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Chapter 1 
Introduction 

  
 

Part I. Cell Death Induced during Parvovirus Infection 

 
Introduction 

Parvoviruses have a nonenveloped icosahedral virion with a diameter of approximately 

20-25 nm, which encapsidates a linear, single-stranded DNA (ssDNA) genome of an average 

size of 5,000 bases (105). The family Parvoviridae contains two subfamilies: Parvovirinae and 

Densovirinae. The latter infects only invertebrates and will not be the subject of this review. The 

family Parvovirinae is composed of five genera: Amdovirus, Bocavirus, Dependovirus, 

Erytharovirus and Parvovirus  (102). Adeno-associated viruses (AAVs) in the genus 

Dependovirus require helper viruses (e.g., adenoviruses) for productive infection (13). All other 

members of Parvovirinae do not require helper virus and are called autonomous parvoviruses. 

In this review, the term “parvovirus” refers to viruses in the subfamily Parvovirinae.  

Disease outcomes of parvovirus infection vary among members of Parvovirinae. Human 

parvovirus B19 (B19V) is the only member that has been confirmed to be pathogenic to humans 

(227). B19V infection is the cause of an increasing list of diseases, including fifth disease in 

children, transient aplastic crisis in patients with chronic hemolytic anemia (e.g., sickle cell 

disease patients); pure red-cell aplasia in persistent infection in immunocompromised patients; 

and hydrops fetalis in pregnant women  (30, 57, 78, 192, 227). Human bocavirus (HBoV), which 

was identified in 2005, has been linked to lower respiratory tract infections in children (5, 8, 99) 

and was is associated with severe pneumonia in children coinfected with other respiratory 

viruses (98, 121). Of animal parvoviruses, Aleutian mink disease virus (AMDV), the only 

member in genus Amdovirus, causes the main symptoms of gastroenteritis, aplastic anemia and 

lymphopenia (17). In the genus Bocavirus, minute virus of canines (MVC) causes respiratory 
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diseases with breathing difficulty, enteritis with severe diarrhea, spontaneous abortion of fetuses 

and death of newborn pups (33, 86, 91). A similar enteritis was also seen in bovine parvovirus 

(BPV)-infected calves (67, 120). In the genus Parvovirus, infection of feline parvovirus (FPV) 

and canine parvovirus (CPV) causes gastrointestinal disease, e.g., enteritis (166-168). Porcine 

parvovirus was identified as the cause of stillborn and mummified piglets (215).  

The cytopathic effects (CPEs) induced during parvovirus infection have been widely 

documented. The disease outcomes of parvovirus infection are often the result of CPEs, e.g., 

cell death of B19V-infected erythroid progenitor cells causes anemia and non-immune hydrops 

fetalis (6, 29). Cell death induced during parvovirus infection appears to be mediated either by 

apoptosis or by necrosis (non-apoptotic cell death), whereas cell cycle arrest is often observed 

as one of the early responses of host cells to parvovirus infection.  

Apoptosis and necrosis are two types of cell death tightly controlled by distinct 

programmed signaling cascades. Apoptosis is divided mechanistically into two major pathways, 

i.e., extrinsic and intrinsic, both involving sequential activation of caspases. The extrinsic 

pathway is activated by the ligation of “death” ligands, such as Fas ligand and tumor necrosis 

factor-alpha (TNFα) to “death” receptors, followed by activation of caspase-8/caspase-10 and a 

cascade of caspase activation, which eventually leads to apoptosis (9). The mitochondrion-

mediated (intrinsic) pathway is activated by multidomain Bcl-2 family proteins, notably Bax and 

Bak (43, 159). This pathway causes mitochondrial outer membrane permeabilization (MOMP), 

resulting in the release of cytochrome c, Smac and Omi into cytosol, where they work with 

apoptotic protease-activating factor (Apaf-1) to form the apoptosome complex, followed by the 

activation of capase-9 and eventually apoptosis (111). Caspase-3, -6 and -7 are the 

downstream executor caspases (40). In addition, crosstalk between the extrinsic and intrinsic 

pathways has been well established (11, 186), e.g., activated caspase-8/10 cleaves Bid to tBid, 

which in turn activates Bax/Bak.  
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Necrosis, the catastrophic cell death, is characterized by organelle swelling, 

mitochondrial membrane dysfunction, massive oxidative stress and rapid plasma-membrane 

permeabilization (62). Previously, necrosis was thought to be un-regulated cell death; however, 

recently, a number of regulated non-apoptotic cell death pathways have been attributed to 

necrosis (108).  

Cell cycle check points are cellular mechanisms that ensure each and every step of the 

replication cycle takes place accurately and precisely at the right time. Each cell cycle check 

point is controlled by different cyclins and cyclin dependent kinases (CDKs) (93, 139). An 

aberrant cellular environment change or exogenous assault results in cell cycle check point 

arrest, which provides time for the cells to recover and return to their normal status before 

proceeding to the next step of the cell cycle (26).  

 

Human parvovirus B19 

B19V infection has an exclusive tropism for both CD36+ human erythroid progenitors 

and erythroblasts of the human bone marrow and fetal liver (132, 163, 199, 225). Clinical 

symptoms, as seen in anemia and non-immune hydrops fetalis, are the direct result of the 

destruction of erythroid progenitors in bone marrow and fetal tissues by virus infection (6, 29). 

Tissue samples from hydrops fetalis patients infected with B19V have been found to have 

characteristics of apoptosis (225). Fetal erythroid progenitors infected by B19V reveal 

ultrastructural features of apoptotic cell death (132). 

In vitro studies of B19V infection induced CPE have long been hampered by the lack of 

a permissive culture system. The first productive in vitro culture of B19V, reported in 1987, used 

bone marrow cells directly collected from a sickle cell patient (162). The establishment of a 

B19V semi-permissive cell line UT7/Epo-S1, a subclone of megakaryoblastic cell line UT7/Epo 

(135), allowed study of the role of viral non-structural proteins in B19V infection-induced cell 

death (131). The parent UT7/Epo cells only showed very limited permissiveness to B19V 
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infection (193). Ex vivo expanded erythroid progenitor cells have made it possible to carefully 

examine the cell death induced during B19V infection (38, 195, 222). 

 B19V infection of human bone marrow has been shown to inhibit both burst-forming 

erythroid unit (BFU-E) and cloning-forming erythroid unit (CFU-E), an arrest of erythropoiesis 

(163, 199). Previously, the cytotoxicity of B19V infection was believed to be a direct function of 

NS1 expression (161). The molecular mechanisms leading to apoptosis during B19V infection of 

primary erythroid progenitor cells was investigated in parallel with inducible stable NS1 

expression in UT7/Epo cells (195). Both B19V infection in erythroid progenitor cells and NS1-

induced apoptosis were inhibited by caspase-3, -6, and -8 inhibitors. Substantial caspase -3, -6, 

and -8 activities were induced by NS1 expression in UT7/Epo cells (195). The caspase-

mediated apoptosis by NS1 expression in UT7/Epo cells was evidenced by cell morphology, 

genomic DNA fragmentation (131) and stable expression of Bcl-2, an anti-apoptotic protein, 

which resulted in near-total protection from cell death in response to NS1 induction (131).  

Caspase-8, which mediates the extrinsic apoptotic pathway, was activated during B19V- and 

NS1-induced apoptosis. Consequently, B19V-infected erythroid progenitors and NS1-

expressing UT7/Epo cells were sensitized to TNFα-induced apoptosis (195). Moreover, the 

ceramide level was enhanced by B19V infection and NS1 expression. Therefore, a connection 

between the apoptotic pathways activated by TNFα and NS1 in B19V-infected human erythroid 

progenitor cells was proposed.      

B19V NS1 has been shown to induce apoptosis in non-permissive cell lines as well (89, 

131, 171). In addition, expressing NS1-transgene in mice under the erythroid lineage-specific 

GATA-1 promoter was demonstrated to be embryonic lethal as a result of fatal anemia (44). In 

non-permissive liver-derived cell types, both B19V inoculation and NS1 expression were shown 

to activate caspase-3 and -9, but not caspase-8 (171, 172). Treatment of transfected cells with 

inhibitors of caspase-3 or -9 significantly inhibited apoptosis. Neutralization of TNFα or Fas 

ligand had no effect on apoptosis induced in liver cells. In monkey epithelial cells COS-7, 
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expression of NS1 induced an increased level of apoptosis (89). Consistent with the results from 

liver cells, the increased expression of p53, the pro-apoptotic Bcl-2 members Bax, Bad and 

activation of caspase-3 and caspase-9, but not the activation of caspase-8 or Fas, were 

detected in the NS1-transfected cells. Furthermore, a p53 inhibitor abolished activation of 

caspase-9 and apoptosis was significantly diminished by the caspase-9 inhibitor (89). Thus, 

NS1 appears to induce intrinsic mitochondrion-mediated apoptosis in non-permissive cells. 

The B19V NS1 protein is a multifunctional protein during the virus life cycle (65, 76, 130, 

178, 196). Loss-of-function mutations engineered into the nucleoside triphosphate (NTP)-

binding domain of NS1 significantly rescued cells from NS1-induced apoptosis without having 

any effect on NS1-induced activation of IL-6 gene expression, which is mediated by NF-κB 

(131). Furthermore, using pentoxifylline, an inhibitor of NF-κB activation, the NF-κB-mediated IL-

6 activation by NS1 was shown to be uncoupled from the apoptotic pathway. Thus, induction of 

apoptosis by NS1, at least in UT-7/Epo-S1 cells, is a separate function from trans-activation. 

The loss-of-function mutation of the NTP-binding site of NS1 also significantly decreased 

apoptosis in HepG2 cells (171). Therefore, the NTP-binding motif of the B19V NS1 is required 

for NS1-induced apoptosis in both B19V semi-permissive and non-permissive cell lines.   

Overall, B19V NS1 induced apoptosis is characterized by caspase activation and DNA 

fragmentation. The extrinsic pathway, TNFα-induced activation of this pathway in particular, is 

thought to be responsible for NS1-induced apoptosis in permissive cells; while in non-

permissive cells, the mitochondrion-mediated intrinsic pathway is activated. Nevertheless, the 

NTP-binding motif of NS1 is the only domain identified to be required for inducing apoptosis in 

both permissive and non-permissive cells. Based on above evidence, NS1 has long been 

thought to be the only viral protein of B19V that induces apoptosis during B19V infection. 

However, the NS1-induced apoptosis could be exaggerated in both non-permissive and semi-

permissive cells as the kinetics of NS1 expression does not correlate with that of induction of 

apoptosis during B19V infection (134). 
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Using CD36+ erythroid progenitor cells ex vivo expanded from primary CD34+ 

hematopoietic stem cells (222), we have identified that the B19V small nonstructural protein 

11kDa as a novel inducer of apoptosis during B19V infection, which is mediated through 

caspase-10 activation (Chapter 2) (38). The 11kDa is expressed predominantly in the cytoplasm 

during B19V infection at a level at least 100 times more than NS1, which is solely expressed in 

the nucleus during the course of infection in CD36+ erythroid progenitor cells. By further knock-

down of 11kDa expression using antisense oligos, we confirmed that the 11kDa plays a key role 

in killing CD36+ erythroid progenitor cells during B19V infection. Interestingly, 11kDa was 

reported to interact with growth factor receptor-bound protein 2 (Grb2) via the SH3 domain 

binding motif in vitro (71). The mechanism underlying B19V 11kDa induced apoptosis, and 

especially the potential significance of the 11kDa-Grb2 interaction warrants further investigation.  

The G2/M cell cycle arrest induced during B19V infection is observed in both primary 

CD36+ erythroid progenitor cells(195) and the cell line UT7/Epo-S1 (135). In UT7/Epo-S1 cells, 

B19V infection induced an accumulation of cyclin A, cyclin B1, and phosphorylated cdc2 and 

was accompanied by an up-regulation in the kinase activity of the cdc2-cyclin B1 complex, 

which is consistent with G2/M check point arrest (135). In concert, degradation of nuclear 

lamina and phosphorylation of histone H3 and H1, markers of M-phase, were not seen in B19V-

infected cells. Moreover, accumulation of cyclin B1 was persistently localized in the cytoplasm, 

but not in the nucleus, suggesting that B19V infection contributes to the suppression of the 

nuclear import of cyclin B1.  

G0/G1 arrest was also demonstrated in B19V-infected UT7/Epo-S1 cells with application 

of the mitotic inhibitor paclitaxel (133). NS1-expressing UT7/Epo-S1 and 293T cells were shown 

to undergo ell cycle arrest at G0/G1 rather than G2/M check point. NS1 expression significantly 

increased p21WAF1 expression, a cyclin-dependent kinase inhibitor that induces G0/G1 arrest. In 

addition, G0/G1 arrest mediated by NS1 was proposed to be a prerequisite for the apoptosis of 

erythroid progenitor cells during B19 virus infection. In monkey epithelial cells COS-7, 
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expression of NS1 also induced G0/G1 check point arrest, accompanied by an increased level 

of apoptosis (89). The expression of p53 and its downstream cell cycle kinase inhibitors p16INK4 

and p21WAF1 were up-regulated in the NS1-transfected cells. Given the requirement of S-phase 

for the replication of parvoviruses, the role of NS1-induced G0/G1 arrest in the B19V life cell 

cycle needs to be clarified.  

G2/M arrest appears to be important for B19V infection, as inhibition of G2/M arrest by 

caffeine significantly decreased the expression of NS1 (133). However, the mechanism 

underlying B19V infection-induced G2/M cell cycle arrest, especially which viral components are 

involved, was uncertain. In our recent work, we found that the cell cycle arrest occurred as one 

of the earliest events during infection (134) (Chen AY & Qiu J, unpublished data). While UV-

inactivated B19V did not express NS1, it induced G2/M arrest at a level similar to that induced 

by the infectious virus (133), indicating that the viral genome might paly an improtant role in the 

cells cycel arrest. Expression of B19V viral proteins (NS1, VP1, VP2, 11kDa and 7.5kDa) in 

UT7/Epo-S1 cells by transfection did not change the cell cycle pattern. However, transfection of 

a viral sequence containing half of the left hand inverted terminal repeat did partially produce a 

G2/M arrest (Chen AY & Qiu J, unpublished data). Only recently, a CpG oligodeoxynucleotide 

2006, containing a consensus sequence located in the P6-promoter region of B19V genome (5'-

GTTTTGT-3'), directly inhibited the growth of burst-forming erythroid (BFU-E) cells, resulting in 

the accumulation of cells in the S and G2/M phases and increased cell size and frequency of 

apoptotic cells (83). Therefore, the B19V viral genome seems to play an important role in 

arresting the cell cycle at G2/M.  

Overall, apoptosis is the programmed cell death pathway underlying B19V infection of 

erythroid progenitors. Viral proteins, NS1 and 11kDa in particular, are responsible for promoting 

the apoptotic process; however, the 11kDa protein is likely the major apoptotic inducer, 

considering it is expressed at a level 100 times more than that of NS1 during B19V infection. 

Other to-be-identified factors, such as the viral genome and the 7.5kDa small nonstructural 
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protein, may also contribute to ensure the cell death outcome. G2/M cell cycle arrest by the 

B19V genome occurs early during infection and may contribute to the CPE during the early 

phase of B19V infection. Though the underlying mechanism is largely unknown, a viral genome-

induced, DNA damage response-mediated pathway is likely involved.   

 

Amdovirus 

AMDV is the first parvovirus known to utilize caspase activity to facilitate its replication 

(16, 17). AMDV infection induces caspase activation and result in apoptotic cell death (17). 

Pretreatment of infected cells with caspase-3 or broad-spectrum caspase inhibitors not only 

prevented apoptosis but also caused a  reduction [by 2 log(10)] in production of progeny 

infectious viruses compared with untreated controls. Thus, permissive replication of AMDV in 

vitro in Crandel Feline Kidney (CrFK) cells depends upon activation of caspase-3. Furthermore, 

active caspase was shown to be required to specifically cleave NS1 protein at two sites, aa227 

(INTD↓S) and aa285 (DQTD↓S), and the cleavage products were crucial for the replication of 

AMDV genome (16). Importantly, the NS1 products could be identified in AMDV-infected cells 

but were not present in infected cells pretreated with caspase inhibitors. When the two caspase 

cleavage sites were mutated (D to E) in an infectious clone, replication of the clones containing 

either of these mutations was reduced by 3-4 log(10)-fold compared with that of the wild-type 

clone, and the clone with both mutations was replication defective. Mechanistically, 

immunofluorescence staining demonstrated that the cleavage was required for nuclear 

localization of NS1.  

Our recent work further demonstrated the critical role of caspase activation during 

productive infection of AMDV. We proved that expression of the viral capsid proteins alone can 

activate caspases, including caspase-10 which may serve as an initiator (42). In vitro caspase 

cleavage assays showed that the effector caspase-7 specifically cleaved the capsid protein VP2 

after D420. AMDV mutants that are resistant to caspase-mediated capsid cleavage increased 
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virus production by approximately 3-5 folds in CrFK cells. Thus, caspase-mediated specific 

cleavage of capsid proteins might have a role in regulating persistent infection of AMDV in 

animals. Collectively, caspase activation plays multiple roles in infection of AMDV through both 

promoting replication of the viral genome and limiting capsid production.  

The S-phase of the cell cycle was shown to be required for the expression of AMDV NS1 

protein (155). Cells that progressed through S-phase showed a characteristic binary pattern of 

cell cycle disturbance caused by AMDV infection. While a small portion of NS1-expressing cells 

escaped the G2/M cell cycle arrest and progressed to the G0/G1 phase, the majority were 

arrested at a post-mitotic phase with DNA content higher than 4N. Intriguingly, active DNA 

synthesis was detected in cells arrested at the post-mitotic phase, which implies the potential 

role of post-mitotic phase arrest for AMDV genome replication. Nevertheless, the nature of the 

post mitotic DNA content in arrested cells, whether of host or viral origin, is not clear. Which viral 

components are responsible for the cell cycle arrest still remains to be determined. 

In conclusion, apoptosis, and in particular, activated caspases, regulates AMDV infection 

by specific cleavage of both NS1 and capsid proteins. Infected cells with apparent cell cycle 

arrest still support AMDV replication.   

 

Bocavirus 

The importance of bocavirus infection was raised with the emergence of human 

bocavirus (HBoV).  HBoV infection is thought to be associated with pneumonia, and possibly 

gastroenteritis, mainly in children (5, 8, 99). As the in vitro infection of HBoV is far from efficient 

(64), it is currently difficult to reproduce HBoV infection in routine laboratory settings. The 

genetic map of HBoV1 was recently described and confirmed to be very close to that of MVC 

(36, 64). Therefore, the study of bocavirus-induced CPE is basically carried out with the two 

other members of bocavirus, namely minute virus of canines (MVC) and bovine parvovirus (BPV) 

(37, 175). 
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  Significant CPE has been observed during in vitro infection of Walter Reed canine 

cell/3873D (WRD) cells by MVC (19, 204). We have established an MVC infectious clone that 

produces infectious virus efficiently (204). We took advantage of the MVC in vitro infection 

system as a model for the bocavirus genus and explored the molecular mechanism underlying 

the cell death induced during bocavirus infection (37). As shown in Chapter 3, we found that 

MVC infection triggered replication-dependent, mitochondrion-mediated apoptosis, which can 

be blocked by a pan-caspase inhibitor. Moreover, the level of cell death correlated closely with 

the level of MVC replication. Expression of viral proteins individually or in combination failed to 

induce cell death in transfected cells.  

Along with apoptosis, we also observed a progressive cell cycle arrest of infected WRD 

cells (37). At around 18 hrs after infection with MVC, NS1-expressing WRD cells showed a 

single widened cell cycle peak with a plateau at S-phase, which progressed into prolonged 

G2/M arrest. The DNA content of NS1-expressing WRD cells did increase to slightly higher than 

4N at G2/M arrest. We believe this finding was the result of the replicated viral genome, which 

was quantified to be approximately 1/8 the amount of the human genome during active 

replication at 48 hrs post-infection. UV-inactivated MVC also induced cell cycle arrest at the 

G2/M but not S-phase. The cell cycle was gradually resolved without inducing significant level of 

cell death. Moreover, when transfected with a panel of mutants of the MVC infectious clone, 

MVC viral protein expression did not induce either apoptosis or cell cycle arrest, while the 

genome alone induced G2/M arrest, even when half of the left terminal repeat structure was 

deleted. The S-phase plateau, which has not been seen in other members of Parvovirinae, 

appeared only when active MVC replication took place.  

In contrast, CPE induced during BPV infection was shown to be mediated by necrosis 

rather than apoptosis (1). With the use of embryonic bovine tracheal cells, BPV infection did not 

cause alterations in nuclear morphology, membrane changes, apoptotic body formation, 

membrane phosphatidylserine inversions, caspase activation or cellular DNA fragmentation. On 



11 
 

the other hand, at the end of the virus replication cycle, infected cells released viral 

hemagglutinin and infectious virus particles, as would be expected from cell membrane failure. 

Moreover, the infected cells released lactate dehydrogenase, a marker of necrosis, which 

directly correlated with virus production. Furthermore, assessment of mitochondrial 

dehydrogenase activity was consistent with cell death by necrosis.  

Collectively, bocavirus infection induces either apoptosis or necrosis depending on the 

type of virus. Cell cycle manipulation by bocavirus is unique in that the S-phase plateau in early 

infection progresses into G2/M arrest at a later stage.   

 

Dependovirus 

AAVs have not been associated with any disease in humans (13). In fact, recombinant 

AAV has been favorably emphasized as a vector for human gene therapy (197, 198).  A series 

of reports emerged recently that investigated the cell death induced by AAV infection as well as 

the underlying mechanism (68, 179, 211). Identification of the AAV-mediated killing of cells 

lacking p53 activity has opened up the exploration of the oncolytic potential of AAV (179). The 

p53-p21-phosphorylated retinoblastoma protein (pRb) pathway protects normal cells from AAV 

induced apoptosis (77). The lack of this pathway, due to loss or mutation of p53, p21 or pRb, 

sensitized cells, particularly tumor cells, to AAV infection-induced apoptosis. Moreover, DNA 

damage effector kinase Chk1 was also suggested to be the mediator of apoptotic cell death 

induced during AAV infection of p53-deficient cells (95). In addition, it was reported that the 

nonstructural protein Rep78 of AAV2, independent of p53, induced apoptosis with activation of a 

caspase cascade (189).   

While apoptotic cell death was attributed to the activation of the caspase cascade, 

emphasis was placed on mechanistically linking the DNA damage response induced during 

AAV infection to cell cycle regulation and p53-independent cell death. G2/M arrest was 

observed during AAV infection, but intriguingly not in ATM-/- cells (179). S-phase progression of 
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infected cells was inhibited by AAV Rep78 via hypophosphorylation of Rb (187). In addition, the 

AAV2 genome was shown to trigger DNA damage signaling that resembles the response to an 

aberrant cellular DNA replication fork (96). The formation of DNA damage response foci induced 

by the AAV genome strictly depended on ATR (ATM and Rad3-related protein), Chk1 and DNA 

topoisomerase 2-binding protein 1 but not ATM or NBS1 (96). The p5 promoter sequence of 

AAV2 was identified to be responsible for inducing the host DNA damage response, which leads 

to the G2/M arrest (73). Furthermore, in p53-deficient cells, UV-inactivated AAV2 triggered 

mitotic catastrophe associated with a dramatic Chk1-dependent overduplication of centrioles 

and the consequent formation of multiple spindle poles in mitosis (90). In p53-proficient cells, 

H2AX was indispensible for the formation and maintenance of DNA repair foci induced by 

stalled replication and p21-mediated cell cycle arrest (74). Moreover, the activation of H2AX 

was shown to be the result of ATR overactivation and diffusion but independent of ATM.   

 AAV preferentially induces apoptotic cell death in p53-deficient cells, which lack the 

ability to maintain prolonged G2/M arrest via Chk1 mediated mitotic catastrophe. In p53-

proficient cells, AAV infection induced a G2/M arrest that was maintained via the ATR-Chk1-

H2AX-p53-p21 pathway preventing significant cell death. During co-infection with adenovirus, 

however, replication of the AAV2 genome induced a DNA damage response through activation 

of the primary mediator DNA-PKCs (47, 191).  

       

Parvovirus 

Cell death induced by members in the genus Parvovirus is cell type dependent. In tissue 

samples of cats and dogs with panleukopenia and enteritis, respectively, apoptosis has been 

shown to contribute significantly to the widespread tissue damage caused by parvovirus 

infection (12). Apoptotic cell death induced by H-1 parvovirus (H-1PV) has been reported (153, 

181, 184); however, necrosis also has been shown to mediate the H-1PV-induced CPE in 

apoptosis-resistant cell types (63), and MVM-induced CPE in permissive murine A9 cells (149).   
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The oncolytic potential of rodent parvoviruses, particularly MVM and H-1PV, has drawn 

attention for decades. A rich body of studies has emphasized the CPE induced by MVM and H-

1PV, which is selectively seen in tumorized cells, but not their normal counterparts. The 

selective killing of tumorized cells by MVM and H-1PV was shown in vitro in cultured SV40-

transformed cells over 20 years ago (41, 137). A series of animal experiments showed the 

suppressive effect of MVM and H-1PV on different tumors or tumor grafts (102). Stimulation of 

the parvovirus life cycle, or lytic activation in tumorized cells vs. normal counterparts, was 

proposed as the mechanism behind the oncolytic function based on the observation that a 

higher level of viral replication and production was achieved in tumorized cells than in non-

transformed cells (49, 50). This hypothesis is sound given that S-phase, which is pivotal for 

parvovirus replication, is more active in tumorized cells. On the other hand, the NS1 protein 

expression level and phosphorylation status, which differs in tumorized cells vs. their normal 

counterparts, may also contribute to the selective killing function (54, 136, 146, 147).  

  The CPE induced by MVM infection, shown mainly to affect micro and intermediate 

filaments of the cytoskeleton network, while the nuclear lamina and microtubules remain intact 

throughout infection (148), is mainly caused by the activity of NS1 (48). The interaction of MVM 

NS1 and casein kinase II (CKII) was revealed to mediate CKII-dependent cytoskeletal 

alterations and non-apoptotic cell death in murine A9 fibroblasts (150). NS1 acted as an adaptor 

molecule, linking the cellular protein kinase CKIIα to tropomyosin and thus modulating the 

substrate specificity of the kinase. This action results in an altered tropomyosin phosphorylation 

pattern both in vitro and in living cells. Moreover, NS1 mutants that abolished binding with either 

CKIIα or tropomyosin lost the capacity of inducing CPE. The fusion peptide, in which the 

tropomyosin-binding domain of NS1 and CKIIα are physically linked, was able to mimic NS1 in 

its ability to induce death of transformed MVM-permissive cells. In addition, the Raf-1 signaling 

control of nuclear transport was suggested to be the target during MVM infection-induced 

oncolysis (182). 
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As for H-1PV, necrosis was detected in infected glioma cells which are resistant to 

cisplatin and TRAIL-induced apoptosis. H-1PV has been found to kill glioma cells via a non-

apoptotic cell death mechanism mediated by cathepsins (63). Lysosomal membrane 

permeabilization and the resulting release of lysosomal enzymes, and in particular cathepsins, 

into the cytosol is the main pathway to mediate this type of cell death (72, 82). In contrast, in a 

recent report, H-1PV NS1 was shown to induce apoptotic cell death via induction of reactive 

oxygen species in 293 cells, which is inconsistent with the observation in H-1PV infection of 

NB324K, an SV40-transformed human cell line (88). Inhibition of reactive oxygen species by a 

different reducing compound significantly decreased NS1-induced apoptosis. More importantly, 

H-1PV kills human hepatocellular carcinoma cell line (QGY-7703) cells by a non-apoptotic 

process, though a cDNA microarray analysis of H-1 PV-infected cells showed that genes 

involved in signal transduction, apoptosis, DNA replication, DNA repair, DNA binding and 

transcription were differentially expressed after H-1PV infection (112).   

 As seen in other genera, members of the genus Parvovirus are also able to induce cell 

cycle arrest during infection. An increased S/G2/M-phase population was observed during MVM 

infection (7, 156-158). G2/M arrest was also detected during H-1PV infection (88). MVM-

induced cell cycle arrest in S-phase was shown to be p53-dependent but p21cip1-independent, 

whereas the arrest in G2 was dependent on both p53 and its downstream effector p21cip1 (158). 

The MVM NS1 protein alone was able to reproduce cell cycle arrest as seen during MVM 

infection (7, 158). An early study implied one of the possible mechanisms underlying MVM NS1-

induced cell cycle arrest was the direct nicking of the host cell chromatin by NS1, which took 

place hours before the cell cycle arrest (157). The damaged chromatin DNA might induce a 

DNA damage response, which in turn stalls the cell cycle for repair. Indeed, a DNA damage 

response, together with cell cycle arrest and apoptosis, was detected during H-1PV infection 

(88), as well as during MVM infection (Pintel D, personal communication). However, whether the 



15 
 

viral genome or the nicked host chromatin triggered the DNA damage response remains 

unanswered.  

Taken together, the CPE induced by members in the genus Parvovirus could be either 

necrosis or apoptosis, depending on the virus and cell type. The NS1 protein clearly plays a role 

in inducing cell death and cell cycle arrest of infected cells via multiple strategies.  

 

Discussion 

 Parvoviruses induce both cell death and cell cycle arrest during infection. While 

necrosis was reported during BPV, MVM and H-1PV infection, apoptosis has been 

demonstrated as the major pathway mediating parvovirus infection-induced cell death. The cell 

cycle perturbation during parvovirus infection mainly appears as G2/M-phase arrest. However, 

S-phase plateau was also reported during MVC infection, through an accumulated/prolonged S-

phase (37).  

From an organismal standpoint, apoptosis induced during virus infection is thought to be 

a means for the host to defend itself against viral invasion (207). However, apoptosis may also 

represent a crucial step in the viral life cell cycle and pathogenesis (15, 145) as apoptotic cell 

death allows for viral release and induces less immune response than cell lysis, which releases 

cellular components and triggers an inflammation response (84). In some cases, caspase 

activation is clearly required to regulate DNA replication and virion production through caspase-

mediated specific cleavage of AMDV NS1 and VP2 (16, 17). Apoptotic cell death apparently is a 

direct cause of diseases during parvovirus infection, especially anemia and fetal death induced 

during B19V infection (6, 29), and possibly  gastroenteritis and pneumonia caused by parvovirus 

(167). The oncolytic effect of AAV relies on the selective induction of apoptosis in p53-deficient 

or tumorized cells (170). It may not be critical for the virus life cycle in natural infection with 

adenovirus (191); however, its potential implication is valuable. MVM and H-1PV can induce cell 

death in a number of tumor cells while having no cytotoxic effect on healthy tissues. The 



16 
 

mechanism underlying specific cell death of tumorized cells by these viruses is still unclear. H-

1PV infection can induce either necrosis or apoptosis, depending on the types of tumorized cells 

(129, 180, 181).   

Virus infection-induced cell cycle arrest has been extensively documented both in DNA 

and RNA viruses (56, 228).  The S-phase is generally critical for parvovirus replication, which 

takes place in the nucleus and utilizes host polymerase (66, 124, 183, 221). H-1PV protein 

synthesis coincides with the cellular DNA synthesis (210), while MVM replication has been 

shown to require mitotically active cells (81). B19V showed a maximal rate of transcription 

preceding the onset of S-phase dependent replication of the viral genome (24). The prevention 

of S-phase was reported to decrease the gene targeting of AAV2 (213). Though AAV2 infection 

has not been reported to elicit S-phase arrest (87, 96, 220), the AAV2 Rep78 was shown to 

inhibit Cdc25A and arrest the transfected cells at S-phase (14). Thus, it is reasonable to 

speculate that parvoviruses have the common feature of prolonging the S- or G2-phase in favor 

of their replication. The G2/M-phase arrest is more likely a pseudo-S-phase, with stalled host 

DNA replication but an active environment to facilitate viral DNA replication (56). The post-

mitotic arrest seen during AMDV infection indicates that the active DNA replication environment 

is maintained at cell cycle check point arrest (155). In concert, active BrdU incorporation was 

seen in parvovirus-infected cells with apparent G2/M-phase arrest (157, 187).  

Cell cycle disturbance and programmed cell death are two relatively separate events; 

however, increasing evidence suggests their crosstalk. Prolonged cell cycle arrest can induce 

apoptosis (122, 216) that is mediated through cyclin/cyclin dependent kinase and Bcl2 family 

proteins (231). A balance between cell cycle checkpoint maintenance and apoptosis is finely 

regulated during DNA damage to ensure the accuracy of replication and minimize the unwanted 

loss (46). The terminal repeat structures of parvoviruses can be easily detected as damaged 

DNA, thus triggering a DNA damage response, which in turn induces cell cycle arrest for “repair”. 

As replication of parvovirus requires cellular DNA polymerase (53), parvovirus replication favors 
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cells in S-phase in which active polymerase and other replication factors are present (143). It is 

logical to hypothesize that parvoviruses use parts of the single-stranded genome, especially the 

terminal repeats and/or the left hand promoter region, as triggers to induce a DNA damage 

response to prolong the S- and G2-phase during the early stage of infection, but not induce 

apoptosis. At this stage, active DNA polymerase and other necessary replication factors are 

present and used for genome replication. This hypothesis is supported by the fact that inhibition 

of DNA damage response significantly reduced AAV Rep expression (191), as well as MVC 

(Luo Y & Qiu J, unpublished) and MVM replication (Pintel D, personal communication). At the 

late stage of infection, the collaboration of “irreparable damage” and viral pro-apoptotic protein 

breaks the balance created by checkpoint arrest and leads to apoptosis, which is beneficial for 

viral egress. In addition, apoptosis is also likely contributed by a cellular mechanism to defend 

virus infection if the virus infection cannot be cleaned or limited in the cells.   

 

Concluding remarks:   

The CPE induced during parvovirus infection is mediated either by apoptosis or necrosis, 

and is contributed by cell cycle arrest, mostly at G2/M. While cell cycle arrest and caspase 

activation create an optimum environment for parvovirus replication at the early stage of 

infection, the ultimate induction of apoptosis is believed to be beneficial for virus egress at the 

late stage. The mechanism underlying induction of cell cycle arrest is likely due to a DNA 

damage response induced by the viral genome via the terminal repeats and left hand promoter 

region. Yet, apoptosis could be the ultimate consequence of the pro-apoptotic activity of viral 

proteins, prolonged cell cycle arrest and irreparable DNA damage response to ensure the 

optimum release of virion. Interestingly, parvovirus infection also uses a novel necrotic 

mechanism to induce cell death when apoptotic cell death cannot be achieved during virus 

infection, as seen in H-1PV infection, where the cell death mechanism of H-1PV varies 

depending on the host. Thus, parvovirus infection may provide a unique model to investigate the 
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virus-host interaction network that fine tunes the balance among DNA damage response, viral 

DNA replication, cell cycle arrest and cell death.    
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Part II. Human Parvovirus B19 

B19V was discovered by Australian scientist Yvonne Cossart in 1975 (51). It is a non-

enveloped, icosahedral virus with a size of about 20-25 nm. B19V has a linear single-stranded 

DNA (ssDNA) genome of 5.6 kb, with terminal repeats at both ends (Fig.1-1). Approximately 

equal numbers of positive and negative stranded DNA are packaged in separate virions.   

Replication of parvoviruses was only studied in AAV and MVM. A rolling hairpin 

replication model of the parvovirus genome has been confirmed in AAV and MVM DNA 

replication (53, 102 ) (Fig. 1-2). Briefly, the free 3’-OH group of the left terminal repeat serves as 

a primer, as a result of the hairpin structure, to produce a double-stranded monomer replication 

form (mRF). Viral NS1 protein then recognizes and specifically cleaves the mRF. The 3’-OH of 

the nicked site in turn primes the strand displacement DNA synthesis, yielding an intermediate 

with an open right-hand end. Via a process called “reinitiation”, the open end of the intermediate 

forms a double-hairpin conformation. Consequently, another round of strand displacement DNA 

synthesis takes place to produce the double replication form (dRF).  

Study of B19V replication has been limited by the lack of a highly permissive culture 

system and an infectious clone until recently (222, 230). The replication mechanism of the B19V 

genome is not yet understood, though a model of replication, which is similar to the “rolling-

hairpin” model, was proposed (Fig. 1-2) (53). The terminal hairpin structures of a single 

stranded B19V genome were observed under the electron microscope (10) and were confirmed 

by priming DNA synthesis using E. coli. DNA polymerase in vitro (52). Using blood samples 

from patients with acute B19V infection, three major replication forms of B19V, dRF, mRF and 

ssDNA genome, were shown (109). Depending on the sequence variation, the mRF sometimes 

was susceptible to BamHI digestion, producing two smaller fragments at 3.9k and 1.5k bps 

respectively. The infectious clone was then shown clearly to produce mRF at a size of ~ 5.6 k 

bps, which was digested by BamHI to two fragments, 4.1 and 1.5k bps respectively, in 
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transfection of UT7/Epo-S1 cells. We recently showed that in the presence of adenovirus or 

adenovirus gene products (E2a, E4orf6, and VA RNA genes), the B19V genome can replicate in 

293 cells, which are non-permissive to B19V infection, and produce infectious virus (80). Using 

this replication system, our lab identified the terminal resolution site and the NS1 binding site on 

the right terminal palindrome of the viral genome, which is composed of a minimal origin of 

replication spanning 67 nucleotides.  

A single pre-mRNA is transcribed from the single promoter at unit 6 during B19V 

infection. It is extensively processed by alternative splicing and alternative polyadenylation to 

generate a total of 12 transcripts (114). Blockade of the production of full-length B19V 

transcripts by the internal polyadenylation site [(pA)p] was previously reported to be a limiting 

step in B19V permissiveness (113). In the absence of genome replication, internal 

polyadenylation of B19V RNAs at (pA)p was favored in both permissive and nonpermissive cells. 

Recently, our lab demonstrated that replication of the B19V genome, however, enhanced read-

through of (pA)p and the polyadenylation of B19V transcripts at the distal site [(pA)d] (79). 

Therefore, replication of the B19V genome facilitates the generation of sufficient full-length 

transcripts that encode the viral capsid proteins and the essential 11kDa nonstructural protein. 

Furthermore, polyadenylation of B19V RNAs at (pA)p likely competes with splicing at the 

second intron (Guan W & Qiu J, unpublished). Thus, replication of the B19V genome is the 

critical limiting step governing B19V tropism in addition to virus entry. 

B19V shows exclusive tropism to erythroid progenitor cells during infection (163, 199). 

Both the more-primitive erythroid progenitors [burst-forming units-erythroid (BFU-E)] and the 

more-mature erythroid progenitors [colony-forming units-erythroid (CFU-E)] are susceptible to 

B19V infection (199). In addition to the primary erythroid progenitor cells, a few cell lines, 

basically myeloblastoid cell line like UT7/Epo-S1 (135) and KU812Ep6 (127), support B19V 

replication but at limited efficiency (3,45). Recently, ex vivo expanded CD36+ erythroid 

progenitor cells were reported highly permissive to B19V infection and support active B19V 
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replication (at least 100-fold increase of the B19V genome) (195, 222). The remarkable tropism 

of B19V to human erythroid progenitors was previously believed to be due to the receptor, 

blood-group P antigen (Globoside) (28), and co-receptors, namely KU80 and intergrin α5β1 

(127, 138).  

Erythropoiesis is the process whereby a fraction of primitive multipotent hematopoietic 

stem cells (CD34+) commit to the erythroid lineage, forming BFU-Es (early erythroid progenitors), 

CFU-Es (later erythroid progenitors), normoblasts, erythroblasts, reticulocytes, and ultimately 

the mature erythrocytes. While the early erythropoiesis is erythropoietin (Epo) independent (till 

BFU-E), the later stages are all Epo-dependent (from BFU-ECFU-E, which is highly Epo- 

responsive) (70).  

Erythropoietin (Epo) was shown to be required for susceptibility of human bone marrow 

cells to B19V infection (206). From this Epo depending, a conclusion was drawn that the target 

cells of B19V are in erythroid lineage from BFU-Es to erythroblasts, with permissiveness to 

B19V increasing along differentiation. Thus, the role of Epo for B19V infection was thought 

mainly to differentiate bone marrow hematopoietic stem cells (HSCs) to the stage of erythroid 

progenitors. However, it has been shown that Epo is also required for proliferation of  UT7/Epo-

S1 cells that are B19V semi-permissive cell line cells (135). Hence, the importance of Epo 

during B19V infection may not be solely for differentiation and maturation of erythroid 

progenitors. Nevertheless, the precise role of Epo during B19V infection is not clear.  

Epo elicits its function via ligation to its receptor EpoR (115). The Epo/EpoR complex 

formation induces autophosphorylation of Janus kinase 2 (Jak2), which further phosphorylates 

multiple tyrosine residues on the cytosolic domain of EpoR. The phosphorylation sites serve as 

docking sites for signaling molecules, e.g., signal transducer and activator of transcription 5A 

(STAT5A), Phosphoinositide 3-kinase (PI3K), growth factor receptor-bound protein 2 (Grb2), etc. 

Those signaling molecules further carry out the functions delegated from the Epo/EpoR ligation.  
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Based on the evidences listed above, we hypothesize that cellular microenvironment is 

the essential determinant of B19V permissiveness. It is realized only when the cellular 

environment permits replication of the viral genomes after their entry into cells. Not only is Epo 

crucial for cell proliferation and differentiation, but also its signaling is directly essential for tuning 

cellular microenvironment in favor of replication of the B19V genome. In Chapter 4, our studies 

demonstrate that Epo/EpoR/Jak2 signaling is indeed required for the replication of B19V 

genome so that confers B19V permissiveness in erythroid progenitor cells. The inhibition of 

Jak2 phosphorylation by a specific inhibitor or protein level by lentiviral shRNA significantly 

blocked B19V replication, whereas the cell cycle and viability of the treated cells were not 

significantly affected.  
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Fig. 1-1 Transcription map of B19V. The genome of B19V shown in this figure is based on the 

sequence of isolate J35 (GenBank accession no. AY386330), which is approximately 5.6 kb. 

The major transcription landmarks include the terminal repeats, P6 promoter, splice donors (D1 

and D2) and acceptors (A1-1, A1-2, A2-1, and A2-2) and the (pA)p and (pA)d sites.  All 12 

major transcripts are listed below the map (designed R1 through R9), with their sizes and 

encoded proteins shown to the right. RNA transcripts that are polyadenylated at the minor (pA)p 

site are designated as R1’, R2’ and R3’.   
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Fig. 1-2. Models of parvovirus DNA replication (80). (a) The 3’-OH group of the left hand 

terminal repeat serves as a primer to initiate the synthesis of viral genome forming a duplex 

DNA molecule that is covalently closed at one end by the hairpin structure. This procedure 

yields the mRF. (b) Viral NS1 protein (red filled circle) recognizes the target sequence on 

terminal repeat and specifically cleaves it. (c) The 3’-OH of the nicked site further primes the 

DNA synthesis to produce an intermediate with an open end at the right-hand side as shown in 

(d). (e) The newly synthesized strand is then denatured and reannealed, a.k.a. “reinitiation”, to 

form an intermediate with double-hairpin conformation. (f) Another round of strand displacement 

synthesis is initiated using the free 3’-OH of the double-hairpin conformation. This step finally 

yields the dRF. L, L-terminal repeat; R, R-terminal repeat.   
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Chapter 2 

The small 11kDa non-structural protein of human parvovirus B19 

plays a key role in inducing apoptosis during B19 virus infection of 

primary erythroid progenitor cells  

 

Abstract 

Human parvovirus B19 (B19V) infection shows a strong erythroid tropism and drastically 

destroys erythroid progenitor cells, thus leads to most of the disease outcomes associated with 

B19V infection. In this study, we systematically examined the three B19V nonstructural proteins, 

7.5kDa, 11kDa and NS1, for their function in inducing apoptosis in transfection of primary ex 

vivo expanded erythroid progenitor cells, in comparison with apoptosis induced during B19V 

infection. Our results show that 11kDa is a more significant inducer of apoptosis than NS1, while 

7.5kDa does not induce apoptosis. Furthermore, we determined that caspase-10, an initiator 

caspase in death receptor signaling, is the most active caspase in apoptotic erythroid 

progenitors induced by 11kDa and NS1 as well as during B19V infection. More importantly, 

cytoplasm-localized 11kDa is expressed at least 100 times more than nucleus-localized NS1 at 

the protein level in primary erythroid progenitor cells infected with B19V; and inhibition of 11kDa 

expression using anti-sense oligos targeting specifically to the 11kDa-encoding mRNAs reduce 

apoptosis significantly during B19V infection of erythroid progenitor cells. Taken together, our 

results demonstrate for the first time that 11kDa plays a key role in executing erythroid 

progenitor cell death during B19V infection.    
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Introduction 

 B19V infection is the cause of "fifth disease", a highly contagious infection of childhood. 

B19V infection can result in serious and occasionally fatal hematologic diseases in susceptible 

patients (227). In patients with increased destruction of red cells and a high demand for the 

production of erythrocytes, acute B19V infection can cause transient aplastic crisis. Pure red-

cell aplasia can also be a manifestation of persistent B19V infection in immunocompromised or 

immunodeficient patients.   

B19V belongs to the genus Erythrovirus in the family Parvoviridae (208). Spanned by 

two identical terminal hairpin repeats, the 5.6-kb linear single stranded DNA genome of B19V 

encodes a single nonstructural protein (NS1), and two capsid proteins (VP1 and VP2). Two 

other smaller non-structural proteins, 7.5kDa and 11kDa, have been detected during B19V 

infection (118, 200). The 11kDa protein is translated from a small left-ORF that overlaps with the 

C-terminal of the VP1/VP2 ORF in a different frame. The 7.5kDa protein is translated from a 

small mid-ORF. NS1 is a multiple functional polypeptide essential to viral replication and 

regulation of gene expression that is cytotoxic to host cells (27, 131, 161, 178). The 11kDa 

protein has been shown to have a role in virion production and trafficking in infected cells, while 

the 7.5kDa protein has not yet been reported to have functions during B19V infection (229).  

B19V shows extreme tropism for erythroid progenitor colony forming unit-erythroid cells 

(CFU-E) and burst-forming unit-erythroid cells (BFU-E) in the bone marrow of patients (162, 163, 

199). Disease manifestations of B19V infection, as seen in transient aplastic crisis, pure red cell 

aplasia and hydrops fetalis, are due to the direct cytotoxicity of the virus (29), a direct outcome 

of the cell death of erythroid progenitors that are targets of B19V replication. A progressive host 

cell apoptosis has been identified during B19V infection of primary erythroid progenitor cells and 

megakaryoblastoid cell lines (131, 195). NS1 expression in megakaryoblastoid cell lines has 

been associated with B19V-induced apoptosis (131, 195); however, the kinetics of NS1 

expression has not correlated with that of induced apoptosis during B19V infection of 
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megakaryoblastoid cell line UT7/Epo-S1, which are semi-permissive to B19V infection (45, 135). 

These findings raise the question about the role of NS1 in inducing apoptosis during B19V 

infection.  

In the present study, we show for the first time that 11kDa is a more significant inducer 

of apoptotic cell death than NS1 in transfection of primary erythroid progenitor cells. Since 

11kDa is expressed at least 100 times more than NS1 at the steady-state protein level  in 

erythroid progenitor cells during B19V infection, we conclude that the B19V infection-induced 

apoptosis of erythroid progenitor cells, is largely mediated by the small non-structural 11kDa 

protein.   

 

Materials and Methods 

Cells and virus infection:  

 HeLa cells, 293 cells, K562 cells and UT7/Epo-S1 cells were maintained as previously 

described (79, 176). Human primary CD36+ erythroid progenitor cells (CD36+ EPCs) were 

expanded ex vivo in the expansion medium as previously described (79, 222). Large numbers 

of CD36+ EPCs, which were used for either transfection or B19V infection, were obtained on day 

8 or day 9.  

Twenty microliters of B19V viremic plasma that contained 1 × 1012 copies of B19V 

genome per ml was incubated with 2 × 106 cells, in a volume of 500 µl medium with slow 

rotation at 4°C for 2 hrs. Infected cells were then cultured in the expansion medium at a 

concentration of 2 × 105 cells/ml at 37°C with 5% CO2.   

 

Caspase inhibitors:  
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Two general caspase inhibitors, pan-caspase fmk Inhibitor Z-VAD-fmk (Z-VAD) and Oph 

inhibitor Q-VD-Oph (Q-VD), and nine individual caspase inhibitors (caspase-1, -2, -3&7, -4, -6, -

8, -9, -10 & -13 inhibitors) were purchased from R&D Systems (Minneapolis, MN).   

 

Morpholino oligos: 

Three Morpholino anti-sense oligos were designed to specifically target sequences in 

the region of the AUG translation start site of the 11kDa-encoding mRNAs, which are diagramed 

in Fig. 2-5A. Their sequences written from 5’ to 3’ and complementary to the 11kDa-encoding 

mRNA are as follows: MO-1: TCTTCAGGCTTTTCATATCCATGTC; MO-2: 

CCATGTCTGTGGTGTTGTTTTGCAT and MO-3:  TGTAGAGTTCACGAAACTGGTCTGC. The 

Morpholino oligos were synthesized at Gene Tools, LLC (Philomath, OR), and Endo-Porter was 

used for delivery following a manufacturer protocol. A random control Morpholino was used as a 

control.   

 

Plasmid construction:  

NS1, 7.5kDa and 11kDa expression plasmids in mammalian cells: GFP was cloned 

into pNTAP-B (Strategene) by BamH I and EcoR I as pGFP. Then we cloned the NS1 ORF (nt 

616-2631), the 7.5kDa mid-ORF (nt 2090-2305) and the 11kDa ORF (nt 4890-5171) into this 

pGFP plasmid through EcoR I/Xho I sites as pGFP-NS1, pGFP-7.5kDa and pGFP-11kDa, 

respectively. pRFPHA, pRFP-NS1HA and pRFP-11kDaHA  were constructed by replacing GFP 

with RFPHA (C-terminal HA tagged red fluorescent protein, DsRed, Clontech), RFP-NS1HA and 

RFP-11kDaHA  (NS1 and 11kDa were HA tagged at C-terminal) in the pGFP, respectively.    

Bacterial expression plasmids of glutathione S-transferase (GST) fused B19V 

proteins:  The 11kDa ORF and the N-terminus encoding sequence (nts 616-1158) of the NS1 

were cloned into pGEX4T3 (GE Health) as pGEX11kDa and pGEXNS1(aa1-181), respectively.   
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All the nucleotide (nt) numbers refer to the sequence of the B19V J35 isolate (Genbank 

accession no.: AY386330). 

 

 Reverse transcription (RT)–real time PCR:  

A multiplex RT-real time PCR system was performed to detect B19V 11kDa-encoding 

and NS1-encoding mRNAs, with β-actin mRNA serving as an internal control as previously 

reported (80, 222).   

  

Production of antisera against B19V non-structural proteins:  

GST- fused full length 11kDa (GST-11kDa) and NS1 amino acids (aa) 1-181 [GST-

NS1(aa1-181)] were expressed and purified as we previously described (204). Polyclonal 

production was performed following protocols as previously described (204).   

 

Transfection: 

The 293 and Hela cells were transfected with 2 µg of DNA per 60-mm dish using 

Lipofectamine and Plus reagent (Invitrogen) as previously described (177). K562 cells were 

electroporated with 2 µg of DNA per 2 × 106 cells using reagent V and program T6 with the 

Amaxa® Nucleofector® (Lonza Inc.). UT7/Epo-S1 cells and CD36+ EPCs were electroporated 

with 2 µg of DNA per 2 × 106 cells, using a universal transfection reagent with program X-005 as 

previously described (79). After transfection, CD36+ EPCs were maintained in the expansion 

medium (79, 222).  

 

SDS-PAGE, Western blotting and immunofluorescence:  

SDS-PAGE, Western blotting and immunofluorescence assay were performed as 

previously described (174).   

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=37499708�
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Flow cytometry analysis: 

AnnexinV/Propidium Iodide (PI) staining: Cells were stained alive with Cy5-

conjugated AnnexinV (BD Biosciences) and PI (Sigma) together to detect apoptotic cells 

according to the manufacturer’s instructions (BD Biosciences).   

TUNEL (Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling) assay: 

TUNEL assay was basically performed according to the manufacturer’s protocol (MBL 

International, MA) with the modification that streptavidin-Cy5 (Jackson ImmunoResearch, PA) 

was used to develop fluorescence.   

FLICA (Fluorochrome Inhibitor of Caspase Assay): Live cells (1 × 106) were stained 

with respective FAM-labeled FLICA peptide according to the manufacturer’s manual 

(Immunochemistry Tech, MN).   

All the samples were analyzed on the three-laser flow cytometer (LSR II, BD 

Biosciences) within an hour of staining at the Flow Cytometry Core on campus. All flow 

cytometry data were analyzed using FACS DIVA software (BD Biosciences). 

 

Results 

11kDa induces apoptosis in both B19V permissive and nonpermissive cells. 

To examine the potential role of 11kDa in inducing apoptosis, we transfected pGFP-

11kDa and pGFP plasmids, respectively, into both B19V permissive and nonpermissive cells. 

The GFP positive (GFP+) population was selectively gated and analyzed in comparison with the 

GFP negative [GFP(-)] population using AnnexinV/PI double staining. There were significantly 

more AnnexinV positive (AnnexinV+) cells in GFP-11kDa expressing UT7/Epo-S1, CD36+ EPCs, 

HeLa and K562 cells than these in GFP control expressing cells (Fig. 2-1 A&B, GFP+), but no 

significant difference was observed between the GFP-11kDa and GFP expressing 293 cells (Fig. 

2-2-1 A&B, GFP+ 293).  
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In UT7/Epo-S1 cells, the population of AnnexinV+ cells induced by GFP-11kDa reached 

a high rate of 48.0% at 48 hrs posttransfection in GFP+ cells (Fig. 2-2-1A, GFP+ S1). In contrast, 

GFP(-) cells in the same sample showed only 5.1% AnnexinV+ cells [Fig. 2-2-1A, GFP(-) S1]. 

Less than 13.1% of GFP+ cells in the pGFP-transfected cells (as control) were stained with 

AnnexinV (Fig. 2-2-1B, GFP+ S1). GFP-11kDa induced an average of 37.1% more AnnexinV+ 

cells in GFP+ cells than in GFP(-) cells at 48 hrs posttransfection (Fig. 2-2-1C, GFP-11kDa S1), 

indicating that the AnnexinV+ population of GFP+ cells in the pGFP-11kDa-transfected cells is 

predominately induced by the 11kDa, not the GFP. 

 The GFP-11kDa also induced a high AnnexinV+ population in CD36+ EPCs that are 

highly permissive to B19V infection in vitro and are the primary cells most closely resembling  

the CFU-E and BFU-E in the bone marrow of patients (222). Similar to UT7/Epo-S1 cells, GFP-

11kDa induced an average of 42.6% more AnnexinV+ cells in GFP+ cells than in GFP(-) cells at 

24 hrs posttransfection (Fig. 2-2-1C, GFP-11kDa CD36+). In comparison, pGFP control 

transfection only resulted in approximately 7% AnnexinV+ cells over the background (Fig. 2-2-

1C, GFP CD36+). Notably, we observed a significant amount of background cell death in 

transfected CD36+ EPCs, which presumably was induced by the electroporation and despite the 

optimized conditions that allowed us to transfect the CD36+ EPCs. At 24 hrs posttransfection, as 

much as 30% of the background AnnexinV+ population was detected in GFP(-) cells of pGFP-

transfected CD36+ EPCs [Fig. 2-2-1B, GFP(-) CD36+]. This amount increased to more than 50% 

at 48 hrs posttransfection, which made assessing apoptosis induced by transfection of the GFP-

11kDa less accurate (data not shown). Therefore, we chose to assay transfected CD36+ EPCs 

only at 24 hrs posttransfection.  

 The 11kDa also induced a significant amount of AnnexinV+ cells in B19V nonpermissive 

cells, HeLa and K562 cells, in addition to these B19V permissive cells. We observed more than 

30% of AnnexinV+ cells in GFP+ population of the pGFP-11kDa-transfected cells of both types 

at 48 hrs posttransfection (Fig. 2-2-1A, GFP+ HeLa&K562). Conversely, pGFP transfection  
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Fig. 2-1.  Transfection of 11kDa induces apoptosis in both B19V permissive and 

nonpermissive cells. (A&B) UT7/Epo-S1, CD36+ EPCs, HeLa, K562 and 293 cells were 

transfected with pGFP-11kDa plasmid (A) or pGFP as a control (B). CD36+ EPCs were stained 

at 24 hrs posttransfection; other cells were stained at 48 hrs posttransfection with AnnexinV/PI 

double staining, followed by flow cytometry analysis. Both GFP negative [GFP(-)] and positive 

(GFP+) cell populations were gated to plot cells by PI vs AnnexinV. Only a representative 

experiment is shown, and the percentage of each quadrant is indicated. AnnexinV+ population 

is a combination of the AnnexinV+/PI+ population (number in the upper right quadrant) with the 

AnnexinV+/PI(-) population (number in the lower right quadrant). (C) The experiments as 

described in A&B were performed at least three times independently. The percentage value of 

AnnexinV+/PI+ or Annexin V+/PI(-), as shown in individual panel with indicated cell type, was 

calculated by subtracting the AnnexinV+/PI+ population or the AnnexinV+/PI(-) population of 

GFP+ cells by that of GFP(-) cells (background apoptosis). (D) UT7/Epo-S1 cells were 

transfected with pGFP-11kDa and stained with DAPI. Confocal images were taken at a 

magnification of 60 × (objective lens) with an Eclipse C1 Plus confocal microscope (Nikon). 

Arrows show apoptotic nuclei, which were enclosed in the apoptotic bodies visualized by GFP 

fluorescence. S1: UT7/Epo-S1; CD36+: CD36+ EPCs; TX: transfection.  

Results that are shown as average ± standard deviation in all the figures are generated 

from at least three independent experiments. 
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alone only induced 10% and 8% of the AnnexinV+ population in GFP+ HeLa and K562 cells, 

respectively (Fig. 2-2-1B, GFP+ HeLa&K562). However, the GFP-11kDa was not able to induce 

a significant amount of AnnexinV+ population in 293 cells (Fig. 2-2-1 A&C, 293); E1b-19kDa 

protein that is expressed in 293 cells perhaps inhibits apoptosis in a way similar to that of Bcl-xL 

(123, 212). In the pGFP transfection control of all the five cell types, GFP did not significantly 

induce the AnnexinV+ population in GFP+ cells of transfected cells in comparison with that in 

GFP(-) cells (Fig. 2-2-1B). When we transfected the CD36+ EPCs, however, we noted a 

relatively high percentage of AnnexinV+ population in GFP(-) cells of both pGFP-11kDa- and 

pGFP-transfected cells (Fig. 2-2-1 A&B, CD36+), which indicated background cell death that 

was caused in part by the electroporation.    

The majority of AnnexinV+ cells induced by GFP-11kDa were PI stained negative 

[AnnexinV+/PI(-)], and thus were in the early or middle stage of apoptosis. Specifically, more 

than 80% of AnnexinV+ cells were PI stained negative in UT7/Epo-S1, HeLa and K562 cells, 

and 60% were PI stained negative in CD36+ EPCs [Fig. 2-2-1C, AnnexinV+/PI(-)]. The cell 

population of AnnexinV+/PI+ is an indicator of either late apoptosis or necrosis (Fig. 2-2-1C, 

AnnexinV+/PI+). In addition, we directly visualized a representative cell with GFP-11kDa 

expression with distinct cellular nucleus degradation. We also observed small apoptotic bodies 

enclosing a degraded nucleus by green fluorescence (Fig. 2-2-1D) (85, 232). Overall, these 

results suggest that the 11kDa induces cell death with apoptotic features rather than necrosis in 

both B19V permissive and nonpermissive transfected cells. Further supporting this finding, 

11kDa did not induce an AnnexinV+ cell population in 293 cells.    

  

11kDa is a more significant inducer of apoptosis than NS1.  

 The apoptotic nature of NS1 has not been examined in primary erythroid progenitor 

cells. We sought to determine which protein, 11kDa or NS1, was more potent in inducing 

apoptosis in UT7/Epo-S1 cells and CD36+ EPCs. For comparison, we also studied the 7.5kDa, 
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another small nonstructural protein shown to be expressed during B19V infection but with an 

unknown function (118).    

While the GFP-11kDa and the GFP-NS1 both extensively induced AnnexinV+ cells when 

transfected to UT7/Epo-S1 cells, the GFP-7.5kDa poorly induced the AnnexinV+ population in  

GFP+ cells (Fig. 2-2A). In a time-dependent manner, the GFP-11kDa caused the AnnexinV+ 

population to increase from less than 20% to more than 60%, at 24 to 72 hrs posttransfection 

(Fig. 2-2A). At all three time points, the extent of the GFP-11kDa-induced AnnexinV+ population 

was significantly higher than that induced by the GFP-NS1 (Fig. 2-2A). However, at 72 hrs 

posttransfection only, an increased population of AnnexinV+ cells, approximately 16%, was 

observed in pGFP-7.5kDa-transfected cells compared with the pGFP-transfected control (8%) 

(Fig. 2-2A). To better evaluate the potency of the NS1 and the 11kDa in inducing apoptosis, we 

normalized the level of AnnexinV+ population by the level of protein expression represented by 

the mean intensity of the green fluorescence of the GFP detected by flow cytometer (Fig. 2-2B) 

(94, 101, 201). Results normalized by GFP were plotted as relative values to that of the GFP+ 

population of pGFP-11kDa-transfected cells, which was arbitrarily set to 100% (Fig. 2-2C). 

Transfecting the GFP-11kDa induced approximately two-fold more AnnexinV+ cells than 

transfecting the GFP-NS1 did (Fig. 2-2C), indicating that the 11kDa is twice more potent in 

inducing apoptosis than the NS1 in UT7/Epo-S1 cells. However, the difference between the 

GFP control and GFP-7.5kDa transfection groups was not statistically significant after 

normalization, suggesting that the 7.5kDa is not a significant apoptosis inducer in UT7/Epo-S1 

cells.  

Similar results were obtained by transfecting CD36+ EPCs (Fig. 2-2D). At 24 hrs 

posttransfection, while pGFP control transfection induced approximately 10% AnnexinV+ cells 

in the GFP+ population of transfected cells, transfection of pGFP-7.5kDa, pGFP-NS1 and 

pGFP-11kDa induced a significantly higher level of the AnnexinV+ population, approximately 

22%, 36% and 42%, respectively (Fig. 2-2D). After normalized by the GFP expression level (Fig.  
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Fig. 2-2. Comparison of apoptosis induced by transfection of three B19V 

nonstructural proteins and by B19V infection. (A, B&C) Comparison of apoptosis induced 

by 7.5kDa, 11kDa and NS1 in UT7/Epo-S1 cells. UT7/Epo-S1cells were transfected with 

pGFP control, pGFP-7.5kDa, pGFP-11kDa and pGFP-NS1. Cells were analyzed at the three 

time points of posttransfection as indicated. (A) The absolute percentages of AnnexinV+ 

populations of GFP+ cells were subtracted by that of GFP(-) cells and are plotted to the time 

points of posttransfection as shown. (B) UT7/Epo-S1 cells were transfected with plasmids 

expressing GFP or GFP-fused proteins as indicated. The mean fluorescence intensity (MFI) of 

GFP or GFP-fused proteins was detected by flow cytometer and plotted at three time points 

posttransfection. (C) The absolute values shown in panel A were normalized by the MFI of GFP 

shown in panel B that serves as a marker of protein expression level. The normalized data were 

plotted as relative values to GFP-11kDa, arbitrarily set as 100%. (D, E&F) Comparison of 

apoptosis induced by 7.5kDa, 11kDa and NS1 in CD36+ EPCs. The same plasmids, as 

indicated, were transfected to CD36+ EPCs. (D) The absolute values of AnnexinV+ cells were 

plotted at 24 hrs posttransfection. (E) CD36+ EPCs were transfected with plasmids expressing 

GFP or GFP-fused proteins as indicated. The mean fluorescence intensity (MFI) of GFP or 

GFP-fused proteins was detected by flow cytometer and plotted at 24 hrs posttransfection. (F) 

Results shown in panel D were normalized by following the same method used in panel C. (G) 

Apoptosis induced during B19V infection of CD36+ EPCs. The extent of apoptosis induced 

by mock/B19V infection of CD36+ EPCs was detected by TUNEL assay. Cells were also 

immunostained at the time points as indicated with an anti-B19V capsid antibody (clone 521-5D, 

Millipore) at 1:100 dilution followed by a FITC-conjugated secondary antibody with the TUNEL 

assay simultaneously. Stained cells were analyzed by flow cytometer, and both capsid+ and 

capsid(-) cell populations of B19V infected cells were gated for TUNEL+ population.   

  The symbols of a single star and double stars indicate P<0.05 and P<0.01, respectively. 

S1: UT7/Epo-S1; CD36+: CD36+ EPCs; TX: transfection.  
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2-2E), the GFP-11kDa induced approximately 1.5 times more AnnexinV+ cells than did the 

GFP-NS1 (Fig. 2-2F), results similar to those obtained with UT7/Epo-S1 cells (Fig. 2-2C). Again, 

the difference between the GFP-7.5kDa and GFP alone did not continue to be statistically 

significant after normalization (Fig. 2-2F). Given the unique nature of ex vivo culture of CD36+ 

EPCs (even the GFP control induced about 10% AnnexinV+ cells), we determined that the 

GFP-7.5kDa was not a significant inducer of apoptosis, and thus focused our study on the NS1 

and the 11kDa thereafter. 

For comparison, we also determined the apoptosis level represented by TUNEL positive 

(TUNEL+) population during B19V infection of CD36+ EPCs.  B19V infected positive (capsid+) 

population was specifically selected to assess the extent of nicked-DNA-containing cells, 

compared to those of the capsid negative [capsid(-)]  population. As shown in Fig. 2-2G, at 24, 

48 and 72 hrs pi, about 20%, 50% and 64% TUNEL+ populations were detected, respectively, 

in the capsid+ population. Interestingly, we also found a time-dependent increase of TUNEL+ 

population in the B19V uninfected infected [capsid(-)] cell population, from 2% at 24 hrs p.i. to 

19% at 48 hrs p.i., which rose to more than 25% at 72 hrs p.i. The TUNEL+ populations in 

capsid(-) cells is likely due to the sensitivity of the capsid-recognizing antibody, but not to the 

release of apoptosis-inducing molecules from infected cells (Fig. S4).  However, a significant 

difference was consistently found between the capsid+ and capsid(-) cell populations. Similar 

results were obtained when the NS1-expressed cell population was selected for TUNEL assay 

using the anti-NS1 sera (data not shown). Thus, our results confirmed the apoptotic nature of 

CD36+ EPCs during B19V infection.     

 

11kDa localizes dominantly in cytoplasm and is expressed at least 100 times more than 

NS1 during B19V infection of CD36+ EPCs.  

 Induction of apoptosis is often caused by accumulation of the apoptotic inducer in the 

cytoplasm, nuclear translocation is often a means to inactivate the apoptotic inducer (20, 169).  
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Fig. 2-3. Cellular localization and expression of 11kDa and NS1 in transfection.  

(A) Specificity of αNS1 and α11kDA polyclonal antibodies.  UT7/Epo-S1 cells transfected 

with pGFP-NS1 or pGFP-11kDa were stained with respective antisera followed by a Texas red- 

conjugated secondary antibody. Images were taken from an Eclipse SE TE2000-S UV 

microscope (Nikon) at a 20 × magnification. (B) Cellular localization of GFP-NS1 and GFP-

11kDa in transfected UT7/Epo-S1 cells and CD36+ EPCs. UT7/Epo-S1 cells and CD36+ 

EPCs were transfected with pGFP-NS1 or pGFP-11kDa and stained with DAPI at 48 hrs 

posttransfection. DAPI was used to stain the nuclei. The confocal images (both panel B and C) 

were taken at 60 × (objective lens) magnification with an Eclipse C1 Plus confocal microscope 

(Nikon). (C) Cellular localization of 11kDa and NS1 in B19V-infected CD36+ EPCs. Infected 

CD36+ EPCs (at 48 hrs p.i.) were stained with α11kDa and αNS1 antisera followed by a Texas 

red-conjugated secondary antibody, respectively. DAPI was used to stain the nuclei. (D) The 

protein levels of GFP-NS1 and GFP-11kDa in transfected UT7/Epo-S1 cells and CD36+ 

EPCs vs  the NS1 and the 11kDa expressed in B19V-infected CD36+ EPCs, respectively. 

UT7/Epo-S1 cells and CD36+ EPCs were transfected with either pGFP-11kDa or pGFP-NS1 

and stained at 48 hrs posttransfection. CD36+ EPCs were infected with B19V and stained at 48 

hrs p.i. Cells were fixed with 1% paraformaldehyde and permeabilized in 0.2% Tween-20. Either 

α11kDa or αNS1 antisera at a dilution of 1:100 was used to immunostain cells, followed by a 

Cy5-conjugated secondary antibody. Stained cells were analyzed by flow cytometer. The 

protein level, represented by the mean fluorescence intensity, was compared between 

transfected and infected cells. S1: UT7/Epo-S1; CD36+: CD36+ EPCs; TX: transfection.  
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By using anti-NS1 (αNS1) and anti-11kDa (α11kDa) specific sera (Fig. 2-3A), GFP-11kDa and 

GFP-NS1 in transfected UT7/Epo-S1 cells and CD36+ EPCs showed similar cellular localization 

as the 11kDa and the NS1 expressed in B19V-infected CD36+ EPCs (Fig. 2-3 B&C). The blue 

nuclear DPAI staining did not overlap with either the green GFP-11kDa (Fig. 2-3B) or the 11kDa 

stained with α11kDa (red) (Fig. 2-3C), indicating that the GFP-11kDa and the 11kDa localize 

predominantly in cytoplasm. Conversely, nuclear DAPI staining overlapped exactly with NS1 

stained with αNS1(red) in B19V-infected CD36+ EPCs (Fig. 2-3C), confirming that NS1 is 

expressed exclusively in nucleus in B19V infected cells as previously reported (172, 229). In 

pGFP-NS1-transfected UT7/Epo-S1 cells and CD36+ EPCs, the GFP signal diffused to 

cytoplasm to some extent, however, the GFP-NS1 localized mainly in the nucleus.    

We next compared the expression level of GFP-11kDa and GFP-NS1 with that of 11kDa 

and NS1, respectively, during B19V infection. The level of the GFP-11kDa in transfected 

UT7/Epo-S1 cells and CD36+ EPCs at 48 hrs posttransfection, as quantified by flow cytometry 

analysis using α11kDa antiserum, was approximately 12 times lower than that of the 11kDa 

expressed in B19V-infected CD36+ EPCs at 48 hrs p.i. (Fig. 2-3D, α11kDa), implying that a 

stronger proapoptotic effect is induced by 11kDa in B19V-infected CD36+ EPCs than that 

induced by the GFP-11kDa in transfected cells. In contrast, nearly twice as much GFP-NS1 was 

expressed in both transfected UT7/Epo-S1 cells and CD36+ EPCs cells at 48 hrs 

posttransfection than the NS1 expressed in B19V-infected CD36+ EPCs at 48 hrs p.i. (Fig. 2-3D, 

αNS1), indicating that the GFP-NS1 in transfected cells likely mimics the function of the NS1 

during B19V infection.   

 To determine the relative expression level of 11kDa and NS1 during B19V infection of 

the native targets, erythroid progenitor cells, we quantified the mRNA levels of the two non-

structural proteins using RT-real time PCR. By normalizing to copy numbers of β-actin mRNA 

(relative copies per β-actin mRNA), the 11kDa-encoding mRNA remained at a consistent level  
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Fig. 2-4. Quantification of 11kDa and NS1 expression during B19V infection of CD36+ 

EPCs.   

(A) Quantification of B19V 11kDa- and NS1-encoding mRNAs. CD36+ EPCs were infected 

with B19V. At 24, 48 and 72 hrs p.i., total RNA was isolated, treated with DNase, reverse-

transcribed and quantified for absolute copies of mRNA by multiplex real-time PCR for NS1-

mRNA/β-actin-mRNA and 11kDa-mRNA/β-actin-mRNA as described in Materials and Methods. 

The copy numbers of the 11kDa- and NS1-encoding mRNAs were normalized by copy numbers 

of β-actin mRNA in the same reaction and presented as numbers per copy of β-actin mRNA. 

 (B) Purity of purified fusion proteins GST-NS1(aa1-181) and GST-11kDa. Purified GST-

NS1(aa1-181) and GST-11kDa proteins were resolved in SDS-10%PAGE gel and stained with 

Coomassie blue as shown. (C&D) Quantification of the stead-state protein level of 11kDa 

vs NS1 during B19V infection. 100 ng of GST-NS1(aa1-181) and 100 ng of GST- 11kDa as 

seen in panel B and a serial dilution of them as shown were loaded in SDS-8%PAGE and SDS-

15%PAGE for Western blot (panel C&D, respectively). At 48 hrs p.i., 1.5 × 105  of CD36+ EPCs 

with or without (Mock) B19V infection were harvested, directly dissolved in SDS lysis buffer and 

loaded in lanes 6&7 (SDS-8%PAGE) and lanes 8&9 (SDS-6%PAGE) (panel C), and lanes 3&4 

(SDS-15%PAGE) (panel D). Results from lanes as indicated also were quantified with Quantity 

One software (GE Health) and plotted to the right in panel C&D. Arrow and arrow head in panel 

C show NS1 specific band and GST-NS1(aa1-181), respectively; and arrow and arrow head in 

panel D show 11kDa specific band and GST-11kDa, respectively. CD36+: CD36+ EPCs.   
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that was approximately 100 to 200 times higher than that of the NS1-encoding mRNA during the 

course of B19V infection (Fig. 2-4A).   

 Further, to ascertain the steady-state protein level of 11kDa and NS1 during B19V 

infection, we attempted to estimate the relative protein level of 11kDa vs. NS1 during B19V 

infection. GST-NS1(aa1-181) and GST-11kDa were purified (Fig. 2-4B). The purified protein 

standards (Fig, 4C, lanes 1-5 and Fig. 2-4D, lanes 1&2, respectively) and cell lysates from 

B19V-infected CD36+ EPCs (at 48 hrs p.i.) and mock cells were blotted with α11kDa and αNS1 

antisera, respectively (Fig. 2-4 C&D). We observed significant nonspecific protein bands by the 

αNS1 antisera; however, the blots clearly showed the specific NS1 band with both 8% and 6% 

PAGE gels (Fig. 2-4C, compare lane 6 with 7 and lane 8 with 9, respectively). The intensity of 

this specific NS1 band from B19V-infected CD36+ EPCs (Fig. 2-4C, lane 6) fell between 1.0 ng 

and 0.33 ng of the GST-NS1(aa1-181) standards (Fig. 2-4C, lanes 4&5). In contrast, the signal 

of the 11kDa from B19V-infected CD36+ EPCs was stronger than that from 100 ng of the GST-

11kDa (Fig. 2-4D, compare lane 3 with 1). This result suggests that during B19V infection of 

CD36+ EPCs at 48 hrs p.i., at a steady-state protein level, 11kDa expresses at least 100 times 

more than NS1 (Fig. 2-4 C&D), which presented during the course of B19V infection of CD36+ 

EPCs (Fig. S2).    

Both high expression and cytoplasmic localization of 11kDa and the low expression and 

nuclear localization of NS1 during B19V infection of CD36+ EPCs suggest the important role of 

the 11kDa in apoptosis of B19V-infected erythroid progenitors.       

 

 Inhibition of 11kDa expression by 11kDa-specific Morpholinos reduces apoptosis 

significantly during B19V infection of CD36+ EPCs. 

To confirm a key role of 11kDa in inducing apoptosis during B19V infection, we next 

applied specific Morpholino anti-sense oligos to knock down 11kDa expression through 

inhibition of translation initiation(32, 203). CD36+ EPCs were pre-treated with Morpholino oligos  
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Fig. 2-5. The inhibitory effects of 11kDa-specific Morpholinos on B19V-infection-

induced apoptosis. CD36+ EPCs were pre-treated with a control Morpholino (MO-Ctrl) or 

11kDa-specific Morpholinos, MO-1, MO-2 and MO-3, as indicated, at a final concentration of 6 

µM, 24 hrs prior to B19V infection. (A) A schematic diagram of the 11kDa-encdoing mRNA and 

targets for specific Morpholino is shown. Regions in the 11kDa-encoding mRNA that 

Morpholinos target are shown with their respective nucleotide numbers.  (B) Detection of B19V 

11kDa protein. The same samples used for TUNEL assay were used for Western-blot using 

anti-11kDa antiserum. Detection of β-actin using a polyclonal antibody (ab1801, Abcam) served 

as a loading control. (C) TUNEL assay was performed with co-staining of B19V capsid using an 

anti-B19V capsid antibody (clone 521-5D, Millipore) for selection of infected cells at 48 hrs p.i. 

by flow cytometer. The TUNEL+ population is shown as a percentage in capsid positive cells.   
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24 hrs prior to infection. The expression of 11kDa was reduced by approximately 60% in B19V-

infected CD36+ EPCs treated with MO-1, MO-2 and MO-3 at 48 hrs p.i., as indicated by 

Western-blot (Fig. 2-5B). Consequently, as a result, the level of apoptosis, indicated by TUNEL+ 

population, was reduced by approximately 20%, in comparison with the cells treated with the 

control Morpholino (MO-Ctrl) (Fig. 2-5C). The expression levels of NS1 and capsid protein VP1 

and VP2 were not affected with treatment of Morpholinos as determined (data not shown), 

indicating MO-1, MO-2 and MO-3 target specifically to the 11kDa-encoding mRNAs. Thus, we 

have demonstrated that inhibition of 11kDa expression reduces apoptosis during B19V infection 

of CD36+ EPCs, supporting a key role of the 11kDa in inducing apoptosis in B19V infection. 

        

Caspase-10 inhibitor is as effectively as pan-caspase inhibitors in reducing B19V- 

induced apoptosis. 

Transfecting UT7/Epo-S1 cells with GFP-11kDa, we observed an 80% inhibition of 

AnnexinV+ population at 48 hrs posttransfection when Q-VD, a newly developed pan-caspase 

inhibitor without cross-inhibition of cathepsin (34) was used at 10 µM (Fig. 2-6A). Among 

individual caspase inhibitors (caspase-1, -2, -3&7, -4, -6, -8, -9, -10 and -13 inhibitors), the 

caspase-10 inhibitor was particularly effective; treatment with caspase-10 inhibitor at 20 µM 

reduced the percentage of the AnnexinV+ population by 55%. However, treatments with 

caspase-1, -2, -3&7, -4, -6 and -8 inhibitors at 20 µM only reduced the AnnexinV+ population by 

approximately 20% at 20 µM. The inhibition of the GFP-NS1-induced AnnexinV+ population in 

UT7/Epo-S1 cells generally shared the same profile but had less sensitivity compared with the 

population induced by 11kDa. At 48 hrs posttransfection, less inhibition was observed in pGFP-

NS1-transfected cells with the treatment of the same dose of inhibitors; treatments with Q-VD, 

Z-VAD and caspase-10 inhibitor reduced the AnnexinV+ population by 55%, 45% and 40%, 

respectively (Fig. 2-6A). Notably, after transfecting both UT7/Epo-S1 cells and CD36+ EPCs, the 

percentage of the GFP+ population (out of the total) in pGFP-NS1-transfected cells was  
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Fig. 2-6. The inhibitory effects of caspase inhibitors on 11kDa/NS1- transfection-  

and B19V-infection-induced apoptosis. (A&B) Inhibitory effects of caspase inhibitors on 

apoptosis induced by 11kDa- and NS1-transfection. (A) UT7/Epo-S1 cells were transfected 

with pGFP-11kDa or pGFP-NS1. (B) CD36+EPCs were transfected with pGFP-11kDa and 

pGFP-NS1, respectively, as shown. Individual caspase inhibitors (at 20 μM), caspase-1, -2, -

3&7, -4, -6, -8, -9, -10, and -13 inhibitors, as indicated by 1, 2, 3&7, 4, 6, 8, 9, 10 and 13, and 

pan-caspase inhibitors, Z-VAD (20 μM) and Q-VD (10 μM) were applied at the time of 

transfection. DMSO served as a control at 0.5% v/v. Apoptosis was measured by AnnexinV/PI 

staining at different times posttransfection as indicated. The AnnexinV+/PI+ population is shown 

as a relative percentage (%) to the DMSO control that is arbitrarily set as 100%. (C) Inhibitory 

effects of caspase inhibitors on apoptosis induced by B19V infection. CD36+ EPCs were 

infected with B19V. Caspase inhibitors were applied upon infection at the concentrations 

described above. TUNEL assay was used to measure apoptosis induced in capsid+ cell 

population at 48 hrs p.i. by flow cytometer. The TUNEL+ population is shown as a relative % to 

the DMSO control, arbitrarily set as 100%. 

All the numbers shown as percentage (%) are averages from at least two individual 

experiments. 
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approximately 1.6 times that of pGFP-11kDa-transfected cells as determined by flow cytometer 

(data no shown). This perhaps can partially explain why pGFP-NS1-transfected cells were less 

sensitive to these caspase inhibitors. Nevertheless, caspase-10 inhibitor clearly was the most 

effective in inhibiting both GFP-11kDa- and GFP-NS1-induced apoptosis in transfected 

UT7/Epo-S1 cells. 

 As expected, a similar inhibitory effect of all the caspase inhibitors was observed after 

transfecting GFP-11kDa and GFP-NS1 in CD36+ EPCs (Fig. 2-6B). Q-VD treatment showed the 

strongest inhibition in both the GFP-11kDa- and the GFP-NS1-induced AnnexinV+ cells, 

followed by Z-VAD and caspase-10 inhibitor. Similar to UT7/Epo-S1 cells, the GFP-NS1-

induced AnnexinV+ cells were less sensitive to inhibition caused by caspase inhibitors. For 

example, caspase-10 inhibitor reduced the GFP-11kDa-induced AnnexinV+ population by 62%; 

however, the NS1-induced AnnexinV+ population was only inhibited by 45%.      

In B19V infection of CD36+ EPCs, Q-VD was also the most effective inhibitor in 

decreasing the TUNEL+ population (Fig. 2-6C). Treatment with QVD at 10 µM inhibited B19V 

infection-induced TUNEL+ population by an efficiency of 70%. Similar to what was observed in 

the above transfection experiments, treatment with caspase-10 inhibitor showed a particularly 

high potency in inhibiting TUNEL+ population induced by B19V infection compared to 

treatments with other individual caspase inhibitors. At 20 µM, both caspase-10 inhibitor and Z-

VAD treatments inhibited B19V infection-induced TUNEL+ population by more than 60%.          

Collectively, our results show that caspase-10 inhibitor is the most effective inhibitor 

besides the two pan-caspase inhibitors in GFP-11kDa and GFP-NS1 transfection-induced 

apoptosis as well as in B19V infection-induced apoptosis.  

  

Caspase-10 is the most active caspase in 11kDa/NS1 transfection- and B19V infection-

induced apoptosis.    
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 The proteolytic cleavage of poly(ADP-ribose)polymerase-1 (PARP1) is one of the 

hallmarks of apoptosis (100, 110). The cleaved PARP1 band at a size of approximately 85 kDa 

was specifically detected in pGFP-NS1- and pGFP-11kDa-transfected UT7/Epo-S1 cells (Fig. 2-

7A, lanes 5&6) as well as in B19V-infected CD36+ EPCs (Fig. 2-7A, lane 2), but not in GFP only 

transfected cells and mock cells (Fig. 2-4A, lanes 1, 3&4), supporting the apoptotic nature of cell 

death induced by transfection of the GFP-11kDa and the GFP-NS1 and by B19V infection. 

Moreover, the cleaved band of caspase-10 was specifically detected in the pGFP-NS1- and the 

pGFP-11kDa-transfected UT7/Epo-S1 cells (Fig. 2-7B, lanes 5&6, respectively), as well as in 

B19V-infected CD36+ EPCs (Fig. 2-7B, lane 2), but not in pGFP-transfected control cells (Fig. 2-

7B, lane 4) and mock cells (Fig. 2-7B, lanes 1&3), suggesting that the caspase-10 is activated in 

11kDa/NS1 transfection- and B19V infection-induced apoptosis. 

Since caspase-3&7, -6 and -8 were reported active in NS1-expressing cell lines and 

B19V-infected erythroid progenitor cells (131, 195), FLICA was employed to further evaluate the 

importance of the active caspase-10. Since GFP and FAM share similar excitation and emission 

wavelength, we transfected cells with RFP-11kDaHA, RFP-NS1HA and RFPHA (as a control). 

Cellular localization and expression level of these RFP fusion proteins were observed to be 

similar to that of GFP fusion proteins (data not shown). At 48 hrs posttransfection, RFP-NS1HA 

and RFP-11kDaHA activated caspase-10 in 24% and 48% of the transfected cells (αHA positive, 

HA+), respectively; in contrast, only 10% of RFPHA-expressing cells contained active caspase-

10 (Fig. 2-7C). Similarly, activation of caspase-10 was detected in more than 53% of B19V 

infected-CD36+ EPCs (capsid+) at 48 hrs p.i. (Fig. 2-7D). Not surprisingly, all other analyzed 

caspases (caspase-3&7, -6, -8 and -9) were also activated, however, at a much lower level, 

compared with capsaspe-10 in the RFP-NS1HA- and the RFP-11kDaHA-expressing cells (Fig. 

2-7C) and in CD36+ EPCs infected with B19V (Fig. 2-7D). Our results show that caspase-10 is 

the most active caspase both in 11kDa- and NS1-expressing UT7/Epo-S1 cells and in B19V-

infected CD36+ EPCs, and 11kDa is more efficient in activating caspase-10 than NS1.  
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 Fig. 2-7. PARP1 is cleaved and caspase-10 is the most active caspase in 11kDa/NS1- 

transfection- and B19V-infection-induced apoptosis. (A&B) Detection of cleaved PARP1 

and cleaved caspase-10. CD36+ EPCs were infected with B19V, and capsid+ cells were sorted 

at 48 hrs p.i. by flow cytometer. UT7/Epo-S1 cells were transfected with pGFP control, pGFP-

11kDa and pGFP-NS1. At 48 hrs posttransfection, the GFP+ populations of transfected cells 

were sorted by flow cytometer. (A) Sorted cells were used for detecting the cleaved PARP1 by 

Western blot using anti-cleaved PARP1 at a dilution of 1:1000 (Cell Signaling). (B) Sorted cells 

were used for detecting of active caspase-10 by Western blot using anti-caspase-10 at a dilution 

of 1:1000 (Sigma). Uninfected or pGFP transfected cells served as Mock as shown. The blots 

were reprobed with anti-β-actin (Sigma). (C) Detection of activated caspase-3&7, -6, -8, -9 

and -10 in 11kDa- and NS1- transfected cells. UT7/Epo-S1 cells were transfected with 

pRFPHA control, pRFP-11kDaHA and pRFP-NS1HA. FAM- labeled FLICA peptides, FAM-

DEVD-FMK, FAM-VEID-FMK, FAM-LETD-FMK, FAM-LEHD-FMK and FAM-AEVD-FMK, were 

used to detect active caspase-3/7, caspase-6, caspase-8, caspase-9 and caspase-10, 

respectively. Individual FLICA staining was performed to determine active caspases at 48 hrs 

posttransfection. Transfected cells were selected by intracellular staining of anti-HA tag at 1:100 

dilution (clone HA-7, Sigma), shown as HA+ and HA(-) respectively, and were plotted to FLICA 

signal detected by flow cytometer. (D) Detection of activated caspase-3&7, -6, -8, -9 and -10 

in B19V-infected CD36+ EPCs. CD36+ EPCs were infected with B19V. At 48 hrs p.i., cells were 

used for individual FLICA staining followed by intracellular staining with the antibody against 

B19V capsid. Both capsid positive and negative cells were plotted to FLICA signal detected by 

flow cytometer. TX: transfection.    
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Discussion 

 We report here for the first time that B19V 11kDa is a more significant inducer of 

apoptosis than NS1 during B19V infection of primary erythroid progenitor cells. B19V-11kDa–

induced apoptosis is mediated by caspase-10 as an initiator. Strikingly, 11kDa expresses at 

least 100 times more than NS1 at the protein level during B19V infection of primary erythroid 

progenitor cells. In contrast with NS1, which localizes exclusively in the nucleus, 11kDa 

localizes predominately in cytoplasm, where apoptotic inducers usually reside. Although we 

used GFP-fused 11kDa and NS1 to analyze apoptosis induced in transfected cells, localization 

of the fused proteins recapitulates their native cellular localization. Moreover, the protein level of 

11kDa in transfected cells was approximately 12 times lower than that during B19V infection of 

erythroid progenitor cells, while the level of the NS1 was comparable between transfection and 

infection. Therefore, the 11kDa-induced apoptosis by transfection closely reproduces apoptosis 

induced during B19V infection of primary erythroid progenitor cells. In addition, our results have 

shown that inhibition of 11kDa expression reduces apoptosis during B19V infection of CD36+ 

EPCs, and thus we conclude that the B19V 11kDa is the major functional protein in destroying 

erythroid progenitors during B19V infection.   

Apoptosis is defined mechanistically as regulated cell death involving the sequential 

activation of caspases. Activation of caspase-8, -9 and -10, which are believed to be the initiator 

caspases at the top of the caspase signaling cascade, leads to the activation of downstream 

caspases, including caspase-3,-6 and -7, which in turn induce apoptosis (40). As has been 

previously reported, caspase-3&7, -6 and -8 inhibitors can significantly reduce apoptosis 

induced by NS1 in established NS1-expressing cell lines (131, 195) as well as by B19V infection 

of erythroid progenitor cells (195), though at a high concentration of 200 µM. At this high 

concentration, we did observe more than 90% inhibition of cell death in both the transfection 

and infection system (data not shown). Instead of using such this “saturated” concentration, 

however, we applied the inhibitors at a low concentration (20 µM) to probe precisely the potency 
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of the individual caspase inhibitor. Using FLICA, we detected a significantly higher level of the 

active caspase-10 than caspase-3&7, -6, -8 and -9 in 11kDa/NS1-transfection- and B19V-

infection-induced apoptotic cells, strongly indicating that caspase-10 is the initiator caspase.  

Caspase-10, previously considered as the ortholog of caspase-8 (22), has been shown 

to be able to substitute the function of caspase-8 (104, 217). However, we found caspase-8 

could not be substituted for caspase-10 in our study, as caspase-8 inhibitor was not nearly as 

effective as caspase-10 inhibitor in counteracting apoptosis induced by 11kDa and NS1 

transfection in UT7/Epo-S1 and primary erythroid progenitor cells or induced during B19V 

infection of primary erythroid progenitor cells. In addition, the activation of caspase-10 is 

significantly higher than caspase-8 in both 11kDa- and NS1-transfected UT7/Epo-S1 cells and 

B19V-infected primary erythroid progenitor cells. This finding suggests a potential role of 

caspase-10 in the pro-apoptotic pathway that is not directly regulated by caspase-8.  

Notably, B19V permissive cells are erythroid or magakaryoblastoid cells that require Epo 

to sustain differentiation and proliferation. Epo positively regulates erythropoiesis by preventing 

apoptosis and stimulating differentiation and proliferation of erythroid progenitors and 

erythroblasts (107). We observed that the amount of Epo, ranged from 0.1 to 10 units/ml in 

B19V infection of erythroid progenitor cells, does not influence the degree of apoptosis 

significantly (Fig. S1). On other hand, the Fas/Fas ligand pathway has been identified to have 

an apoptotic role in the regulation of erythropoiesis (58, 59). Thus, the balance between the 

apoptosis by the Fas/Fas ligand and the antiapoptotic role in the presence of Epo is important 

for the homeostasis of erythroid progenitors.  Since Epo strongly presents an antiapoptotic 

stimulation, apoptosis induced during B19V infection may require a high level of a potent 

inducer that is the 11kDa.  We hypothesize that the high level of the 11kDa expression during 

B19V infection disturbs the balance between the apoptosis by the Fas/Fas ligand and the 

antiapoptotic role by Epo and further the homeostasis of erythroid progenitors. Thus, the B19V-
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11kDa-induced apoptosis provides us with a unique model to investigate further the mechanism 

underlying the caspase-10-dependent apoptosis, especially, in primary erythroid progenitor cells  

    Although an infectious clone of B19V was established, progeny virus produced from 

transfection of this clone is apparently limited, and transfection of an 11kDa-knockout-clone only 

results in a few assembled particles exclusively localized in the nucleus (229, 230). Therefore, 

we are unable to produce 11kDa-knockout virus to examine the role of the 11kDa in causing cell 

death of erythroid progenitors.  

Direct cell death of infected erythroid progenitors results in the disease outcome of B19V 

infection (29). B19V must express abundant executors to erythroid progenitors during infection, 

among which the 11kDa is the most significant and abundant executor. Collectively, our data 

demonstrate that the B19V 11kDa protein is the major protein in executing erythroid progenitor 

cell death during B19V infection by inducing apoptotic cell death during B19V infection of 

erythroid progenitor cells that is mediated by activating caspase-10.  
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Chapter 3 

Bocavirus infection induces a mitochondrion-mediated apoptosis and 

cell cycle arrest at G2/M-phase  

 

Abstract 

Bocavirus is a newly classified genus of the family Parvovirinae. Bocavirus minute virus 

of canines (MVC) infection produces a strong cytopathic effect in permissive Walter 

Reed/3873D (WRD) canine cells. We have systematically characterized the MVC infection-

produced cytopathic effect in WRD cells, namely, the cell death and cell cycle arrest, and 

carefully examined how MVC infection induces the cytopathic effect. We found that MVC 

infection induces an apoptotic cell death characterized by Bax translocalization to the 

mitochondrial outer membrane, disruption of the mitochondrial outer membrane potential, and 

caspase activation. Moreover, we observed that the activation of caspases occurred only when 

the MVC genome was replicating, suggesting that replication of the MVC genome induces 

apoptosis. MVC infection also induced a gradual cell cycle arrest from the S-phase in early 

infection to the G2/M-phase at a later stage, which was confirmed by the upregulation of cyclin 

B1 and phosphorylation of cdc2. Cell cycle arrest at the G2/M-phase was reproduced by 

transfection of a non-replicative NS1 knock-out mutant of the MVC infectious clone, as well as 

by inoculation of UV-irradiated MVC. In contrast with other parvoviruses, only expression of the 

MVC proteins by transfection did not induce apoptosis or cell cycle arrest. Taken together, our 

results demonstrate that MVC infection induces a mitochondrion-mediated apoptosis that is 

dependent on the replication of the viral genome, and the MVC genome per se is able to arrest 

the cell cycle at the G2/M-phase. Our results may shed light on the molecular pathogenesis of 

Bocavirus infection in general.    
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Introduction 

The Bocavirus genus is newly classified within the subfamily Parvovirinae of the family 

Parvoviridae (38). The currently known members of the Bocavirus genus include bovine 

parvovirus type 1 (BPV1) (39), minute virus of canines (MVC) (190), and the recently identified 

human bocaviruses (HBoV, HBoV2 and HBoV3) (5, 8, 99).   

MVC was first recovered from canine fecal samples in 1970 (18). The virus causes 

respiratory disease with breathing difficulty (33, 91, 173) and enteritis with severe diarrhea (19, 

128), which often occurs with co-infection of other viruses (128), spontaneous abortion of 

fetuses and death of newborn puppies (33, 86). Pathological lesions in fetuses in experimental 

infections were found in the lymphoid tissue of the lung and small intestine (33). MVC was 

isolated and grown in the Walter Reed/3873D (WRD) canine cell line (18), which is derived from 

a subdermoid cyst of an irradiated male dog (18). The full length 5.4-kb genome of MVC was 

recently mapped with palindromic termini (209). Under the control of a single P6 promoter, 

through the mechanism of alternative splicing and alternative polyadenylation, MVC expresses 

two nonstructural proteins (NS1 and NP1) and two capsid proteins (VP1 and VP2). Like the NS1 

proteins of other parvoviruses, the NS1 of MVC is indispensible for genome replication. The 

NP1 protein, which is unique to the Bocavirus genus, appears to be critical for optimal viral 

replication, as the NP1 knock-out mutant of MVC suffers from severe impairment of replication. 

A severe cytopathic effect during MVC infection of WRD cells has been documented (209).  

The HBoV genome has been frequently detected worldwide in respiratory specimens 

from children under two years old with acute respiratory illnesses (3, 97, 188). HBoV is 

associated with acute expiratory wheezing and pneumonia (4, 97, 188), and is commonly 

detected in association with other respiratory viruses (97, 188). Further studies are necessary, 

however, to identify potential associations of HBoV infection with clinical symptoms or disease 

of acute gastroenteritis (8, 99). The full length sequence of infectious MVC DNA (Genbank 

accession no.: FJ214110) that we have reported shows 52.6% identity to HBoV, while the NS1, 

http://en.wikipedia.org/wiki/Diarrhea�
http://en.wikipedia.org/wiki/Pathology�
http://en.wikipedia.org/wiki/Lung�
http://en.wikipedia.org/wiki/Small_intestine�
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NP1 and VP1 proteins are 38.5%, 39.9% and 43.7% identical to those of HBoV, respectively 

(204). 

The cytopathic effect induced during parvovirus infection has been widely documented, 

e.g., in infections of minute virus of mice (MVM) (25), human parvovirus B19 (B19V) (195), 

parvovirus H-1 (63, 181) and BPV1 (1). In Bocavirus, cell death during BPV1 infection of 

embryonic bovine tracheal cells has been shown to be achieved through necrosis, independent 

of apoptosis(1). B19V-induced cell death of primary erythroid progenitor cells has been shown 

to be mainly mediated by an apoptotic pathway (195), in which the nonstructural protein 11kDa 

plays a key role (38). In contrast, the MVM-induced cytopathic effect has been revealed to be 

mediated by NS1 interference with intracellular CKII signaling (54, 149, 150), a non-apoptotic 

cell death. Oncolytic parvovirus H-1 infections can induce either apoptosis or no-apoptotic cell 

death, depending on the cell type (63, 129). Therefore, the mechanisms underlying parvovirus 

infection-induced cell death vary, although NS1 has been widely shown to be involved in both 

apoptotic and non-apoptotic cell death. The nature of the cytopathic effect during Bocavirus 

MVC infection has not been studied.      

Parvovirus replication requires infected cells at the S-phase. Infection of parvovirus has 

been revealed to accompany a cell cycle perturbation that mostly leads to an arrest in the S/G2-

phase or the G2/M-phase during infection (87, 96, 135, 158, 220). MVM NS1 expression 

induces an accumulation of sensitive cells in the S/G2-phase (7, 156, 158). Whether MVC 

infection-induced cell death is accompanied by an alternation of cell cycle progression, and 

whether the viral non-structural protein is involved in these processes have not been addressed.      

In this study, we found, in contrast with other members of the family Parvoviridae, 

expression of both the non-structural and structural proteins of MVC by transfection did not 

induce cell death or cell cycle arrest. However, the cytopathic effect induced during MVC 

infection is a replication-coupled, mitochondrion-mediated and caspase-dependent apoptosis, 
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accompanied with a gradual cell cycle arrest from the S-phase to the G2/M-phase, which is 

facilitated by the MVC genome.   

 

Materials and Methods 

Cells and virus:  

 WRD cells (18) were maintained in Dulbecco’s modified Eagle’s medium with 10% fetal 

calf serum in 5% CO2 at 37°C. The MVC used in this study, the original strain GA3, was isolated 

at the School of Veterinary Science, Cornell University. MVC was cultured and quantified as 

previously described, and the virus titer was determined as the number of fluorescence-foci 

forming units (ffu) per ml (21). The WRD cell line and MVC were obtained as gifts from Dr. 

Parrish (Cornell University). 

MVC was inactivated by UV irradiation as follows: In each well of a 96-well plate, 50 µl of 

purified MVC (204) containing the cell culture medium was added. The plate was placed in a 

Hoefer UVC 500 Ultraviolet Crosslinker (Hoefer Inc.) for UV irradiation at a dose of 720 mJ/cm2 

(74, 119).  

  

Infection and transfection:  

WRD cells were seeded one day prior to infection or transfection. MVC at indicated 

multiplicity of infection (MOI= ffu/cell) was added to the culture right after the medium was 

refreshed. 

Transfection was performed using the LipoD293 transfection reagent (SignaGen 

Laboratories, MD) following the manufacturer’s instructions.   

 

Plasmid constructs:  

All the nucleotide (nt) numbers of MVC refer to the MVC GA3 isolate (Genbank 

accession no.: FJ214110).   

http://www.ncbi.nlm.nih.gov/nuccore/FJ214110?ordinalpos=1&itool=EntrezSystem2.PEntrez.Sequence.Sequence_ResultsPanel.Sequence_RVDocSum�
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(i) Constructs for expressing non-structural proteins:  The NS1 ORFs (nt 403-2724), 

NP1 ORF (nt 2537-3094) and VP1 ORF (nt 3081-5192) were inserted separately into 

BamHI/XhoI-digested pcDNAGFP vector (19) to construct the pGFP-NS1, pGFP-NP1 and 

pGFP-VP1, respectively. pMVCNSCap was constructed by inserting the MVC sequence of nt 

150-5305 into SacII-ApaI-digested pBluescript SK(+) (Strategene).   

(ii) Mutants of infectious clone pIMVC: The MVC infectious clone, pIMVC, and its 

derivative pIMVCNS1(-), pIMVCNP1(-),  pIMVCVP1(-) and pIMVCVP2(-) were described 

previously (60). pIMVCVP1/2(-) was constructed by combing the VP1 and VP2 ATG mutations 

in pIMVC. pIMVCΔ1/2LTR was constructed by deleting the MVC sequences of nt 1-101 in the 

left palindromic repeat of the pIMVC through NotI digestion.           

(iii) Constructs for glutathione S-transferase (GST)-fusion expression: The MVC 

NP1 ORF (nt 2537-3094) was cloned into pGEX4T3 (GE Health) as pGEX-MVCNP1.  

   

Antibodies:    

   GST-fused MVC NP1 protein was expressed from pGEX-MVCNP1-transformed 

Escherichia coli BL21 cells and purified as described previously (60). The anti-NP1 antiserum 

was produced by immunizing animals with purified GST-MVCNP1 following a protocol described 

previously (60). The animal protocol used was approved by the KUMC Institutional Animal 

Care and Use Committee. 

 Anti-Bax, anti-cyclin B1, anti-phospho-cdc2 (pY15) and anti-cyclin A were purchased 

from BD Biosciences. Anti-β-actin (clone AC-15) was purchased from Sigma. We used dilutions 

of antibodies for Western blotting and immunofluorescence as suggested in the manufacturers’ 

instructions.   

  

SDS-PAGE, Western blotting and immunofluorescence:  
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SDS-PAGE, Western blotting and immunofluorescence assay were performed as 

previously described (27,50,60). Mitochondria were stained by incubating cells with a 

mitochondrion-staining specific dye, MitoTracker Red CMXRos (Invitrogen), at 500 nM in the 

cell culture medium for 30 min before fixation in ice-cold acetone. Confocal images were taken 

at a magnification of 60 × (objective lens) with an Eclipse C1 Plus confocal microscope (Nikon) 

controlled by Nikon EZ-C1 software.   

 

Southern blotting: 

WRD cells were transfected with the MVC constructs as shown in Fig. 3-3C. At 48 h 

posttransfection, low-molecular-weight DNA (Hirt DNA) was extracted from transfected cells as 

described previously (27). Southern blotting was performed as described previously (48) using 

the MVC NSCap probe (60).   

 

Flow cytometry analysis: 

AnnexinV/Propidium Iodide (PI) staining: Cells were dissociated by 0.25% trypsin in 

Versene buffer. The cells were recovered in culture medium at 37°C for 30 min with agitation 

prior to staining, then washed twice with AnnexinV binding buffer. Of these cells, 1 × 106 were 

resuspended in 100 µl of AnnexinV binding buffer, followed by the addition of 5 µl Cy5-

conjugated AnnexinV (BD Biosciences) and 5 µl Propidium Iodide (PI) (60 µg/ml, Sigma). The 

mixture was then incubated at room temperature (RT) for 15 min, followed by the addition of 

400 µl AnnexinV binding buffer. Flow cytomerty was performed after staining.   

FLICA (Fluorochrome-labeled Inhibitor of Caspase) assay and FLICA/Live-Dead 

Violet co-staining:  Cells were dissociated by 0.25% trypsin in Versene and stained with 

carboxyfluorescein(FAM)-labeled FLICA peptides( Immunochemistry Tech, MN), FAM-VAD-

FMK (Poly-FLICA), FAM-DEVD-FMK (Caspase-3&7 FLICA), FAM-VEID-FMK (Caspase-6 

FLICA), FAM-LETD-FMK (Caspase-8 FLICA), FAM-LEHD-FMK (Caspase-9 FLICA), FAM-
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AEVD-FMK (Caspase-10 FLICA) and the fluorescein isothiocyanate(FITC)-labeled FLICA 

peptide (Biovision), FITC-ATAD-FMK (Caspase-12 FLICA), as described previously (20). 

For FLICA/Live-Dead Violet co-staining, cells were stained with FAM-VAD-FMK (poly-

FLICA peptide) followed by Live-Dead Violet staining (Invitrogen) according to the 

manufacturer’s instructions. Specifically, 2 µl of poly-FLICA reagent was added into 300 µl of 

cell suspension [106 cells/ml in phosphate-buffered saline (PBS) containing 2% fetal calf serum 

(PBS-2%FCS)], which was incubated at 37°C for 1 hr. The cells were washed once by PBS-

2%FCS and resuspended in of 500 µl of PBS-2%FCS with 1 µl of Live-Dead Violet dye. The 

mixture was kept on ice for 30 min. Cells were then washed twice with PBS-2%FCS, and fixed 

in 1% paraformaldehyde for 30 min before analysis. For co-staining with anti-NS1 of MVC, fixed 

cells were permeabilized in PBS-2%FCS containing 0.2% Tween-20 (PBST) for 30 min, stained 

with a 1: 50 dilution of anti-NS1 antiserum, followed by staining with a Cy5-labeled secondary 

antibody.   

DAPI staining:  Cells were dissociated by 0.25% trypsin in Versene and fixed in 1% 

paraformaldehyde at RT for 30 min. The cells were washed, stained with DAPI, 4',6-diamidino-

2-phenylindole, at 20 µg/ml in PBST, and then analyzed by flow cytometry. When co-staining 

was required, cells were first stained with anti-NS1 or anti-NP1 followed by DAPI staining.  

Cell proliferation assay (DDAO staining): DDAO, 7-hydroxy-9H-(1,3-dichloro-9,9-

dimethylacridin-2-one), a fixable, far-red-fluorescent tracer for very long-term cell labeling, was 

purchased from Invitrogen and applied following the manufacturer’s instructions. Briefly, every 5 

million cells were collected and washed twice with pre-warmed PBS. The cells were then 

resuspended in 1 ml of 10 µM DDAO in PBS and kept at 37°C for 10 min. The mixture was then 

immediately transferred to 15 ml of pre-warmed cell culture medium to quench the reaction. 

After cells were washed twice with the warmed medium, they were then resuspended in the 

medium, and incubated at 37°C. The next day, stained cells were used either for MVC infection 

or transfection. When required, DDAO-stained cells were fixed and further stained intracellularly 
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with anti-NS1. DDAO fluorescence decays when cells proliferate; therefore, the lower the 

fluorescence detected, the better the proliferation of cells (Fig. 3-3-1D&4D).  

MOMP (Mitochondrial Outer Membrane Permeabilization) detection [DiIC1(5)/PI or 

poly-FLICA co-staining]: The level of MOMP was determined by the MitoProbe DiIC1(5) Assay 

Kit (Invitrogen). DiIC1(5) (1’,1’,3,3,3’,3’-hexamethylindodicarbo-cyanine iodide) accumulates 

primarily in mitochondria with active mitochondrial membrane potentials. DiIC1(5) staining 

decreases as the mitochondrial membrane potential is reduced. Cell membrane permeability 

was probed by propidium iodide (PI, Sigma). Co-staining of DiIC1(5) with PI was performed 

following the manufacture’s instruction (Invitrogen). Briefly, WRD cells were trypsinized and 

resuspended at 106 cells/ml of the cell culture medium, into which 5 µl of DiIC1(5) at 10 µM in 

DMSO (dimethyl sulfoxide) was added, followed by incubation at 37°C for 15 min. PI was added 

to the mixture to a final concentration of 0.3 µg/ml. The mixture was then incubated for another 

15 min at 37°C. For co-staining with poly-FLICA peptide, cells were stained with ploy-FLICA for 

30 min at 37°C prior to the addition of DiIC1(5), then incubated at 37°C for another 30 min. 

CCCP(carbonyl cyanide 3-chlorophenylhydrazone) was used as a positive control for disrupting 

mitochondrial outer membrane potential at a final concentration of 50 µM. The stained cells 

were analyzed on a flow cytometer.  

All the samples were analyzed on a three-laser flow cytometer (LSR II, BD Biosciences) 

within an hour of staining at the Flow Cytometry Core of the University of Kansas Medical 

Center. All flow cytometry data were analyzed using FACS DIVA software (BD Biosciences).   

   

Results  

MVC infection induces cell death and cell cycle arrest in WRD cells.  

 To analyze cell death and cell cycle arrest induced during MVC infection, we infected 

WRD cells with MVC and stained them with anti-NS1, Live-Dead Violet and FAM-VAD-FMK 

(poly-FLICA peptide) at the indicated times p.i. We selected the MVC-infected cells, which were 
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anti-NS1 positive, and plotted as Live-Dead Violet fluorescence vs. FLICA fluorescence intensity 

in Fig. 3-3-1A. MVC infection induced a cell death in a time-dependent manner during infection 

as shown by the Live-Dead Violet staining. From 18 to 96 hrs p.i., the live cell population (Live-

Dead¯) decreased from 91.7% to 45.2% (Fig. 3-3-1A, Control). In addition, dead cells (Live-

Dead+) in the control group were almost all stained with FAM-VAD-FMK (poly-FLICA+), 

indicating that caspases were activated in all the dead cells (Fig. 3-3-1A, Control). Active 

caspase is a hallmark of apoptotic cell death (61). This result indicates that MVC infection 

induces an apoptotic cell death. Moreover, with the addition of a specific pan-caspase inhibitor, 

Q-VD-OPH (Q-VD), cell death in MVC-infected cells was inhibited even at 96 hrs p.i. (Fig. 3-3-

1A, Q-VD). Q-VD is a newly developed pan-caspase inhibitor without significant cross reactivity 

with cathepsin (35). Thus, the rescue of cell death by Q-VD further confirmed the apoptotic 

nature of MVC infection-induced cell death.  

  MVC infection not only induced apoptosis, but also a severe cell cycle arrest of infected 

WRD cells. We gated MVC NS1-expressing cells and plotted them in the histogram of DAPI 

staining (Fig. 3-3-1B).  Cell cycle analysis of MVC-infected cells by DAPI staining showed a 

clear transition from an S-phase accumulation to a G2/M arrest during MVC infection (Fig. 3-3-

1B). As early as 18 hrs p.i., we observed a widened peak with apex in the S-phase (Fig. 3-3-1B, 

18 hrs p.i.). Only 6 hrs later, the S-phase accumulation became weaker and was replaced by 

G2/M arrest at 24 hrs p.i. (Fig. 3-3-1B, 24 hrs p.i.). After that, the cell cycle of NS1-expressing 

cells was mostly seized in the G2/M-phase (Fig. 3-3-1B, 48, 72 and 96 hrs p.i., respectively). 

The Q-VD treatment, while completely abolishing the apoptosis induced by MVC infection (Fig. 

3-3-1A, Q-VD), did not change the cell cycle perturbation (data not shown). To further support 

the observation that MVC infection induced cell cycle arrest, we used Western blotting to probe 

the level of cell cycle regulatory proteins, cyclin B1, phospho-cdc2 (pY15) and cyclin A. As 

shown in Fig. 3-3-1C, G2/M-phase checkpoint regulators, cyclin B1 and phospho-cdc2 (pY15), 

were both upregulated at 24  
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Figure 3-1. MVC infection induces apoptosis and cell cycle arrest.  

WRD cells were infected with MVC at an MOI of 3. (A) Cells were cultured in media 

supplemented with DMSO as a control or a pan-caspase inhibitor Q-VD (R&D Systems) at 40 

µM immediately after infection. At indicated times p.i., infected cells were triple stained by anti-

NS1, Live-Dead Violet and poly-FLICA. Anti-NS1-stained cells were selected and plotted as 

Live-Dead Violet vs. poly-FLICA florescence. The percentage of live cells (double negative) is 

shown in the square gate. (B) At the indicated times p.i., cells were double stained by anti-NS1 

and DAPI. The anti-NS1-stained cells were selected and plotted as cell counts vs. DAPI 

staining. Percentages of cells at G0/G1-, S- and G2/M-phase are shown in circle graphs at the 

bottom of the panel. (C) Mock and MVC-infected WRD cells were harvested at 24 hrs and 48 

hrs p.i., respectively. Cell lysates were subjected to Western blotting using anti-cyclin B1, anti-

cdc2(pY15), anti-cyclin A and anti-β-actin, respectively. The levels of signals on blots, which are 

normalized to the level of β-actin, are shown in the bar chart to the right. The normalized value 

of the mock cells at 24 hrs is arbitrarily set to 1. (D) At 24 hrs and 48 hrs p.i., MVC- infected 

WRD cells were stained with DDAO and anti-NS1. Both anti-NS1 positive (NS1+) and negative 

[NS1(-)] populations were gated and plotted as histograms of cell counts vs. DDAO signal. 

Numbers as shown are percentage of proliferated cells. The line as shown is arbitrarily set 

based on the non-proliferated control cells, which were fixed immediately after infection.  

A representative of two independent experiments is shown in panels A-D. 
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and 48 hrs p.i. in MVC-infected cells. Cyclin A, which is required for S-phase passage, did not 

differ significantly between mock- and MVC-infected cell groups.  

We next stained MVC-infected cells with DDAO to evaluate cell proliferation. Consistent 

with the cell death and cell cycle arrest induced during MVC infection, NS1-expressing cells 

showed a severely impaired proliferation of approximately 4-fold compared with NS1-negative 

cells both in early infection ( 3.8% vs. 25.1% at 48 hrs p.i.) and later infection (18.8% vs. 78.9% 

at 72 hrs p.i.)  [Fig. 3-3-1D, compare groups NS(-) with NS+].   

Taken together, these results show that MVC infection induces an apoptotic cell death 

and a perturbation of cell cycle progression from the S-phase during early infection to the G2/M-

phase during later infection.  

 

MVC infection-induced apoptosis is mitochondrion-mediated. 

We next sought to examine the potential activation of the mitochondrion-mediated 

apoptotic pathway in MVC infection-induced apoptosis. During mitochondrion-mediated 

apoptosis, the proapoptotic protein Bax translocalizes to the mitochondrion outer membrane to 

trigger the permeabilization of the outer membrane, which in turn results in cytochrome c 

release and downstream caspase activation (103). We first employed the MitoProbe™ DiIC1(5) 

to directly probe the level of mitochondrion outer membrane permeabilization (MOMP). During 

MVC infection, the degree of MOMP occurred in a time-dependent manner (Fig. 3-3-2A). NS1-

expressing cells showed a clear transition from DilC1(5)high/PI¯ (Live) to  

DilC1(5)low/PI¯(Early/Middle apoptotic ) and to DilC1(5)low/PI+ (Late apoptotic/Dead) populations 

during infection from 48 to 96 hrs p.i. The DilC1(5)low/PI¯ population represents cells in which the 

mitochondrial outer membrane is disrupted but the cell membrane is intact,  while the 

DilC1(5)low/PI+ population represents cells in which both the mitochondrial outer membrane and 

the cell membrane are disrupted. This result indicated that MOMP precedes cell death during 

MVC infection.  
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Figure 3-2. MVC infection-induced apoptosis is mitochondrion-mediated.  

WRD cells were infected with MVC at an MOI of 3. (A)  MVC-infected cells were 

harvested at indicated times p.i., and double stained with PI and DilC1(5). A mock infection 

control and a MOMP-positive control (CCCP-treated cells) were included. Stained cells were 

thereafter analyzed by flow cytometry and plotted as PI staining vs. DilC1(5) staining. The 

DilC1(5)high/PI¯ (Blue) population represents live cells; DilC1(5)low/PI¯ (Green) cells are in the 

early and middle stages of apoptosis; DilC1(5)low/PI+ (Red) are late-apoptotic or dead cells. The 

percentage of each cell population is shown in color. A representative of two independent 

experiments is shown. (B) MVC-infected WRD cells, at 96 hrs p.i., were double stained with 

poly-FLICA and DilC1(5). A representative dot plot is shown. The  DilC1(5)high/FLICA¯ (Blue) 

population represents live cells; DilC1(5)low/FLICA¯ (Green) population are cells in the initial 

stage of apoptosis ; DilC1(5)low/FLICA＋ (Red) population are both apoptotic and dead cells. The 

percentage of each cell population is shown in color. (C) At 48 hrs p.i., mock or MVC-infected 

WRD cells were stained with MitoTracker Red (Red) and anti-Bax (Green). Representative 

confocal images were taken. Nuclei were stained with DAPI. (D) At the indicated times p.i., 

MVC-infected WRD cells were stained with anti-NS1 and various FLICA peptides as shown. 

Anti-NS1-stained cells were selectively gated and plotted in histogram form to show the FLICA 

signals of NS1-expressing cells. Mock cells were all plotted as poly-FLICA staining. The 

percentage of FLICA positive cells is shown. A representative of two independent experiments 

is shown.  
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We also co-stained MVC-infected cells with FAM-VAD-FMK (poly-FLICA) and DilC1(5) at 96 hrs 

p.i. The NS1-expressing cells showed three distinct populations as DilC1(5)high/FLICA¯ (Non-

apoptotic), DilC1(5)low/FLICA¯ (Apoptosis initiating) and DilC1(5)low/FLICA+ (Apoptotic), 

respectively (Fig. 3-3-2B). The DilC1(5)low/FLICA¯ population represents cells in which the 

mitochondrial outer membrane is disrupted but caspases have not yet been activated, while the 

DilC1(5)low/FLICA+ population represents cells with both a disrupted mitochondrial outer 

membrane and activated caspases. This result supports that a transition occurs from DilC1(5) 

staining to poly-FLICA staining in NS1-expressing cells. Collectively, these results suggest that 

MOMP precedes caspase activation and cell death during infection. The fact that caspases are 

activated in the same population of cells with MOMP is consistent with mitochondrion-mediated 

apoptosis. 

To further confirm that MVC infection-induced apoptosis is mitochondrion-mediated, we 

used anti-Bax staining and a mitochondrion-specific MitoRed staining to probe whether the Bax 

localizes on the mitochondrial outer membrane. We observed a precise colocalization of the 

anti-Bax staining (Green) with the MitoRed staining in MVC-infected cells at 48 hrs (Fig. 3-3-2C, 

MVC). In contrast, Bax dispersed in the uninfected cells (Fig. 3-3-2C, Mock). This result 

indicates translocation of the Bax to the mitochondrial outer membrane of MVC-infected cells 

during infection, which presumably triggers disruption of the mitochondrial outer membrane 

potential that in turn activates caspases.  

To confirm activation of individual caspases during infection, we used poly- and 

individual caspase FLICA assays to determine the level of activated caspases of NS1-

expressing cells. Activation of caspases increased from 48 hrs, 72 hrs and 96 hrs p.i.; however, 

at all three time points, similar patterns of caspase activation were detected (Fig. 3-3-2D). 

Among all the caspases tested, caspase-6, -8 and -9 were the most activated, followed by 

caspase-3/7, -10 and -12 (Fig. 3-3-2D). At 96 hrs p.i., while poly-FLICA showed an overall 

active caspase-positive rate of 58%, caspase-6, -8 and -9 were activated at a rate of 53%, 53% 
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and 56% of NS1-expressing cells, respectively (Fig. 3-3-2D, 96 hrs). Active caspase-3/7, -10 

and -12 were only detected in 40%, 43% and 48% of NS1-expressing cells, respectively. The 

extensive activation of caspase-9 is further an evidence that supports the mitochondrion-

mediated apoptosis induced during MVC infection.  

  

Replication of the MVC genome induces caspase activation.  

Next, we sought to explore which vial components were involved in MVC infection-

induced apoptosis and cell cycle arrest. We transfected the MVC infectious clone, pIMVC, its 

derivatives pIMVCNS1(-), pIMVCNP1(-), pIMVCVP1(-), pIMVCVP2(-), pIMVCVP1/2(-) and 

pIMVCΔ1/2LTR, and MVC NSCap gene-containing pMVCNSCap into WRD cells, separately. At 

48 hrs posttransfection, we analyzed transfected cells for apoptosis and cell cycle by poly-

FLICA and DAPI staining, respectively, and co-stained cells with anti-NS1 except for 

pIMVCNS1(-)-transfected cells, which were co-stained with anti-NP1. The NS1-expressing or 

NP1-expressing cells were then selected and plotted for FLICA or DAPI florescence intensity for 

comparison (Fig. 3-3A&B).  

Transfection of pIMVC induced 22% poly-FLICA+ population in NS1-expressing cells at 

48 hrs posttransfection (Fig. 3-3A, pIMVC). The NS1 knock-out construct, pIMVCNS1(-), which 

is replication-deficient (204), generated only 5.4% poly-FLICA+ population [Fig. 3-3A, NS1(-)]. 

However, transfection of the NS(-) mutant did express NP1 that was used to select positive 

transfected cells, suggesting only expression of the NP1 does not activate caspases. The NP1 

knock-out construct, pIMVCNP1(-), which replicates poorly(204), generated 9.8% poly-FLICA+ 

population [Fig. 3-3A, NP1(-)]. Regardless of whether VP1, VP2 or both were knocked out, 

replication of the MVC genome was detected in pIMVCVP1(-), pIMVCVP2(-) (204) and 

pIMVCVP1/2(-)-transfected cells [Fig. 3-3C, VP1(-) and VP1/2(-)]; correspondingly, an average 

of 17% of FLICA+ populations were detected in transfected cells [Fig. 3-3A, VP1(-), VP2(-) and 

VP1/2(-)]. Transfection of the half left terminal repeat (LTR)-deleted mutant, pIMVCΔ1/2LTR, of  
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Figure 3-3. Replication of the MVC genome activates caspases and the MVC genome per 

se arrests cell cycle at the G2/M-phase.  

WRD cells were transfected with plasmids as shown. (A) At 48 hrs posttransfection, 

transfected cells were co-stained with anti-NS1, except for pIMVCNS1(-)-transfected cells, 

which were co-stained with anti-NP1, and poly-FLICA peptide. The anti-NS1 positive or anti-

NP1 positive population was selectively gated and plotted as cell counts and FLICA signal. The 

percentage of FLICA positive cells is shown as an average with a standard deviation generated 

from three independent experiments. (B) At 48 hrs posttransfection, transfected cells were co-

stained with anti-NS1, except for pIMVCNS1(-)-transfected cells, which were co-stained with 

anti-NP1, and DAPI. Anti-NS1- or anti-NP1-stained cells were selectively gated and plotted as 

cell counts and DAPI signal. The percentage of each cell cycle phase was quantified and is 

shown as a pie graph at the bottom of the panel. A representative of two independent 

experiments is shown. (C) Southern blotting analysis of transfected WRD cells. At 48 hrs 

posttransfection, transfected cells were harvested and Hirt DNA was prepared. Hirt DNA was 

then digested with DpnI. The blot was probed with the NSCap probe as previously described 

(60). Detected bands are indicated with their respective designations to the left. Lanes 1, 10 and 

15 are size markers of 5.15 kb. RF: replicative form; dRF: double replicative form.      



76 
 



77 
 

which replication was decreased (Fig. 3-3C, Δ1/2LTR), induced a reduced level, 14%, of poly-

FLICA+ population (Fig. 3-3A, Δ1/2LTR). Transfection of the NSCap gene-containing construct, 

pMVCNSCap, which did not replicate (Fig. 3-3C, NSCap), failed to induce a significant level of 

poly-FLICA+ population compared with the control (Fig. 3-3A, NSCap). However, transfection of 

the pMVCNSCap expressed NS1, which was used to select positive transfected cells, and NP1 

(Fig. 3-5B), suggesting that only expression of the NS1 and NP1 without replication of the 

genome does not activate caspases.   

The VP1(-) and VP2(-) mutants have been shown to knock out VP1 and VP2 expression 

by a single burst replication of the viral genome(204). Transfection of the combined VP1/2(-) 

mutant resulted in a single burst replication compared with transfection of the VP1(-) mutant [Fig. 

3-3C, compare VP1/2(-) with VP1(-)]. These results suggest that without expression of the VP1 

and VP2 only replication of the MVC genome is sufficient to activate caspases.  

 Replication efficiency of these transfected constructs as shown by Southern blots was 

ranked as pIMVC > pIMVCVP1(-), pIMVCVP2(-) and pIMVCVP1/2(-) > pIMVCΔ1/2LTR > 

pIMVCNS1(-) and pMVCNSCap (Fig. 3-3C). Thus, the efficiency of replication seems to 

correlate directly with the level of caspase activation. Collectively, these results reveal that 

activation of caspases, as assayed by poly-FLICA, of transfected cells is associated with 

replication of the MVC genome, rather than the expression of the MVC NP1 and VP1/VP2 

capsid proteins.   

 

The MVC genome per se arrests cell cycle at the G2/M-phase.  

With DAPI-staining, we further examined the capability of inducing cell cycle arrest 

through transfection of these MVC constructs. Transfection of the infectious clone (pIMVC) 

induced a scenario of cell cycle arrest at the G2/M-phase similar to that of MVC-infected cells 

with a transition of S-phase accumulation (Fig. 3-3B, pIMVC). Surprisingly, at 48 hrs 

posttransfection, cells transfected with pIMVCNS1(-), pIMVCNP1(-), pIMVCVP1(-), pIMVCVP2(-) 
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and pIMVCVP1/2(-), which all contain terminal repeats at both ends, showed an apparent G2/M 

arrest of approximately 42%, 46%, 45%, 52% and 44%, respectively, in comparison with 19% in 

the control group (Fig. 3-3B). However, no apparent S-phase accumulation was observed in 

cells transfected with the above pIMVC mutants even at earlier time points (data not shown). 

Interestingly, transfection of the left half terminal repeat (TR)-deleted mutant, pIMVCΔ1/2LTR, 

still induced a G2/M arrest of 46% (Fig. 3-3B, Δ1/2LTR); however, transfection of the TRs-

deleted mutant, pMVCNSCap, failed to induce G2/M arrest in NS1-expressing cells compared 

with the control (Fig. 3-3B, NSCap).  

Together with those results from Southern blotting analysis (Fig. 3-3C), our observations 

suggest that the terminal repeats of the MVC genome are required to induce cell cycle arrest at 

the G2/M-phase, and replication of the genome and expression of the NS1, NP1 and VP1/2 

proteins are dispensable. The S-phase accumulation as seen during MVC infection and 

transfection of the infectious clone may require a status of efficient replication of the viral 

genome.   

  

Expression of MVC individual viral proteins by transfection does not induce cell death or 

cell cycle arrest.   

 To further confirm that MVC proteins are not required to induce apoptosis and cell cycle 

arrest of transfected WRD cells, we transfected WRD cells with a set of constructs expressing 

GFP-fused MVC proteins, the GFP-positive population was selectively gated and quantified by 

AnnexinV staining for apoptosis (38). Not surprising, no significant amount of apoptosis or cell 

cycle disturbance was observed in cells transfected with individual or combined GFP-fused 

MVC protein-expressing constructs in comparison with cells transfected with the GFP control, 

as shown by AnnexinV/PI staining for apoptosis (Fig. 3-4A) and DAPI staining for cell cycle (Fig. 

3-4B&C).  
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Figure 3-4. Expression of individual MVC proteins or in combination by transfection does 

not induce cell death or cell cycle arrest. 

 WRD cells were transfected with various constructs, as shown, that express GFP-fused 

MVC proteins. (A) Transfected cells were co-stained with AnnexinV/PI at 48 hrs posttransfection. 

The GFP-positive population was selectively gated. The percentage of non-apoptotic cells 

(AnnexinV¯/PI¯ population) in the GFP-positive population in each transfection was then 

plotted. All the values were generated from three independent experiments and are shown as 

an average with a standard deviation. (B) Representative results of cell cycle analysis. 

Transfected cells were stained with DAPI at 48 hrs posttransfection. The GFP-positive 

population was selectively gated. The cell cycle analysis results are shown as GFP-negative 

population vs. GFP-positive population, respectively. (C)The percentage of cells at the G0/G1-

phase is shown as an average with a standard deviation obtained from three independent 

experiments. (D) Transfected cells were stained with DDAO at 48 hrs posttransfection. The 

GFP-positive population was selectively gated and plotted. Numbers as shown are percentage 

of proliferated cells. The line as shown is arbitrarily set in the control cells, which were fixed 

immediately after transfection.  
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Expression of these GFP-fused proteins by transfection was confirmed by fluorescence 

microscopy (Fig. 3-5A), approximately 10% of WRD cells were GFP-positive. GFP-NS1 and -

NP1 showed a similar nucleus-localization as that of the wild type NS1 and NP1 expressed from 

the transfection of pMVCNSCap in WRD cells (Fig. 3-5B), while transfection of the GFP-VP1 

showed localization mostly in the nucleus with somewhat diffusion in the cytoplasm (Fig. 3-5A). 

Interestingly, during MVC infection, the NS1 was localized in distinct replication center-like foci 

(Fig. 3-5B, MVC/α-NS1), similar to that of other parvoviruses (9,59), while the NP1 showed a 

unique peri-nucleus localization (Fig. 3-5B, MVC/α-NP1). The pattern of NS1 localization was 

also observed in cells transfected with replicative pIMVC and pIMVCVP1/2(-) (Fig. 3-5B). We 

speculate that the unique localization of the NS1 is due to the replication of the viral genome. 

Transfection of the pIMVCNP1(-) and pMVCNSCap did not show clear NS1-localized foci in the 

nucleus (Fig. 3-5B). We did not observe the peri-nucleus localization of NP1 in cells transfected 

with both replicative and non-replicative MVC constructs (Fig. 3-5B). Thus, we believe that the 

difference of the localization pattern of the NS1 and NP1 in the nucleus is less likely to result in 

the inability of the NS1 and NP1 to induce apoptosis. In addition to these observations, we also 

observed that expression of individual GFP-fused MVC proteins or those combined by 

transfection did not inhibit cell proliferation compared with the control GFP transfection group 

(Fig. 3-4D).   

Collectively, our results suggest that unlike the non-structural proteins of other 

parvoviruses, the MVC proteins, especially the NS1 and NP1, expressed by transfection of 

WRD cells, do not induce an apparent cell death or a perturbation of cell cycle progression.    

   

UV-inactivated MVC induces cell cycle arrest but not cell death.  

 To further confirm the role of the MVC genome in inducing apoptosis and cell cycle 

arrest, we inactivated purified MVC by UV irradiation. WRD cells were either infected with 

untreated (MVC) or inoculated with UV-irradiated MVC (UV-MVC). Apoptosis and cell cycle  
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Figure 3-5. Cellular localization of MVC proteins during infection and in transfection.  

(A) WRD cells were transfected with constructs expressing GFP-fused MVC proteins as 

shown. Cells were treated at 48 hrs posttransfection. (B) WRD cells were infected with MVC at 

an MOI of 3 or transfected with the MVC constructs as indicated. At 48 hrs p.i. or 

posttransfection, cells were stained with anti-NS1 and anti-NP1, respectively. Confocal images 

were taken at × 60 magnification. Nuclei were stained with DAPI.    
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Figure 3-6. UV-MVC inoculation induces cell cycle arrest at G2/M but not cell death. 

 WRD cells were infected by MVC or inoculated with UV-MVC at an MOI of 9. (A) 

Infected or inoculated cells were co-stained with Live-Dead Violet and poly-FLICA peptide at 

indicated times p.i. Stained cells were plotted in histograms as Live-Dead Violet and FLICA 

signals. The numbers in the square show percentages of live cells (double negative). (B) At 48 

hrs p.i., mock or UV-MVC-infected cells were stained with DAPI and plotted as cell counts and 

DAPI signal. The percentage of each cell cycle phase was quantified and is shown as a pie 

graph at the bottom of the panel. (C) UV-MVC-infected cells were harvested at indicated times 

p.i. Cell lysates were subjected to Western blotting analysis using anti-cyclin B1, -cdc2 (pY15), -

cyclin A and -β-actin, respectively. The level of signals on blots is normalized to the level of β-

actin and is shown in the bar chart. The normalized value of the mock cells is arbitrarily set to 1.  

A representative of two independent experiments is shown in panels A&B. 
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status were evaluated by Live-Dead Violet/FLICA co-staining and DAPI staining, respectively. 

Since NS1 was not expressed in WRD cells inoculated with UV-MVC (data not shown), we used  

an MOI of 9 for inoculation. We gated total cells and plotted them in Fig. 3-6A&B. At this MOI, 

MVC infection induced apoptosis more drastically, which was observed as early as 18 hrs p.i. 

and progressed over the course of infection (Fig. 3-6A, MVC). At 48 hrs p.i., only 46% of MVC-

infected cells were still alive (Live-Dead Violet¯/FLICA¯). In contrast, UV-MVC inoculation failed 

to induce a significant level of cell death at all three times p.i. (Fig. 3-6A, UV-MVC)   

Meanwhile, we compared the cell cycle regulation of MVC-infected and UV-MVC-

inoculated WRD cells at the same MOI. Consistent with the findings shown in Fig. 3-3-1B, the 

S-phase accumulation transitioned to the G2/M arrest during MVC infection (Fig. 3-6B, MVC). 

While most of the WRD cells were at the S-phase at 18 hrs p.i., the majority of MVC-infected 

cells were arrested at the G2/M-phase at late time points. Interestingly, UV-MVC induced a 

significant cell cycle arrest at G2/M as early as 18 hrs p.i. (Fig. 3-6B, UV-MVC). Consistent with 

the transfection experiments shown in Fig. 3-3, we did not observe an S-phase accumulation 

during UV-MVC inoculation (Fig. 3-6B). Moreover, to confirm the G2/M arrest induced by UV-

MVC inoculation, we determined the protein level of the G2/M-phase checkpoint regulators in 

UV-MVC-inoculated cells. A significant increase of both cyclin B1 and cdc2 (pY15) was 

observed at both 18 and 24 hrs p.i. (Fig. 3-6C). However, the fold of increase was less than that 

of the MVC-infected cells shown in Fig. 3-3-1C. The level of cyclin A remained unchanged in 

UV-MVC inoculated cells.  

Collectively, these lines of evidence further support that the MVC viral genome alone 

can induce cell cycle arrest at the G2/M-phase, but not the S-phase accumulation or cell death.  

  

Discussion 

Bocavirus MVC infection induces a mitochondrion-mediated apoptosis: Parvovirus 

infection often causes cell death of infected cells either by apoptosis or by various mechanisms 
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of non-apoptotic cell death. Novel mechanisms of non-apoptotic cell death induced by 

parvovirus infection have been revealed recently. MVM infection-induced cell death is mediated 

by NS1 interference with intracellular CKII signaling (54, 149, 150). On the other hand, 

parvovirus H-1 can induce a non-apoptotic cell death of glioma cells that is dependent on 

accumulation of cathepsin B/L (63). However, the mechanisms underlying parvovirus infection-

induced apoptosis have not been elucidated in detail. Apoptosis is defined mechanistically as 

three pathways of regulated cell death involving the sequential activation of caspases, the 

extrinsic pathway is involved in the engagement of particular “death” receptors (e.g., Fas) and 

through the formation of the death-inducing-signaling-complex (DISC) (9). The mitochondrion-

mediated (intrinsic) pathway is activated by “BH3-only” proteins such as tBid, Bad, Bim and 

PUMA; these activated proteins are subsequently translocated to the mitochondrial membrane, 

where they activate the proapoptotic proteins, Bax and Bak (103). Bax/Bak activation results in 

mitochondrial outer membrane permeabilization (MOMP), with consequent release of 

cytochrome c and other mitochondrial proteins with the consequent activation of caspase-9 (40). 

Activated caspase-8/-10 is also able to cleave Bid to tBid which activates Bax/Bak. In 

endoplasmic reticulum (ER)-stress-mediated apoptosis, caspase-12 is localized to the ER and 

activated by ER stress (141).  

We have shown in our studies that MVC infection induces an apoptotic cell death, 

represented by the presence of activated caspases in infected cells. Consistently, the specific 

pan-caspase inhibitor Q-VD completely blocked MVC infection-induced cell death. Moreover, 

the translocalization of the proapoptotic Bax to the mitochondrial outer membrane and 

consequently the time-dependent disruption of mitochondrial outer membrane potential 

indicated the activation of mitochondrion-mediated apoptosis during MVC infection. This 

mechanism is further supported by the extensive activation of caspases, especially the activated 

caspase-9, during MVC infection. We also detected the activation of the initiator caspase-8, -10 
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and -12; however, whether the extrinsic pathway or the ER-stress-mediated pathway is also 

involved in MVC infection-induced apoptosis to some extent warrants further investigation.      

Replication of the viral genome induces apoptosis of MVC-infected cells: In our 

results, expression of the non-structural protein NS1 and NP1 of MVC did not induce cell death 

in transfected cells, which contrasts with the function of the large nonstructural protein of other 

parvoviruses, e.g., the NS1 of MVM (44), H-1 (52) and B19V (58), the Rep78 of AAV2 (56), and 

the small nonstructural protein 11kDa of B19V (16). Thus, our results suggest that the non-

cytotoxic nature of the MVC NS1 is novel in parvoviruses, and might be a general feature of the 

NS1 among other members in the genus Bocavirus. 

Surprisingly, our studies showed that activation of caspases coincided with the 

replication of the viral gnome. The efficiency of replication correlated well with the level of 

caspase activation in cells transfected with pIMVC and its mutants (Fig. 3-3A&C). In the 

scenario in which replication of the MVC genome occurs either during MVC infection or in 

transfection of the replicative MVC constructs, apoptosis is induced in infected or transfected 

cells. However, when DNA replication is abolished either by knocking out NS1 expression or 

deleting both terminal repeats, transfection of these non-replicative mutants does not induce 

apoptosis. When DNA replication is significantly reduced either by knocking out the NP1 

expression or deleting the left half terminal repeats, transfection of these replication-reduced 

mutants induces a decreased degree of apoptosis. These observations strongly suggest that 

the apoptosis induced from transfection of the MVC infectious clone and its replicative 

derivatives is dependent on the replication of the MVC genome. We know that only expression 

of the viral proteins by transfection (Fig. 3-4) does not induce apoptosis; however, NS1 is 

essential for the replication of the viral genome. Thus, we cannot rule out an indirect role of the 

NS1 in inducing apoptosis during MVC infection.     

It is reasonable to speculate that a DNA damage response could be induced in WRD 

cells upon MVC infection or simply by replication of the viral genome. A DNA damage response 
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induced by AAV2 infection has been extensively explored (51,61,64). AAV2 DNA, which is 

single stranded with hairpin loops at both ends, can be sensed as abnormal DNA by the cell, 

triggering a DNA damage response independent of p53 (51). We have evidence that MVC 

infection induced a DNA damage response represented by phosphorylation of H2AX, p53 and 

ATM (data not shown). DNA damage response induces apoptosis when the damage is not 

repairable through upregulation of the proapoptotic proteins such as tBid, Fas, Bax or PUMA 

(5,35,54). It is also possible that an initial DNA damage response induced by the MVC genome 

incurs cell cycle arrest, and later, during viral DNA replication, accumulated MVC genomes 

trigger an irreversible DNA damage response that results in apoptotic cell death. On the other 

hand, the DNA damage response signals the DNA repair machinery, which may be helpful in 

replicating the single stranded genome of MVC. These novel mechanisms have never been 

studied in autonomous parvovirus infection and warrants further investigation. Therefore, we 

have provided an excellent model to study how the viral genome and its replication induce 

cellular responses that favor virus DNA replication at an early stage of infection and egress of 

progeny virus at a later stage of infection. The apoptosis induced by replication of the MVC 

genomes may be a common mechanism underlying parvovirus infection-induced apoptosis.   

Bocavirus MVC infection induces cell cycle arrest:  Parvovirus infection induces cell 

cycle arrest (30,33,42,47,65) most often at the S/G2-phase, which favors virus DNA replication. 

However, a G2/M-phase arrest is clearly observed as early as 6 hrs after B19V infection (42). 

Nevertheless, we have shown here that MVC infection incurs an apparent S-phase 

accumulation at early infection followed by an arrest of the G2/M phase in late infection (Fig. 3-

3-1). The DAPI staining in our study presents the authentic cell cycle of host cells. We quantified 

the MVC genomic copy number per cell at 48 hrs p.i. The genomic copy number per cell, which 

includes the replicative form (RF) DNA of MVC, was approximately 0.1 million, which equals 

0.55 billion bases. The human genome contains approximately 3.4 billion base pairs per cell 

(http://www.genome.gov/18016863). Thus, assuming the canine genome is similar in size to the 
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human genome, the DAPI staining contributed by the replicated MVC genomes and RF DNA is 

less than 8% of the total DAPI staining in an infected cell, which is not sufficient to change the 

pattern of the cell cycle represented by DAPI staining. Based on evidence showing the critical 

cell cycle proteins and inhibition of cell proliferation during MVC infection (Fig. 3-3-1C&D), we 

believe that the DAPI staining presents the authentic cell cycle of MVC-infected cells in our 

studies. 

Cell cycle arrest at the G2/M-phase often precedes the onset of apoptosis (22,31,63). 

We did not observe an apparent G2/M-phase arrest preceding apoptosis during MVC infection. 

In contrast, G2/M arrest by transfection of the NS1-knock-out mutant [pMVCNS1(-)] or UV-

irradiated MVC did not induce apoptosis (Fig. 3-3 and Fig. 3-6), and inhibition of apoptosis by Q-

VD did not release cell cycle arrest (data not shown). Thus, we believe that the cell cycle arrest 

and apoptosis of MVC infection are induced through independent pathways in parallel.  

In transfecting the mutant MVC infectious clones, as shown in Fig. 3-3, we tested cell 

cycle arrest at early time points of transfection. We were not able to detect any S-phase 

accumulation in transfection of these mutants than the infectious clone per se (data not shown). 

Nevertheless, we consistently observed the G2/M arrest at 48 hrs posttransfection in all the 

transfections of the mutant infectious clones that contain the viral terminal repeats. Thus, the S-

phase accumulation appears only when highly efficient replication occurs, e.g., transfection of 

the infectious clone or MVC infection. The S-phase has been emphasized to be important for 

parvovirus replication. For example, parvovirus H-1 protein synthesis coincides with cellular 

DNA synthesis (62), and MVM replication apparently requires mitotically active cells (28).  

Efficient replication of the MVC genome could possibly trigger the S-phase accumulation which 

loops back to further facilitate MVC DNA replication.  

The genome of MVC induces cell cycle arrest at G2/M: Using UV-MVC, we were able 

to show a significant level of G2/M arrest of UV-MVC-inoculated WRD cells as early as 18 hrs 

p.i. UV-MVC infection-induced cell cycle arrest at G2/M is consistent with previous reports of 
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other parvoviruses (41,51,53). The genome of AAV2 that contains an identical inverted terminal 

repeat at both ends has been shown to induce cell cycle arrest at the G2/M-phase (51). 

Infection of UV-irradiated B19V has been shown to induce a G2/M arrest as early as at 24 hrs 

p.i. (41). The G2/M-phase arrest by the MVC genome alone was also reproduced by 

transfection of the NS1 knock-out mutant of the MVC infectious clone. The MVC genome that 

lacks half of the left terminal repeat still induced a clear G2/M arrest by transfection. Only the 

MVC genome that does not contain both terminal repeats, the NSCap gene, lost its ability to 

induce cell cycle arrest. These observations suggest that the terminal repeats of the MVC 

genome, which form strong secondary structures (60), play an important role in inducing cell 

cycle arrest at the G2/M-phase during MVC infection. It may be true that the structure of the 

terminal repeats of parvoviruses acts as a perfect trigger to induce DNA damage response, 

which in turn, induces cell cycle arrest.              
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Chapter 4 

Role of erythropoietin receptor signaling in parvovirus B19 infection 

of human erythroid progenitor cells   

 

Abstract 

Human parvovirus B19 (B19V) infection is highly restricted to human erythroid progenitors. In 

this study, firstly, we have shown that erythroid progenitor cells ex vivo expanded from CD34+ 

hematopoietic cells (HSCs) in the absence of erythropoietin (Epo) [CD36+/Epo(-) EPCs)] did not 

support B19V replication, even though B19V did enter these cells. Epo exposure either prior to 

infection or after virus entry tuned the CD36+/Epo(-) EPCs to accommodate active B19V 

replication. Secondly, a Janus kinase 2 (Jak2) inhibitor, AG490, inhibited phosphorylation of 

Jak2 and thereafter phosphorylation of Epo receptor (EpoR), and subsequently abolished 

replication of B19V in ex vivo expanded erythroid progenitor cells in the presence of Epo 

(CD36+/Epo+ EPCs), at a final concentration of 5 µM. Moreover, expression of a constitutively 

active EpoR in CD36+/Epo(-) EPCs conferred an efficient B19V replication. Finally, we provide 

evidence that B19V replication in CD36+/Epo+ EPCs required Epo in a dose-dependent manner. 

In conclusion, we have demonstrated that the EpoR signaling is absolutely required for B19V 

infection of ex vivo expanded erythroid progenitor cells after initial virus entry, which in part 

explains the remarkable tropism of B19V infection to human erythroid progenitors.         
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Introduction 

 Parvovirus B19 (B19V) is pathogenic to humans. It is an autonomously replicating virus with a 

remarkable tropism to human erythroid progenitors of bone marrow (163, 199). Clinical 

manifestations of B19V infection vary among different health conditions. The most common one 

is erythema infectiosum. However, B19V infection often results in bone marrow failure in the 

following conditions. In patients with increased destruction of erythrocytes and a high turnover of 

erythrocytes (e.g., sickle cell disease patients), acute B19V infection can cause transient 

aplastic crisis. In immunocompromised patients, persistent B19V infection may develop 

manifestations as pure red-cell aplasia, a chronic anemia. B19V fetal infection, however, can 

cause severe anemia in fetus, resulting in non-immune hydrops fetalis and fetal death (2, 57).   

Erythropoiesis is the process whereby a fraction of primitive multipotent hematopoietic stem 

cells (CD34+) commit to the erythroid lineage, forming burst-forming units-erythroid (BFU-Es, 

earlier erythroid progenitors), colony-forming units-erythroid (CFU-Es, later erythroid 

progenitors), normoblasts, erythroblasts, reticulocytes, and ultimately the mature erythrocytes. 

B19V infection shows a remarkable tropism to human erythroid progenitors with the CD36+ 

marker of both BFU-Es and CFU-Es (163, 199). Clinical manifestations of B19V infection, as 

seen in aplastic crisis and pure red-cell aplasia, are due to the direct cytotoxicity of the virus 

infection (29), a direct outcome of the cell death of erythroid progenitors that are targets of B19V 

replication. A progressive host cell apoptosis has been observed during B19V infection of 

primary erythroid progenitor cells (195, 225), which is likely induced by the abundantly 

expressed 11kDa non-structural protein during infection (38). Erythroid progenitors in the 

tissues of fetuses who exhibited hydrops fetalis caused by B19V infection also were 

characteristic of apoptotic cell death (225).  

 Polyadenylation at the proximal site in the center of the B19V genome [(pA)p] precludes the 

inclusion of the capsid-coding open reading frame, and so alternative polyadenylation plays a 

key role in B19V capsid protein production (160, 226). We have recently shown that replication 



94 
 

of the B19V genome enhances read-through of the proximal polyadenylation site and the 

polyadenylation of B19V transcripts at the distal site. Therefore, replication of the B19V genome 

facilitates the generation of sufficient full-length transcripts to encode the viral capsid proteins 

(79).  

The remarkable tropism of B19V to human erythroid progenitors was believed to be due to the 

blood-group P antigen (Globoside), the cellular receptor for B19V (28). However, the recent 

finding of co-receptors (138, 218) suggests that erythrocyte P antigen is necessary, but not 

sufficient, for B19V binding and entry; the expression level of the P antigen does not correlate 

with the efficiency of viral binding (219). In addition to the native target cells for B19V infection in 

human bone marrow and fetal livers, a few cell lines (basically myeloblastoid cell line like 

UT7/Epo-S1 (135) and KU812Ep6 (127)) do support B19V replication but in a limited efficiency 

(23, 222). Recently, ex vivo expanded CD36+ erythroid progenitor cells (CD36+ EPCs) have 

been proven to be highly permissive to B19V infection and support active B19V replication (at 

least 100-fold increase of the B19V genome) (195, 206). All the myeloblastoid cell line cells and 

primary CD36+ EPCs require Epo to sustain proliferation, suggesting that Epo is required for 

B19V infection. Epo has been confirmed to be required for susceptibility of human bone marrow 

cells to B19V infection (206), from which a conclusion was drawn that the target cells of B19V 

are in erythroid lineage from BFU-Es to erythroblasts, with susceptibility to B19V increasing 

along differentiation (206). Thus, the role of Epo in B19V permissiveness was thought mainly to 

differentiate bone marrow hematopoietic stem cells (HSCs) to the stage of erythroid progenitor. 

In this study, we have shown a direct role of Epo and its pathway in supporting replication of the 

B19V genome. We prepared CD36+ EPCs by ex vivo expanding CD34+   HSCs in two 

formulated media with or without Epo. In the absence of Epo, the CD36+ EPCs expanded in 

StemCell medium (Tab. 4-1), namely CD36+/Epo(-) EPCs, were not permissive to B19V 

infection, though the virus entered the cells. However, upon addition of Epo either prior to or 

after virus infection, Epo-pulsed CD36+/Epo(-) EPCs became permissive to B19V replication. 
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Moreover, inhibiting EpoR signaling, either by the Jak2 inhibitor AG490 or Jak2 shRNA, 

decreased B19V replication in CD36+ EPCs expanded in Wong medium (Tab. 4-1) with Epo 

(CD36+/Epo+ EPCs). More importantly, expression of a constitutively active EpoR in 

CD36+/Epo(-) EPCs rescued B19V replication to a level comparable to that in CD36+/Epo+ 

EPCs. Thus, our study elucidates an indispensible role of Epo and its pathway in B19V 

replication, which was not appreciated previously, and can partially illuminate why B19V prefers 

to propagate in cells which take Epo as an essence to proliferate.                 

  

 

Materials and Methods 

Generation of CD36+ EPCs: CD34+ HSCs were purchased from National Disease Research 

Interchange (NDRI), Philadelphia, PA. One million cells were cultured in two different expansion 

media as described in Table 4-1. CD34+ HSCs were ex vivo expanded in Wong medium from 

day 0 and stored in liquid nitrogen at day 4 as described previously (14,45). Large numbers of 

CD36+ EPCs were expanded in StemCell medium continuously until day 6 or day 8 for 

purification, and day 8 for B19V infection where indicated. 

 

Construction and production of retroviral and lentiviral vectors:  

 Retroviral vector expressing Epo-R(R129C): Plasmid pMSCV-EpoR(R129C)-IRES-GFP was 

constructed by inserting EpoR(R129C) gene (13) into BamH-Xba-digested pMSCV-MCS-IRES-

GFP-WRE vector. Retroviruses (Retro-EpoR and Retro-GFP) were produced by transfecting 

pMSCV-EpoR(R129C)-IRES-GFP and pMSCV-IRES-GFP, respectively, with pCMV-VSVG in 

GP293 cells (Clontech). Concentration of retroviral vectors was carried out following the 

manufacturer’s instructions (Clontech, cat. No.:PT3132-1).  

 Lentiviral vectors expressing shRNA: We obtained pLKO.1 cloning vector and pLKO-

Scrambe-shRNA vector from Addgene Inc. (Cambridge, MA). The puromycin resistance gene in 
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pLKO vectors was replaced by the GFP ORF from pC1GFP (Clontech) through BamHI/KpnI 

sites, resulting in pLKO-GFP and pLKO-GFP-Scramble-shRNA, respectively. The validated 

JAK2 shRNA1 sequence (TRCN0000003181, NM_004972, Sigma) was cloned into pLKO-GFP 

through AgeI and EcoRI sites, which resulted in pLKO-GFP-Jak2-shRNA. Lentivirus was 

generated and concentrated following Addgene’s instructions (http://www.addgene.org/plko).  

         

Purification of CD36+ EPCs cultured in StemCell medium: 3× 106 of CD34+ HSCs were 

cultured in StemCell medium. At day 6 or 8, approximately 2-3 × 107 expanded cells were spun 

down at 300 g for 10 min, resuspended in 1 ml of autoMACS rinsing buffer (Miltenyi Biotec, 

Auburn, CA), and incubated with mouse anti-human CD36 antibody (BD Biosciences, 106 

cells/μl) for 15 min at 4 °C. Then cells were spun down at 2, 250 rpm for 2 min and washed 

three times with the autoMACS rinsing buffer. After incubation with anti-mouse IgM magnetic 

microbeads (Miltenyi Biotec) for 15 min at 4 °C, cells were loaded onto MS column and labeled 

cells were eluted following the manufacturer’s instructions. Purified CD36+ EPCs expanded in 

the absence of Epo were named as CD36+/Epo(-) EPCs.  

 

Virus and infection:    

We obtained B19V viremic plasma samples, P20 (14) and P32, from ViraCor Laboratories 

(Lee's Summit, MO), and quantified for B19V genomic copies [1012 genomic copies (gc)/ml] as 

previously described (14). Infection was performed at a multiplicity of infection (MOI) of 5,000 

genomic copies (gc)/cell [approximately 1 fluorescent foci-forming unit (fffu)/cell]. Except for Fig. 

4-1, for which P20 was used, all other figures were generated by using P32 for consistency.        

For retroviral transduction, concentrated retrovirus was added to CD36+/Epo(-) EPCs purified at 

day 6 of culture at an MOI of 4 fffu/cell. B19V infection was carried out at 48 hrs 

posttransduction (p.t.).   

 

http://www.addgene.org/plko�
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Viral entry assay and replication quantification: For Viral entry assay (2), cells were infected 

with B19V at an MOI of 5,000 gc/cell. At 2 hrs after incubation with the virus, the cells were 

washed with AMEM (Alpha Modification of Eagles Medium, Mediatech, Manassas, VA), and 

spun down at 2,200 rpm for 3 min. The cell pellet was then resuspended in 0.5 million cells per 

100 μl of trypsin/versene (0.25% trypin in 20mM EDTA buffer) for 5 min at 37 ºC. Total DNA 

was extracted following instructions of the Blood DNA Mini Kit (Qiagen) with modification. 

Extracted DNA was then used to quantify B19V genomic copies by quantitative real time PCR 

(qPCR) as described previously (15). The replicated B19V genome was extracted as described 

above and quantified by qPCR at 48 hrs p.i., except Fig. 4-3C at 24 hrs p.i. 

Southern blot analysis: At 48 hrs p.i., cells were harvested for Hirt DNA extraction, and Hirt 

DNA samples were analyzed by Southern blot as described previously (14,15). Blots were 

exposed to a GE phosphor imaging screen, and quantified by a phosphor imager (Storm 856) 

using Image Quant TL software v2005 (GE Healthcare). 

 

Reverse transcription (RT) and quantitative real time PCR (RT-qPCR): We extracted mRNA 

using TurboCapture mRNA kit (Qiagen) following manufacturer’s instructions. We then 

performed reverse transcription directly in the TurboCapture tubes using random hexamers 

(Promega) and MMLV-RT (Invitrogen). A multiplex RT-qPCR was performed to detect B19V 

VP2-encoding mRNA and B19V mRNA spliced from D1 donor site to A1-2 acceptor site (D1/A1-

2-spliced mRNA) (14), with β-actin mRNA serving as an internal control as previously reported 

(14,15).   

 

Immunofluorescence: Infected cells were cytocentrifuged at 1, 500 rpm for 5 min and fixed in 

a mixture of acetone and methanol (1:1) at - 20°C for 15 min. The staining was performed as 

previously described using anti-B19V capsid (clone 521-5D) and FITC- conjugated anti-mouse 

IgG (15).  
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Western blot analysis: Cell lysates were prepared at 48 hrs post-treatment, and used for 

Western blotting analysis as previously described (34).   

 

Cell viability assay: We examined cell viability using CellTiter-Glo® kit (Promega) to determine 

the number of viable cells in culture based on quantifying the ATP presence following 

manufacturer’s instructions.   

 

Flow cytometry analysis:   

For surface staining, 105 cells were incubated with the first antibody at 1: 100 dilution in a 

volume of 100 µl of PBS containing 2% FCS (PBS-FCS) for 30 min at room temperature (RT). 

Washed twice with PBS-FCS, cells were incubated with FITC-conjugated secondary antibody at 

a dilution of 1: 100 for 30 min at RT. After washing, the cells were fixed in 1% paraformaldehyde 

before analysis. The intracellular staining was basically performed as previously described (7).  

   

Results 

CD36+ EPCs differentiated from CD34+ HSCs in the absence of Epo are not permissive to 

B19V infection.   

To distinguish the role of Epo in differentiating HSCs and supporting B19V replication, we 

generated erythroid progenitor cells, which possess erythroid progenitor marker CD36 (60, 154) 

through differentiating human bone marrow derived-HSCs (CD34+ cells) in two expansion media. 

They contain different combination of cytokines as described in Tab. 4-1.   

 At day 8 in culture, cells in different expansion media were analyzed by flow cytometry 

with antibodies to erythroid markers (CD36, GPA, EpoR, and CD71), B19V receptor (Globoside) 

and co-receptors (CD49e and KU80), and the CD41 megakaryoblastic marker (214) as well as 

the CD34 HSC marker for specific lineage differentiation of the cells. The ex vivo expanded cells 
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both in Wong and StemCell media expressed CD36 marker at 99.4% and 41.5%, respectively 

(Fig. 4-1A). Expanded cells in StemCell medium (without Epo) retained a considerable level of 

CD34 maker at 23.3%, and a low level of CD41 marker at 7.4% (Fig. 4-1A), indicating their 

lineage differentiation toward erythroid progenitor cells. CD71, the transferrin receptor, was 

expressed at levels of 96.8%  
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Table 4-1. Formula of expansion media for CD36+ EPCs.  

Serum-free expansion media (SFEM) and BIT9500 (BIT) were obtained from StemCell 

Technologies Inc. (Vancouver, BC, Canada). All the cytokines were purchased from Invitrogen 

except for the Epo from Amgen. SCF=Stem cell factor; IL-6=Interleukin 6; IL-3=Interleukin 3; Flt-

3-L=Flt-3 ligand; TPO=Thrombopoietin; Epo=Erythropoietin. Wong medium also contains 900 

ng/ml of Fe2+, 90 ng/ml of Fe3+ and 1μM of Hydrocortisone as described previously (79, 222).         
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Name of medium StemCell Wong 

Serum-free base: SFEM BIT in AMEM 

Cytokines (ng/ml):   

SCF 100 100 

IL-6 20 x 

IL-3 20 5 

Flt-3-L 20 x 

TPO 50 x 

Epo x 3      (unit/ml) 
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Figure 4-1. CD36+ EPCs expanded in StemCell medium without Epo are not permissive to 

B19V infection. 

CD34+ HSCs were cultured in StemCell medium shown in Tabel 1. (A) At day 8 of culture, the 

indicated surface markers of cells from different cultures were analyzed and presented in 

histogram. For surface staining, antibodies against cell surface antigen CD34, CD36, CD41, 

GPA, CD71 and CD49e (all obtained from BD Biosciences, San Jose, CA), and antibodies 

against globoside (Matreya, Pleasant Gap, PA), KU80 (Calbiochem, San Diego, CA) and EpoR 

(Abcam, Cambridge, MA) were used to characterize cell phenotype. Numbers in each panel 

indicate the percentage of positive population. A representative result from two independent 

experiments is shown. (B) At day 8 of culture, B19V infection was carried out as described in 

Materials and Methods. Immunofluorescence staining was performed at 48 hrs p.i. using 

antibody against B19V capsid antibody. DAPI was used to stain nucleus. Images were acquired 

by an Eclipse C1 Plus confocal microscope (Nikon) at a magnification of x 40. 
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and 16.7% (Fig. 4-1A), respectively, on cells expanded in Wong and StemCell media. Cells 

gained the GPA (CD235a) marker at a high extent, 97.2%, on CD36+ EPCs expanded in Wong 

medium, while only 30.0% on cells expanded in StemCell medium (Fig. 4-1A). Cells expanded 

in both media expressed a high level of globoside and CD49e, the primary receptor and co-

receptor for B19V infection (4,44), as well as the EpoR (Fig. 4-1A). Interestingly, KU80, which 

was proposed as a co-receptor of B19V (24), was expressed on the most of cells (65.3%) 

expanded in StemCell medium, but only on 4.6% of the cells expanded in Wong medium (Fig. 

4-1A).   

 We then infected these two types of CD36+ EPCs with B19V in their respective media for 

two days. B19V infectivity was examined by immunofluorenscence with anti-B19V capsid 

antibody (Fig. 4-1B). Surprisingly, CD36+ EPCs expanded in StemCell medium, which did not 

contain Epo, were not permissive to B19V infection as shown by negative anti-capsid staining. 

Conversely, CD36+ EPCs expanded in Wong medium, which contained Epo at 3 units/ml, 

showed more than 80% of cells positive with anti-capsid staining, indicating an effective 

infection (222). This result suggests that the committed erythroid progenitor cells cultured in the 

absence of Epo are not permissive to B19V infection, and Epo is required not only for 

differentiation of erythroid progenitor cells but also may be necessary for B19V infection of 

erythroid progenitor cells.   

 

Epo confers permissiveness of B19V infection to CD36+/Epo(-) EPCs by turning on viral 

genome replication. 

We next chose to purify CD36+ EPCs from the cells expanded in StemCell medium. Purified 

cells, named as CD36+/Epo(-) EPCs, were analyzed by flow cytometry, expressing uniform 

erythroid progenitor markers, i.e., CD36+ at 87.5%, GPA+ at 88.2% and EpoR+ at 84.5%, as well 

as high levels of B19V receptor (Globoside+ at 87.9%) and co-receptors (CD49e+ at 39.4% and 

KU80+ at 85.7%). Interestingly, these purified cells were mostly (82.5%) both CD34+ and CD36+ 
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(Fig. 4-2B, 0 hr), indicating they were at the stage of BFU-E (154). Similar to unpurified cells 

expanded in StemCell medium (Fig. 4-1B), purified CD36+/Epo(-) EPCs were not susceptible to 

B19V infection as shown by negative anti-capsid staining and undetectable B19V mRNAs (Fig. 

4-2C, D&E). 

To examine whether Epo is absolutely required for B19V infection, we pretreated purified 

CD36+/Epo(-) EPCs with Epo at 3 unit/ml for 2 hrs and overnight (approximately 16 hrs), 

respectively, followed by B19V infection. Interestingly, cells treated with Epo for 2 hrs or 

overnight clearly became susceptible to B19V infection to some extent (Fig. 4-2C, D&E). With 

overnight Epo treatment, approximately 10% of purified CD36+/Epo(-) EPCs expressed B19V 

capsid, as well as B19V VP2-encoding mRNA (at a level of 0.7% of β-actin mRNA copy) and 

D1/A1-2-spliced mRNA (at a level of 0.4% of β-actin mRNA copy), respectively. As 

demonstrated by virus entry assay and DNA replication quantification, while purified 

CD36+/Epo(-) EPCs without Epo treatment did not show any increase of the B19V genome, Epo 

treatment for 2 hrs and overnight facilitated replication of the B19V genome for approximately 

2.5-fod and 13-fold, respectively (Fig. 4-3A). As control, CD36+/Epo+ EPCs supported 

approximately 93-fold increase of entered B19V genome. Interestingly, we also  
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Figure 4-2. Epo pulse confers B19V viral protein expression in CD36+/Epo(-) EPCs. 

Purified CD36+/Epo(-) EPCs were pulsed with Epo (3 U/ml) for different length of time. (A) 

Indicated surface markers were determined on cells with different treatments. (B) Double 

staining of CD34 and CD36 markers on cells with different Epo treatments. (C) Cells were 

treated with Epo as indicated, and infected with B19V. At 48 hrs p.i., immunofluorescence 

staining of B19V capsid was performed with costaining of DAPI to show nucleus. Images were 

acquired by an Eclipse C1 Plus confocal microscope (Nikon) at a magnification of x 40. (D&E) 

At 48 hrs p.i., VP2-encoding mRNA (D) and D1/A1-2-spliced mRNA (E) were quantified by 

multiplex RT-qPCR and presented as copy number per β-actin mRNA (internal control) with 

average and standard deviation as shown.    
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observed that CD36+/Epo+ EPCs allowed B19V entry to the most extent, approximately 17 times 

more than that into purified CD36+/Epo(-) EPCs without Epo treatment, and approximately 5-8 

times more than that into the cells treated with Epo for either 2 hrs or overnight (Fig. 4-3A). This 

indicates that B19V virus entry of CD36+ EPCs is affected by Epo stimulation.   

Cell surface markers on purified CD36+/Epo(-) EPCs treated with Epo for 2 hrs and overnight 

revealed slight shift toward the profile presented on CD36+/Epo+ EPCs, especially the CD34, 

CD41 and CD71 markers (Fig. 4-2A). This result indicates that Epo treatment does differentiate 

the cells from BFU-E- to CFU-E-type cells which loose both CD34 and CD41 markers (154).   

Taken together, we demonstrated that susceptibility of CD36+/Epo(-) EPCs to B19V infection is 

not due to the blockage of viral entry; instead, these cells do not facilitate replication of the B19V 

genome, and Epo treatment turned on B19V replication in these cells. As markers of Epo 

treatment (18), increased levels of phosphorylated Jak2 (pJak2) and phosphorylated Epo 

receptor (pEpoR) were detected in cells treated with Epo for 2 hrs and overnight (Fig. 4-3B) 

compared with cells without Epo treatment. Thus our results suggest that the Epo/EpoR 

signaling is likely essential to B19V replication. 

To rule out the potential interference from viral entry, we performed B19V entry assay prior to 

Epo stimulation. In such a condition, at the time of Epo treatment, the cells in different groups 

have exactly the same amount of entered viral genome. Again, CD36+/Epo+ EPCs  
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Figure 4-3. Epo stimulation is a switch of B19V replication in CD36+/Epo(-) EPCs.  

(A&B) We pulsed purified CD36+/Epo(-) EPCs with Epo (3 U/ml) for different lengths of time 

prior to B19V infection. CD36+/Epo+ EPCs expanded in Wong medium were used as control. (A) 

B19V entry and DNA replication were determined as described in Materials and Methods. The 

number in the panel indicated the fold difference between replication and entry. The “No Epo” 

group bars were enlarged to better present the results with scale. (B) We determined the 

phosphorylation of EpoR and Jak2 by flow cytometry in cells with different treatment 

immediately before B19V infection. We used anti-pEpoR (Tyr 456) (Santa Cruz Biotech, Inc., 

Santa Cruz, CA), anti-pJak2 (Tyr 1007) (Genscript, Piscataway, NJ ) and anti-B19V NS1 (8) for 

staining pJak2, pEpoR and B19V NS1, respectively. We used Cy5-conjugated anti-mouse or 

rabbit secondary antibodies for intracellular staining. Quantification of Mean Fluorescence 

Intensity (MFI) with the reference line indicating the background is shown in bar figures to the 

right in panel B. 

(C, D&E) We recovered purified CD36+/Epo(-) EPCs in StemCell medium for 1 hr, then we 

infected cells with B19V. While one fifth of the cells were used to quantify viral entry, the other 

four-fifths of the cells were evenly divided into four groups for Epo treatment for 0, 2, 8 and 24 

hrs, respectively. CD36+/Epo+ EPCs expanded in Wong medium were used as control. B19V 

entry and replication were quantified by qPCR and presented as B19V genome copy number 

per cell (gc/cell). (C). B19V VP2-encoding mRNA (D) and D1/A1-2-spliced mRNA (E) were 

quantified by RT-qPCR and presented as copy number per β-actin mRNA (internal control).  

Average and standard deviation are shown in panel A, C, D and E, and were calculated from at 

least three independent experiments. 
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were used as control. While no replication was observed at 24 hrs p.i. without Epo stimulation, 

Epo treatment for 2, 8 and 24 hrs increased B19V DNA replication 2.2-, 3.9- and 8.3-fold of 

entered viral genome, respectively (Fig. 4-3C). As control, CD36+/Epo+ EPCs replicated viral 

genome for approximately 11-fold of the entered B19V genome at 24 hrs p.i. In terms of the 

B19V mRNAs, no VP2-encoding mRNA and D1/A1-2-spliced mRNA were detected from 

infected cells without Epo stimulation (Fig. 4-3D&E). Increasing amounts of Epo pulse conferred 

increasingly detectable levels of both VP2-encoding and D1/A1-2-spliced mRNAs from infected 

CD36+/Epo(-) EPCs, though the level was still lower than that in CD36+/Epo(+) EPCs. 

Thus, our results indicate a pivotal role of Epo in B19V replication. Epo is absolutely required to 

turn on replication of B19V genome and thus confers the permissiveness of CD36+/Epo(-) EPCs 

to B19V infection.               

 

Inhibiting phosphorylation of Jak2 blocks B19V replication in CD36+/Epo+ EPCs.  

 Epo ligation triggers EpoR dimerization and in turn phosphorylates Jak2 that is 

associated with EpoR (115). Phosphorylated Jak2 then phosphorylates tyrosine residues in the 

cytoplasmic tail of EpoR. We decided to investigate whether this phosphorylated Jak2 (pJak2)-

mediated Epo/EpoR signaling is involved in facilitating B19V replication. To this end, we used a 

Jak2-specific inhibitor, AG490 (125), to inhibit Jak2 phosphorylation. The inhibitory effect of 

AG490 was examined by detecting pJak2 and phosphorylated EpoR (pEpoR) as shown (Fig. 4-

4A). At 2 and 5 µM, AG490 effectively decreased the phosphorylation of both  
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Figure 4-4. Jak2 inhibitor abolishes B19V replication in CD36+/Epo+ EPCs.  

CD36+/Epo+ EPCs at day 7 were treated with inhibitors at concentrations as indicated. Twenty 

four hours later (day 8), inhibitor-treated cells were infected with B19V. (A) At 48 hrs post-

treatment, a part of the cells were harvested and analyzed by Western blot using antibodies as 

indicated. Quantification of bands on blots is shown as relative levels to DMSO control (0.5% 

DMSO). (B) The cytotoxicity of inhibitor treatment was evaluated using CellTiter-Glo® kit at 48 

hrs post-treatment. The luminescence readings are normalized by the value of cell control group 

(Non-treated). (C) The level of cell death of cells treated with indicated concentrations of AG490 

was evaluated by AnnexinV/PI double staining. The numbers indicate the percentage of cells in 

each gate versus parental population. In the bottom panel, AG490-treated cells were stained 

with DAPI to show the cell cycle pattern. The numbers indicated percentage of cells in G0/G1, S 

and G2/M phase respectively. (D) At 48 hrs p.i., Hirt DNA was extracted from infected cells and 

analyzed by Southern Blot. Double replication form (dRF), replication form (RF) and single-

stranded DNA (ssDNA) of B19V are indicated. At 48 hrs p.i., mRNAs encoding VP2 (E) and 

spiced from D1 to A1-2 sites (F) were quantified by RT-qPCR and presented as copy number 

per β-actin mRNA (as internal control). (G) B19V entry and replication were quantified by qPCR 

as described in Materials and Methods and presented as B19V genome copy number per cell. 

Average and standard deviation are shown in panel A, B, D, E and F were calculated from at 

least three independent experiments.  
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Jak2 and EpoR in a dose-dependent manner. Particularly, at 5 µM, pJak2 and pEpoR were 

decreased to approximately 20% and 30% of those in the DMSO control, respectively. The 

cytotoxicity of AG490 in CD36+/Epo+ EPCs was monitored by using the Titer-Glo™ kit, 

AnnexinV/PI and DAPI staining (Fig. 4-4B&C). No significant retardation of cell viability was 

observed at either concentration. However, at 2 μM, AG490 inhibited B19V infection significantly 

with a decrease of approximately 20-fold in B19V DNA replication as shown by Southern blot 

analysis (Fig. 4-4D, lane 3 vs. 2) as well as expression of B19V VP2-encodig mRNA and D1/A1-

2-spliced mRNA (Fig. 4-4E&F). Strikingly, using AG490 at 5 μM, both B19V DNA replication and 

expression of VP2-encoding and D1/A1-2-spliced mRNAs were undetectable (Fig. 4-4D, lane 4, 

and Fig. 4-4E, F&G), indicating that B19V infection of CD36+/Epo+ EPCs is sensitive to AG490 

treatment. As control, AG490 treatment did not affect B19V entry to the cells (Fig. 4-4G).  

To confirm the role of Jak2, we next sought to use Jak2-specifc shRNA to knock down Jak2 

expression. We generated a lentivirus expressing shRNA to Jak2 (Lenti-GFP-Jak2-shRNA) and 

a lentivirus expressing scramble shRNA (Lenti-GFP-Scramble-shRNA). CD36+/Epo+ EPCs 

were pretreated with lentiviruses two days prior to B19V infection. At 2 days p.i., GFP-

expressing cells were gated and analyzed by flow cytometry using anti-Jak2 and anti-B19V NS1 

staining. In agreement with the decreased level of Jak2, approximately 50% knock-down, in 

GFP-Jak2-shRNA-expressing cells, the level of anti-B19V NS1 was significantly decreased 

approximately 50%, compared to that in GFP-Scramble-shRNA-expressing cells (Fig. 4-5A). 

Replication of the B19V genome, as  
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Figure 4-5. Jak2 shRNA reduces B19V infection of CD36+/Epo+ EPCs.  

CD36+/Epo+ EPCs at day 6 were transduced with Lenti-GFP-Jak2-shRNA and Lenti-GFP-

Scramble-shRNA, respectively. At 48 hrs p.t., transduced cells were infected with B19V. (A) At 

48 hrs p.i., cells were harvested and stained intracellularly for antigen as indicated. GFP-

expressing cells were selectively gated to quantify expression levels of Jak2 and B19V NS1. 

The percentage of B19V NS1-expressing cells in each group is shown in the histograms, and 

the MFI of Jak2 expression was quantified and presented in the bar figure to the right in panel A. 

(B&C) At 48 hrs p.i., cells were harvested for mRNA isolation using the Turbo mRNA kit as 

described in section Materials and Methods. RT-qPCR was carried out to determine B19V VP2-

encoding mRNA/β-actin mRNA (B) and B19V D1/A1-2-spliced mRNA/β-actin mRNA (C). 

Average and standard deviation are shown in panel B and C, and were calculated from at least 

three independent experiments. 
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assayed by the levels of B19V VP2-encoding mRNA and D1/A1-2-spliced mRNA, decreased by 

approximately 3-fold in cells expressing GFP-Jak2-shRNA (Fig. 4-5B&C), confirming the 

important role of Jak2 in facilitating B19V infection of CD36+/Epo+ EPCs.  

 Taken together, these results indicate that the Epo/EpoR/pJak2/pEpoR signaling 

pathway is crucial in facilitating B19V infection of CD36+/Epo+ EPCs. 

 

Expression of constitutively active EpoR activates B19V infection of CD36+/Epo(-) EPCs.  

 To further confirm the role of EpoR signaling pathway during B19V infection, we 

generated a retroviral vector that expresses a constitutively active EpoR gene (75). Purified 

CD36+/Epo(-) EPCs were transduced with Retro-EpoR or Retro-GFP (as control) 48 hrs prior to 

B19V infection. At 48 hrs p.i., GFP-expressing cells (approximately 50%) were gated and 

analyzed by flow cytometry using intracellular staining of anti-pEpoR, anti-pJak2 and anti-B19V 

NS1 antibodies, respectively. Retro-EpoR-transduced cells successfully expressed 

constitutively activated Epo-R, as shown by an increased level of anti-pEpoR staining, which 

presumably was phosphorylated by the active Jak2 as detected, compared to those staining in 

Retro-GFP-transduced cells (Fig. 4-6A). Correspondingly, Retro-EpoR-transduced cells showed 

a higher level of anti-B19V NS1 staining by approximately 40%, compared to nearly negative 

staining of anti-B19V NS1 (1.1%) in Retro-GFP-transduced cells (Fig. 4-6A). Levels of B19V 

mRNAs and replication of the B19V  
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Figure 4-6. Retroviral transduction of constitutively active EpoR confers CD36+/Epo(-) 

EPCs permissive to B19V infection.    

Purified CD36+/Epo(-) EPCs were transduced with GFP control retrovirus (Retro-GFP) and 

constitutively active EpoR-expressing retrovirus (Retro-EpoR). At 48 hrs p.t., cells were infected 

with B19V. (A) At 48 hrs p.i., infected cells were harvested and stained intracellularly for 

antigens as indicated. GFP-expressing cells were selectively gated to quantify expression levels 

of pJak2, pEpoR and B19V NS1. The percentage of B19V NS1-expressing cells is shown in 

histograms. The MFI of pEpoR and pJak2 expression was quantified and presented in the bar 

figure to the right in panel A. (B&C) At 48 hrs p.i., cells were harvested for mRNA isolation. RT-

qPCR was carried out to determine B19V VP2-encoding mRNA/β-actin mRNA (B) and B19V 

D1/A1-2-spliced mRNA/β-actin mRNA (C), respectively. (D) B19V entry and genome replication 

levels in cells with indicated treatment were quantified by qPCR and presented as genomic copy 

number per cell (gc/cell). Fold changes between replication and virus entry are shown. The bars 

of “Retro-GFP” group are enlarged to scale for better presentation. Average and standard 

deviation are shown in panel B, C and D, and were calculated from at least three independent 

experiments. (E) Several key cell surface markers of erythroid progenitors were stained as 

indicated at 48 hrs p.t., prior to B19V infection. GFP-expressing cells were selectively gated in 

Retro-GFP and Retro-EpoR groups, respectively. Cy5-conjugated secondary antibodies were 

used for flow cytometry analysis to generate this panel. A representative result from two 

independent experiments is shown.  

Two groups of cells, CD36+/Epo(-) EPCs treated with Epo overnight (Epo o/n) and CD36+/Epo+ 

EPCs, were set up as controls.   
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genome were further confirmed to be significantly high in Retro-EpoR-transduced cells, but 

were not detectable in the control Retro-GFP-transduced cells (Fig. 4-6B, C&D).  

 Expression of a constitutively active EpoR differentiated transduced cells in erythroid 

lineage toward CD36+/Epo+ EPCs as shown by the profile of these major cell surface markers, 

which typically include the decreased level of CD34 and increased levels of GPA and CD71 (Fig. 

4-6E). In consistence, B19V entry was increased approximately 6.2-fold in Retro-EpoR-

transduced cells; however, B19V genome in these cells was replicated by approximately 86-fold 

(Fig. 4-6D), suggesting that expression of the constitutively active EpoR accommodates 

replication of the B19V genome. Thus, we have provided direct evidence that expression of the 

constitutively active EpoR renders B19V-nonpermisisve CD36+/Epo(-) EPCs to be permissive, 

confirming the role of EpoR/Jak2 signaling in B19V infection of erythroid progenitor cells.    

 

B19V infection of CD36+/Epo+ EPCs responds to Epo concentration.  

We next sought to confirm the role of Epo in B19V infection of CD36+/Epo+ EPCs expanded in 

Wong medium. To this end, we cultured cells from day 4 stock in Wong medium but with various 

concentrations of Epo. These cells were infected at day 8 and analyzed at 48 hrs p.i. We found 

that, with the increase of Epo concentration from 0.1, 0.5 to 2 U/ml, NS1-expressing cells were 

increased from approximately 12, 30 to 50% as determined by flow cytometry using anti-NS1 

staining (Fig. 4-7A). No significant difference was observed in groups with 2 and 10 U/ml of Epo. 

Consequently, phosphorylation of both EpoR and Jak2  
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Figure 4-7. B19V infection of CD36+/Epo+ EPCs responds to the Epo concentration in 

culture.  

CD34+ HSCs were ex vivo expanded in Wong expansion medium from day 0 and stored at day 

4. From day 4 stock in liquid nitrogen, thawed cells were cultured in Wong medium containing 

Epo at concentrations as indicated until day 8 when B19V infection was carried out. (A) At 48 

hrs p.i., cells were harvested and stained for antigens intracellularly as indicated. The 

percentage of B19V NS1-expressing cells is shown. MFI of the anti-pEpoR and anti-pJak2 

staining was quantified and is presented in the bar figures to the right in panel A. (B&C) At 48 

hrs p.i., cells were harvested for mRNA isolation. RT-qPCR was carried out to determine the 

level of B19V VP2-encoding mRNA per β-actin mRNA (B) and the level of B19V D1/A1-2-

spliced mRNA per β-actin mRNA (C), respectively. (D) At 48 hrs p.i., total DNA was extracted 

from infected cells. The B19V genomic copy numbers in each group were determined and 

expressed as gc/cell. Levels of virus entry were determined as described in Materials and 

Methods, and fold changes between replication and virus entry are shown. Average and 

standard deviation are shown in panel B, C and D, and were calculated from at least three 

independent experiments. 
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was increased proportionally in groups with Epo from 0.1 to 0.5 and 2 U/ml, but remained at a 

similar level between groups with Epo of 2 and 10 U/ml (Fig. 4-7A). In addition, we observed an 

increase of B19V infection in these groups with Epo from 0.1 to 0.5 and 2 U/ml as confirmed by 

the levels of B19V VP2-encoding mRNA, D1/A1-2-spliced mRNA, and B19V DNA replication 

(Fig. 4-7B, C&D). However, B19V virus entry to cells in all groups with different Epo 

concentrations was determined to be similar (Fig. 4-7D). Collectively, we have shown that the 

level of B19V infection in CD36+/Epo+ EPCs is dependent on Epo concentration, again 

confirming the role of Epo in B19V replication.   

 

Discussion 

B19V is highly tropic to human erythroid progenitor cells, which was previously thought to be 

simply due to the presence of the P antigen (Globoside), the B19V receptor (28). We have 

recently demonstrated that replication of B19V genome is a limiting step during B19V infection 

of erythroid progenitors (79). Expression of B19V capsid-encoding mRNA requires reading 

through the proximal polyadenylation site, which is affiliated by replication of the genome. In this 

study, we provide strong evidence showing that the EpoR signaling pathway is important for 

B19V replication in erythroid progenitor cells. Our study thus further supports the hypothesis 

that the limiting step of B19V infection is the replication of the B19V genome rather than the 

virus entry.  

Erythropoiesis and B19V infection: Previous study has shown that Epo is essential to 

differentiate human hematopoietic stem cells to be susceptible to B19V (206). But the role of 

Epo in B19V infection was thought to be only for directing differentiation of the hematopoietic 

stem cells to erythroid progenitor cells at the stages of BFU-E, CFU-E and erythroblasts (206).  

Erythropoiesis is a regulated process whereby hematopoietic progenitor cells give rise to 

committed erythroid progenitor cells, differentiate and proliferate to mature red blood cells. It 

includes the Epo-independent early phase of erythropoiesis, the commitment of pluripotent 
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hematopoietic stem cells to erythroid lineage, and the Epo-dependent late phase that facilitates 

terminal maturation of precursors into circulation enucleated erythrocytes. The commitment of 

hematopoietic stem cells to both early and late erythroid progenitors (BFU-E and CFU-E) is 

independent of Epo (152, 164, 223, 224). Stem cell factor (SCF) (55, 140, 164, 224), interleukin-

6 (IL-6) (202) and IL-3 (164) have been reported to stimulate early erythropoiesis or generation 

of erythroid progenitors. In contrast, Epo is a late-acting factor of erythropoiesis, which is 

erythroid-lineage-specific and supports proliferation and maturation of committed erythroid 

progenitors (152). Epo acts on committed erythroid progenitors to stimulate the later phase of 

erythroid differentiation (106). Interestingly, Epo-independent erythrocyte production also has 

been reported (202).  

In this study, we used key markers of erythroid progenitors (70), i.e., CD36, CD71, EpoR and 

GPA, and B19V receptors to profile CD36+ EPCs expanded in media with or without Epo. CD36 

is detected early on erythroid progenitors, and has been used to monitor hematopoietic 

differentiation (60, 69, 142, 154). EpoR is the cellular receptor for Epo presented on erythroid 

progenitors; it appears on erythroid progenitors at BFU-E stage and highly expresses on the 

most Epo-sensitive CFU-Es (70). Similar to EpoR, CD71, transferrin receptor, is expressed on 

cells at the BFU-E stage and disappears at late reticulocyte stage (69, 154). GPA is a specific 

membrane component of mature erythrocytes. GPA is expressed on cells from erythroid 

progenitors at CFU-E stage (116) to proerythroblast (55, 69, 154, 194). CD41 is a cell surface 

marker for megakaryocyte, and is not present on erythroid progenitors (154). As judged by 

these key markers of erythroid progenitors, the cells expanded on day 8 in Wong medium were 

basically CFU-E-type cells. Using StemCell medium, we obtained highly pure CD36+ /Epo(-) 

EPCs by stimulating CD34+ HSCs with SCF, IL3, IL6, Flt-3 and TPO. Purified CD36+/Epo(-) 

EPCs process a marker of CD36+87.5% GPA+88.2%EpoR+84.5%, which have no significant difference 

from that of CD36+/Epo+ EPCs expanded in Wong medium (CD36+97.5%GPA+97.2%EpoR+90.3%); 

however, the majority of CD36+/Epo(-) EPCs retain CD34 marker. BFU-Es contain CD34 marker 
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(154), and are devoid of CD71 (92, 205), indicating that the CD36+/Epo(-) EPCs are presumably 

at BFU-E stage. However, these erythroid progenitor cells are sensitive to Epo stimulation, 

which confers their permissiveness to B19V replication.      

P-antigen (Globoside), a glycosphingolipid found on erythroid cells, is a cellular receptor for 

B19V (4). CD49e and KU80 have been reported to be co-receptors of B19V infection (24,44). 

Interestingly, CD36+/Epo+ EPCs expanded in Wong medium allow B19V to enter cells at a high 

efficiency, approximately 17 times higher than that of the CD36+/Epo(-) EPCs. This could be 

due to the increasing expression of CD49e, the co-receptor of B19V (44), or as yet unidentified 

co-receptors, but may not be the KU80 (24). The mechanism by which B19V enters cells 

warrants further investigation. Nevertheless, without Epo stimulation, entered B19V genomes 

did not replicate. We believe that the blockage of B19V infection of CD36+/Epo(-) EPCs is most 

likely at the step of B19V DNA replication, rather than intracellular trafficking of the entered viral 

genomes to the nucleus. Together with our previous finding that expression of adenovirus 

genes confers replication of B19V genome in B19V-nonpermisisve 293 cells (80), we 

hypothesize that replication of the B19V genome requires a unique microenviroment in nucleus, 

which is created upon Epo stimulation in erythroid progenitor cells.     

 

Epo/EpoR/pJAK2/pEpoR signaling pathway is required for B19V replication: Jak2 plays a 

pivotal role in Epo signal transduction (144, 165). Jak2 associates with EpoR at a membrane 

proximal region of the cytoplasmic domain. It is hypothesized that binding Epo to EpoR induces 

a conformational alternation of the EpoR cytoplasmic domain, and allows the juxtaposition of 

Jak2 molecules in a manner that facilitates their transphosphorylation within the activation loop, 

resulting in activation of the Jak2. Upon activation, Jak2 phosphorylates 8 tyrosine residues in 

the cytoplasmic domain of EpoR as well as a number of additional sites on itself (115). 

Phosphorylated EpoR further recruits and mediates activation of SH2-bidning factors including 

STAT5, Grb2 and PI3K, which signal Jak2/STAT5, Ras/MARK and PI3K/AKT pathways. 
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Activating these pathways synergistically prevents apoptosis of committed erythroid progenitors, 

allowing them to undergo a predetermined program of terminal proliferation and erythroid 

differentiation. We have shown here that inhibition of Jak2 kinase and thereafter EpoR 

phosphorylation abolished B19V replication of infected erythroid progenitor cells. Together with 

the Jak2 shRNA experiment, we believe that signaling transduction pathways under the 

Jak2/pEpoR must be involved in B19V replication, which function individually or synergistically. 

In fact, STAT5A, a downstream signaling molecule of Jak2, was observed to be phosphorylated 

at higher level in CD36+/Epo+ EPCs, but not in CD36+/Epo(-) EPCs that have been stimulated 

by cytokines SCF, IL3, IL6, Flt-3 and TPO (data not shown). STAT5 is a transcription activator 

in nucleus that has a profound effect on expression of a set of genes (31), which might be 

required for efficient replication of the B19V genome. Further investigation apparently is 

necessary to understand the mechanism underlying B19V replication of erythroid progenitors.      

Expression of the constitutively active EpoR has been shown to activate Jak2 in condition 

without Epo binding (117). And in our experiment, Jak2 was apparently phosphorylated upon 

expression of the EpoR(R129C) in CD36+/Epo(-) EPCs (Fig. 4-6), and phosphorylated EpoR 

was further regulated by exposing cells with Epo at various concentrations (Fig. 4-7). As a result, 

Retro-EpoR-expressing cells facilitated B19V infection. In agreement, treatment of CD36+/Epo(-) 

EPCs with Epo only for 2 hrs turned on B19V infection of treated cells; while overnight Epo 

treatment conferred treated cells to be infected by B19V at a relatively higher level (Fig. 4-2&3). 

Accordingly, both Jak2 and EpoR are phosphorylated upon Epo treatment. Therefore, our 

results strongly suggest the chain of signal transduction of EpoRactivation of 

Jak2phosphorylation of EpoRB19V replication.  

In conclusion, our study has provided evidence that EpoR signaling is essential to B19V 

replication. Activation of EpoR either by addition of Epo or expressing constitutively active 

EpoR(R129C), confers permissiveness to B19V infection to previously non-permissive but 

committed erythroid progenitors, CD36+/Epo(-) EPCs, by turning on replication of the B19V 
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genome. Conversely, inhibition of Jak2 reduced phosphorylation of EpoR, which in turn 

decreased/blocked B19V DNA replication. Thus, our study reveals a previously unappreciated 

role of EpoR signaling in supporting B19V replication, which can explain the unique tropism of 

B19V infection of human erythroid progenitors.   
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Chapter 5 

Conclusions and Discussion 

 

The studies presented in this thesis for my PhD degree are composed of two parts: 1) 

investigation of the molecular mechanisms underlying the cytopathic effects induced during 

infection of parvovirus B19V and MVC; and 2) identifying the cellular microenvironment that 

facilitates B19V replication. For the first part, we took advantage of a recently developed in vitro 

permissive B19V infection system, and demonstrate that the small nonstructural protein 11kDa 

of B19V is a novel pro-apoptotic protein, which plays a key role in inducing apoptosis during 

B19V infection of erythroid progenitor cells. In contrast, apoptotic cell death during MVC 

infection appears to be viral DNA replication-associated rather than viral protein-induced. In 

addition, a G2/M cell cycle arrest during MVC infection is caused by the viral genome per se 

rather than its replication. For the second part, we demonstrate that Epo/EpoR/Jak2 signaling is 

essential for B19V DNA replication.  

 Virus infection-induced cytopathic effects are often related to disease outcomes, 

particularly in the case of B19V. B19V encodes two small non-structural proteins 11kDa and 

7.5kDa, of which the 11kDa is essential to the viral life cycle. Knocking out the 11kDa protein 

resulted in a significant decrease of  infectious virion production (229). However the precise role 

of 11kDa in B19V infection is unknown. In our study (Chapter 2), we have demonstrated clearly 

that the cytoplasm-localized 11kDa is a novel apoptosis inducer and is expressed abundantly 

during B19V infection of erythroid progenitor cells. It plays a key role in B19V infection-induced 

apoptosis of erythroid progenitor cells (38). Mechanistically, the 11kDa-induced apoptosis is 

mediated by caspase-10, an initiator caspase of the extrinsic apoptosis pathway; and is similar 
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to B19V infection-induced apoptosis. Though caspase-8, the other initiator caspase in the 

extrinsic pathway, was thought to be the ortholog of caspase-10 (22), it could not substitute the 

function of caspase-10 in either B19V- or 11kDa-induced apoptosis. Increasing evidence shows 

that capase-10 and caspase-8, though they sometimes work interchangeably, can function 

differently in other situations (104, 217). Inhibition of 11kDa by antisense oligos during B19V 

infection significantly reduced the level of apoptotic cells as evidenced by decreased TUNEL-

positive cells. Thus, it is reasonable to speculate that the apoptosis induced by 11kDa may be 

important for the release of progeny virus from the nucleus, which warrants further investigation. 

Our continued work on this part shows that the pro-apoptotic activity of 11kDa may reside in the 

C-terminus (Chen AY & Qiu J, unpublished). More experiments are needed to further support 

this observation.  

Our finding of the novel pro-apoptotic activity of 11kDa provides new insights into B19V 

infection-induced cytopathic effects. It “breaks new ground on various fronts, from the basic 

biology of erythroid cells to the mechanisms of B19 parvovirus–induced anemia, and suggests 

an assay that will predict the efficacy of drugs in the treatment of the associated anemia” (126).  

HBoVs are newly emergent parvoviruses that are infectious to humans. They have been 

associated with clinical symptoms, e.g., pneumonia, in children. Without an infectious clone and 

an efficient in vitro culture system, the study of HBoV is difficult (64). MVC belongs to the same 

genus bocavirus as HBoVs and they share high similarity in both genome organization and 

expressed proteins. Thus, we used MVC as a model system to investigate the molecular 

mechanisms underlying bocavirus infection (Chapter 3). Taking advantage of the MVC 

infectious clone and productive culture system established in our lab (204), we examined the 

nature of CPE induced during MVC infection (37). Our results indicate that MVC viral proteins 

do not possess pro-apoptotic activity. Apoptosis induced during MVC infection is tightly 

associated with replication of the viral genome. In contrast to the extrinsic pathway induced 

during B19V infection (caspase-10-mediated), MVC infection triggered an intrinsic apoptosis 
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pathway, as evidenced by Bax translocation and permeabilization of the mitochondrion outer 

membrane. The cell cycle of the host cells was affected by MVC infection, showing an S-phase 

plateau during early stages of infection, which progressed into prolonged G2/M arrest at a later 

stage. The G2/M arrest can be reproduced by transfecting terminal repeats-containing viral 

genomes into host cells. The S-phase plateau, however, only appears when active replication 

takes place. Similarly, expression of HBoV viral proteins individually or together by transfection 

did not induce appreciable levels of cell death or cell cycle arrest (36). Thus our results suggest 

that the DNA replication-associated apoptosis and viral genome-induced cell cycle arrest could 

be a common feature among members in the genus Bocavirus.  

Our work in this part represents the first study looking into the mechanisms underlying 

the cytopathic effect induced during bocavirus infection. It may provide a direct molecular basis 

of bocavirus infection-associated disease. Understanding these mechanisms sheds light on the 

future direction to further delineates the molecular basis of cell cycle arrest and apoptosis 

induced by DNA viruses. Results from other members in our lab have shown that a DNA 

damage response may be one of the bridges connecting viral infection with host cell cycle arrest 

and apoptosis. Active investigation is currently being undertaken in our lab to further understand 

the molecular details.  

Epo has been clearly shown to be essential for the differentiation and proliferation of 

determined erythroid progenitor cells. In Chapter 4, we demonstrate that Epo/EpoR/Jak2 

signaling is also crucial for B19V infection, particularly viral DNA replication. Erythroid progenitor 

cells cultured in Epo-depleted medium were not permissive to B19V unless treated with Epo. 

Using different approaches either to down- or up-regulate EpoR and Jak2, we show that EpoR 

and Jak2 phosphorylation correlated directly with B19V replication. It is worth emphasizing that 

the inhibition of Jak2 by the specific inhibitor AG490, at no/low toxic levels, significantly blocked 

B19V replication. However, the extent of viral entry was not affected. AG490 and its analogs 

could serve as potential candidates for anti-B19V drugs.  
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Our unpublished work indicates that STAT5A, which is activated by Jak2 via 

phosphorylation in erythroid progenitor cells, plays an important role in B19V infection. Knocking 

down STAT5A significantly impaired B19V NS1 expression. STAT5A has been clearly shown to 

play a crucial role in differentiation of erythroid progenitor cells, further supporting the 

importance that the differentiation status of erythroid progenitor cells corresponds to B19V 

permissiveness. In other words, the cellular environment that possesses active differentiation 

potential may also be the condition favoring B19V DNA replication.  

Our work in this part represents the first attempt to explore the Epo/EpoR/Jak2 signaling 

and its role during B19V infection. Our results not only establish a direct connection of the 

Epo/EpoR signaling with B19V DNA replication, but also propose a drug candidate for B19V 

infection. In addition, our findings promote a novel concept that the cellular microenvironment 

determines the exclusive tropism of B19V for erythroid progenitor cells, in addition to the B19V 

receptor and co-receptors (138, 218). It opens up a gate toward deeply understanding how 

cellular signal transduction controls B19V permissiveness. This exact signaling network, which 

we believe to be regulated under Epo/EpoR signaling, is unique to erythroid progenitor cells.  

B19V 11kDa protein interacts with cellular Grb2 via proline-rich SH3-binding motifs (71) 

(Chen AY and Qiu J, unpublished). Grb2 is an important adaptor protein mediating receptor 

(EpoR, in the case of erythroid progenitor cells) triggered Ras-MAPK activation (115). MAPK 

has been implicated in a variety of cellular interactions, including phospholipases, transcription 

factors, and cytoskeletal proteins (151, 185). Our preliminary findings also indicate a crucial role 

of MEK/MAPK in B19V replication (unpublished data). Hence, we speculate that 11kDa 

facilitates B19V progeny virus production via interfering with the MEK/MAPK signaling pathway.   

In conclusion, the work presented in this thesis represents several novel advances in 

understanding the molecular mechanisms underlying parvovirus infection. Those results provide 

molecular-level insights into virus-host interaction during both early and late stages of infection. 

Exploration of cytopathic effects induced during infection shows that distinct mechanisms can 
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be employed effectively by parvoviruses from different genera. In addition, we have introduced a 

novel concept that a unique cellular microenvironment in erythroid progenitor cells is a 

prerequisite to B19V DNA replication, and thus determines the permissiveness to and tropism of 

B19V.  
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