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ABSTRACT 

     The liver is an essential organ for drug metabolism and nutrient homeostasis. 

 Various xenobiotics and endogenous compounds enter hepatocytes by 

basolateral uptake transporters and are then converted into more hydrophilic 

metabolites by phase-I and –II drug-metabolizing enzymes.  These metabolites 

are subsequently eliminated from the hepatocytes by basolateral and/or 

canalicular efflux transporters.  

 

    Despite the recent progress in understanding the expression patterns and 

regulatory mechanisms of drug-processing genes, namely phase-I and –II drug 

metabolizing enzymes and transporters in adults, very little is known of the 

alterations of these genes during liver development.  Therefore, newborns and 

children are potentially at a higher risk of adverse drug reactions.  The purpose of 

my dissertation is to use multidisciplinary approaches to characterize the 

expression and regulatory mechanisms of the drug-processing genes during 

postnatal liver maturation.  The present study integrated various research models 

and technologies, including genetically engineered mice, messenger RNA and 

protein assays, microarray, ChIP-on-chip, ChIP-Seq, transcription-factor binding 

assays, LC-MS/MS, and bioinformatics analysis.  The ontogenic expression and 

the regulatory mechanisms have been examined for various drug metabolizing 

enzymes and transporters in the liver.  By characterizing the ontogeny of the 

drug-processing genome in the liver, the present study has provided novel 



 
 

xv

insights into identifying and further understanding the molecular targets for 

effective and safe drug treatments for children. 

 

     First, cluster analysis demonstrated that the ontogenic expression of drug-

processing genes separate into 4 distinct patterns: perinatal enriched, early 

adolescent enriched, late-adolescent enriched, and adult enriched.  In addition, 

the mRNA ontogeny of over 70 transcription factors was examined.  These 

mRNAs also separate into 4 patterns.  Critical nuclear receptors, including the 

xenobiotic sensor pregnane X receptor (PXR, N1I2), as well as the bile-acid 

sensor farnesoid X receptor (FXR, NR1H4), are crucial in regulating the 

expression of drug-processing genes during liver development.  Initiation of bile 

acid signaling, mediated largely via FXR, is a hallmark of the neonatal induction 

of major liver transporters involved in the enterohepatic circulation (EHC), 

whereas PXR is more important for the induction of xenobiotic-processing genes 

in adolescent and adult period, when the organism is exposed to more 

xenobiotics. 

 

     The accessibility of transcription factors to the target genes was determined 

by the methylation status of histones and gene promoters.  The present studies 

have illustrated that various drug-processing genes and transcription factors are 

expressed in distinct dynamic patterns in developing mouse livers, and their 

expressions correlated with the chromatin architecture.  Among various types of 

epigenetic signatures, histone H3 lysine 4 di-methylation (H3K4Me2) appeared to 



 
 

xvi

be the choice of nature to induce numerous drug-processing genes during 

postnatal liver development.  These drug-processing genes include some 

cytochrome P450s (Cyps), some UDP glucuronosyl transferases (Ugts), some 

glutathione S-transferases (Gsts), and some transporters, such as the sodium-

taurocholate cotransporting polypeptide (Ntcp, Slc10a1).  In addition, the 

ontogeny of several transcription factors also appeared to be associated with 

altered occupancy of H3K4Me2, including the xenobiotic sensor aryl hydrocarbon 

receptor (AhR), the lipid sensor peroxisome proliferator-activated receptor 

PGC-1 (PPAR, NR1C1), as well as the master endobiotic metabolism 

regulator and transcription co-activator, peroxisome proliferator-activated 

receptor- coactivator 1 (PGC1, PPargc1).   

 

     Under a permissive chromatin environment, FXR triggered the “day-1” surge 

pattern of liver transporters involved in the EHC.  Both the mRNA and protein 

expression of these transporters were decreased in livers of the FXR-null mice at 

1 day of age.  The bile-acid bio-synthetic enzymes from the classic pathway, 

including cytochrome P450 7a1 and 8b1, were more activated than enzymes 

from the alternative pathway during the neonatal period.  Using LC-MS/MS 

analysis, I have detected 11 bile acids in serum and 17 in the liver.  Cholic acid, 

which can only be synthesized from the classic pathway, was the predominant 

bile acid in newborns, and appeared to be responsible for the FXR-mediated 

neonatal upregulation of transporters.  The mRNAs of human transporters and 

bile-acid bio-synthesizing enzymes were also quantified in the present study.  
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The transporters NTCP, bile salt export pump (BSEP, ABCB11), and multidrug 

resistance protein 3 (MDR3, ABCB4, human homolog of the mouse Mdr2 

[Abcb4]), as well as the bile-acid bio-synthesizing enzymes in the classic 

pathway, namely CYP7A1 and 8B1, were also increased in neonatal livers.  This 

suggests that the “day-1” surge pattern of bile acid transporters also occurs in 

humans.   

   

     Whereas FXR mediates the induction of bile-acid and lipid transporters in 

neonatal ages, PXR, which is enriched from adolescent to the adult period during 

liver development, appears to regulate the induction of many xenobiotic-

processing genes in early adulthood.  These genes include numerous 

cytochrome P450s, the Gsts, and a few xenobiotic transporters, such as the 

organic anion co-transporting polypeptide 1a4 (Oatp1a4, Slco1a4), and the multi-

drug resistance-associated protein 4 (Mrp4, Abcc4).  However, the induction of 

drug-processing genes could be due to direct PXR binding to DNA, or due to a 

secondary effect.  Very little is known about the PXR DNA-binding signatures in 

vivo, or how PXR regulates novel direct targets on a genome-wide scale. 

Therefore, to further consolidate critical roles of PXR in regulating drug-

processing genes during the early adult period, a roadmap of hepatic PXR 

bindings in the entire mouse genome was generated by ChIP-Seq.  The most 

frequent PXR DNA-binding motif was two AGTTCA-like direct repeats with a 4bp 

spacer (DR-4).  Surprisingly, there were also high frequencies of motifs with 

spacers of a periodicity of 5bp, forming a novel DR-(5n+4) pattern for PXR 



 
 

xviii

binding.  For the PXR-target gene Oatp1a4, DR-9 (n=1) was the only motif within 

the ChIP DNA sequences bound by the PXR protein.  ELISA-based transcription 

factor binding assay validated that PXR binds to DR-(5n+4) like sequences, 

including DR-4, DR-9, DR-14, and DR-19.  This novel finding challenges the 

existing paradigm for the current understanding of nuclear receptor consensus 

sequences.  PXR-binding overlaps with the epigenetic mark for gene activation 

(histone-H3K4-di-methylation), but not with the epigenetic marks for gene 

suppression (DNA methylation or histone-H3K27-tri-methylation) (ChIP-on-chip).  

The PXR agonist PCN was administered to mice to determine whether there 

would be increased PXR binding at the original binding sites, and whether there 

would be new binding sites for PXR.  Indeed, pharmacological activation of PXR 

further increased the total binding sites and enrichment at the original sites of 

many drug-processing genes.  In addition, increased PXR binding triggered the 

trans-activation of critical drug-metabolizing enzymes and transporters.  The 

induction of these mRNAs was absent in PXR-null mice.  

 

     In conclusion, for the present dissertation, I have performed a systemic 

characterization of critical drug-processing genes and transcription factors during 

postnatal liver maturation.  In addition, I have demonstrated that the 

developmental regulation of drug metabolism and transport is a sequential event 

associated with changes of chromatin epigenetic signatures, which set a 

permissive environment for ligand-activated nuclear receptors to gain access to 

the target genes prior to transcription initiation.  Through multidisciplinary 
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approaches, the current work has generated basic knowledge that will serve as a 

foundation for further understanding of pediatric pharmacology and toxicology in 

humans.  
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CHAPTER ONE.  GENERAL INTRODUCTION AND BACKGROUND 

Liver in drug metabolism and transport.   

     Liver is an essential organ for drug metabolism and nutrient homeostasis.  

Foreign compounds, including therapeutic drugs, environmental toxicants, and 

dietary factors, are commonly referred to as xenobiotics.  The endogenous 

compounds produced in vivo are termed endobiotics, including bile acids, lipids, 

etc.  Many xeno- and endo-biotic compounds are lipophilic, and must be 

biotransformed to increase their hydrophilicity, and the increased hydrophilicity of 

substrates allows for excretion into urine or bile.  In addition, various prodrugs 

require biotransformation to form metabolites that activate their therapeutic 

targets, a process termed “bioactivation”.  Therefore, biotransformation is critical 

in both protecting the organism against chemical toxicity, and mediating 

pharmacological responses.  Liver is the primary organ where xenobiotics and 

other compounds are biotransformed.  Various chemicals are taken up into 

hepatocytes by basolateral uptake transporters.  These chemicals are then 

converted into more hydrophilic metabolites by phase-I and –II drug-metabolizing 

enzymes.  These compounds are then eliminated from the hepatocytes by 

basolateral and canalicular efflux transporters (Figure 1.1).   

 

Phase-I metabolism.  Phase-I metabolism includes three major reactions: 

oxidation, reduction, and hydrolysis.  Phase-I metabolism usually precedes 

phase-II, though not necessarily.  During phase-I reactions, hydrophilic functional 
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Figure 1.1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.  Illustration of phase-I and -II drug metabolism as well as transporters 
in liver.  Various compounds are taken up from the portal blood into hepatocytes 
via uptake transporters on the basolateral membrane, and then converted to more 
water soluble compounds by phase-I metabolism (oxidation, reduction, or 
hydrohysis).  Phase-II metabolism conjugates the substrates with large, bulky 
molecules (cosubstrates).  Various metabolites are eliminated from hepatocytes 
via canalicular efflux transporters into bile, and basolateral efflux transporters into 
blood (excreted into urine).  Nuclear receptors mediate the transcriptional 
regulation of many genes in drug metabolism and transport.  
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groups are either introduced or unmasked, resulting in increased polarity of 

metabolites.  For numerous pharmaceutical drugs, phase-I reactions lead to 

either bioactivation or inactivation of the drug.  Phase-I enzymes are usually 

found in the smooth endoplasmic reticulum of hepatocytes, whereas a few are 

found in mitochondria.  The enzymes involved in oxidation include the 

cytochrome P450 monooxygenase system, the flavin-containing monooxygenase 

system, alcohol dehydrogenases and aldehyde dehydrogenases, monoamine 

oxidases, and peroxidases.  The enzymes important for reduction include 

NADPH-cytochrome P450 reductase and cytochrome P450s, whereas enzymes 

for hydrolysis include esterases and amidases, as well as epoxide hydrolases.   

 

     Among all these phase-I enzymes, it is well known that approximately three-

quarters of drugs that are primarily cleared via metabolism are biotransformed by 

members of the cytochrome P450 family (Cyps).  The Cyps are essential 

membrane-bound enzymes with widespread and diverse functions in 

mammalians.  The name “cytochrome P450” derives from the fact that these 

enzymes all have a heme group, with an unusual absorption spectrum at 450nm, 

in contrast to other heme-containing proteins, which do not absorb at this 

wavelength.  According to the genomic data base, there are 57 functional CYPs 

identified in humans, and 102 Cyps in mice (Nelson et al., 2004).  It is generally 

considered that CYPs in families 1-4 are critical and inducible components of the 

phase-I biotransformation systems in various species (Wei et al., 2000; 

Estabrook, 2003; Kang et al., 2007; Li et al., 2007), and many of them are also 
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important for metabolizing lipids, including steroids (CYP2), bile acids (CYP3A), 

fatty acids (CYP4), and many other endogenous compounds (Nebert and 

Russell, 2002).  Whereas genetic mutations in Cyps are responsible for various 

types of inborn errors of metabolism and human diseases (Nebert and Russell, 

2002; Caldwell, 2004), induction of some Cyps is a risk factor for adverse drug 

interactions and cancer.  Previous studies have demonstrated that the mRNAs of 

Cyp1-4 are inducible by ligands of four classes of xeno-receptors, namely the 

aryl hydrocarbon receptor (AhR), the constitutive androstane receptor (CAR, 

Nr1i3), the pregnane X receptor (PXR), and the peroxisome proliferator-activated 

receptor alpha (PPARα) (Petrick and Klaassen, 2007).  Although these receptors 

have overlapping targets, it is generally considered that AhR is responsible for 

the mRNA induction of Cyp1, CAR for Cyp2, PXR for Cyp3, and PPARα for the 

mRNA induction of Cyp4.        

 

     Other Cyp families besides Cyp1-4 are more specialized in endobiotic 

synthesis and metabolism.  To note, the major enzymes involved in the classic 

pathway of bile-acid synthesis include Cyp7a1, which is the rate-limiting enzyme 

for bile-acid synthesis, as well as Cyp8b1, and these two enzymes catalyze the 

formation of cholic acid (CA).  In the absence of Cyp8b1, chenodeoxycholic acid 

(CDCA) is the main bile-acid (Chiang, 2004).  The Cyp enzymes in the 

alternative bile-acid biosynthesis pathway include Cyp27a1, 7b1, as well as 

Cyp39a1 (relatively lowly expressed in liver), with CDCA as the primary product 

(Russell, 2003).   
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Phase-II metabolism.  Phase-II metabolism is also referred to as conjugation 

reactions, and it usually leads to detoxification of the chemical.  Taking 

advantage of electrophilic functional groups present on the molecule, including 

carboxyl (-COOH), hydroxyl (-OH), amino (NH2), and sulfhydryl (-SH) groups, the 

phase-II drug-metabolizing enzymes are characterized by their ability to 

conjugate xenobiotics with small molecular weight, organic donor molecules 

(often termed “co-substrates”), such as glutathione, UDP-glucuronic acid, PAPS, 

amino acids (glycine and taurine), acetyl coenzyme A, etc.   

 

     The Gsts are thought to play important roles in protecting macromolecules 

against electrophiles and products of oxidative stress, thus providing an efficient 

detoxification mechanism. There is a broad spectrum of Gst substrates in the 

environment, including halogenonitrobenzenes, arene oxides, quinones, as well 

as unsaturated carbonyls (Keen and Jakoby, 1978; Hayes and Pulford, 1995; 

Armstrong, 1997; McDonagh et al., 1999; Sheehan et al., 2001).  The ability of 

Gst(s) to metabolize cancer chemotherapeutic drugs, insecticides, herbicides, 

and carcinogens suggests that their expression can influence the efficacy of 

drugs and capacity for detoxification, as well as an individual’s susceptibility to 

cancer (Hayes and Pulford, 1995; Board et al., 1997).        

 

     Gsts catalyze nucleophilic attack by GSH on nonpolar compounds that 

contain an electrophilic carbon, nitrogen, or sulfur atom, resulting in the formation 

of (usually) less reactive, more hydrophilic GSH conjugates.  There are three 
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major families of proteins that exhibit glutathione transferase activity, namely 

cytosolic, mitochondrial, and microsomal.  The cytosolic Gsts include alpha, mu, 

omega, pi, sigma, theta, and zeta family members.  Cytosolic Gst enzymes 

represent the largest family, and they were highly conserved during evolution.  In 

rodents and humans, cytosolic Gsts typically share more than 40% identity within 

a class.  The mitochondrial Gst enzyme is the Gst kappa isoform.  Gstk has only 

one isoform in mice, rats, and humans (Hayes and Pulford, 1995; Hayes et al., 

2005), suggesting it is highly important for survival.  The third family is 

microsomal Gst enzymes, which are now referred to as membrane-associated 

proteins in eicosanoid and glutathione (MAPEG) metabolism.   

 

     The UDP-glucuronosyl transferases (Ugts) are critical enzymes for phase-II 

glucuronidation reactions.  These Ugts conjugate lipophilic substrates with UDP-

glucuronic acid, by increasing the hydrophilicity of the substrates and enhancing 

the excretion into bile and urine.  The endogenous substrates for Ugts include 

numerous steroids and metabolic products, including testosterone, estradiol, 

thyroxine, bilirubin, bile acids, etc.  In addition, numerous xenobiotics are also 

substrates for Ugts, including therapeutic drugs such as chloramphenicol, 

acetaminophen, morphine, propofol, and nonsteroidal anti-inflammatory drugs 

(NSAIDs), as well as environmental toxicants, such as plant-derived dietary 

flavonoids, carcinogens, etc. (Radominska-Pandya et al., 1999; Tukey and 

Strassburg, 2000).  There are 16 different UGT enzymes in humans, nine of 

these are encoded from the Ugt1 gene locus, which consists of different 
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functional promoters and first exons, and these UGT1 isoforms are produced by 

alternative splicing within common exons 2-5.  UGT1A1 is the primary enzyme 

for bilirubin conjugation.  In mice, the Ugt1a subfamily contains 14 first exons, 

coding nine enzymes and five pseudogenes.  The Ugt2 and 3 families are much 

less studied compared to the first Ugt family.  UGT2B has been suggested to be 

involved in chloramphenicol metabolism and Grey Baby Syndrome (McCarver 

and Hines, 2002).  UGT3 was the last gene family to be identified, and very 

recent findings suggested that UGT3 has a unique function termed N-

acetylglucosaminidation (Meech and Mackenzie, 2010).   

 

     Sulfotransferases (Sults) encode at least 11 distinct enzymes that catalyze 

the sulfate conjugation of a variety of endogenous and exogenous chemicals 

using 3′-phosphoadenosine-5′-phosphosulfate (PAPS) as a donor to target endo- 

and xenobiotics (Glatt, 2000).  PAPS is formed from inorganic sulfate by the 

action of the enzyme PAPS synthase (PAPSs).  The sulfotransferases can be 

classified into two major classes based on their subcellular location, including 

cytosolic Sults, which are located in cytosol, as well as membrane-associated 

Sults that are bound to the Golgi apparatus.  It has been determined that 

membrane-associated Sults are involved in post-translational modifications of 

large molecules, including glycosaminoglycans, glycoproteins, sphingolipids, and 

tyrosine residues of proteins, whereas cytosolic Sults are important for the 

sulfation of small endo- and xenobiotics (Niehrs et al., 1994).  
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     It is generally considered that glucuronidation, glutathione conjugation, and 

sulfation are the most important phase-II conjugation reactions for various 

therapeutic drugs, environmental toxicants, and endogenous chemicals.  

Therefore these three classes of reactions have been most extensively studied.  

Other phase-II conjugation reactions are also important in the detoxification of 

chemicals.  To note, glycine and taurine conjugations are essential for bile-acid 

conjugation (Falany et al., 1994).  In humans, glycine and taurine conjugates of 

bile acids are found in similar amounts, whereas in mice, bile acids are mainly 

conjugated with taurine (Alnouti et al., 2008a).   

 

Transporters.  Transporters are membrane proteins that are critical in the 

disposition of chemicals in an organism.  In liver, basolateral uptake transporters 

are important in hepatic uptake of xenobiotics and other compounds absorbed 

from the intestine.  Canalicular transporters are responsible for biliary excretion 

of various chemicals, whereas basolateral efflux transporters eliminate 

substrates from hepatocytes into blood, and these chemicals are eventually 

excreted via urine.  The present laboratory has characterized numerous 

xenobiotic and endobiotic transporters enriched in liver (Klaassen and Aleksunes, 

2010; Klaassen and Lu, 2008).  The basolateral uptake transporters that are 

highly expressed in liver include the sodium taurocholate cotransporting 

polypeptide (Ntcp, Slc10a1), the organic anion transporting polypeptide 1b2 

(Oatp1b2, Slco1b2), Oatp1a1 and 1a4, organic cation tranporter 1 (Oct1, 

Slc22a1), organic anion transporter 2 (Oat2, Slc22a7), and equilibrative 
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nucleoside transporter 1 (Ent1, Slc29a1).  The canalicular transporters enriched 

in liver include multidrug resistance protein 2 (Mdr2, Abcb4), bile salt export 

pump (Bsep, Abcb11), Abcg5, Abcg8, multidrug resistance-associated protein 2 

(Mrp2, Abcc2), breast cancer resistance protein (Bcrp, Agcg2), multidrug and 

toxin extrusion 1 (Mate1, Slc47a1), and ATP7b1.  The basolateral efflux 

transporters in liver include Mrp3 (Abcc3), Mrp6 (Abcc6), and Abca1.  The 

organic solute transporters  and  (Ost and Ost), as well as Mrp4 (Abcc4), 

are lowly expressed in liver, but they play important roles in bile-acid transport 

during cholestasis (Ballatori et al., 2005; Mennone et al., 2006).   

 

     Numerous liver transporters are important for xenobiotic disposition, including 

many Oatps, Mrps, etc, whereas other transporters play essential roles in 

maintaining the EHC of the endogenous bile acids.  Ntcp is the major basolateral 

bile-acid uptake transporter in liver (Hagenbuch et al., 1996), whereas Bsep is 

the canalicular transporter for bile-acid excretion into bile (Wang et al., 2003; 

Lam et al., 2005).  Whereas most bile acids are sequestered in the EHC under 

physiological conditions, during cholestasis, bile acids are also excreted back 

into blood from liver via basolateral transport systems, which include Mrp4 

(Mennone et al., 2006), as well as Ost and Ost that function as a heterodimer 

(Ballatori et al., 2005).  In addition to bile-acid transporters, Mdr2 in liver flips 

phospholipids from the inner to the outer leaflet of the canalicular membrane.  

Phospholipids enter bile to form micelles with bile acids, thereby protecting the 

biliary tree from injury (Smit et al., 1993), as well as facilitating nutrient absorption.   
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     Table 1.1 lists the mRNAs of many critical drug-processing genes in phase-I 

and –II metabolism, transporters for processing xeno- and endobiotic chemicals, 

as well as critical transcription factors in liver.  Although considerable amount of 

research has been reported on the expression and regulation of these genes in 

adults, very little is known about the ontogeny of the drug-processing genes 

during postnatal liver development.  

 

Neonatal diseases associated with impaired drug metabolism and transport.   

     For phase-I metabolism, many well characterized Cyps have been found to be 

enriched in adult liver (Nebert and Russell, 2002).  Interestingly, before birth, liver 

is mainly a hematopoietic organ with very limited capacity for drug metabolism.  

However, right after birth, liver becomes the major organ for processing drugs 

and other chemicals.  The physiological changes in liver during development are 

undoubtedly responsible for age-related differences in drug disposition.  Very 

little is known about how and when the drug-metabolizing P450s become 

activated or suppressed during postnatal liver development, resulting in higher 

risks for adverse drug reactions in pediatric patients.  In 1959, it was found that a 

number of drugs that are metabolized by Cyps in liver microsomes from adult 

rabbit are not metabolized in livers of newborn rabbits (Fouts and Adamson, 

1959).  However, at that time, only two Cyp enzymes were thought to exist.  At 

the end of the 20th century and the beginning of the 21st century, as several 

cytochrome P450 genes were cloned, the ontogeny of a few Cyps have been 
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Table 1.1. List of the mRNAs of critical drug processing genes and transcriptional 
factors in liver  

Function Classification mRNAs 
Cyp1 Cyp1a1  Cyp1a2  Cyp1b1 

Cyp2 
Cyp2a4  Cyp2b10  Cyp2c29  Cyp2c39  Cyp2c66  
Cyp2d9 Cyp2d22  Cyp2e1  Cyp2f2  Cyp2j6 

Cyp3 
Cyp3a11  Cyp3a12  Cyp3a16  Cyp3a25  Cyp3a41  
Cyp3a44 

Cyp4 Cyp4a14  Cyp4f18   

Cytochrome P450s
(Cyps) 

 
 

Bile-acid 
synthesis 

Cyp7a1  Cyp7b1  Cyp8b1  Cyp27a1 

Aldehyde 
Dehydrogenases 

(Aldhs) 15 

Aldh1a1*  Aldh1a2  Aldh1a3  Aldh1a7*  Aldh1b1*   
Aldh2*  Aldh3a1  Aldh3a2*  Aldh3b1   
Aldh4a1*  Aldh6a1*  Aldh7a1*  Aldh8a1  Aldh9a1  Aldh18a1 

Carboxyesterases 
(Cess) 12 

Ces1B2  Ces1B4  Ces1D1  Ces1E1  Ces1G2  Ces1H1 
Ces2A4  Ces2A6  Ces2A12 
Ces3A2  Ces4B2  Ces5B1 

 
 
 
 
 
 

Phase I 
 
 
 
 

Paroxonases (Pons) Pon1  Pon2  Pon3 

UDP-glucuronyl 
transferases (Ugts)

 

Ugt1a1  Ugt1a2  Ugt1a5  Ugt1a6  Ugt1a7  Ugt1a8  Ugt1a9 
Ugt1a10 
Ugt2a3  Ugt2b1  Ugt2b5  Ugt2b34  Ugt2b35  Ugt2b36 Ugt2b37  
Ugt2b38 Ugt3a1  Ugt3a2  
uridine diphosphoglucose dehydrogenase (Udpgh) 

Glutathione-S-
transferases (Gsts)

 

GSTa1  GSTa3 GSTk1  GSTo1  GSTp1/2  GSTz1  
GSTm1  GSTm2  GSTm3  GSTm4  GSTm5  GSTm6  
GSTt1  GSTt2   
GSTmicrosomal1  GSTmicrosomal2  GSTmicrosomal3 

Sulfotransferases 
(Sults) 

 

Sult1a1*  Sult1b1#  Sult1c1*  Sult1c2*  Sult1d1* 
Sult2a1/2*  Sult2b1# 
Sult3a1*  Sult4a1  Sult5a1 
PAPSs1  PAPSs2# 

 
 
 
 

Phase II 
 
 

Methyltransferase Comt 

Uptake transporters
 

Oatp1a1*  Oatp1a4*  Oatp1a5*  Oatp1a6  Oatp1b2*    
Oatp2a1*  Oatp2b1*  Oatp3a1  Oatp4a1  Oatp4c1     
Cnt1  Cnt2  Cnt3  Pept1  Pept2  Npt1  Npt2a  Npt2b 
Oat1  Oat2  Oat3  Oat5 Urat1 
Oct1*  Oct2  Oct3  OctN1  OctN2  Npc1L1 Ntcp*  Atp8b1  Ibat  

 
 

Transporters 
 

Efflux transporters 
 

Mrp1  Mrp2*  Mrp3*  Mrp4*  Mrp5  Mrp6*   
Mdr1a  Mdr1b  Mdr2  Mate1  Mate2  Ent1  Ent2  Ent3   
Bsep*  AbcG5  AbcG8 Abca1 Ostα  Ostβ  

 
 

Transcription 
Factors/regulators 

 
 

AhR  CAR  FXR  PXR  RXR  RXR  RXR   
LXR LXR LRH-1 PPAR  PPAR  PPAR  COUP-TFII       
AR  ER  GR  PR   TR  TR  VDR Prlr GHR IGF-1 Stat5a  Stat5b 
HNF1  HNF1  HNF3  HNF3  HNF3  HNF4  HNF4  HNF6 
C/EBP  C/EBP  C/EBP DBP CREB Srebp-1  Srebp-2   
Nrf1  Nrf2  Nrf3  Egr-1  Gadd45  Gadd45  c-jun p53 CHOP 
PBP  PGC-1  SRC-1  SRC-2  Smrt  Ncor1  SHP 

 

* Ontogenic expression in liver has been reported: 25 genes in total 
# Ontogenic expression in duodenum has been reported:  3 genes in total 
 Ontogenic expression in kidney has been reported:  19 genes in total 
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characterized in human livers (de Wildt et al., 1999; Blake et al., 2005; Leeder et 

al., 2005; Gaedigk et al., 2006; Hines, 2007), but at most 10 Cyp isoforms were 

included in these studies, and nobody has aimed at characterizing all the drug-

metabolizing Cyps systematically.  Clinically, it has been demonstrated that the 

clearance of various therapeutic drugs is altered in infants due to the different 

expression of Cyps than in adults.  For example, the clearance of intravenously 

administered midazolam, which is primarily metabolized by CYP3A4 and 3A5, is 

low in newborns, and markedly increases in the first three months of life (de Wildt 

et al., 2001; Kearns et al., 2003).  Conversely, the clearance of carbamazepine, 

another CYP3A substrate, is higher in children than in adults (Kearns et al., 

2003).  Phenytoin, which is an anti-convulsant metabolized by CYP2C9 and 

CYP2C19, has a prolonged half-life in preterm infants, but it decreases markedly 

in term infants during the first week of life.  The CYP1A2 substrates, caffeine and 

theophylline, are commonly prescribed for neonates and young infants, and their 

plasma clearance in infants primarily reflects enzyme activity (Kearns et al., 

2003).  It is crucial to understand the molecular mechanisms underlying the 

ontogeny of these CYPs involved in xenobiotic metabolism, so as to achieve safe 

and effective pharmacological treatments.  

 

     Several Cyps are important for normal endobiotic metabolism during liver 

development, and genetic inborn errors of these genes often lead to neonatal 

diseases.  For example, genetic mutations in CYP7A1 and CYP27A1 can both 

cause defects in bile-acid synthesis, leading to neonatal cholestasis, and fat-
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soluble-vitamin deficiencies.  These diseases are characterized by a failure to 

produce normal bile acids in liver, and an accumulation of unusual bile acids and 

other oxysterol intermediates (Stellaard and Wolthers, 1993; Bjorkhem, 1994; 

Heubi et al., 2007).  Failure to diagnose these inborn errors of bile-acid synthesis 

in newborns can result in progressive chronic liver diseases.   

 

     In phase-II metabolism, UGT1A1, the primary enzyme for bilirubin 

conjugation, is lowly expressed from fetal liver, but its expression is induced by 

processes associated with birth and the activity markedly increases within the 

first 6 month of birth in humans (McCarver and Hines, 2002).  Genetic mutations 

in UGT1A1 lead to neonatal jaundice and kernicterus due to hyperbilirubinemia.  

Excessive 2-bp insertions (TA) in the promoter region of UGT1A1 is called 

Gilbert syndrome, resulting in decreased enzyme production.  Crigler-Najjar 

syndrome type I is associated with mutations resulting in a complete absence of 

Ugts, whereas type II is associated with mutations leading to decreased activity 

of the Ugts (Hirschfield and Alexander, 2006).  UGT1A6, which is important in the 

glucuronidation of acetaminophen, is absent in fetuses, only slightly increases in 

newborns, and does not reach adult levels until approximately 10 years of age 

(McCarver and Hines, 2002).  The delayed onset of the UGT2B subfamily has 

been found to be responsible for the adverse reactions to chloramphenicol 

therapy observed in neonates, commonly referred to as “Grey Baby Syndrome”, 

characterized by high serum and tissue drug levels (McCarver and Hines, 2002).   
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     For Gsts, lower Gst expression was observed in mouse livers at birth and the 

early postnatal period, whereas the expression of many Gst isoforms was higher 

in adults (Cui et al., 2010; Tee et al., 1992).  Maturation of these GSTs is 

essential during postnatal liver development, to protect the children from 

electrophiles and oxidative stress.  It has been demonstrated that polymorphisms 

in several GST genes are associated with increased susceptibility to childhood 

malignant diseases (Zielinska et al., 2004), and GSTP1 gene polymorphism is a 

risk factor for childhood asthma (Lee et al., 2004b).   

 

     For sulfotransferases, a comparative ontogeny study between SULT1A2 and 

1A3 was the first to demonstrate the expression of substantial SULT in fetal 

tissue (Cappiello et al., 1991).  The activity of SULT1A3 is higher in fetal liver, 

whereas SULT1A1 activity is higher in adult tissue.  SULT2A1 is lowly expressed 

in liver before 25 weeks of gestation, but markedly increases during the later half 

of gestation to approach adult levels in neonates.  SULT1C3 mRNA was also 

shown to be expressed in fetal liver (Barker et al., 1994; McCarver and Hines, 

2002).   

 

     For transporters, genetic inborn errors have been found in genes encoding 

certain transporters, leading to intrahepatic cholestasis in newborns.  For 

example, inborn error in human ATP8B1 results in progressive familial 

intrahepatic cholestasis (PFIC type I) (Davit-Spraul et al., 2010), an inborn error 

in human BSEP results in severe progressive familial intrahepatic cholestasis 
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(PFIC type II) (Wang et al., 2002), as well as hepatocellular carcinoma in young 

children (Knisely et al., 2006).  In addition, although the phospholipid transporter 

MDR3 (the human homolog of the mouse Mdr2) in liver does not transport bile 

acids, the defect in MDR3 also results in progressive familial intrahepatic 

cholestasis (PFIC type III) (de Vree et al., 1998).  Mdr2-null mice develop 

hepatocyte degeneration and focal necrosis, as well as abnormalities in bile 

composition (Smit et al., 1993).  Together these data have highlighted the 

importance of Mdr2/MDR3 in maintaining bile-acid circulation and liver protection.   

 

     Data from my previous work and other colleagues in the present laboratory 

have characterized the ontogeny of many drug-processing genes in the C57BL/6 

mouse model.  These genes include a few Cyps (Hart et al., 2009), and Aldhs 

(Alnouti and Klaassen, 2008) in phase-I metabolism; Ugts (Choudhuri et al., 

2010), Gsts (Cui et al., 2010), and Sults (Alnouti and Klaassen, 2006) in phase-II 

metabolism; as well as various transporters including Oatps (Cheng et al., 

2005a), Mdrs (Cui et al., 2009a), and Mrps (Maher et al., 2005b).  However, very 

little is known about the mechanisms underlying the regulation of these drug-

processing genes.  In this dissertation, the transcription factor-mediated genetic 

regulation, as well as epigenetic regulation of these genes will be discussed.   

 

Nuclear receptors and other transcription factors in regulating drug 

metabolism and transport.  
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     Nuclear receptors and other transcription factors/co-factors for xenobiotics 

and endogenous compounds are important in regulating the metabolism and 

disposition of chemicals.  Nuclear receptors are ligand-activated transcription 

factors that have a typical modular structure.  They contain a highly conserved 

DNA-binding domain in the N-terminal region, and a moderately conserved 

ligand-binding domain in the C-terminal region.  The classifications, distribution, 

and functions of nuclear receptors have been integrated in the Nuclear Receptor 

Signaling Atlas (NURSA, http://www.nursa.org/).  In humans, there are 48 

nuclear receptors identified according to their sequence homology, falling into 7 

subfamilies, including thyroid hormone-receptor like, retinoid X receptor-like, 

estrogen-receptor-like, nerve growth factor IB-like, steroidogenic factor-like, germ 

cell nuclear factor, and miscellaneous members (Table 1.2).  

 

PXR.  Among various types of nuclear receptors, the pregnane X receptor (PXR; 

NR1I2) is a key regulator in mediating xeno- and endobiotic metabolism and 

disposition in liver, serving as a critical component of the liver’s defense against 

toxic substances (Kliewer et al., 2002).  As a member of the nuclear receptor 

family, PXR is a ligand-activated transcription factor that functions with its binding 

partner, the retinoid X receptor (RXR).  Once activated, the PXR/RXR complex 

binds to DNA in the nucleus and regulates gene transcription (Kliewer et al., 

1998).  PXR is highly expressed in mammalian liver, and its DNA-binding domain 

is highly conserved across species (Kliewer et al., 2002).  However, the ligand 

binding domain displays more variability among species, allowing PXR to be 
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Table 1.2 
 
Subfamily of 
NRs 

Type of NRs Members of NRs in the Subfamily  

Subfamily 1 Thyroid-hormone 
receptor like  

thyroid hormone receptors (TRα and β), 
retinoic acid receptor (RXRα, β, and γ), 
peroxisome proliferator-activated receptor 
(PPARα, β/σ, and γ), Rev-ErbAα and β, 
RAR-related orphan receptors (RORα, β, 
and γ), liver X receptor-like (LXRα, β, and γ), 
farnesoid X receptor (FXR), and vitamin D-
receptor like including vitamin D receptor 
(VDR), pregnane X receptor (PXR), 
constitutive androstane receptor (CAR) 

Subfamily 2 Retinoid X 
receptor-like 

hepatocyte nuclear receptor factor-4 
(HNF4α and γ), retinoid X receptors (RXRα, 
β, and γ), testicular receptors (TR2 and 4), 
TLX/PNR (human homologue of the 
Drosophila tailess gene, and photoreceptor 
cell-specific nuclear receptor), COUP/EAR 
(Chicken ovalbumin upstream promoter-
transcription factors (COUP-TFI and II), V-
erbA-related gene (EAR-2) 

Subfamily 3 Estrogen 
receptor-like 
members 

estrogen receptors (ERα and β), estrogen-
related receptors (ERRα, β, and γ), 
glucocorticoid recetpr (GR), 
mineralocorticoid receptor (MR), 
progesterone receptor (PR), androgen 
receptor (AR) 

Subfamily 4 nerve growth 
factor IB-like 

nerve growth factor IB (NGF1B), nuclear 
receptor related 1 (NURR1), neuron-derived 
orphan receptor 1(NOR1) 

Subfamily 5 steroidogenic 
factor like 

steroidogenic factor (SF1), liver receptor 
homolog-1 (LRH-1) 

Subfamily 6 germ cell nuclear 
factor 

germ cell nuclear factor (GCNF) 

Subfamily 0 miscellaneous DAX/SHP (dosage-sensitive sex reversal, 
and renal hypoplasia critical region, on 
chromosome X, gene 1, small heterodimer 
partner), nuclear receptors with two DNA 
binding domains (1DBD-NR) 
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activated by a wide spectrum of chemicals, including various drugs like the 

antibiotic rifampicin, the anti-inflammatory drug dexamethasone, and the 

anticonvulsant phenobarbital (Kliewer et al., 2002), environmental 

polybrominated diphenyl ethers (PBDE) (Pacyniak et al., 2007), and endogenous 

chemicals, such as bile acids (Staudinger et al., 2001; Xie et al., 2001).  Although 

PXR ligands can be species specific, the target gene profiles share marked 

similarities between rodents and humans, including genes encoding drug 

metabolizing enzymes and transporters (together termed “drug-processing 

genes” in this study).  The synthetic compound PCN, is a potent activator of 

mouse PXR, and is widely used by researchers to recapitulate human PXR 

activation in rodents (Kliewer et al., 1998).  

 

     Data from this and other laboratories have shown that numerous drug-

processing genes in mouse liver are up-regulated following PCN administration 

(Cheng et al., 2005b; Maher et al., 2005a; Alnouti et al., 2008b; Alnouti and 

Klaassen, 2008; Knight et al., 2008).  For example, our laboratory has shown that 

18 drug-processing genes are induced by PXR in mouse liver, but only a few 

genes have been shown to be direct PXR targets (Kliewer et al., 2002; Zhou et 

al., 2006; Zhou et al., 2008).  It remains to be determined whether the induction 

of critical drug-processing genes is due to direct trans-activation by PXR or due 

to secondary effects.  More importantly, as it is becoming increasingly evident 

that PXR has novel physiological functions, such as trans-activating genes 

involved in lipid metabolism (Zhou et al., 2006; Zhou et al., 2008) and cell 
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proliferation (Guzelian et al., 2006), novel PXR-target genes need to be 

characterized, and this will fill a critical knowledge gap in predicting and further 

understanding the multifaceted roles of PXR in liver.   

 

     Numerous studies have characterized PXR response elements.  It has been 

shown that PXR binds to AGGTCA-like direct repeats separated by 3 or 4 base 

pairs (DR-3 and DR-4) and everted repeats separated by 6 or 8 base pairs (ER-6 

and ER-8) (Kliewer et al., 2002).  Unfortunately, most of these findings are based 

on naked DNAs (such as in gel-shift assays), or cell cultures of non-hepatic origin 

with certain proteins artificially over-expressed, or cryopreserved hepatocytes 

that may have lost many features of in vivo cells.  In addition, most studies have 

limited the detection range for PXR binding only to the gene promoter regions. 

Such designs are inherently biased, in that they do not seek to detect novel 

genomic PXR binding sites that may be equally important for gene regulation.  It 

is therefore necessary to determine the most preferred DNA-binding signatures 

for PXR in vivo.  Recent technological advancements, including ChIP-on-chip 

and ChIP-sequencing (ChIP-Seq), have made such unbiased genome-wide 

investigations possible (Margolin et al., 2009; Schmidt et al., 2009).  

 

FXR.  Whereas PXR is generally considered as a xenobiotic sensor, the 

Farnesoid X Receptor (FXR, NR1H4) is the major bile-acid sensor in liver.  Once 

activated by bile acids, FXR down-regulates the major bile-acid uptake 

transporter Ntcp (Zollner et al., 2005), up-regulates the main bile-acid efflux 
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transporter Bsep (Plass et al., 2002), and up-regulates the basolateral bile-acid 

efflux transporters Ost and  (Zollner et al., 2006).  In addition, intestinal FXR 

down-regulates the major liver enzyme for bile-acid synthesis, Cyp7a1, through a 

mechanism that involves the stimulation of the intestinal signal fibroblast growth 

factor 15 (Fgf15), which travels to the liver and eventually represses Cyp7a1 

mRNA expression (Inagaki et al., 2005).  In various liver disease models, FXR 

serves as a negative feedback mechanism to reduce hepatic bile-acid 

concentrations.  FXR-null mice have elevated serum bile-acid concentrations in 

adults (Sinal et al., 2000), indicating the important role of FXR in bile-acid 

synthesis and/or disposition.  In addition to regulation of bile-acid synthesis and 

metabolism, a large body of evidence indicates that FXR is important in 

regulating lipid and glucose metabolism (Chiang, 2004).  Less is known of the 

role of FXR during liver development.  However, clinically, decreased FXR 

expression in ileum was observed in children with progressive familial 

intrahepatic cholestasis type I (Chen et al., 2004), and functional variants of FXR 

in liver have been identified in intrahepatic cholestasis of pregnancy (Van Mil et 

al., 2007), indicating FXR is important for both perinatal and maternal bile-acid 

homeostasis.   

 

PPARα and PGC-1α.  The peroxisome proliferator-activated receptor α (PPAR, 

NR1C1) and peroxisome proliferators-activated receptor γ coactivator 1 (PGC-1, 

Ppargc1a) are two important metabolic regulators in liver for nutrient 

homeostasis.  PPARα is an essential nuclear receptor that regulates fatty acid 
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metabolism, and is therefore termed the “lipid sensor”.  In contrast, PGC-1α is a 

transcription co-activator important for the metabolism of glucose.  PPARα was 

first identified by Issemann and Green in 1990, and was named “PPAR” because 

its activation increases hepatic peroxisome volume and density, or peroxisome 

proliferation.  PPAR-null mice are resistant to peroxisome proliferation in 

response to administration of PPAR ligands (Lee et al., 1995).  PPARα is 

expressed abundantly in liver where it regulates fatty-acid catabolism, as well as 

a few other organs including heart, muscle, and kidney.  The endogenous ligands 

for PPARα are fatty acids that bind PPARα with relatively low affinities, and 

exogenous PPARα ligands including fibrates are used to treat 

hypertriglyceridemia in patients.  In addition, a few potent agonists have been 

used in the laboratory for non-human studies (GW7647, Wy-14643).  Upon 

ligand activation, PPARα hetero-dimerizes with the retinoid X receptor (RXR), 

and binds to the response element of a large battery of target genes involved in 

lipid homeostasis.  For example, PPARα stimulates peroxisomal -oxidation of 

fatty acids to produce energy.  The -oxidation of fatty acids shortens long-chain 

fatty acids, and thus prevents lipid accumulation and toxicity.  It also up-regulates 

fatty acid transport protein and long-chain acyl-CoA synthetase genes in liver, 

induces the expression of mitochondrial HMG-CoA synthetase to form ketone 

bodies, increases apolipoproteins apoA-I and apoA-II, and decreases apoC-III (Li 

and Glass, 2004).  Consequently, PPARα activators increase HDL and decrease 

triglyceride levels.  PPARα also regulates cholesterol homeostasis in 

macrophages.  For example, PPARα activation can lead to the induction of LXRα 
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expression, and LXRα then stimulates the expression of the cholesterol efflux 

transporter ABCA1, and promotes efflux of cholesterol to apoA-I (Chinetti et al., 

2001).  PPARα can also inhibit esterification and increase the efflux of free 

cholesterol in human macrophages (Chinetti et al., 2000; Chinetti et al., 2003).   

 

     PGC-1α is a critical transcriptional coactivator in liver to promote 

gluconeogenesis (Yoon et al., 2001).   PGC-1α was first identified in brown 

adipose tissue as a key regulator of adipocyte differentiation (Puigserver et al., 

1998), and it was later found that PGC-1α is a versatile metabolic regulator for 

adaptive thermogenesis, mitochondrial biogenesis, and fuel homeostasis 

(Puigserver and Spiegelman, 2003) in various organs.  Although the basal 

expression of PGC-1α is low in liver, which is the major producer of glucose, the 

hepatic expression of PGC-1α is increased markedly by fasting (Yoon et al., 

2001) and in type I diabetes (Puigserver and Spiegelman, 2003).  It has been 

shown that PGC-1α activates glucose biosynthesis by inducing all three key 

genes of gluconeogensis in primary hepatocytes, namely phosphoenol-pyruvate 

carboxykinase (PEPCK), fructose 1,6-bisphosphatase, and glucose 6-

phosphatase (Yoon et al., 2001).  PGC-1α stimulates a 3-fold increase in glucose 

secretion by hepatocytes when provided with gluconeogenic precursors such as 

lactate, pyruvate, glycerol, and alanine (Puigserver and Spiegelman, 2003).  In 

addition to promoting glucose biosynsthesis, PGC-1α also cooperates with 

PPARα in  the transcriptional control of genes encoding mitochondrial fatty acid 

oxidation enzymes (Vega et al., 2000).  As a coactivator of transcription, PGC-1α 
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exerts its function by direct interaction with transcription factors after being 

recruited to particular sequences in gene promoters, and it has been shown that 

PGC-1α can recruit proteins that contain histone acetyl-transferase activities that 

consequently unwind the chromatin to promote gene transcription (Puigserver et 

al., 1999).   

 

     Recent evidence suggests that PPARα and PGC-1α may be important during 

development, as they may mediate adaptations to changes in nutrient supply.  It 

has been shown that PPARα-null mice have severe fatty infiltration and elevated 

triglycerides in liver under fasting conditions (Lee et al., 2004a).  In humans, a 

genetic defect in PGC-1α signaling results in a defect in hepatic energy 

metabolism, and death usually occurs between 6 months and 12 years of age 

(Cooper et al., 2006).   

 

AhR.  The aryl hydrocarbon receptor (Ahr) is well recognized as a ligand-

activated transcription factor for aromatic hydrocarbons, including TCDD (2,3,7,8-

tetrachlorodibenzo-p-dioxin) and polycyclic aromatic hydrocarbons.  In mice, Ahr 

is most enriched in lung, and is expressed at intermediate levels in liver and the 

gastrointestinal tract (Petrick and Klaassen, 2007).  In the absence of a ligand, 

Ahr is sequestered in the cytosol by two molecules of heat-shock protein 90 

(HSP90).  Upon ligand binding, Ahr is released from HSP90, translocates into the 

nucleus, and dimerizes with the Ahr nuclear translocator (ARNT).  (ARNT is 

constitutively localized in the nucleus.)  The Ahr-ARNT heterodimer then binds to 
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the xenobiotic response element of target genes, and usually increases gene 

transcription (Li et al., 1994; Ma et al., 1995). 

 

     Ahr regulates the expression of a large battery of drug-metabolizing genes, 

including the prototypical target genes CYP1A1, 1A2, and 1B1 (Rowlands and 

Gustafsson, 1997), several liver aldehyde dehydrogenases in mice (Alnouti and 

Klaassen, 2008), some liver UDP glucuronosyltransferases in rats (Shelby and 

Klaassen, 2006) and mice (Buckley and Klaassen, 2009), the organic anion 

transporting polypeptides 2b1 and 3a1 in mice (Cheng et al., 2005),  and some 

multidrug resistance-associated protein efflux transporters in mice (Cheng et al., 

2005b; Maher et al., 2005a).   

 

    In addition to its role in drug metabolism, Ahr is also important for normal liver 

development.  Ahr-null mice have been engineered, either by deleting exon 1 

(Fernandez-Salguero et al., 1995; Gonzalez and Fernandez-Salguero, 1998) or 

exon 2 (Schmidt et al., 1996; Harstad et al., 2006).  Common phenotypes of the 

two lines of Ahr-null mice include a marked decrease in liver size per gram of 

body weight, moderate hepatic portal fibrosis, and decreased constitutive 

expression of certain xenobiotic-metabolizing enzymes, such as Cyp1a2 (Lahvis 

and Bradfield, 1998).  In addition to the common liver phenotypes, Ahr-null mice 

with exon 1 deletion also have increased mortality within the first 2 weeks of age,  

hyper-proliferative blood vessels in the portal areas of the liver, glycogen 

depletion in liver, inflammation of bile ducts, and adenocarcinomas with aging 
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(Gonzalez and Fernandez-Salguero, 1998).  In contrast, Ahr-null mice with exon 

2 deletion are viable and fertile, but exhibit a spectrum of hepatic defects 

including transient microvesicular fatty metamorphosis, prolonged extramedullary 

hematopoiesis, and portal hypercellularity with thickening and fibrosis (Schmidt et 

al., 1996).   

 

     Very little is known about the ontogenic expression patterns, regulatory 

mechanisms, as well as the roles of these nuclear receptors and co-factors in 

liver development.  Therefore, the expression signatures and functions of these 

factors will be examined in the present dissertation, in parallel with the 

characterization of drug-processing genes in postnatal liver maturation.  The 

highly expressed xenobiotic sensor PXR, bile-acid sensor FXR, lipid sensor 

PPARα, glucose sensor PGC-1α, as well as the aryl-hydrocarbon receptor for 

detoxifying environmental aromatic hydrocarbons, will be emphasized in these 

studies.   

 

Molecular targets of epigenetic regulation.   

     Besides nuclear receptor-mediated gene transcription, it has become 

increasingly evident that gene regulation during development is under stringent 

epigenetic control (Kiefer, 2007).  As reviewed by Choudhuri et al. (2010), the 

term “epigenetics” was defined by Conrad Waddington in 1942 to describe 

developmental events leading from fertilization to the mature organism.  In the 

context of genetics and molecular biology, epigenetics is defined as the “study of 
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mitotically or meiotically heritable changes in gene function that cannot be 

explained by changes in DNA sequence” (Riggs, 1996).  Current studies on 

epigenetic modifications focus on DNA methylation and histone modifications.  In 

general, alterations in DNA methylation status and chromatin environment are 

the ultimate regulatory mechanisms of gene transcription, as they determine 

whether the transcription machinery will be recruited to the gene promoters.  The 

understanding of epigenetics has evolved over time as the knowledge increased 

on DNA methylation and chromatin modifications and their effects on gene 

expression (Felsenfeld, 2007; Reinberg, 2007).  The current explosion of 

research on DNA methylation and chromatin modification has expanded the 

scope of research on drug metabolism and transport during liver development.  

Epigenetic inheritance involves the information transfer (epigenetic mark) not 

encoded in the DNA sequence, from parent cell to daughter cells, and from 

generation to generation.  Epigenetic mark is like a bookmark that flags the 

chromatin state, “on” or “off”, “open” or “closed”, so it may be identified and 

maintained in the daughter cells (Choudhuri, 2009a).  In the spirit of the term 

genomics, the term epigenomics has come into existence, and is a new frontier 

that studies epigenetic changes at the level of the entire genome (Callinan and 

Feinberg, 2006).   

 

     Chromatin (the DNA–histone complex in the nucleus) can be envisioned as a 

repeat of structural units called “nucleosomes” (Figure 1.2).  The nucleosome 

core particle is composed of a histone octamer and the DNA that wraps around it.   
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Figure 1.2 

 

      

 

 

 

 

 

 

 

 

 

 

Figure 1.2.  The hierarchy of organization from chromosome to nucleosome. 

(Chouhuri et al., 2010) 
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Histones are globular basic proteins with a flexible N-terminus (the so-called ‘tail’) 

that protrudes from the nucleosome.  Histones are subject to various covalent 

modifications, and histone modifications occur primarily on the tail.  The histone 

octamer contains two molecules each of histones H2A, H2B, H3, and H4.  DNA 

wraps around the octamer in a left-handed supercoil of about 1.70 turns that 

contains approximately 150bp.  Histone H1 is the “linker histone” that, along with 

“linker DNA” (the DNA in between two nucleosome core particles), physically 

connects the adjacent nucleosome core particles.  The length of linker DNA 

varies with species and cell types.  Although the DNA associated with the histone 

octamer is approximately 150bp, the entire nucleosome also includes part of the 

DNA on both sides of the core particle; hence the full nucleosome encompasses 

approximately 180- and 200-bp of DNA.  Chromatin can undergo changes in its 

conformation in response to various cellular metabolic demands.  Altered 

chromatin conformation, in turn, can limit or enhance the accessibility and 

binding of the transcription machinery, thereby precipitating an epigenetic effect 

on transcription.   

 

     Transcriptional silencing is the result of a condensed state of chromatin 

brought about by DNA methylation.  It is thought to be achieved by two 

mechanisms; both are supported by experimental evidence: 1) recruitment of 

methyl CpG-binding transcriptional repressors, and 2) interference with the DNA 

binding of transcriptional activators.  DNA methylation involves covalent 

modification of cytosine (C) bases at the carbon-5 position of CG dinucleotides 
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(5-MeC), referred to as CpG dinucleotides.  The enzyme involved is DNA 

methyltransferase, known as DNMT, and the methyl donor is S-

adenosylmethionine (SAM).  The C of CpG is methylated in both strands of DNA.  

In the genome, CpGs may or may not occur in clusters.  CpG clusters, i.e., CpG-

rich sequences of the genome, are known as CpG islands.  By definition, CpG 

islands are genomic regions that are at least 200-bp long with 50% or higher 

G+C content and 60% or higher observed/expected CpG ratio (Fazzari and 

Greally, 2004).  In mammalian cells, the majority of CpG sites that do not exist as 

CpG clusters are methylated, such as satellite DNA, repetitive elements (e.g., 

transposons), non-repetitive intergenic DNA, and exons of genes.  Exceptions to 

this general CpG methylation paradigm are the CpG islands, which are 

unmethylated CpG clusters (Illingworth and Bird, 2009).  In other words, isolated 

CpG sites are methylated but CpG clusters (CpG islands) are not methylated. 

Although CpG islands generally remain methylation-free, the methylated state of 

CpG islands with low levels of DNA methylation has also been reported (Wise 

and Pravtcheva, 1999; Straussman et al., 2009).  A number of factors may 

dictate these undermethylated states of CpG islands, such as local sequence 

features, Sp1 binding sites, specific cis-acting enhancer elements, as well as 

specific histone methylation marks, which prevent the binding of the de novo 

methylation complex (Straussman et al., 2009).  Methylation of the C of CpG is 

associated with transcriptional silencing, and the absence of methylation is 

associated with active transcription.  Thus, unmethylated CpG islands are 

associated with the promoters of transcriptionally active genes, such as 
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housekeeping genes and many regulated genes, such as genes showing tissue-

specific expression. How CpG islands remain unmethylated remains unclear (Li 

and Bird, 2007).  

 

     Histone modification is a covalent modification that precisely regulates DNA 

repair, chromatin assembly/disassembly, and gene transcription.  Histones are 

subject to many different types of reversible covalent post-translational 

modifications, such as acetylation, methylation, phosphorylation, ADP-

ribosylation, ubiquitination, and sumoylation.  The roles of these histone 

modifications in gene transcription are listed in Table 1.3.  

 

     Of these types of histone modifications discussed in Table 1.3, histone 

acetylation (ac) is a transcription-activating modification that is achieved by the 

addition of an acetyl group (–CH3CO) from acetyl Coenzyme A, to one or more 

lysine residues at the -amino group by histone acetyltransferases (HATs). 

Acetylation reduces the overall positive charge of histones by neutralizing the 

positive charge of the target lysine; therefore, it decreases the affinity of the 

histone for the negatively charged DNA.  A reduced DNA–histone interaction 

results in a decondensed, relaxed (i.e., open) chromatin conformation, which 

allows the transcriptional activators to gain access to their cognate recognition 

elements and initiate/enhance transcription.  Many transcriptional coactivators 

have HAT activity.  Histone acetylation and its stimulatory effects on transcription 

have been known for long time.  Some other histone modifications are 
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Table 1.3: Some transcriptional activating and repressing histone 

modifications (Chouhuri et al., 2010) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Activating modifications Repressing modifications 

Acetylation:  
H2A: K5, K9, K13 
H2B: K5, K12, K15, K20 
H3:    K9, K14, K18, K23, K56 
H4:    K5, K8, K13, K16 

 

Methylation: 
H3:    K4, K36, K79 
H3:    R17, R23 
H4:    R3 

Methylation: 
H3:    K9, K27 
H4:    K20 

Phosphorylation: 
H3:    T3 
H3:    S10, S28 
H3:    Y41 
H2AX: S139 (for DNA repair) 

 

Ubiquitination: 
H2B: K120,  
H2B: K123 (yeast) 

Ubiquitination: 
H2A:  K119 

 Sumoylation: 
H2A:  K126 (yeast) 
H2B:  K6, K7 (yeast) 
H4:     K5, K8, K12, K16, K20 



 32

transcription activating but some are transcription repressing, yet others may 

have transcription activating or repressing effects depending on which amino 

acid residue of histone is modified.   

 

     Histone methylation (me) is catalyzed by histone methyltransferases (HMTs) 

at lysine and arginine residues, primarily of histone H3 and H4.  The methyl 

group donor is S-adenosylmethionine (SAM).  Methylation increases the bulk but 

does not interfere with the charge.  Methylation can be mono- (me), di- (me2), or 

trimethylation (me3).  Histone phosphorylation (ph) is a transcription-activating 

modification.  It is achieved by kinase-catalyzed addition of the negatively 

charged -phosphate, usually from ATP or GTP, to one or more serine and/or 

threonine residues of histone H3; serine 10 being a frequent target (H3S10ph). 

The addition of a negatively charged phosphate to the N-terminal of histone tails 

presumably disrupts the electrostatic interactions between histones and DNA, 

thereby destabilizing local chromatin conformation, and triggering transcriptional 

activation.  

 

     For histone ubiquitination (ub), it has been shown in vivo that histone H1, H2A, 

H2B, and H3 can all be ubiquitinated at lysine residues, but H2A and H2B 

ubiquitinations are the most common.  H2BK123ub in yeast is required for 

histone H3K4 and H3K79 methylation.  H3K4 and H3K79 methylation in turn 

activate gene transcription.  Ubiquitination of histone H1 results in its release 

from the DNA; this helps reduce chromatin condensation and facilitates 
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transcriptional activation.  Histone de-ubiquitination is carried out by ubiquitin 

proteases.  

 

     Histone ADP-ribosylation is catalyzed by ADP-ribosyltransferase and involves 

the transfer of ADP-ribose moiety of NAD+ to a specific amino acid of the 

acceptor protein with the simultaneous release of nicotinamide.  Arginine, 

glutamate and lysine residues in the histone are frequently subject to ADP-

ribosylation.  Histones are ADP-ribosylated in response to DNA damage.  DNA 

strand breaks are recognized by poly (ADP-ribose) polymerase-1 (PARP-1), 

which catalyzes histone ADP-ribosylation at the lysine residues.  The resulting 

negative charge to the histone causes electrostatic repulsion between the 

histone and the negatively charged DNA.  This leads to the pulling of the DNA 

away from the histones, hence loosening the chromatin structure and making it 

more accessible to repair enzymes (Edwards and Myers, 2007).     

 

     Histone sumoylation occurs at the lysine residues, and was first reported in 

2003 in human cell lines (Shiio and Eisenman, 2003).  Small ubiquitin-related 

modifier (SUMO) is a member of a growing family of ubiquitin-like proteins 

involved in posttranslational modifications of proteins implicated in crucial cellular 

processes, such as cell-cycle regulation, transcription, nucleocytoplasmic 

transport, DNA replication and repair, chromosome dynamics, apoptosis, and 

ribosome biogenesis (Vertegaal et al., 2006).   
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     Among various types of histone modifications described above, histone H3 

lysine-4 di-methylation (H3K4Me2) is a more specific epigenetic mark related to 

initiation of gene transcription, evidenced by the presence of H3K4Me2 in 

promoters and transcribed regions of many active genes; whereas H3 lysine-27 

tri-methylation (H3K27Me3) is associated with suppression of gene transcription.  

Compared to other types of histone modifications, namely, acetylation, 

ubiquitination, phosphorylation, poly-ADP-ribosylation and sumoylation, histone 

methylations are more stable and the enzymes that catalyze the histone 

methylation are implicated in playing essential roles during development (Barski 

et al., 2007).  Therefore, methylations of histone were selected in the present 

study over other types of histone modifications.  

 

     Although the genetic regulation of various drug-metabolizing enzymes and 

transporters has been studied for many years, studies on their epigenetic 

regulation is relatively recent.  A number of publications have demonstrated 

various aspects of the epigenetic regulation of drug and xenobiotic enzymes and 

transporters.  Various CYP isoforms in humans that have been shown to have an 

epigenetic component in their regulation include CYP1A1, 1A2, 1B1, 2E1, 2W1, 

and 2A13 (Rodriguez-Antona et al., 2010).  The epigenetic aspect of regulation 

of CYP enzymes may explain, at least in part, the observed inter-individual 

variability in their expression, and further modulate an individual’s genetic ability 

to cope with environmental chemicals, including drugs.  For example, DNA 

methylation is an important epigenetic mechanism regulating CYP1A1 mRNA 
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expression.  In a prostate cancer cell line LNCaP, promoter methylation of the 

CYP1A1 gene prevents the binding of the AhR complex to the dioxin response 

element (DRE), resulting in repression of CYP1A1 mRNA expression (Okino et al. 

2006).  In contrast, hypomethylation of the promoter in noncancerous cell lines, 

PWR-1E and RWPE-1, facilitates binding of the nuclear receptors to the direct 

repeat elements (DRE).  For CYP1A2, a single CpG in the sequence CCGG at 

position –2759 and next to the AP-1 binding site in the 5′-flanking region can 

reduce CYP1A2 gene expression (Hammons et al., 2001).  The epigenetic 

regulation of CYP1A2 expression may explain the great degree of inter-individual 

variability observed in CYP1A2 expression, and the ability to metabolize CYP1A2 

substrates.  Similar promoter/enhancer methylation-driven alterations in 

expression has been reported for CYP1B1, CYP2E1, CYP2W1, and CYP2A13 

genes, whereas hypermethylation is associated with decreased expression, and 

hypomethylation is associated with increased expression (reviewed by 

Rodriguez-Antona et al., 2010).  In addition to DNA methylation, it has been 

shown in the mouse Hepa-1 cell line that chromatin structure also plays an 

essential role in Cyp1a1 gene transcription.  Specifically, induction of Cyp1a1 

gene transcription is strongly associated with hyperacetylation of histone H3K14 

and H4K16, as well as other modifications, such as H3K4me3 and H3S10ph 

(Schnekenburger et al., 2007).   

 

     In an effort to understand whether the developmental switch between 

Cyp3a16 (neonatal isoform) and Cyp3a11 (adult isoform) expression in mouse 
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has an epigenetic basis, Li et al (2009) studied DNA methylation, and histone 

modifications (H3K4me2, H3K27me3) around the Cyp3a locus at various 

developmental stages, from prenatal through neonatal to young adults.  No DNA 

hypermethylation was observed at the Cyp3a locus at any age.  However, the 

expression of Cyp3a16 in neonatal livers and Cyp3a11 in adult livers was 

strongly correlated with increases in H3K4me2, which is a gene expression-

promoting histone modification.  Likewise, the suppression of Cyp3a16 

expression in adult livers correlated with decreases in H3K4me2 and increases in 

H3K27me3, the latter being a gene expression-repressing histone modification. 

Thus, the developmental switch between Cyp3a11 and Cyp3a16 gene 

expression is controlled by dynamic epigenetic regulation of these loci through 

histone modifications.  An earlier study (Jin et al., 2004) showed that mouse 

Cyp1a2 gene expression coincides well with the methylation status of DNA 

during liver development.  For phase-II drug and xenobiotic metabolizing 

enzymes, we have demonstrated that the adult-enriched permissive signal 

H3K4me2, in the absence of suppressive signals like DNA methylation or 

H3K27me3 at any age, marks the adult-specific expression of Ugt2 and Ugt3 

(UDP-glucuronosyltransferase 2 and 3) gene polycistron clusters in mouse liver 

(Choudhuri et al., 2010).  Taken together, the “time-clock” for the ontogeny of 

drug-metabolizing enzymes appears to be at least in part determined by distinct 

epigenetic signatures.   
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     Just like the drug- and xenobiotic-metabolizing enzymes, the regulation of 

various drug and xenobiotic transporters also show an epigenetic component.  

Recently, Imai et al. (2009) reported the analysis of DNA methylation and histone 

modification profiles of various mouse liver-specific transporter genes, such as 

Oatp1b2 (Slco1b2), Ntcp (Slc10a1), Bsep (Abcb11), as well as Abcg5 and Abcg8.  

Methylation analysis around the transcription start site (TSS) of these genes in 

liver, kidney and cerebrum showed that the CpG dinucleotides around the TSS of 

Oatp1b2, Ntcp, Bsep, and Abcg5/8 are hypomethylated in the liver but 

hypermethylated in the kidney and cerebrum.  The opposite pattern was 

observed for Pept2, which is expressed in the kidney and cerebrum but not in the 

liver.  Thus, the CpG methylation pattern correlates directly with the expression 

pattern of these transporters.  Promoter histone modification status also 

correlates well with the expression of these transporters.  Chromatin 

immunoprecipitation experiments demonstrated histone H3 hyperacetylation in 

the promoters of hepatic Oatp1b2, Ntcp, Bsep and Abcg5/8, but little acetylation 

in the kidney and cerebrum.  In contrast, the upstream region of Pept2 is 

hyperacetylated only in the kidney and cerebrum where it is expressed.  In 

mouse liver, the efflux transporters Mdr1a and 1b mRNAs are expressed at a low 

level, but Mdr2 mRNA is expressed at a high level and is induced right after birth 

(Cui et al., 2009).  Distinct epigenetic signatures were also identified around the 

Mdr gene cluster.  The permissive signal H3K4me2 was only observed in the 

Mdr2 gene locus, and the Mdr2 mRNA is highly expressed in liver, whereas the 

non-permissive signal H3K27me3 was not observed at any regions within this 
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gene cluster.  In addition, DNA hypermethylation was observed within the 3′-UTR 

regions of Mdr1a and 1b, corresponding to low mRNA expression of Mdr1a and 

1b at all ages.  In contrast, DNA methylation was observed in the intragenic 

region of Mdr2 with relatively less enrichment.  Thus, differential epigenetic 

signatures appear to correlate, at least in part, with the expression of Mdr genes 

in liver.  Therefore, the data from the above studies demonstrate the existence of 

distinct epigenetic components in the regulation of tissue-specific expression of 

many transporters.  Conceivably, the same principle may also apply for 

transporters of other species including humans.  A similar promoter methylation-

driven regulation of expression was reported earlier for the mouse Abcc6 (Mrp6) 

gene (Douet et al., 2007), and human OAT3 gene (Kikuchi et al., 2006).  In mice, 

high and moderate levels of methylation of the Abcc6 promoter correlate with low 

levels of Abcc6 expression.  Abcc6 expression in kidney, tail extremity, and skin 

was determined to be ~5%, 1%, and 0.1% of that in liver where it is expressed at 

the highest level.  The mechanism of repression of Abcc6 gene expression was 

found to be CpG methylation-driven interference of the binding of the 

transcription factor Sp1, thereby inhibiting Sp1-dependent transcription.   

 

     Although some work has been done in characterizing the roles of epigenetic 

marks in regulating drug-processing genes in adults, very little is known about 

their roles during liver development.  The epigenetic aspect of regulation of 

various drug and xenobiotic metabolizing enzymes and transporters may provide 
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an explanation of different ontogenic expression patterns of the drug-processing 

genes.   
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CHAPTER TWO.  STATEMENT OF PURPOSE 

     Very little is known of the ontogenic expression of phase-I and –II drug 

metabolizing enzymes and transporters during postnatal liver maturation, nor the 

genetic and epigenetic mechanisms underlying the regulation of these drug 

processing genes.  Therefore, the present dissertation is poised to fill this critical 

knowledge gap, using multidisciplinary approaches.  Four aims have been 

included in this dissertation, based on the categories of drug processing genes 

and transcription factors.  The central hypothesis is that the developmental 

regulation of drug-processing genes is a sequential event regulated by distinct 

chromatin epigenetic signatures, which set a permissive environment for 

transcription factor recruitment, and trans-activation of target genes during 

postnatal liver maturation, forming age-specific expression patterns of the drug-

metabolizing enzymes and transporters.  

 

     Aim 1 was designed to characterize the expression of known and novel 

cytochrome P450 genes in liver during development.  For this study, I have 

focused on the ontogeny of the first four families of cytochrome P450s (Cyp1-4), 

and these Cyps are important for drug metabolism.  Last year, we and our 

collaborator’s laboratory characterized the ontogeny of 19 Cyps in mouse liver, 

and addressed the epigenetic mechanisms underlying the molecular switch of 

the Cyp3a genes during liver development (Hart et al., 2009; Li et al., 2009).  As 

genome-scale investigations have identified many novel Cyp isoforms recently, it 

is critical to perform a systematic characterization of these Cyps during liver 
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development.  In this study, livers were collected from C57BL/6 mice at 2 days 

before birth and various postnatal ages.  The mRNAs of 75 Cyp isoforms (Cyp1-

4) were quantified by the bDNA assay and RT-qPCR, and analyzed by 

hierarchical clustering.  The conservation of these Cyps for humans and their 

genomic locations were examined.  The PXR-mediated genetic mechanisms 

were determined by ChIP-Seq, and as we reported previously, the epigenetic 

mechanisms for the regulation of these Cyps were determined by ChIP-on-chip.  

 

     Aim 2 was designed to characterize the ontogeny and regulatory mechanisms 

for phase-II metabolism, mainly focusing on the Gsts, which are critical phase-II 

enzymes in protecting cellular macromolecules against electrophiles and 

oxidative stress.  The ontogeny of 19 known Gst isoforms were investigated in 

mouse liver during development, and various ontogenic patterns were defined by 

a two-way hierachical clustering dendrograph.  The PXR-binding signatures and 

epigenetic marks were also examined.   

 

    Aim 3 was designed to determine the ontogeny of liver transporters for the 

disposition of xeno- and endobiotics.  The ontogeny of the major liver 

transporters for the enterohepatic circulation (EHC) of bile acids, as well as the 

ontogeny of other xenobiotic transporters was determined in this study.  The 

molecular mechanisms underlying the neonatal induction of bile-acid transporters 

were characterized using nuclear-receptor gene null mice (FXR-null and PXR-

null).  The ontogenic expression of bile-acid biosynthetic enzymes was 
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determined by bDNA assays, and the concentrations of various bile acids were 

quantified in liver and serum by LC-MS/MS to identify novel biomarkers in 

mediating the increase of these EHC transporters.  For xenobiotic transporters, 

the PXR-DNA binding signatures of these genes were characterized.  A novel 

PXR-DNA binding motif was identified in the xenobiotic uptake transporter 

Oatp1a4, and confirmed in vitro by an ELISA-based transcription factor binding 

assay.  The epigenetic mechanisms underlying the regulation of some of these 

transporters were also discussed.   

 

     Aim 4 was designed to characterize the ontogeny of transcription factor genes.  

The ontogenic expression of over seventy transcription factors was determined 

by messenger RNA assays.  The epigenetic mechanisms underlying the 

developmental regulation of AhR, PPARα, as well as PGC-1α (co-activator) have 

been determined.  

 

     In summary, by integrating various research models and high-throughput 

technologies, the present studies have examined the expression patterns and the 

mechanisms for the ontogeny of drug-processing genes and regulatory factors 

during liver development.  The present study has provided novel insights into 

identifying and further understanding the molecular targets for efficacious and 

safe drug treatments in children.   
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CHAPTER THREE.  EXPERIMENTAL MATERIALS AND METHODS 

Reagents: Anti-PXR antibody (sc-25381, rabbit polyclonal) was obtained from 

Santa Cruz (Santa Cruz, CA).  Rabbit polyclonal antibody against 5-methyl-

cytosine (ab51552) was purchased from Abcam (Cambridge, MA).  Rabbit 

polyclonal antibody against methylated H3K4 and H3K27 were purchased from 

Millipore Upstate (Billerica, MA).  Anti-AhR antibody (SA-210, rabbit polyclonal) 

was purchased from Enzo Life Sciences (Plymouth Meeting, PA).  Anti-β-actin 

antibody (ab8227, rabbit polyclonal) was purchased from Abcam (Cambridge, 

MA).  Rabbit polyclonal antibodies against Bsep (K44) and Ntcp (K4) were 

generous gifts from Dr. Bruno Steiger (University Hospital, Zurich, Switzerland). 

 

Animals.  Eight-week old C57BL/6 breeding pairs were purchased from Charles 

River Laboratories (Wilmington, MA).  Mice were housed according to the 

American Animal Association Laboratory Animal Care guidelines, and were bred 

under standard conditions at the University of Kansas Medical Center.  Breeding 

pairs were established at 4:00pm, and separated the following day at 8:00am.  

The body weight of females was recorded each day to monitor pregnancy status.  

Livers from offspring were collected at the following ages: day -2, 0 (right after 

birth and before the start of lactation), 1, 3, 5, 10, 15, 20, 30, and day 45.  Due to 

small size of liver in young mice (from day -2 to day 5), samples from male and 

female offspring (same litter) were pooled at each age to achieve the minimum 

amount of liver for subsequent experiments.  After 10 days of age, males and 

females were separated.  Livers were frozen immediately in liquid nitrogen, and 
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stored at -80C.  All animal procedures were reviewed and approved by the 

Institutional Animal Care and Use Committee at the University of Kansas Medical 

Center.   

 

RNA Isolation.  Total RNA was isolated using RNAzol Bee reagent (Tel-Test 

Inc., Friendswood, TX) per the manufacturer’s protocol.  RNA concentrations 

were quantified using a NanoDrop Spectrophotometer (NanoDrop Technologies, 

Wilmington, DE) at a wavelength of 260 nm.  The integrity of the total RNA 

samples was evaluated by formaldehyde-agarose gel electrophoresis, and 

confirmed by visualization of 18S and 28S rRNA bands. 

 

Selection of Cyp genes.  Because the first four cytochrome P450 gene families 

(Cyp1, 2, 3, and 4) are known to be important in drug metabolism, 75 known and 

novel Cyp isoforms in these gene families are included in the present study.  

These Cyp genes are selected based on a literature search of PubMed 

(http://www.ncbi.nlm.nih.gov/pubmed/), the cytochrome P450 database by Dr. 

David Nelson (http://drnelson.utmem.edu/CytochromeP450.html),  HighWire 

(http://highwire.stanford.edu/), and BioGPS (http://biogps.gnf.org).  Pseudogenes 

were excluded from the present study.  The human homologs for the mouse 

Cyps (if present), as well as their DNA and protein identities are shown in Table 

3.1. 
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Table 3.1. The human homologs for the mouse Cyps (if present), as well as 

their DNA and protein identities 
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Table 3.1 cont’d. The human homologs for the mouse Cyps (if present), as 

well as their DNA and protein identities 
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Messenger-RNA quantification for Cyps.  The mRNAs of cytochorme P450s 

from Cyp1, 2, 3, and 4 gene families were determined from total RNA samples 

(n=4~5 per group).  The majority of these Cyp mRNAs (55) were quantified by 

the Multiplex branched DNA amplification technology (bDNA assay).  Briefly, 

individual bead-based oligonucleotide probe sets specific for each gene 

examined were developed by Affymetrix/Panomics Inc (Fremont, CA) (panel ID: 

21211, 21212, 21213).  The probe sequences are available at 

http://www.panomics.com.  Samples (400 ng of total RNA per sample) were 

analyzed using a Bio-Plex 200 System Array reader with Luminex 100 X-MAP 

technology, and data were acquired using a Bio-Plex Data Manager Software 

Version 5.0 (Bio-Rad, Hercules, CA).  Assays were performed according to the 

manufacturer’s protocol.  Data are expressed as the ratio of relative light units 

(RLU) specific to the mRNA expression, and normalized to the internal control 

Gapdh.  The gene names, accession numbers, and the panel information are 

shown in Table 3.2. 

 

     Due to high sequence homology, the other 19 Cyp mRNAs were quantified by 

RT-qPCR to avoid cross-reaction.  Reverse transcription of total RNA to cDNA 

was performed using Applied Biosystems High Capacity Reverse Transcriptase 

kits (Applied Biosystems, Foster City, CA).  Briefly, equal volumes of 50 ng/μl 

RNA and 2X reverse-transcriptase reaction mix were combined and placed in an 

Eppendorf mastercycler under the following conditions: 25°C for 10 min; 37°C for 

120 min; 85°C for 5 min.  Subsequently, qPCR was performed on the resulting 



 48

Table 3.2. The Cyp gene names, accession numbers, and the panel 

information for the multiplex branched DNA amplification technology  
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cDNA.  Primers for qPCR were designed using Primer-BLAST 

(www.ncbi.nlm.nih.gov/tools/primer-blast) and the bit scores and e-values were 

determined by a BLAST search (www.blast.ncbi.nlm.nih.gov/Blast.cgi) of the 

mouse genomic and transcript database.  Primer target specificity was 

determined if off-target sequence matches had a bit score difference of > 6 bits, 

compared to the target sequence.  In this regard, it should be noted that the 

primers for CYP3A59 (bit score = 40.1; e-value = 0.013) matched the off-target 

sequence of CYP3A25 with a bit score = 36.1 and e-value = 0.21.  All primers 

were synthesized by Integrated DNA Technologies (Coralville, IA).  Briefly, per 

reaction, the PCR reaction mix contained: 12.5 μl of Applied Biosystems SYBR® 

green PCR master mix, 2.5 μl of 3 μM forward and reverse primer mix, 5 μl 

RNAse-free H2O, and 5 μl of 2 ng/μl cDNA.  Reactions were seeded in a 96-well 

optical reaction plate (Applied Biosystems) and fluorescence was quantified in 

real time using Applied Biosystems 7300 Real Time PCR System under the 

following conditions:  50°C for 2 min; 95°C for 10 min; 40 cycles of amplification 

(95°C for 15 sec; 60°C for 1 min); dissociation stage: 95°C for 15 sec; 60°C for 

30 sec; and 95°C for 15 sec.  Standard curves were generated for each target to 

determine the relative amount of transcript present in the sample.  Relative 

amounts of the Cyp transcript were then normalized to the housekeeping 

transcript, Gapdh.  The gene names, accession numbers, and the forward and 

reverse primer sequences are listed in Table 3.3.  If the mRNA of a Cyp isoform 

was higher than 1% of Gapdh mRNA at one or multiple ages examined during  
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Table 3.3. Cyp gene names, accession numbers, and the forward and 

reverse primer sequences for RT-qPCR.  
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liver development, that Cyp gene is designated as Cyp expressed in liver at that 

age. 

 

Branched DNA (bDNA) Signal Amplification Assay for the ontogeny of Gst 

mRNAs and five xeno-sensors in liver.  The mRNA expression of all the Gst 

isoforms was determined by the single-plex bDNA technology.  Mouse Gst gene 

sequences were obtained from GenBank.  Oligonucleotide probe sets were 

designed using Probe Designer software, version 1.0 (Bayer Diagnostics, East 

Walpole, MA).  Due to >90% similarity, one probe set was designed to recognize 

both Gsta1 and Gsta2 isoforms; for the same reason, one probe set was 

designed to recognize both Gstp1 and Gstp2 isoforms.  The sequences of 

various capture extender and label extender probes were presented previously 

(Knight et al., 2007).  Each probe was designed with a Tm of approximately 63ºC 

to ensure optimal hybridization conditions.  Probe sets were submitted to the 

National Center for Biotechnology Information (NCBI) for nucleotide comparison 

by the basic logarithmic alignment search tool (BLASTn) to ensure minimal cross-

reactivity with mouse genomic sequences and expressed sequence tags (ESTs).  

 

     The lyophilized oligonucleotide probe sets for Gsts were reconstituted in Tris-

EDTA buffer, pH 8.0, per the manufacturer’s instructions (Quantigene® bDNA 

Signal Amplification Kit, Panomics/Affymetrix, Fremont, CA).  Total RNA (1 μg/μl; 

10 μl = 10 μg) was added to each well of a 96-well plate containing 50 μl capture 

hybridization buffer and 50 μl of each diluted probe set.  Total RNA was allowed 
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to hybridize overnight at 53ºC in a hybridization oven.  Hybridization and 

subsequent wash steps were carried out according to the manufacturer’s 

protocol.  Luminescence was quantified using Quantiplex® 320 bDNA 

luminometer, interfaced with Quantiplex® Data Management Software Version 

5.02. 

 

     The ontogenic expression of mRNAs of the five xenobiotic-sensing 

transcription factors (AhR, CAR, PXR, PPARα, and Nrf2) was determined by the 

multiplex suspension bDNA technology (Panomics/Affymetrix, Fremont, CA). 

Individual bead-based oligonucleotide probe sets specific for each gene 

examined were developed by Panomics/Affymetrix Inc (panel ID: 2051, 

www.panomics.com).  Samples were analyzed using a Bio-Plex 200 System 

Array reader with Luminex 100 X-MAP technology; the data were acquired using 

a Bio-Plex Data Manager Software Version 5.0 (Bio-Rad, Hercules, CA).  Assays 

were performed according to the manufacturer’s protocol.  Data are expressed 

as the ratio of relative light units (RLU) specific to the mRNA expression, and 

normalized to 10 μg of total RNA. 

 

Messenger RNA quantification for the ontogeny of the mRNAs of 

transporters and bile acid bio-synthesizing enzymes.  Mouse liver mRNA 

expression was determined from total RNA.  The mRNA expression of Ntcp, 

Bsep, Mdr2, Mrp4, Ost, Ost, FXR, PXR, SHP, Cyp3a11, Cyp7a1, Cyp8b1, 

Cyp7b1, Cyp27a1, and Fgf15 was determined by bDNA assay (QuantiGene 1.0 
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bDNA signal amplification kit, Affymetrix/Panomics, Fremont, CA) (Hartley and 

Klaassen, 2000).  Probe sets for Ntcp, Mrp4, Mdr2, Bsep, PXR, Cyp3a11, Ost, 

and Ost have been described previously (Aleksunes et al., 2005; Cheng et al., 

2005a; Cheng et al., 2005b; Maher et al., 2005b; Cheng and Klaassen, 2006; 

Mennone et al., 2006; Beilke et al., 2009).  Multiple oligonucleotide probe sets for 

SHP, FXR and Fgf15 (including capture, label, and blocker probes) were 

designed using ProbeDesigner Software v1.0 as described previously (Cheng et 

al., 2005b).  The probe sets for SHP, FXR, and Fgf15 are shown in Table 3.4.  

Data are reported as relative light units (RLU) per 10 μg total RNA.  The mRNA 

expression of human NTCP, BSEP, MDR3 (ortholog of the mouse Mdr2), 

CYP7A1, and CYP8B1 was determined by the multiplex suspension bead 

technology.  The human liver samples at various developmental ages were kindly 

provided by Dr. Steven Leeder (Clinical Pharmacology, Children’s Mercy 

Hospitals & Clinics, Kansas City, KS).  Individual bead-based oligonucleotide 

probe sets specific for each gene examined were developed by 

Affymetrix/Panomics Inc (Fremont, CA ) (panel ID: 11103 and 11104).  The 

probe sequences are available at www.panomics.com.  One μg of total RNA was 

loaded per sample.  Data were analyzed using a Bio-Plex 200 System Array 

reader with Luminex 100 X-MAP technology, and data were acquired using a 

Bio-Plex Data Manager Software Version 5.0 (Bio-Rad, Hercules, CA).  Assays 

were performed according to the manufacturer’s protocol.  Data are expressed 

as the ratio of relative light units (RLU) specific to the mRNA expression, and 

normalized to the internal control Gapdh. 
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Table 3.4.  Oligonucleotide probes generated for analysis of mouse FXR and SHP mRNA by bDNA  

Gene Function Sequence 

FXR CE CtctctgcacttccttagccgTTTTTctcttggaaagaaagt 

 CE TggtctgccgtgagttccgTTTTTctcttggaaagaaagt 

 CE AgattttatttgtgatttcctgaggTTTTTctcttggaaagaaagt 

 CE CtggaagcttttttgtgaattctaTTTTTctcttggaaagaaagt 

 LE GttgcccccgttcttacactTTTTTaggcataggacccgtgtct 

 LE GcatgtacatgtccatcacgcaTTTTTaggcataggacccgtgtct 

 LE CattcagccaacatccccatTTTTTaggcataggacccgtgtct 

 LE gatttacactggatttcagttaacaaaTTTTTaggcataggacccgtgtct 

 LE TcacatttttccttagccgtttaTTTTTaggcataggacccgtgtct 

 LE TgtctgatcagcgtgctgctTTTTTaggcataggacccgtgtct 

 LE TtcgctgtcgtcctcattcacTTTTTaggcataggacccgtgtct 

 LE TtgtcgcaagtcacgcccTTTTTaggcataggacccgtgtct 

 LE CattctctgtttgttgtacgaatccTTTTTaggcataggacccgtgtct 

 LE CgagaatctgtacatggctggtTTTTTaggcataggacccgtgtct 

 BL Gcactcctggcacttcctgc 

 BL Caaaacttggttgtggaggtcac 

 BL Ataatataatccaggagggtctgc 

 BL Tttcttctgcactaaattcttctttta 

 BL Tgccatttctgttaatatgagaaaat 

SHP CE AcggcaggttcctgaggaaTTTTTctcttggaaagaaagt 

 CE GccccagcagcactctagcaTTTTTctcttggaaagaaagt 

 CE GctgctggcttcctctagcagTTTTTctcttggaaagaaagt 

 CE TgaactgcagccagtgagggTTTTTctcttggaaagaaagt 

 LE CcaaggcctccctgcaggTTTTTaggcataggacccgtgtct 

 LE GccgccgctgatcctcatTTTTTaggcataggacccgtgtct 

 LE AggtcacagcatcctgggcTTTTTaggcataggacccgtgtct 

 LE GgagcctcagccacctcgaTTTTTaggcataggacccgtgtct 

 LE CtgggcaccctgggtaccTTTTTaggcataggacccgtgtct 

 LE TtgtggccggtctgatggTTTTTaggcataggacccgtgtct 

 LE GgcagcgctgcagccacTTTTTaggcataggacccgtgtct 

 BL Ggctactgtcttggctaggacat 

 BL Ggggcaggtggcagaagg 

 BL Caacccaagcaggaagagagg 

 BL Gatcttcttaagtatactgggcacc 

 BL Gatcttcttaagtatactgggcacc 

Fgf15 
CE CttggcctggatgaagatgataQTTTQctcttggaaagaaagt 
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Gene (cont’d) Function Sequence 

Fgf15 
CE AaggagcggtgaaacacggQTTTQctcttggaaagaaagt 

 
CE GgctccgatggcagccaQTTTQctcttggaaagaaagt 

 
LE ctgtactggttgtagcctaaacagtcQTTTQaggcataggacccgtgtct 

 
LE CtggtccccggtttcaaagQTTTQaggcataggacccgtgtct 

 
LE cagggagaacattttagacctcagQTTTQaggcataggacccgtgtct 

 
LE tgatcaagtctagccactaacacaaQTTTQaggcataggacccgtgtct 

 
LE GgcaggttgtcaacttaagttcaQTTTQaggcataggacccgtgtct 

 
LE aactggagtaacttaggcacatatcaQTTTQaggcataggacccgtgtct 

 
BL Tggagatggtgcttcatggat 

 
BL Tcctggagctgttctctggg 

 
BL Ggataaagtttgagggtttctgg 

 
BL Atgctgtcactctccagggg 

 
BL Ccaccatcctgaacggatcc 

 
BL Actcttcactaggtggtctacatcct 

 
BL Ctgtcatttctggaagctggg 

 
BL Ttttctccatcctgtcggaatc 

 
BL Gttcacgggaccttgggg 

 
BL Tgtacagcttcctaagggggaa 

 
BL Cagggtccatgtgagacttagaata 

 
BL Gcagcctccaaagtcagtgg 
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Branched DNA Amplification (bDNA) Technology for the ontogeny of Ahr 

mRNA.  The mRNA expression of Ahr was determined by bDNA assays 

(QuantiGene bDNA signal amplification kit, Affymetrix/Panomics, Fremont, CA).  

Multiple oligonucleotide probe sets for Ahr (including capture, label, and blocker 

probes) were designed using ProbeDesigner Software v1.0 (Bayer Corp., 

Diagnostics Div.) as previously described (Petrick and Klaassen, 2007).  Ten g 

of total RNA was added to each well of a 96-well plate (n=5 per age).  The mRNA 

was captured by specific probe sets and attached to a branched DNA amplifier.  

Enzymatic reactions occur upon substrate addition and the luminescence for 

each well is reported as Relative Light Units (RLU).  Statistical significance 

compared to day-45 expression levels were considered at p<0.05 (one way 

ANOVA followed by Duncan’s multiple range post hoc test (SPSS program, 

Chicago, IL). 

 

Multiplex suspension array for the ontogeny of PPAR and PGC-1 mRNAs.  

Mouse liver mRNA expression was determined from total RNA.  Equal amounts 

of total RNA from five livers (n=5) were pooled as one sample at each age.  

Individual bead-based oligonucleotide probe sets specific for each gene 

examined were developed by Afflymetrix/Panomics Inc (Fremont, CA).  The 

probe sequences for PPAR and PGC-1 mRNAs are available at 

www.panomics.com (panel ID: 21073).  Samples were analyzed using a Bio-Plex 

200 System Array reader with Luminex 100 X-MAP technology, and data were 

acquired using a Bio-Plex Data Manager Software Version 5.0 (Bio-Rad, 
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Hercules, CA).  Assays were performed according to the manufacturer’s protocol.  

All data were standardized to the internal control Gapdh.  Data are expressed as 

the ratio of each specific mRNA to Gapdh mRNA. 

 

ChIP-on-chip assay of DNA methylation and histone methylation. 

Genpathway’s ChIP-on-chip assays (San Diego, CA) using Affymetrix GeneChip 

Mouse Tiling 2.0R E array were used to determine the following epigenetic 

profiles: DNAme, H3K4me2, and H3K27me3 as described previously (Cui et al., 

2009b).  These experiments were performed in livers at day -2, 1, 5, and 45 of 

age (male only).  The detection threshold value was set at 3.0-fold above the 

background input for DNAme, and 4.0-fold for H3K4me2 and H3K27me3, based 

on the calculation of false discovery rate estimated by the “negative peaks” 

approach as previously described (Johnson et al., 2006). The raw and processed 

data are stored in the Gene Expression Omnibus (GEO) data base with the 

accession number GSE14620.   

 

     Briefly, for DNA methylation, genomic DNA from mouse livers was isolated 

and sonicated to an average length of 300-500bp.  An antibody against 5-methyl-

cytosine was used for immunoprecipitation (ab51552, Abcam, Cambridge, MA).  

DNA without immunoprecipitation was used as a control for background 

hybridization.  The specificity of the immunoprecipitation was validated by 

quantitative PCR reactions with positive and negative control primers.  Both the 

immunoprecipitated and control DNA were amplified by random priming.  The 
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amplified DNA was purified, quantified, and tested by quantitative PCR at the 

same genomic regions as the original immunoprecipitated DNA to assess quality 

of the amplification reactions.  Amplified DNAs were fragmented and labeled 

using the DNA Terminal Labeling Kit (Affymetrix, Santa Clara, CA), and then 

hybridized to Affymetrix GeneChip Mouse Tiling 2.0R E Array at 45C overnight.  

Arrays were washed and scanned by a GeneChip HT Array Plate Scanner.  

 

     For histone modifications, liver homogenates were fixed with 1% 

formaldehyde and quenched with glycine.  Chromatin containing DNA cross-

linked by formaldehyde was isolated and sonicated to an average length of 300-

500bp.  Methylated histone H3 proteins at lysine 4 and 27 were 

immunoprecipitated with polyclonal antibodies (Millipore 07-030 for H3K4Me2, 

and Millipore 07-449 for H3K27Me3) (Millipore, Billerica, MA).  Complexes were 

washed, eluted from the beads with SDS buffer, and subjected to RNase and 

proteinase K treatment.  Crosslinking was reversed by incubation overnight at 

65C, and DNA fragments were purified by phenol-chloroform extraction, 

precipitated by ethanol, labeled, and then hybridized to the Affymetrix GeneChip 

Mouse Tiling 2.0R E arrays.  Arrays were scanned with a GeneChip HT Array 

Plate Scanner.  

 

     Data from the arrays were analyzed using the Affymetrix Tiling Analysis 

Software (TAS), which generated BAR files that contain the intensities for all 

probes on the arrays.  The intensities are expressed as signals (estimating the 
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fold enrichment).   The data image was viewed by the Integrated Genome 

Browser (IGB) (Affymetrix, Santa Clara, CA).  The boundaries of detection were 

set from 10kb upstream of the transcription start site, to 10kb downstream from 

the end of the entire gene locus.  Based upon recommendations by Affymetrix 

and known positive and negative genomic regions, thresholds were set as >3-

fold enrichment of the probe intensities for DNA methylation, and >4-fold 

enrichment for histone methylations.  Enrichments above the recommended 

thresholds reflect a false discovery rate below 2%.   Intervals were defined as 

regions with signals higher than the threshold values, and active regions are 

genomic regions that contain one or more intervals in close proximity to each 

other (with intervals overlapping by at least 1bp to be added to the same active 

region).  

 

ChIP-Seq Analysis. Livers of 8-week old C57BL/6 male mice were used for 

ChIP-Seq experiments.  Fragments of DNA were tagged by 35-nucleotide 

identifiers and subjected to sequencing by the Illumina Genome Analyzer 

Sequencer, based on Solexa Technology (Illumina, San Diego, CA). 

Preprocessing of the ChIP-Seq data was performed by Genpathway (San Diego, 

CA).  Briefly, the tags identified were mapped to the genome using Eland 

Software, which resulted in a list of their chromosome coordinates.  Only tags 

that mapped uniquely and that have no more than 1 mismatch were retained.  

Because the 5′-end of the sequence tags represented the end of ChIP-fragments, 

the tags were extended in silico using Genpathway software at their 3′-ends to a 
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length of 110-bp, which was the average fragment length in the size-selected 

library.  To identify the density of fragments (extended tags) along the mouse 

genome, the genome was divided into 32-nucleotide bins, and the number of 

fragments in each bin was determined and stored together in a Binary Analysis 

Results (BAR) file.  The BAR files were then viewed in the Affymetrix Integrated 

Genome Browser (IGB) for PXR binding in the mouse genome.  The locations of 

fragment-density peaks, defined by chromosome number and a start and end 

coordinate were termed as “intervals”.  For each BAR file, intervals were 

calculated using the Affymetrix Tiling Analysis Software (TAS) and compiled into 

Browser Extensible Data (BED) file.  Three parameters of intervals were 

identified: threshold, MaxGap, and MinRun.  The threshold was set at 20-fold 

over background signal, and this threshold was adjusted depending on the 

number of tags sequenced, information on positive and negative test sites, and 

estimation of false discovery rate per the company’s recommendation 

(Genpathway, San Diego, CA).  The exact locations of intervals along with their 

proximities to gene annotations and other genomic features were then 

determined.  In addition, average and peak fragment densities within intervals 

were compiled.  

 

Global Motif Analysis for PXR-DNA binding patterns.  In order to refine the 

targets of PXR binding, the top 500 ChIP-DNA sequences with highest 

enrichment peak values in both control and PCN-treated conditions were 

retrieved from the UCSC genome browser.  ChIP-Seq data, which localizes PXR-
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binding regions to around 500bp, were further analyzed in silico to identify the 

exact PXR-binding targets.  PXR-binding profiles were generated using a novel 

k-mer based approach designed by our collaborator Dr. Sumedha Gunewardena, 

for analyzing high throughput sequence data.  PXR-binding profiles were 

generated using a novel k-mer based approach designed for analyzing high 

throughput sequence data.  In discussion that follows I will describe the algorithm 

as it applies to response elements with two complementary half sites separated 

by a variable spacer distance. 

 

     The algorithm begins by generating a set of initial seed sequences for a half 

site.  The seed sequences comprise the first n0 most significant k-mers, where k 

is the length of a half site.  The significance of a k-mer is given by the weighted 

sum of the site and sequence significance scores of the k-mer.  The significance 

score (Zi) of k-mer i is given by  

 

where for the site significance score, Xi is the frequency of k-mer i in the input 

sequences, N, the total number of k-mers and, pi, the background probability of 

k-mer i.  For the sequence significance score, Xi is the number of input 

sequences with k-mer i, N, the total number of input sequences with each k-mer, 

and, pi, the probability of k-mer i appearing in a background sequence.  For a 

given k, there are 4k k-mers.  The background sequences are composed of all 
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non-overlapping 500bp upstream (from the 5’end) and 500bp downstream (from 

the 3’end) sequence segments of the input sequences. 

 

Statistical analysis for the ontogeny of Cyp mRNAs.  Statistical differences in 

Cyp mRNA expression between male and female mice were determined using 

two-tailed Student’s t-test, with significance set at p < 0.05. The mRNA ontogeny 

of the 73 detected Cyp isoforms was analyzed by a two-way hierarchical 

clustering method (JMP v. 8.0) using Ward’s minimum variance and visualized by 

a dendrograph.  Distances between genes reflect significance of associations. 

Red color represents higher and blue color represents lower expression levels, 

respectively. 

 

Statistical Analysis for the ontogeny of Gst mRNAs.  Statistical differences in 

Gst mRNA expression between male and female were determined using 

Student’s t-test with significance set at p ≤ 0.05. The mRNA ontogeny of all the 

Gst isoforms, as well as AhR, CAR, PXR, PPARα, and Nrf2, was analyzed by a 

two-way hierachical clustering method (JMP v. 7.0) using Ward’s minimum 

variance and visualized by a dendrograph. Distances between genes reflect 

significance of associations. Red color represents higher and blue color 

represents lower expression levels, respectively. 

 

Motif Analysis for PXR Binding to Gst gene loci.  All chromosome coordinates 

of the positive PXR-binding sites within ±10kb of the Gst gene loci were retrieved 
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from the ChIP-Seq data base, and submitted to the UCSC Genome Browser, 

which returned a series of DNA sequences. These ChIP-DNA sequences were 

then analyzed by NHR-scan software for putative nuclear receptor binding sites 

(DR-3, DR-4, ER-6, ER-8, and IR-0) as described previously (Kliewer et al., 

2002; Sonoda et al., 2002).  The combined probability of entering match states 

was set at 0.05. 

 

In silico analysis of CpG island localization around the Ahr, PPAR and 

PGC-1 gene loci.  CpG islands are defined as DNA sequences at least 200bp 

in length and with a GC percentage greater than 50%.  An in silico analysis of 

CpG islands within 10kb upstream plus 1kb downstream of the gene promoter 

region was performed using the Methyl Primer Express Software v1.0 (Applied 

Biosystems, Foster City, CA).   

 

Regression analysis of Ahr mRNA expression with DNA and histone 

methylations.  The mRNA expression of Ahr during liver development and the 

patterns of the three epigenetic marks (DNA methylation, histone H3K4Me2 and 

H3K27Me3) were analyzed using Sigma Plot 10.0 (Systat Software Inc., San 

Jose, CA). 

 

Sample preparation for bile-acid analysis.  To determine the concentration 

and composition of bile acids during development, serum and liver samples were 

collected from pups at each age (n=3 per age).  From 2 days before birth to 5 
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days of age, samples from the same litter were pooled (n= 3 litters) to achieve 

the desired amount of liver and serum for bile-acid isolation.  Internal standards 

(IS: 40µg/ml d4-G-CDCA and 20µg/ml d4-CDCA in MeOH), as well as serum and 

liver samples were prepared for bile-acid analysis with methods reported by 

Alnouti et al (2008a) with some modifications.  Briefly, for serum samples, simple 

protein precipitation by adding methanol (MeOH) was used.  One ml of MeOH 

was added to 50 μl serum-spiked with 5 μl IS, vortexed, and centrifuged at 

12,000g for 10 min.  The supernatant was aspirated, evaporated under vacuum, 

and reconstituted in 50 μl of 50% MeOH.  Liver samples were extracted by 

protein precipitation using ice-cold acetonitrile (ACN).  Approximately 110 mg of 

liver was homogenized in 5 volumes of H2O.  Liver homogenate (600 μl) was 

spiked with 10 μl IS, 3 ml of ice-cold ACN (5% NH4OH in ACN) was added, 

vortexed, shaked continuously for 1 hr, and centrifuged at 12,000g for 10 min.  

The supernatant was aspirated and precipitant was extracted with 1 ml of MeOH. 

Supernants from the 2 extraction steps were pooled, evaporated, and 

reconstituted in 100 μl of 50% MeOH.  

 

Liquid chromotagraphic and mass spectrometric conditions of bile-acid 

analysis.  A Waters ACQUITY ultra performance LC system (Waters, Milford, 

MA) and a Waters Quanttro Premier XE triple quadrupole instrument with an ESI 

source (Waters, Milford, MA) were used.  The entire LS-MS system was 

controlled by MassLynx 4.1 software.  All chromatographic separations were 

performed with an ACQUITY UPLC C18 column (1.7um, 100X 2.1 I.D.) equipped 
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with an ACQUITY UPLC C18 guard column (Waters, Milford, MA). Based on peak 

areas of BAs and internal standards, various conjugated and unconjugated BAs 

were quantified, namely the taurine-conjugated bile acids including T-CA, T-

αMCA, T-βMCA, T-ωMCA, T-MDCA, T-UDCA, T-HDCA, T-CDCA, T-DCA, and 

T-LCA; as well as the unconjugated bile acids including CA, αMCA, βMCA, 

ωMCA, MDCA, UDCA, HDCA, CDCA, DCA, and LCA.  

 

Serum triglyceride and glucose quantification.  Serum triglyceride and 

glucose concentrations of mice at different ages were determined by enzymatic-

colorimetric assays per the manufacturer’s protocol (Pointe Scientific, Canton, 

MI).  Due to limited amount of samples, equal volume of serum from the same 

litter at each age were pooled as one sample, and three litters (three pooled 

samples) were used at each age. Data are expressed as mg of triglyceride or 

glucose per deciliter of serum.  

 

Western blotting.  Proteins were electrophoretically resolved without boiling by 

use of polyacrylamide gels and transblotted overnight at 4°C onto Polyvinylidene-

Fluoride-Plus membranes (Micron Separations, Westboro, MA).  Membranes 

were blocked for 1 h in 3% nonfat dry milk with 0.5% Tween-20 in phosphate 

buffered saline (PBS).  All primary and secondary antibodies were diluted in 1% 

nonfat dry milk with 0.5% Tween-20 in PBS. Primary antibody dilutions were as 

follows: AhR (SA-210, 1:1000), H3K4Me2 (07-030, 1:2000), and β-actin (ab8227, 

1:1000).  Blots were subsequently incubated with a species-appropriate 



 66

horseradish peroxidase-conjugated secondary antibody for 1 h (rabbit anti 

mouse).  Protein-antibody complexes were detected by use of an enhanced 

chemiluminescent kit (Thermo Scientific, Rockford, IL) and exposed to X-ray film 

(Denville Scientific, Metuchen, NJ).  Intensities of protein bands were determined 

by use of the Discovery Series Quantity One 1-D Analysis software (Bio-Rad 

Laboratories, Hercules, CA).  

 

Immunofluorescence Analysis.  Livers were embedded in optimal cutting 

temperature compound, and rapidly frozen at -80 ºC.  Six m sections were 

generated with a Leica CM3050 Cryostat (Meyer Instruments Inc., Pittsburg, PA) 

and fixed with 4% paraformaldehyde in PBS.  Briefly, slides were blocked with 

5% goat serum in 0.1% Triton X in PBS, and incubated with primary antibody 

diluted 1:100 for Ntcp (K4 rabbit anti-rat) and Bsep (K44 rabbit anti-rat).  There 

are no specific antibodies available for staining Mdr2.  Staining of Mrp4 and Ost 

were not applicable due to low protein expression levels in liver.  For H3K4Me2, 

primary antibody was diluted 1:50.  After washing, sections were incubated with a 

species-appropriate Alexa 488 IgG secondary antibody (1:200).  Sections were 

mounted in Prolong Gold (Invitrogen, Carlsbad, CA).  Fluorescent staining was 

visualized on an Olympus B41 microscope (Olympus Optical, Tokyo, Japan).  

Images were captured using an Olympus DP70 camera (40) and DP Controller 

software. 
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CHAPTER FOUR.  GLOBAL PICTURE OF THE ONTOGENY OF CRITICAL 

DRUG-PROCESSING GENES AND REGULATORY FACTORS IN LIVER 

DEVELOPMENT 

     Before examining the ontogeny and regulatory mechanisms of drug-

processing genes and other factors in each category, it is logical to first provide a 

global picture of all the expression patterns of these genes, and characterize a 

roadmap of the genomic binding locations of critical regulatory factors in mouse 

liver.  Detailed methods have been listed in each chapter of the dissertation at 

appropriate sections.   

 

 Drug-processing genes.  Our laboratory has long been interested in the 

developmental regulation of drug processing and detoxifying genes, and data 

from my previous work and many other colleague’s research have characterized 

the ontogeny of numerous drug-processing genes in liver (Cui et al., ; Klaassen, 

1972; Klaassen, 1973a; Klaassen, 1973b; Klaassen, 1974; Hunter and Klaassen, 

1975; Klaassen, 1975b; Klaassen, 1975a; Waalkes and Klaassen, 1984; 

Lehman-McKeeman et al., 1988; Klaassen and Lehman-McKeeman, 1989; 

Kershaw et al., 1990; Liu and Klaassen, 1996a; Liu and Klaassen, 1996b; Dunn 

et al., 1999; Choudhuri et al., 2001; Johnson et al., 2002; Li et al., 2002; Cui et al., 

2009a; Hart et al., 2009; Li et al., 2009; Choudhuri et al., 2010).  The mRNA 

expression of 82 hepatic drug-processing genes was summarized in a heatmap 

(JMP v. 7.0) at the following ages: day -2, day 0, day 5, day 10, day 15, day 20, 

day 30, and day 45 of age.  Based on our previous publications and our 
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preliminary data, the mRNAs of these 82 hepatic drug-processing genes (in 

pooled male mouse liver samples) were expressed as percentage of highest 

expression levels during development, clustered by a two-way hierarchical 

clustering method, and visualized by a dendrograph (Figure 4.1A).  As shown in 

the dendrograph, the developmental pattern of the mRNA expression of the 

selected hepatic drug-processing genes partition into 4 distinct clusters, namely, 

pattern 1, 2, 3, and 4.  For each pattern, the average expression of the clustered 

genes is shown in Figure 4.1B.  Pattern 1 represents the mRNAs of the adult-

predominant genes, which include the mRNAs of the  following drug-processing 

genes: Mrp3 (Abcc3), Ugt2a3, Ugt2b1, Gsta1, Gsto1, Cyp7b1, Gstp1/2, Cyp8b1, 

Ugt1a9, Gstmicrosomal 1, Ugt2b35, Ugt2b36, Ugt2b5, Ugt3a1/2, Oatp (Slco)1a1, 

Cyp4a10, and Cyp3a41.  Pattern 2 represents low expression before birth, 

followed by a gradual increase after birth with a plateau around 20 days of age, 

including Oatp2b1, Cyp2a4, Gstm6, Gstm1, Cyp1a2, Gsta3, Cyp2e1, Cyp3a11, 

Cyp2c29, Cyp27a1, Ugt1a6, Cyp2d22, Ugt2b34, Udpgh, Mate1 (Slc47a1), 

Oatp1b2, Gstm2, Bsep, Cyp2j6, Mrp2 (Abcc2), Mdr2 (Abcb4), Gstt1, Ntcp, 

Gstm3, Gstm4, Ugt1a5, Oatp (Slco)1a4, Ent1 (Slc29a1), Sult1a1, Por, Cyp7a1, 

Cyp3a25, Gstt3, Sult1d1, Oct1 (Slc22a1), Gstk1, Gsta4, Atp8b1, and Gstz1.  

Pattern 3 starts off before birth with low expression, followed by a relatively rapid 

increase that peaks at 15 days of age, then decreases to neonatal levels, and 

these mRNAs include Ost, fibroblast growth factor receptor 4 (FgfR4), Mrp6 

(Abcc6), Oat2 (Slc22a7), Abca1, Cyp3a16, Abcg8, Agcg5, Sult2a1/2, PAPSs2, 

Gst microsomal 3, Ugt1a1, Sult1c2, and Cyp3a44.  Pattern 4 represents  
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Figure 4.1. Developmental expression of drug-
processing genes in mouse liver.  Hepatic 
mRNA expression in pooled liver total RNA 
samples (from a sample size of n=5) was 
determined by the multiplex branched DNA 
amplification technology.  A: Dendrograph of the 
mRNA expression of 82 liver drug-processing 
genes in phase-I and –II drug metabolism as well 
as transporters.  Data were analyzed by a two-
way hierachical clustering method (JMP v. 7.0) 
using Ward’s minimum variance.  Distance 
between genes reflect significance of 
associations.  Red: relatively high expression; 
blue: relatively low expression. B: percentages 
of highest mRNA expression of genes in each 
pattern. Genes from a particular pattern were 
each normalized to their highest expression 
levels during development, and averaged to one 
representative percentage of that pattern. 
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fetal/perinatal-specific genes, including Mrp4 (Abcc4), microsomal Gst2, Sult1c1, 

Bcrp (Abcg2), Gstm5, Ost, Mate2 (Slc47a1), Cyp39a1, Gstt2, Sult3a1, and 

Cyp3a13.  These four patterns indicate multiple mechanisms may be involved in 

the regulation of drug-processing genes during development. 

 

Transcription factors.  In order to identify possible regulatory factors for the 

ontogeny of drug-processing genes, the mRNA expression of 71 critical 

transcription factors for liver development was determined by the multiplex 

suspension bDNA assay.  The mRNA expression of these hepatic liver 

transporters was summarized in a heatmap from before birth to 45 days of age. 

As shown in the dendrograph (Figure 4.2), the developmental pattern of the 

mRNAs of the selected transcription factors forms 4 clusters.  Transcription factor 

genes in the first pattern were induced right after birth, followed by a further 

induction at adolescent to adult ages.  Genes in the second pattern were most 

highly expressed in the adult period.  Genes in the third pattern were enriched in 

adolescent ages (from day 10 to day 20), and mRNAs in the last pattern were 

increased in newborns but peaked during adolescent ages.  The ontogenic 

expression between transcription factors and drug-processing genes are different 

for each pattern respectively, indicating the presence of a second player in 

regulating the ontogeny of drug-processing genes. 

 

Enrichment of epigenetic marks.  The ontogenic epigenetic signatures of three 

marks, namely histone H3 lysine-4 di-methylation (H3K4Me2) for gene trans- 
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Figure 4.2.  
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Figure 3.2. The ontogeny of 71 critical 
transcription factors in liver during 
development.  Hepatic mRNA expression in 
pooled liver total RNA samples (from a 
sample size n=5) was determined by the 
multiplex branched DNA amplification 
technology.  A: Dendrograph of the mRNA 
expression of 71 liver transcription factors/co-
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activation, and histone H3K lysine-27 tri-methylation (H3K27Me3) as well as 

DNA methylation for gene suppression, were determined on three representative 

chromosomes (chr 5, 12, and 15, which are enriched with drug-processing 

genes), at 4 ages during liver development (Figure 4.3).  An overlay between 

patterns of epigenetic marks and alterations in gene expression during liver 

development will be described in detail in the following parts of the dissertation.   

Briefly, the chromosome-wide enrichment of H3K4Me2 was relatively high and 

stable on the three chromosomes, except for a moderate decrease at birth.  

Conversely, there was a marked and continuous decrease of H3K27Me3 during 

liver development, indicating there was a more permissive environment for gene 

transcription as the liver matures.  DNA methylation was relatively lower at the 

first three neonatal ages, followed by a moderate increase at 45 days of age.   

 

     For proof of concept, the H3K4Me2 was selected as an example to 

characterize its tissue distribution in adult tissues, as well as ontogenic 

expression and subcellular localization using western blot and 

immunofluorescence staining (Figure 4.4).  Interestingly, H3K4Me2 protein was 

ubiquitously expressed in many tissues with comparable amounts, and was 

present in all ages of liver development.  Apparently, H3K4Me2 was exclusively 

localized in the nucleus, with a moderate increase in the staining intensity right 

after birth, and remained until 45 days of age.  However, it remains to be 

determined whether the local expression of H3K4Me2 around a particular drug-

processing gene locus will be altered as a function of age.  
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Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.  Relative enrichment of three distinct epigenetic marks, namely histone 
H3 lysine-4 di-methylation (H3K4Me2) for gene trans-activation, and histone H3K 
lysine-27 tri-methylation (H3K27Me3) as well as DNA methylation for gene 
suppression, on three representative chromosomes (chr 5, 12, and 15, which are 
enriched with drug-processing genes), at 4 ages during liver development.  Data 
were obtained by ChIP-on-chip using specific antibodies against each epigenetic 
mark.  Number of intervals represents numbers of sites with significant 
enrichment of a particular mark.   
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Figure 4.4 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.  Upper panel: a western blot of H3K4Me2 in adult liver, kidney, ileum, and lung.  
Bottom panel: immunofluorescence staining of H3K4Me2 at four ages during liver 
development.  Green: staining of H3K4Me2.  Blue: DAPI staining for nuclei.  Red: 
rhodamine phalloidin staining of actin adjacent to plasma membrane.  Jade color: a merge 
between H3K4Me2 and DAPI staining.  
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A roadmap of PXR-DNA binding signatures.  Because PXR is a well 

established transcription factor for numerous drug-metabolizing enzymes and 

transporters, it was selected in the present study to characterize the direct target 

gene profiles in liver.  To further validate the significance of these binding sites, a 

pharmacological approach was used to further activate PXR by the synthetic 

ligand PCN, to determine whether there would be a further increase in PXR 

binding to DNA.  ChIP-seq identified 3812 active regions for positive PXR-binding 

in control mice, indicating a need for PXR binding for basal functions.  PCN 

treatment increased the total number of active regions to 6446 (Figure 4.5A).  

Interestingly, whereas there were 3026 common intervals between control and 

PCN-treated groups, there were 786 unique PXR-binding sites in control only, 

and 3420 in PCN-treatment only (Figure 4.5B).  There were 2591 genes targeted 

by PXR within ±10kb of the gene loci in control, and increased to 3509 genes 

after PCN treatment (Figure 4.5C).  Although more than 70% of the PXR-

bindings were located within ±10kb of the NCBI-annotated genes, positive PXR-

binding was observed in the intergenic regions (approximately 30%) (Figure 

4.5D), suggesting that PXR might have novel functions in regulating non-protein-

coding transcripts.   

 

   PXR-DNA binding profiles were generated from the top 500 ChIP-DNA 

sequences, with highest enrichment peak values, of both control and PCN-

treated assays.  The current work offers new insights into the binding patterns of 

PXR, suggesting a distinct correlation in the spacer distance between the two 
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Figure 4.5.   

 

Figure 4.5. A roadmap of enrichment in PXR binding (intervals) in the entire mouse 
genome by ChIP-Seq analysis.  (A) Total number of active regions for PXR binding in livers 
from control and PCN-treated mice. (B) An overlay of PXR-binding active regions between 
control and PCN-treated groups for common and distinct binding sites. (C) Total number 
of genes with PXR bindings (intervals) within ±10kb of the gene loci in control and PCN-
treated groups. (D) Classification of PXR-binding intervals based on their genomic 
locations (within ±10kb of NCBI genes or in intergenic regions) in control and PCN-treated 
groups.  
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nuclear receptor half sites of high-affinity binding sites that span a distance much 

further than the furthest spacer (8-bp) reported in the literature.  Whereas the 

direct repeats, DR-3 and DR-4, of the well established consensus motif AGTTCA 

featured prominently in our analysis, the everted repeats, ER-6 and ER-8, cited 

in the literature as PXR-binding motifs (Kliewer et al., 2002), were less evident.  

The current analysis suggests that by far the most favored spacer configuration 

for PXR binding in both control and PCN-treated mouse livers is DR-4 (Figure 4.6 

A-C).  Interestingly, the spacer distance distribution of half sites of the consensus 

direct repeat AGTTCA shows clear peaks at isochronal intervals of 5bp, 

corresponding to spacer distances of 4, 9, 14, 19, and so on (i.e. spacer 

distances of the form 5n+4, n=0,1,2,…), extending to over a hundred base pairs. 

Sample partial autocorrelations have demonstrated that the periodicity of 5bp is 

indeed preferred by PXR binding to DNA (Figure 4.6D).  Together these data 

have revealed a new structural configuration of half sites that favors a spacer 

distance that is periodically correlated with a period of 5bp.  It also indicates that 

the binding of PXR to the consensus direct repeat AGTTCA is partial to response 

elements with a spacer distance of 5n+4 between half sites over the proximity of 

the half sites to each other.  The observed tapering of peak densities of these 

sites can be, as expected, explained by the increasing motif length (a regression 

fit on spacer distance explains 80% of the variation between peak densities, 

[Figure 4.6C: regression line]), however the significantly high density of DR-4 

suggests that proximity between half sites is desired by PXR on a secondary 

level. 
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Figure 4.6.  

 

Figure 4.6.  PXR-DNA binding profiles of the highest scoring motif (MAP score 6345.15, # hits=4744, #seq. hit 
=370) obtained from in silico analysis of ChIP-Seq data of PXR binding after PCN treatment.  (A) Sequence logo 
representing the sequence conservation of the 3' half site. (B) Sequence logo representing the sequence 
conservation of the 5' half site. (C) Spacer distance distribution between the two half sites. Diamonds mark 
densities at spacer distances of 5n+4.  The linear regression line (β0=-0.83, β1=120.75, norm of residuals=70.14) of 
these points is shown with 95% confidence bounds (dash lines). (D) Sample partial autocorrelation function of 
the spacer distance distribution in Fig. 3C, with 95% confidence bounds.  The lag corresponds to distance in 
base pairs.  A significantly high lag of 5 base-pairs in the PACF suggests the presence of a recurring pattern of 
high site density occurring at 5 base-pair intervals.  (E) Multiple comparison plot of mean sequence rank on 
binding affinity of the AGTTCA-like direct repeat with spacer distances of the form 5n+0, 5n+1, 5n+2, 5n+3, and 
5n+4, with comparison intervals around the mean estimates.  Means with comparison intervals that do not 
overlap are significantly different at a significance level of α < 0.02. (F) Illustration of the accordion model to 
explain the binding density of the PXR homodimer to AGTTCA like direct repeats with a 5n+4bp spacer distance. 
The PXR homodimer interface has a 10 β-strand structure that stretches to accommodate the spacer distances 
between the two DNA binding domains of the PXR/RXR complex as n increases.   
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     To confirm that DR-(5n+4) is indeed the most preferred PXR-binding motifs, 

we analyzed the distribution of binding affinities of sequences with response 

elements of the form DR-(5n+0), (5n+1), (5n+2), (5n+3), and (5n+4) by 

comparing their mean sequence ranks, ranked on binding affinity.  The 

enrichment peak values from ChIP-Seq data were used as a surrogate for 

binding affinity.  Indeed, DR-(5n+4) ranks highest compared to the other patterns 

(Figure 4.6E).  

 

     The interesting observation for PXR-DNA binding motifs raises the question of 

whether there are any intrinsic features in the DNA or the PXR protein complex 

enforcing such a periodic pattern.  As demonstrated by Watson and Crick in 1953, 

the double helical structure of DNA has a 3.4Å interval between the two adjacent 

bases, with 10 such intervals per turn (34 Å) (Watson and Crick, 1953). If one 

assumes that at the very beginning of PXR binding, the double helical structure 

of DNA is still preserved with only partial destruction of hydrogen bonds, then the 

length of one AGTTCA-like half site exactly matches the length of half a helical 

turn from trough to peak [3.4Å × (6-1) = 17Å] (Figure 4.7).  Therefore, DR-4, 

which is most preferred by the PXR-protein complex will form a structure of three 

half turns in tandem, with the 4bp spacers occupying the middle half turn. 

Similarly, DR-9 incorporates one more half turn between the two half sites, as 5 

new intervals are introduced into the spacer region.  Following this rule, as n half 

turns are incorporated between the two half sites, a DR (5n+4) pattern emerges  
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Figure 4.7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7.  A diagram of the helical turns of DNA and the formation of DR-(5n+4) 

like DNA motifs.  
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(n=0,1,2,…), which has a tandem structure of two half sites on the outermost half  

turns, and (n+1) half turns in between, forming the spacer region.  Based on the 

observations in the present study, it seems that DNA interacts with PXR protein 

in a functional unit of half a helical turn.  This means that DNA may be more likely 

targeted by PXR if there are two AGTTCA-like half sites still preserved in the 

helical structure, separated by at least one half turn in between.  

 

      If the proposed structure of DR-(5n+4) is really the preferred DNA 

configuration for PXR binding, it suggests that some symmetry exists in the PXR-

protein complex.  Based on amino acid sequence homology (NCBI BLAST) and 

the available crystal structure of proteins in the current protein data bank, I 

predicted the 3D structure of the mouse PXR protein.  The mouse PXR-ligand 

binding domain shows highest similarity to the tethered human PXR-LBDSRC-1p 

apoprotein (Wang et al., 2008) (PDB ID: 3CTB; E value: 8e-139), and the human 

PXR forms a PXR-PXR homodimer interfaced with 10-β strands.  Very recently, 

computational biologists have demonstrated that PXR functions as a 

heterotetramer with the unique β-stranded interface of the PXR homodimer in the 

middle, and two RXR proteins on the outside (Teotico et al., 2008).  In addition, 

the key amino acids forming the homodimer interface are highly conserved 

across species, and disruption of these amino acids results in decreased 

transcriptional activity of PXR (Noble et al., 2006).   
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     Based on the above evidence, I propose an “accordion model” to explain the 

interesting phenomenon of the DR-(5n+4) periodic PXR-DNA binding patterns 

(Figure 4.6F). The basic assumption of this model is that the PXR homodimer 

interface, which has a β-sheet structure with 10 β-strands, is stretchable like the 

bellows of an accordion that fine-tunes the distances between the two DNA 

binding domains of the PXR/RXR complex. The lowest energy configuration of 

the PXR/RXR complex corresponds to the binding to DR-4, and as the bellows of 

the accordion stretch out with less favorable configuration, the PXR/RXR-protein 

complex allows the incorporation of an integral number of half helical turns 

between the two DNA-binding domains. As more half turns of DNA are 

incorporated in the spacer region, the interface is further stretched out, which still 

allows the interactions between the PXR-protein complex and its response 

element, but with decreased predilection.   

 

     To obtain further information that PXR indeed binds to the novel DR-(5n+4)-

like DNA sequences, I developed a quantitative ELISA-based transcription-factor 

binding assay for mouse PXR protein.  The assay was developed from an 

existing commercially-available kit for the detection of other transcription factors 

(Active Motif, Carlsbad, CA), and modified accordingly for the detection of PXR.  

As shown in Figure 4.8, this assay can detect basal binding (CON) and PCN-

induced binding (PCN) of PXR to the following binding sites: DR-3, DR-4, DR-9, 

DR-14, and DR-19.  For each binding site, nuclear protein from PCN-treated 

mouse liver resulted in increased PXR binding to the DNA sequence.  In addition,  
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Figure 4.8.  

 

Figure 4.8.  Quantification of PXR binding to the DR-3, DR-4, DR-9, DR-14, and DR-19 DNA-binding 
motifs.  Nuclear protein extracts from the livers of mice treated with corn oil vehicle control (CON) or 
the PXR agonist, PCN, were incubated with oligonucleotides corresponding to various DNA binding 
motifs.  The binding of PXR to the various DNA-binding motifs was quantified using an ELISA-based 
transcription-factor binding assay, as detailed in the Methods section.  Binding of PXR to A)  DR-3, 
B)  DR-4, C)  DR-9, D)  DR-14, and E)  DR-19.  An unlabeled oligonucleotide competitor was included 
for each DR DNA binding motif to confirm the specificity of the assay (WT Comp) as well as a 
mutated oligonucleotide competitor, which should not compete effectively with the positive control 
(PCN treatment).  F.)  PXR binding to all the DNA-binding motifs was analyzed simultaneously in 
order to directly compare the intensity of binding among the different DR sequences. 
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binding of PXR to each DNA binding site was effectively competed off with an 

unlabeled competitor oligonucleotide, whereas mutated unlabeled 

oligonucleotides were either ineffective or less effective in competing with the 

labeled DNA sequences.  Interestingly, under these binding conditions, PXR 

binding was strongest to DR-19, followed by DR-14, whereas DR-9, DR-4 and 

DR-3 were relatively similar (Figure 4.8F).  Collectively, these data demonstrate 

that PXR binds to the DR-(5n+4) binding motif in mouse liver. 

 

Overlay between PXR binding and epigenetic marks.  The PXR-nuclear-

binding signatures have raised the question of whether a permissive chromatin 

environment pre-exists at PXR-binding sites favoring the interaction between 

PXR protein and DNA.  To explore the pre-existence of chromatin epigenetic 

signatures in predefining the binding signatures of PXR, three epigenetic marks, 

namely DNAMe, H3K4Me2, and H3K27Me3, were examined by ChIP-on-chip.  

Therefore, as a first attempt to discover the roles of epigenetic signatures in 

regulating PXR binding to drug-processing genes, we selected chromosomes 5, 

12, and 15, because these chromosomes are enriched with drug-processing 

genes (for example, these chromosomes contain the Cyp3a gene subfamily, 

Ugt2 and Ugt3 gene clusters, and the Mdr gene cluster).  An overlay was 

performed between these epigenetic signatures and PXR binding (ChIP-Seq) in 

both control and PCN-treated conditions.  As expected, there were more 

nucleotides covered by PXR after PCN treatment (Figure 4.9).  Minimal 

overlapping was observed between PXR binding and the non-permissive  
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Figure 4.9.  
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Figure 4.9. An overlay between PXR binding and presence of three epigenetic marks: 
DNAMe, H3K4Me2, and H3K27Me3 on mouse chromosome 5, 12, and 15.  
Presence of the three epigenetic marks was determined by ChIP-on-chip as described in 
EXPERIMENTAL PROCEDURES. (A) Total number of nucleotides bound by PXR in control 
and PCN-treated groups on mouse chromosome 5, 12, and 15,  based on ChIP-Seq 
analysis. (B) An overlay between PXR binding and presence of DNAMe. (C) An overlay 
between PXR binding and presence of H3K4Me2. (D) An overlay between PXR binding and 
presence of H3K27Me3.  
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epigenetic mark DNAMe in control mice (0bp, 491bp, and 62bp on chr 5, 12, and 

15, respectively), and even less in PCN-treated mice (0bp, 337bp, and 30bp on 

chr 5, 12, and chr15, respectively) (Figure 4.9B).  In contrast, prominent portions 

of PXR-bound nucleotides overlapped with the permissive mark H3K4Me2 in 

control (824bp, 596bp, and 1130bp on chr 5, 12, and 15, respectively), and even 

more after PCN treatment (1379bp, 607bp, and 1964bp on chr 5, 12, and 15, 

respectively) (Figure 4.9C).  There was no overlapping between PXR binding and 

the non-permissive mark H3K27Me3 in either control or PCN-treated conditions 

(0bp overlap) (Figure 4.9D).  

 

     In summary, the ontogeny of numerous drug-processing genes and 

transcription factors form distinct expression patterns during liver maturation.  

Dynamic changes in three epigenetic marks, namely DNAMe, H3K4Me2, and 

H3K27Me3, were observed on three representative chromosomes (chr5, 12, and 

15) during liver development.  In addition, a roadmap of the genome-wide DNA 

binding signatures for the xenobiotic sensor PXR has been generated, and 

shows a novel response element in vivo in liver, and some PXR-DNA binding 

sites overlap with the presence of H3K4Me2, an epigenetic mark for gene 

activation.  The genetic and epigenetic mechanisms underlying the regulation of 

drug-processing genes during development will be described in the following four 

chapters of the dissertation.  
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THE ONTOGENY OF NOVEL CYTOCHROME P450 GENE ISOFORMS 
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ABSTRACT 

     The ontogeny of the first four families of cytochrome P450s (Cyp1-4) can 

markedly affect the biotransformation of drugs and environmental chemicals in 

liver, resulting in unique pharmacological and toxicological responses in children.  

As genome-scale investigations have identified many novel Cyp isoforms 

recently, it is critical to perform a systematic characterization of these Cyps 

during liver development.  In this study, livers were collected from C57BL/6 mice 

at 2 days before birth and various postnatal ages.  The mRNAs of 75 Cyp 

isoforms (Cyp1-4) were quantified by multiplex suspension bDNA assay and RT-

qPCR.  Over half of the mouse Cyps are conserved for humans, but there are 

more isoforms in mice.  The mRNA of all these Cyp isoforms increased in mouse 

liver after birth, forming four distinct ontogeny patterns.  Cyp1 mRNAs showed 

various ontogeny patterns, in that Cyp1a1 mRNA was highest right after birth, 

Cyp1a2 mRNA is highest between 20 and 45 days of age, whereas Cyp1b1 

mRNA increased right after birth, followed by a decrease from day 3 and 5, but 

increased again after 10 days of age.  For the Cyp2 genes, Cyp2b and 2c 

subfamilies tended to be female predominant, whereas Cyp2d and 2j mRNAs 

tended to be male predominant.  Most Cyp3 and Cyp4 genes were most highly 

expressed in adults, whereas a few were enriched in neonatal liver.  The majority 

of Cyps form a total of 8 genomic clusters, namely, Cyp1a1 and 1a2 on chr 9 

(cluster 1), Cyp2a-2b-2f-g-2t genes on chr 7 (cluster 2), Cyp2c genes on chr 19 

(cluster 3), Cyp2d genes on chr 15 (cluster 4), Cyp2j genes on chr 4 (cluster 5), 

Cyp3a genes on chr 5 (cluster 6), Cyp4a-4b-4x genes on chr 4 (cluster 7), and 
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Cyp4f genes on chr 17 (cluster 8).  A number of the Cyp isoforms within the 

same chromosomal cluster showed similar ontogeny patterns.  Both epigenetic 

mechanisms as well as nuclear receptor binding to the Cyp gene loci may 

contribute to the developmental regulation of the Cyp isoforms.  ChIP-on-chip 

identified that the ontogenic expression of the Cyp3a genes associates with 

distinct histone methylation signatures.  ChIP-Seq identified that under a 

permissive chromatin environment, PXR binds to some of the Cyp3a genes 

within the cluster marked with histone H3K4 dimethylation.  In conclusion, the 

present study has revealed 4 patterns of ontogeny of novel Cyps in liver, and 

showed that some Cyps within a genomic cluster share similar ontogeny patterns, 

suggesting that some Cyps within a cluster are likely regulated by a common 

pathway during liver development, including chromatin epigenetic marks and 

PXR-DNA binding. 

 

 

 

 

 

 

 

 

 

 



 90

INTRODUCTION 

     It is generally considered that CYPs in families 1-4 are critical and inducible 

components of the phase-I biotransformation system in various species (Wei et 

al., 2000; Estabrook, 2003; Kang et al., 2007; Li et al., 2007), and many of them 

are also important for metabolizing lipids, including steroids (CYP2), bile acids 

(CYP3A), fatty acids (CYP4), and many other endogenous compounds (Nebert 

and Russell, 2002).  In contrast, other CYP families specialize in endobiotic 

metabolism (Nebert and Russell, 2002).  Whereas genetic mutations in CYPs are 

responsible for various types of inborn errors of metabolism and human diseases 

(Nebert and Russell, 2002; Caldwell, 2004), induction of some CYPs is a risk 

factor for adverse drug interactions.  Previous studies have determined that the 

mRNAs of Cyp1-4 are inducible by ligands for four classes of xeno-receptors, 

namely the aryl hydrocarbon receptor (AhR), the constitutive androstane receptor 

(CAR), the pregnane X receptor (PXR), and the peroxisome proliferator-activated 

receptor alpha (PPARα) (Petrick and Klaassen, 2007).  Although these receptors 

have overlapping targets, it is generally considered that AhR is responsible for 

the mRNA induction of CYP1, CAR for CYP2, PXR for CYP3, and PPARα for 

CYP4.  

 

     Liver is an essential organ for drug metabolism and nutrient homeostasis.  

Many well characterized CYPs have been found to be enriched in adult liver 

(Nebert and Russell, 2002).  Interestingly, before birth, liver is mainly a 

hematopoietic organ with very limited capacity for drug metabolism in both 
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humans and mice.  However after birth, the liver becomes the major organ for 

processing drugs and other chemicals.  Very little is known about how and when 

the drug-metabolizing CYPs become activated or suppressed during postnatal 

liver development, resulting in higher risks for adverse drug reactions in pediatric 

patients.  In 1959, it was found that a number of drugs that are metabolized by 

Cyps in liver microsomes from adult rabbits are not metabolized in livers of 

newborn rabbits (Fouts and Adamson, 1959).  However, at that time, only two 

Cyp enzymes were thought to exist.  After more CYP genes were cloned, the 

ontogeny of a few CYPs were characterized in human livers (de Wildt et al., 

1999; Blake et al., 2005; Leeder et al., 2005; Gaedigk et al., 2006; Hines, 2007).  

However, these data are rather fragmentary in that at most 10 CYP isoforms 

were studied in each manuscript, and no one aimed to characterize all the drug-

metabolizing Cyps systematically.  At the beginning of the 21st century, two 

exciting findings were reported: first, in 2003, the Human Genome Project was 

declared complete, which indicated there were 57 human Cyps, and second, the 

NCBI data base was released, which indicated there were 102 mouse Cyps 

(Nelson et al., 2004).  Many of these newly identified Cyps are still considered 

“orphans”, that is they have no known function.  In addition, very little is known 

about the ontogeny of novel Cyps during postnatal liver development.       

 

     Mice have been a popular research tool to study the functions and ontogeny 

of Cyps (Choudhary et al., 2003; Choudhary et al., 2005; Hart et al., 2009), due 

to their homogenous genetic background, and the availability of genetically-
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modified mouse models, including the Cyp gene-knockout mice and the Cyp 

gene-humanized transgenic mice (van Herwaarden et al., 2007; Lofgren et al., 

2009; Zhou et al., 2010).  Last year, we identified three patterns of Cyp gene 

expression during postnatal liver maturation in mice (Hart et al., 2009).  However, 

only 19 Cyps were included.  It remains to be determined whether the novel Cyp 

genes within the first four families are expressed in liver, and what their ontogeny 

patterns are during postnatal liver maturation.   

 

     Therefore, the purpose of the present study was to systematically determine 

the ontogeny of 75 known and novel Cyps in the Cyp1-4 families in mouse liver.  

In addition, we also compared their sequence homologies with humans, and 

determined the correlation between their chromosomal location and coordinate 

gene expression.  The successful completion of the blueprint for the ontogeny of 

novel Cyps will generate many hypotheses in predicting functions of the “orphan” 

Cyps during liver development.   
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RESULTS 

Sequence homology of Cyps between mice and human.  Previously, we have 

characterized the ontogeny of 19 Cyps important for drug metabolism during 

mouse liver maturation, and compared the sequence homology of these genes 

with the human homologs (Hart et al., 2009).  In the present study, as a first 

approach to determine which of the newly identified novel Cyps are conserved in 

humans, and which are mouse specific isoforms, the National Center for 

Biotechnology Information (NCBI) HomoloGene Database 

(http://www.ncbi.nlm.nih.gov/) was used to determine the homologous Cyp genes 

in mice that are conserved for human Cyps, as well as Cyp isoforms that are 

unique in mice, among the 75 mouse Cyp genes from Cyp1-4 families.  Table 3.1 

lists the mouse Cyp gene names, their human homologs (if present), mouse 

gene ID, mouse mRNA and protein accession numbers, identities of DNA and 

protein sequences between mice and humans, as well as the chromosomal 

locations of the mouse Cyp genes.  Among these 75 Cyps in mice, 39 genes are 

conserved in humans, whereas 36 genes are mouse Cyp isoforms with no 

apparent human homologs.  For the conserved Cyps, some mouse genes 

display more variations in their isoforms than human genes, as many human 

Cyps have multiple mouse homologs.  For example, the human CYP2C19 is 

homologous to three mouse Cyp isoforms, namely Cyp2c37, 2c50, and 2c54; the 

human CYP3A4 is homologous to five mouse Cyp isoforms, namely Cyp3a11, 

3a16, 3a41a, 3a41b, and 3a44; the human CYP3A43 is homologous to mouse 

Cyp3a57 and 3a59; and the human CYP4A22 is homologous to mouse 
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Cyp4a12a and 4a12b (Table 3.1).  The other human CYPs only have one unique 

homologous gene in mice.   

 

     Interestingly, the majority of Cyps form a total of 8 genomic clusters on certain 

mouse chromosomes (Figure 5.1).  The only Cyp genes in isolation (i.e. they do 

not form clusters with other Cyps) include Cyp1b1, 2c44, 2e1, 2u1, 2w1, 3a13, 

4f18, and 4v3.  Cyp1a and 3a gene families have human homologs for all the 

genes within these two genomic clusters (chr9 for Cyp1a, and chr5 for Cyp3a) 

(Figure 5.1 cluster 1 and 6), highlighting their functional significance during 

evolution.  In contrast, only 4 out of 11 mouse Cyp2a-f genes within cluster 2, 

and 5 out of 14 mouse Cyp2c genes within cluster 3, have human homologs. 

Cyp2d22 is the only gene within cluster 4 that has a human homolog (CYP2D6), 

and Cyp2j6 is the only gene within cluster 5 that has a human homolog.  In 

addition, 6 out of 10 Cyp4 genes within cluster 7, and 5 out of 7 Cyp4 genes 

within cluster 8, have human homologs (Table 3.1 and Figure 5.1).        

 

     In summary, among the 75 isoforms, over half of the Cyps within the first 4 

gene families are conserved between mice and humans, but the mouse Cyp 

genes seem to have more sequence redundancy and display more variations in 

isoforms.  In addition, the majority of Cyp isoforms form distinct genomic clusters 

on mouse chromosomes. 
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Figure 5.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1.  Genomic locations of Cyp gene clusters from Cyp1 (cluster 1), Cyp2 (clusters 
2-5), Cyp3 (cluster 6), and Cyp4 (clusters 7-8) gene families.  This mage was generated 
from the Affymetrix Integrated Genome Browser (IGB).  Genes above the chromatin 
coordinates are transcribed from the plus strand, and genes below are transcribed from 
the minus strand.  Asterisks (*) represents a pseudogene.  Pound (#) represents a gene 
annotated in NCBI database but not in IGB.  Arrows point the gene names to the loci.  
Dashed lines separate panels from each other.  
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Ontogeny of the mRNA of the Cyp1 gene family.  Within the Cyp1 gene family, 

Cyp1a1 and 1a2 form a cluster on mouse chromosome (Chr) 7 but transcribe 

from opposite strands (Cyp1a1: plus strand; Cyp1a2: minus strand)(Figure 5.1 

panel 1), whereas Cyp1b1 is in isolation (data not shown).  More specifically, 

Cyp1a2 is embedded in the 5-UTR region of the Cyp1a1 gene locus.  The 

mRNAs of Cyp1a1, 1a2, and 1b1 were quantified during liver development in 

mice (Figure 5.2).  Cyp1a1 mRNA was lowest before birth, but increased 

markedly after birth (1.7-fold of day -2 levels) and peaked at 1 day of age (255-

fold of day -2 levels).  After day 1, Cyp1a1 mRNA decreased and gradually 

reached adult levels after 30 days of age (approximately 35-fold of day -2 levels) 

(Figure 5.2, left panel 1).   

 

     Compared to Cyp1a1 and 1b1, apparently more Cyp1a2 mRNA was detected 

than the other two isoforms throughout postnatal liver maturation.  Cyp1a2 

mRNA expression was lowest before birth, but increased 17 fold right after birth, 

and  continued to increase until about 20-days of age.   

 

     Cyp1b1 mRNA was also lowest before birth, and increased 3-fold right after 

birth.  The Cyp1b1 mRNA remained relatively constant thereafter (Figure 5.2, left 

panel 3).  

 

     In summary, the ontogeny of the Cyp1 gene family displayed divergent 

patterns: Cyp1a2 appeared to be the most abundant Cyp1 isoform, and it  
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Figure 5.2.  The mRNA ontogenic expression of the Cyp1 family (Cyp1a1, 1a2, and 1b1), 
and part of the Cyp2 family (Cyp2a4, 2a5, 2a22, 2b9, 2b10, 2b13, 2b19, 2b23, 2c29, 2c37, 
2c38, 2c39, 2c40, 2c44, 2c50, 2c54, and 2c55) in male and female livers from day -2 to day 
45 of age.  Total RNA was isolated from liver at each age (n=5 per gender at each age).  
Genders were not differentiated from day -2 to day 5 of age (n=5 at each age).  The mRNA 
expression of Cyp2a5, 2c37, 2c40, 2c50, and 2c54 was determined by RT-qPCR, whereas 
the mRNAs of other Cyps were quantified by the multiplex bDNA assay as described in 
MATERIALS AND METHODS.  Data are presented as mean fluorescence intensity of mRNA 
± S.E.M normalized to Gapdh.  Asterisks represent statistical significances between male 
and female mice (p < 0.05).   
 

 

 

 

 

Figure 5.2. 
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showed an adult enriched pattern in both males and females; whereas Cyp1a1 

and 1b1 mRNAs were induced right after birth, but the levels reached adult 

expression at about 20 days of age, but the levels were relatively low.  Although 

Cyp1a1 and 1a3 are located in the same genomic cluster, they showed different 

ontogeny patterns.  

 

Ontogeny of the mRNA of the Cyp2 gene family.  Compared to other Cyp 

gene families, the Cyp2 family has the largest number of subfamilies and gene 

isoforms, including the Cyp2a subfamily, Cyp2b, Cyp2c, and Cyp2d subfamily, as 

well as Cyp2e, Cyp2f, Cyp2g, Cyp2j, Cyp2s, Cyp2t, Cyp2u, and Cyp2w.  The 

mRNAs of these Cyp2 genes were quantified during liver development in mice 

(Figure 5.2 left panel 4 to Figure 5.4 left panel 7), except for Cyp2a12, 2s1, 2c65, 

2d13, and 2r1, due to potential cross-reaction among primers.   

 

     For the Cyp2a subfamily (Figure 5.2 left panel 4-6), both Cyp2a4 and 2a5 

mRNAs were expressed at a very low level before birth, and gradually increased 

to adult levels at 20 days of age, and remained relatively stable thereafter.  

Cyp2a22 mRNA was also lowest before birth, followed by a gradual increase 

after birth until 20 days of age when the peak mRNA expression was observed.  

After day 20, Cyp2a22 mRNA decreased approximately 60% at both 30 and 45 

days of age.  Female-predominant expression of Cyp2a5 was observed at 20 

and 30 days of age.   
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     For the Cyp2b subfamily (Figure 5.2 left panel 7-10, and right panel 1), the 

expression of Cyp2b9, 2b10, and 2b13 mRNAs appeared to be more than that of 

Cyp2b19 and 2b23 during liver development.  The mRNAs of Cyp2b9, 2b10, and 

2b13 were all lowly expressed before birth, followed by a gradual increase after 

birth.  Peak levels of Cyp2b9 mRNA were observed at 15 days of age, Cyp2b10 

at 45 days of age, and Cyp2b13 mRNA at 45 days of age.  Female-predominant 

expression was observed for Cyp2b9, Cyp2b10, and Cyp2b13.  For Cyp2b19 

and 2b23, minimal mRNA expression was observed before birth, followed by a 

gradual increase from 0 to 5 days of age, and peaked at around 10 days of age, 

and gradually decreased afterwards, and the mRNAs of Cyp2b19 and 2b23 were 

relatively lowly expressed in liver throughout development. 

 

     For the Cyp2c subfamily (Figure 5.2 right panel 2-10, and Figure 5.3 left panel 

1-5), Cyp2c29 mRNA gradually increased to adult levels by 20 days of age. 

Cyp2c37 mRNA was also lowest before birth, increased after birth, and peaked 

at 20 days of age.  After day 20, the Cyp2c37 mRNA decreased markedly to 

adult expression at 45 days of age.  The mRNAs of Cyp2c38, 2c39, 2c40, 2c54, 

2c67, 2c68, and 2c69 were all low before birth, but gradually increased to adult 

levels between 30 and 45 days of age.  The mRNAs of 2c50, 2c55, 2c66, and 

2c70 were all lowly expressed before birth, but increased after birth, reaching 

peak values between 10 and 20 days of age.  Cyp2c44 mRNA was low before 

birth, and appeared to reach adult levels by 10 days of age.  Most of the Cyp2b 

genes showed female-predominant expression pattern.  Female-predominant  
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Figure 5.3.  The mRNA ontogenic expression of part of the Cyp2 family (Cyp2c66, 2c67, 
2c68, 2c69, 2c70, 2d9, 2d10, 2d11, 2d12, 2d22, 2d26, 2d34, 2d40, 2e1, 2f2, 2g1, 2j5, 2j6, 2j7, 
and 2j8) in male and female livers from day -2 to day 45 of age.  Total RNA was isolated 
from liver at each age (n=5 per gender at each age).  Genders were not differentiated from 
day -2 to day 5 of age (n=5 at each age).  The mRNA expression of Cyp2c67, 2c68, 2c69, 
2d9, 2d10, 2d11, and 2d12 was determined by RT-qPCR, whereas the mRNAs of other Cyps 
were quantified by the multiplex bDNA assay as described in MATERIALS AND METHODS.  
Data are presented as mean fluorescence intensity of mRNA ± S.E.M normalized to Gapdh.  
Asterisks represent statistical significances between male and female mice (p < 0.05).   
 

 

 

 

 

Figure 5.3. 
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mRNA expression was observed for Cyp2c39, 40, 67, 68, and 69.  Male-

predominant mRNA expression was observed at 20 days of age for Cyp2c38 

(although the gene expression in both genders was very low at this age), and at 

10 and 45 days of age for Cyp2c66.  Cyp2c65 mRNA was not determined in the 

present study due to high sequence homology.   

 

     For the Cyp2d subfamily (Figure 5.3 left panel 6-10, and right panel 1-3), 

Cyp2d9 is an adult-enriched male-predominant Cyp isoform, in that low Cyp2d9 

mRNA expression was observed before 20 days of age, but after day 20, the 

male Cyp2d9 mRNA increased markedly, whereas Cyp2d9 was expressed lowly 

in females at all ages.  The mRNAs of Cyp2d10, 2d11, 2d12, 2d22, 2d26, and 

2d40 were lowly expressed before birth, and gradually increased to adult levels 

in both genders during development.  For Cyp2d22 and 2d26, peak levels were 

observed at 20 days of age.  Cyp2d34 mRNA was low before birth and in 

neonatal ages (day 0 to day 3), but increased and peaked at 5 days of age, and 

gradually decreased to prenatal levels.   

 

     Cyp2e1 mRNA was also low before birth, followed by a marked increase right 

after birth, and continued to increase and reached adult levels at 5 days of age.     

Cyp2f2 mRNA was low before birth, followed by a gradual increase after birth, 

and reached adult levels at about 20 days of age.  Cyp2g1 mRNA was low 

before birth, followed by a gradual increase after birth until 20 days of age, when 

peak levels were observed, and its expression decreased thereafter.   
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     The mRNAs of Cyp2j5, 2j6, and 2j9 were all low before birth, followed by an 

increase after birth, and peak levels were observed between 20 and 45 days of 

age (Figure 5.3 and 5.4).  In contrast, the mRNAs of Cyp2j7, 2j8, 2j11, 2j12, and 

2j13 gradually increased after birth, but peaked at about 10 days of age.  The 

mRNA expression of Cyp2j11-13 mRNAs appeared to be lower than the other 

Cyp2j isoforms throughout liver development.   

 

     Cyp2t4 mRNA was low before birth, increased and appeared to reach a peak 

at 10 days of age, and attained adult levels at about 30 to 45 days of age.  

Cyp2u1 mRNA was low from before birth to 20 days of age, followed by a 

marked increase at 30 days of age, when peak levels were observed.  The 

Cyp2u1 appeared to be a male-predominant Cyp because the Cyp2u1 mRNA 

tended be lower in female mice after 30-days of age.  Cyp2w1mRNA was low 

before birth, followed by a gradual increase after birth, and peaked at 10 days of 

age in males, whereas the female Cyp2w1 remained stable from day 10 to day 

30, and increased to peak expression at 45 days of age.  In general, the Cyp2w1 

mRNA signals were very low throughout liver development (<0.08% of Gapdh 

mRNA). 

 

     Most of the Cyp2 genes are contained within four genomic clusters, including 

the Cyp2a-f cluster on chr7 (Figure 5.1 cluster 2) (plus strand: Cyp2b10, 2b13, 

2b9, 2a4, 2b19, 2g1, 2a5, 2a12, 2f2, and 2t4; minus strand: Cyp2a22 and 2b23), 
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Figure 5.4.  The mRNA ontogenic expression of part of the Cyp2 family (Cyp2j9, 2j11, 2j13, 
2j13, 2t4, 2u1, and 2w1), Cyp3 family (Cyp3a11, 2a13, 2a16, 3a25, 3a59, 3a41a, 3a41b, 3a44), 
and part of the Cyp4 family (Cyp4a10, 4a12a/b, 4a14, 4a29, and 4a30b) in male and female 
livers from day -2 to day 45 of age.  Total RNA was isolated from livers at each age (n=5 
per gender at each age).  Genders were not differentiated from day -2 to day 5 of age (n=5 
at each age).  The mRNA expression of Cyp2j12, 3a59, 3a41a, 4a12a/b was determined by 
RT-qPCR, whereas the mRNAs of other Cyps were quantified by the multiplex bDNA assay 
as described in MATERIALS AND METHODS.  It should be noted that due to high 
sequence homology, primers for Cyp3a41a and 41b have cross-reactivity.  Data are 
presented as mean fluorescence intensity of mRNA ± S.E.M normalized to Gapdh.  
Asterisks represent statistical significances between male and female (p < 0.05).   
 

 

 

Figure 5.4. 
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    the Cyp2c cluster on chr19 (Figure 5.1 cluster 3) (plus strand: Cyp2c55, 2c65, 

2c66, 2c29, 2c39, 2c37, and 2c50; minus strand: Cyp2c70, 2c54, 2c69, 2c40, 

2c68, 2c67, and 2c38), the Cyp2d cluster on chr15 (Figure 5.1 cluster 4) (plus 

strand: Cyp2d9 and 2d12; minus strand: Cyp2d26, 2d40, 2d34, 2d10, 2d11, and 

2d22), as well as the Cyp2j cluster on chr4 (Figure 5.1 cluster 5) (Cyp2j5, 2j9, 2j6, 

2j8, 2j11, 2j7, 2j12, and 2j13, all transcribed from the minus strand).  The only 

Cyp2 genes that are not clustered with other Cyps in the mouse genome include 

Cyp2c44, 2e1, 2u1, and 2w1.  Interestingly, within the Cyp2a-f cluster on chr7 

(Figure 5.1 cluster 2), Cyp2b10, 2b13, 2b9, and 2a4, which are clustered 

together on the left side (upstream), all displayed a female-predominant mRNA 

expression pattern with highest expression observed between 20 and 45 days of 

age (Figure 5.2, left panel 3, 6-8),  Downstream of Cyp2a4 gene, Cyp2b19, 2g1, 

2a5, 2a12, 2f2, and 2t4 form another cluster, and are separated by the Cyp2b10-

2a4 cluster by four non-Cyp genes (Nlrp9c, 4a, 9a, and Vlre12) (Figure 5.1, 

cluster 2).  Within this cluster, the mRNAs of Cyp2b19, 2g1, and 2t4 were highest 

in adolescent ages (10-20 days of age) (Figure 5.2 left panel 10, Figure 5.3 right 

panel 6, and Figure 5.4 left panel 5), whereas Cyp2a5 and 2f2 are in the middle 

of the cluster were both enriched between 30 and 45 days of age (Figure 5.2 left 

panel 5, and Figure 5.3 right panel 5).  Cyp2a12 mRNA was not determined in 

the present study due to high sequence homology.  

 

     Within the Cyp2c cluster on chr19 (Figure 5.1 cluster 3), on the left side of the 

cluster, the mRNAs of Cyp2c55 and 2c66 were both high around10-20 days of 
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age (Figure 5.2 right panel 10, and Figure 5.3 left panel 1) (Cyp2c65 mRNA was 

not determined due to high sequence homology).  Downstream of Cyp2c66, the 

mRNAs of Cyp2c29, 2c39, 2c69, 2c40, 2c68, 2c67, and 2c38, all displayed an 

adult enriched pattern, and many of them tended to be higher in females, such as 

Cyp2c39, 2c40, 2c67, 2c68, and 2c69 (Figure 5.2 right panel 2, 4-6, and Figure 

5.3 left panel 2-4).  On the right side of the Cyp2c cluster, the mRNAs of 

Cyp2c37, 2c50, and 2c70 were all high around 20 days of age (Figure 5.2 right 

panel 3 and 8, Figure 5.3 left panel 5).  The only exception in this region was 

Cyp2c54, which was highly expressed around 45 days of age (Figure 5.2 right 

panel 9).   

 

     Within the Cyp2d cluster on chr15 (Figure 5.1 cluster 4), the mRNAs of most 

genes (Cyp2d9, 2d12, 2d40, 2d10, 2d11, and 2d22) were most highly expressed 

at around 20 to 45 days of age, except for Cyp2d26 and 2d34, which were 

enriched around 10 days of age (Figure 5.3 left panel 6-10, right panel 1-3).  In 

addition, many of these Cyp2d genes tended to be male-predominant between 

adolescent and adult ages (from day 10 to 45), such as Cyp2d9 after 30 days of 

age, 2d11 at 20 and 45 days of age, 2d12 at 30 days of age, 2d34 at 10 and 15 

days of age, and 2d40 at 20 and 30 days of age.  In contrast, Cyp2d22 and 2d26, 

which are localized on the boundary region of the cluster, did not show a male-

predominant pattern.     
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     Within the Cyp2j cluster on chr4 (Figure 5.1 cluster 5), interestingly, on the left 

side of the cluster, the mRNAs of Cyp2j13, 2j12, 2j7, and 2j11, and 2j8 genes 

were all high at around day 10 and tended to be male-predominant at this age.  

In the middle of the cluster, the mRNAs of Cyp2j6 and 2j9 were both high at 20 

days of age, whereas on the right side of the cluster, Cyp2j5 mRNA was high at 

45 days of age.  

  

     In summary, all of the 44 Cyp2 genes were high after birth.  Gender 

differences were observed for many Cyp2 mRNAs from adolescent to adult ages.  

In addition, some of the Cyp isoforms within a genomic cluster tended to show 

similar ontogeny patterns.   

 

Ontogeny of the mRNA of the Cyp3 gene family.  The Cyp3a subfamily 

includes 8 members, forming a cluster on chr5 (Figure 5.1 cluster 6), and this 

cluster includes Cyp3a57 and 3a59 that are transcribed from the plus strand, as 

well as Cyp3a25, 3a11, 3a44, 3a41a, 3a41b, and 3a16 from the minus strand.  

Cyp3a13 is the only Cyp3a that is in isolation (data not shown).  The ontogeny of 

the Cyp3a mRNAs is most thoroughly characterized in the literature.  Consistent 

with previous findings (Hart et al., 2009; Li et al., 2009), the mRNAs of Cyp3a11, 

3a13, and Cyp3a25 increased postnatally and peaked between 20 and 45 days 

of age (Figure 5.4 left panel 8 and 9, right panel 1 and 4).  Cyp3a16 mRNA was 

low before birth, followed by a marked increase in neonatal ages, and decreased 

thereafter.  Whereas Cyp3a41b mRNA increased in neonatal ages, it decreased 
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in male liver thereafter.  However, in female livers, Cyp3a41b mRNA increased 

again after 30 days of age, and peaked at 45 days of age.  In addition, the 

present study added three new Cyp3a genes, namely Cyp3a41a, and 3a44, and 

3a59 (Figure 5.4 right panel 2-4).  Cyp3a41a mRNA was low before birth, and 

gradually increased to peak levels at 45 days of age.  Cyp3a44 mRNA was also 

low before birth, but increased to adult levels by 10 days of age, and the levels 

remained relatively constant thereafter.  Interestingly, the Cyp3a59 mRNA was 

highest at 20 days of age in both genders, but decreased markedly thereafter.   

 

     Within the entire Cyp3a gene cluster on chr5 (Figure 5.1 cluster 6), only 

Cyp3a16 and 3a59, which are located at the boundary regions of the cluster, 

displayed an adolescent-enriched pattern (i.e. high around day 10 to 20) with low 

mRNA expression in adults.  In contrast, the Cyp3a genes in the middle of the 

cluster, namely Cyp3a25, 3a11, 3a44, 3a41a, and 3a41b, all showed highest 

expression in adult ages.  The Cyp3a57 mRNA was not determined in the 

present study due to high sequence homology.  

 

Ontogeny of the mRNA of the Cyp4 gene family.  The Cyp4 gene family 

includes 19 members: Cyp4a subfamily, Cyp4b1, Cyp4f subfamily, Cyp4v3, and 

Cyp4x1.  Cyp4a10 mRNA was low before birth, but almost reached adult levels 

by one day of age. 
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     Due to high sequence homology, Cyp4a12a and 4a12b were quantified 

together as Cyp4a12a/b (Figure 5.4 right panel 7).  Interestingly, the Cyp4a12a/b 

mRNA was only expressed in male mice, and the expression was relatively low 

before day 30.  Cyp4a14 mRNA was low before birth, with a strong induction in 

neonatal ages.  After day 5, Cyp4a14 mRNA moderately decreased and returned 

to adult levels after 30 days of age (approximately 1500-fold of day -2 levels) 

(Figure 5.5 right panel 8).  The mRNAs of Cyp4a29 and 4a30b were both low 

before birth, followed by a postnatal increase after birth, with peak levels 

observed at 10 days of age (10-fold of day -2 levels in males and 4.7-fold in 

females for Cyp4a29, as well as 213-fold in males and 71-fold in females for 

Cyp4a30b).  After day 10, the mRNAs of Cyp4a29 and 4a30b in mice decreased 

to prenatal levels, whereas the female mRNAs continued to increase and 

reached a peak at 15 days of age, and decreased thereafter.  The mRNAs of 

Cyp4a31 and 4a32 were expressed right after birth, with the first peak of 

expression observed at 5 days of age, and then the mRNAs gradually decreased, 

but returned to high levels at 30 days of age (Figure 5.5 left panel 1 and 2).  

 

     Cyp4b1 mRNA was low before birth, with a marked postnatal induction after 

birth.  Both the male and female Cyp4b1 mRNAs remained relatively stable 

thereafter, except that the male Cyp4b1 mRNA showed further increase at 10 

days of age (12.8-fold of day -2 levels) (Figure 5.5 left panel 3).   
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Figure 5.5.  The mRNA ontogenic expression of part of the Cyp4 family (Cyp4a31, 4a32, 
4b1, 4f13, 4f14, 4f15, 4f16, 4f17, 4f18, 4f39, 4f40, 4v3, 4x1) in male and female livers from 
day -2 to day 45 of age.  Total RNA was isolated from liver at each age (n=5 per gender at 
each age).  Gender was not differentiated from day -2 to day 5 of age (n=5 at each age).  
The mRNA expression Cyp4a31 and 4a32 was determined by RT-qPCR, whereas the 
mRNAs of other Cyps were quantified by the multiplex bDNA assay as described in 
MATERIALS AND METHODS.  Data are presented as mean fluorescence intensity of mRNA 
± S.E.M normalized to Gapdh.  Asterisks represent statistical significances between male 
and female mice (p < 0.05).   
 

 

 

 

 

 

Figure 5.5. 
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     Within the Cyp4f subfamily, the mRNAs of Cyp4f13-15 were expressed lowly 

before birth, followed by a gradual increase after birth, with adult expression 

reached between 20 to 45 days of age in both genders (Figure 5.5 left panel 4-6).  

In contrast, the mRNAs of Cyp4a16-18, as well as Cyp4f39 and 4f40 (Figure 5.5 

left panel 7, and right panel 1-4), were all high around 10 to 15 days of age.  

Female-predominant expression was observed at 15 days of age for Cyp4f16, 

4f17, and 4f18. 

 

     Cyp4v3 mRNA was low before birth, and gradually increased to adult levels 

around 45 days of age.  Whereas the Cyp4x1 mRNA was high around 10 to 15 

days of age (approximately 15-fold of day -2 levels), it decreased to prenatal 

levels thereafter.            

   

     The Cyp4 gene family forms two genomic clusters (Figure 5.1 cluster 7 and 8).  

Cluster 7 contains Cyp4a29, 4a12a, 4a12b, 4a30b, 4a10, 4a31, and 4a32 from 

the plus strand, as well as Cyp4b1, 4a14, and 4x1 from the minus strand.  

Cluster 8 is the Cyp4f cluster, which includes Cyp4f39, 4f17, 4f16, 4f37, 4f40, 

and 4f15 from the plus strand, as well as Cyp4f13 and 4f14 from the minus 

strand, with four non-Cyp genes between Cyp4f15 and 4f13 (BC066107, 

603049I01Rik, Zfp811, and 9030612M13Rik).  Cyp4f18 and 4v3 are the only 

Cyp4 genes in isolation.  Within cluster 7, Cyp4x1 and 4a29, and 4a30b showed 

an adolescent-enriched mRNA expression pattern, whereas Cyp431 and 4a32 
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mRNAs were high in neonatal and adult ages.  Cyp4a12a/b mRNA was high only 

in males at adult ages.  

 

     Interestingly, the Cyp4f cluster (Figure 5.1 cluster 8), Cyp4f39, 4f17, 4f16, and 

4f40, all displayed an adolescent-enriched mRNA expression pattern, with 

highest expression observed around 10 days of age.  The mRNAs of these 

genes decreased markedly thereafter.  In contrast, Cyp4f15, 4f14, and 4f13 

gradually increased after birth and reached adult levels after 20 days of age, and 

remained stable thereafter.     

 

     In summary, the Cyp4 gene family was expressed after birth, with divergent 

expression patterns, in that some were enriched neonatally (from day 0 to 5) and 

adolescent ages (from day 10 to 20), and some were enriched in adult ages (day 

30 to 45).  Like the other genomic clusters of Cyps, distinct segments of the Cyp4 

isoforms within a certain region of the cluster tended to show similar ontogeny 

patterns.   

 

Hierachical clustering of the Cyps during liver development.  In order to 

perform an unbiased classification of the expression patterns of the mouse Cyp 

isoforms, the mRNA ontogenic expression of these Cyps were analyzed in 

developing mouse liver (separated by gender) by a two-way hierachical 

clustering method (JMP v. 8.0) and visualized as heatmaps described in 

MATERIALS AND METHODS.  Four distinct classes of ontogenic expression  
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Figure 5.6.  A two-way hierachical clustering of expression profiles for Cyp1-4 genes in 
livers of male (left panel) and female mice (Ward’s minimum variance, JMP v. 8.0).  Two 
trees describe the relationship between different gene expression profiles (tree on the left 
of each panel) and different ages (tree on top of each panel).  Distances between genes 
reflect significance of associations.  Average expression from five animals per gender at 
each age is given by shaded squares.  Red color represents relative high expression and 
blue color represents relative low expression.   
 

Male Female

Figure 5.6. 
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patterns were identified, and were defined as groups 1, 2, 3, and 4 in the present 

study.  

 

     In males (Figure 5.6 left panel), group 1 showed low prenatal and neonatal 

expression, but highest expression at around 10 days of age.  Group 2 had 

prominent mRNA increase after 10 days of age, with highest expression 

observed around 15 to 20 days of age.  The mRNAs in group 3 were most 

enriched between 30 and 45 days of age.  The mRNAs in group 4 increased 

markedly at neonatal ages (especially from day 1 to 5), followed by a decrease in 

adolescent period (from day 10 to 20), and a moderate increase in adult age 

(from day 30 to 45).  

 

     Female Cyps also fall into four distinct groups:  group 1 mRNAs were all 

highly expressed in neonatal ages (0 to 5 days of age); group 2 had highest 

mRNA expression around 10 to 20 days of age; group 3 had highest mRNA 

expression observed in adults (45 days of age); and mRNAs in group 4 were 

highly expressed from 10 to 45 days of age.  In general, these genes in group 4 

achieved high expression after 20 days of age, and remained relatively high 

thereafter. 
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Epigenetic regulation of the ontogeny of the Cyp3a gene locus.  In 2009, Dr. 

Xiao-bo Zhong’s research group collaborated with this laboratory to characterize 

the existence of three epigenetic marks around the Cyp3a gene locus, namely 

DNAMe, H3K4Me2, and H3K27Me3 (Li et al., 2009).  In that manuscript, four out 

of eight Cyp3a genes in the cluster were analyzed in detail, namely, Cyp3a16, 

3a41b, 3a11, and 3a25.   For this dissertation, as our knowledge for the Cyp 

gene annotations and ontogenic expression patterns has increased, the 

complete epigenetic signatures around all eight genes in the Cyp3a gene cluster 

have been characterized as an addition to our previous work (Figure 5.7).  DNA 

was consistently hypomethylated around the Cyp3a gene locus at all four ages 

during liver development (Figure 5.7A).  Interestingly, presence of the epigenetic 

mark H3K4Me2 for gene activation occurred specifically at the right half of the 

Cyp3a gene cluster only at 45 days of age, with five positive peaks observed in 

total (Figure 5.7B).  Conversely, presence of H3K27Me3, a hallmark for 

transcriptional repression of genes, was observed at the left side of the Cyp3a 

gene cluster, specifically at 45 days of age (Figure 5.7C).  Presence of the 

suppressive mark H3K27Me3 in adults strongly associates with the down-

regulation of Cyp3a16 and 3a41b in male adult liver during development.  

Whereas the presence of the permissive mark, H3K4Me2, only at the adult age, 

in the absence of any suppressive marks, (H3K27Me3 or DNAMe), seems to 

trigger the adult-enriched mRNA ontogeny pattern of Cyp3a41a, 3a44, 3a11, and 

3a25 on the right side of the cluster.  Interestingly, Cyp3a59 gene, which is at the 

right end of the cluster, was actually highest expressed at 20 days of age,  
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Figure 1.7 

A.  

 

 

 

 

 

 

B.  

 

 

 

 

 

C.  

 

 

 

 

 

 

Figure 5.7. Location and fold enrichment of DNAMe (A), H3K4Me2 (B), and H3K27Me27 (C) to the Cyp3a gene 
locus during liver development.  The gene mage was generated by the Affymetrix Integrated Genome Browser 
(IGB). Line: threshold values (3.0-fold of input levels for DNAMe, and 4.0-fold for H3K4Me2 and H3K27Me3) based 
on calculations of false discovery rate. Asterisks (*) represent positive enrichment of epigenetic marks at a 
certain genomic location. Numbers represent fold-enrichment of an epigenetic mark compared to input 
background levels. 
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followed by a down-regulation at 30 and 45 days of age.  This probably indicates 

that the transcription of Cyp3a59, which is the only gene on the opposite strand 

of the other Cyp3a genes, is likely interfered by the transcription of Cyps on the 

other strand.  

 

PXR-DNA binding to the Cyp3a gene cluster.   To determine the roles of PXR 

in regulating the trans-activation of all the genes in the Cyp3a gene cluster, ChIP-

Seq was performed on mouse liver, and the PXR-DNA binding signatures to the 

Cyp3a gene cluster were analyzed in detail.  Because 5 out of 8 Cyp3a genes 

were highly expressed in adults (from day 30 to 45), adult mouse liver was 

selected to characterized the direct target gene profiles.  Most PXR-binding 

studies in the literature have only examined the promoter regions of a few genes. 

To determine whether novel PXR-binding sites exist in other regions of a 

particular gene, PXR binding within ±10kb of an entire gene locus was examined 

in the Integrated Genome Browser (IGB).  Interestingly, corresponding to strong 

enrichment of the permissive mark, H3K4Me2, in adult mice, the PXR-DNA 

bindings to the right half of the Cyp3a cluster were markedly higher than the 

bindings to the left half, where the suppressive mark, H3K27Me3, was present 

(Figure 5.8).  For proof of concept, the synthetic potent PXR ligand PCN was 

administered to mice, and livers were subjected to ChIP-Seq to identify the 

inducible PXR-binding profiles.  Interestingly, there was a marked increase in 

both numbers of binding sites and binding fold-enrichment at original sites.  

Together, these data have identified novel PXR-DNA binding sites within the  
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Figure 1.8.   

A.  

 

 

 

 

 

 

 

B.  

 

Figure 5.8. A: Location and fold enrichment of PXR binding to the Cyp3a gene locus during liver development.  
Image was generated by the Affymetrix Integrated Genome Browser (IGB). Line: threshold values (20-fold of 
background based on calculations of false discovery rate). Asterisks (*) represent positive enrichment of 
epigenetic marks at a certain genomic location. B: mRNA expression of Cyp3a11 and Cyp3a25 in livers of WT and 
PXR-null mice. Asterisks (*) represent significant differences between control and PCN-treatment.  
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Cyp3a gene cluster, and provide strong evidence that a permissive epigenetic 

environment marked with H3K4Me2 and absence of H3K27Me3, is critical in 

recruiting PXR to the Cyp3a genes (Figure 5.8).   
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DISCUSSION 

     The present study has systematically characterized the ontogenic expression 

signatures of over seventy cytochrome P450 genes within the Cyp1-4 family 

during postnatal liver maturation in mice, and identified four distinct ontogeny 

patterns using cluster analysis.  The majority of Cyps form a total of 8 genomic 

clusters, and certain segments of the Cyps within the same cluster on a 

chromosome tended to show a similar ontogenic expression pattern, indicating 

that neighboring Cyps may be regulated by common pathways during liver 

maturation.  

 

     As many as 54 novel Cyps have been examined in the present study, and 

they were not included in a previous study we performed (Hart et al., 2009).  

These novel Cyps include Cyp2a5, 2a22, 2b9, 2b13, 2b19, 2b23, 2c37, 2c38, 

2c40, 2c44, 2c50, 2c54, 2c55, 2c67-70, 2d9-12, 2d26, 2d34, 2d40, 2g1, 2j5, 2j7-

9, 2j11-13, 2t4, 2u1, 2w1, 3a59, 3a41a, 3a44, 4a12a, 4a12b, 4a14, 4a29, 4a30b, 

4a31-32, 4b1,4f13-17, 4f39-40, 4v3, and 4x1.  If a Cyp mRNA is higher than 1% 

of Gapdh mRNA at one or multiple ages examined during liver development, I 

designated that Cyp gene as a liver-enriched Cyp at that age.  Using the 

threshold of above 1% Gapdh mRNA as defined in MATERIALS AND 

METHODS, among these newly characterized Cyps, 44 out of 54 Cyp mRNAs 

are enriched in liver during development.  Interestingly, several novel Cyps, 

including Cyp2c37, 2c50, 2c70, 2d26, and 3a59, even showed more than 200% 

of Gapdh mRNA levels at 20 days of age, indicating they are extremely enriched 
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in adolescent liver and may be functionally critical for normal development.  

Cyp3a59, which is highly conserved in numerous species,  including drosophila, 

rat, mice, chimpanzees, and humans according to the NCBI database, was 

expressed at twice the Gapdh mRNA at 20 days of age (Figure 5.4 right panel 2).  

However, surprisingly, very little is known about the function of this Cyp.  This 

suggests that although the state of characterization of Cyp genes is generally 

considered finished at the DNA level, there are still many unresolved issues in 

terms of their expression patterns and functional significance.   

 

     The relative percentages of the Cyp mRNAs at selected ages namely, day 1 

representing neonatal age, day 15 representing adolescent age, and day 45 

representing adult age, are shown in Figure 5.9.  Although caution needs to be 

made while interpreting the percentages of Cyp gene expression, considering the 

potential differences in the hybridization efficiency of the probe sets, it appears 

that compared with the mRNAs of other Cyps, Cyp2e1 and 3a11 are the two 

most enriched Cyp isoforms at all ages and in both genders.  Cyp3a41b, 2d26, 

and 4a31 are highly expressed in newborn livers, Cyp2c37, 2c70, and 2d26 in 

adolescent livers, as well as Cyp2c29, 2c37, and 2f2 in adult livers.  

Nevertheless, the low expression of the other novel Cyps during development 

does not necessarily indicate that they are not important in liver.  For example, 

Cyp2c39, although very lowly expressed in liver throughout development (0.4% 

of Gapdh mRNA at the highest level at 45 days of age, Figure 5.2 right panel 5), 

has recently been found critical for retinoic acid hydroxylation in liver, and its 
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down-regulation offers a molecular basis for liver retinoid accumulation and 

fibrosis in AhR-null mice (Andreola et al., 2004).  Therefore, the present study 

has set an example of investigating both highly and lowly expressed Cyps 

unbiasedly in liver maturation, and we suggest that future studies need to focus 

on characterizing the potentially critical functions of novel Cyps in liver at an age 

when they are highly expressed.    

 

     During evolution, over half of the mouse Cyps within the 1-4 family are 

conserved for humans, but mice display more sequence variations in Cyp gene 

isoforms than humans (Table 3.1).  In addition, the other half of the mouse Cyps 

has no human homologs.  The CYP2D/Cyp2d subfamily is an interesting 

example, in that humans only have one active CYP2D gene, namely CYP2D6, 

which determines the efficacy of tamoxifen in breast cancer (Dezentje et al., 

2009) and is responsible for the debrisoquine hydroxylase polymorphism 

(Coughlin and Piper, 1999).  In contrast, mice have nine different functional 

Cyp2d genes.  It has become clear in the genomic era that lower species 

generally tend to have more Cyp isoforms.  For example, whereas humans have 

only 57 Cyps, mice have 102, mosquitoes have 106, sea urchin have 120, and 

drosophila have 83 functional CYPs, according to the current Cyp database 

(http://drnelson.utmem.edu/CytochromeP450.html).  It can be hypothesized that 

as the species evolves, the higher species has more anatomical and 

physiological advantages than the lower species, so that the environment 
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becomes less harsh for the higher species in many ways, and this may contribute 

to the decreased isoforms in higher species.   

 

     For many years, mice have been a common research model to recapitulate 

pharmacological and toxicological responses in humans.  The beginning of the 

21st century is an exciting era of generating not only the Cyp gene-knockout 

mice, but also transgenic mice that carry a human cytochrome P450 gene (van 

Herwaarden et al., 2007; Lofgren et al., 2009; Zhou et al., 2010).  These 

humanized CYP transgenic mice hold great promise for in vivo studies on human 

P450 functions.  However, their utility is often compromised by the presence of 

relatively high levels, and more subfamiliy members of endogenous mouse Cyps.  

For example, to investigate the physiological and pharmacological roles of 

human CYP3A, Cyp3a-null mice have been generated that lack all functional 

Cyp3a genes, but there is an up-regulation of Cyp2b9, Cyp2b10, and Cyp2c55 in 

liver (van Herwaarden et al., 2007).   

 

     Caution needs to be made when extrapolating results from mice to humans.  

Interestingly, most of the Cyp isoforms within the same subfamily are clustered 

together on a chromosome, and certain Cyps within the same cluster showed 

similar ontogeny patterns (Figure 5.1-5).  The coordinate expression and 

multiplicity of mouse Cyp genes in many subfamilies have provided more 

challenges for translating the molecular mechanisms of gene regulation and 
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functions into humans, even though mice and human are generally considered to 

have similar pharmacological and toxicological responses.   

 

     Another interesting finding is the postnatal enrichment of all Cyps in the 1-4 

families, and their gender-divergent gene expression.  Functionally speaking, the 

postnatal enrichment of Cyps is an adaptive mechanism to biotransform an 

increased amount of xenobiotics from the environment, compared to the prenatal 

period when the fetus is largely protected from these chemicals by the placenta, 

and fetal membranes.  Nuclear receptors may contribute to the the age- and 

gender-specific gene expression of Cyp isofrms during development, considering 

that many nuclear receptors, which are well known to regulate Cyp gene 

expression in adults, begin to be expressed in liver after birth in both rat and mice 

(Balasubramaniyan et al., 2005).  Female-predominant expression was observed 

for many genes in Cyp2b and 2c subfamilies (such as Cyp2b9, 2b10, 2b13, 

2c40, 2c67, 2c68, and2c69).  The present findings are generally consistent with 

the gender differences observed for these genes in literature (Kawamoto et al., 

2000; Lofgren et al., 2009; Waxman and Holloway, 2009).  To note, the 

expression of CAR protein shows a female-predominant pattern, and it has been 

found to be responsible for the female-predominant expression of Cyp2b10 in 

mouse liver (Kawamoto et al., 2000).  Very recent findings indicate that CAR also 

regulates the basal expression of Cyp2c29 and Cyp2b13 (Hernandez et al., 

2009).  Therefore, it is possible that the postnatal enrichment and female-

predominant expression of CAR also contributes to the female-specific 
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expression of other novel Cyp isoforms in the 2b and 2c subfamilies, including 

Cyp2b9, 2b13, 2c39, 2c40, 2c67, 2c68, and 2c69 (Figure 5.2 and 3).  In addition, 

Drs. Waxman and Ingelman-Sundberg’s groups have recently examined the 

roles of sex and growth hormones in Cyp gene expression, and demonstrated 

that androgen-dependent pituitary growth hormone secretory pattern is the 

primary regulator of male-specific expression in liver (Lofgren et al., 2009), 

suggesting that there is a higher order of gene regulation mediated by pituitary 

hormones beyond the local regulation of Cyps by nuclear receptors.   

 

     The spatial organization of the genome is thought to play an important part in 

the coordination of gene regulation, and the coordinate expression of the Cyps in 

certain segments of genomic clusters indicates that common spatial regulatory 

mechanisms may exist.  Conversely, on the boundary regions between segments 

in the same Cyp cluster, there may be distinct regulators that prevent the spread 

of transcription from one segment to the other at certain ages.  It is critical to 

understand the molecular mechanisms underlying the developmental switch of 

cytochrome P450 isoforms, so as to better predict the altered drug responses in 

pediatric pharmacology.  It is well known that the two human CYP3A members, 

namely CYP3A4 and 3A7, exhibit a developmental switch in gene expression 

during liver maturation (Schuetz et al., 1994).  In mice, using ChIP-on-chip for 

three epigenetic marks for gene regulation, namely DNA and histone H3 lysine-

27 tri-methylation (H3K27Me3) for gene suppression, and histone H3 lysine-4 di-

methylation (H3K4Me2) for gene activation, we recently characterized that the 
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developmental switch between the perinatal Cyp3a isoform to adult Cyp3a genes 

is likely due to the dynamic changes of H3K4Me2 and H3K27Me3 during 

postnatal liver maturation, but not likely due to DNA methylation (Li et al., 2009).  

It is possible that distinct chromatin epigenetic marks may also modify other Cyp 

gene loci with segment-specific signatures within a certain cluster, resulting in 

common expression patterns within the same segment.  Another possible 

mechanism for differential expression patterns between segments of Cyps is the 

presence of insulators.  It was only recently identified that a ubiquitously 

expressed transcription factor,  CCCTC-binding factor (CTCF), can act as an 

enhancer-blocking protein, which binds to boundary elements between genes to 

prevent spreading of transcription, thereby isolating genes from the influence of 

their neighbors (Williams and Flavell, 2008).  Direct evidence for CTCF-mediated 

gene expression is the β-globin locus (Splinter et al., 2006).  It is an intriguing 

hypothesis that CTCF might also contribute to the differential expression of the 

Cyps in the neighboring regions.  Recent technological advancement, including 

ChIP-Seq (chromatin immunoprecipitation coupled with the next generation 

sequencing) and 3C (chromosome conformation capture), have made such 

investigations possible for future studies. 

 

     Although much progress has been made in characterizing the Cyp gene 

isoforms, there are still many unresolved issues.  For example, are there any 

novel splice-isoforms of Cyp mRNAs during liver development?  What 

transcription factors contribute to the temporal and spatial regulation of various 
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Cyp isoforms? Fifty years ago, people thought there were only two Cyp isoforms.  

The completion of the Human Genome Project in the late 20th century has 

broadened our point of view of a relatively complete assembly of cytochrome 

P450s.  Next-generation sequencing has opened the door to rapid 

characterization of the transcriptome as well as the transcription factor-DNA 

binding landscape (Werner, 2010).  The characterization of age-dependent Cyp 

mRNA splicing isoforms and the regulatory factors for transcription will be 

determined in future studies.     
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CHAPTER SIX  

GENETIC AND EPIGENETIC REGULATION AND EXPRESSION 

SIGNATURES OF GLUTATHIONE S-TRANSFERASES IN DEVELOPING 

MOUSE LIVER 
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ABSTRACT 

     The hepatic glutathione S-transferases (Gsts) are critical phase-II enzymes in 

protecting cellular macromolecules against electrophiles and oxidative stress.  

Little is known about the ontogeny of Gsts and the underlying regulatory 

mechanisms during liver development.  Therefore, in the present study, the 

ontogeny and the regulatory mechanisms of 19 known Gst isoforms were 

investigated in mouse liver from 2 days before birth to postnatal day 45.  With the 

exception of Gstm5 and MGst2, which showed a progressive decline in postnatal 

mRNA expression, most other Gst isoforms showed a progressive increase in 

postnatal mRNA expression.  Two-way hierachical clustering revealed three 

distinct expression patterns of these Gsts isoforms: perinatal-, adolescent-, and 

adult-enriched. The expression signatures of certain Gst isoforms showed 

positive association with the ontogeny of critical xenobiotic-sensing transcription 

factors, including AhR, PXR, CAR, PPARα, and Nrf2. Specifically, genome-wide 

ChIP-seq revealed direct PXR-binding sites to the Gsta, Gstm, Gstt, and Gstp 

polycistron clusters, as well as to the Mgst1 gene locus.  ChIP-on-chip analysis 

demonstrated that DNA methylation and histone-H3K27-trimethylation 

(H3K27me3), two gene expression-suppressing epigenetic marks, were 

consistently low around the Gstz1 gene locus.  In contrast, enrichment of 

histone-H3K4-dimethylation (H3K4me2), a hallmark for gene activation, 

increased 60% around the Gstz1 gene locus from prenatal to the young adult 

period. Regression analysis revealed a strong correlation between the 

enrichment of H3K4me2 and Gstz1 mRNA expression (r=0.76).  In conclusion, 
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the present study characterized three distinct ontogenic expression signatures of 

the 19 Gst isoforms, and examined some genetic and epigenetic mechanisms 

inducing their transcription during liver development.   
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INTRODUCTION 
 
     The glutathione S-transferases (Gsts) are thought to play important roles in 

protecting macromolecules against electrophiles and products of oxidative stress, 

thus providing an efficient detoxification mechanism. The ability of Gst(s) to 

metabolize cancer chemotherapeutic drugs, insecticides, herbicides, and 

carcinogens suggests that their expression can influence the efficacy and 

detoxification capacity of drugs, as well as an individual’s susceptibility to cancer 

(Hayes and Pulford, 1995; Board et al., 1997).  Previous studies in this laboratory 

have examined the tissue distribution and chemical induction of various Gst 

isoforms in adult mice (Knight et al., 2007; Knight et al., 2008). For example, 

multiple Gsts are enriched in adult mouse liver (Gsta3, k1, m1, m4, m6, p1/2, t1, 

z1, and Mgst1).  In addition, many hepatic Gst mRNAs are inducible by ligands of 

critical xenobiotic-sensing transcription factors.  For example, Gstm1 by the aryl 

hydrocarbon receptor (AhR); Gsta1/2, m1, m2, m3, m4, and t1 by the constitutive 

androstane receptor (CAR); Gsta1/2, m1, m2, m3, m4, m5, m6, and MGst1 by 

the pregnane X receptor (PXR); Gstk1, m5, t1, t2, z1, MGst1, and MGst3 by the 

peroxisome proliferator-activated receptor α (PPARα); and Gsta1/2, a4, m1, m2, 

m3, m4, m6, o1, t1, MGst1, and MGst3 by the NF-E2-related factor-2 (Nrf2) 

(Knight et al., 2008).  In addition, it has been shown that the mouse hepatic 

Gstp1 and p2 gene expression was induced in a Nrf2-dependent manner (Satoh 

et al., 2002; Yeager et al., 2009).  
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     Maturation of the drug metabolizing capacity of the liver is essential during 

liver development to protect the children from environmental toxicants that they 

may be exposed to.  It is known that developing embryos, fetuses and newborns, 

all face challenges from the environment that are different from that of adults.  

For example, in utero growth and development of eutherian mammals requires 

flow of nutrients from the mother through the placenta.  But after birth, the 

newborn is gradually exposed to various xenobiotics through food and drink, and 

the expression of drug metabolizing enzymes and transporters are not the same 

between newborns and adults.   

 

     It is becoming increasingly evident that gene expression during development 

is also tightly regulated by epigenetic mechanisms, such as DNA methylation and 

histone modifications (Jaenisch and Bird, 2003; Kiefer, 2007). In general, 

changes in DNA methylation profiles and histone code determine whether there 

is a permissive chromatin state for the transcription machinery to access gene 

promoter regions and initiate transcription.  DNA methylation is a covalent 

modification resulting in stable gene silencing (Bird, 2002; Reik, 2007).  Histone 

modifications, such as histone H3 lysine-4 dimethylation (H3K4me2) is present in 

promoters and transcribed regions of many active genes, and is positively 

associated with gene transcription (Bernstein et al., 2005; Kim et al., 2005; Roh 

et al., 2006), whereas H3 lysine-27 trimethylation (H3K27me3) is usually 

associated with suppression of gene transcription, because H3K27me3 is a 

target for the chromodomain protein Polycomb, which silences genes by yet 
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unknown mechanisms (Boyer et al., 2006; Lee et al., 2006; Kiefer, 2007).  The 

epigenetic regulation of the Gst ontogenic expression by DNA and histone 

modifications has not been investigated; thus such studies are needed to fill the 

critical knowledge gap in understanding the epigenetic mechanisms underlying 

the maturation of drug metabolizing capacity of the developing liver.  

 

     Differential expression of cytochrome p-450s and xenobiotic transporters 

during developmental stages has been reported ((Hakkola et al., 1998; Gonzalez 

et al., 1986; Omiecinski et al., 1990; Pineau et al., 1991; Buist et al., 2002; Li et 

al., 2002; Slitt et al., 2002). However, little is known about the ontogenic 

expression of various Gst isoforms and its genetic and epigenetic regulatory 

mechanisms. Therefore, the purpose of the present study is to characterize the 

ontogenic expression of 19 known Gst isoforms in mouse liver, and determine 

the genetic and epigenetic mechanisms for the ontogeny of Gsts.  For the 

genetic regulation of Gst ontogeny, direct PXR-binding signatures to all the Gst 

gene loci were characterized by ChIP-seq, a recently developed high-throughput 

technique to identify genome-wide transcription factor binding sites. The choice 

of PXR is dictated by the fact that it is instrumental in the regulation of many 

important genes associated with drug metabolism and transport. For the 

epigenetic regulation of Gst gene expression, Gstz1, the Gst isoform most highly 

expressed in liver (Knight et al., 2007) was used as a model for investigating the 

association between its developmental expression and specific epigenetic 
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signatures of gene expression, namely DNA methylation and histone 

modifications (H3K4me2, and H3K27me3).  
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 RESULTS 

Three expression signatures of Gst mRNAs in developing mouse liver:  

     The Gsta family: As shown in Figure 6.1A, the mRNAs of all four Gsta family 

members (Gsta1/2, a3, and a4) showed a similar expression pattern, which was 

low before birth, but gradually increased and peaked from day 15 to day 45 of 

age in both male and female livers. Interestingly, male-predominant expression 

patterns were observed for Gsta1/2 mRNA from day 0 to day 10 of age, whereas 

the female Gsta1/2 mRNA expression was very low for the first 15 days of age. 

 

     Gstk1, o1, p1/2 and Gstz1:  The Gstk1, o1, and z1 are all isolated Gsts that 

do not form clusters with other Gst isoforms, and all of these three Gsts gradually 

increased during liver development (Figure 6.1A). Gsto1 mRNA was relatively 

higher in males than females at birth. Due to high homology, the bDNA probes 

were unable to differentiate Gstp1 and p2 in the same cluster, therefore the 

expression of these two genes were combined together as “Gstp1/2”. Gstp1/2 

showed a distinct male-predominant expression pattern from day 30 onwards in 

adult mice. The expression in females was low, and it showed little variation at all 

time points studied.   

 

     The Gstm family: Gstm1, m2, m3, m4, and m6, which are all transcribed 

from the minus strand, displayed similar expression patterns, a gradual increase 

in their mRNA expression during liver development (Figure 6.1B). In contrast, 

Gstm5, which is the only Gstm transcribed from the plus strand, i.e., in the  
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Figure 6.1: The mRNA ontogenic expression of the 19 Gst isoforms. A: Ontogeny of Gsta polycistron cluster 
(Gsta1/2, a3, a4), as well as Gstk1, o1, Gst p1/2 cluster, and Gstz1, in male and female livers from day -2 to day 45 
of age.  B: The mRNA ontogenic expression of the Gstm polycistron cluster (Gstm1, m2, m3, m4, m5 and m6) in 
male and female livers from day -2 to day 45 of age. C: The mRNA ontogenic expression of the Gstt polycistron 
cluster (Gst1, t2, and t3), as well as microsomal Gsts (MGst1, MGst2, and MGst3) in male and female livers from 
day -2 to day 45 of age. Total RNA was isolated from liver at each age and analyzed by the single-plex bDNA 
assay as described in MATERIALS and METHODS. Data are presented as mean RLU ± S.E.M. (n = 6 animals per 
gender, i.e. n=12 per age).  Asterisks (*) represent significant differences (p < 0.05) between male and female 
mRNAs at each age. 

A. B.

C.

Figure 2.1Figure 6.1. 



 136

opposite direction, showed a progressive decrease in its mRNA expression with 

age. Gender differences were observed for Gstm4 mRNA at day 5 (female-

predominant), Gstm5 at day 0 (male-predominant), and Gstm6 at day 5 of age 

(male-predominant).   

 

     The Gstt family: Gstt1, t2, and t3 are members of the Gstt polycistron cluster 

on mouse chromosome 10.  Interestingly, all of these three genes showed a 

postnatal enrichment pattern (Figure 6.1C).  For Gstt1 and t2, male-predominant 

expression was observed at day 0 of age; whereas for Gstt3, male-predominant 

pattern was observed at day 10 and day 22 of age.   

 

     The microsomal Gsts: The three microsomal Gsts (MGsts) in mice are 

located on different chromosomes and do not form clusters with each other or 

other Gst isoforms (data not shown).  These three MGsts showed three distinct 

expression patterns (Figure 6.1C). Whereas MGst1 mRNA progressively 

increased with age in both male and female livers, MGst2 displayed a perinatal-

enriched pattern in both male and female mouse livers that decreased with age, 

and MGst3 was highly expressed in every postnatal time point studied with no 

distinct expression patterns.  For MGst2, a large difference in expression 

between male and female livers was observed in day 0, the expression in 

females being negligible.  The regulatory mechanism for such a temporal drop in 

expression in females is yet to be identified.  
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     In order to perform an unbiased classification of the expression patterns of the 

mouse Gst isoforms, as well as to identify critical transcription factors for the 

developmental regulation of these Gsts in mouse liver, the mRNA ontogenic 

expression of the 19 Gst isoforms, as well as the mRNAs of five important 

xenobiotic-sensing transcription factors, namely AhR, CAR, PXR, PPARα, and 

Nrf2, were analyzed in developing mouse liver by a two-way hierachical 

clustering method (JMP v. 7.0) and visualized as heatmaps.  As shown in Figure 

6.2A, male Gst isoforms had three distinct ontogenic patterns: (1) two perinatal-

enriched Gst isoforms, Gstm5 and MGst2; (2) ten adolescent-enriched Gst 

isoforms, Gsta4, k1, z1, t2, t3, m2, m3, m4, t1, and t3; and (3) seven adult-

enriched Gst isoforms, Gsta1/2, o1, p1/2, a3, MGst1, m1, and m6.  Interestingly, 

all the five transcription factors exhibited an adolescent-enriched pattern in 

developing liver of males, suggesting their potential functions in regulating the 

ontogeny of the Gsts in postnatal period.  

 

     The female-predominant Gst isoforms also showed three distinct ontogenic 

patterns (Figure 6.2B).  However, the perinatal-enriched Gsts in female livers 

include not only Gstm5 and MGst2, but also MGst3.  Fewer Gst isoforms were 

adolescent-enriched in females compared to males, and these include Gstp1/2, 

t2, m1, m2, m3, and m4.  Most Gsts in females were adult-enriched in adulthood 

in female livers, including Gsta1/2, o1, m6, t1, t3, a3, k1, MGst1, Gsta4, and 

Gstz1.  Interestingly, all the five transcription factors showed a perinatal-enriched 

pattern in female livers, with only three Gst isoforms in the same category.  
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Figure 6.2: Heatmaps of the mRNA ontogeny of all the Gst isoforms as well as five 
xenobiotic-sensing transcription factors (AhR, CAR, PXR, PPARα, and Nrf2) in male (A) 
and female (B) mouse liver. The ontogenic expression of these mRNAs from day -2 to day 
45 of age was analyzed by a two-way hierachical clustering method (JMP v. 7.0) using 
Ward’s minimum variance and visualized by a dengrograph, that revealed three distinct 
patterns: perinatal-, adolescent-, and adult-enriched. Distances between genes reflect 
significance of associations. Red color represents relative high expression, and blue color 
represents relative low expression. 
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     In summary, there were three distinct expression patterns of the mouse Gst 

mRNAs in developing mouse liver.  Gst genes in the same polycistron clusters 

tended to have similar expression patterns.  Most Gst isoforms were enriched 

postnatally in both male and female livers.  However, the ontogeny of the five 

transcription factors only positively associated with most Gst mRNAs in male but 

not in female livers.  

 

PXR-mediated regulation of Gst mRNA expression in mouse liver:  To 

further elucidate the mechanisms of the transcription factor-mediated ontogenic 

expression of Gsts, the major xenobiotic sensor PXR was selected to examine 

whether it directly trans-activates Gst expression.  Young adult mice were 

selected (8-week-old) to determine the bindings of PXR to Gst genes in liver, 

because both PXR and the Gst genes are highly expressed at this age.  Using 

Genome-wide ChIP-Seq analysis revealed three positive PXR-binding sites 

within the Gsta1/a4 polycistron cluster, and the PXR-DNA binding fold-

enrichments were 51-fold, 39-fold, and 40-fold above background values 

respectively (threshold: 20-fold) (Figure 6.3A). Gsta2 is transcribed from the 

opposite strand, and is located more than 100kb from the closest PXR-binding 

site.  For the Gstm cluster (Figure 6.3B), one positive PXR-binding site was 

observed between Gstm1 and m4 (41-fold), and three sites between Gstm2 and 

m3 (95-fold, 58-fold, and 25-fold). To note, Gstm5 gene locus is on the boundary 

of the Gstm cluster, and it is approximately 80kb away from the closest PXR-

binding site. Multiple PXR-binding sites were also observed within the Gstt 



 140

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Location and fold enrichment of PXR binding sites to various Gst polycistron 
clusters in adult male mouse liver by ChIP-Seq as described in MATERIALS and 
METHODS: A. The Gsta cluster on chr 9; B. The Gstm cluster on chr 3; C. The Gstt cluster 
on chr 10; and D. The Gstp cluster on chr 19.  Image was generated by the Affymetrix 
Integrated Genome Browser (IGB). Line: twenty-fold of background signal was used as the 
threshold value based on calculations of false discovery rate. Asterisks (*) represent 
positive enrichment of PXR bindings at a certain genomic location.  
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polycistron cluster (Figure 6.3C), one upstream of Gstt2 (47-fold), one between 

Gstt4 and t1 (42-fold), and one in the intronic region of Gstt1 (32-fold). For the 

Gstp cluster, one positive PXR binding site was observed at the promoter region 

of Gstp1, and it is downstream of Gstp2 (Figure 6.3D). For the Gst genes that are 

not part of a cluster, a PXR-binding site 418-bp upstream of the MGst1 gene 

locus was observed (Figure 6.4A), but not in any regions within ±10kb of the 

MGst2 or MGst3 gene loci (Figure 6.4B-C). Interestingly, only MGst1 is highly 

expressed in liver, corresponding to enriched PXR binding. In addition, we have 

also identified one positive PXR-binding site 8.5kb upstream of the Gsta3 gene 

locus (30-fold) (Figure 6.4D).  There were no observed PXR-bindings to Gstk1, 

o1, z1 (data not shown). NHR-scan revealed 18 consensus PXR-DNA binding 

motifs (DR-3, DR-4, ER-6, ER-8, or IR-0) present in 9 of the 13 ChIP-DNA 

sequences (3 DR-3, 7 DR-4, 4 ER-6, 3 ER-8, and 1 IR-0) within ±10kb of Gst 

gene loci with positive PXR-bindings (Table 6.1). 

 

     In summary, in addition to identifying strong associations between the 

postnatal enriched PXR mRNA and multiple Gst mRNAs, the present study also 

demonstrated that the Gsta, Gstm, Gstt, and Gstp clusters, as well as MGst1, are 

direct target genes of the PXR protein.  
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Figure 6.4: Location and fold enrichment of PXR binding sites to MGst1 (A), MGst2 (B), 
MGst3 (C), and Gsta3 (D) in adult male mouse liver by ChIP-Seq as described in 
MATERIALS and METHODS. Image was generated by the Affymetrix Integrated Genome 
Browser (IGB). Line: twenty-fold of background signal was used as the threshold value 
based on calculations of false discovery rate. Asterisks (*) represent positive enrichment 
of PXR bindings at a certain genomic location.  
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Table 6.1 . Consensus PXR-DNA binding motifs within the ChIP-DNA sequences for PXR 
 

Chromosome 
Coordinates 

PXR Binding 
Peak Value 

ChIP-DNA Sequences (5’  3’) PXR Consensus 
Sequences  

Genes  

chr1:21222117-
21222301 

30 CAGGGATGAGAGCAAATCATCAAAGAATGAAGTAAAT
CGATAAAAAAAAAAAAAGTTGGACATTCATTAAAAGA
AAAACTATAGCCCTGCAAATGTAACTTGGAAGTTTCTG
GATGTTTTCTAAGCACACTTTGTACTTTGGGCCATTAT
ATAACACTGTGGGAAATTATGTAATCATTTGTAGC 

N/A Tmem14a, Gsta3 
 

chr3:107777317-
107777565 

95 CAAGAGAGTCCAAGCTCCCCAATGTGGTGTCTGAGGT
CATTCTCACTGAGCCAAAGCTGACCTCATCTCCAGGC
CTGATAAGGGACCATACTGGATGATACCCACATATGC
CATTGACCTTCTACTAGAATGGTAAGTGTCACAGAGTT
TAAAGAGTTCAAAGATACCCATGACTTTCTGTCCTCCA
AAATCTAGGTGCACGCAGCCTCAAGTGCAATCCTGAA
TGGTCCCTCCTGACCCTCTCCTCCC 

DR-3 
DR-4 
ER-8 

Gstm3, LOC624701, 
Gstm2 

 

chr3:107780677-
107780861 

58 CCAGAAATGCACAGGCAGCATGAATCAGCTAGACCG
GAGCCCTTGGCTGGGGCTGAGGCCAGAGGTAGAGAG
AGTTCAGGACAGGACTTTACTCTCTGGGAACTGGAGG
TCCACTCTGGGAAGGACAGGCACTGTGTTGAGATAGG
AGGGCCCTGATAACAGTGCTCACTTGATACAGGGGTT
TG 

DR-4 
ER-6 

 

Gstm3, LOC624701, 
Gstm2 

 

chr3:107787749-
107787901 

25 GAACTCTGTCTGTCCTATCAGGGACTAAAGTGTCACT
GTCGAGAGTCTGGACTGGACCTTAGGCCAATGACTGG
AAGTTTTCATTTGGCAAACTAAGCTTTGAGGTTACTCT
GTTGGCAATTTCAAACACTGTGCCATGAGCAGCACTG
AGAG 

N/A LOC624701, Gstm2 
 

chr3:107828325-
107828509 

42 CTGATTGAGCCTGTCTAACCCAGAAATGCACAGGCAG
CATGAATCAGCTAGACCGGAGCCCTTGGCTGGGGGC
TGAGGCCAGAGGTAAAGAGAGTTCAGGACAGGACTT
TACTCTCTGGGAACTGGAGGTCCACTCTGGGAAGGAC
AAACACTGTGTTGAGATAGGAGGGCCCTGATAACAGT
GC 

DR-4 
ER-6 

 

Gstm1, 
LOC100043641 

 

chr6:138088517-
138088765 

48 
 

ACTGGTAAAGTTCCCGAGTGAAATGTTGCAGATGGGA
ACTTATCAACCTTAGAGCTCTCAGAGCTGGAGCTTGG
CCATTACTGTGGGGCTCTGTGATGTGCAATAGCTTTGA
TGTTGCCCTAACGACCCTGCCCCCTTGCAACACTTTCC
TAAGTCACTGTGAAACAAGTTAGTTGCCTAACAGACT
CATAATTTCGCAGGTTTCACTTTGCACCCTGAAGGTAT
TCACAGCAATAGAGCCCCTCCCCC 

N/A Mgst1 
 

chr9:78064805-
78065181 

51 TTTAAGCCAGGAGAAGGAATCCAATACTCAAGAAGTT
GAATATGGTCAAGTTTCCGTTTTGCTCTGAACTCTAAT
GCCCTTCTCTGCTAATGCGATTCTATTAGCTATGCCTA
GGTTGTTTGTAGAAGGGAGAGTCACTGTTAGATATCA
CAGTGAATGATAAAAATAGGTGTGGGCCACAGCAAAT
AATCTAATCTCTTGGCCTCATTTGTGTTGTCCCAGCAA
AACTTATGTCCACCTTTGTCCCTGTCTTGGCTGGGCCT
CTGGAAGCCCCATATTTGCAACTGGGAAAAGTTACTT
AATAGAAAGACAATTTTGATAACGTGTATGTACAATCA
AAGTTCAGATCCTACTGTAGCACGACCTTCAGTCAAT
GA 

DR-3 
DR-4 

Gsta4 
 

chr9:78071141-
78071293 

39 TTCCTTTAAGGCCCCCCACATTAACTTTGAACTTTGAC
CTCTTGCTTCCTGGCACTGACCATCTCCACCTGGTCTT
ACTGAACTCAGATGACCTCAACTGCAGACGACATGAG
ATTTTGACTTCGAGTCCTTTGTTCCTGAACCCAGAACT
TG 

DR-4 
 

Gsta1 
 

chr9:78077541-
78077853 

40 AGGGTATACAGCCTTAGGCATGTGACAGGCATCCCGG
AGGCCAGCCAGATCATCAGGTAATGATTAATAACCAA
GACCCATGAACCAAGGATTAACTAAAATCATGAATCA
GCTTGTGGGTGTGTGAGTGAAGTCAGCGAGAATGACC
TTGTTGTGGATAAGAGCCATGTCTGAACTTGGCAGGA
AGGATCAGTAATTCTCATTAGCTTGGAAATGACATTGC
TAATGGTGACAAAGCAACTTTCCCACAGGAGTAACTG
CAGGGACTCACAGGCTGCACTGAGACCTAGAGCAGG
CTGGACAGAATGTGTCT 

ER-6 
ER-8 

Gsta1 
 

chr10:75252613-
75252925 

32 ATTACAAGCTTGCACCATGACTGAACTCAGCTTTCCTA
CCTCCGGCTTAGAACCGCTGTGTCACTGAAGCATGGC
TGGCTCAGGTCACCTGATAAAAGTGGGTCCATGTTAC
TCATTAACCAGAGCCACAGGCAGCTAGATGACACCCA
TCTGACTTTTCCTGGAGCTGTGATAGAACACTCTGCAA
AGCAACTGAAGGGAGCGAGGCCCACAGTTCCAGGGT
ACAGCTGGTGCAATGGATGTCATGGCAGCAGGAACCT
GAGGGACCCGGTCACACTGTGTCCACACTGAGGTCA
CACTGTGTCCACACTGA 

DR-4 
ER-6 

Gstt3, Gstt1 
 

chr10:75267045-
75267229 

42 ATTAATACTACAAGAACCTTATTTGACCGACTCCTAGA
GGTCATGATAAAGGTCAGACAAGGGCATCTGGCTCCA
GATCAGTAAGGTCAAGTCAAAGGTTAGGCAAGGACAT
CTAGCTCCAGGTCAATACTAACAAAGTCAAAGACCTT
CACCCTGTTGACTGTCTTTAAAAATCTGCTTGCATT 

DR-3 
DR-4 
ER-8 

Gstt1 
 

chr10:75300133-
75300349 

47 TTCCCGCCCTCCTCCGAGAGTCCGCTGCGCAAAGCAT
GCTGGGAATCCTACACTGCAGGGAGGAGAGTCAGCG
GCCTGTTGGTTGCCTTGGCAACTGCTCACGCGAGCAA
CGGGCGTGAGCTGGTCCGTTAGGGGCAGTAGACTAG
CTGCCACAACCTCTAGAGGTCATTGCCTCCCGGATTG
GAAGGGTTGATTGTGGGGAAACTCCCCGCAACGG 

IR-0 Gstt2 
 

chr19:4037861-
4038045 

28 ACTGCCTGCTGGGTGCGGATTCAGTGCTGCGTAGACA
GAGGGGTACTCAGAGTGAGGACGCACGCGTAGGCCA
CCGGGCCGCCAGCCTTATAAGGGGCATCGCGCTCCG
CCCCGGATGCTGACTCAACACGTTGGAGAGAGAAGC
CGGTAGCGGAGCTCTGCAGCTCCCGCCTCCTGCCGG
GGAC 

N/A Gstp1, Gstp2 
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Epigenetic aspects of regulation of Gst mRNA expression in developing 

mouse liver:  To identify whether the ontogeny is also regulated by epigenetic 

mechanisms, three distinct epigenetic signatures, namely DNA methylation, 

histone H3K4 dimethylation (H3K4me2), and histone H3K27 trimethylation 

(H3K27me3), were characterized by ChIP-on-chip around the Gstz1 locus, as 

Gstz1 mRNA is highly expressed in liver. Positive enrichment of the gene 

activation signal H3K4me2 was observed at all 4 selected ages (day -2, 1, 7, and 

45, threshold: 4.0-fold), with more H3K4me enrichment sites at day 45 in the 

adult liver (Figure 6.5A). The overall average H3K4me2 enrichment gradually 

increased during liver maturation (Figure 6.5B), and this ontogenic expression 

pattern was strongly associated with the postnatal-enriched pattern of Gstz1 

mRNA (r= 0.76) (Figure 6.5C). In contrast, there was no enrichment in the two 

suppression signals, DNA methylation or histone H3K27me3 within ± 10kb of the 

Gstz1 gene locus (Figure 6.6).  Together these data indicate that epigenetic 

modifications, such as the absence of transcription-repressing epigenetic marks, 

combined with the presence of H3K4me2 (transcription-activating epigenetic 

mark), might play a role in facilitating a permissive chromatin state that activates 

Gstz1 gene transcription during mouse liver development.  
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Figure 6.5: Dimethylation of histone H3 at lysine-4 (H3K4me2) at the Gstz1 gene locus 
during mouse liver development.  A: Histone H3K4me2 fold changes at the Gstz1 gene 
locus at day -2, 1, 5, and 45 of age (equal amount of pooled samples from n=5 at each age).  
Solid lines through the signal enrichment peaks indicate the threshold value (4.0) for 
enriched intervals.  Bars under the peaks of each age indicate the existence and length of 
active regions for H3K4me2.  Asterisks (*) indicate the peak center.  B:  Average peak 
values of H3K4me2 at day -2, 1, 5, and 45 of age. The dashed line indicates the threshold 
value (4.0) for enriched intervals. C: Regression analysis of the correlation (r) between 
Gstz1 mRNA and the fold changes of the three epigenetic marks (DNA and histone di- and 
tri-methylations) at day -2, 1, 5, and 45 of age during liver development in mice.   
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Figure 6.6: A: DNA methylation status of hepatic Gstz1 gene locus at day -2, 1, 5, and 45 of 
age.  Solid lines through the signal enrichment peaks indicate the threshold value (3.0) for 
positive DNA methylation.  B: Trimethylation of histone H3 at lysine-27 (H3K27me3) of the 
hepatic Gstz1 gene locus at day -2, 1, 5, and 45 of age.  Solid lines through the signal 
enrichment peaks indicate the threshold value (4.0) for enriched intervals. C: Average peak 
values of DNA methylation at day -2, 1, 5, and 45 of age.  The dashed line indicates the 
threshold value (3.0) for enriched intervals. D: Average peak values of H3K27me3 at the 
Ahr gene locus at day -2, 1, 5, and day 45 of age. The dashed line indicates the threshold 
value (4.0) for enriched intervals. 
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DISCUSSION 

     The present study is among the first to identify the age-specific mRNA 

expression signatures of the 19 glutathione-S-transferase isoforms in developing 

mouse liver.  Using recent technological advancements, such as ChIP-seq and 

ChIP-on-chip, the present study has provided new insights in characterizing the 

Gst genes that are direct targets of the critical xenobiotic sensor PXR, and 

revealed potential epigenetic regulators for the ontogeny of Gstz1 in liver 

maturation.  Our data suggest that the developmental regulation of Gst genes is 

a sequential event regulated by transcription factors and alterations of the 

chromatin structure.  Both the genetic and epigenetic factors may play important 

roles in forming the age-specific expression signatures of Gst mRNA in mouse 

liver.  

 

     It has been proposed that changes in expression of liver-specific proteins 

generally occur at three specific developmental stages: (i) late gestation; (ii) at or 

directly after birth; or (iii) just before weaning (Greengard, 1970).  During these 

periods, the liver undergoes significant anatomical and physiological changes 

associated with maturation.  Thus, investigation of the age-specific ontogenic 

expression of Gsts will help understand differences in chemical detoxification 

abilities between adult and neonatal livers.  In the current study, hepatic Gst 

mRNA expression was lowest or absent at prenatal day –2 and at birth except for 

Gstm5 and MGst2, which showed highest expression at prenatal day –2 followed 

by a gradual decrease over age.   Embryonic development and fetal growth 
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depends on nutrients obtained from the mother and such exchange occurs 

through the placenta.  Although placenta is capable of metabolism and 

detoxification of xenobiotics and endogenous chemicals, it does not entirely 

exclude or metabolize all chemicals in the mother’s blood.  Consequently, many 

drugs and other xeno- or endobiotic metabolites reach fetal organs from the 

mother’s blood.  The unique expression profiles of Gstm5 and MGst2 need 

further study because their expression profiles suggest that they may have 

special functional significance during gestation.  

 

     Our findings of lower Gst expression at birth and early postnatal period are 

consistent with an earlier report in rats where a low total hepatic Gst enzyme 

activity was observed in neonatal period, but was higher in adults (Tee et al., 

1992).  In that study, total Gst activity was determined using CDNB (1-chloro-2,4-

dinitrobenzene) as the universal Gst substrate.  Perhaps the most intriguing 

results are the marked differences in the expression profiles of the Gsts between 

day 15 and 20.  One can envision that these gene expression changes observed 

around weaning may be in response to dietary changes, because mice transition 

from milk to chow during this period.  Dietary factors have been shown to be 

critical regulators for liver gene expression.  For example, both the mRNA and 

activities of lipogenic enzymes increase in rat liver after weaning in response to a 

high-carbohydrate diet (Girard et al., 1994).  If the hypothesis that dietary factors 

regulate Gst gene expression is true, it can be argued that they may serve as 

critical signaling molecules to initiate a cascade whereby the liver becomes more 
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capable of detoxifying electrophilic chemicals and reactive oxygen species, 

highlighting the importance of diet on drug metabolizing enzyme gene expression 

patterning and detoxification capacity.   

 

     Interestingly, Tee et al. (1992) reported that in rats, Gstps are abundant in 18-

day fetal livers, but are almost absent postnatally. In contrast, in the present 

study in mice, postnatal hepatic Gstp1/2 expression increased between 15 and 

45 days of age in male mice, whereas female Gstp1/2 expression was similar to 

that in male mice until 22 days of age, but did not increase thereafter as in male 

mice. Such differences in Gstp gene ontogeny could be due to species 

differences, and/or detection methods. For example, for species differences, it 

has been demonstrated that rat GST-P gene has a strong enhancer element 

GPE1 (GST-P enhancer-1) that specifically regulates the GST-P gene by 

interacting with certain transcription factors such as C/EBPα and Nrf2/MafK. In 

contrast, the mouse GST-P1 gene does not contain a GPE1 or related element 

(Sakai and Muramatsu, 2007).  For differences in detection method, the study by 

Tee et al. in rats used immunocytochemistry and HPLC identification of Gst 

subunits, whereas the study by Raijmaker et al. (2001) in humans used western 

blot to study specific isoforms. Tee et al. also used northern blot to determine the 

mRNA expression of Gst alpha, mu and pi class, using longer cDNA probes. 

Obviously, the ability to distinguish all 19 isoforms using such long probes was 

limited. In contrast, the present study reveals additional information because of 
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the ability to investigate the expression of individual isoforms by using isoform-

specific short oligonucleotide probes. 

 

     Among all the 19 Gst isoforms, the most predominant gender difference was 

observed in the ontogeny of the Gstp1/2 gene, which had higher levels of mRNA 

in livers of male than female mice at 30 and 45 days of age. Our observation for 

the male-predominant expression of Gstp1/2 is consistent with previous findings 

(Bammler et al., 1994; Knight et al. 2007; Townsend et al., 2008). Gender 

differences were also observed at early postnatal ages, with Gsta1/2, o1, z1, m5, 

and p1/2. Such neonatal gender differences suggest that distinct molecular 

mechanisms might also exist in regulating the gender-divergent gene expression 

at early ages. The gender specific gene expression of Gsts suggests that males 

and females may have different capacities in metabolizing and detoxifying 

chemicals that are Gst substrates. 

 

     Yijia et al. (2008) studied the expression of MAPEG (membrane associated 

proteins in eicosanoid and glutathione metabolism) in an in vitro system of 

mouse embryonic stem (ES) cell-derived hepatic tissue. The protein expression 

of MGst1 was not detected until postnatal day 14 and gradually increased with 

the maturation of hepatic tissue. This finding is consistent with MGst1 mRNA 

expression observed in the present study. The membrane-associated enzyme 

activities involved in eicosanoid and glutathione metabolism are important in both 
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inflammation and cell protection, and therefore a part of the tissue’s defense 

mechanism. 

 

     Certain Gst/GSTs exist as polycistron clusters in both mice and humans. For 

example, Gsta1 and a2 cluster together on chromosome 9 in mice and transcribe 

from the opposite strands; whereas Gsta1 transcribes from the plus strand, and 

Gsta2 transcribes from the minus strand.  In humans, five members of the GSTA 

family (GSTA1-A5) also form a polycistron cluster on chromosome 6; the human 

GSTA5 is homologous to both Gsta1 and a2 in mice (Figure 6.8). Other 

examples of Gst/GST family members forming polycistron clusters include 

Gstm/GSTM clusters on mouse chromosome 3 and human chromosome 1, with 

multiple homologous genes between the two species (Figure 6.9); as well as 

Gstt/GSTT and Gstp/GSTP clusters in mice and humans (Figure 6.10).  From an 

evolutionary standpoint, the formation of Gst/GST polycistron clusters suggests a 

possible fine-tuning of gene expression through coordinate regulation that should 

produce cluster-specific gene expression signatures. Therefore, the ontogenic 

expression signatures of the clustered Gst isoforms was investigated in the 

present study.  
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Figure 6.7: Human GSTA polycistron cluster and their homologous mouse 
Gsta cluster family. Image was obtained from the Affymetrix Integrated 
Genome Browser (IGB). DNA and protein identities (%) were calculated 
based on the NCBI database.  
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Figure 6.8: Human GSTM polycistron cluster and their homologous mouse 
Gstm cluster family. Image was obtained from the Affymetrix Integrated 
Genome Browser (IGB). DNA and protein identities (%) were calculated 
based on the NCBI database.  
 

 

 

 

 

 

GSTM/Gstm Cluster

Figure 2.9

Chr 3

Gstm5

Gstm7 Gstm6 Gstm3 Gstm2 Gstm1 Gstm4

A. HUMAN

B. MICE

CHR 1

GSTM4

GSTM2 GSTM1

GSTM5

GSTM3{
DNA identity (%)

Protein identity (%)

84.2
83.4

85.5
87.2

85.8
83.9

80.7
76.1

87.9
89.5

Figure 5.8. Figure 5.8. Figure 6.8. 



 154

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9: Human GSTT and GSTP polycistron clusters and their 
homologous mouse Gstt and Gstp cluster families. Image was obtained 
from the Affymetrix Integrated Genome Browser (IGB). DNA and protein 
identities (%) were calculated based on the NCBI database.  
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     Previous studies in this laboratory have shown that several Gsts were inuced 

following PCN administration (Cheng et al., 2005b; Maher et al., 2005a; Alnouti 

et al., 2008b; Alnouti and Klaassen, 2008; Knight et al., 2008), but only a few 

genes have been shown to be direct PXR targets.  The present study is among 

the first to identify that multiple Gst genes are direct PXR-targets, including a few 

genes in the Gsta, Gstm, Gstt, Gstp clusters, and the microsomal MGst1.  Similar 

ontogenic expression of genes in the same Gst polycistron clusters indicate they 

share common regulatory mechanisms, likely mediated by PXR protein binding. 

Gstm5 is the only Gstm isoform that showed a different ontogenic pattern. This 

might be due to the fact that Gstm5 transcribes from the opposite strand, and 

thus may be under separate regulatory control.   

 

     Recently, a large body of data has been generated to characterize histone 

modifications in the genomes of various organisms (Hawkins and Ren, 2006).  A 

current area of research is to understand how histone marks correlate and/or 

regulate gene transcription. High-resolution profiling of histone methylations in 

the entire human genome has demonstrated that active genes are characterized 

by high levels of H3K4me2; in contrast, inactive genes are characterized by low 

or negligible levels of H3K4me2 of the promoter regions, and high levels of 

H3K27me3 (Barski et al., 2007).  It has been shown that the H3K4me2 signals 

are usually localized close to transcription start sites, providing a permissive 

chromatin environment to trigger gene transcription (Barski et al., 2007).  In the 
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present study, the strong postnatal enrichment of H3K4me2 in the close vicinity 

of the Gstz1 gene promoter indicates H3K4Me2 is likely a mechanism to trigger 

the increase in Gstz1 gene activation during mouse liver development.  

 

     In conclusion, the present study identified three distinct ontogenic expression 

patterns among the 19 hepatic Gst isoforms in both male and female mice, 

characterized the occurrence of gender differences in the expression of certain 

Gsts during liver maturation, identified that certain Gsts are direct target genes by 

the xenosensor PXR, and revealed positive associations between the Gstz1 

ontogeny and enrichment of the epigenetic mark H3K4Me2. By combining 

genome-scale investigations and Gst gene expression profiling, our study has 

provided novel insights in understanding the genetic and epigenetic mechanisms 

in regulating the maturation of drug metabolism in developing liver.  
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CHAPTER SEVEN 

DEVELOPMENTAL REGULATION OF LIVER TRANSPORTERS IN MICE 

 

Part One  

Bile acids via FXR Initiate the Expression of Major Transporters involved in 

the Enterohepatic Circulation of Bile acids in Newborn Mice 

 

 

 

 

 

 

 

 

 



 158

ABSTRACT 

      The enterohepatic circulation (EHC) of bile acids plays a pivotal role in 

facilitating lipid absorption.  Therefore, initiation of the EHC in newborns is of 

crucial importance for lipid absorption from milk.  The purpose of this study was 

to determine at what age bile-acid transporters in liver are expressed, and the 

mechanism for their initiation.  Samples were collected from C57BL/6 mice at 2 

days before birth and various postnatal ages.  Messenger RNA assays revealed 

a dramatic increase at birth in the expression of the bile- acid transporters Ntcp, 

Bsep, Mrp4, Ost, as well as the phospholipid flipase Mdr2 in mouse liver, with 

the highest expression at 1 day of age.  The mRNA expression of the ileal bile-

acid transporters, Ost and Ost, also increased markedly at birth.  Meanwhile, 

taurine-conjugated cholic acid increased markedly in both serum and liver of 

newborns, suggesting that an up-regulation of the classic pathway of bile-acid 

biosynthesis occurs in newborn liver.  The mRNA levels of the major bile-acid 

sensors, FXR and PXR, were increased at day 1 of age, and their prototypical 

target genes were up-regulated in liver.  The mRNA expression of transporters 

involved in the EHC of bile acids was similar in wild-type and PXR-null mice.  In 

contrast, in FXR-null mice, the “day-1 surge” pattern of Ntcp, Bsep, Ost, and 

Mdr2 was blocked in newborn mouse liver, and the induction of Ost and Ost 

was also abolished in ileum of FXR-null mice.  In conclusion, at birth, bile acids 

from the classic pathway of synthesis appear to trigger the induction of 

transporters involved in enterohepatic circulation of bile acids, through activation 

of the nuclear receptor FXR.        
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INTRODUCTION 

     Enterohepatic circulation (EHC) is the circulation of bile acids between liver 

and intestine and back to the liver.  Bile acids are synthesized from cholesterol in 

the liver and excreted into intestine.  Once in the intestine, bile acids facilitate the 

absorption of fat and fat-soluble vitamins by emulsifying the lipophilic substances 

in the diet.  Most of the bile acids in the intestine are recycled back to the liver, 

with only 5% of bile acids eliminated into feces daily.  Conservation of bile acids 

ensures efficient nutrient and energy supply to the organism.  During postnatal 

development, initiation of the enterohepatic circulation of bile acids is crucial for 

nutrient and energy acquisition, in order to facilitate the rapid growth of 

developing tissues.  In humans, there is a phase of physiological immaturity of 

the EHC of bile acids during the neonatal period, resulting in delayed hepatic 

clearance of bile acids and bilirubin, as well as altered clearance of some 

exogenous chemicals.  Immaturity of EHC results in inefficient lipid digestion, and 

a cholestatic period of liver.  This imaturity of EHC is termed “physiological 

cholestasis” (Suchy et al., 1981).  Clinically, newborns that have defects in bile-

acid transport systems develop deficiencies in fat-soluble vitamins (vitamins A, D, 

E, K), severe diarrhea (Heubi et al., 1979), and progressive cholestasis 

(Scheimann et al., 2007), which can be lethal if untreated.   

 

     Transporters play essential roles in maintaining the EHC of bile acids.  The 

sodium-taurocholate cotransporting polypeptide (Ntcp) is the major basolateral 

bile-acid uptake transporter in liver (Hagenbuch et al., 1996), and the bile- salt 
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export pump (Bsep) is the rate-limiting canalicular transporter for bile-acid 

excretion into bile (Wang et al., 2003).  Although most bile acids are sequestered 

in the EHC under physiological conditions, during cholestasis, bile acids are also 

excreted into blood from the liver via the basolateral transporters, including the 

multidrug resistance-associated protein 4 (Mrp4) (Mennone et al., 2006), as well 

as the organic solute transporters  and  (Ost and Ost) that function as a 

heterodimer (Ballatori et al., 2005).  In addition to bile-acid transporters, the 

multidrug resistance protein 2 (Mdr2) in liver flips phospholipids from the inner to 

the outer lipid bilayer of the canalicular membrane.  Phospholipids enter bile and 

form micelles with bile acids, thereby protecting the biliary tree from injury (Smit 

et al., 1993), as well as facilitating nutrient absorption.  In the ileum, there is an 

active uptake system that brings bile acids from the intestinal lumen back into the 

blood, and the transporters involved include the ileal apical sodium-dependent 

bile-acid transporter (Asbt), as well as the basolateral transporters Ost and Ost 

in enterocytes (Ballatori et al., 2005).  Despite the crucial functions of the 

transporters in regulating the EHC, the ontogenic expression patterns of these 

transporters are poorly characterized.  

 

     Recently, it has been demonstrated that bile acids are signaling molecules 

that activate certain nuclear receptors called “bile-acid sensors” (Chiang, 2002).  

Farnesoid X Receptor (FXR) is the major bile-acid sensor, but the Pregnane X 

Receptor (PXR) may also regulate bile-acid metabolism.  Once activated by bile 

acids, FXR in liver down-regulates the major bile-acid uptake transporter, Ntcp 
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(Zollner et al., 2005), up-regulates the main bile-acid efflux transporter, Bsep 

(Plass et al., 2002), and up-regulates the basolateral bile-acid efflux transporters, 

Ost and  (Zollner et al., 2006).  FXR in ileum induces the expression of Ost 

and  on the basolateral membrane of the enterocytes to promote bile-acid re-

absorption (Zollner et al., 2006).  In mouse enterocytes, bile acids activate FXR, 

which results in the synthesis and secretion of fibroblast growth factor 15 (Fgf15) 

into blood (the human analog of Fgf15 is FGF19).  Fgf15 is then delivered to the 

liver where it activates the FgfR4 signaling pathway, which inhibits bile-acid 

synthesis via down-regulation of Cyp7a1 mRNA expression (Inagaki et al., 2005).  

It has been suggested, using a human hepatocyte culture system, that the 

mechanism of Cyp7a1 down-regulation involves the FGF19-MAPK pathway 

(Song et al., 2008).   In addition,the nuclear receptor PXR increases the 

expression of Cyp enzymes, conjugation enzymes, and transporters involved in 

the metabolism and elimination of potentially toxic chemicals, including bile acids 

from the body (Chiang, 2002). The physiological roles of FXR and PXR in 

regulating bile-acid homeostasis during postnatal liver development are not well 

characterized.   

 

    Bile-acid synthesis mainly involves two pathways, namely the classic and the 

alternative pathway (Chiang, 2004).  The major enzymes involved in the classic 

pathway of bile-acid synthesis include Cyp7a1, which is the rate-limiting enzyme 

for bile-acid synthesis, as well as Cyp8b1, and these two enzymes catalyze the 

formation of cholic acid (CA).  In the absence of Cyp8b1, chenodeoxycholic acid 
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(CDCA) is the major bile-acid (Chiang, 2004).  Therefore CA and CDCA are the 

major primary bile acids synthesized via the classic pathway.  The enzymes in 

the alternative bile-acid biosynthesis pathway include Cyp27a1, Cyp7b1, as well 

as Cyp39a1 (relatively lowly expressed in liver), with CDCA as the primary 

product formed (Russell, 2003).  The two primary bile acids synthesized by 

humans are CA and CDCA.  In contrast,  mice convert CDCA to - and β-

muricholic acid (MCA), therefore, the main primary bile acids in mice are CA and 

MCA (Elliott and Hyde, 1971).  CA and MCA are then conjugated with taurine 

(major co-substrate in mice) and excreted into bile.  The alternative pathway is 

the major route of bile-acid synthesis in the prenatal period (Yamato et al., 2001), 

whereas the classic pathway predominates in the adult period, except in certain 

diseases (Crosignani et al., 2007).  However, when the switch from the 

alternative to the classic pathway of bile-acid synthesis occurs during liver 

development remains unknown.  This is partially due to the lack of a valid and 

simple analytical method for the quantification of individual bile acids, as well as 

their taurine and glycine conjugates.  Recently,  a simple and sensitive UPLC-

MS/MS method for the simultaneous quantification of bile acids was developed in 

our laboratory (Alnouti et al., 2008a), and this method was modified and used in 

the present study to determine the composition of bile acids at various ages in 

mice.   

 

        Because of the importance of EHC in mediating the absorption of fat-soluble 

nutrients, it is crucial to determine the mechanisms underlying the regulation of 
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bile-acid transport systems in the EHC during postnatal liver development.  

Therefore, the purpose of the present study was to determine at what age the 

liver bile-acid transporters are expressed, and the mechanism for their initiation.  

Because bile acids are substrates for many liver transporters involved in the EHC, 

the working hypothesis is that certain bile acids initiate the expression of these 

transporters in liver after birth, via activating bile-acid sensor-mediated pathways.   
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RESULTS 

Ontogeny of major transporters in mice involved in EHC of bile acids.  The 

mRNA expression of major hepatic and ileal transporters involved in the EHC of 

bile acids was determined from day -2 to day 45 of age in mice as shown in 

Figure 7.1.1 and 2.  The Ntcp mRNA was low at day -2 of age (Figure 7.1.1A).  

At birth, the Ntcp mRNA increased approximately 2 fold, then peaked at day 1 of 

age (5-fold prenatal levels), followed by a decrease at day 3 and 5 of age, and 

returned to prenatal levels at day 10 and 15 of age.  After day 20 of age, Ntcp 

mRNA gradually approached adult levels (approximately 2-fold higher than 

prenatal levels) till 45 days of age.  The basolateral bile-acid efflux transporters, 

Ost and , function as a dimer.  Interestingly, although Ost mRNA is lowly 

expressed in liver throughout development (Figure 7.1.1B), Ost mRNA was 

induced markedly in newborn liver, which peaked at day 1 of age (4.5-fold of 

prenatal levels) (Figure 7.1.1C).  After day 5, Ost mRNA decreased to adult 

levels at about 10 days of age.  The mRNA expression of hepatic Mrp4 was 

consistent from day -2 to day 45 of age, except for a moderate increase at day 1 

of age (Figure 7.1.1D).   

 

     The mRNAs of both Bsep and Mdr2 were increased markedly in mouse liver 

after birth (approximately 3-4-fold higher at day 1 of age than before birth).  The 

expression of Bsep and Mdr2 then returned to before birth levels at day 10 and 

15 of age, and then gradually increased to adult levels by approximately 30 days 

of age (Figure 7.1.1E and F).   
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Figure 7.1.1.  Ontogeny of liver transporters: Ntcp (basolateral uptake), Ost, Ost, and 
Mrp4 (basolateral efflux), Bsep and Mdr2 (canalicular efflux) in wild-type mice from day -2 
to day 45 of age.  Total RNA was isolated from liver at each age and analyzed by the bDNA 
assay as described in MATERIALS AND METHODS.  Data are presented as mean RLU ± 
S.E.M. (n = 5 animals).  Asterisks (*) represent significant differences (p < 0.05) compared 
with values at day 45 of age.  
 

Figure 7.1.1 
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     In summary, the liver transporters Ntcp, Bsep, Mrp4, Mdr2, and Ost, which 

all play important roles in EHC, share a common “day-1 surge” pattern in their 

mRNA expression during development.  Other liver transporters, including the 

basolateral uptake transporters for xenobiotics (the Oatps, Oct1, Oat2, and Ent1), 

the basolateral efflux transporters (Mrp3 and 6, Abca1), and many canalicular 

transporters for xenobiotics and other chemicals (Mrp2, Bcrp, Mate1, Abcg5, g5, 

and Atp8b1), do not have a “day-1 surge” pattern in their mRNA expression in 

liver development, and the majority of these transporters are enriched between 

day 15 to day 45 of age, except for Bcrp, which is enriched prenatally (see 

Chapter VII, Part Two, Figure 7.2.1 to 7.2.3).  In addition, the house-keeping 

gene glyceraldehyde-3-phosphate dehydrogenase (Gapdh), used for 

normalization of some mRNA assays in the present study, is consistently 

expressed during liver development (data not shown). Therefore, the “day-1 

surge” pattern appears to be a specific phenomenon for the expression of 

transporters involved in the EHC of bile acids.  

 

     In ileum, a marked increase in the mRNA expression of the basolateral bile-

acid transporters, Ost and , was observed shortly after birth (Figure 7.1.2).  

The ileal Ost mRNA at day 1 was 6.4-fold higher than before birth, and then 

peaked at day 15 of age (19.4-fold) (Figure 7.1.2A).  The ileal Ost mRNA 

peaked at day 1 of age (20.9-fold of prenatal levels), and remained relatively 

similar thereafter (Figure 7.1.2B).  Therefore, the neonatal increase in the 

expression of the major bile-acid efflux transporters, Ost and Ost, in ileum  
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Figure 7.1.2.  Ontogeny of ileal transporters: Ost and Ost (basolateral efflux), 
and Asbt (apical uptake) in wild-type mice from day -2 to day 45 of age.  Total RNA 
was isolated from ileum at each age and analyzed by the bDNA assay as 
described in MATERIALS AND METHODS.  Data are presented as mean RLU ± 
S.E.M. (n = 5 animals).  Asterisks (*) represent significant differences (p < 0.05) 
compared with values at day 45 of age.  

Figure 7.1.2 
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correlates with the up-regulation of liver bile-acid uptake and efflux transporters, 

however, the ileal apical bile-acid uptake transporter, Asbt, was low both before 

birth and the first 15 days of age, and then gradually increased during 

development, and peaked at day 45 of age (14.8-fold of prenatal levels) (Figure 

7.1.3C). 

 

     Because the peak mRNA levels of most transporters involved in the EHC of 

bile acids were observed at day 1 of age, the present phenomenon was termed 

the “day-1 surge” pattern.  To determine whether the protein expression of some 

of these transporters is also up-regulated shortly after birth, immuno-

fluorescence staining was performed in the following experiments.  

 

Immunofluorescence staining of Ntcp and Bsep in livers of wild-type mice 

during development.  To determine the expression and localization of Ntcp and 

Bsep, immunofluorescence staining was performed on frozen liver sections at 

day -2, day 1, and day 45 of age for these two proteins (Figure 7.1.3).  Ntcp 

protein was low but detectable at day -2 of age.  At day 1 of age, enhanced 

basolateral Ntcp staining (green)  throughout the liver lobule was observed, and 

the fluorescence intensity is comparable to that at day 45 of age (Figure 7.1.3 left 

column).  Bsep protein was barely detectable at day -2 of age, but at day 1 of 

age, the staining of Bsep protein (green) was enhanced markedly.  Mrp4 and 

Ost immunofluorescence staining were not detectable, probably due to low 

protein expression levels in liver (data now shown).  In summary, the “day-1  
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Figure 7.1.3.  Immunofluorescence of Ntcp and Bsep protein in livers from day -2, 
day 1, and day 45 of age.  Immunofluorescence against basolateral Ntcp as well as 
canalicular Bsep (green) was conducted on liver cryosections as described in 
MATERIALS AND METHODS.  Portions of images were enlarged and provided as 
inserts. Representative images are shown. Bar, 50 m.  
 

Figure 7.1.3 
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surge” pattern in the mRNA expression of hepatic transporters, Ntcp and Bsep, 

was detected at both the mRNA and protein levels in liver at day 1 of age.  

 

     Because bile acids are substrates for many hepatic transporters that share 

the “day-1 surge” pattern, we hypothesized that an elevation in bile acids due to 

their increased de novo biosynthesis in newborns initiate the mRNA increase of 

these transporters during development.   

 

Ontogeny of bile-acid biosynthesizing enzymes during liver development.  

To determine whether bile-acid biosynthesizing enzymes are increased in liver 

during development, the mRNA expression of major enzymes from both the 

classic and alternative pathways of bile-acid biosynthesis were quantified (Figure 

7.1.4).  For the classic pathway of bile-acid synthesis, both Cyp7a1 and 8b1 

mRNAs were low before birth, but increased markedly at birth (14.4-fold and 8.1-

fold of prenatal levels, respectively) (Figure 7.1.4A and B).  After one day of age, 

both Cyp7a1 and 8b1 mRNAs decreased, but they increased again after 10 days 

of age.  Cyp7a1 mRNA peaked at 20 days of age and decreased thereafter, 

whereas Cyp8b1 mRNA peaked at 30 days of age and remained stable 

thereafter.  In contrast, for the alternative pathways of bile-acid synthesis, 

Cyp27a1 mRNA increased markedly after 20 days of age, and remained stable 

until 45 days of age (between day 20 and 45: approximately 50 fold higher than 

before birth).  Cyp7b1 mRNA was also consistently low before 20 days of age,  
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Figure 7.1.4.  A-D. Messenger RNA expression of bile-acid synthesizing enzymes (Cyp7a1, 
8b1, 27a1, and 7b1) in livers of wild-type mice during development.  E. Ontogeny of the 
mRNA expression of ileal Fgf15 and in wild-type mice.  Total RNA was isolated from liver 
at each age and analyzed as described in MATERIALS AND METHODS.  Individual samples 
(n=5) analyzed by bDNA assay.  Data are presented as mean RLU normalized to 5μg total 
RNA.  Asterisks (*) represent statistically significant differences compared to day 45 adult 
levels (p<0.05).  

Figure 7.1.4 
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then increased markedly to adult levels (46 fold of day -2 levels at day 30, and 

99-fold at day 45) (Figure 7.1.4 C and D).   

 

     In addition to the liver enzymes contributing to bile-acid biosynthesis, Fgf15 is 

secreted from the ileum and thought to be transported by the blood to the liver, 

where it binds to the FgfR4 receptor, and subsequently decreases the 

transcription of the bile-acid synthesizing enzyme, Cyp7a1.  To determine the 

contribution of Fgf15-signaling on bile-acid synthesis in development, the 

ontogeny of FgfR4 mRNA in liver, as well as the ontogeny of Fgf15 mRNA in 

ileum, were determined.  FgfR4 mRNA was consistently low throughout liver 

development (data not shown).  The ileal Fgf15 mRNA was expressed lowly from 

day -2 to day 3, and started to increase after day 5 of age, and peaked at 15 

days of age (49-fold prenatal levels) (Figure 7.1.4 E).  It decreased markedly by 

day 20.  The low perinatal expression of Fgf15 likely provides a permissive 

environment for the first induction of Cyp7a1 mRNA in newborns.  In addition, the 

low expression of Fgf15 in intestine may contribute to the second peak of 

Cyp7a1 expression after day 15 of age.    

 

     In summary, the neonatal induction of bile-acid synthesizing enzymes, 

Cyp7a1 and 8b1, together with the low expression of the suppression signal 

Fgf15, promote an increase in bile-acid biosynthesis in newborns.  Because the 

major bile-acid synthesized by Cyp7a1 and 8b1 in the classic pathway is cholic 

acid, and the major bile-acid synthesized by the alternative pathway enzymes in 



 173

mice is muricholic acid and cholic acid, we hypothesized that cholic acid is the 

predominant type of bile acid in newborns that contribute to the “day-1 surge” 

pattern of liver transporters.  

 

Bile-acid concentrations in serum and liver during development.  As a first 

approach to determine the association between bile-acid concentrations and the 

expression of major liver transporters involved in the enterohepatic circulation, 

bile acids in serum and liver were quantified during development as described in 

MATERIAL AND METHODS (Figure 7.1.5).  Total bile-acid concentrations in 

serum were highest in newborns (day 1), and the total bile-acid concentrations at 

day 1 were 15.8-fold higher than adult levels.  After day 15, the serum bile acids 

decreased markedly (Figure 7.1.5A upper panel).  In liver, the total bile-acid 

concentrations were lowest before birth (7.5% of day 45 levels), followed by a 

marked increase at birth (1.88-fold higher than day 45 levels).  The total bile acid 

concentrations in liver continued to increase till day 3.  At 5 days of age, the total 

liver bile-acid concentrations moderately decreased to 2.8-fold higher than day 

45 levels, but increased again after 10 days of age, and peaked at 15 days of 

age (7.2-fold higher than day 45 levels) and decreased thereafter (Figure 7.1.5B 

upper panel).   

 

     To determine whether bile-acids synthesized from the classic pathway are 

responsible for the “day-1 surge” of transporters, serum and liver bile-acid 

concentrations were quantified by LC-MS/MS (Figure 7.1.5).  The taurine-

conjugated cholic acid (T-CA) and the unconjugated cholic acid (CA) were  
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Figure 7.1.5.  A. Serum total bile-acid concentrations (upper panel), as well as 
concentrations of total cholic acid (taurine-conjugated CA and unconjugated CA), and 
total primary muricholic acid (T-MCA, T-MCA, MCA, and MCA) (lower panel) during 
development (n=3 per age).  The ωMCA was excluded because it is a secondary bile-acid.   
B. Liver total bile-acid concentrations (upper panel), as well as concentrations of total 
cholic acid (taurine-conjugated CA and unconjugated CA), and total primary muricholic 
acid (T-MCA, T-MCA, MCA, and MCA) during development (n=3 per age).  Bile acids 
from serum and liver were quantified by LC-MS/MS as described in MATERIALS AND 
METHODS.  For serum, data are expressed as nmol of bile acids per ml.  For liver, data are 
expressed as nmol / g.  Asterisks (*) in the upper panels of A and B represent significant 
differences (p < 0.05) compred to levels at 45 days of age.  Asterisks (*) in the lower panels 
of A and B represent significant differences (p < 0.05) between total CA and MCA levels at 
the same age.    
 

Figure 7.1.5 
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defined as total CA, and represent the primary product from the classic pathway 

of bile-acid biosynthesis.  Taurine-conjugated MCA and MCA (T-MCA and T-

MCA), as well as their unconjugated forms (MCA and MCA), were defined as 

total MCA, which represents the total primary bile acids synthesized from the 

alternative pathway and classic pathway.  In serum, both total CA and MCA 

concentrations were markedly higher before 15 days of age than their 

concentrations thereafter (Figure 7.1.5A lower panel).  As shown in Figure 7.1.5A 

lower panel, total CA was significantly higher than total MCA in serum from 1 day 

of age to 10 days of age.  After day 15, both CA and MCA concentrations 

decreased markedly till 45 days of age.   

 

     In liver, both total CA and MCA concentrations were low before birth, followed 

by a marked increase right after birth (Figure 7.1.5B lower panel).  The total CA 

concentrations in liver continued to increase at day 1 and day 3, but moderately 

decreased at 5 days of age.  After day 5, the total CA concentrations increased 

again, peaked at 15 days of age, and decreased thereafter.  For total MCA, the 

concentrations remained constant from day 0 to 5 days of age, and moderately 

increased after 10 days of age, peaked at 15 days of age, and decreased 

thereafter.  Interestingly, similar to serum bile-acid concentrations, total liver CA 

was higher than total MCA during the neonatal period.  In addition, from day 10 

to day 20, total CA concentrations in liver tended to be higher than MCA, 

although statistical significance was not achieved.  The total CA concentrations 

were also higher than total MCA in the livers of adult mice.   
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     The concentrations of individual bile acids in serum and liver are shown in 

Figure 7.1.6 and 7.1.7.  In serum, LC-MS/MS detected 11 bile acids, including T-

CA, T-MCA, T-MCA, T-ωMCA, T-CDCA, T-DCA, as well as unconjugated bile 

acids, including CA, MCA, MCA, ωMCA, and DCA (Figure 7.1.6).  In general, 

taurine-conjugated bile acids in serum were high from 1 to 20 days of age, and 

decreased after 30 days of age.  However, the unconjugated bile acids in liver 

were low from 1 to 5 days of age, but increased after 10 days of age, and then 

decreased in adults.  In liver, LC-MS/MS detected 17 bile acids, including 9 

taurine-conjugated bile acids (T-CA, T-MCA, T-MCA, T-ωMCA, T-CDCA, T-

DCA, T-HDCA, T-MDCA, and T-UDCA) (Figure 7.1.7A), and 9 unconjugated bile 

acids (CA, MCA, MCA, ωMCA, CDCA, DCA, HDCA, and UDCA) (Figure 

7.1.7B).  For conjugated bile acids, T-CA and T-CDCA tended to be high in livers 

up to 20-days of age; T-MCA was only present in the neonatal period (day 0 to 

day 3), whereas the other bile acids were high in the adolescent period (around 

day 10 to 20).  For unconjugated bile acids, MCA, ωMCA, HDCA, and UDCA 

were present in livers only after 20 days of age.  DCA was detected in livers 

immediately right after birth, and remained constant thereafter.  CA, MCA, and 

CDCA were detected right after birth, gradually increased, and peaked at 30 

days of age, but decreased moderately by day 45.    
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Figure 7.1.6.  Serum unconjugated bile-acid concentrations during development (n=3 per 
age).  Bile acids from serum were quantified by LC-MS/MS as described in MATERIALS 
AND METHODS.  Data are expressed as nmol of bile acids per ml.   
 

Figure 7.1.6 
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Figure 7.1.7.  Liver conjugated (A) and unconjugated (B) bile-acid concentrations during 
development (n=3 per age).  Bile acids from liver were quantified by LC-MS/MS as 
described in MATERIALS AND METHODS. Data are expressed as nmol / g.   
 

 

Figure 7.1.7 
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     To further consolidate the hypothesis that the classic pathway of bile-acid 

biosynthesis predominates in the neonatal period, percentages of bile acids in 

serum and liver were calculated at day 1 of age in comparison to day 45 (Figure 

7.1.8).  In both serum and liver, T-CA was the predominant bile-acid at day 1 of 

age (77.8% of total bile acids in serum, and 82.9% of total bile acids in liver).  In 

contrast, at 45 days of age, although T-CA was still a major bile-acid, it 

decreased to 22% in serum, and 52.3% in liver.  In addition, there was an 

increase in both the variety and percentages of other bile acids increased in 

adults.   

 

     In summary, both serum and liver bile acids increased right after birth, and the 

high bile acid concentrations associate with the high mRNA expression of liver 

transporters involved in the enterohepatic circulation of bile acids.  The major bile 

acids in both serum and liver are taurine conjugates, and T-CA is the 

predominant bile-acid in newborns, providing strong evidence that the classic 

pathway of bile-acid biosynthesis predominates during the neonatal period (from 

day 0 to 5).   

 

Neonatal up-regulation of FXR and PXR pathways in liver.  FXR and PXR are 

major bile-acid sensors in liver.  To determine whether FXR and PXR are 

expressed in newborns, and whether FXR- and PXR-mediated pathways are 

activated by high concentrations of bile acids in newborns, the mRNA expression 
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Figure 7.1.8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.1.8.  Percentage of various components of bile acids in serum (A and B) and liver 
(C and D) at day 1 (A and C) and 45 days of age (B and D).  Bile acids were quantified by 
LC-MS/MS as described in MATERIALS AND METHODS. 
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of both FXR and PXR, as well as their prototypical target genes were quantified 

from day -2 to day 5 of age (Figure 7.1.9).  FXR mRNA was low before birth, 

followed by an increase at birth (1.5-fold higher than prenatal levels), then 

peaked at day 1 of age (3.4-fold), but decreased at day 3 (1.6-fold) and day 5 

(1.6-fold) of age (Figure 7.1.9A).  Correlated with the “day-1 surge” pattern of 

FXR-mRNA expression, the mRNA of the prototypical FXR-target gene, SHP, 

also increased in newborns and peaked at day 1 of age (20 times of prenatal 

levels) (Figure 7.1.9B).  Similar to the expression pattern of FXR, PXR mRNA 

also increased after birth, and peaked at day 1 of age (4.3-fold of prenatal levels) 

(Figure 7.1.9C).  The prototypical PXR-target gene, Cyp3a11, also peaked at day 

1 of age (18-fold prenatal levels) (Figure 7.1.9D).  In summary, the “day-1 surge” 

pattern was observed in both FXR and PXR mRNA in liver, as well as in their 

prototypical target genes, indicating not only the major bile-acid sensors are 

highly expressed in newborn liver, but also the FXR- and PXR-mediated 

pathways are functionally activated.  In contrast, although the ileal FXR and PXR 

mRNA expression were increased in newborns, their target genes were not 

readily activated in ileums of newborns (Figure 7.1.10), indicating a delayed 

maturation of FXR and PXR pathways in newborn ileum compared to fully 

functioning FXR and PXR pathways in newborn liver.     

 

Expression of liver transporters in FXR and PXR-null mice at day 1 of age.  

To determine whether FXR and PXR contribute to the “day-1 surge” pattern of 

hepatic transporters (Ntcp, Bsep, Mdr2, Mrp4, and Ost), the mRNA of these 
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Figure 7.1.9.  Up-regulation of the mRNA expression of FXR, SHP (prototypical target 
gene of FXR), PXR, and Cyp3a11 (prototypical target gene of PXR) in neonatal wild-
type mouse livers.  Total RNA was isolated from liver at each age and analyzed by the 
bDNA assay as described in MATERIALS AND METHODS.  Data are presented as 
mean RLU ± S.E.M. (n = 5 animals).  Asterisks (*) represent significant differences (p < 
0.05) compared with values at day -2 of age. 
 

Figure 7.1.9 
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Figure 7.1.10.  Messenger RNA expression of FXR, SHP (prototypical target gene of 
FXR), PXR, and Cyp3a11 (prototypical target gene of PXR) in neonatal wild-type 
mouse ileum.  Total RNA was isolated from ileum at each age and analyzed by the 
bDNA assay as described in MATERIALS AND METHODS.  Data are presented as 
mean RLU ± S.E.M. (n = 5 animals).  Asterisks (*) represent significant differences (p < 
0.05) compared with values at day -2 of age. 

Figure 7.1.10 
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transporters was quantified in livers from FXR- and PXR-null mice at day 1 of 

age (Figure 7.1.11A).  In PXR-null mice, the “day-1 surge” pattern of all five 

hepatic transporters was still maintained.  In contrast, in FXR-null mice, except 

for Mrp4, which remained unchanged, the mRNA expression in liver at day 1 was 

attenuated for Ntcp, Bsep, Mdr2, and Ost, which were 66%, 18%, 56%, and 

45% of wild-type levels, respectively, but Mrp4 mRNA remained unchanged 

(Figure 7.1.11A).  At day 3 and 5 of age, the expression of Bsep and Ost in 

FXR-null mouse liver was still lower than that in wild-type mice, whereas the 

expression of Ntcp and Bsep was similar between FXR-null and wild-type mice 

(data not shown).  To determine whether FXR and PXR contribute to the 

neonatal up-regulation of the ileal bile-acid efflux transporters, Ost and Ost, 

the mRNA of these transporters was quantified in livers from FXR- and PXR-null 

mice at day 1 of age (Figure 7.1.11B).  In PXR-null mice, the “day-1 surge” 

pattern of Ost and  transporters was maintained.  In contrast, in FXR-null mice 

at 1 day of age, the expression of both Ost and  was decreased, which were 

39% and 32% of wild-type levels, respectively.  In summary, the “day-1 surge” 

pattern of the liver transporters Ntcp, Bsep, Mdr2, and Ost, as well as the ileal 

transporters, Ost and , was attenuated in FXR-null mice, but not in PXR-null 

mice. 

 

Immunofluorescence staining of Ntcp and Bsep in livers of wild-type and 

FXR-null mice at day 1 of age.  To determine whether the protein expression 

and membrane localization of transporters were also impaired in FXR-null mice  
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Figure 7.1.11.  A. The mRNA expression of liver transporters Ntcp, Bsep, Mdr2, Mrp4, and Ost in 
wild-type, PXR-null (upper panel), and FXR-null mice (lower panel) at 1 day of age.  B. The mRNA 
expression of ileal transporters Asbt, Ost, and Ost in wild-type, PXR-null (upper panel), and FXR-
null mice (lower panel) at 1 day of age.  C. Immunofluorescence of Ntcp and Bsep protein in livers 
from wild-type and FXR-null mice at day 1 of age.  Immunofluorescence against basolateral Ntcp 
protein as well as canalicular Bsep (green) was conducted on liver cryosections as described in 
MATERIALS AND METHODS.  Portions of images were enlarged and provided as inserts. 
Representative images are shown. Bar, 50 m.  
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in newborns, immunofluorescence staining of Ntcp and Bsep was performed on 

frozen liver sections of wild-type and FXR-null mice at day 1 of age (Figure 

7.1.11C).  The staining of Ntcp protein was reduced, but still detectable in livers 

of FXR-null mice, indicating FXR at least partially contributes to the “day-1 surge” 

pattern of Ntcp in liver.  The canalicular staining of Bsep protein was decreased 

in livers of FXR-null mice, suggesting FXR is important in maintaining the 

neonatal surge of Bsep expression.        

     

Expression of liver transporters and bile-acid synthesizing enzymes in 

human liver during development.  To determine the clinical significance of the 

present findings, the mRNA expression of the following genes was determined in 

human liver during development from gestational day 96, to 21 years of age.  

The major bile-acid uptake transporter NTCP, the rate-limiting bile-acid efflux 

transporter BSEP, the phospholipid transporter MDR3 (the ortholog for mouse 

Mdr2), as well as the mRNAs of CYP7A1 and 8B1 for the classic pathway of bile-

acid biosynthesis were quantified in human livers (Figure 7.1.12).  Minimal 

mRNA expression of these genes was observed between gestational day 96 to 

108, followed by a marked increase within 1 year of age.  For example, the 

mRNA of NTCP increased 14.7-fold in the neonatal period (from birth to 1 year of 

age), the mRNA of BSEP increased 2.4-fold, the mRNA of MDR3 increased 9.6-

fold, the mRNA of CYP7A1 increased 27.7-fold, and the mRNA of CY8B1 

increased 11.3-fold.  The levels of these genes appear to remain high between 1 

to 4 years of age, followed by another increase between 7 to 14 years of age, but  
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Figure 7.1.12.  Messenger RNA expression of human transporters (NTCP, BSEP, and 
MDR3), as well as bile-acid bio-synthetic enzymes (CYP7A1 and 8B1) in human livers 
during development.  Total RNA was isolated from liver at each age and analyzed as 
described in MATERIALS AND METHODS.  
 

Figure 7.1.12 
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decreased to adult levels thereafter (15 to 21 years of age).  These data indicate 

that in humans, there is also a marked increase in the expression of bile-acid 

transporters and synthesizing enzymes for the classic pathway in newborn liver, 

although there seemed to be a secondary increase of these genes in the 

adolescent period.   
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DISCUSSION 

     In conclusion, the present study revealed a “day-1 surge” pattern in the 

expression of major transporters involved in the enterohepatic circulation of bile 

acids in newborns.  Increased bile acids via the classic pathway of biosynthesis 

correlated with the "day-1 surge" pattern of these transporters, through activating 

the FXR-mediated pathway.  Our working model is that during development, 

increased bile-acid biosynthesis occurs in liver during the neonatal period 

primarily by the classic pathway, and this contributes to the increased bile acids 

in newborns.  In turn, high concentrations of bile acids activate both the FXR and 

PXR receptors, but FXR is responsible for the "day-1 surge" pattern of hepatic 

transporters for the EHC of bile acids (Figure 7.1.13).  

 

     Transporters are essential in maintaining the enterohepatic circulation of bile 

acids, evidenced by numerous clinical cases in pediatrics and animal studies 

using gene knock-out mice.  For example, Bsep is the major bile-acid efflux 

transporter in liver that determines bile flow, and inborn errors in human BSEP 

results in severe progressive familial intrahepatic cholestasis (PFIC type II) 

(Wang et al., 2002), as well as hepatocellular carcinoma in young children 

(Knisely et al., 2006).  In addition, although the phospholipid transporter Mdr2 in 

liver does not transport bile acids, the defect in its human analog MDR3 results in 

progressive familial intrahepatic cholestasis (PFIC type III) (de Vree et al., 1998).  

Mdr2-null mice develop hepatocyte degeneration and focal necrosis, as well as 

abnormalities in bile composition (Smit et al., 1993), indicating the importance of 
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Figure 7.1.13.  A schematic of the working hypothesis for the molecular 
mechanisms underlying the neonatal induction of hepatic transporters involved in 
EHC.  
 

 

 

 

 

Figure 7.1.13 
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Mdr2/MDR3 in maintaining bile-acid circulation and liver protection.  On the 

basolateral membrane of hepatocytes, Ntcp is the major bile-acid uptake 

transporter that brings serum bile-acids back into hepatocytes, evidenced by a 

95% blockade of sodium-dependent bile-acid uptake following a Ntcp-specific 

antisense oligonucleotide administration (Hagenbuch et al., 1996).  By 

transporting the bile acids back into liver, Ntcp keeps bile acids in the EHC for 

the next cycle of nutrient absorption, and prevents toxicity to extrahepatic organs.   

 

     The basolateral bile-acid efflux transporters, Mrp4, Ost, and Ost are very 

lowly expressed in liver (Maher et al., 2005b).  The low expression of basolateral 

efflux transporters reflects a conservative mechanism to minimize the leakage of 

bile acids into the systemic circulation, so as to preserve most bile acids in the 

EHC for nutrient absorption.  To note, these basolateral bile-acid efflux 

transporters are often induced during cholestasis for hepatic protection.  For 

example, Mrp4-null mice have more severe liver injury than wild-type mice 

following bile-duct ligation (Mennone et al., 2006).   

 

     The general dogma for the regulation of Ntcp states that high levels of bile 

acids decrease Ntcp mRNA expression through activating the FXR-SHP 

signaling pathway in liver, as observed in various cholestasis models (Liu et al., 

2003; Slitt et al., 2007) and bile-acid feeding studies (Zollner et al., 2005) 

performed in adult mice or rats.  Teleologically this may be protective, because 

unrestricted hepatic influx of bile acids from serum might lead to accumulation of 
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toxic bile acids in hepatocytes.  However, the present study challenges the 

existing paradigm by demonstrating that both Ntcp mRNA and protein 

immunofluorescence staining are high in newborn livers, despite approximately 

2-fold higher bile-acid concentrations at birth than that at 45 days of age, and up-

regulated hepatic FXR-SHP pathway in newborns.  In addition, the present study 

also demonstrates that the “day-1 surge” pattern of Ntcp is dependent on the 

presence of the FXR- signaling pathway in newborns.  Evidence from clinical 

studies demonstrates that children with severe hypercholanemia had normal 

expression of NTCP, even though the serum concentrations of bile acids were 

extremely high (Shneider et al., 1997).  Thus the regulation of Ntcp by bile acids 

is not as simple as anticipated.  It can be speculated that the FXR-SHP signaling 

pathway is not the major pathway in regulating the expression of Ntcp in 

newborns, but FXR may be involved in certain neonatal-predominant signaling 

pathways that promote the “day-1 surge” pattern of Ntcp in newborns.  It is well-

known that before birth, liver is mainly a haematopoietic organ, whereas after 

birth, it becomes the major organ for chemical metabolism and detoxification.  

Therefore, functionally speaking, during the neonatal period when bile acids are 

high in serum and liver due to the immaturity in EHC, it is necessary to up-

regulate Ntcp in liver to reduce bile-acid concentrations in the systemic 

circulation, even at the cost of stressing the hepatocytes, so as to protect 

extrahepatic organs that are critical for survival, including the brain where the 

blood-brain barrier is not completely functioning, as well as other developing 

organs that are vulnerable to bile-acid-induced toxicity.      
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     Previous studies have determined the ontogenic expression of Ntcp and Bsep 

in rat livers.  It has been shown that Ntcp mRNA was detectable by northern blot 

as early as gestation day 18 in rat liver when sodium-dependent bile-acid 

transport already occurs (Boyer et al., 1993).  The present study has shown that 

the mouse Ntcp mRNA was very low before birth (day -2), but increased 

markedly after birth.  In addition, the expression of Bsep was undetectable in 

prenatal rat livers, but a marked up-regulation of Bsep protein occurred in 

newborn rat livers (Zinchuk et al., 2002).  The present study further demonstrates 

that the induction of Bsep in newborn mouse liver might be due to activation of 

FXR, likely by direct activation, because it has been demonstrated that Bsep is a 

FXR-target gene (Plass et al., 2002). 

 

      A large body of evidence indicates that FXR is important in regulating bile-

acid homeostasis, lipid metabolism, and glucose metabolism in adults (Chiang, 

2004).  FXR-null mice have elevated serum bile-acid concentrations in adults 

(Sinal et al., 2000), indicating the important role of FXR in bile-acid synthesis 

and/or disposition.  Less is known of the role of FXR during development.  

Clinically, decreased FXR expression in ileum was observed in children with 

progressive familial intrahepatic cholestasis type I (Chen et al., 2004), and 

functional variants of FXR in liver have been identified in intrahepatic cholestasis 

of pregnancy (Van Mil et al., 2007), indicating FXR is important for both perinatal 

and maternal bile-acid homeostasis.  The present study demonstrates that FXR 

is at least partially involved in mediating the “day-1 surge” of hepatic and ileal 
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transporters to promote the enterohepatic circulation of bile acids, so as to 

facilitate the absorption of fat-soluble nutrients in newborns.  Mrp4 is the only 

transporter whose neonatal surge is independent of FXR.  It has been shown that 

the constitutive androstane receptor (CAR) can induce Mrp4 expression in 

mouse liver (Assem et al., 2004; Maher et al., 2005a; Slitt et al., 2006), and the 

expression of CAR mRNA is up-regulated right after birth (our lab’s unpublished 

data).  Therefore, it can be speculated that CAR contributes to the moderate 

induction of hepatic Mrp4 at 1 day of age.  

 

     It has been suggested that “physiological cholestasis” in newborns is due to 

the immaturity of the EHC and delayed hepatic clearance of bile acids (Suchy et 

al., 1981).  However, how the neonatal bile-acid concentrations are elevated 

remains poorly understood.  It has been demonstrated that maternal cholestasis 

in rat does not affect the expression of Ntcp in pups (Arrese et al., 1998), 

indicating the high levels of bile acids in newborns is not likely from the mother 

through placental transfer.  The present study demonstrates that the increase in 

bile-acid concentrations in newborns is likely due to up-regulation of the classic 

pathway of bile-acid synthesis, as evidenced by the marked increase in Cyp7a1 

and 8b1 mRNAs, as well as increase in taurine-conjugated cholic acid in 

newborns.  It is well known that oxysterols, which are metabolized from 

cholesterol, serve as ligand for the liver X receptor (LXR), and in turn, LXR 

transcriptionally up-regulates Cyp7a1 in mice (Chiang, 2004).  Therefore, it is 

possible that the up-regulation of the classic pathway of bile-acid synthesis is 
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triggered by cholesterol-enriched milk from the mother.  In addition, the low 

expression of the suppression signal Fgf15 from the intestine also provides a 

permissive environment to allow the induction of Cyp7a1.  Although Cyp39a1 

from the alternative pathway was also induced in newborns, the significance of 

this 24-hydroxysterol 7-hydroxylase in producing bile acids in liver is not well 

understood.   

 

     Various bile acids have different affinities towards FXR.  Chenodeoxycholic 

acid has been shown to be the most potent FXR agonist in cell cultures 

(Pellicciari et al., 2005).  In addition, 6-ethyl-chenodeoxycholic acid (6-ECDCA) 

is a potent and selective FXR agonist endowed with anti-cholestatic activity when 

given to an in vivo rat model of cholestasis (Pellicciari et al., 2002).  However, 

CDCA and 6-ECDCA are either very low or not synthesized in mice.  Another 

study showed that the FXR target gene Bsep in mice can be induced by cholic- 

acid feeding in a FXR-dependent manner, indicating that cholic acid might also 

be a ligand for FXR (Zollner et al., 2005).  Therefore, during neonatal period, the 

increased concentrations of cholic acid are likely the mechanism for the FCR-

mediated pathway.     

 

     At later ages (from day 20 to day 30), serum bile-acid concentrations 

decreased in wild-type mice, whereas liver bile-acid concentrations remained 

high, and correlated with high mRNA levels of the bile-acid synthesizing enzymes 

(Cyp7a1, 8b1, and 27a1).  The decrease in serum bile-acid concentrations 
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probably reflects maturation of other bile-acid uptake transport systems in liver at 

later ages, for example, the basolateral uptake transporters Oatp1a1, 1a4, and 

1b2 increase gradually, and reach adult levels at around day 30 of age (Cheng et 

al., 2005a).  The Oatps may act in concert with Ntcp to further reduce serum bile 

acids and thus protect other organs from bile-acid toxicity.        

 

      During the neonatal period, the expression profiles of a gene can be different 

in liver and ileum.  For example, the prototypical target genes of FXR and PXR 

(SHP and Cyp3a11) were only up-regulated in liver but not in ileum, even though 

FXR and PXR mRNAs were increased in both tissues.  Ost, a well-known FXR 

target gene (Zollner et al., 2006), was only induced in newborn ileum but not in 

liver.  In addition, the intestinal Fgf15, which is a target of FXR, was not induced 

at day 1 even though FXR mRNA is induced at this age.  The mechanism for the 

tissue-specific regulation of these genes is not clearly understood, but it can be 

speculated that certain epigenetic mechanisms, like microRNAs, might regulate 

the expression of certain genes in the intestine, like FXR and PXR, and either 

inhibit the formation of a functional protein, or decrease mRNA stability.  The 

post-transcriptional modifications of these genes in liver and ileum will be 

determined in future studies.  

 

     The present study provides some insights in understanding the mechanisms 

for the maturation of enterohepatic circulation of bile acids in the neonatal period, 
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and demonstrates that FXR might be a therapeutic target in regulating bile acids 

and nutrient homeostasis in pediatric patients.  
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DEVELOPMENTAL REGULATION OF LIVER TRANSPORTERS IN MICE 
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     In Part One of this chapter, I characterized that the bile-acid sensor FXR is 

important in triggering the neonatal upregulation of several transporters involved 

in the enterohepatic circulation of bile acids.  These transporters are mainly 

endobiotic transporters, including the bile-acid transporters Ntcp, Bsep, and Ostβ, 

as well as the phospholipid transporter Mdr2.  However, the ontogenic 

expression patterns and regulatory mechanisms of transporters involved in the 

disposition of xenobiotics remain to be determined.  Therefore, in this chapter, 

the ontogeny and mechanisms underlying the regulation of these genes will be 

discussed.  One example will be given for each class of transporters (basolateral 

uptake, basolateral efflux, and canalicular efflux) for regulatory mechanisms.    

 

     Based on their critical roles in chemical disposition in liver, for basolateral 

uptake transporters, Oatp1a1, Oatp1a4, Oatp1b2, Oatp2b1, Oct1, Oat2, and 

Ent1 have been selected (Klaassen and Lu, 2008).  For canalicular transporters, 

Bcrp, Mrp2, Mate1, Atp8b1, Abcg5, and Abcg8 have been selected.  For 

basolateral efflux transporters, Mrp3, Mrp6, and Abca1 have been seleted.  As 

shown from Figure 7.2.1 to 7.2.3, the majority of these transporters was low 

before birth, and then increased from adolescent to adult ages.  The only 

exception is Bcrp mRNA, which was enriched in perinatal ages and decreased 

markedly after birth, corresponding to its critical role as a heme efflux transporter 

during the fetal to neonatal functional transition during liver maturation.   Figure 

7.2.4A is a heatmap of the associations of these transporter mRNAs, and the  
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Figure 7.2.1. Messenger RNA expression of other basolateral update transporters 
in livers of wild-type mice during development.  Total RNA was isolated from liver 
at each age and analyzed as described in MATERIALS AND METHODS.  Individual 
samples (n=5) were pooled at each age, and data were analyzed by bDNA assay.  
Data are presented as RLU normalized to Gapdh mRNA.  

Figure 7.2.1 
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Figure 7.2.2. Messenger RNA expression of other basolateral efflux transporters in 
livers of wild-type mice during development.  Total RNA was isolated from liver at 
each age and analyzed as described in MATERIALS AND METHODS.  Individual 
samples (n=5) were pooled at each age, and data were analyzed by bDNA assay.  
Data are presented as RLU normalized to Gapdh mRNA.  
 

 

Figure 7.2.2 
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Figure 7.2.3. Messenger RNA expression of other canalicular efflux transporters in 
livers of wild-type mice during development.  Total RNA was isolated from liver at 
each age and analyzed as described in MATERIALS AND METHODS.  Individual 
samples (n=5) were pooled at each age, and data were analyzed by bDNA assay.  
Data are presented as RLU normalized to Gapdh mRNA.  
 

Figure 7.2.3 
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data demonstrated that except for Bcrp mRNA, they all tended to be highly 

expressed after 10 days of age.   

 

     For the majority of these postnatal-enriched xenobiotic transporters, PXR 

appears to be good candidate transcription factor to trigger their increased 

expression during liver maturation.  First, PXR is a critical sensor for xenobiotics. 

Second, PXR mRNA is markedly increased after birth and peaked around 

adolescent period (Figure 7.2.4).  Therefore, I hypothesize that PXR is a critical 

regulator of these xenobiotic transporters, either by direct binding to DNA, or by 

indirect effects.   

 

     The postnatal enrichment of the xenobiotic sensor PXR during development 

appears to be a good candidate for the postnatal enrichment of the basolateral 

uptake transporter Oatp1a4 mRNA in mice.  Oatp1a4 has been reported to be a 

direct PXR-target gene in rat liver by Guo et al. (Guo et al., 2002).  They 

demonstrated that treatment of rats with the PXR agonist, PCN, significantly 

enhanced the rat Oatp1a4 mRNA expression, and eletrophoretic mobility shift 

assays showed that PXR binds to a DR-3 consensus sequence with the highest 

affinity around 8kb upstream of the transcription start site, and binds to two other 

DR-3 motifs (-5kb and -8kb, respectively) with a lower affinity (Guo et al., 2002).   

 

     In mice, using HNR-scan and NUBI-scan, we detected 4 PXR consensus 

sequences (DR-3 or ER-6) within 10kb upstream of the transcription start site of 



 204

Figure 7.2.4 

 

 

 

 

 

 

 

 

 

 

 

 

          

 
Figure 7.2.4. A. Heatmap of the mRNA ontogeny of xenobiotic transporters in liver 
during development (male).   The ontogenic expression of these mRNAs from day 
-2 to day 45 of age was analyzed by a two-way hierachical clustering method (JMP 
v. 7.0) using Ward’s minimum variance and visualized by a dengrograph.  
Distances between genes reflect significance of associations. Red color 
represents relative high expression, and blue color represents relative low 
expression. B. The mRNA expression of PXR during liver development (male).   
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Oatp1a4 (-3258, -3721, -6251, and -7429bp).  To our surprise, none of these 

consensus sequences appeared to bind to PXR in control or PCN-treated 

conditions (data not shown).  In addition, we blasted the response elements of 

the Oatp1a4 gene and found little conservation during evolution.  These pieces of 

evidence suggest that either the mouse Oatp1a4 is an indirect target, or we 

missed the real PXR-DNA binding sites due to the biased detection method, or 

species-specific PXR-DNA binding patterns.  Therefore, in the next step, we 

examined the entire Oatp1a4 gene locus including ±10kb using the unbiased 

ChIP-sequencing approach.  Interestingly, we identified one site at 10kb 

upstream of the TSS with strong enrichment of PXR binding in control liver (277-

fold compared to background; threshold: 20-fold).  After PCN treatment, PXR 

binding was still only observed at this site, but with a further increase in signal 

enrichment (549-fold) (Figure 7.2.5A).  Although there were no known PXR-

consensus sequences (DR-3, DR-4, ER-6, and ER-8) observed in this region 

using conventional methods, which have limited settings for the spacer distance 

(NHR-scan and NUBI-scan, data not shown), using our novel and unbiased motif 

detection algorithm, we have identified one DR-9 like consensus sequence 

present in the PXR-binding site for Oatp1a4.  Corresponding to increased PXR 

bindings after PCN treatment, we observed PXR-dependent mRNA induction of 

Oatp1a4 in mouse liver (Figure 7.2.6B).  To validate our findings from ChIP-

sequencing, and to fill the gap between in silico analysis and the actual biological 

functions of PXR,  we performed an ELISA-based transcription factor DNA-

binding assay in control and PCN-treated mouse liver samples, and  showed for  
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Figure 7.2.5  
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Figure 7.2.5.  PXR-DNA binding signatures to the Oatp1a4 gene locus.  A. location and fold 
enrichment of PXR binding to the Oatp1a4 gene locus (±10kb included).  Image was generated by the 
Integrated Genome Browser. Upper panel: control.  Lower panel: PCN-treatment.  Asterisks: positive 
enrichment of PXR binding. Arrow points to the novel DR-9 consensus sequence present in the 
ChIP-DNA fragment.  B. Oatp1a4 mRNA expression in livers of control and PCN-treated WT and PXR-
null mice.  Asterisk: statistical significance between control and PCN-treatment.  Pound: statistical 
significance between PCN-treated WT and PXR-null mice.  C. Quantification of PXR binding to DR-9 
DNA-binding motif.  Nuclear protein extracts from the livers of mice treated with corn oil vehicle 
control (CON) or the PXR agonist, PCN, were incubated with oligonucleotides corresponding DR-9.  
The binding of PXR to the various DNA-binding motifs was quantified using an ELISA-based 
transcription-factor binding assay, as detailed in the Methods section. An unlabeled oligonucleotide 
competitor was included for DR-9 DNA binding motif to confirm the specificity of the assay (WT 
Comp) as well as a mutated oligonucleotide competitor that should not compete effectively with the 
positive control (PCN treatment).  

B. C. B. C. 
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the first time that PXR protein from the liver extract indeed prefers to DR-9 like 

sequences, which is the same sequence found to be bound by PXR protein 

upstream of the Oatp1a4 gene locus from the ChIP-Seq motif analysis.  

Competition assays using unlabeled wild-type (WT) and mutated oligos further 

confirmed the specificity of the interaction between DR-9 and PXR protein 

(Figure 7.2.5C).  Taken together, data from ChIP-Seq, motif analysis, ELISA-

based transcription-factor binding assay, and mRNA assays in WT and PXR-null 

mice, have provided strong evidence that Oatp1a4 is indeed a direct PXR-target 

gene, and highlighted the functional significance of the novel DR-9 in inducing 

the trans-activation of PXR-target gene in vivo.    

 

     For the basolateral efflux transporter, Mrp3 was selected as an example to 

demonstrate novel PXR-DNA binding patterns.  Interestingly, Mrp3 has three 

positive PXR-binding sites only inside the gene (45,538bp, 30,722bp, and 

3,810bp downstream of TSS), with further enriched PXR binding at 

approximately the same regions after PCN treatment (45,586bp, 30,722bp, and 

3,778bp downstream of TSS) (Figure 7.2.6A).  Prior to this work, most studies 

have limited the detection range for PXR binding to the gene promoter regions.  

Such designs are inherently biased, in that they do not seek to detect novel 

genomic PXR-binding sites that may be equally important for gene regulation.  

The novel intronic PXR-DNA bindings to the Mrp3 gene locus has highlighted the 

importance of using unbiased approaches to search for nuclear receptor 

consensus sequences.   Corresponding to increased PXR bindings after PCN  
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Figure 7.2.6 

 

 

 

 

 

The Ontogeny of critical transcription factors for xenobiotic-procecessing 

and nutrient homeostasis during Postnatal Liver Maturation in Mice  

 

 

 

 

 

 

 

 

 

 

Figure 7.2.6.  PXR-DNA binding signatures to the Mrp3 gene locus.  A. location and fold enrichment 
of PXR binding to the Mrp3 gene locus (±10kb included).  Image was generated by the Integrated 
Genome Browser. Upper panel: control.  Lower panel: PCN-treatment.  Asterisks: positive 
enrichment of PXR binding. Arrow points to the DR-4 consensus sequence present in the ChIP-DNA 
fragment.  B. Mrp3 mRNA expression in livers of control and PCN-treated WT and PXR-null mice.  
Asterisk: statistical significance between control and PCN-treatment.  Pound: statistical significance 
between PCN-treated WT and PXR-null mice.  C. Quantification of PXR binding to DR-4 DNA-binding 
motif.  Nuclear protein extracts from the livers of mice treated with corn oil vehicle control (CON) or 
the PXR agonist, PCN, were incubated with oligonucleotides corresponding DR-4.  The binding of 
PXR to the various DNA-binding motifs was quantified using an ELISA-based transcription-factor 
binding assay, as detailed in the Methods section. An unlabeled oligonucleotide competitor was 
included for DR-4 DNA binding motif to confirm the specificity of the assay (WT Comp) as well as a 
mutated oligonucleotide competitor, which should not compete effectively with the positive control 
(PCN treatment).  
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treatment, we observed PXR-dependent mRNA induction of Mrp3 in mouse liver 

(Figure 7.2.6B).  Motif analysis detected the presence of DR-4 at all of the PXR-

DNA binding sites, and ELISA-based transcription factor DNA-binding validated 

that PXR protein indeed binds to DR-4-like sequences in vitro (Figure 7.2.6C).    

 

     For the canalicular transporters, it is well known that the xenobiotic efflux 

transporter family MDR1/Mdr1a/b are PXR direct target genes from in vitro 

evidence and in intestine (Geick et al., 2001; Synold et al., 2001).  Surprisingly, 

my previous work has demonstrated that in vivo liver, PXR does not appear to 

induce either Mdr1a or Mdr1b, in addition, the basal expression of Mdr1a and 1b 

is very low in liver, in contrast to the phospholipid transporter Mdr2, which is 

highest in liver (Cui et al., 2009a).  It should be noted that three of these Mdr 

genes form a polycistron cluster on chr 5 in mice.  ChIP-on-chip identified strong 

enrichment of H3K4Me2 around the Mdr2 gene locus, but not around the Mdr1a 

or 1b gene loci (Figure 7.2.7).  The suppressive mark, H3K27Me3, was 

consistently low around the Mdr gene loci.  For DNA methylation, strong 

enrichment of DNAMe was observed at the 3’-UTR regions of both Mdr1a and 1b 

gene loci.  In contrast, the DNAMe for Mdr2 gene showed a different pattern, in 

that the DNAMe was observed within the intronic region of Mdr2, and its fold 

enrichment was much lower than that within the Mdr1a and 1b genes.  

Interestingly, corresponding to the epigenetic signatures, positive PXR-DNA 

binding was not observed around the Mdr1a or 1b gene locus, whereas strong 

enrichment of PXR was identified around the Mdr2 gene locus.  In summary, pre- 
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Figure 7.2.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2.7. Location and fold enrichment of H3K4Me2 (A), H3K27Me3 (B), and DNAMe (C) to the 
Mdr gene loci (Mdr1a, Mdr1b, and Mdr2) at 45 days of age.  Asterisks: positive enrichment of an 
epigenetic mark.  Solid lines through the signal enrichment peaks indicate the threshold value (4.0-
fold of input background for histone H3K4Me2 and H3K27Me3, and 3.0-fold for DNAMe).  Data were 
generated by ChIP-on-chip and visualized by the Integrated Genome Browser.  D. Overal PXR 
binding fold-enrichment to Mdr1a, 1b, and Mdr2 gene loci under basal conditions.   
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existence of a permissive chromatin environment appears to be important for 

recruiting PXR protein to the target Mdr genes.   

 

     In conclusion, most of the xenobiotic transporters are enriched between 

adolescent and adult ages.  In addition, using genome-wide location analysis, we 

have identified novel PXR-binding profiles to some of these transporter genes, 

suggesting that PXR is a critical regulator for the xenobiotic transporters.     
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ABSTRACT 

     The aryl hydrocarbon receptor (Ahr) is a xenobiotic sensor that regulates the 

expression of a battery of drug-metabolizing genes.  However, Ahr is also 

important for normal liver development.  The purpose of the first part of the study 

in this chapter was to examine the ontogeny of Ahr mRNA in mouse liver, and 

determine the epigenetic mechanisms regulating Ahr gene transcription during 

postnatal liver development.  There was a 224% increase in hepatic Ahr mRNA 

from 2 days before birth to 45 days after birth.  ChIP-on-chip analysis 

demonstrated that DNA methylation and histone H3K27 tri-methylation 

(H3K27Me3), two epigenetic marks for gene suppression, were consistently low 

around the Ahr gene locus.  In contrast, enrichment of histone H3K4 di-

methylation (H3K4Me2), a hallmark for gene activation, increased 182% from 

prenatal to the young adult period (45 days of age) around the Ahr gene locus.  

Regression analysis revealed a strong correlation between enrichment of 

H3K4Me2 and Ahr mRNA (r=0.91).   

 

     Postnatal liver development is critical for newborns to obtain sufficient nutrient 

and energy for survival.  Peroxisome proliferator-activated receptor  (PPAR) 

and peroxisome proliferator-activated receptor  coactivator 1  (PGC-1) are 

two important metabolic regulators in liver for nutrient homeostasis.  Whereas 

PPAR is a liver-enriched nuclear receptor that regulates lipid metabolism, PGC-

1 is an essential coactivator to promote gluconeogenesis in liver.  Little is 

known about the ontogeny of PPAR and PGC-1 in liver, nor the epigenetic 
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mechanism of their transcriptional activation during development.  Therefore the 

purpose of the second part of the chapter is to determine the mRNA expression 

of PPAR and PGC-1 in developing mouse liver at day -2, 1, 5, and 45 of age, 

and determine its correlation with changes in chromatin epigenetic signatures 

(DNA and histone methylations).  Multichannel suspension array revealed 

postnatal increases in both PPAR and PGC-1 mRNA in mouse liver.  The 

postnatal increase in PPAR mRNA correlates with an increase in hisone H3K4 

di-methylation, a hallmark for gene activation, coupled by a decrease in histone 

H3K27 tri-methylation, a hallmark for gene suppression (Chip-on-chip).  The high 

neonatal expression of PGC-1 mRNA correlates with high in histone H3K4 

dimethylation, and the low expression of PGC-1 mRNA in adult liver correlates 

with DNA methylation.  The postnatal decrease in serum triglycerides and serum 

glucose indicate that in addition to the up-regulation of the mRNA levels of the 

PPAR and PGC-1, these pathways were also functionally activated.   

In summary, postnatal H3K4Me2 enrichment positively associates with Ahr 

mRNA in developing mouse liver, providing a permissive chromatin state 

allowing Ahr gene transactivation in postnatal liver development.  

 

     In conclusion, the postnatal increase in mRNA expression of Ahr, PPAR and 

PGC-1 correlates with distinct epigenetic signatures during mouse liver 

development.  The increased expression of both xeno-sensors and nutrient-

sensors in liver is critical for normal postnatal development.  
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INTRODUCTION 

    The aryl hydrocarbon receptor (Ahr) is well recognized as a ligand-activated 

transcription factor for aromatic hydrocarbons, including TCDD (2,3,7,8-

tetrachlorodibenzo-p-dioxin) and polycyclic aromatic hydrocarbons.  In mice, Ahr 

mRNA is highly expressed in lung, and expressed at intermediate levels in liver 

and gastrointestinal tract (Petrick and Klaassen, 2007).  In the absence of a 

ligand, the Ahr is sequestered in the cytosol by two molecules of heat-shock 

protein 90 (HSP90).  Upon ligand binding, Ahr is released from HSP90, 

translocates into the nucleus, and dimerizes with the Ahr nuclear translocator 

(ARNT).  The Ahr-ARNT heterodimer then binds to the xenobiotic response 

element of target genes, and usually results in increased gene transcription (Li et 

al., 1994; Ma et al., 1995). 

 

     Ahr regulates the expression of a large battery of drug-metabolizing genes, 

including the prototypical target genes cytochrome P450 1A1, 1A2, and 1B1 

(Rowlands and Gustafsson, 1997), several liver aldehyde dehydrogenases in 

mice (Alnouti and Klaassen, 2008), some liver UDP glucuronosyltransferases in 

rats (Shelby and Klaassen, 2006) and mice (Buckley and Klaassen, 2009), the 

organic anion transporting polypeptides 2b1 and 3a1 (Cheng et al., 2005),  and 

some multidrug resistance-associated protein efflux transporters in mice (Cheng 

et al., 2005b; Maher et al., 2005a).   
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    In addition to its role in drug metabolism, the Ahr is also important for normal 

liver development.  Ahr-null mice have been engineered, either by deleting Ahr 

exon 1 (Fernandez-Salguero et al., 1995; Gonzalez and Fernandez-Salguero, 

1998) or exon 2 (Schmidt et al., 1996; Harstad et al., 2006).  Common 

phenotypes of the two lines of Ahr-null mice include a marked decrease in liver 

size per gram of body weight, moderate hepatic portal fibrosis, and decreased 

constitutive expression of certain xenobiotic-metabolizing enzymes, such as 

Cyp1a2 (Lahvis and Bradfield, 1998).  In addition to the common liver 

phenotypes, Ahr-null mice with exon 1 deletion also have increased mortality 

within the first 2 weeks of age,  hyper-proliferative blood vessels in the portal 

areas of the liver, glycogen depletion in liver, inflammation of bile ducts, and 

adenocarcinomas with aging (Gonzalez and Fernandez-Salguero, 1998).  In 

contrast, Ahr-null mice with exon 2 deletion are viable and fertile, but exhibit a 

spectrum of hepatic defects including transient microvesicular fatty 

metamorphosis, prolonged extramedullary hematopoiesis, and portal 

hypercellularity with thickening and fibrosis (Schmidt et al., 1996).   

 

     Although Ahr plays important roles in both drug metabolism and normal 

development, the mechanisms underlying the developmental regulation of the 

Ahr gene in vivo are poorly characterized.  Recently, it has become increasingly 

evident that developmental gene regulation is controlled by epigenetic 

mechanisms (Jaenisch and Bird, 2003; Kiefer, 2007).  DNA methylation and 

histone modifications are the ultimate regulatory epigenetic mechanisms of gene 
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expression during development. In general, changes in DNA methylation profiles 

and chromatin structure determine whether there is a permissive chromatin 

environment for the transcription machinery to access gene promoter regions 

and initiate transcription.  DNA methylation is a covalent modification that results 

in stable silencing of genes during development, either by interfering directly with 

transcription factor binding to response elements of target genes, or by recruiting 

corepressor complexes and reinforcing gene silencing (Bird, 2002; Reik, 2007).  

Histone H3 lysine-4 di-methylation (H3K4Me2) is present in promoters and 

transcribed regions of many active genes, and is positively associated with gene 

transcription (Bernstein et al., 2005; Kim et al., 2005; Roh et al., 2006).  In 

contrast, H3 lysine-27 tri-methylation (H3K27Me3) is associated with suppression 

of gene transcription, because H3 lysine-27 tri-methylated histone is a target for 

the chromodomain protein Polycomb, that silences genes by yet unknown 

mechanisms (Boyer et al., 2006; Lee et al., 2006; Kiefer, 2007).  Other types of 

histone modifications, like the most extensively studied epigenetic mark histone 

acetylation, not only regulate gene transcription, but are also involved in DNA 

repair, replication, and condensation (Kouzarides, 2007).  In comparison, histone 

methylations are more specific for regulation of gene expression.  Nevertheless, 

the co-occurrence between certain types of histone acetylation and methylation 

of H3K4 is very high (Bernstein et al., 2005; Pokholok et al., 2005).  

 

     Little is known of either the ontogeny of the Ahr mRNA in mouse liver during 

development, or the epigenetic mechanism of Ahr gene transcriptional activation 
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during development.  Therefore, the purpose of the present study was to reveal 

the ontogeny of hepatic Ahr mRNA expression in mice, and determine the 

epigenetic mechanisms mediating the Ahr mRNA expression during liver 

development.  Because alterations of chromatin structure by epigenetic 

modifications is a critical mechanism to regulate gene expression, it is 

hypothesized in the present study that specific epigenetic marks associate with 

changes in Ahr mRNA expression during liver development in mice.   

Mammals have highly regulated systems to maintain nutrient homeostasis 

although they have intermittent access to food.  Liver is an essential organ for 

nutrient homeostasis including lipid and glucose biosynthesis and metabolism.  

Postnatal liver development is therefore critical for newborns to maintain 

sufficient nutrient and energy for survival and further development.  Peroxisome 

proliferator-activated receptor  (PPAR, NR1C1) and peroxisome proliferator-

activated receptor γ coactivator 1 (PGC-1) are two important metabolic 

regulators in liver for nutrient homeostasis.  PPAR is an essential nuclear 

receptor that regulates lipid metabolism.  PPAR was first identified by Issemann 

and Green in 1990, and was named “PPAR” because its activation increases 

hepatic peroxisome volume and density, or peroxisome proliferation.  PPAR-

null mice are resistant to peroxisome proliferation in response to administration of 

PPAR ligands (Lee et al., 1995).   

 

     PPAR is abundantly expressed in liver where it regulates fatty-acid 

catabolism, as well as a few other organs including heart, muscle, and kidney.  
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Upon activation, PPAR hetero-dimerizes with the retinoid X receptor (RXR), and 

binds to the response elements of a large battery of target genes involved in lipid 

homeostasis.  For example, PPAR stimulates peroxisomal -oxidation of fatty 

acids to produce energy, shortens long-chain fatty acids and thus prevents lipid 

accumulation and toxicity, up-regulates fatty acid transport protein and long-chain 

acyl-CoA synthetase genes in liver, induces the expression of mitochondrial 

HMG-CoA synthetase to form ketone bodies, and increases apolipoproteins 

apoA-I and apoA-II and decreases apoC-III (Li and Glass, 2004).  Consequently, 

PPAR activators increase HDL and decrease triglyceride levels.  PPAR also 

regulates cholesterol homeostasis in macrophages, for example, PPAR 

activation can lead to the induction of LXR expression (Chinetti et al., 2001).  

PPAR can also inhibit esterification and increase the efflux of free cholesterol in 

human macrophages (Chinetti et al., 2000; Chinetti et al., 2003).  The 

endogenous ligands for PPAR are fatty acids that bind PPAR with relatively 

low affinities, whereas exogenous PPAR ligands include fibrates, like 

gemfibrozil, that are used to treat hypertriglyceridemia in patients, as well as a 

few potent agonists used in the laboratory for non-human studies (GW7647, Wy-

14643).  

 

     Whereas PPAR is generally considered a lipid sensor, PGC-1 is a critical 

transcriptional coactivator in liver to promote gluconeogenesis (Yoon et al., 2001).   

PGC-1 was first identified in brown-adipose tissue as a key regulator of 

adipocyte differentiation (Puigserver et al., 1998), and was later found to be is a 
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versatile metabolic regulator for adaptive thermogenesis, mitochondrial 

biogenesis, and fuel homeostasis (Puigserver and Spiegelman, 2003) in various 

organs.  Although the basal levels of PGC-1 is low in liver, which is the major 

producer of glucose, the hepatic expression of PGC-1 is increased markedly by 

fasting (Yoon et al., 2001) and in type I diabetes (Puigserver and Spiegelman, 

2003).  It has been shown that PGC-1 activates glucose biosynthesis by 

inducing all the three key genes of gluconeogensis in primary hepatocytes, 

namely phosphoenol-pyruvate carboxykinase (PEPCK), fructose 1,6-

bisphosphatase, and glucose 6-phosphatase (Yoon et al., 2001).  PGC-1 

stimulates a 3-fold increase in glucose secretion by hepatocytes when provided 

with gluconeogenic precursors (Puigserver and Spiegelman, 2003).  In addition 

to promoting glucose biosynsthesis, PGC-1 also cooperates with PPAR in  the 

transcriptional control of genes encoding mitochondrial fatty acid oxidation 

enzymes (Vega et al., 2000).  As a coactivator for transcription, PGC-1 exerts 

its function by direct interaction with transcription factors after recruited to specific 

sequences in gene promoters, and it has been shown that PGC-1 can recruit 

proteins that contain histone acetyl-transferase activities, and consequently 

unwind the chromatin to promote gene transcription (Puigserver et al., 1999).   

 

     Accumulating evidence during recent years suggests that PPAR and PGC-

1 may be important during development, as they may mediate adaptations to 

changes in nutrient supply.  It has been demonstrated that PPAR-null mice 

have severe fatty infiltration and elevated triglycerides in liver under fasting 
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conditions (Lee et al., 2004a).  In humans, a genetic defect in PGC-1 signaling 

results in a defect in hepatic energy metabolism, and death usually occurs 

between 6 months and 12 years of age (Cooper et al., 2006).  In mice, PGC-1-

genetic depletion results in fasting hypoglycemia in response to impaired 

gluconeogenic gene expression and hepatic glucose production (Lin et al., 2004; 

Leone et al., 2005).   

 

     It has become increasingly evident that gene regulation during development is 

under stringent epigenetic control (Kiefer, 2007).  Current studies on epigenetic 

modifications focus on DNA methylation and histone modifications.  In general, 

alterations in DNA methylation status and chromatin environment are the ultimate 

regulatory mechanisms of gene transcription.  DNA methylation is a covalent 

modification that results in stable silencing of genes, either by interfering directly 

with transcription factor binding to response element of target genes, or by 

recruiting corepressor complexes and reinforcing gene silencing.  Histone H3 

lysine-4 di-methylation (H3K4Me2) is related to initiation of gene transcription, 

evidenced by the presence of H3K4Me2 in promoters and transcribed regions of 

many active genes; whereas H3 lysine-27 tri-methylation (H3K27Me3) is 

associated with suppression of gene transcription.  H3 lysine-27 tri-methylated 

histone is a target for the chromodomain protein Polycomb that silences genes 

by yet unknown mechanisms (Kiefer, 2007).  Among the various modifications of 

histones, namely, methylation, acetylation, ubiquitination, phosphorylation, poly-

ADP-ribosylation, and sumoylation, histone methylations are more stable and the 
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enzymes that catalyze the histone methylation are implicated in playing essential 

roles during development (Barski et al., 2007).  Therefore, methylations were 

selected in the present study over other types of histone modifications.  

 

     Little is known of the expression of PPAR and PGC-1 in mice during liver 

development, nor the epigenetic mechanism of their transcriptional activation 

during development.  Therefore, the purpose of the present study is to reveal the 

ontogeny of hepatic PPAR and PGC- mRNA expression in mice, and 

determine its correlation with changes in chromatin epigenetic signatures (DNA 

and histone methylations) during development.   
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RESULTS 

Ahr expression during mouse liver development.  The ontogenic expression 

of mouse liver Ahr mRNA is shown in Figure 8.1A.  Ahr mRNA expression was 

low before birth, increased after birth (216% of prenatal levels at day 1, and 

162% at day 5 of age), and peaked at 45 days of age (293%).  Compared to 

levels at day 45 of age, Ahr mRNA expression was significantly lower at day -2 

and 5.  The Ahr mRNA expression at 1 day of age also appeared lower than 

adult levels, although the difference was not statistically significant.  

Corresponding to an increase in the Ahr mRNA, the protein expression of Ahr 

also increased during postnatal liver development (Figure 8.1B).   The Ahr 

protein in adult lungs were stained as a positive control, and there was no Ahr 

protein detected in livers of Ahr-null mice (negative control).   

 

Methylation of the Ahr gene during liver development.  DNA methylation is 

generally considered a mechanism for gene suppression, and it usually occurs in 

a GC-rich region called the CpG island.  The Ahr gene is approximately 36.9kb 

long on chromosome 12.  Within 10kb upstream and 1kb downstream of the Ahr 

gene promoter region, in silico analysis identified one CpG island slightly 

upstream of the TSS site, and this CpG island is 1635bp in length ([C+G] / total 

bases = 57.68%).  However, despite the presence of a GC-rich region, DNA-

methylation signal enrichment within the CpG island did not reach the threshold 

value of 3.0-fold for positive DNA methylation, and there was also no enrichment 

in DNA methylation throughout the Ahr gene locus (Figure 8.2, upper panel).  In 
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Figure 8.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.1A.  Ontogenic expression of Ahr mRNA in mouse liver.  Ahr mRNA 
ontogenic expression was determined by bDNA assay as described in 
MATERIALS AND METHODS (n=5).  Data were expressed as RLU / 10g total RNA.  
Asterisks (*) indicate statistical significance compared to day 45 levels (p<0.05, 
one way ANOVA followed by Duncan’s multiple range post hoc test).  B. 
Ontogenic expression of Ahr protein in liver during development.  Adult Ahr+/+ 
lung: positive control; Adult Ahr-/- liver: negative control.  
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Figure 8.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.2.  DNA methylation status of Ahr gene during mouse liver development.  
Upper panel:  DNA methylation fold changes at the Ahr gene locus at day -2, 1, 5, 
and 45 of age (equal amounts of pooled samples from n=5 at each age).  Solid 
lines through the signal enrichment peaks indicate the threshold value (3.0) for 
positive DNA methylation.  Lower panel:  Average peak values of DNA methylation 
at day -2, 1, 5, and 45 of age.  The dashed line indicates the threshold value (3.0) 
for enriched intervals. 
 

TSS

F
o

ld
 C

h
an

g
es

 o
f 

D
N

A
M

e

Threshold value: 3.0

Ahr

CpG
island

F
o

ld
 C

h
an

g
es

 o
f 

D
N

A
M

e



 226

addition, there was no DNA methylation enrichment upstream of the Ahr gene 

start site or downstream of the end of the Ahr gene (detection limit: 10kb up and 

down, data not shown).  The fold changes were all below the threshold of 3-fold 

(day -2, 1.12-fold; day 1, 1.27-fold; day 5, 1.28-fold; and day 45, 1.14-fold).  In 

summary, Ahr DNA methylation signals were consistently low in the developing 

mouse liver, and therefore do not appear to mediate the changes in the 

ontogenic expression of Ahr mRNA.  

 

Di-methylation at lysine-4 of histone H3 (H3K4Me2) of the Ahr gene during 

liver development.  Histone H3K4 di-methylation generally associates with gene 

activation. There was no H3K4Me2 enrichment upstream of the Ahr gene start 

site or downstream of the Ahr gene locus (detection limit: 10kb up and down, 

data not shown).  The fold change of H3K4Me2 was lower than the 4.0 threshold 

value at day -2 of age with no positive H3K4Me2 regions of the Ahr gene locus 

(Figure 8.3, upper panel) (average peak value at day -2: 2.3-fold, Figure 8.3, 

lower panel).  At 1 day of age, there was an increase in the fold change of 

H3K4Me2 of the Ahr gene, with one interval identified in the gene (peak value: 

6.03-fold), and it is located 1350bp downstream of the promoter region (Figure 

8.3, upper panel), although the overall average fold changes still did not reach 

the 4.0 threshold (3.3-fold, Figure 8.3, lower panel).  At 5 days of age, there was 

another positive H3K4Me2 region identified in the gene, and it is 1405bp 

downstream of the promoter region (peak value: 6.02-fold, Figure 8.3, upper 

panel), but still, the overall average fold change was below the threshold (3.7-fold,  



 227

Figure 8.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3.  Di-methylation of histone H3 at lysine-4 (H3K4Me2) at the Ahr gene locus 
during mouse liver development.  Upper panel: histone H3K4Me2 fold changes at the 
Ahr gene locus at day -2, 1, 5, and 45 of age (equal amount of pooled samples from 
n=5 at each age).  Solid lines through the signal enrichment peaks indicate the 
threshold value (4.0) for enriched intervals.  Bars under the peaks of each age indicate 
the existence and length of active regions for H3K4Me2.  Asterisks (*) indicate the 
peak center.  Lower panel:  Average peak values of H3K4Me2 at day -2, 1, 5, and 45 of 
age. The dashed line indicates the threshold value (4.0) for enriched intervals. 
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Figure 8.3 lower panel).  At 45 days of age, there was a strong enrichment of 

histone H3K4 di-methylation that exceeded the threshold, with four active regions 

in the Ahr gene locus, at 1522bp (8.46-fold), 3271bp (5.33-fold), 5374bp (6.21-

fold), and 32.85kb (5.86-fold) downstream of from the TSS, respectively (Figure 

8.3, upper panel), and the overall average fold change was as high as 6.5-fold 

(Figure 8.3, lower panel).  In summary, there was an enrichment in the histone 

H3K4 di-methylation of the Ahr gene locus from prenatal to the young adult 

period in mouse liver, and the value in young adults was approximately 280% of 

the prenatal value.   

 

Tri-methylation at lysine-27 of histone 3 (H3K27Me3) at the Ahr gene in liver 

during development.  Histone H3K27 tri-methylation generally correlates with 

gene suppression.  There was no H3K27Me3 enrichment upstream of the Ahr 

gene start site or downstream of the end of the Ahr gene (detection limit: 10kb up 

and down, data not shown).  As shown in the upper panel, the H3K4Me3 

average values for the Ahr gene locus gradually decreased during development, 

however, all values were  below the 4.0-fold at any age examined (-2, 1, 5, and 

45 days of age).  The average fold changes of H3K27Me3 of the Ahr gene locus 

were computed and shown in the lower panel of Figure 8.4.  The histone H3K27 

tri-methylation values for Ahr were approximately 1.23-fold at day -2 of age, 

followed by 1.08-fold at day 1, 0.99-fold at day 5, and 0.87-fold at day 45.  In 

summary, the histone H3K27 tri-methylation signals of Ahr gradually decreased  
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Figure 8.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.4.  Tri-methylation of histone H3 at lysine-27 (H3K27Me3) at the Ahr gene 
locus during mouse liver development.  Upper panel: histone H3K27Me3 fold changes 
at the Ahr gene locus at day -2, 1, 5, and 45 of age (equal amount of pooled samples 
from n=5 at each age).  Solid lines through the signal enrichment peaks indicate the 
threshold value (4.0) for enriched intervals.  Lower panel: Average peak values of 
H3K27Me3 at the Ahr gene locus at day -2, 1, 5, and day 45 of age. The dashed line 
indicates the threshold value (4.0) for enriched intervals. 
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and were lower than threshold throughout liver development, and provide a 

permissive environment for Ahr gene activation.     

 

Regression analysis of Ahr mRNA expression and epigenetic marks.  

Regression analysis demonstrated no correlation between DNA methylation of 

the Ahr gene locus and Ahr mRNA (R = 0.06), whereas histone di-methylation 

and histone tri-methylation each exhibited a strong correlation with Ahr mRNA 

expression (R = 0.91 and -0.86, respectively).  However, histone di-methylation 

of the Ahr gene locus was the only methylation profile to exceed the threshold 

value (4.0-fold) (Figure 8.5).  In summary, among the three epigenetic marks, 

H3K4Me2 is the only enriched mark above the threshold that strongly correlated 

with Ahr mRNA expression during mouse liver development.  
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Figure 8.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.5.  Regression analysis of the correlation (R) between Ahr mRNA and the fold 
changes of the three epigenetic marks (DNA and histone di- and tri-methylations) at 
day -2, 1, 5, and 45 of age during liver development in mice.   
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PPAR and PGC-1 mRNA expression during mouse liver development.  

The ontogeny of mouse liver PPAR and PGC-1 mRNA levels was determined 

by Multiplex suspension array and is shown in Figure 8.6.  Low mRNA 

expression of PPAR was observed two days before birth, followed by a 

postnatal increase, which was 3.4-fold higher than prenatal levels at day 1, 2.5-

fold higher at day 5, and 3.2-fold higher at day 45 of age (Figure 8.6, upper 

panel).  There was also a postnatal increase in the mRNA expression of PGC-1, 

which was 7.2-fold higher than prenatal levels at day 1 (peak value), 3.2-fold 

higher at day 5, and 2.5-fold higher at day 45 of age.  In summary, there was a 

postnatal increase in the mRNA expression of both PPAR and PGC-1, with 

peak levels observed at day 1 of age.   

 

     To determine the epigenetic mechanisms for the postnatal mRNA enrichment 

of PPAR and PGC-1, three epigenetic marks, namely DNA methylation 

(DNAMe), histone H3K4 di-methylation (H3K4Me2), and histone H3K27 tri-

methylation (H3K27Me3) were quantified in both PPAR and PGC-1 gene loci, 

as shown in the following experiments.  Overall, ChIP-on-chip analysis identified 

ten active regions within ±10kb of PPAR gene locus, and two active regions 

within ±10kb of PGC-1 gene locus.  These active regions have positive 

enrichment of at least one epigenetic mark during liver development, and the 

details will be described in the following sections. 
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Figure 8.6.  Ontogenic expression of PPAR and PGC-1 mRNA in mouse 
liver (equal weight of pooled samples from n=5 at each age).  The mRNA 
levels from different ages are quantified by the Multiplex suspension array, 
and data are expressed at fluorescent signal intensities of PPAR mRNA 
normalized to Gapdh. 
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DNA methylation (DNAMe) of the PPAR gene during liver development.  

DNA methylation is generally considered a mechanism for gene suppression and 

it usually occurs in GC-rich regions (defined by composition of bases: [C+G] / 

total bases > 50%) near the promoter.  The signal intensities of DNA methylation 

of the PPAR gene in livers of mice at 4 different ages were determined by ChIP-

on-chip analysis.  As shown in the upper panel of Figure 8.7, there is a CpG 

island spanning from 1kb upstream to 2kb downstream from the transcription 

start site of the mouse PPAR gene.  However, DNA-methylation signal intensity 

of the PPAR locus did not reach the threshold value of 3.0 for positive DNA 

methylation at this region, or at any other active regions (Figure 8.7 upper panel).  

The average peak values of DNAMe were calculated among all the 10 active 

regions of the PPAR gene locus (approximately 1.5-fold from day -2 to 45 days 

of age) (Figure 8.7 bottom panel).  This value is less than the threshold value of 

3.0.  In summary, PPAR DNA methylation signals were consistently low in the 

developing mouse liver, and therefore do not appear to mediate changes in 

PPAR mRNA ontogenic expression.  

 

Di-methylation at lysine-4 of histone H3 (H3K4Me2) of the PPAR gene 

during liver development.  Histone H3K4 di-methylation is generally considered 

a mechanism of gene activation, because it “relaxes” the chromosome and thus 

favors the recruitment of transcription machinery to the DNA.  The H3K4Me2 
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Figure 8.7.  DNA methylation status of PPAR gene during mouse liver development. 
Upper panel:  DNA methylation signal intensity at the PPAR gene locus at day -2, 1, 5, 
and 45 of age (equal weight of pooled samples from n=5 at each age).  The line 
indicates the threshold value (3.0) for positive DNA methylation.  An in silico analysis 
of CpG islands within 10kb upstream plus 5kb downstream of the PPAR promoter 
region was performed using the Methyl Primer Express Software v1.0.  According to 
the parameters set by the software, CpG island is a GC rich region with a minimal 
length of 300bp, and a maximum length of 2kb.  Lower panel:  average peak values of 
DNA methylation at day -2, 1, 5, and day 45 of age, line: 3.0 threshold value.  
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signal intensity around the PPAR gene locus is shown in Figure 8.8.  From day 

-2 to 5 days of age, positive enrichment peaks of H3K4Me2 was identified at 

approximately 75kb downstream of the transcription start site (TSS) of the 

PPAR gene, and were 6.3-fold of input background at day -2, 5.6-fold at day 1, 

and 6.6-fold at day 5 (Figure 8.8 upper panel).  At 45 days of age, all ten active 

regions had positive enrichment of H3K4Me2 within ±10kb of the PPAR gene 

locus (gene length: 67kb), one positive peak was observed 2.1kb upstream of 

TSS (4.9-fold), and 8 peaks were found inside the genes (4.5-fold at 1.4kb, 6.8-

fold at 4.0kb, 9.2-fold at 6.0kb, 5.7-fold at 8.1kb, 6.5-fold at 9.8-kb, 4.9-fold at 

25.9kb, 4.7-fold at 31.6kb, and 6.5-fold at 37.9kb downstream of TSS).  In 

addition, another positive peak was found 75kb downstream of TSS (4.8-fold) 

(Figure 8.8, upper panel).  The overall average signal intensity of H3K4Me2 was 

calculated based on the average peak values of all the active regions.  As shown 

in the bottom panel of Figure 8.8, from day -2 to day 5, although positive 

H3K4Me2 enrichments were identified in the active region 75kb downstream of 

TSS, the overall average signal intensity of H3K4Me2 among all the active 

regions was lower than the 4.0 threshold value.  The overall average peak values 

of H3K4Me2 were approximately 2.4-fold at day -2 of age, followed by 3.2-fold at 

day 1 (133% of day -2), 3.4-fold at day 5 (142% of day -2), and 5.9-fold at day 45, 

and the day 45 average peak values exceed the 4.0 threshold value (246% of 

day -2).  In summary, there was an increase in H3K4Me2 from prenatal to young 

adult period in mouse liver, with strong signal enrichment occurring in the young 

adults.   
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Figure 8.8.  Di-methylation of histone H3 at lysine-4 (H3K4Me2) of PPAR gene 
locus during mouse liver development.  Upper panel: histone H3K4Me2 signal 
intensity at the PPAR gene locus at day -2, 1, 5, and 45 of age (equal weight of 
pooled samples from n=5 at each age).  The line indicates the threshold value (4.0) 
for enriched intervals.  Lower panel:  average peak values of H3K4Me2 at day -2, 1, 
5, and day 45 of age, line, 4.0 threshold value.   
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Tri-methylation at lysine-27 of histone 3 (H3K27Me3) of the PPAR gene in 

liver during development.  Histone H3K27 tri-methylation generally correlates 

with gene suppression.  At day -2 of age, an age with low PPAR mRNA 

expression, there was one active region with positive enrichment of H3K27Me3, 

that is 1.8kb upstream of the TSS of the PPAR gene (average peak value: 5.3-

fold of input background values, threshold: 4.0-fold of input background values) 

(Figure 8.9, upper panel).  At 1 day of age, the H3K27Me3 peak value at this 

region decreased markedly to 4.2-fold.  There was no other positive enrichment 

of H3K27Me3 in any active regions during development.  The average peak 

values of H3K27Me3 at this active region are shown in the lower panel of Figure 

8.9, that was 5.3-fold at day -2 of age, followed by 4.2-fold at day 1 (79% of day -

2), 3.1-fold at day 5 (58% of day -2), and 1.2-fold at day 45 (23% of day -2).  In 

summary, the overall histone H3K27 tri-methylation signals of PPAR were 

below threshold values at all ages, although one positive peak was identified at 2 

days before birth. 

 

     In summary, whereas DNA methylation does not appear to play a major role 

in regulating PPAR gene expression, the strong postnatal increase of PPAR 

mRNA is likely a result of the distinct epigenetic signature of histone methylation 

profiles, characterized by a postnatal increase in the gene activation signal 

H3K4Me2, and a postnatal decrease in the gene suppression signal H3K27Me3.      
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Figure 8.9.  Tri-methylation of histone H3 at lysine-27 (H3K27Me3) of PPAR gene 
locus during mouse liver development.  Upper panel: histone H3K27Me3 signal 
intensity at the PPAR gene locus at day -2, 1, 5, and 45 of age (equal weight of 
pooled samples from n=5 at each age).  The line indicates the threshold value (4.0) 
for enriched intervals.  Lower panel: average peak values of H3K27Me3 at day -2, 1, 
5, and day 45 of age, line, 4.0 threshold value.  

Figure 8.9 

0

1

2

3

4

5

6

-2 1 5 45

Age (Days)

H
3K

27
M

e3
 A

ve
ra

g
e 

P
ea

k 
In

te
n

si
ty

 

PPAR

Histone H3K27 Tri-methylation

Line: threshold 
value (4.0) 

TSS

Day -2

Day 5

Day 45

Day 1

H
3K

27
M

e3
 F

o
ld

 E
n

ri
ch

m
en

t

Chr 15

*5.3

*4.2



 240

DNA methylation of the PGC-1 gene during liver development.  The signal 

intensities of DNA methylation of the PGC-1 gene in livers of mice at 4 different 

ages were determined by ChIP-on-chip analysis.  As shown in the upper panel of 

Figure 8.10, there is a CpG island spanning from 14.65 to 15.28kb downstream 

of the transcription start site of the mouse PGC-1 gene (CpG island length: 

608bp; gene length: 96.3kb).  However, the DNA-methylation signal intensity at 

the CpG island of the PGC-1 locus did not reach the 3.0 threshold value at any 

age.  Interestingly, at day 45 of age, there was one active region for DNA 

methylation inside the PGC-1 gene (58.5kb downstream of the TSS), where 

there was no CpG island (Figure 8.10 upper panel).  There was no other 

enrichment in DNA methylation at any other ages.  The average peak values at 

the active region for DNA methylation (58.5kb downstream of TSS) were 

calculated as shown in the lower panel of Figure 8.10, that were 1.9-fold at day -

2, 2.4 at day 1, 2.2 at day 5, and 3.8-fold at day 45 of age.  In summary, PGC-1 

DNA methylation signals were low in perinatal period (from day -2 to day 5), but 

increased and enriched significantly in adults.   

 

Di-methylation at lysine-4 of histone H3 (H3K4Me2) of the PGC-1 gene 

during liver development.  The signatures of the gene activation mark 

H3K4Me2 around PGC-1 gene locus were visualized from day -2 to day 45 of 

age (Figure 8.11, upper panel).  H3K4Me2 signal intensities were low before birth, 

but increased right after birth with a positive peak at day 1 of age (4.5-fold, 2kb 
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Figure 8.10.  DNA methylation status of PGC-1 gene during mouse liver development. 
Upper panel:  DNA methylation signal intensity at the PGC-1 gene locus at day -2, 1, 5, 
and 45 of age (equal weight of pooled samples from n=5 at each age).  The line indicates 
the threshold value (3.0) for positive DNA methylation.  An in silico analysis of CpG 
islands within 10kb upstream plus 5kb downstream of the PGC-1 promoter region was 
performed using the Methyl Primer Express Software v1.0.  According to the parameters 
set by the software, CpG island is a GC rich region with a minimal length of 300bp, and a 
maximum length of 2kb.  Lower panel:  average peak values of DNA methylation at day -2, 
1, 5, and day 45 of age, line: 3.0 threshold value.  
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downstream of TSS).  The signal then moderately decreased at day 5 of age, but 

then peaked at day 45 of age (5.5-fold).  The average values for H3K27Me3 at 

this active region were calculated as shown in the lower panel of Figure 8.11, 

that were 2.9-fold at day -2, 4.5-fold at day 1, 3.8-fold at day 5, and 5.5-fold at 

day 45 of age.  In summary, H3K4Me2 was enriched in 1 and 45 days of age.   

 

Tri-methylation at lysine-27 of histone 3 (H3K27Me3) of the PGC-1 gene in 

liver during development.  As shown in the upper panel of Figure 8.12, the 

average peak values of the suppressive mark H3K27Me3 were below the 4.0-

fold threshold in all active regions and at all ages, and were 1.7-fold at day -2, 

1.5-fold at day 1, 1.1-fold at day 5, and 0.8-fold at day 45.  Therefore, H3K27Me3 

does not appear to mediate changes in PPAR mRNA ontogenic expression.  

 

     In summary, the postnatal increase in PGC-1 mRNA associates with a 

postnatal increase in the gene activation signal H3K4Me2.  The peak in PGC-1 

mRNA expression at day 1 of age is likely a result of the enrichment of H3K4Me2 

signal and the absence of both gene suppression signals (DNAMe and 

H3K27Me3).  At day 45 of age, in addition to the presence of H3K4Me2, there 

was also a strong enrichment in DNAMe for gene suppression in the PGC-1 

gene, and this might contribute to the lower mRNA levels in adult than in 

newborns.  
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Figure 8.11.  Di-methylation of histone H3 at lysine-4 (H3K4Me2) of PGC-1 gene locus 
during mouse liver development.  Upper panel: histone H3K4Me2 signal intensity at the 
PGC-1 gene locus at day -2, 1, 5, and 45 of age (equal weight of pooled samples from n=5 
at each age).  The line indicates the threshold value (4.0) for enriched intervals.  Lower 
panel:  average peak values of H3K4Me2 at day -2, 1, 5, and day 45 of age, line, 4.0 
threshold value.   
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Figure 8.12.  Tri-methylation of histone H3 at lysine-27 (H3K27Me3) of PGC-1 gene locus 
during mouse liver development.  Upper panel: histone H3K27Me3 signal intensity at the 
PGC-1 gene locus at day -2, 1, 5, and 45 of age (equal weight of pooled samples from n=5 
at each age).  The line indicates the threshold value (4.0) for enriched intervals.  Lower 
panel: average peak values of H3K27Me3 at day -2, 1, 5, and day 45 of age, line, 4.0 
threshold value.  
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Serum triglyceride and glucose levels during development.  A hallmark of 

activation of the PPAR pathway is a decrease in serum triglyceride 

concentrations.  Serum triglyceride levels were low right after birth, followed by a 

sharp increase at day 1 and 5 when pups are feeding on milk from their mothers 

(about 2.3-fold of prenatal level at both neonatal ages) (Figure 8.13, upper panel).   

The transient peak of serum triglyceride levels returned to adult levels by 10 days 

of age, and the plasma triglyceride concentrations were relatively constant 

thereafter.  Activation of the PGC-1-signaling pathway leads to increased 

gluconeognesis and more secretion of glucose from the liver into serum.  Serum 

glucose levels were also low right after birth and at day 1 of age, followed by a 

marked increase at day 5 of age (3-fold of prenatal level), and remained high 

thereafter (Figure 8.13, bottom panel).  The postnatal decrease in serum 

triglyceride and increase in serum glucose together indicate that in addition to the 

up-regulation of mRNA expression, the PPAR and PGC-1 pathways were also 

functionally activated.   
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Figure 8.1.13.  Serum triglyceride and glucose levels during mouse development.  
Data are expressed at mg of triglyceride or glucose per deci-liter serum at 
different ages.  Asterisks (*) indicate significant differences from adult levels 
(p<0.05).   
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DISCUSSION 
 
    The first part of the present study revealed a postnatal increase in the Ahr 

mRNA expression in mouse liver during development, and demonstrated the role 

of histone H3K4 di-methylation in triggering the postnatal increase of Ahr mRNA 

during mouse liver development.   

 

     The methylation of DNA at cytosine residues is a well-established epigenetic 

mechanism that regulates tissue-specific gene expression.  DNA methylation 

usually silences gene transcription, by preventing the recruitment of the 

transcription complex, or by indirect mechanisms involving changes in chromatin 

structure (Jaenisch and Bird, 2003).  It has been suggested that the interplay 

between methylation and demethylation dictates the distinct DNA methylation 

patterns of genes and consequently influences their transcriptional activity.  Much 

attention has been paid to the association between DNA methylation patterns 

and Ahr target genes.  For example, mouse Cyp1a2 gene expression coincides 

well with the methylation status of DNA during liver development (Jin et al., 2004).  

However, little is known of the role of DNA methylation in the ontogenic 

expression of mouse Ahr in liver.  The present study is the first to demonstrate 

that despite the presence of a CpG island, DNA methylation is consistently low at 

the Ahr gene locus from 2 days before birth to 45 days of age, and therefore 

does not appear to play a significant role in regulating Ahr mRNA expression in 

liver development.   
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     Recently, a large body of data has been generated for histone marks on the 

genomes of various organisms, primarily focusing on yeast (Hawkins and Ren, 

2006).  A current area of research is to understand how these histone 

modifications correlate and/or regulate transcriptional activity.  A remarkable 

pattern has emerged for histone H3K4 di-methylation of actively transcribed 

genes, and H3K27 tri-methylation of silenced genes.  Among the various 

modifications, histone methylations are more stable and the enzymes that 

catalyze the histone methylation are implicated in playing essential roles in the 

function of the human genome (Barski et al., 2007).  High-resolution profiling of 

histone methylations in the entire human genome has demonstrated that active 

genes are characterized by high levels of H3K4Me2, and in contrast, inactive 

genes are characterized by low or negligible levels of H3K4 methylation of the 

promoter regions, and high levels of H3K27 tri-methylations (Barski et al., 2007).  

Therefore, histone methylations were selected in the present study rather than 

other types of histone modifications.  It has been shown that the H3K4Me2 

signals are usually localized to the vicinity of transcription start site, providing a 

permissive chromatin environment to trigger gene transcription (Barski et al., 

2007).  In the present study, the strong postnatal enrichment of H3K4Me2 in the 

close vicinity of the Ahr gene promoter indicates histone H3K4 di-methylation is 

likely a mechanism to trigger the increase in Ahr gene activation during liver 

development in mice.  In contrast, although the gene suppression mark 

H3K27Me3 gradually decreases during development around the Ahr gene locus, 

corresponding to increased Ahr mRNA, the signals of H3K27Me3 are well below 
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threshold at all ages.  Therefore, it is difficult to ascertain the importance of the 

histone tri-methylation profile with regard to Ahr mRNA expression despite the 

strong correlation between histone tri-methylation and hepatic Ahr mRNA 

expression.    

 

     Interestingly, it appears that Ahr target genes also undergo regulation by 

histone modifications.  For example, it has been shown in the mouse Hepa-1 cell 

line that the chromatin structure plays an essential role in Cyp1a1 gene 

transcription.  Specifically, Cyp1a1 gene induction by the Ahr/ARNT complex is 

strongly associated with modifications of specific chromatin marks of Cyp1a1, 

including hyperacetylation of histone H3K14 and H4K16, tri-methylation of 

histone H3K4, and phosphorylation of H3S10 (Schnekenburger et al., 2007).  

Taken together, analyzing distinct histone epigenetic signatures in Ahr and its 

target genes might become an essential approach in future research on Ahr-

mediated drug metabolism and disposition.  However, lack of specific inhibitors 

for histone modification enzymes makes it more challenging to establish a 

causative role of histone modifications in regulating Ahr gene transcription. 

Nevertheless, the strong association between the increase in Ahr gene 

expression and H3K4 di-methylation enrichment provides a direction for future 

studies that may explore specific upstream factors regulating Ahr gene 

expression during development.   
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     In summary, the lack of all epigenetic marks, as observed in the Ahr gene 

locus in fetal liver, associate with a low basal expression of Ahr mRNA.  In 

contrast, high levels of H3K4Me2 in the absence of suppressor signals of 

H3K27Me3 and DNA methylation triggers the increase in Ahr expression in adult 

mouse liver.  Moreover, the increase in Ahr mRNA correlates with the dynamic 

enrichment of H3K4Me2 during liver development.  Epigenetic regulation of Ahr 

gene transcription by histone H3K4 di-methylation is a strong candidate to be 

considered in the developmental programming of Ahr expression in mouse liver.  

Future studies will determine the causative mechanisms of the ontogeny of Ahr 

by altering the epigenetic signatures during liver development.   

     The second part of the study is among the first to reveal the postnatal 

increase of the nutrient sensors PPAR and PGC-1 in mouse liver during 

development, and establishes the correlations between their postnatal increases 

with distinct epigenetic signatures in liver development.  The postnatal increase 

in the permissive mark H3K4Me2 and decrease in the suppressive mark 

H3K27Me3 together provide a permissive environment for the postnatal increase 

of PPAR mRNA, whereas enrichment of H3K4Me2 correlates with the neonatal 

surge of PGC-1, and DNAMe enrichment seems to have inhibitory effects on 

the PGC-1 mRNA expression.  The postnatal decrease in serum triglycerides 

indicates that in addition to the up-regulation of mRNA expression, the PPAR 

signaling pathway was also functionally activated.  In addition, although other 

pathways might also participate in the regulation of glucose homeostasis during 

liver maturation, the postnatal increase in serum glucose levels appears to be at 
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least in part due to the activation of the PGC-1 pathway, which consequently 

provides sufficient energy for the postnatal development of various organs.        

   

     It is well-known that the composition of the human diet in western society has 

changed profoundly during the last century, characterized by an increase in fat 

and sugar consumption (usually coupled with decreased physical activity).  The 

excessive intake of fat and sugar results in a combination of medical disorders 

termed the “metabolic syndrome”, characterized by increased risk of 

cardiovascular diseases and diabetes.  The metabolic syndrome is not just a 

“privilege” for adults, in that the prevalence and magnitude of childhood obesity 

have dramatically increased recently, and the prevalence of metabolic syndrome 

is high among obese children and adolescents, and this prevalence increases 

with worsening obesity (Weiss et al., 2004).  Therefore, it is crucially important to 

understand the mechanism for the ontogeny of critical “nutrient sensors” (PPAR 

and PGC-1) in children, so as to identify novel targets that could potentially be 

used in treating childhood metabolic syndrome clinically.  The present study 

provides the first evidence that the mRNA expression of PPAR and PGC-1 are 

associated by distinct epigenetic signatures during liver development.  In addition, 

the ontogeny of serum triglyceride and glucose levels indicate that both PPAR 

and PGC-1 signaling pathways were functionally activated, suggesting also a 

maturation of the expression of the two proteins in postnatal liver development, in 

addition to an increase in mRNA levels.  
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     It has been demonstrated in rat liver by real-time PCR that PPAR mRNA is 

very low during the embryonic period, starts to increase by the end of gestation, 

and peaks close to adulthood (Balasubramaniyan et al., 2005).  The present data 

in mice were consistent with the ontogeny data in rats, and the similarities in 

PPAR mRNA expression between the two species probably reflect the 

similarities in their biological cycles for nutrient acquisition.  The ontogeny of 

PGC-1 in mouse liver has been shown by northern blot to be high during both 

the prenatal and neonatal period, but decreased in adults (Yubero et al., 2004).  

In contrast, the present study indicates that PGC-1 mRNA was low prenatally, 

peaked in newborns, and then decreased but was still above prenatal levels in 

adults.  The different observations are likely a result of the method for mRNA 

quantification (northern blot vs. multiplex suspension bead array), or the mouse 

strains (Swiss vs. C57BL/6).  It has been shown that the PGC-1 target genes 

for gluconeogenesis, namely phosphoenol-pyruvate carboxykinase (PEPCK), 

fructose 1,6-bisphosphatase, and glucose 6-phosphatase, were all up-regulated 

in neonatal mouse liver (Yubero et al., 2004), and the present study also 

revealed an increase in serum glucose levels after birth.  Therefore, it seems that 

PGC-1 is higher in livers of newborns than fetus.  

 

     PPAR plays important roles during postnatal liver development.  Although 

PPAR-null mice are viable, PPAR deficiency in feed-deprived mice leads to 

enhanced accumulation of hepatic triglyceride levels, as well as dysregulation of 

hepatic lipid and carbohydrate metabolism, emphasizing the importance of 
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precise control role of PPAR in regulating lipid oxidation for hepatic fuel 

homeostasis (Sugden et al., 2002).  In addition to its effect on lipid homeostasis, 

PPAR also exerts antidiabetic effects by increasing insulin sensitivity, and 

mediates anti-inflammatory responses in endothelial cells, smooth muscle cells, 

and macrophages.  In high fat diet-fed rats and lipoatrophic mice, activation of 

PPAR led to a significant improvement in insulin sensitivity (Ye et al., 2001; 

Chou et al., 2002).   

 

     The significance of PPAR in developmental programming for nutrient 

homeostasis has become more evident recently, and several studies have 

determined the regulation of PPAR during liver development.  For example, 

maternal diets can influence PPAR expression in offspring, evidenced by the 

fact that maternal dietary protein restriction in rats results in decreased PPAR 

gene methylation and increased PPAR mRNA in rat offspring.  This has been 

suggested to contribute to the long-term changes in the stable expression of 

PPAR and its target genes, associated with impaired lipid homeostasis in the 

adult.  In addition, aging decreases hepatic expression of PPAR, and 

decreased PPAR expression associates with decreased response to lipid-

lowering drugs in the aged rats (Sanguino et al., 2005).   

 

     The present study adds to the current knowledge of the regulation of PPAR 

in development, by demonstrating a strong association of the postnatal increase 

in PPAR mRNA expression, with an increase in histone H3K4Me2 and a 
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decrease in histone H3K27Me3.  The methylation of histones at two distinct 

lysine positions provides a permissive chromatin environment for the initiation of 

gene transcription.  The causative mechanisms for the regulation of PPAR 

transcription by histone methylations are currently unknown. 

 

     PGC-1 is a critical metabolic regulator in liver and other organs.  As a 

transcriptional coactivator, PGC-1 interacts with many transcription factors, 

including PPAR, to alter local chromatin structure to initiate gene transcription 

(Rees et al., 2008).  It has been shown that a genetic deficiency in a component 

of PGC-1 in humans results in Leigh syndrome with a defect in hepatic energy 

metabolism, and death occurring between 6 months and 12 years of age (Cooper 

et al., 2006).  In contrast, activation of PGC-1 by resveratrol increases SIRT1 

(silent mating type information regulation 2, homolog 1) and AMPK (AMP-

activated protein kinase) activity, which alleviates alcoholic fatty liver in mice 

(Ajmo et al., 2008).   

     It has been shown that PGC-1 gene expression is induced in livers of fasted 

or diabetic mice, and the increased PGC-1 in turn activates gluconeogenesis, 

as well as induces genes of -oxidation and ketogenesis in hepatocytes (Rhee et 

al., 2003).  The induction of PGC-1 by fasting also results in an increase in 

several basolateral uptake transporters in livers as a compensatory response 

(Dietrich et al., 2007).  During liver development, PGC-1 interacts with HNF6 

and participates in the regulation of time-specific gene expression, including up-

regulating glucose-6-phosphatase, which is a late marker for hepatocyte 
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maturation (Beaudry et al., 2006).  It has been shown that there are close 

interactions between PGC-1 and PPAR for nutrient homeostasis.   

 

     In addition to being a coactivator of PPAR, PGC-1 also up-regulates the 

expression of PPAR mRNA.  PGC-1 and PPAR together induce the 

expression of glycerol kinase, which may promote a futile cycle of triglyceride 

hydrolysis and fatty acid reesterification in human adipocytes (Mazzucotelli et al., 

2007).  In addition, single nucleotide polymorphism of both PPAR and PGC-1 

increase the risk of type II diabetes (Andrulionyte et al., 2007).  Upon interacting 

with various transcription factors, PGC-1 protein alters the chromatin epigenetic 

signatures by recruiting histone acetyl-transferases to the gene promoter region 

and initiate transcription.  However, the epigenetic regulation of the PGC-1 

gene itself is poorly understood.  It has been shown in heart that PGC-1 gene 

expression is down-regulated in mice by histone deacetylase.  The present study 

is among the first to determine the correlations between PGC-1 ontogeny in 

liver with regard to histone H3K4Me2, and DNA methylation patterns.   

 

      It has become increasingly evident that gene regulation during development 

is under stringent epigenetic control (Kiefer, 2007).  Critical epigenetic signatures 

include modifications, such as DNA methylation and histone H3K27 tri-

methylation, which result in gene suppression, as well as histone H3K4 di-

methylation, which elicits gene activation.  Little is known of these epigenetic 

signatures for PPAR expression during development.  The present study is the 
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first to demonstrate that it is the activation of histone H3K4 di-methylation, rather 

than the suppression by DNA and H3K27 tri-methylation, that correlates strongly 

with the dynamic increase of PPAR mRNA expression patterns over time.    

 

     DNA methylation usually occurs in GC-enriched regions, and these regions 

are termed “CpG islands”.  The present study identified one CpG island spanning 

from 1kb upstream to 2kb downstream of the transcription start site of the 

PPAR gene.  It has been shown that unbalanced prenatal nutrition decreases 

PPAR DNA methylation at the CpG island, correlated with an increase in 

PPAR mRNA expression in rat offspring (Lillycrop et al., 2005), as noted in the 

model where restricted-protein diet are given to their mothers during pregnancy.  

However, as shown in the present study during normal development, the 

intensity of the DNA methylation of the entire PPAR gene locus region was 

consistently low or hypomethylated from day -2 to day 45 of age, and the CpG 

island was also not methylated at any selected age using the suggested 

threshold value (3.0-fold of probe intensity) Therefore DNA methylation does not 

seem to be the mechanism for the differences in PPAR mRNA expression with 

age.  In addition, another CpG island was identified 14.65 to 15.28kb 

downstream of the transcription start site of the mouse PGC-1 gene.  

Interestingly, the CpG island was not methylated at any age during liver 

development, in contrast, there was an enrichment in DNA methylation signals in 

a different region within the PGC-1 gene locus, that is not considered a GpG 



 257

island (Figure 8.10, upper panel).  Therefore, DNA methylation does not 

necessarily mean the presence of CpG island. 

 

    High-resolution profiling of histone methylations in the entire human genome 

demonstrates that active genes are characterized by high levels of H3K4Me2, 

and in contrast, inactive genes are characterized by low or negligible levels of 

H3K4 methylation in their promoter regions, and high levels of H3K27 tri-

methylations (Barski et al., 2007).  In the present study, H3K27Me3 signal 

decreased around the PPAR gene locus with age, whereas H3K4Me2 

increased with age. Thus, together the decreased H3K27Me3 and increased 

H3K4Me2 may contribute to the up-regulation of PPAR gene expression in 

postnatal liver development.  It has been shown that H3K4Me2 signal is localized 

more to the vicinity of the transcription start site and in actively-transcribed genes 

(Barski et al., 2007).  In the present study, enrichment of H3K4Me2 signals was 

observed near the TSS region for both PPAR and PGC-1 genes in the adult 

period.  Therefore, the close vicinity of H3K4Me2 to the TSS region indicates that 

histone H3K4 di-methylation is likely a mechanism to trigger the postnatal 

increase in PPAR and PGC-1 gene activation. However, the causative 

mechanisms remain yet to be determined.     

 

     Epigenetic regulation of PPAR and PGC-1 gene transcription by DNA and 

histone methylations provides a strong candidate mechanism for the 
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developmental programming of nutrient homeostasis in postnatal liver 

development.    

 

     Taken together, the present study suggests that epigenetic modifications are 

a probable mechanism facilitating a permissive chromatin state that activates the 

transcription of Ahr, PPAR and PGC-1 during liver development in mice.   
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CHAPTER NINE. GENERAL SUMMARY AND CONCLUSIONS 

     The present dissertation has systemically characterized the ontogenic 

expression signatures and molecular regulatory mechanisms of numerous drug-

processing genes.  Both the nuclear receptor-mediated regulation and epigenetic 

regulation of these genes have been addressed.   

 

     There are profound changes during development in the hepatic expression of 

drug processing genes, and they may have significant impact on the risk of 

adverse drug reactions in children.  Through multi-disciplinary approaches, the 

present study has demonstrated that the hepatic expression of drug-processing 

genes is hierachically regulated by multiple mechanisms.  Bile acids  have 

attracted great interest in recent years due to the discovery of bile acids as 

endogenous ligands for two nuclear receptors, FXR and PXR.  In the immediate 

perinatal period, newborns need to synthesize and secrete bile acids into bile to 

facilitate the absorption of milk.  Consistently, data from my dissertation showed 

that hepatic expression of bile-acid synthetic enzymes and transporters was 

markedly induced right after birth, and the increased expression of bile acid 

transporters appears to be mediated by FXR activation. 

 

     In addition to maturation of the bile acid processing system during postnatal 

liver development, weaning and food intake will result in absorption of an 

increasing amount of xenobiotics.  Increased absorption of xenobiotics requires 

the activation of detoxification systems.  PXR is a classic xenobiotic sensor in the 
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liver.  Because of its large and expandable ligand binding pocket, PXR is able to 

accommodate a large variety of xenobiotics as ligands.  Using the ChIP-Seq 

approach combined with bioinformatics analysis and in vitro validations, I have 

examined direct target genes of PXR in the entire genome in the mouse liver.  I 

have identified a novel DR-(5n+4) periodic DNA-binding motif for the PXR protein.  

This finding has challenged the existing paradigm of our current understandings 

on the consensus sequences that PXR recognizes.   

 

     Briefly, for phase-I metabolic processes, a systematic investigation of the 

ontogeny of novel isoforms of the first 4 Cyp families was performed, using 

messenger RNA assays (high throughput multiplex bDNA assays and RT-qPCR). 

The genetic and epigenetic regulatory mechanisms for the ontogeny of these 

Cyps were determined by the ChIP-Seq and ChIP-on-chip.  All of these Cyp 

mRNAs increased after birth, forming 4 distinct ontogeny patterns identified by 

cluster analysis. Distinct segments of the Cyp isoforms within the same 

chromosomal cluster showed similar ontogenic patterns.  In summary, the 

present study has revealed 4 patterns of the ontogeny of novel Cyps in liver, and 

showed that certain Cyps within a genomic cluster shared similar ontogeny 

patterns, suggesting that the Cyps are regulated by common pathways within the 

clusters in liver development.  The ontogeny of Cyp3a genes seem to be 

regulated by distinct histone methylation patterns (H3K4Me2 and H3K27Me3), 

and positive enrichment of PXR binding was observed at multiple regions within 

the Cyp3a gene locus.  
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     For phase-II metabolism, using the glutathione S-transfereases as an 

example, I have investigated the ontogeny and the regulatory mechanisms of all 

known Gst isoforms during liver development. Similar to the phase-I P450 

enzymes, the Gst isoforms also showed distinct ontogenic expression patterns, 

and genome-wide ChIP-seq revealed direct PXR-binding sites in the Gsta, Gstm, 

Gstt, and Gstp polycistron clusters, as well as in the Mgst1 gene locus. ChIP-on-

chip analysis demonstrated that DNA methylation and histone-H3K27-

trimethylation (H3K27me3), two hallmarks for gene transcriptional suppression, 

were consistently low around the Gstz1 gene locus.  In contrast, enrichment of 

histone-H3K4-dimethylation (H3K4me2), a hallmark for gene transcriptional 

activation, increased at this gene locus from the prenatal to the young adult 

period. 

 

     For transporters, first, the present study has demonstrated that the initiation of 

bile-acid signaling mediated by the nuclear receptor FXR, may be responsible for 

the neonatal upregulation of critical bile-acid and phospholipid transporters in the 

liver.  The expression of the genes in classic pathway of bile-acid biosynthesis 

was increased right after birth, and appears to be responsible for the activation of 

FXR in the neonatal liver. Secondly, the expression of the genes encoding 

xenobiotic transporters tended to be enriched in later developmental ages (after 

adolescent ages), and multiple transporter genes appear to be direct genes 

regulated by PXR, including Oatp1a4 and Mrp3.  In addition, novel PXR-DNA 

binding sites and PXR-DNA binding motifs have been characterized using ChIP-
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Seq and motif analysis, validated by ELISA-based transcription factor binding 

assays.  

 

     Finally, the ontogeny and regulatory mechanisms of the xeno-sensor AhR, the 

lipid sensor PPARα, as well as the glucose sensor PGC-1α, have been 

characterized.  H3K4Me2 seems to be the choice of nature to induce their gene 

expression during postnatal liver maturation.        

 

     In conclusion, through integrating various research models and technologies, 

the present dissertation has examined the expression patterns as well as the 

genetic and epigenetic mechanisms for the regulation of phase-I and –I drug 

metabolizing enzymes as well as transporters during liver development.  Our 

studies have provided novel insights into identifying and further understanding 

the molecular targets for efficacious and safe drug treatments in children.   
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