells 
and all cells in the two geomodels. 
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Figure C-3. Comparison of important lithofacies in Geomod3 and Geomod4.  
Illustrated are 2-D views of 3-D connected volumes (CV), collections of touching 
cells in the cellular model having common properties. Numbers 3 and 4 in the figure 
labels corresponds with the model version. (A3, A4) Fifteen CV of continental very-
fine-grained sandstone in the Speiser Shale (A1_SH) having porosity > 12%. 
Geomod3 is on the left and Geomod4 on the right.  (B3, B4) Thirty largest CV of 
packstone-grainstone (light blue) and very-fine-crystalline dolomite (pink) having 
porosity > 8% in the Crouse Limestone (B1_LM).  (C3, C4) Twenty largest CV of 
fine- to medium-crystalline moldic dolomite (purple) and packstone-grainstone (light 
blue) in the Krider Limestone having porosity > 16% in Geomod3 and > 17% in 
Geomod4. Stevens County, Kansas is outlined in green. (D3, D4) Same as in C3 and 
C4 except for porosity > 18% in Geomod3 and > 19% in Geomod4. 
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APPENDIX D - Paleoslope and water depth estimate, lower Wolfcampian, 
Hugoton embayment of the Anadarko basin 
 
Published as an open-file report.  Dubois, M. K., 2006, Paleoslope and water depth 
estimate, lower Wolfcampian, Hugoton embayment of the Anadarko basin: Kansas 
Geological Survey, Open-File Report 2006-30, 21 p. 
http://www.kgs.ku.edu/PRS/publication/2006/OFR06_30/index.html (Accessed March 
21, 2007.) 
 
 
ABSTRACT 
 
Three criteria are used in combination to estimate paleoslope and maximum water 

depth during deposition of seven lower Wolfcampian (Council Grove Group) 

sedimentary cycles on a low relief shelf in Kansas and Oklahoma. Landward extent of 

paleo-shoreline establishes zero water depth at maximum flooding, and the updip 

extent of depth-specific fauna (fusulinids) establishes approximate water depth along 

a sub parallel linear trace.  Slope is the depth divided by the distance between the two 

traces.  Rate of change in thickness of a large interval of strata (most of Wolfcamp) 

serves as another estimate of slope for comparison.  Maximum water depth on the 

basinward edge of the shelf is estimated by adding the depth along a trace established 

by fauna to additional depth determined by applying approximated slope to the 

distance between the faunal trace and the shelf margin.  Paleoslope on the Kansas 

portion of the shelf is estimated to be 1 ft/mi (0.2 m/km).  Beyond the shelf margin 

the slope increased by a factor of ten. Maximum water depths vary by cycle from a 

minimum of <50 ft (15 m) to a maximum of 110 ft (34 m). 

 

Introduction 

Shelf geometry (paleoslope) and water depth are important variables for 

understanding sedimentation patterns in the lower Wolfcampian Council Grove group 

(Figure D-1) in southwest Kansas (Figure D-2), and their determination is the object 

of this study. Rocks of the upper seven marine-continental, carbonate-siliciclastic 

sedimentary cycles of the Council Grove (Figure D-3) were deposited in a shallow 
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shelf setting in the Hugoton embayment of the Anadarko basin (Dubois et al., 2006).  

Marine carbonates thin landward and continental siliciclastic strata thin basinward in 

nearly reciprocal fashion (Figure D-4).  Paleoslope, a function of subsidence and 

sedimentation, and glacial eustacy controlled water depth (or elevation above sea 

level) on the shallow shelf and the rate of shoreline movement during sea level rise 

and fall.  Paleoslope and water depth estimates are based on three criteria: 1) 

accommodation space indicated by isopachs of relatively large intervals, 2) paleo-

shoreline location (updip extent of marine carbonates), and 3) updip extent of depth-

specific fauna (fusulinids).  

 

Shelf geometry 

Present-day structure of Wolfcampian-age rocks was strongly influenced by a 

Laramide-age eastward tilt (Figure D-5), whereas the Wolfcampian isopach (Figure 

D-6) better reflects the shelf geometry at the time of deposition.  From the west field 

margin, Wolfcampian strata thicken basinward (eastward) at a rate of approximately 

0.24 m/km (1.3 ft/mi) to a position on the shelf where the rate of thickening increases 

by a factor of 10 to 24 m/km (13 ft/mi). The axis of thickening is coincident with an 

area of present-day steep dip and may mark a shelf margin or axis of a steepened 

slope. It is also nearly coincident with the edge of a Virgilian-age starved basin and 

transition from marine carbonate to marine shale (Rascoe, 1968; Rascoe and Adler, 

1983).  The minimum paleoslope estimated for the older Lansing-Kansas City 

(Pennsylvanian, Missourian) on the Kansas shelf was 0.1-0.2 m/km (0.5-1.1 ft/mi) 

(Watney et al., 1995), however, relief across the Kansas portion of the shelf in the 

Hugoton embayment during Council Grove deposition has not been estimated.  

 

Subsidence history and sedimentation record 

The Anadarko basin experienced maximum subsidence in early Pennsylvanian 

and by Permian subsidence had waned to the point that the entire basin had nearly 

filled (Kluth and Coney, 1981; Rascoe and Adler, 1983; Kluth, 1986; Perry, 1989).  

 305



The isopach encompassing most of the Wolfcampian (upper thirteen cycles, from the 

top of the Chase Group to the base of the Grenola Limestone formation in the lower 

Council Grove Group) thickens only 80 ft (24 m), 480-560 ft (146-170m) in 60 mi 

(100 km) across the shelf, a rate of 1.3 ft/mi (0.24 m/km) (Figure D-6).  Individual 

cycles show considerably less thickening, but the rate of thickening within a single 

cycle cannot be considered a proxy for slope because the depositional systems were 

not efficient at filling accommodation space that varied rapidly in response to glacial 

eustacy. Two marine carbonate half-cycles in the middle of the Council Grove 

(B2_LM and B3_LM) pinch out at or near the west updip margin of the Hugoton 

field (Figures D-4 and D-7) pinning the water depth as zero along a linear trace, and 

marking the maximum extent of marine flooding on the shelf for those cycles. Other 

Council Grove cycles thin substantially, especially the B1_LM and B4_LM.   

 

Fusulinid occurrence on the shelf 

The use of fusulinids as paleo-water depth indicators in the Pennsylvanian and 

Permian has been debated extensively (e.g., Imbrie et al., 1964; Elias, 1964; Laporte, 

1962; Laporte and Imbrie, 1964; McCrone, 1964). Fusulinids may live in a wide 

range of water depths and can transported into an even wider range of depths.  

Mazzulo et al. (1995) provides an overview of the debate and the writer agrees with 

their assessment that a typical minimum depth for Early Permian fusulinids is 

approximately 50-60 ft (15-18 m). All Council Grove cycles studied except the Eiss 

(B3_LM) and Morrill (B4_LM) have thin, distinctive fusulinid-rich intervals that are 

adjacent to or mark the maximum flooding of their respective marine half-cycles 

(Figure D-8).  Occurrences in cores studied are usually characterized by an abrupt 

appearance and disappearance (vertically) of very abundant, large (cm-size) 

fusulinids, in contrast with occasional scattered individuals, sometimes present in 

adjacent strata.  Boardman and Nestell (1993) and Boardman et al. (1995) place the 

occurrence of fusulinid biofacies in the transgressive limestone and at the base of the 

regressive limestone, which are separated by the deeper-water core shale interval of 
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the idealized Pennsylvanian-Permian cyclothem (Heckel, 1977). This places the 

biofacies in the approximate middle of the relative depth scale for outcropping cycles 

in eastern Kansas and northeastern Oklahoma. Recognized in this study is the notable 

absence on the Hugoton shelf of the dark, fissile “core shale” common to 

Wolfcampian cycles in outcrop (Mazzullo et al., 1995; Boardman and Nestell, 2000), 

suggesting that water depths on the Hugoton shelf were less than those at the present 

day outcrop 300 miles (480 km) to the east. The closest equivalent to the typical deep 

water lithofacies in Council Grove core in the Hugoton are dark marine siltstones 

found near the base of the marine carbonate intervals in two of the seven cycles 

studied, the Grenola (C_LM) and Funston (A1_LM).  

The maximum updip extent of the fusulinid biofacies (Figure D-7) by cycle 

form sub-parallel traces in a sequential pattern that may be related to systematic 

variability in sea level amplitude.  Of the seven Council Grove cycles studied the 

fusulinid facies the furthest updip extent occurs in the two outermost cycles (A1_LM 

and C_LM), while the updip limit of fusulinids in the next cycles inward (B1_LM 

and B5_LM) are downdip slightly. Maximum updip position for the biofacies in the 

B2_LM is further downdip, and neither the B3_LM nor B4_LM have the fusulinid 

biofacies present in cores studied. If fusulinids occurred at similar depths from cycle 

to cycle water depths would have been at a maximum during A1_LM and C_LM 

deposition, and at a minimum during B2 through B4_LM deposition.  Relative depths 

for B1_LM and B5_LM deposition would have been intermediate to the two 

extremes. 

Furthermore, the lack of fusulinids in the cores studied for the B3_LM and 

B4_LM suggests the water never exceeded 50-60 ft (15-18 m) in the study area where 

core data are available (most of the Hugoton in Kansas and Oklahoma), if the 

fusulinid biofacies is assumed to be present in all cycles where water depths exceeded 

50-60 ft (15-18 m). 
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Maximum updip position of shoreline and paleoslope estimate 

Based on examination of approximately 200 examples of the transition from 

marine carbonate to continental siliciclastic strata in core from 29 wells, thinning and 

pinchouts of the Wolfcampian (both Chase and Council Grove) marine carbonates at 

the updip margin of the Hugoton are not a result of erosion.  The maximum shoreline 

extent is defined for two of the Council Grove marine carbonates, B2_LM and 

B3_LM, by their updip limit (Figures D-4 and D-7). In the Middleburg (B2_LM) 

marine carbonate, the maximum extent of the fusulinid facies is approximately 50 

miles (80km) from its pinchout (Figure D-7), suggesting a slope of 1 ft/mi (0.2 

m/km), assuming that the minimum water depth for the fusulinid facies is 50ft (15m). 

The estimated slope is very close to the rate of thickening in the Wolfcamp (1.3 ft/mi, 

0.24 m/km). Noteworthy is the shoreline position for the B3_LM, which is basinward 

of that for the B2_LM, and that no fusulinids were observed in the B3_LM. This 

suggests that the water depth was shallower during the deposition of the B3_LM 

carbonate than for the B2_LM. Marine carbonate in the other four cycles (A1, B4, B5 

and C) does not pinch out in core in the study area, but thins in a westerly direction 

(Figure D-4).  Based upon the spatial relationship between the updip limit fusulinid 

occurrence and paleo-shorelines, and overall rates of change in the Wolfcamp 

isopach, the paleoslope shelf is estimated to have been 1 ft/mi (0.2 m/km) during the 

deposition of Council Grove Group. Beyond the shelf break the slope may have 

increased by a factor of 10 to 10 ft/mi (2 m/km).   

 

Maximum water depth 

Based on criterion established above (paleoslope, updip extent of fusulinids 

and paleo-shorelines), the maximum water depth for the Council Grove marine 

intervals in the study area can be estimated. Points along a trace where the updip limit 

of fusulinids are established are assumed to have had a maximum water depth of 50 ft 

(15 m). The additional depth from the biofacies trace to the northwest portion of 

Seward County (proximal to the shelf margin) can be estimated as the product of 
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paleoslope and distance that is added to the depth at the biofacies trace for maximum 

depth on the shelf (maximum depth = 50 ft + [1 ft/mi X distance]).  Immediately 

northwest of the shelf margin in northwest Seward County I estimate water reached a 

maximum depth of approximately 110 ft (34m) during deposition of the A1_LM and 

C_LM, the outer two of the seven cycles studied. For the B1_LM and B5_LM, one 

cycle in from the end cycles, a maximum depth is estimated at 80ft (24m). Water 

depths for the middle three cycles are estimated to have reached 50 ft (15m) for the 

B2_LM and slightly less than 50 ft (<15m) for the B3_LM and B4_LM.  

 

Inter-cycle variability in sea level and higher order cyclicity 

As noted earlier, there appear to be systematic shifts in shoreline position of 

marine carbonate (Figures D-4 and D-7), updip extent of the fusulinid biofacies 

(Figure D-7), and the estimated maximum water depth, all of which are synchronized. 

Within the seven cycles studied, maximums of the three variables occur at the 

outermost cycles (A1 and C), minimums occur at the inner cycles (B2, B3 and B4), 

and the cycles between are intermediate (B1 and B5). The ordered shift in sea level 

may reflect a higher order of glacial cyclicity (than for the individual cycles).  

 

Conclusions 

Paleoslope and water depths for the Hugoton embayment of the Anadarko 

basin can be estimated for the Council Grove by considering three criterion: 1) 

Wolfcamp isopach, 2) shoreline position indicated by the landward extent of marine 

carbonate, and 3) the updip extent of fusulinids.  Paleoslope on the Kansas portion of 

the shelf is estimated to be 1 ft/mi (0.2 m/km).  Beyond the shelf margin the slope 

increased by a factor of ten (10 ft/mi, 2 m/km).  Maximum water depth on the shelf 

ranges from approximately 50 ft (15 m) in the innermost cycles to 110 ft (34 m) in the 

outer most cycles (top and bottom) of the seven cycles studied.  Systematic inter-

cycle variability in water depth may indicate higher order glacial-eustatic cyclicity. 
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Figure D-1. Lower Permian stratigraphy, Hugoton embayment of the Anadarko basin 
(compiled from Zeller, 1968; Sawin et al., 2006). Approximate position of Asselian-
Sakmarian boundary is from Boardman and Nestell (2000).  Readers are referred to 
Peterson (1980) for correlations to stratigraphic nomenclature in Ancestral Rocky 
Mountain basins.  Hugoton field produces gas from the Chase while Panoma gas 
production is from the Council Grove.  The two fields are likely one common 
reservoir system (Dubois et al., 2006) and are referred to collectively as the Hugoton 
in this study. 
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Figure D-2. Distribution of major lithofacies in the midcontinent during the late 
Wolfcampian (modified after Rascoe, 1968; Rascoe and Adler, 1983; Sorenson, 
2005). Approximate paleo-latitude was 3 degrees north (Scotese, 2004). 
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Figure D-3.   Formation and member level stratigraphy for the Council Grove, 
Hugoton embayment, in the Alexander D well.  The upper seven of nine marine-
continental cycles (color-filled wire-line log traces) are the subject of this study.  
Stratigraphic names that include “Limestone” are marine half cycles that when 
combined with an adjacent continental half cycle, intervals with stratigraphic names 
that include “Shale,” form a complete cycle. Informal alphanumeric zone 
designations commonly used in the field provide stratigraphic orientation and are 
used throughout the paper. 
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Figure D-4.  Regional stratigraphic cross-section of the Wolfcampian (Chase and 
Council Grove Groups) with the top of the Council Grove as the datum.  At the wells, 
“lumped” lithofacies are from core (large symbols) or those predicted by neural 
network models (small well symbols) or and are interpolated in Geoplus PetraTM 

between wells. The Upper seven cycles of the Council Grove are the subject of the 
study and are thinnest at a mid-field position. Log curves are gamma ray (left) and 
corrected porosity (right).  (Modified after Dubois et al., 2006) 
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Figure D-5. A) Present day structure on the top of the Wolfcampian (top of Chase 
Group) is mostly a function of eastward tilt during the Laramide orogeny.  Note the 
“shelf margin” or area of steepened slope at the southeast boundary of the Hugoton 
fields.  The Council Grove surface parallels the top of the Chase.  B) 3-D view of the 
same area.  Present day structure on the top of the Chase and a surface near the base 
of the Council Grove. (After Dubois et al., 2006) 
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Figure D-6. Isopach of the Wolfcampian reservoir (top of Chase Group to base of 
Grenola Limestone, Council Grove Group). Wolfcampian rate of thickening increases 
by a factor of ten at the “shelf margin.” (After Dubois et al., 2006) 
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Figure D-7. Study area showing updip limit of B2_LM and B3_LM (zero edge) and 
updip extent of fusulinid biofacies in five of seven Council Grove cycles (not present 
in B3_LM and B4_LM).  Occurrence of fusulinid biofacies in core is indicated by 
Council Grove cycle letter code adjacent to 17 wells in study.  Asterisk (*) means 
interval was not cored but fusulinid biofacies is assumed to be present.  No core was 
available below the shelf margin. 
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Figure D-8.  Fusulinid biofacies in core slabs. A) Abundant in fusulinid (white) 
dominated silty wackestone (upper part of transgressive limestone, subjacent to 
maximum flooding, in Funston, A1_LM, Flower A1 well). B) Scattered in fusulinid 
(arrows) -mixed skeletal wackestone (maximum flooding in Crouse, B2_LM, 
Crawford 2 well). Depth shown is in feet. Well locations are shown in Figure D-7. 
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