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ABSTRACT

PHOTOACOUSTIC MICROSCOPY OF MALIGNANT MELANOMA IN THE
IN VIVO MOUSE MODEL. (2010)

Jacob W. Staley, B.Sc., University of Kansas

Chair of Advisory Committee: Dr. Xinmai Yang

Current imaging modalities such as magnetic resonance imaging (MRI), com-

puted tomography (CT), optical coherent tomography (OCT), and ultrasound have

various drawbacks when applied to imaging malignant tumors and associated

angiogenesis. These drawbacks range from the need to use toxic contrast agents

to a lack of penetration depth and sufficient contrast. Photoacoustic microscopy

improves on these techniques by utilizing optical absorption of biological com-

ponents and acquiring acoustic waves from optical stimulation, yielding high

contrast, while retaining high resolution and sufficient depth penetration.

To address the limitations of current imaging modalities, researchers are in-

vestigating the application of photoacoustic microscopy in the early detection

of malignant tumors. This thesis presents the results of applying noninvasive

photoacoustic microscopy to detect and track the progression of subcutaneous

melanoma tumors and melanoma tumor growth in the brain of live mice in vivo,

as well as demonstrating the use of NIR-dye as a contrast agent for future use with

photoacoustic tumor imaging.
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1 Cancer

1.1 Research Objectives

Photoacoustic Microscopy is an emerging biomedical imaging technique in the

field of cancer detection and imaging 1. Progress over the last twenty years in the

advancement of laser technology and optoacoustic detection have given researchers

the tools to obtain accurate and informative data. Utilizing the currently available

progress in the area of photoacoustics, the discovery and analysis of metastatic

melanoma growth, and the accompanying attributes in biological tissue, is sought.

Photoacoustic detection, imaging, and differentiation in early stages of growth of

malignant melanoma is the focus of this research.

1.2 Melanoma

Cancer of the skin is the most common form of cancers and annually accounts

for nearly half of all reported cancer cases. One form of skin cancer, cutaneous

melanoma, is considered to be the most widely metastasizing neoplastic disease

while having one of the least predictable patterns of spread 2. Since melanoma

currently has no curative treatment once the tumor has metastasized, there is con-
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siderable clinical interest in the discovery, diagnosis, and treatment of melanoma

in its earliest stages. More than 108,000 new cases of melanoma were diagnosed

in 2007 according to the American Academy of Dermatology. Despite an overall

decline in cancer rates during the time period between 1995 and 2004, diagno-

sis of melanoma has increased by more than 1% per year during the same time

span. In fact this trend in diagnosis increase has been seen in the last thirty years.

Melanoma incidence increased from 7 cases per 100,000 in 1973 to greater than 18

cases per 100,000 in 2003. One staggering statistic of melanoma is the disease can

be attributed to causing 75% of skin cancer deaths just within the United States3.

As a result of melanomas ability to aggressively metastasize and proliferate, the

American Cancer Society estimated that 8,420 people would die of malignant

melanoma in 2008 alone.

Similar to many other forms of cancer, melanoma effects a wide range of age

groups. Rates are seen to increase with age, however, and reach their peak in

adults in their 80’s, but it is not uncommon for those under 30 to be diagnosed

with the disease. Although melanoma has been found to afflict Caucasian males in

greatest numbers, it is not limited to that specific demographic and can be found

across all genders and ethnicities.

As with all types of metastasizing cancers, melanoma has the ability to invade

and proliferate throughout the body in various soft and hard tissues. In its later

stages, where vertical growth is prevalent, melanoma often invades the dermis
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and subcutaneous layers of skin, gaining access to vital transportation networks

through the lymphatic system and rich network of blood vessels. Metastasis are

found in 15 to 40% of all patients diagnosed with systemic malignancies, the third

most common being melanoma (10-20%). One aspect that makes melanoma so

deadly is the fact that it has the highest propensity to metastasize to the brain and

carcinomas tend to be multiple4.

Gabriella et al. found that patients diagnosed with cutaneous malignant melanoma

have an approximate chance of 25-35% of developing recurrent disease. Recurrence

has many factors involved including primary tumor thickness, and ulceration of

the primary tumor 5. Once recurrence of malignant melanoma has occurred

attributes of the primary tumor provide little to no correlating information on

patient survival, however region and tissue recurrence play an important role

in predicting survival rates among patients. The group also found an overall

patient survival rate of 25% at 5 years after the first recurrence and 18% by 10

years. Looking specifically at regional recurrence in the same population, if the

site of recurrence was local to the original site the survival rate was found to be

82%, compared with 30% among those with lymph node, or a primary regional

in-transit recurrence. When looking at distant site or locoregional recurrences,

patient survival rates rarely lasted longer than 3 years6. Beyond location, survival

rate is heavily influenced by types of metastases. Patients with CNS, bone, liver, or

visceral distant metastases had significantly lower (p < 0.0001) survival rates than
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those with distant skin, pulmonary, or lymph node metastases 5.

1.3 Anatomy of Tumors

Subcutaneous

Skin is composed of three main layers - the epidermis, dermis, and subcuta-

neous layer. The epidermis is the thin outermost layer, which itself is made up of

five sub-layers:

• stratum basale

• stratum spinosum

• stratum granulosum

• stratum licidum

• stratum corneum

Residing below the epidermis is the dermis. The dermis, in a non-layered fashion,

is primarily composed of three types of tissue:

• elastic tissue

• reticular fibers

• collagen
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The dermis contains many specialized cells and structures including hair follicles,

sebaceous (oil), apocrine (scent), and eccrine (sweat) glands. The dermis layer is

also rich in blood vessels and nerves which transmit sensations of temperature,

pressure, and pain. The final layer is the subcutaneous layer, which is primarily

made up of fat and connective tissue, and helps regulate temperature of the body

and the skin itself. It is here that large blood vessels and nerves exist, protected by

the two more superficial layers of the skin - the epidermis and dermis.

Melanoma is a malignancy that arises from melanocytes, which are the pigment

producing cells that reside in the lower portion of the epidermis, as seen in Fig. 1.1.

Melanocytes, through the production of melanin via melanogenesis, are responsi-

ble for giving skin it’s characteristic color and protecting the body from ultraviolet

radiation 7. Melanocytes are also found in the eyes, ears, GI tract, and oral and

genital mucous membranes.
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Figure 1.1: Anatomical diagram of the epidermis, dermis, and subcutaneous layers of skin.

Typically radial tumor growth occurs in the epidermis layer and is followed

by a vertical growth phase, which infiltrates the underlying dermis and often

subcutaneous layer if progression is uninhibited 8–10. A typical nodular melanoma

tumor that permeates the epidermis and dermis layer can be seen in Fig. 1.2.
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Figure 1.2: Typical superficial nodular melanoma arising from malignant growth of
melanocytes in the epidermis.

Brain

There has been a great deal of work on explanation of brain metastasis and

metastasis in general. Currently there seems to be two theories that typically

are used separately or in conjunction with one another. The first proposed by

Paget, describes a nonrandom pattern of metastasis that uses a theory of ‘seed’ and

‘soil’. More specifically, Paget postured that specific tumor cells had an affinity

for certain organs, thus requiring that tumor cells (seeds) metastasize and form

distant tumors when in contact with a compatible organ (soil). There has been

work that shows certain tumors metastasize to specific organs independent of
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influential factors such as blood flow, tumor cell count, and vascular anatomy,

which supports this theory11. The more mechanical hypothesis was put forth by

Ewing, in which he stated metastatic proliferation is a consequence of vascular and

anatomical structure. This removes the requirement of ‘seed’ and ‘soil’ and is more

concerned with anatomical factors such as lymphatic drainage or efferent venous

circulation12.

In order for metastatic growth to occur and makes its way to the brain, numerous

conditions have to be met. The first being the proper network of vasculature to

support the tumor mass, which arises from the secretion of proangiogenic factors

by host and tumor cells alike, and the absence of antiangiogenic factors. Proceeding

this there must occur an expression of a series of enzymes that allow invasion of

local host vascular or lymphatic channels. If these conditions are met tumorous

cells are able to grow into these channels and distribute tumor emboli into the

circulatory system. If the emboli survive immune defenses and other innate

obstacles and reach receptive organs, the process continues, resulting in metastasis

of metastases, and consequently forming the metastatic cascade11. It is through

this process that it is believed metastatic tumors form within the brain.
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1.4 Current and Competing Imaging Modalities

Magnetic Resonance Imaging (MRI)

MRI is a well established technique in the field of biomedical imaging. Given its

high contrast capabilities it is often used within radiology to visualize the internal

structure of the body. Various research has been conducted in the area of skin

tumors using MRI as an imaging technique. Kim et al. showed MRI can be used

to image manifestations of skin tumors ranging from discrete mass lesions of the

dermis and epidermis to subcutis mass lesions13. Thies et al. demonstrated the fea-

sibility of MRI in detecting melanoma metastases in a xenograft scid mouse model.

Using T2 weighed images, primary melanoma lesions appeared hyper-intense and

were clearly discernible from surrounding tissue. MR analyses forty days post

excision of the primary tumor nodules revealed hyper-intense T2 weighed images

of suspect melanoma lesions in various distant organs14.

Although MRI provides many appealing attributes and has shown successful

applications, there are certain potential drawbacks to using this modality. First

is the cost associated with undergoing MRI scans. It is typically one of the most

expensive biomedical imaging techniques to acquire with regards to hardware

costs and similarly expensive for the patients to use. Beyond associated monetary

expenses there is another more serious drawback to the technology. MRI has
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been shown to be unable to reliably discriminate benign from malignant tumors15.

Another limiting factor arises from the inclusion of stipulations with respect to the

patient. Patients with pre-existing kidney conditions are strongly discouraged from

using gadolinium contrast agents, which are intravenously delivered to enhance

MRI films, due to an FDA black box warning which states a possible complication

from the contrast agent can cause nephrogenic systemic fibrosis. Also, patients

with implants containing ferrous materials or electronics may prove unable to

undergo MRI scanning due to the possible complications that can arise from the

associated magnetic field.

Optical Coherent Tomography (OCT)

OCT was originally presented to the medical community as a way to noninva-

sively examine the human eye. However, the technology was eventually adopted

to use with human skin studies. OCT operates by scanning a low-coherence

light source across tissue and uses principles based on interferometry to image

regions of interest. Specifically, an optical source irradiates tissue and the back-

scattered light is measured by correlating it with light that has traveled a known

reference path. OCT has a high degree of resolution, comparable to low power

microscopes (better than 10 µm), but suffers from lack of penetration depth. OCT’s

imaging depth is limited to 1-2 mm depth due to the lack of backscattered light

collected from the medium, which results from absorption and/or high degree

10



of forward-scattering of light. This is a severe drawback to open use of OCT

in many applications of interest. Due to the lack of penetration depth OCT is

typically limited to the most superficial of applications with respect to imaging

highly turbid and absorbing media such as skin and melanoma.

Ultrasound

Researchers and medical doctors alike have utilized ultrasound imaging tech-

niques to confirm and substantiate suspect tumor growth. Melanocytic lesions

have been examined using ultrasound (20-MHz) and high-frequency ultrasound

(50- to 100-MHz)15. Tumors typically show up as echoluscent areas on ultrasound

images, which are often difficult to discern from surrounding soft tissue. Although

ultrasound provides excellent axial and lateral resolution, is suffers from lack of

contrast. This lack of contrast prevents purely ultrasound imaging techniques from

use in the diagnosis of melanoma currently.

Photoacoustic Imaging

Looking at the other imaging modalities it is apparent they all have their various

drawbacks. The range of limitations is wide across the spectrum of technologies.

Most suffer from from either lack of sufficient contrast, the ability to accurately

discriminate between cancerous and non-cancerous tissue, penetration depth, or a

combination of all the above. The lack of quantifiable hemodynamic data is also

11



another downfall in these modalities in the realm of cancerous tissue imaging and

diagnostics.

Compared to competing technologies, photoacoustic imaging (PAI) combines a

great deal of advantages over the others while minimizing disadvantages, making it

an excellent modality in the application of targeted tissue imaging and diagnostics.

PAM operates by depositing laser energy into an absorbing medium and recording

the produced acoustic signal. PAM has been shown to produce micron-scale

resolution in superficial applications16–18 as well as achieving success in deep

tissue imaging19–21. PAM is able to overcome a great portion of the drawbacks

of the aforementioned modalities due to the fusion of optical and ultrasound

techniques. More specifically, the photons in the optical portion are used as the

energy source, but the information is gathered from the resultant ultrasound signal.

This allows for greater preservation of information and eliminates the scattering

and absorption limits typically found in purely optical imaging techniques. To

further illustrate this an in depth discussion about photoacoustic theory will be

discussed in Chapter 2.
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2 Photoacoustics

2.1 Introduction

The benefits of photoacoustic imaging in various areas of medicine are many

and primarily result from the high contrast properties of optical light and high res-

olution found in ultrasonic imaging. The highly absorptive properties of biological

tissue with respect to visible and near-infrared (NIR) electromagnetic spectrum

allow for discovery of functional parameters in various tissues22,23,17,24–32, hemo-

dynamics monitoring23,17,24,25,28,30,31, and imaging of tissue abnormalities33,32,34,30.

Within these realms photoacoustic imaging is a blossoming field that shows great

promise. Beyond the superior contrast and resolution that PAM offers, it also

allows for greater depth penetration compared to other purely optical techniques

due to the lack of attenuation and scattering of the acoustic signal when compared

to a purely optical source.

This chapter will serve as an introduction to the technical aspects of PAM. It will

start with a brief history, progress into the physics behind optoacoustics, discuss

the underlying principles of the PAM system, and end with various applications

of the technique in numerous realms of research.

13



2.2 History

The technique is based on the optoacoustic effect, which was first discovered

by Alexander Graham Bell in 1880. Bell noted that when a thin sheet of rubber

was struck by modulated light a perceptible sound was generated35. This phe-

nomenon was later discovered to exist in other materials including liquid, gaseous,

and biological tissue. As laser technology advanced, the field of photoacoustic

spectroscopy emerged, which is concerned with the excitation of gaseous media

in order to yield detectable sound36. As the field progressed, work in areas of

photoacoustic microscopy and tomography developed, which focuses on the study

of the optoacoustic effect applied to biological tissue. The optoacoustic effect

can be found in any medium that absorbs a variable electromagnetic flux. Both

optoacoustics and photoacoustics relate the same interaction of absorption of

electromagnetic radiation and the production of acoustic waves, with the former

encompassing the more general case of excitation of sound as a result of deposition

of electromagnetic energy, the later more specifically deals with short pulsed laser

light as the excitation source (i.e. electromagnetic energy)36.

2.3 Photoacoustic Theory

Using a collimated pulsed laser beam to irradiate biological tissue creates a rapid

and localized temperature rise, which promptly induces thermal expansion, thus

14



producing a sudden increase in pressure. Due to the pulsed nature of the incident

light and brief rapid heating of the tissue we can assume two necessary conditions

are met to produce photoacoustic waves - thermal and stress confinement24.

Thermal confinement is possible when the energy deposition occurs quicker

than the time needed for thermal relaxation. Thermal relaxation time gives an

approximation to the time an absorber (i.e. heated volume) requires in order to

cool to ambient temperature37. In the case of photoacoustics this is governed by

the beam width duration, τL, which is on the nanosecond scale. Since τL is much

shorter than heat diffusion time, τth, given by

τL < τth =
d2

p

4κ
(2.1)

where dp represents the characteristic length (i.e. light penetration depth), and

κ
�
cm2/s

�
is the thermal conductivity of the the medium (∼0.14 mm2 s−1 in

tissue38), we can conclude instantaneous heating of the medium since thermal

diffusion can be ignored39.

The second condition, stress confinement, describes the time for the stress

generated due to thermoelastic expansion to exceed the location of the heated

region. More specifically, a short laser pulse ensures cessation of said pulse before

generation of the acoustic wave. This prevents diffusion of heat to surrounding

15



tissue and eliminates consequences such as reduced conversion efficiency of

absorbed energy to heat. Stress time, τs (s), is established by

τL < τs =
dp

cs
(2.2)

where cs is the speed of sound in the medium. Assuming these defined quantities

are satisfied we can investigate pressure distributions and wave generation.

Generally the strength of the illumination source is proportional to the amount of

heat generated by tissue. Absorbed light is converted into heat through various

mechanisms and is related by the general heating function. The heating function

describes the amount of thermal energy converted at a location r and time t by

incident electromagnetic radiation per unit volume per unit time, shown by

H(r, t) = A(r)δ(t) (2.3)

where A(r) is the heat deposited per unit volume. It should be noted that the

heating function assumes instantaneous heating, which is established by equation

(2.1).
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There is a resultant expansion of the absorber in response to the temperature rise

from energy absorption. The change in volume produces an increase in pressure

(kg/ms2) given by

pi(r) =
βc2

s
Cp

A(r) = ΓA(r) (2.4)

where β is the volume thermal expansivity, Cp is the constant pressure specific

heat capacity, and Γ is the dimensionless Grüneisen coefficient, which relates the

conversion efficiency of thermal energy to stress. Values of Γ typically range from

0.11 to 0.125 in biological tissue40. Given equations (2.3) and (2.4) we can describe

the time dependent electromagnetic absorption and pressure wave at a position r

and time t in an acoustically homogenous medium with fluid like properties by

the following wave equation41

∇2p(r, t)− 1
c2

s

δ2

δt2 p(r, t) = − β

Cp

δ

δt
H(r, t) (2.5)

The pressure wave that is generated radiates in all directions, which allows the

acoustic energy to be split evenly between the initial reflected pressure distribution

and the initial transmitted pressure distribution. It should be noted that the initial

transmitted pressure distribution propagates away from the source of laser irradia-

17



tion. The speed at which acoustic waves propagate in a medium is determined by

the intrinsic properties of the medium of interest. Since most biological tissue is

highly comprised of water, the value given to the speed of acoustic propagation is

∼1.5 mm/µs, which is the speed of sound in water.

2.4 Light Behavior In Biological Tissue

Light propagation in tissue has many attributes that are of concern for photoa-

coustics. Typically optical interaction between tissue and light is characterized

by scattering, thus tissue is often referred to as scattering media or turbid me-

dia. In general scattering is governed by two main ideas: single and multiple

scattering theories. In single scattering theory, randomly distributed scattering

objects reside at a mean distance from one another much greater than the period

of the wavelength and the scatterer size. A medium with these attributes can

be considered loosely packed with scatterers, and due to the distance and size,

scattering events are considered independent. If sizing and space constraints are

not met, the medium is thought of as being densely packed, and single scattering

theory is not valid. In order to quantify the amount of scattering that is innate to

a given medium, µs (scattering coefficient) is used and defined as the scattering

probability of a photon per unit length the photon travels within the medium.

Absorption is found to be relatively week in the 400-1350 nm spectral region,

producing a mean absorption length, i.e. the mean distance traveled before an

18



absorption event occurs, of roughly 10-100 mm. When describing absorption, µa

(absorption coefficient) is used to define the probability of photon absorption per

unit length within a medium. The reciprocal of µa, the mean absorption length, is

the distance through the medium in which the intensity of the incident light source

falls by e−1. Absorption of a photon gives rise to excitation of an electron from

a molecule from a ground state to an excited state. Multiple possible outcomes

can occur depending on the transition of the electron back to a ground state. The

excited electron can luminesce, i.e. give off another photon, or generate heat, which

is the property of interest in photoacoustics. The overall effect of absorption on

the propagating light is a reduction of the intensity as it makes its way through

the medium and can be described by

dI
I
= µadl (2.6)

where I relates the light intensity and l denotes the distance of light propagation.

The equation describes how the medium absorbs the same fractional value dI/I

of incident intensity for each consecutive layer dl for a constant absorption coef-

ficient, µa (typically mm−1). Integrating both sides of this equation leads to the

Beer-Lambert law
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I = I0e−µal (2.7)

where I0 is the incident intensity, i.e. when l = 0. The law gives a relation of the

exponential decay of the intensity of light as it is reduced due to absorption as the

light travels through the medium along the distance l. There are limitations to the

Beer-Lambert law however which arise due to assumptions made based upon the

light source and medium. The assumptions typically cause experimental results,

when compared to expected values, to deviate42. For instance, the law assumes

impinging light on the medium is perfectly collimated and monochromatic in

nature. Further restrictions are placed on the medium as well, demanding that the

medium must be purely and uniformly absorbing.

Tissue chromophores are responsible for giving a molecule its color due to the

absorption of wavelengths in the NIR, with each particular chromophore having

its own unique spectrum. The total absorption in biological tissue is the sum of

the contributions gained from each respective chromophore24. Therefore, total

light absorption at a specific wavelength is dependent on the concentration and

type of chromophore within the absorbing tissue. Optical absorption of light in bi-

ological tissue arises primarily from the dominating chromophores of hemoglobin,

melanin, and water. In the ultraviolet (UV) region hemoglobin, as well as melanin,
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strongly absorb light. As the wavelength increases the trend of absorption by both

chromophores is reduced as seen in Fig. 2.1 (Wang, 2007)22.

Figure 2.1: Dominating chromophores in biological tissue (Wang, 2007)22

Fig. 2.1 shows that in the UV and NIR spectrum water has minimal absorption,

which provides a ‘window’ of tissue transparency, allowing light propagation

in the NIR region to travel through several centimeters of tissue. However, as

wavelength increases there is a large increase in the absorption coefficient with

respect to water and a severe reduction in propagation depth of light.

By combining µs with µa it is possible to describe the total interaction between

light and tissue and is given by
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µt = µs + µa (2.8)

where µt is the total attenuation coefficient, which is also referred to as the

extinction coefficient22. The inverse of the total attenuation coefficient, µ−1
t , is

referred to as the mean free path, and represents the distance traveled by a

photon between interactions. Given these new definitions it is possible to describe

a relationship, exponentially, between the collimated beam intensity I and the

incident intensity I0 that is transmitted through a medium of length l. Under the

stipulation that single scattering occurs this is represented by

I = I0eµtl (2.9)

2.5 Photoacoustic Microscopy (PAM)

PAM is a hybrid imaging modality which utilizes the intersection of optical and

acoustical properties. In this application the photoacoustic effect is achieved by

irradiating tissue, through dark-field illumination, with non-ionizing laser pulses

which are absorbed by tissue and consequently induce transient thermoelastic

expansion as seen in Fig. 2.2.
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Figure 2.2: Incident pulsed laser light is delivered to an absorber of interest using dark-field
illumination creating acoustic waves that radiate from the absorber.

The thermoelastic expansion produces ultrasonic waves and these propagating

acoustic waves are captured via acoustic transducers, which are digitized into a

voltage signal quantifiable by a digital acquisition card or an oscilloscope. If the

transducer is placed on the opposite side of the incident laser irradiation, it is

considered a transmission mode measurement. If the transducer collects acoustic

waves on the same side as the laser irradiation, the measurement is a reflection

mode measurement. An example of a reflection mode setup is shown in Fig. 2.3.

23



Surface
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Figure 2.3: Photoacoustic setup for capturing reflected acoustic waves using dark-field
illumination.

The advantages of using light as an energy source to produce the acoustic signal

are many. Acoustic signals are much more robust in biological tissue and are

typically scattered 2-3 times less than optical signals32, thus allowing an increase

in penetration depth while maintaining spatial resolution.

One important aspect to note is that the initial reflected and transmitted pressure

distributions both contribute to the acquired signal when using either method

- transmission or reflection mode. This phenomenon arises from a combination
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of acoustic mismatches that typically occur at boundaries of absorbing mediums.

These differing acoustic impedances create a free boundary, which causes acoustic

energy to be reflected back into the medium, but with a negative amplitude. Also of

interest is the fact that different diameter absorbers will produce waves of differing

frequency when encountering the same incident light pulse. Looking at the heating

function from equation (2.3) we see it is spatially and temporally modulated.

Photoacoustic waves are in turn modulated by the heating function, thus small

diameter absorbers produce different spatial profiles for the same temporal profile

as a large diameter absorber. This produces an important result, which is as the

diameter of the absorber increases the frequency of the generated photoacoustic

wave decreases. Conversely, as the diameter of the absorber decreases there is an

increase in the frequency of the photoacoustic wave. This fundamental response to

absorber diameter plays an important role in photoacoustics, requiring the use of

wide-band transducers in order to detect the spectrum of acoustic waves generated

from biological tissue39.

The analysis of photoacoustic signals encompasses many aspects, but is primarily

concerned with determination of the absorber’s characteristic optical properties.

The optical properties of interest are commonly the refractive index, n, scattering

coefficient, µs, absorption coefficient, µa, and anisotropy factor, g. These properties

play an important role in identification of various tissue types, as well as the

pathologies that manifest within them. More specifically, it is possible to identify
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various forms of tissues and pathologies simply by matching the above properties

with known experimental values.

By utilizing the speed of sound approximation in biological tissue it is possible to

determine the depth from the absorber to the transducer. Using the approximation

of sound in tissue, conversion from the pressure vs time signal to a pressure vs

distance signal is a simple and straightforward process. Typically the maximum

of the waveform is taken to be the distance from the absorber surface to the

transducer.

The photoacoustic data recorded by the computer is used to reconstruct images

in the form of an A-scan, B-scan, 2-D, or 3-D image. A-scans serve as a way to

visualize the waveform generated depth-wise into the tissue for a single point of

interest. This allows analysis of the resultant thermoelastic response to a single

excitation point (e.g. one firing of the laser), which reveals how well the medium

of interest absorbs optical energy and just as importantly the depth at which this

occurs. B-scans consist of a frame (i.e. a single raster line scan) of A-scans, which

allows for what is essentially a slice along the z-axis (depth) to be visualized.

Producing 2-D images is a straightforward process of simply taking the maximum

amplitude projection (MAP) of each A-scan and forming a series of MAP B-scans

that are pieced together in order to form the complete image from a top-down view.

Constructing 3-D images is similarly simple, only requiring slight manipulation of

the recorded data into a 3-D matrix form that existing software (e.g. Volview) can
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use to construct the 3-dimensional structure.

2.6 Photoacoustic Applications

Oncology Applications

The innate and highly varying optical absorption coefficients of biological tissue

provide an environment for photoacoustic imaging to excel. Due to the afore-

mentioned variations, photoacoustics provides a well suited imaging technique

for visualizing the distinction between malignant and healthy tissue, as well as

surrounding vasculature.

Copland et al. utilized photoacoustic techniques in conjunction with conjugated

gold nanoparticles (NPs) to demonstrate the ability to image breast cancer cells

deep within tissue. By conjugating commercially available spherical gold NPs to

a monoclonal antibody (Herceptin R�) it was shown that an imaging depth of 6.5

cm could be reached when targeting a tumor as small as 0.25 cm. Along with

deep penetration, high resolution was also obtained, yielding 0.5 mm in the in

vitro experiments43. This work exemplified the abilities of photoacoustics in the

area of targeted tumor detection deep within areas of interest such as breast tissue.

Zhang et al. utilized photoacoustic microscopy to image subcutaneously inoc-
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ulated B16 melanoma in a immunocompromised nude mouse. Complimentary

images were produced revealing surrounding vasculature as well as the melanoma

tumor by varying the optical wavelength to match the absorption coefficients of

interest. The average ratio of vasculature to background in PA amplitude was

13±0.89 at 584 nm wavelength. When using 764 nm wavelength the average ratio

of the melanoma tumor to the surrounding vasculature was 29±3, and when

compared to the background was as large as 68±5. Using these techniques they

were able to successfully show the depth profile of the tumorous region as well,

which is important in diagnosis and forming a therapy strategy17.

Oh et al. produced results that showed 3-D structures of subcutaneous melanoma

as well as surrounding vasculature. The system used was comprised of a pair of

pulsed lasers that enabled two wavelengths to be used, one based on the absorption

coefficient of blood (584 nm) and the other targeted towards melanoma (764 nm).

There were some drawbacks to the system however. For instance, the time to

image an 8 X 8-mm area took approximately 65 min and doubled when using

both wavelengths. Also, due to the high central frequency of the transducer used

(50 MHz), the imaging depth was sacrificed as well as the accuracy of the depth

profile of the tumor itself33.

Targeted applications and contrast agents have also shown great promise in this

area with respect to photoacoustics. Mallidi et al. conjugated gold nanoparticles to

antibodies in order to target epidermal growth factor receptors. Gold nanoparticles
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undergo molecular specific aggregation after binding to cell surface receptors,

which causes a red shift in their plasmon resonance frequency44. In order to utilize

this effect they implanted subcutaneous tumor-mimicking gelatin implants in ex

vivo mouse tissue and photoacoustically imaged the samples. Their results suggest

that with the use of targeted gold nanoparticles it is possible to detect, and further

be highly selective, of cancer cells using multiwavelength photoacoustic imaging.

Vascular and hemodynamic applications

A great deal of research has been conducted in the area of microvasculature

imaging and hemodynamics observation with photoacoustics. PAM, given its

exceptional contrast abilities due to the absorption properties found in blood

vessels, is ideal for these applications.

Laufer et al. used pulsed photoacoustic spectroscopy to quantify chromosphere

concentrations noninvasively using tissue phantoms with embedded polymethyl-

methacrylate tubes carrying saline suspended red blood cells. Using an optical

parametric oscillator to generate wavelengths of 740-1040 nm, they were able to

quantify hemodynamic properties by extracting the signal amplitude and effective

attenuation coefficient from the photoacoustic signals. From these results forward

models based on diffusion theory were used to decipher relative concentrations

of HbO2 and Hb, as well as blood oxygen saturation (SO2) and total hemoglobin

concentrations. The photoacoustically discovered values of oxygen saturation were
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found to have an accuracy of ±4% SO2 from signal amplitude values and ±2.5%

SO2 for effective attenuation spectra with a oxygen saturation sensitivity of ±1%

SO2 using the technique45.

Xiang et al. used a Sprague Dawley rat as a carrier for the gliosarcoma cell line

in order to photoacoustically visualize neovascularization in tumor angiogenesis46.

The cells were subcutaneously injected into the back of the rat and photoacoustic

images were obtained over the incubation period of 5, 8, 11, 14 days. A photoa-

coustic system using a single-element ultrasonic transducer was scanned over 2π

angular area using step sizes of 1.8o. This resulted in an approximate scanning

time of 15 minutes that produced images that clearly revealed the proliferation of

surrounding vasculature and the subsequent neovascularization associated with

the increased angiogenesis caused by tumor growth.

Research conducted by Li et al. demonstrated the ability to measure hemoglobin

oxygen saturation and the total hemoglobin concentration of the surrounding blood

vessels of a brain tumor in an immunocompromised nude mouse. This exemplified

the ability of photoacoustics to reveal hypoxia in tumor neovasculature, which

may play a role in future applications of determining characteristics associated

with tumor induced hypoxia and aid in determining the most effective type and

timing of therapy30.

An area of great interest in photoacoustics lies within noninvasive imaging of

the cerebral cortex. Yang et al. performed a review of nanoparticles that play a
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beneficial role in photoacoustics and were able to demonstrate an increase in the

NIR contrast of cortical blood vessels in the in vivo rat brain. Nanoshells comprised

of PEGylated surfaces were inoculated into the tail vein of Sprague-Dawley rats.

Successive images were acquired over a period of three injections of the nanoshells,

which allowed quantification of circulation dynamics in the cortical blood stream.

Comparing pre- and post-injection images, a sharp increase in contrast of cortical

vasculature was visible as well as a 63 % in blood vessel absorption. This work

illustrated the ability of photoacoustics to visualize and measure cortical blood

volume in noninvasive studies of brain function47.

31



3 PAM System

3.1 Control System

A PC with a custom built LabVIEW application controlled the data acquisition

unit and the motion axes needed for imaging via 3-D mechanical scanning. The

LabVIEW control system is a simple state-machine as seen in Fig. 3.1. Stepping

through the execution, default values are passed to the GaGe card in order to

initialize needed attributes and data files are created to hold the collected data.

The bounds of the scan are passed to the motion axis system via the graphical

user interface. From there, firing of the laser commences and raster scanning

takes place. Once the laser is active and scanning is underway the control system

alternates between the states of bounds checking (i.e. are we still within the

scanning region of interest), data collection, and whether or not to continue the

scan. More specifically, as one raster scan takes place, the states that are executed

go from (a), which checks to verify that we are within our bounds for this scan

along the x-axis. If true, data is collected and motion along the x-axis continues

(b), afterwords a state transition is made back to (a). If false (i.e. we have moved

beyond our x-axis bound), then a state transition is made to (c), which establishes
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whether or not the scan is still within the y-axis bounds. If true, then a state

transition is made back to (a) since there still exists area in our ROI to scan, and

the execution continues. If false we know we have completed our scan, files are

closed, and the system is halted.

Start

Init GaGE card

Init files

Move stage along 
x-axis

Traveled x-
axis dist.

True False

Collect 
data

Fire laser

Write data

Within y-axis 
bounds

Init translation 
stage

True Move one step on 
y-axis

False

Halt 
execution

Close files 

Release GaGe 
and stage

Figure 3.1: Flowchart depicting the state-machine of the LabVIEW control system.
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3.2 Dark-field PAM

A diagram of the experimental setup for the PAI system is shown in Fig. 3.2. A

25 MHz focused ultrasound transducer (13-2506-R, Olympus-NDT, Waltham, MA),

with a focal depth of 15 mm and an aperture size of 9.4 mm, captures the photoa-

coustically generated waves. The transducer exhibits lateral and axial resolutions

of 150 µm and 100 µm, respectively, with 61% -6-dB fractional bandwidth. The

signal from the transducer is delivered to a pre-amplifier (5072PR, Olympus-NDT,

Waltham, MA), and finally collected by a personal computer through an A/D

data acquisition card (CS21G8-256MS, GaGe, Lockport, IL). The ROI of the mouse

is placed below the membrane of a water tank and the 3-D positioning stage

is adjusted to place the confocal region over the ROI. Ultrasound gel is placed

between the surface of the mouse and the membrane of the water tank in order to

couple mouse and membrane, which permits acoustic waves to pass through the

juncture and make their way to the transducer for recording.

The Q-switched Nd:YAG laser (Continuum Surelite, 5 ns pulses, 10 Hz pulse

repetition) pumps a tunable OPO laser (Surelite OPO PLUS) with the output

steered through a series of prisms to a conical lens. The conical lens produces

annular illumination, which is focused into the sample via an optical condenser.

At the tissue surface, the ring has a diameter of ∼5 mm. The condenser is used

to create a dark-field illumination pattern that reduces the fluence at the surface
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Figure 3.2: PAM imaging system hardware diagram. (CL) conical lens; (MC) motor control;
(OC) optical condenser.

of the specimen, which in turn reduces signals from the skin surface that might

overpower underlying PA signals of interest48,17. The photoacoustic images are

obtained by mechanically raster scanning the ROI using lateral and vertical step

sizes particular to a given experiment. At each position in the scan the incident

pulsed laser light irradiates the sample and the acoustic response, gathered from

the transducer and pre-amplified, is recorded via the data acquisition card at a

sampling rate of 500 MHz. Sampling is initiated by the trigger signal from the

laser source at each acquisition position.
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4 Subcutaneous malignant melanoma in the in vivo mouse
model

Knowledge of the depth, proliferation, and shape of malignant melanoma are

critical in determining clinical prognosis of the disease. Currently, depth and thick-

ness serve as guiding attributes in staging classification and treatment decisions.

PAM, with it’s ability to separate responses from various tissues based on their

varying molar extinction spectra, is highly suited for application in melanoma

imaging. This chapter presents results obtained from applying two optical wave-

lengths (532 and 764 nm) to in vivo subcutaneous malignant melanoma in order

to image vasculature and tumor profiles (depth, shape, and thickness) using the

B16F10 murine melanoma cell line in live BALB/c mice.

4.1 Introduction

Current clinical practice utilizes incisional or excisional biopsies in order to

obtain knowledge pertaining to the status of melanoma tumors. These invasive

procedures often leave the patient with pain and visible scars post biopsy. Non-

invasive imaging techniques such as PAM have the potential to remove these

undesirable outcomes while still providing physicians with the ability to diagnose
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and monitor tumors during treatment.

Various imaging technologies have been investigated as possible noninvasive

methods as discussed in section 1.4, however each of these has unavoidable

limitations that prevent their sole use as imaging techniques for subcutaneous

melanoma. These drawbacks range from insufficient penetration depth, which

removes the possibility of measuring tumor thickness, to poor contrast and spatial

resolution. PAM mitigates the lack of penetration depth and improves contrast

and spatial resolution, thus yielding a superior technique with respect to imaging

subcutaneous melanoma.

4.2 Materials and Methods

Subcutaneous injections

In order to bypass the prolonged staging of melanoma growth and exercise the

depth potential of PAM, growth of the melanoma was initiated in the subcutaneous

layer through direct delivery of tumor cells as seen in Fig. 4.1. More specifically,

B16F10 tumor cells were harvested from culture and resuspended at a concentra-

tion of 5 x 103 cells/µL. Hair covering the hip of the mice were removed using a

depilatory cream (Nair) in order to expose the skin. Following hair removal 100 µL

of the solution was injected, under isoflurane anesthesia, subcutaneously in the hip

of the hind leg of female BALB/c mice (Harlan Sprague Dawley Inc., ∼25 g). The
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Figure 4.1: Anatomy of melanoma growth after subcutaneous delivery of B16F10 melanoma
cells.

cell line used demonstrated rapid and aggressive growth, therefore an incubation

period of only 3-4 days was used to allow adequate tumor formation. After the

incubation period tumors averaged ∼10 x 5 mm with an approximate thickness of

1.5 mm. Growth of the subcutaneous melanoma was irregularly shaped and often

proliferated into the dermis, but never crossed into the epidermis.

Tail vein injections

Tail vein injections were administered to systemically deliver tumor cells and

facilitate metastatic tumor growth. The same strain of mice, tumor cell line, and

volume of cells were administered via tail injection as given for subcutaneous hip
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inoculation. Mice were inspected daily in order to observe visual cues demonstrat-

ing metastatic tumors (visible tumors, weight loss, etc.). However, tail injections

required significantly more incubation time for noticeable melanoma growth to

occur. Due to the administration method of the tumor cells into the circulatory

system, tumor growth was free to commence systemically, which often produced

tumor growth in the lungs leading to rapid weight loss in the specimen once the

tumors had formed. Therefore, the incubation period was typically limited to a

timeframe of ∼2 weeks.

4.3 Results and Discussion

In this work, images of metastatic and primary subcutaneous melanomas were

captured, as well as their accompanying angiogenic vasculature. Two optical

wavelengths were used in the hip tumor (Fig. 4.2), 532 and 764 nm. However, 532

nm was exclusively used with the metastatic tumor found on the spine (Fig. 4.3).

The maximum operating energy level of ∼5 mJ/cm2 was used for both tumors.

Using 532 nm wavelength, PAM is able to image both the melanoma tumor as

well as the surrounding vasculature because of the comparably high absorption

of hemoglobin and melanin in this visible spectral region. However, if the tumor

is of sufficient thickness, 532 nm has difficulty penetrating through the melanin

rich tumor. In order to overcome this limitation, PAM has the ability to operate at

varying wavelengths, which in turn have varying molar extinction coefficients in
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tissue. This allows incident light to infiltrate the tumor due to decreased absorption

of melanin and hemoglobin at wavelengths that exist further in the region of the

NIR spectrum. The results from the combination of two separate wavelengths can

be seen in Fig. 4.2(c).

(a)

2 mm

(b) (c)

(d) (e)

Figure 4.2: Anatomical and PA images of a subcutaneous melanoma in vivo. a) Noninvasive
anatomical photograph showing the bounded ROI; b) image acquired at 764 nm optical
wavelength; c) composite image acquired at 532 nm and 764 nm optical wavelengths; d)
cross-sectional image corresponding to the line in b) at 764 nm optical wavelength. Scale
bars are the same for all three images.
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Looking at Fig. 4.2(a) we can see the the anatomical view of the subcutaneous

tumor residing in vivo in the hip of a live BALB/c mouse pre-imaging. The MAP

of the x-y plane is shown in Fig. 4.2(b), demonstrating the results of applying

764 nm wavelength to the bounded region in Fig. 4.2(a). The image produced at

764 nm demonstrates the shape and contours of the tumor, while simultaneously

removing the majority of the results from the surrounding arterioles and venules.

Fig. 4.2(c) shows the composite image, where tumor region obtained at 764 nm

is pseudo-colored grey and blood vessels captured from 532 nm are pseudo-

colored red. Fig. 4.2(d) shows the B-scan from the horizontal line in Fig. 4.2(b),

demonstrating the thickness profile of the melanoma, which was found to be ∼1.0

mm. Comparing the invasive anatomical photograph in Fig. 4.2(e) with the MAP

and composite image, it is clear that PAM accurately imaged vasculature as well

as tumor.

The images in Fig. 4.3 depict the results from using 532 nm optical wavelength to

image a metastatic tumor residing above the spine in a BALB/c mouse. In Fig. 4.3(a)

we clearly see the tumor along with surrounding blood vessels. Fig. 4.3(b) shows

the B-scan along the green line in Fig. 4.3(a), which demonstrates the thickness of

the tumor as well as the diameter. The tumor was found to be ∼3 mm in diameter.

Despite a small amount of noise from background tissue, we see a lack of any

response from the spine itself that resides directly below the tumor, which confirms

that we are able to selectively target and differentiate the tumor from surround
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tissue and structures. This result is vital when performing in vivo imaging as

it provides a means to accurately discern cancerous tissue from normal healthy

tissue and mitigates the impact of interference of the two with one another, thus

providing clear images that depict areas of concern.

Figure 4.3: PA images of a metastatic melanoma on the spine. a) PA image at 532 nm
optical wavelength; b) cross-sectional image corresponding to the line in a). Scale bars are
the same for the two images.

4.4 Conclusions

PAM’s ability to differentiate and target tissues and manifestations of interest

by varying the optical wavelength was demonstrated. It was shown that PAM can

be used to accurately image local melanoma tumors and vasculature as well as

metastatic arising tumors while maintaining clarity and limiting interference from

surrounding biological structures of non-interest. These results suggest that PAM

can potentially be used in a clinical setting in order to provide critical diagnosis
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and prognosis information.
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5 Photoacoustic Discrimination of Malignant Melanoma
Using NIR-dye as Contrast Agent

The use of a contrast agent with photoacoustic imaging of malignant melanoma

greatly enhances the differentiation between tumorous region, dye, and surround-

ing tissue. Use of a contrast agent also provides the possibility of encapsulation

within nanoparticles, enabling targeted delivery to cancer cells and the ability

to track them, which is suggested for early detection of malignant tumors49,50.

Under in vivo conditions a NIR-dye (IR-27, absorbance peak - 988 nm) was subcu-

taneously injected adjacent to an existing melanoma carcinoma grown in a BALB/c

mouse. The region was imaged at two separate wavelengths, 764 nm and 988

nm. Maximum amplitude projection images were obtained that demonstrated

visible regions of tumor and dye at 764 nm and only dye at 988 nm. Our results

demonstrate effective use of IR-27 dye as a contrast agent in differentiation between

malignant melanoma and NIR-dye under photoacoustic imaging.

5.1 Introduction

Currently there does not exist a method to successfully differentiate malignant

melanoma from benign melanoma using photoacoustic techniques. Current re-
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search has shown an effective approach of utilizing various contrast agents to

improve contrast of photoacoustic images and target specific pathologies such as

cancerous tumors43,51,30,52–54. However, to the best of our knowledge there has yet

been research to investigate the capabilities of utilizing a NIR-dye in deciphering

the state of tumorous growth (i.e. malignant vs. benign) using PAM.

The use of contrast agents greatly enhances the magnitude of electromagnetic

absorption, which is ideal for photoacoustic applications targeting specific patholo-

gies such as malignant melanoma. Contrast agents in the form of NIR-dyes allow

optical absorption to occur at levels deeper within tissue since peak absorption

occurs in the NIR region where attenuation of the optical signal is low. However,

the greatest benefit of using PAM with the IR-27 dye is found in the differing

molar absorptivity of melanoma and dye, allowing for near complete removal of

the signal obtained from melanoma, i.e. a severe reduction in the absorbance of

light by the carcinoma, by simply altering the wavelength of the incident optical

source.

When NIR-dyes undergo optical absorption, electrons within the molecules of

the dye jump to excited states, and subsequently dissipate energy in two ways of

interest within our application - heating, which yields thermoelastic expansion,

and fluorescence. The pathway that is of interest to photoacoustics is absorption

and thermoelastic expansion, which produces the acoustic signal that relates

information about the absorber. The second pathway is radiative (i.e. fluorescence).
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Looking at total energy conservation, it is apparent that the energy that does not

fluoresce contributes to the photoacoustic signal. Therefore we can conclude that

the greater the fluorescence of the dye, the smaller the resultant photoacoustic

signal, and conversely the less the dye fluoresces the larger the heat pathway,

which leads to improved thermoelastic expansion and acoustic wave generation.

5.2 Materials and Methods

The NIR-dye, IR-27 (peak absorbance - 988 nm), was obtained from Sigma-

Aldrich. The dye was dissolved in sterile DMSO producing a concentration of 2.55

mg/mL and stored at -30 degrees C. The B16F10 murine melanoma cell line was

subcutaneously injected into the hind leg of a live BALB/c mouse (Harlan Sprague

Dawley Inc., ∼30 g). The tumor cells were allowed a four day incubation period

in order to facilitate growth of a tumor of adequate size. The cell line produced a

resulting tumor of dimensions 7 X 2 mm. Once the tumor was verified to be of

sufficient size, approximately 20 µL of the solution was subcutaneously injected

into the hind leg of a deceased BALB/c mouse producing a 5 X 2 mm deposit. The

injected dye solution was administered adjacent to the melanoma tumor, allowing

for easy comparison between the regions as seen in Fig. 5.1.
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Figure 5.1: NIR-dye depot and melanoma tumor. Dye and tumor are located proximally
in the subcutaneous layer in the hind leg of a BALB/c mouse.

5.3 Results and Discussion

Using a dark-field PAM system described in chapter 3 in conjunction with

the aforementioned focused 25 MHz transducer, noninvasive in vivo imaging of

melanoma and NIR-dye was achieved. An Nd:YAG laser operating with a pulse

width of 5 ns and repetition rate of 10 Hz pumped an OPO to yield wavelengths of

764 and 988 nm for each respective scan. Incident light on the surface of the ROI

was held to < 4 mJ/cm2 with respect to both wavelengths used in the study. Post

inoculation of NIR-dye, and prior to imaging, the mouse was sacrificed in order to
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remove any chance of motion artifacts arising during the imaging procedure.

Fig. 5.2(a) shows the first scan over the ROI using 764 nm optical wavelength.

We can clearly see the tumor region (bounded area) as well as the dye deposit

in the image, revealing that dye and tumor exhibit large thermoelastic responses

at 764 nm wavelength and are clearly discernible from one another due to their

anatomical locations.

Figure 5.2: PA images comparing dye and tumor using 764 nm and 988 nm wavelengths.
a) Image acquired at 764 nm wavelength. b) Image acquired at 988 nm wavelength.

Increasing the wavelength to 988 nm produced the image in Fig. 5.2(b) with the

noticeable lack of tumor in the bounded region. This absence of tumor response

arises due to the fact that the optical wavelength of 988 nm produces an acoustic

response from the NIR-dye that dominates the response from the tumor. More

specifically, energy absorption from incident light with respect to the tumor is

highly reduced at 988 nm when compared to 764 nm, leaving us with only the

discernible response from the dye. To further illustrate the responses from the
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differing wavelengths we can look at Fig. 5.3. Fig. 5.3(a),(b) represent normalized

intensity plots of B-scans through the same location of the mouse, with their

respective wavelength. We see in Fig. 5.3(a) that the response from tumor and dye

are decipherable from one another, and moreover both responses are present. This

is contrasted by Fig. 5.3(b), in which only the response for the dye is present and

there is a noticeable lack of response from the tumorous region. It should be noted

that the regional locations of both B-scans for both wavelengths was held constant

in order to accurately compare the responses. At 988 nm wavelength the maximum

intensity of dye to tumor produced a gain of 24dB. When comparing maximum

intensities from the tumor at both wavelengths, we find that the result from 988

nm yields a gain of -12dB with respect to 764 nm, thus providing quantitative

information demonstrating an attenuated response from the tumor at 988 nm.
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Figure 5.3: Normalized intensity plots of B-scans at 764 nm and 988 nm. (a) Plot of B-scan
at 764 nm wavelength. (b) Plot of B-scan at 988 nm wavelength. Both B-scan plots represent
the same location.
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The domination of the dye compared to tumor in Fig. 5.3(b) can be explained

by the dye’s higher molar absorptivity than the tumor at 988 nm. This also holds

with respect to the tumorous region at both wavelengths - 764 and 988 nm. More

specifically, the molar absorptivity of the tumor has a relative peak value at 764

nm when compared to other absorbing chromophores and diminishes as the

wavelength moves higher into the spectrum. This exemplifies the fact that it is

possible to target specific areas of interest by using contrast agents and varying

optical wavelengths.

5.4 Conclusions

In summary, photoacoustic differentiation of NIR-dye and melanoma tumor

has been implemented noninvasively. This technique provided an accurate and

noninvasive method to delineate tumor and contrast agent from surrounding

tissue. The possibility of extending this work is of significant interest. For example,

contrast agents are easily conjugated with proteins, antibodies, drugs, and other

bioactive agents. This technique has the potential to be extended to such areas,

enabling noninvasive detection of drug/dye encapsulated particles to melanoma

tumors, and providing a means to track the efficacy and delivery of such agents in

vivo.
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6 Noninvasive Photoacoustic Microscopy of Brain Tumors in
Live Mice
* Chapter has been submitted to the Journal of Biomedical Optics

Noninvasive photoacoustic microscopy (PAM) is a promising imaging modality

for detecting and imaging brain tumors in experimental models. The fusion of

optics and ultrasound coupled with the intrinsic optical absorption properties of

tumors and associated vasculature give rise to detailed images and invaluable

information of the current status of the disease. Here we present for the first time,

to the best of our knowledge, the application of PAM applied to in vivo imaging

of melanoma brain tumors in live mice. Utilizing the fact that NIR light has a deep

penetration depth and is able to pass through skin and skull, making its way into

brain tissue, we were able to accurately detect, image, and track melanoma tumor

growth in the brain of BALB/c mice.

6.1 Introduction

Photoacoustic microscopy is becoming an established imaging modality in the

field of biomedical imaging19,41,24,25,28,26. Following ANSI set guidelines for ac-

ceptable operating parameters, PAM is deemed safe for use with human and

animal models. A wide range of work has been previously accomplished us-
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ing photoacoustic imaging (PAI), ranging from imaging neonatal brains,27 burn

depth estimation,7 vascular and hemodynamic measurements,45,24,46 and various

oncology imaging applications.44,33,17,19.

Melanoma is one of the most lethal cancers and currently represents a significant

public health problem in the United States. For patients with stage IV melanoma,

the incidence of brain metastases has been reported to be 10% to 40%, making

melanoma the third most common metastatic brain tumor in the United States,

following lung cancer and breast cancer55. With effective treatments, survival time

following central nervous system (CNS) metastases is between 2 and 5 months56–59.

Without treatments, most patients show enhanced deterioration and ultimately

death. Recognition of the initiation and progression of melanoma brain metastases

in experimental models is necessary to identify new research strategies useful for

the diagnosis and subsequent therapy of these tumors in humans. Hence, in vivo

monitoring of the formation and growth of melanoma tumors in live brain could

have major implications for the design of improved therapies.

Recent mouse models have been developed that allow controlled study of vari-

ous diseases that mimic those found in humans. These models provide an excellent

setting for translatable research to humans in hopes of providing clinically relevant

breakthroughs. Currently a model allowing for the growth and proliferation of

brain tumors created from the B16F10 murine melanoma cell line has been estab-

lished. Utilizing the varying molar absorptivity that is innate to specific biological
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tissue, PAM can easily discern melanoma tumor growth from surrounding vas-

culature and soft tissue yielding high contrast and excellent spatial resolution,

thus making it highly suited for application in brain tumor imaging in the mouse

model33. Because PA wave generation arises from diffuse photon absorption and

the resultant signal of interest is acoustic, PAM has the ability to overcome light

scattering and attenuation that arises from skull and scalp that typically inhibits

other purely optical imaging modalities60.

6.2 Materials and Methods

PAM System

Our photoacoustic imaging system is identical to the one presented by Song

et al. for deep PA imaging21. The system consists of an ultrasound transducer,

a laser system, and receiving electronics. A Q-switched Nd:YAG laser (Surelite;

Continuum, Santa Clara, CA) was used to pump a tunable OPO laser (Surelite

OPO PLUS; Continuum, Santa Clara, CA) to obtain a 764 nm wavelength laser

with a 10-Hz pulse repetition rate. The produced laser light forms a ring shape

illumination after passing through several prisms and a conical lens and then

is refocused inside the tissue sample by an optical condenser. At the tissue

surface, the ring has a diameter of ∼5 mm. The subsequently generated ultrasonic

waves are detected by a focused ultrasonic transducer (13-2506-R, Olympus-NDT,
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Waltham, MA), delivered to a pre-amplifier (5072PR, Olympus-NDT, Waltham,

MA), and finally collected by a personal computer through an A/D Scope Card

(CS21G8-256MS, Gage, Lockport, IL). The ultrasound transducer (15 mm focal

length; 9.4 mm aperture size) has a central frequency of 25-MHz with 61% -6-dB

fractional bandwidth and exhibits lateral resolution of 150 µm and axial resolution

of 100 µm when used for photoacoustic imaging.

Inoculation of Melanoma Cell Line Intracerebrally

B16F10 melanoma tumor cells grown in DMEM supplemented by 10% fetal

bovine serum, 1% penicillin, and 1% streptomycin were harvested by trypsinization,

washed in 1x phosphate-buffered saline, resuspended in 1x phosphate-buffered

saline at a concentration of 2,500 cells/µL, and kept on ice until injected in-

tracranially. BALB/c mice (Harlan Sprague Dawley Inc., ∼22 g) were deeply

anesthetized using a cocktail of 83 mg/kg of ketamine and 17 mg/kg of xylazine,

which was intraperitoneally injected. Hair covering the scalp of the mice were

removed using a depilatory cream (Nair) in order to expose the skin. Following

hair removal mice were secured in a small animal stereotactic frame. Following

liquid tear application to the eyes to prevent ocular damage during anesthesia,

povidone iodine was applied on the skin covering the skull around the anticipated

midline incision site, and an alcohol pad was then used to wipe down the skin to

remove excess povidone iodine and provide further sterilization. A ∼1 cm incision
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on the midline of the skull was made to expose the calvarium, and a burr hole was

drilled 1 mm anterior and 2 mm lateral (right) from the bregma by a Dremel 10.8V

8000-03 with a rounded high speed cutter bit, producing a burr hole ∼1 mm in

diameter as seen in Fig.6.1.

Inoculation
site

Figure 6.1: Site of inoculation of B16F10 tumor cells in the in vivo mouse brain.

A 10 µL blunt-tipped Hamilton syringe loaded with 2 µL was lowered into the

hole 3.3 mm from the cortical surface but retracted 0.3 mm to form a small pocket

for the liquid to be injected, thereby introducing the cells into the right basal ganglia

The B16F10 cells were injected into the brain at a speed of 0.4 uL/minute and a

total volume of 2 uL (5,000 cells injected per mouse). The syringe was left in place

for ∼1 minute following tumor cell injection to allow for pressure stabilization.
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After the intracranial injection, each animal was removed from the stereotactic

frame, and the incision was closed with an absorbable surgical suture. Triple

antibiotic ointment was added to the incision to help further prevent infection,

and the animals were slowly warmed on a heating pad and monitored until they

awakened. All in vivo procedures were carried out following the guidelines of the

University of Kansas Institutional Animal Care and Use Committee (IACUC).

Image Acquisition

Photoacoustic images of the brain melanoma were first acquired on the fifth day

after the tumor cell injection. During the photoacoustic imaging, a mouse bearing

with melanoma brain tumor was initially anesthetized with a mixture of 87 mg/kg

ketamine and 13 mg/kg xylazine, and then the anesthesia was maintained with the

inhalation of a mixture of pure oxygen and 1% isoflurane. The brain region where

the melanoma cells were injected was imaged. The same process was repeated

in the following days, and size increase of the brain melanoma tumor due to the

growth of the brain melanoma tumor can be directly indicated from the PA images.

The animals showed classic signs of morbidity approximately two weeks following

the tumor injections.
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6.3 Results and Discussion

Using the 25 MHz ultrasonic transducer previously mentioned in conjunction

with 764 nm wavelength operating at ∼10 mJ/cm2, PAM was used to noninvasively

image a melanoma tumor residing in the cortical region of live mice. Data was

captured by raster scanning the region of interest, an 11 x 11 mm area on the

surface of the scalp. As a result of the inoculation procedure, scalp wounds

persisted during the life span of the mice, which increased the levels of energy

absorption on the scalp surface during imaging. To overcome the large acoustic

response from the wounds, post-processing of the data was employed to remove

surface wound response similar to methods demonstrated by Zhang et al.61.

Mouse A was imaged at day 3 and day 9 post-inoculation of the melanoma

cell line. Fig. 6.2 clearly demonstrates the progression of the tumor growth in

mouse A over a period of 6 days in the same bounded region over the time period.

Fig. 6.2(a) gives an invasive anatomical view of the tumor growth that occurred

over the 9 day period within the brain of the specimen. When looking at the MAP

image In Fig. 6.2(b), specifically within the bounded region, we see a minimal

acoustic response within the bounded region denoting a lack of an absorber, i.e. a

tumor. Figure. 6.2(b) reveals that tumor growth has yet to proliferate within the

region and currently yields almost no acoustic response from the area. Allowing

the tumor cells a timeframe of 6 days to mature and produce a tumor of sufficient
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size lead to results found in Fig. 6.2(c). Looking at Fig. 6.2(c), again within the

bounded region, we can see the distinguishing shape of a melanoma tumor present

within the same bounded location as Fig. 6.2(b), which lacked any sufficient tumor

growth. Comparing Fig. 6.2(a) with Fig. 6.2(c), it is clear that the PAM image

clearly identifies the tumor and agrees with the anatomical photograph taken after

image acquisition, thus providing a clear picture of growth and proliferation of

the injected cell line into a tumor.
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Figure 6.2: Noninvasive in vivo PAM images of mouse A over a period of 6 days. (a)
Photograph taken after image acquisition and scalp and skull removal. (b) 3 days post-
inoculation of the melanoma cell line. (c) Same region in (b) imaged 9 days post-inoculation.
Scale bar is the same for both images.
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To further highlight the disparity and evolution in tumor growth between day 3

and day 9 in mouse A the maximum amplitude projections of the tumorous region

are shown in 3D-space in Fig. 6.3(a)(b), and (c)(d), respectively. On day 3 we see

very little uniform response from the bounded region verified by the 3D-projection.

It is clear the tumor has yet to mature after 3 days and the response we see is

intermixed with background noise. On day 9 the 3D-projection demonstrates

a clear pattern emerging from the tumor. The overall shape and dimensions

are visible and we can see a uniform response from the acoustic signal as the

pattern of tumor growth becomes more discernible. At day 9 it is possible to

distinguish tumor from background noise due to the dominance of absorbance by

the melanoma at this stage.
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Figure 6.3: Comparison of maximum amplitude projections in 3D-space over a timeframe
of 6 days. (a) MAP at day 3. (b) MAP of bounded-region of (a) in 3D-space. (c) MAP at
day 9. (d) MAP of bounded-region of (c) in 3D-space.

The thickness profile of the tumor bearing mouse A is shown by the B-scans in

Fig. 6.4(c)-(d). Here we see Fig. 6.4(c), which represents the B-scan shown by the

horizontal green line running from left to right in (b), showing a tumor thickness of

∼1.5 mm. Fig. 6.4(d) contains the B-scan shown by the blue vertical line, running

from top to bottom in (b). When looking at (d) we see that depth of the tumor

varies, as well as the thickness, over the region of growth. In both B-scans it is
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possible to distinguish brain tumor signals from background noise and accurately

asses tumor location, thickness, and growth patterns.
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Figure 6.4: B-scan of tumor in mouse A at day 9 post-inoculation. (a) Photograph taken
after PAM image acquisition and scalp and skull removal. (b) MAP image of the region in
(a); formed while scalp and skull were intact. (c) Horizontal B-scan along the green line in
(b). (d) Vertical B-scan along the blue line in (b). Scale bar is the same in all images.

Fig. 6.5 (a)-(e) were taken from experimental mouse B on day 5, day 8, day 10,

day 13 and day 14 after the injection of tumor cells, respectively. On day 5 and

day 8, the brain tumor signals are fairly weak and do not distinguished from

background because the tumor is still small. On day 10, the PA signals from the
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melanoma brain tumor becomes dominate. The size of the brain melanoma tumor

shown on the PA image shows the significant enlargement as the tumor continues

to grow over the last two days before morbidity.

The corresponding B-scan photoacoustic images of the melanoma tumor from

the same mouse are in Fig. 6.5 (f)-(j). These clearly show the depth of the melanoma

tumor in the mouse brain on the five separate imaging days after injection. The

brain melanoma was initially located about 2-3 mm deep underneath the skull.

As the time elapses, the thickness of the melanoma tumor increases. In the 14th

day, the mouse died from the brain melanoma and the open skull photograph

was taken and shown in Fig. 6.5 (k). The final size of the tumor is about 4 mm in

diameter inside the brain.
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Fig. 1 
Figure 6.5: Noninvasive MAP images of the brain melanoma in day 5 (a), day 8 (b), day 10
(c), day 13 (d), day 14 (e) after the injection of tumor cells, respectively. (f)-(j) The B-scan
images corresponding to the dashed lines in (a)-(e), respectively. (k) Invasive anatomical
photograph after the mouse death. All PA images are in the same intensity scale. M:
melanoma brain tumor.
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Both the size and depth information of the brain tumors are important in

planning and verifying the treatment of primary brain tumors (e.g., glioma). This

study showed PAM can monitor the brain tumor growth inside a small animalï£¡s

brain noninvasively, and therefore, photoacoustic imaging is capable of being as

an imaging tool to in vivo track the response of the brain tumor to therapies.

6.4 Conclusions

In summary, both the size and depth information of the brain tumors are

important in planning and verifying the treatment of primary brain tumors (e.g.

glioma). We have shown the ability of a reflection-mode dark-field PAM system

to detect, image, and track the progress of melanoma tumors noninvasively in a

metastasis model. PAM of malignant melanoma can potentially provide and/or

enhance current diagnostic techniques and offer an accurate noninvasive method to

monitor cancer progression in biological samples. Looking at the results produced

in this study, we feel PAM has a strong future in the area of oncology research.
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