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ABSTRACT 

 
Depth-sounding radar systems provide the scientific data that are useful in modeling polar ice sheets 

and predicting sea-level rise.  These radars are typically deployed on crewed aircraft; however, crewed 

missions over polar regions are difficult and dangerous.  Thus, CReSIS is developing uninhabited aerial 

vehicles (UAVs) from which fine-resolution measurements can be made over vast areas.  These fine-

resolution measurements require highly linear power amplifiers (PAs) to create low range side-lobe 

levels.  However, highly linear PAs are typically less efficient and require large and bulky heat sinks for 

heat dissipation, which increases the payload weight and decreases flight time.  Furthermore, the linear 

FM chirp signal used for these radar systems creates Fresnel ripples and side-lobes will be generated 

when there are deviations from the ideal rectangular spectrum amplitude even with efficient windowing 

techniques, such as a Tukey window.  Therefore, a 100 W, high-speed, pulsed, VHF power amplifier was 

developed and linearized using memoryless digital predistortion (DP) to obtain high linearity and high 

efficiency.  The DP linearization decreased near-range side-lobe levels 11 dB from -46 dBc to -57  dBc, 

with a maximum reduction in the far-range side-lobe levels of 17 dB over the Tukey (transmit) and 

Blackmann
2
 (receive) windowing alone.  The high-speed switching circuit reduced current consumption 

to 117 mA (or 3.28 W at +28 V) for a 10-us pulse at 1-kHz PRF. 
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Chapter 1: Introduction 

1.1 Background 

In recent years there have been debates in the political and scientific communities regarding 

climate change and sea level rise and their impact on the earth and its inhabitants.  Current 

scientific data shows the ice sheets are melting and sea levels are rising. Regardless of whether 

these events are man-made or a natural part of the earth’s cycle, there is a need to predict the 

sea level rise and the impacts of climate change on the earth.  Since nearly 100 million people 

live within 1 meter of the current mean sea level [1,2] and 37% of the world’s population lives in 

coastal regions, defined as being within 100 km of the coast [1], understanding possible 

contributions to sea level rise is of considerable importance.  If the climate change trends 

continue, the social and economic consequences will be severe, especially to developing 

countries with little resources [1, 3].   

1.2 Motivation 
The Center for Remote Sensing of Ice Sheets (CReSIS) was founded by the National Science 

Foundation (NSF) in 2005 for the purpose of advancing scientific understanding of polar ice 

sheets as they respond to the global climate. Depth-sounding radars provide measurements of 

ice thickness, basal conditions below the ice, internal layers, liquid water layers or channels, and 

many other scientific parameters that are useful in modeling polar ice sheets and predicting sea-

level rise.  Currently, surface-based and aircraft-based platforms are the most common methods 

for transporting the radars for collecting data.   Surface- based platforms are slow and cannot be 

safely used in crevassed areas.  Therefore, CReSIS currently deploys a 150-MHz depth-sounding 

radar system on crewed aircraft such as the Orion P-3 and Twin Otter DHC-6.  To obtain data 

over regions undergoing rapid changes that include fast-flowing glaciers, aircraft have to be 

flown at very low altitudes.  This is difficult to accomplish over fast-flowing glaciers with steep.  

To resolve these difficulties, CReSIS is developing uninhabited aerial vehicles (UAV) from which 

fine-resolution measurements can be made over vast areas.   

The Meridian UAV, shown in Figure 1, has been developed specifically to support low-altitude 

polar remote sensing missions.  The current radar operates from 180 to 210 MHz using a 

distributed architecture with transmit/receive (T/R) modules located on the wings for signal 

conditioning prior to transmission or following reception.  Eight wide-bandwidth antennas will 

be suspended beneath the wings, each with an attached T/R module providing signal 

amplification, filtering and switching.  Currently, the CReSIS Aerial Vivaldi (CAV-A) Antenna will 

be used with the T/R module mounted in the area shown in Figure 2 [4, 5]. 
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Figure 1: Meridian UAV with Vivaldi Antennas [4] 

 

 

Figure 2: CReSIS Aerial Vivaldi (CAV-A) Antenna [5] 

To accommodate both CReSIS depth-sounding radar systems, the operational bandwidth of the 

designed amplifier will extend from 140 to 210 MHz.  As seen in Figure 2, the length and width 

dimension of the T/R module are governed by the available mounting area on the CAV-A 

antenna while the height (or thickness) dimension is restricted due to aerodynamic limitations 

of wing-mounted structures on the UAV. 

Linearization of the power amplifier will allow it to operate at or near the 1-dB compression 

point; thereby, achieving higher power, higher efficiencies and better linearity.  Higher power 

will increase the radar range improving depth-sounding capabilities, while higher efficiencies will 

reduce the size and weight of the heatsink needed to dissipate the heat generated by the PA.  

Even though the amplifier will be operated in polar regions where heat management would not 

be a major problem, a ground-based, radar system integration test is typically performed in non-

polar regions. Improved linearity will reduce the side-lobes of the transmitted signal which will 

improve detection of off-nadir returns and improve internal layer resolution. 



Page 12 of 137 

For RF power amplifiers, MOSFETs are used because they require simpler biasing and drivers, 

are more stable, switch faster, and do not experience thermal runaway.  The main disadvantage 

of using FETs is they are less efficient than bipolar junction transistors [6]. The primary focus of 

this research deals with MOSFET amplifiers; therefore, all subsequent references to transistors 

and/or amplifiers will be assumed to be in reference to MOSFETs, unless otherwise stated.   

Chapter 2: Overview of Power Amplifier Fundamentals 

2.1 Relevant Figures of Merit for Power Amplifiers 

2.1.1 Gain and Output Power 

The gain of an amplifier is the ratio of the output power to input power, usually expressed in 

decibels (or dB).  The most commonly used definition of power gain is the transducer gain, GT , 

shown in Equation 1.   

avail

load
T P

P
G =       (1) 

Pload is the power delivered to the load by the amplifier, where the load may or may not be 

matched to the amplifier’s output impedance.  Pavail is the power available from the source 

assuming a matched condition at the amplifier input (i.e. Zi = Z
*

s).  Rewriting Equation 1 in terms 

of voltages and resistances, it can be shown that the maximum power will be delivered to the 

load by the amplifier if the load is matched to the conjugate of the amplifier’s output impedance 

(ZL = Z
*

O).  However, as explained in [7], the conjugate match theorem only applies in a 

completely unrestricted case where currents and voltages at the generator terminals are 

unbounded by physical constraints, such as maximum transistor voltage ratings or the maximum 

available voltage from the DC supply.  Therefore, by selecting a lower value of load resistance 

(or impedance) along the ‘load-line’ will accommodate the maximum permissible current and 

voltage swings at the output of the transistor, as illustrated in Figure 3. The resistance that 

provides maximum output power match is often referred to as ‘Ropt’ (or ‘Zopt’ for reactive loads). 
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Figure 3: Conjugate Match and Load-Line Match [7] 

Output power is specified and measured under two different conditions: continuous wave (CW) 

and pulsed operating conditions, depending on the applications.  The amplifier designed in this 

thesis work is to be used in pulsed radars.  Output power along with efficiency determines the 

amount of power that has to be removed by the heatsink.  In pulsed conditions, the heatsink 

requirements are lower because the amplifier is operating with a certain duty cycle (D) and less 

power is dissipated from the amplifier, as shown in Equation 2 where PRI is the pulse repetition 

interval.  When D approaches unity, Equation 2 describes the dissipated power in CW operation. 
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2.1.2 Linearity 

An amplifier is considered linear if the output power is linearly proportional to the input power, 

while the phase difference between the output and input should remain the same.  One 

measure of linearity can be expressed at the output level at which the gain compresses and is 

often specified as the ‘1-dB compression point’.  The 1-dB compression point is defined as the 

output power level at which the gain drops by 1-dB from the small signal value (or the linear 

response) as illustrated in the transfer characteristic of Figure 4.  It should be emphasized that 

an amplifier operating at the 1-dB compression point is already heavily nonlinear.  Generally, to 

achieve high linearity, amplifiers are backed-off and operated well below the 1-dB compression 

point; however, this reduces amplifier efficiency.   
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Figure 4: Linearity and Gain Compression 

Non-linear amplifier response occurs in an amplifier when the output is driven to a point near 

compression.  As the compression point is approached, the amplifier gain falls off, or 

compresses and the linearity decreases.  The nonlinear amplifier output illustrated in Figure 4 

can be expressed with the power series relationship of Equation 3. 

...)()()()( 3
3

2
21 +++= tVatVatVatV inininout     (3) 

The transfer characteristic now includes higher order terms, not only the linear term.  Typically, 

for power amplifier (PA) transfer functions, the second-order coefficient is positive and the 

third-order coefficient is negative, which results in a compressive characteristic of the curve.  

The more the input signal grows, the larger the influence of the higher-order terms [8].  When 

observing the nonlinear response of an amplifier in the frequency domain, frequencies other 

than the fundamental operating frequency (i.e. harmonics) will be noticed as described in 

Equation 3.      

2.1.3 Efficiency 

Every amplifier requires DC power supplies that provide the ability of RF amplification.  Figure 5 

shows a diagram of the typical power flow in a generalized amplifier, where an input drive 

source is assumed to generate an RF signal at frequency fo.  
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Figure 5: Power Flow in a Generalized Amplifier 

According to the law of energy conservation, the total amount of power entering into an 

amplifier must be the same as the total power coming out of the amplifier.  Due to the nonlinear 

operation of an amplifier, many harmonics are also generated as RF output power Pout(kfo).   

Power amplifier (PA) efficiency is a measure of the effectiveness of converting DC power into RF 

power.  In RF power amplifiers, there are two different measurements of efficiency, namely, 

drain efficiency and power-added efficiency (PAE).  Drain efficiency is the ratio of output RF 

power to input DC power as shown in Equation 4.   
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Drain efficiency is useful when input power level is of no primary significance, which occurs 

either when the gain is very high or the input drive source is assumed to generate sufficient 

power without extra constraints.  Since the drain efficiency isolates the efficiency calculation 

from power loss in the input circuitry, the drain efficiency can be used as a comparison criterion 

for performance of different amplifier classes that are entirely determined by bias condition and 

output termination.  Thus, drain efficiency is often used to evaluate the performance of 

switching-mode amplifiers, where the input drive is assumed to be sufficiently large to saturate 

the transistors.   

The most common definition of efficiency in all types of amplifiers is power-added efficiency or 

PAE, in which the power produced from an amplifier is defined as the RF power “added” by an 

amplifier, i.e. the difference between the RF input and output at fo as shown in Equation 5. 
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Since the RF input power is included in the “produced” power of the amplifier, this definition is 

not correct in a physical point of view.  If the gain is below unity, the PAE could even be 

negative.  However, the advantage of the PAE is that it combines the gain with the drain 

efficiency.  When a PA is used within a system, the input signal is provided from the previous 

stage that has a common limitation on the output power level.  Thus, the gain of the PA, in this 

case, is a critical factor to determine the efficiency of the overall system as well as of the 

amplifier itself.  It can be seen from Equation 5 that the PAE will approach its maximum value, 

which is the drain efficiency, as the gain increases. 

Furthermore, the output capacitance of the transistor has a large effect on the efficiency of an 

amplifier, since it must be charged to around twice the supply voltage and discharged again 

during each cycle of the operating frequency, and the power used in the charging process is 

dissipated in the transistor.  At a single frequency, a part-but not all- of the capacitance can be 

tuned out, since its value varies with the output voltage swing.  Equation 6 is the power loss due 

to the output capacitance, where COSS is the output capacitance, VCC is the supply voltage, and f 

is frequency [6]. 

( ) ( ) fVCP CCossloss ***2 2=      (6) 

It can be seen from Equation 6, that transistors with lower output capacitance will dissipate less 

power and have higher efficiencies.  Also, operating transistors at lower supply voltages will 

significantly reduce the power loss since VCC is squared. 

2.1.4 Input and Output Matching 

One of the most important aspects of power amplifier design is the impedance matching 

network for both the input and output of the amplifier.  Assuming the amplifier circuit will be 

used in a 50-Ω system, the input and output impedance of the amplifier will need to be matched 

to 50 Ω.  Any impedance mismatch in the source or load side leads to reduced device gain and 

large reflected power, which reduces the efficiency of the PA due to impedance mismatch.  The 

reflected power also affects the reliability of the device and complicates the thermal 

management [9].  As explained in Section 2.1.1, the load impedance seen by the output of the 

transistor determines the output power and ultimately the efficiency of the amplifier.  

Therefore, an output matching network will be required to transform the 50-Ω system 

impedance to the desired load impedance, typically Zopt, according to Figure 6.   
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Figure 6: Output Matching Network Block Diagram 

The input matching network is designed to transform the transistor’s input impedance into the 

50-Ω system impedance according to Figure 7.  Rin + jXin represents the complex input 

impedance of the transistor. 

 

Figure 7: Input Matching Network Block Diagram 

The impedance-matching network should provide matching over the complete operational 

frequency band.  However, the challenge of designing matching networks, specifically output 

matching networks, is that the transistor’s output impedance varies with frequency.  Often 

times, over a decade bandwidth, the optimum impedance can drop by a factor of two.  For 

example, if the low frequency load line is 6 Ω, the upper operating frequency could require an 

impedance of 3 Ω with some additional amount of inductive or capacitive reactance [13].  

2.1.5 Operational Bandwidth and Frequency Response 

The operational bandwidth of an amplifier represents the amount or “width” of frequencies for 

which the amplifier provides satisfactory performance according to several design constraints, 

such as gain, output power, gain flatness, efficiency, and/or VSWR.  The most common 

measurement constraint is the half-power points (i.e. the frequency where the power drops by 

half its peak value) on the power vs. frequency curve.  In this context, the operational 

bandwidth can be defined as the difference between the lower and upper half-power points, 

also known as the ‘3-dB bandwidth’ as illustrated in Figure 8.  Other tolerances in regards to 
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output power may be specified according to the 1-dB or 6-dB bandwidth, depending on the 

desired output power performance constraints. 

 

 

Figure 8: Definition of 3dB Bandwidth 

However, the bandwidth is not the same as the band of frequencies that the amplifier is capable 

of amplifying according to the desired performance constraints.  This range of frequencies is 

defined as the ‘frequency response’ of the amplifier and provides the lower and upper 

frequency limits of the amplifier.  For example, according to Figure 8, the operational bandwidth 

would be a single value calculated as f2 minus f1, while the frequency response would be stated 

as two separate frequency limits f1 to f2.  Thus, the amplifier operates from f1 to f2 with a 

bandwidth of f2 minus f1 according to the 3dB output power constraint. 

2.2 Classes of Power Amplifiers 

The two main categories of amplifiers are transconductance and switching.  Transconductance 

amplifiers operate the transistor in the linear region (triode mode) and utilize the active 

resistance (i.e. transconductance) of the transistor to regulate power delivery.  On the other 

hand, switching amplifiers operate the transistor in the saturation region (active mode) and 

utilize the transistor as a switch.  Power amplifier circuits are further classified based upon the 

conduction angle, θ, of the input signal through the output of the amplifying device.  That is, the 

angular portion of the input signal cycle during which the amplifying device conducts.  The bias 

point (or quiescent point) of the transistor along with the amplitude of the input signal 

determine the conduction angle of the transistor, and thus the classification of the amplifier.  

The most common classifications of amplifiers are Class A, B, AB and C for transconductance 

amplifiers and Class D and E for switching amplifiers. 

 2.2.1 Class A 

In a Class-A amplifier the conduction angle is 360°, thus the transistor conducts for 100% of the 

input signal as illustrated in Figure 9.  Since the transistor is always conducting, even if there is 
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no input signal, power is drawn from the power supply which makes the Class-A topology 

inefficient.  According to [7], the maximum theoretical efficiency of a Class-A amplifier is 50% 

assuming no losses.  However, as seen in Figure 9, the Class-A amplifier is highly linear. 

 

Figure 9: Class A Amplifier 

 2.2.2 Class B 

In a Class-B amplifier the conduction angle is 180°, thus the transistor conducts for 50% of the 

input signal as illustrated in Figure 10.  According to [7], the maximum theoretical efficiency of a 

Class B amplifier is 78.5% assuming no losses.  However, as seen in Figure 10, the Class B 

amplifier is not very linear. 

 

Figure 10: Class B Amplifier 
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 2.2.3 Class AB 

In a Class AB amplifier the transistor is biased somewhere between a Class A (360°) and a Class B 

(180°), thus the transistor conducts for 50 to 100% of the input signal as illustrated in Figure 11.   

 

Figure 11: Class AB Amplifier 

A ‘weak-biased’ class AB amplifier has a bias point closer to that of a class A, while a ‘strong-

biased’ class AB amplifier is biased closer to that of a class B.  The maximum theoretical 

efficiency of a Class AB amplifier is slightly less than 78.5%, if biased close to a Class-B amplifier 

with a conduction angle slightly less than 180°. However, the Class-AB amplifier is usually biased 

in the range between 180° and 360°; therefore, the efficiency range would fall somewhere 

between 50% (for Class A) and 78.5% (for Class B).  Typically, the efficiency is around 45-60% for 

Class AB amplifiers.  Overall, the linearity is moderate and depends on the bias point of the 

transistor. 

 2.2.4 Class AB Push-Pull 

A Class-AB Push-Pull amplifier is biased similar to a Class-AB amplifier; however, a 

complementary pair of transistors is used to create a ‘pushing’ and ‘pulling’ effect by amplifying 

opposite halves of the input signal, which is then recombined at the output.  Each transistor is 

biased to have a conduction angle slightly greater than 50%, thus the amplifier circuit conducts 

for 100% of the input signal as illustrated in Figure 12.  The threshold voltage of the transistor 

must be overcome before conduction can take place; thus, as shown in Figure 12, there is a 

small mismatch at the ‘joins’ between the two halves of the output signal, which creates 

crossover distortion and degrades linearity.  Thus, to remove the crossover distortion and 

improve the linearity, the bias point of each transistor is ‘tuned’ so the conduction voltage is 

overcome, but not by the input signal.  Typically, the efficiency is similar to that of a single 

transistor Class AB amplifier (45-60%) but with an improvement in linearity.   
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Figure 12: Class AB Push-Pull Amplifier 

 2.2.5 Class C 

In a Class-C amplifier the conduction angle is less than 180°, thus the transistor conducts for less 

than 50% of the input signal as illustrated in Figure 13.  According to [7] a Class-C amplifier can 

attain a theoretical efficiency as high as 100% when the conduction angle is 0°; however, the 

linearity suffers tremendously.   

 

Figure 13: Class-C Amplifier 

 2.2.6 Class D and E 

In a Class-D amplifier two transistors are used in a push-pull configuration so that each 

transistor can be alternatively switched on and off.  The input signal is converted to a sequence 

of higher voltage output pulses by comparing a triangular waveform with the input signal 

waveform, thus creating a pulse-width modulated output waveform.  The averaged-over-time 

power values of these pulses are directly proportional to the instantaneous amplitude of the 

input signal.  Furthermore, the output pulses contain inaccurate spectral components (namely, 
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the pulse frequency and its harmonics) which must be removed by a low-pass passive filter.  

Figure 14 shows the basic block diagram of a Class D amplifier.  Class D amplifiers are highly 

efficient, but not commonly used in RF amplifiers since the frequency of the output pulses is 

typically ten or more times the highest frequency in the input signal to be amplified.  Also, Class 

D amplifiers are not very linear. 

 

Figure 14: Class D Amplifier Block Diagram 

In a Class E amplifier, shown in Figure 15, the transistor operates as an on/off switch and the 

load network shapes the voltage and current waveforms to prevent simultaneous high voltage 

and high current in the transistor minimizing power dissipation.  According to [7] a Class E 

amplifier can attain a theoretical efficiency of 100% assuming no losses; however, typically 

efficiencies range from 85 to 90%.  However, the resonant load network limits the operational 

bandwidth.  Due to the switching nature, Class E amplifiers are also not very linear. 

 

Figure 15: Class E Amplifier [10] 
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2.3 Technical Requirements for Power Amplifiers Used in Pulsed VHF Radar 

Systems for Ice Depth Sounding 

2.3.1 Requirements and Desired Features 

According to the radar range equation shown in Equation 7, the ratio of the transmitted power 

of a radar signal to the range is PT/R
4
.  Assuming all other variables in the radar range equation 

remain constant, it can be seen that depth sounding radar systems will require large amounts of 

power to overcome the spherical spreading loss (R
4
) and path loss (L) due to ice attenuation in 

order to satisfy the radar range equation and provide an adequate Signal-to-Noise Ratio (SNR) at 

the receiver.   
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Although it may appear a relatively simple solution to simply increase the transmitter power (i.e. 

the PA output power) as required in order to achieve the desired SNR, there are several 

limitations to this solution.   

For depth sounding applications, the transmitter PA needs to be linear to reduce the side-lobe 

levels of the transmitted pulse.  The CReSIS depth sounding radars use a pulse compressed, 

linear frequency modulated (FM) chirp signal with a pulse width between 1 and 10   μs, which, 

when transmitted with low time-bandwidth products creates mid-band ripples in the amplitude 

spectrum [11].  These mid-band ripples, known as Fresnel ripples, create range side-lobes which 

are typically reduced by applying an amplitude tapering function, typically a Tukey window.  

However the efficiency of the windowing is based on the concept of shaping a perfectly 

rectangular spectrum; thus, range side-lobes will be generated when there are deviations from 

the ideal rectangular spectrum amplitude and quadratic phase [12].  These range side-lobes can 

mask weak returns which could represent internal layers or surface clutter depending on the 

application.   

As an illustration of this concept, a 140 to 160 MHz linear FM chirp with a Tukey weighting was 

generated using the AD9910 DDS of the 1U-DAQ digital system designed by CReSIS, then 

amplified using the 50 W Polyfet power amplifier module pairs (MADQ06 & MBDQ01), which 

are the current PAs used by CReSIS for many depth-sounding applications.  After attenuating the 

signal by 50 dB in order to protect the receiver, the data were then recorded using the AD9640 

analog-to-digital converter (ADC) of the 1U-DAQ and processed in MATLAB.  As seen in Figure 

16, the DDS generated pulse has about a 0.35 dB amplitude deviation, even with a Tukey 

window while the PA amplitude deviation is about 3 dB with a Tukey window as seen in Figure 

17.   
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Figure 16: DDS Transmit Pulse Amplitude Distortion (with Tukey Window) 

 

Figure 17: Polyfet 50W Transmit Pulse Amplitude Distortion (with Tukey Window) 

Assuming the return signals will be attenuated versions of the PA transmitted pulse of Figure 17, 

a strong return (representing the bedrock) and a delayed weak return (representing an internal 
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layer) were simulated and filtered using a double-Blackmann (or Blackmann
2
) window as shown 

in Figure 18.  The delayed weak return has amplitude of -55 dB relative to the bedrock return.   

Finally, a cross-correlation was performed for each return signal to simulate the pulse 

compression response as shown in Figure 19.  From the simulated results, it can be seen that 

when using the Polyfet 50 W PA a weak return delayed by 0.5 μs with amplitude -55 dB relative 

to the bedrock return can be masked by the side-lobes when there is about a 3 dB variation in 

amplitude of the transmitted pulse even when windowing techniques are applied to the 

transmitted and received signals.  Furthermore, the phase non-linearities of the PA also 

contribute to the increased side-lobe levels, which were not illustrated in this example.  

Therefore, linearization can be implemented to correct the amplitude & phase deviations in the 

transmit pulse resulting in a decrease in side-lobe levels.   

 

Figure 18: Polyfet 50W Simulated Returns (with Blackmann
2
 Window) 
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Figure 19: Polyfet 50W Simulated Pulse Compression Returns 

The drawback of implementing a highly linear PA, as explained in Section 2.2, is that linear PAs 

dissipate large amounts of heat depending on the class of amplification.  Typically, the heat is 

dissipated using large heat sinks; however, this conflicts with the weight and size limitation 

especially in the UAV application.  Due to aerodynamic limitations on the antennas, the PA must 

also meet a certain size constraint.  Moreover, since increasing weight equates to increasing fuel 

consumption, the weight of the T/R module is also limited.  To overcome the size and weight 

limitations and at the same time maintain a high output power without sacrificing linearity, it 

was determined that the DC power to the PA could be pulsed.  Given that the higher linearity 

amplifier classes consume power even when the PA is not transmitting, pulsing the DC power  

closely ‘in sync’ with the transmitted pulse decreases the dissipated power as explained in 

Section 2.1.1.    

2.3.2 Topology and Class Selection 

In order to maintain linearity at lower power levels, the pre-amplifier was biased as a Class A 

amplifier and the driver amplifier was biased as a ‘weakly-biased’ Class AB amplifier.  In order to 

compromise between linearity (Class A) and efficiency (Class B), the Class AB push-pull amplifier 

configuration was selected for the main power amplifier stage of this design. 
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Chapter 3: Overview of Power Amplifier Linearization Techniques 

The requirement of achieving high linearity and high efficiency in a power amplifier has 

motivated a great deal of research into linearization techniques.  The basic idea is to operate the 

PA as close to saturation as possible to maximize the power efficiency, and then employ some 

linearization technique to suppress the distortion introduced in this near-saturated region.  

Understanding the nonlinear behavior of PAs is critical to applying an external linearization 

technique.  The power series expression in Equation 8 can be used to describe the nonlinear 

effects in PAs.    
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The linear small signal gain is represented by a1, while a2 and a3 are the gain constants for the 

quadratic and cubic nonlinearities, respectively.  The second-order coefficient is positive and the 

third-order coefficient is negative, which result in a compressive characteristic.  If the 

coefficients are real valued, the system is considered nonlinear and memoryless.  If the 

coefficients are complex valued, indicating a constant, frequency-independent phase shift, the 

system is considered nonlinear with memory.  It should be noted that there is a difference 

between a system with ‘memory’ and ‘memory effects’.  Memory effects refer to bandwidth-

dependant nonlinear effects often present in PAs such as envelope memory effects and 

frequency memory effects.  Envelope memory effects are primarily a result of thermal 

hysteresis, and electrical properties inherent to PAs.  Frequency memory effects are due to the 

variations in the frequency spacing of the transmitted signal.  Memory effects were omitted 

from this research work and are a topic for future work. 

When viewing the nonlinear response of the amplifier in the frequency domain, multiples (or 

harmonics) of the original frequency will be present.  This is referred to as amplitude-to-

amplitude (AM/AM) distortion, since the output amplitude will be distorted in relation to the 

input amplitude.  As explained in Section 2.3.1, these nonlinearities degrade radar system 

performance by increasing side-lobe levels. 

Through the implementation of linearization, these nonlinearities can be reduced, thus reducing 

side-lobe levels.  This chapter provides a brief overview of some of the more common 

linearization techniques.   

3.1 Power Back-off 

Power back-off exploits the observation of small signal analysis, that is, that any amplifier 

appears linear for sufficiently small departures from its bias condition.  Mathematically, this 

principle can be explained according to Equation 9 which is a polynomial similar to Equation 8, 

where Iout is the total output current, Io is the bias current and Vin is the signal input voltage.   

...22
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It can be seen that by decreasing Vin, the linear term can be made to dominate all but the DC 

term Io, which for RF power amplifiers can be easily blocked.  Power back-off is the simplest 

linearization technique to implement; however, even though linearity is improved, the efficiency 

is decreased due to the reduced input signal level.  Thus, power back-off does not satisfy the 

increased linearity and efficiency requirement. 

3.2 Feed-back 

Feed-back linearization is a well-known and established method of improving linearity in power 

amplifiers.  A number of different configurations have been created, such as RF feedback, 

envelope feedback and Cartesian feedback.  The simplest feed-back technique is RF feedback, as 

shown in Figure 20, which can be implemented as passive or active feed-back.  Unfortunately, 

the electrical delays around the feed-back loop restrict the bandwidth of signals that can be 

linearized; thus, the fundamental limitation of any of the RF feed-back techniques is phase delay 

around the control loop resulting in narrow bandwidth linearization.   

 

Figure 20: Feed-back Linearization 

3.3 Feed-forward 

Feed-forward linearization uses an additional amplifier to manipulate the output from the 

power amplifier as shown in Figure 21.  With the PA output reduced to the same level as the 

input, the difference between the input and the reduced level output signal is only the 

distortion generated by the PA.  Further, if this resulting distortion is then amplified with a 

different, highly linear amplifier and then subtracted from the original output, theoretically, only 

the linear amplified portion of the input signal should remain.  Feed-forward linearization 

utilizes two circuits – an input signal cancellation circuit and a distortion- (or error-) cancellation 

circuit.  The signal-cancellation circuit suppresses the input reference from the output of the 

main PA, leaving only its linear and nonlinear distortion components in an “error” signal.  The 

error-cancellation circuit is used to suppress the distortion component of the PA output, leaving 

only the linear-amplified component of the output signal.  In order to suppress the distortion 

component of the signal, the gain of the amplifier used in the error-cancellation circuit must be 

carefully chosen to match the sum of the effects of the sampling coupler, the fixed attenuator, 
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and the output coupler.  Thus, the error signal is amplified to approximately the same level as 

the distortion component in the PA output signal [14].  Feed-forward generally provides good 

linearity, but it results in poor efficiency. 

 

Figure 21: Feed-forward Linearization 

3.4 Predistortion 

Predistortion (PD) involves constructing a predistorter which has the inverse nonlinear 

characteristics of the PA.  Therefore, when the predistorter’s output signal is passed through the 

PA, the distortion components cancel and only the linear components remain as depicted in 

Figure 22.  Since linearization is performed at the input of the PA, loss of efficiency is negligible.  

Predistortion techniques can be classified as either analog PD or digital PD.  The PA response is 

assumed to be a memory-less model, that is only dependent upon the input signal magnitude.  

This simplification reduces the complexity of compensating for memory effects which are a 

result of the operating frequency band and instantaneous operating temperature. 

 

Figure 22: Predistortion Block Diagram 

 3.4.1 Analog Predistortion 

An analog predistorter utilizes a nonlinear device (typically a diode or transistor) to predistort 

the input signal.  The type of analog PD used is dependent on the nonlinearities generated by 
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the PA.  Analog PDs can be constructed as a Square Law or Cubic Law devices or any 

combination of these two configurations for higher-order nonlinearities.  An analog PD generally 

has two paths.  One carries the fundamental components and the other is the distortion 

generator.  The distortion generator’s purpose is to eliminate the fundamental component; 

thereby, providing independent control of the distortion relative to the fundamental 

component.  The two paths are time-aligned and then subsequently combined before being 

presented to the PA. 

One of the simplest and least expensive analog PD techniques is the ‘series diode’ technique 

which consists of a nonlinear diode being placed in front of the PA as illustrated in Figure 23.   

 

Figure 23: Series Diode Predistortion Linearizer 

The diode functions as a nonlinear resistor (RD) with a parasitic capacitance (Cp) in parallel.  The 

resistance and capacitance is used to form a nonlinear RC phase shift network.  The diode is 

forward biased to set RD and Cp at an initial small-signal operating point.  As the diode is driven 

past small signal conditions with RF power, the diode rectifies the RF power and the operating 

point changes with increasing input power.  Effectively, RD decreases with increasing input 

power since its operating point is moved up the I/V curve.  RD changes nonlinearly due to the 

diode’s I/V characteristic, resulting in a nonlinear phase shift with increasing input power.  The 

series diode technique provides about 6 dB improvement in linearity [15].   

 A more complex configuration utilizes transistors, diodes, and a parallel RC circuit to remove 

the 3
rd

, 5
th

 and higher order nonlinearities.  Figure 24 shows the block diagram of the 3
rd

-order 

intermodulation signal generator (IMG3).   



Page 31 of 137 

 

Figure 24: Intermodulation Signal Generator (IMG3) Block Diagram 

Its output signal contains the fundamental and 3
rd

-order components.  The bias voltage of the 

small signal transistor is controlled to generate a 3
rd

-order component as large as possible.  

Figure 25 shows the block diagram of the higher order intermodulation (IM) signals generator 

(IMGH).  

 

Figure 25: Intermodulation Signal Generator (IMGH) Block Diagram 

 IMGH consists of a 3-dB hybrid coupler, two anti-parallel Schottky diodes for high order IM 

signal generation, and a resistor and capacitor to control amplitude and phase of the input 

signal to generate only the desired high order IM components.  Figure 26 portrays the complete 

analog predistortion circuit using an automatic level controller (ALC) circuit, and IMG3 and IMG3 

control block, an IMGH and IMGH control block and a high power amplifier (HPA).  The IMG3 and 

IMGH control blocks consist of a variable attenuator and a variable phase shifter to control the 

magnitude and phase of the 3
rd

 and higher order inverse IM signals to the HPA.  The delay circuit 
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in the PA path compensates for the delay in the IM generators and IM control circuits.  This 

complex analog predistortion circuit provides about 8 to 10 dB improvement in linearity [16]. 

 

Figure 26: 3
rd

 and Higher Order Analog Predistortion Block Diagram 

 3.4.2 Digital Predistortion 

Digital Predistortion (DP) utilizes digital signal processing (DSP) techniques to predistort the 

input signal.  The cascade of the DP response and the PA response produces the desired linear 

response.  If the PA is operating in compression, the Pout versus Pin curve falls below the ‘linear 

output’ curve, and the actual output power of the PA is not sufficient for linear operation as 

illustrated in Figure 27.  When the amplifier is operating in compression, the Pout versus Pin curve 

falls below the Linear Response curve, hence, the actual power of the PA is not sufficient for 

linear operation.  The inclusion of digital predistortion prior to the power amplification has the 

effect of introducing expansion (i.e. the amplitude of the signal is increased so that the desired 

output power, on the Linear Output curve, is achieved.  The expansion effect of the digital 

predistortion can be observed in Figure 27 where the input power, Pin (resulting in Pout before 

PD), is increased to Pin-pd so that the PA output power is raised to Pout-pd which coincides with the 

Linear Output curve.  The output power cannot be expanded beyond the saturation level, thus, 

intersection of the Linear Output curve with the Psat level determines the maximum input 

amplitude that will result in linear amplification [17]. 
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Figure 27: Power Amplifier Pout vs. Pin Curve and Digital Predistortion [17] 

The phase response of a PA is also non-linear; therefore, DP is also used to linearize the typical 

non-linear phase response as depicted in Figure 28. 

 

Figure 28: Linearization of Power Amplifier Phase Response [17] 

The two most common DP techniques are the Vector (or Polar) mapping look-up table (LUT) 

approach and the Complex gain look-up table approach.  The Vector mapping technique stores a 

compensation vector into the LUT for each input signal vector.  This approach tends to require a 

large amount of data storage.  The complex gain approach generates an inverse nonlinearity of 

the PA characteristic and stores the values in a LUT.  This approach requires less LUT entries and 

can provide similar linearity improvement if the nonlinearity created by the PA is minimal at low 

levels of intermodulation.  In either case, for adaptive predistortion the LUT is indexed by either 

magnitude or power.  The resultant error signal generated by subtracting the PA output from 

the input signal is used to optimize the LUT entries.  An adaptive delay is used to properly align 

the two signals [18]. 
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3.5 Significance of Implementing Digital Predistortion (DP) 

The challenge of implementing a linearization technique arises due to the linear FM chirp signal 

which increases the complexity of the linearization.  Amplitude and phase corrections will be 

needed at various frequencies across the operational frequency range of the PA (i.e. 140 to 160 

MHz or 180 to 210 MHz).  The digital predistortion technique provides the most flexibility and 

the simplest method for implementing amplitude and phase compensation at various 

frequencies.  The only drawback is that a digital system must be added to the PA to provide the 

linearization.  Fortunately, the CReSIS radar systems currently utilize digital systems to generate 

the transmit waveforms; therefore, digital predistortion is the best choice for linearization.   

Chapter 4: Implementation of Memoryless Digital Predistortion 

As explained in Chapter 3, memoryless digital predistortion (DP) would only correct for the 

nonlinear amplitude variations since the coefficients are real valued.  If the coefficients are 

complex valued, indicating a constant, frequency-independent phase shift, the system is 

considered nonlinear with memory.  As illustrated in Section 2.3.1, the depth-sounding radar 

systems produce a nonlinear response with memory.  The process for implementing nonlinear 

DP with memory is explained in Section 4.1.1; however, only memoryless DP was implemented 

in this thesis work leaving nonlinear DP with memory for future study. 

4.1 Predistortion Algorithm Simulation and Synthesis 

A system level block diagram of the digital predistortion system is shown in Figure 29.  The 

Complex Gain Adjustment, Look-Up Table (LUT) and DAC are implemented within the DDS and 

the Adaptation Algorithm is implemented using MATLAB.  The analog-to-digital converter (ADC) 

is the AD9640. 

 

Figure 29: System Level Block Diagram of Digital Predistortion System 

4.1.1 Direct Digital Synthesizer (AD9910 DDS) 

The Input Signal (Vi) is generated using the Analog Devices AD9910 Direct Digital Synthesizer 

(DDS) which has a 1 GSPS, 14-bit DAC capable of generating an analog output up to 400 MHz.  
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The parameters of the reference signal (frequency, phase, and amplitude) are applied to the 

DDS at its frequency, phase offset, and amplitude control bits as shown in Figure 30. 

 

Figure 30: AD9910 DDS Block Diagram [19] 

The output frequency is generated using a digital ramp generator (DRG) in digital ramp 

modulation mode where the output of the DRG is a 32-bit unsigned data bus that can be routed 

to any one of the DDS signal control parameters according to the two digital ramp destination 

bits in Control Function Register 2 (CRF2).  To utilize the DRG to control frequency, the digital 

ramp destination bits of CRF2 should be set to ‘00’ (according to Table 11 of the AD9910 

datasheet) where the 32-bit output bus is MSB-aligned with the 32-bit frequency parameter.   

For nonlinear predistortion with memory (i.e. amplitude and phase corrections), the amplitude 

and phase is generated using a polar modulation format in RAM modulation mode.  The polar 

modulation mode partitions each 32-bit RAM sample into a magnitude (14 bits) and phase 

component (16 bits) with the first 2 bits being ignored. The 32-bit words output by the RAM 

during playback route to the DDS signal control parameters according to two RAM playback 

destination bits in Control Function Register 1 (CFR1).  By setting the RAM playback destination 

bits in CFR1 to ‘11’, the AD9910 is capable of generating polar signals, where the phase and 

amplitude can be independently generated from RAM (according to Table 12 of the AD9910 

datasheet).  The complex signal is represented by a 32-bit word in each RAM location which is 

segmented with bits 31 to 16 representing the phase, bits 15 to 2 representing the amplitude 

and bits 0 and 1 are ignored.   

For memoryless predistortion (i.e. amplitude correction only), the amplitude corrections are 

generated using the amplitude modulation format in ‘RAM modulation’ mode.  The amplitude 

mode partitions each 32-bit RAM sample into a 14-bit magnitude with the remaining 18 bits 

being ignored.  By setting the RAM playback destination bits in CFR1 to ’10’, the AD9910 is 

capable of generating amplitude modulated signals (according to Table 12 of the AD9910 

datasheet).  Since memoryless predistortion was implemented in this thesis work, the RAM 
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playback destination bits in CFR1 were set to ‘10’ as seen highlighted in blue in the IDL code 

under the section heading ‘ROUTINE TO GENERATE DEFAULT DDS’ in Appendix A.  

The RAM playback mode is selected via the 3-bit RAM mode control word located in each of the 

RAM profile registers (bits 2 to 0).  To select the direct switch mode, the RAM profile mode 

control word needs to be set to ‘000’,’101’,’110’, or ‘111’ (according to Table 13 of the AD9910 

datasheet).  The direct switch mode is used to route a single 32-bit word of data (which contains 

both amplitude and phase values in polar modulation mode or amplitude values only for 

amplitude modulation mode) from the RAM to the DDS.   

The relative phase of the DDS signal can be digitally controlled by means of a 16-bit phase offset 

word (POW).  As seen in Figure 30, the phase offset is applied prior to the angle-to-amplitude 

conversion block internal to the DDS core.  The POW needed to develop an arbitrary Δθ is given 

in Equation 10, where Δθ is in radians. 
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The relative amplitude of the DDS signal can be digitally scaled (relative to full scale) by means 

of a 14-bit amplitude scale factor (ASF).  As seen in Figure 30, the amplitude scale value is 

applied at the output of the angle-to-amplitude conversion block internal to the DDS core.  The 

ASF value needed for a particular amplitude scale factor is given in Equation 11, where the 

amplitude scale is expressed as a fraction of the full scale amplitude. 

( )ScaleAmplituderoundASF *214=     (11) 

It is important to note that when the AD9910 is programmed to modulate any of the DDS signal 

control parameters, the maximum modulation sample rate is ¼ the system clock frequency.  This 

means that the modulation signal exhibits images at multiples of ¼ the system clock frequency 

[19].    

4.1.2 Adaptation Algorithm for Memoryless Digital Predistortion 

The function of the adaptation algorithm is to calculate the complex gain adjustment required to 

linearize the amplifier response.  The adaptation algorithm can be implemented using MATLAB 

which generates the ‘amp.txt’ file containing the amplitude values and the ‘phase.txt’ file 

containing the phase values.  These values can then be programmed into the DDS as explained 

in Section 4.1.1.  For memoryless DP, only the amplitude is adjusted; thus, the adaptation 

algorithm developed only generates the ‘amp.txt’ file.  The DDS was programmed using 

Interactive Data Language (IDL) by altering the ‘dds_gui.pro’ program developed by John 

Ledford and Dr. Carl Leuschen.  The new predistortion program is called ‘dds_gui_pd.pro’ which 

was used to generate the transmit waveform including the tapering function (i.e. Tukey) at the 

maximum amplitude weighting of 65,535, as well as, the predistorted waveform with Tukey 

weighting.   
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The measurement setup of Figure 31 was used to determine the amplitude weighting required 

to linearize the PA.  The 1U-DAQ was used as the digital system which contains the AD9910 DDS 

for generating the transmit signal and the AD9640 analog-to-digital converter (ADC) for 

recording the receive signal.  The DDS weighting was set to the maximum weighting of 65,535 

with a Tukey tapering by selecting ‘tukey’ in the ‘window’ drop-down menu  and inserting 

’65,535’ in the ‘weight’ box of the DDS GUI.  The output voltage of the PA was then displayed in 

the time domain and recorded (after the attenuator) using the AD9640 ADC and the 

‘daq_gui.pro’ program developed by Dr. Carl Leuschen.   The attenuator transfer response was 

assumed to be linear for all measurements and calculations.  The MATLAB program 

‘DDS_Predistortion.m’, which contains the adaptation algorithm, was then used to generate the 

‘amp.txt’ file.  Then the DDS tapering in the ‘window’ drop-down menu was changed from 

‘tukey’ to ‘predistort’ which reads the data from the ‘amp.txt’ file, applies a tukey weighting and 

directly stores the new amplitude values into their respective RAM locations as described in 

Section 4.2.1.  The code for the ‘dds_gui_pd.pro’ IDL program is provided in Appendix A with the 

modifications from the ‘dds_gui.pro’ IDL program shown in red.  The ‘DDS_Predistortion.m’ 

MATLAB program can also be found in Appendix A. 

 

 

Figure 31: Predistortion Linearization Measurement Setup 



Page 38 of 137 

Chapter 5: Design of a Power Amplifier for a Compact Transmitter 

Module for an Uninhabited Air Vehicle (UAV) VHF Depth Sounder 

Radar 

5.1 Design Constraints 

5.1.1 Input and Output Power 

The maximum input power is +4.5 dBm (2.82 mW) due to the power output limitation of the 

Direct Digital Synthesizer (DDS).  The output power should be between 47 to 50 dBm (50 to 100 

W).   

5.1.2 DC Power Supply 

 A single +28 V supply is available for DC power. 

5.1.3 Efficiency 

 The power-added efficiency (PAE) should be greater than 30%. 

5.1.4 Frequency Response and Bandwidth  

 The frequency response should be 140 to 210 MHz with a bandwidth of 70 MHz. 

5.1.5 Volume and Weight 

The size should be less than 3 ¾” x 3 ¾” x 1” (L x W x H) with a weight less than 16 ounces. 

5.1.6 Amplifier Turn-On / Turn-Off Time 

The amplifier should turn on within 500 nS of the rising edge of the RF control pulse and turn off 

within 500 nS of the falling edge of the RF control pulse. 

5.2 Design Description and Simulations 

 5.2.1 Design Overview 

 A 3-stage power amplifier was designed as shown in the block diagram of Figure 32. 
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Figure 32: Power Amplifier Block Diagram 

The pre-amplifier stage is a Class A amplifier designed using the Polyfet SP202 single-ended RF 

power transistor.  The driver amplifier stage is a ‘weak-biased’ class AB amplifier designed using 

the Polyfet SP203 single-ended RF power transistor.  The bias point is set just outside the 

bounds of a class A to reduce current consumption while maintaining moderate linearity.  The 

power amplifier stage is a ‘strong-biased’, class AB, push-pull amplifier designed using the 

Polyfet SD703 push-pull RF power transistor.   The specifications for the SP202, SP203 and 

SD703 transistors are summarized in Table 1 [20, 21, 22].    

Table 1: Polyfet SP202, SP203 and SD703 Transistor Specifications 

 Freq 

[MHz] 

Gain  

[dB] 

P1dB  

[dBm] 
Bias Current 

[mA] 
Zin  

[Ω] 
Zout 

 [Ω] 
SP202 500 ~15 +39 400 5.4 – j7.4 14.8 – j12 

SP203 500 ~15 +40.8 600 3.5 – j4.5 10.9 – j6.5 

SD703 200 ~15 +50.4 600 3.0 – j7.8 5.4 – j1.6 

 

Each stage was designed and tested separately to be matched to 50 Ω on the input and output.  

Then, the pre-amplifier stage and driver stage were connected and tested together.  Finally, the 

power amplifier stage was added and the complete 3-stage power amplifier was tested.   

5.2.2 DC Bias Simulations  

To determine the necessary bias current for the SP202, SP203 and SD703 transistors, a DC bias 

simulation was performed using Agilent’s Advanced Design System (ADS) 2008 Version 2.  The 

ADS simulation schematic has been provided in Appendix B.  The non-linear Spice models were 

downloaded from the Polyfet website (www.polyfet.com) for the SP202, SP203 and SD703 

transistor.  It is important to note that according to the Polyfet website, “ADS2005 and ADS2006 

MOSN model simulates incorrectly when Rd and/or Rs are less than or equal to 0.1 Ω.  

Consequently, the “workaround models” need to be used.”  The SP202 and SP203 transistors 

did not have a workaround model; therefore, the non-linear ‘workaround’ model was used only 

for the SD703 transistor. The schematic for each ADS transistor model is provided in Appendix B.  
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The DC bias simulation performed in ADS using the non-linear models did not provide the same 

results as those shown in the datasheet for any of the transistors.  Therefore, a DC bias 

measurement on an actual SP203 transistor was performed in the lab using a drain-to-source 

voltage of +28 V.  Table 2 provides the comparison between the datasheet, simulated and 

measured results for the SP203. 

Table 2: SP203 DC Bias - Datasheet, Simulated and Measured 

 Drain Current, Id (A) 

VGS (V) Datasheet  Simulated Measured 

2 0 0 0 

4 0.4 1.4 0.51 

6 1.6 3.2 1.56 

8 2.6 4.1 3.0 

 

The data from Table 2 indicate that the datasheet values are more accurate and the SP203 non-

linear ADS model is not accurate; therefore, the gate-to-source bias voltage (VGS) needs to be 

adjusted in ADS to force the model to provide the desired current.  This VGS value will not be 

the actual VGS value used to bias the transistor in the implemented design; therefore, the VGS 

value used in ADS for the SP203 driver stage will be referred to as VGS_DA’.  Since the simulated 

and datasheet DC bias values for the SP202 and SD703 were also conflicting, it was assumed 

that the datasheet values were accurate and the non-linear model was inaccurate and would 

also need to have adjusted VGS values, hereafter referred to as VGS_PRE’ for the SP202 and 

VGS_PA’ for the SD703.   

For each amplification stage, the DC bias point (i.e. operating class) was determined according 

to the peak voltage (Vp) of the input waveform to that stage (or the peak output voltage of the 

previous stage, assuming no losses due to impedance mismatch).  For example, the Vp of the 

input waveform to the pre-amplifier stage is based on the peak output voltage of the Direct 

Digital Synthesizer (DDS), assuming no reflected losses from impedance mismatch.  The DDS has 

a maximum output power of about +4.5 dBm (or 2.82 mW) for a 50-Ω system.  Using Equation 

12, where Power is in Watts, the peak voltage is 1.0 V.   

2*50* Ω= PowerVp      (12) 

However, as seen in Table 1, the input impedance at the gate of the SP202 is much less than    

50 Ω (5.4 Ω according to the datasheet), thus a matching transformer was used to transform the 

impedance.  The impedance transformer will also transform the voltage and the input voltage 

will be stepped down according to the turns-ratio of the input matching transformer.  A 4:1 

impedance matching transformer was used on the input of each stage to transform the input 

impedance closer to 50 Ω; therefore, the maximum Vp of the input waveform at the gate of the 

transistor would be one-half the voltage of the 50-Ω system, or 500 mV.  Table 3 provides a 

summary of the calculation of the operating conditions for each transistor. 
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Table 3: Operating Conditions - SP202, SP203 and SD703 

 
Max. Pin 

[dBm] 

Max. Pin [W] Max. Vp at 

Input [V] 

Vp Swing at 

Gate [V] 

Current 

Swing [A] 

SP202 +4.5 0.00282 0.531 ±0.266 0.48 to 0.51 

SP203 +25 0.32 5.66 ±2.82 0 to 1.75 

SD703 +40 10 31.6 ±15.8 0 to 25 

 

According to the SP202 datasheet, a gate voltage (Vg) greater than 2 V is needed for conduction 

and a Vg of about 4 V is needed to bias the transistor at 400 mA drain current.  Using the data 

from Table 3, it can be seen that the SP202 biased at 400 mA, is operating as a Class A amplifier 

since the input voltage swing will not cause the transistor to turn off (i.e. 4V – 0.5V = 3.5V > 2V).  

The SP203 datasheet also states a Vg greater than 2 V for conduction and a Vg of about 4.2 V is 

needed to bias the transistor at 600 mA drain current.  The SP203 biased at 600 mA is operating 

as a ‘weak-biased’ Class AB amplifier since the input voltage swing causes the transistor to turn 

off for a small portion of the input waveform. (i.e. 4.2V – 2.82V = 1.38V < 2V).  The SD703 needs 

to operate as a ‘strong-biased’ Class AB push-pull amplifier; therefore, the gate voltage should 

be such that the transistor is on the edge of conduction, which the datasheet states that a gate 

voltage of 2 V is needed for conduction.  From Table 3, it can be seen that the SD703 biased at 

600 mA is operating as a ‘strong-biased’ Class AB push-pull amplifier.  It is important to note that 

according to the datasheet, the maximum DC drain current of the SD703 is 16 A; however, 

according to Table 3 the SD703 will swing up to 25 A.  This does not exceed the maximum 

current rating of the transistor, since the 25 A is an AC current and the 16 A is for DC current.  

The ‘Id & Gm vs Vg’ curve on the datasheet shows a drain current of about 25 A for Vg > 20 V; 

thus, the transistor will operate within the tolerances specified.   

Finally, the drain voltage bias point (Vd) is determined using the output voltage of the SD703 

since it will have the largest voltage swing.  From Equation 12, the Vp of the SD703 output 

waveform is 100 V for a 50-Ω system.  Given that the datasheet states an output impedance of 

5.4 –j1.6 Ω at 200 MHz, a 1:9 impedance transformer will be used to transform the output 

impedance of the SD703 to 50 Ω (or transform 50 Ω into the Ropt of 5.4 + j1.6 for maximum 

power).  Thus, the Vp at the drain of the transistor, with an ideal turns ratio of 3, will be 33.3 V.  

Since the maximum available supply voltage is +28 V, the output voltage at the drain will swing 

from -5.3 V up to 61.3 V, thus there may be some clipping on the output voltage waveform (i.e. 

28V – 33.3V = -5.3V < 0) depending on the actual turns ratio of the implemented 1:9 impedance 

transformer and output matching network.  Also, the SD703 datasheet states that the maximum 

drain-to-source voltage is 70 V; hence, the transistor will operate within the tolerances 

specified. 

5.2.3 Stability Simulations 

The stability of an amplifier can be determined from the S-parameters, the matching networks, 

and the terminations.  In a two-port network, oscillations are possible when either the input or 



Page 42 of 137 

output port presents a negative resistance.  This occurs when |ΓIN| > 1 or |ΓOUT| > 1, which for a 

unilateral device occurs when |S11| > 1 or |S22| > 1.  Hence, if |S11| > 1 the transistor presents a 

negative resistance at the input, and if |S22| > 1 the transistor presents a negative resistance at 

the output.  A convenient way of expressing the necessary and sufficient conditions for 

unconditional stability is given in Equation 13 and 14. [23] 
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After selecting the operating bias current for each transistor, a stability simulation was 

performed using ADS for the SP202, SP203 and SD703 transistor from 10 MHz to 1 GHz at 1 MHz 

steps.  The ADS measurement expressions ‘stab_meas()’ and ‘stab_fact()’ were used to test the 

necessary and sufficient conditions for unconditional stability.  ‘Stab_fact()’ returns the Rollett 

stability factor (also known as ‘K-factor’) defined in Equation 13.  ‘Stab_meas()’ returns the 

stability measure defined according to Equation 14.  Each stage was simulated independently 

and initial stability simulations showed that the SP202 and SP203 stages were not 

unconditionally stable; therefore, drain-to-gate feedback was added to the SP202 and SP203 

transistors to ensure unconditional stability.  Drain-Gate feedback improves the stability of a 

MOSFET by using feedback to reduce the negative resistance of the transistor by limiting the low 

frequency gain to a level which will not support oscillation with any input termination [24].   

Furthermore, the initial stability simulations also showed that the SD703 power stage was not 

unconditionally stable; therefore, shunt-gate resistance was added to the SD703 to ensure 

unconditionally stability.  Shunt-gate resistance increases the loss of any series impedance 

terminating the gate terminal.  At frequencies where the gate input impedance is negative, the 

shunt resistance prevents oscillation by effectively cancelling the negative resistance of the 

transistor.   A series capacitor is also included as a DC block.  A final stability simulation was 

performed on the complete 3-stage design to ensure that the interstage matching did not affect 

the stability.  The schematics for each ADS stability measurement are located in Appendix B.  In 

summary, the simulation of the final amplifier design was unconditionally stable from 10 MHz to 

1 GHz with an input power to the SP202 of 0 dBm. 

5.2.4 Load-Pull Simulations 

Load-pull consists of varying or “pulling” the load impedance seen by a transistor while 

measuring the performance of the transistor.  The load-pull simulation is used to measure a 

transistor in actual operating conditions, and is important for large-signal, non-linear devices 

(such as transistors) where the operating point may change with power level or tuning.  Thus, 

the output power and efficiency capabilities of a transistor can be simulated without the need of 

building and measuring and entire amplifier.  In ADS design guide, the built-in example 

schematic ‘HB1Tone_LoadPull’ was modified to perform the load-pull measurements for the 
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SP202, SP203 and SD703 transistors.  The ‘HB1Tone_LoadPull’ simulation generates contours 

that indicate load impedance values that when presented to the output of the transistor (along 

with specified source impedance and available source power) will cause a certain power to be 

delivered to the load.  The actual contour lines for output power and PAE are generated for 

varying load impedances.  The schematics for each ADS load-pull measurement are provided in 

Appendix B.  It is important to note that the load-pull simulation for the SD703 was performed 

as a single-ended measurement even though the SD703 is a push-pull device.  Assuming the 

same optimum load impedance (Zopt) will be presented to both halves of the SD703; Zopt for 

the push-pull transistor can be calculated by doubling the single-ended Zopt since both halves 

will be in series.  Table 4 provides the single-ended load-pull measurements for the SP202, 

SP203 and SD703 transistors.  Since the gain decreases as frequency increases, the value at 

200MHz was used for Zopt.  Pout and PAE were calculated by taking an average of the 

measurement values from 140 to 220 MHz at 20-MHz intervals.  It is significant to state that the 

PAE values in Table 4 do not consider any losses; therefore, the actual PAE will be lower than 

the values in Table 4.  Table 5 provides the Zout (where Zopt is the complex conjugate of Zout) for 

maximum power from the SP202, SP203 and SD703 datasheets at various frequencies.  It can be 

seen that the simulated values for Zopt in Table 4 agree with the datasheet values in Table 5 for 

maximum power.   

Table 4: Load-Pull Simulation Results - SP202, SP203 and SD703 (single-ended) 

 Pin [dBm] Zopt [Ω] Pout [dBm] Pout [W] PAE [%] 

SP202 +5 12.03 + j4.4 22.9 0.195 1.6 

SP203 +22 12.58 + j11.6 41.5 14.1 52 

SD703 +26 2.55 + j0.6 50.2 104.7 60 

 

Table 5: Zout vs Frequency - SP202, SP203 and SD703 (push-pull) Datasheet Values  

  Zout [Ω] 

 Pout [dBm] 100 MHz 200 MHz 500 MHz 600 MHz 

SP202 +39 Not given Not given 14.8 – j12 11.1 – j10 

SP203 +40.8 Not given Not given 10.9 – j6.5 7.2 – j5.0 

SD703 +50.4 11.0 – j3.6 5.4 – j1.6 2.8 + j0.4 2.2 + j1.2 

 

 5.2.5 Input and Output Matching Networks 

In power amplifier design, the output matching network is one of the most crucial design 

elements primarily because it is responsible for transforming the 50-Ω system impedance into 

the Zopt of the transistor which primarily determines both output power and PAE.  Also, since 

transistors are not unilateral devices, the input impedance (Zin) will change based upon the 

output impedance (Zout).  For these reasons, the impedance matching networks for each 

transistor were designed according to the following procedure: 
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1) Zopt measured using ADS Load-Pull simulation � Output MN designed to transform 

50Ω system impedance into Zopt.  

2) Zin measured using ADS with Output MN � Input MN designed to transform Zin into 

50Ω system impedance. 

Using load-pull data from Table 4, Zopt for the SD703 can be calculated as 5.1 + j1.2 Ω and it can 

be seen that a 1:9 transformer provides a wideband transformation of 50 Ω into 5.56 + jX Ω, 

where X is the transformation of the reactive component.  To compensate for the parasitics of 

the transformer and further transform 5.56 Ω into Zopt of 5.1 + j1.2 Ω, a lumped element 

matching network (described in Section 5.2.5.2) was designed to complete the transformation 

into Zopt.  The same technique of a wideband transformer with a lumped element matching 

network was utilized for the output transformer of the SP202 and SP203 with the exception that 

a 1:4 transformer was designed to transform 50 Ω into 12.5 + j11 Ω.   

  5.2.5.1 Impedance Transformers / Baluns 

In the design of RF PAs, wide-band transformers play an important role in the quality of 

the amplifier as they are a fundamental component in determining the input and output 

impedances, gain flatness, linearity, power efficiency, and other performance 

characteristics.  Selection of the magnetic materials, the conductors, and the method of 

construction is crucial as these choices are significant in determining the overall 

performance of the transformer.  The theory and approach in [26] was used to design, 

simulate and construct the transformers used in the matching networks.  Three 

different configurations of impedance transformers were utilized in the matching 

networks as outlined in Table 6.   

Table 6: Impedance Matching Transformers / Baluns 

  Input MN Output MN 

SP202 4:1 Equal Delay Unun 1:4 Equal Delay Unun 

SP203 4:1 Equal Delay Unun 1:4 Equal Delay Unun 

SD703 1:1 Balun w/ 4:1 Balbal  1:9 Balbal w/ 1:1 Balun 

 

After constructing each transformer, 1-port S-parameters were taken using the 

HP8722D Vector Network Analyzer (VNA) with the transformer terminated into 50Ω.  

Then, two identical transformers were connected back-to-back and 2-port S-parameters 

were measured using the HP8722D VNA.  A MATLAB script was used to retrieve the data 

via the GPIB port using a laptop computer and convert the .DAT files into .S1P and .S2P.  

The S-parameters (in the form of .S1P and .S2P files) were then introduced into ADS to 

create lumped element equivalent circuit models for each transformer based on the 

equivalent circuit model in [26].  The ADS schematics for determining the equivalent 

circuit models and the simulation results are provided in Appendix B.  The equivalent 

circuit models for each transformer were then used in the power amplifier design 
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simulation instead of the ADS component ‘XFERTL2’, to provide a more accurate 

representation of the parasitic reactive elements of each transformer. 

One of the prime factors limiting high frequency performance of transmission line 

transformers is the phase error caused by the arbitrary length of the transformers’ 

interconnections.  If these connections were made using a transmission line of the same 

length, velocity factor and impedance as the transformer line itself, then the phase error 

would be eliminated.  This transformer configuration, as illustrated in Figure 33, is a 

modification of the basic 1:4 Ruthroff transformer and is referred to as an ‘equal delay’ 

(ED) transformer.  No ferrite loading is required for the added interconnecting delay 

line.  There is also no voltage drop on the outer conductor, thus no isolation is required 

from one end to the other [25].   

 

Figure 33: 1:4 Equal Delay Unun Transformer Diagram 

Typically, the best response is achieved when the ED transformer is constructed using a 

straight, coaxial cable loaded with cylindrical cores or stacked toroids so that the 

opposite ends of the transformer can be separated by the length of the transmission 

lines.  However, due to layout constraints of the T/R module, the ED transformer was 

also constructed using a bent coaxial cable loaded with ferrite so that it could be 

mounted vertically and conserve horizontal real estate on the board layout.  The straight 

and bent ED transformer implementations are shown in Figure 34 and Figure 35, 

respectively.  The geometric mean is used to determine the optimum characteristic 

impedance of the coaxial cable according to Equation 15 [25].   

outin ZZZo =     (15) 

Thus, for both ED transformers the optimum Zo of 25Ω was calculated using Equation 15 

and 25-Ω coax (UT-047-25 from Micro-Coax) was used to construct both the straight and 

bent 1:4 ED transformer.  A length of about 1 inch was used for the straight ED 

transformer and a length of 1.75 inches was used for the bent ED transformer.  The UT-

047-25 specifications are provided in Appendix E.  Five, 43 material ferrite beads (FB-43-

101 from Amidon) were used for the straight ED transformer, while one 43 material 

ferrite binocular core (BN-43-2402) was used for the bent ED transformer.  
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Furthermore, the 1:4 ED transformer was used in reverse to realize the 4:1 ED 

transformers.  The simulated equivalent circuit model transformation results are given 

in Figure 36. 

 

Figure 34: 1:4 Equal Delay Unun Transformer Implementation – Straight 

 

 

Figure 35: 1:4 Equal Delay Unun Transformer Implementation – Bent 
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Figure 36: 1:4 ED Equivalent Circuit Impedance Transformation Results 
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The 4:1 Balbal (balanced-to-balanced) transformer was constructed according to the 

schematic, illustration and implementation shown in Figure 37, Figure 38 and Figure 39, 

respectively [26].  The optimum Zo of 25 Ω was calculated using Equation 15 and two, 

1.5 inch long, 25-Ω coax (UT-047-25 from Micro-Coax) cables were used to construct the 

4:1 Balbal.  Two, 43 material binocular cores (BN-43-2302 from Amidon) were used for 

the ferrite material.  Typically, this 4:1 transformer is implemented in a horizontally 

planar fashion, as depicted in Figure 38, but to save horizontal real estate on the board 

layout the transformer was implemented vertically instead.  The simulated equivalent 

circuit model transformation results are given in Figure 40. 

 

Figure 37: 4:1 Balbal Transformer Schematic 

 

 

Figure 38: 4:1 Balbal Transformer Diagram 
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Figure 39: 4:1 Balbal Transformer Implementation 
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Figure 40: 4:1 Balbal Equivalent Circuit Impedance Transformation Results 

The 1:9 Balbal transformer was constructed according to the schematic, illustration and 

implementation shown in Figure 41, Figure 42 and Figure 43, respectively [26].  The 

optimum Zo of 16.7 Ω was calculated using Equation 15 and 15-Ω coax (UT-085C-15 from 

Micro-Coax) was used to construct the 1:9 Balbal transformer.  The UT-085C-15 

specifications are provided in Appendix E.  It is important to note that smaller diameter 

coax could have been used in this design since the average power handling capability at 

maximum output power would only be about 10 W with a 10% duty cycle.  However, 

the larger diameter coax was used for two reasons.  One, to ensure a CW power 

handling capability of 100 W at 210 MHz and two, to reduce the insertion loss of the 

cable since insertion loss decreases as the diameter increases.  The ferrite material used 
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were two, 43 material binocular cores (BN-43-6802 from Amidon).  Typically, this 1:9 

transformer is implemented in a horizontally planar fashion, as depicted in Figure 42.  

However, to conserve board layout space the transformer ‘halves’ were stacked 

together and laid out horizontally, as shown in Figure 43, which reduced the area 

occupied by the transformer by one-half and still met the height restriction of 1 inch 

even with the 62-mil board and 250-mil heat-sink mounting plate.  Since this 

transformer is responsible for the most crucial transformation of the design, the longer 

cores and cables were used to increase the performance of the transformer [26] which 

extended the transformer height beyond the 1 inch design limit; thus, this transformer 

could not be mounted vertically.  As a final note, 61 or 64 material could also be used 

for this design if 43 material is not available as they have similar characteristics beyond 

100 MHz.  The simulated equivalent circuit model transformation results are shown in 

Figure 44. 

 

Figure 41: 1:9 Balbal Transformer Schematic 

 

Figure 42: 1:9 Balbal Transformer Diagram 
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Figure 43: 1:9 Balbal Transformer Implementation 
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Figure 44: 1:9 Balbal Equivalent Circuit Impedance Transformation Results 
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5.2.5.2 Lumped Element Matching Network 

Once the values of the parasitic reactive elements of the transformer model have been 

determined, the inductive reactance of the transmission lines (i.e. the coax) in each 

transformer will usually dominate and can be used along with additional external 

capacitance to form a lumped element matching network to complete the matching to 

the desired Zopt from the load-pull simulations [26].  Table 7 provides a summary of the 

Zopt data from Table 4 and data from Figure 36, Figure 40 and Figure 44.  The data from 

Table 7 shows that the 1:4 ED Unun transformer is sufficient in generating Zopt for both 

the SP202 and SP203 transistors output matching networks; thus, additional external 

matching is not necessary.  However, it can be seen that the measured results of the 1:9 

Balbal do not provide a sufficient match and additional external capacitance will be 

needed to reduce the inductive reactance and complete the transformation. 

Table 7: Zopt vs. Measured Transformed Impedance 

 Zopt [Ω] Measured Z @ 200 MHz [Ω] 

SP202 12.03 + j4.4 ~12.5 + j3.5 (1:4 ED Unun) 

SP203 12.58 + j11.6 ~12.9 + j9.5 (1:4 ED Unun) 

SD703 5.1 + j1.2 ~6.8 + j11.4 (1:9 Balbal) 

 

Using ADS, the lumped element matching network of Figure 45 was added to the 1:9 

Balbal transformer to create the Output MN.  The ADS equivalent circuit model named 

‘1to9_2COAX_Balun_UT85_EQ_MODEL’ in Figure 45 also includes the 1:1 Balun which 

was constructed from 50Ω RG405/U coaxial cable (Belden 1671A).  The simulation 

results for the SD703 output MN are given in Figure 46, which shows a transformation 

of 50 Ω to 5.14 + j2 Ω at 200 MHz which is sufficient for matching to the Zopt from     

Table 7.   

   

 

Figure 45: Output Matching Network Model (‘MN_OUTPUT_SD703_MODEL’) 
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Figure 46: SD703 Output Matching Network Simulation Results 

  5.2.5.3 Input Matching Networks 

The input MN was designed for each stage by first, attaching the previously designed 

output MN, then inserting the appropriate matching transformer on the input 

(according to Table 6) and measuring the input impedance (Zin) with the circuit under 

biased operating conditions.  If needed, a lumped element matching network was 

designed to complete the matching of Zin to 50 Ω.  From the initial simulation results it 

was determined that only the SD703 input transformer required an additional lumped 

element matching network as shown in Figure 49.  The 4:1 ED input transformers for the 

SP202 and SP203 sufficiently provided the transformation with a VSWR less than 2 from 

140 to 210 MHz as shown in Figure 47 and Figure 48.  Figure 50 provides the simulated 

results for the SD703 input MN given in Figure 49.   
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Figure 47: SP202 Input Matching Network Simulation Results 
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Figure 48: SP203 Input Matching Network Simulation Results 

 

 

Figure 49: SD703 Input Matching Network (‘MN_INPUT_SD703_MODEL’) 
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Figure 50: SD703 Input Matching Network Simulation Results 

 5.2.6 Complete Power Amplifier Design Simulation 

After designing the initial input and output matching networks, each stage was simulated 

independently to determine the effects of the bias circuit with the input MN on the output 

impedance, since the previous design procedure did not take into account these effects for the 

output impedance.  The final design schematics for each stage can be found in Appendix B.  

Figure 51, Figure 52 and Figure 53 are the simulated results for the output VSWR for the SP202, 

SP203 and SD703, respectively. 
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Figure 51: SP202 Output VSWR Simulation Results 
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Figure 52: SP203 Output VSWR Simulation Results 
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Figure 53: SD703 Output VSWR Simulation Results 

Finally, the three stages were connected together with 2-dB attenuators placed between each 

stage to reduce any reflections between stages due to mismatch, as shown in Figure 54.  The 

schematics for the amplifier blocks ‘SP202_DA_Final_Model’, ‘SP203_DA_Final_Model’, and 

‘SD703WA_PA_Final_Model’ can be found in Appendix B.  The S-parameter results are provided 

in Figure 55 and Figure 56. 
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Figure 54: Final Design Simulation Schematic 
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Figure 55: S11 and S22 of Final Design Simulation 
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Figure 56: S21 of Final Design Simulation 

As seen in Figure 55, the return loss (specifically S22) was ‘tuned’ to the higher end of the 

frequency band in order to compensate for the high-frequency gain reduction which occurs in 

most RF PAs, as is apparent in Figure 56.  The gain has about a 3-dB variation from 140 to 210 

MHz in the simulation, which will cause an increase in side-lobes as discussed in section 2.3.1.  

However, the gain can be ‘tuned’ and ‘flattened’ in the hardware in the final implementation by 

adjusting the external capacitance in the SD703 output MN.  Also, the output power can be 

flattened by adjusting the input power at individual frequencies through the digital predistortion 

linearization as discussed in Chapter 6.   

5.2.7 MOSFET High Speed, High Current Switching Circuit Design 

5.2.7.1 Theory of Operation 

One of the novel features of this PA design is the ability to switch (or pulse) the PA 

synchronously with the transmitted radar pulse; thereby, only allowing the transistors 

to draw current approximately when the pulse is present.  Since the PAE is calculated 

based on a CW mode of operation when the amplifier is conducting (i.e. transmitting), 

this technique will increase the overall efficiency of the amplifier since according to 

Table 1 there is at least 1.6 A of bias current being drawn even when the PA is not 

transmitting.  Using a +28 V supply, this equates into about 45 W of power being 

dissipated even when the PA is not transmitting.  Typically, the gate bias voltage (VGS) is 

switched to ‘remove’ the bias current; however, this requires a large current to be 

driven into the gate in order to charge the large input gate capacitance (CGS) of the FET.  

Figure 57 illustrates the MOSFET equivalent circuit with only those parasitic components 
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that have the greatest effect on switching.  LD and LS are the drain and source 

inductances, respectively, and typically are around a few tens of nH [27].  

 

Figure 57: MOSFET Equivalent Circuit (Switching Components Only) [27] 

Once CGS is fully charged, the drive current starts to charge the Miller capacitance (CGD) 

which requires a longer charge time than that for CGS.  These charge times result in a 

turn-on and turn-off delay of the transistor.  The turn-on delay, τd(on), is the time taken 

to charge the input capacitance Ciss (i.e. CGS + CGD) before drain current conduction can 

reach its maximum value.  Similarly, turn-off delay, τd(off) is the time taken to discharge 

the capacitance after the FET is switched off.  The turn-on charging time waveforms are 

illustrated in Figure 58, where τd(on) = t3 [27].   

 

Figure 58: Gate and Drain Charging Waveforms [27] 

If VGS is constantly applied and VDS is switched, the amplifier will be ‘pre-biased’ since CGS 

will be ‘pre-charged’ and the conduction channel will already be open ready to complete 

the charging of CGD once the drain voltage is applied.  This will improve efficiency by 
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reducing the turn-on delay of the transistor since the charging time will begin between 

t1 and t2 depending on the bias point, rather than at t0.   

A high speed switching circuit was designed to achieve the desired turn-on and turn-off 

times of less than 500 ns.  Figure 59 illustrates the operation of the switching circuit. 

 

Figure 59: Operation of High Speed Switching Circuit [28] 

Q1 through Q3 is a TTL level drive circuit for fast switching of Q4.  R1 controls the 

operating drive current of the circuit with smaller values of R1 providing higher current 

which result in faster switching speeds, but also increased power dissipation.  When the 

switching circuit is turned on, Cgs(Q4) is charged along the solid current line according 

to the charging time constant in Equation 16. 

   )4(*)2,(arg_ QCgsQonRdsech =τ      (16) 

Rds(on,Q2) is the “on” state drain-source resistance of Q2 and Cgs(Q4) is the gate-

source capacitance of Q4.  When the switching circuit is turned off, Cgs(Q4) is 

discharged along the dotted line according to Equation 17 with Q3 acting as a voltage 

controlled variable resistor. 

)4(*)3(arg_ QCgsQRdsedisch =τ      (17) 

Rds(Q3) is the voltage controlled variable resistance of Q3.  A BJT, rather than a FET, is 

used for Q3 to reduce the fall time due to the lower input threshold voltage of Q3 which 

maintains a lower Rds(Q3) while Cgs(Q4) is discharged [28].  Also, since Q4 has a 

maximum VGS of ±20 V, the switching circuit requires a zener diode, as shown in Figure 

60, to protect Q4 from the +28 V supply voltage.  The breakdown voltage of the zener 

diode is selected according to Equation 18 [28]. 

44 ,)( QofVMaximumVVQofV gsCCZenerBRthgs <−<    (18) 
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Figure 60: High Speed Switching Circuit General Schematic [28] 

It can be seen from Equation 16 and 17 that the FETs and BJT selected should have low 

Rds(on) and low Cgs for faster switching.  Table 8 indicates the components selected for 

simulating and implementing the switching circuit shown in Figure 60. 

Table 8: Switching Circuit Component List 

 Component 

R1 250 Ω, 2W   

Q1,Q2 IRLML2803 

Q3 MMBT2222 

Q4 SPB08P06P 

D1 BZX4C15L 

  

Linear Technology’s LTspice IV was used to simulate the switching circuit as shown in 

Figure 61.  The most effective value for R1 was determined by performing a series of 

simulations using a 5-Ω load.  R1 was chosen to be 250 Ω according to the simulation 

results provided in Table 9.  A parallel combination of three, 750 Ω, 1 W, SMD resistors 

were used to implement the 250 Ω resistor so that the power could be divided among 

them.   

Table 9: Switching Circuit Optimization of R1 - Simulation Results 

R1 [Ω] Rise Time [ns] Fall Time [ns] I_R1 [mA] P_R1 [W] 

5k 230 1625 5.6 0.016 

1k 230 460 28 0.078 

500 230 305 56 1.57 

250 235 224 112 3.14 

100 245 170 280 7.84 

50 265 138 560 15.68 
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Since the gate biasing voltages will also be created using the +28 V supply, the switching 

circuit will be switching only the +28 V supply that is attached to the drain of each 

transistor; thus, the RF choke inductors were also included in the simulation.  However, 

the switching speed will be influenced by the frequency dependent inductance of the RF 

chokes and the pulse contains high frequency content; therefore, a more accurate RF 

model was created for each RF choke using ADS [29].  Initial simulation results indicated 

ringing at the bottom of the falling edge; therefore, a high voltage, high current Schottky 

diode (MSBR340) was placed in parallel with each RF choke inductor to dampen the 

oscillations.  Also, a 4.7 Ω resistor was placed on the gate of Q4 to suppress gate ringing 

[30].  The RF choke equivalent circuit simulation and results can be found in Appendix C.  

The design implementation of the RF chokes is discussed further in Section 5.2.7.1.  Also 

included in the simulation is the circuitry for a switching indicator LED to provide a visual 

method of determining if the switching circuit is operational.  The switching circuit 

simulation results of Figure 62 and Figure 63 show a rise time of 80 ns and fall time of 

100 ns, respectively.   

 

 

Figure 61: High Speed Switching Circuit LTspice Simulation 
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Figure 62: Rise Time of Switching Circuit - Simulation Results 

 

 

Figure 63: Fall Time of Switching Circuit - Simulation Results 
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5.2.7.2 RF Choke Inductor Design and Simulation 

Typically, an air core inductor rather than a ferromagnetic core inductor is used as an RF 

choke for PAs due to having lower equivalent series resistance (ESR).  However, air core 

inductors occupy a larger amount of space due to the large wire diameter for current 

handling along with the number of turns needed to realize high values of inductance.    

A ferromagnetic core inductor can realize higher inductances with less number of turns 

and occupy less space.  Therefore, since the pre-amplifier and driver amplifier stages 

draw significantly less current than the power amplifier stage, a toroidal RF choke was 

implemented using 19 turns of 20 AWG wire on an Amidon FT50-61 core, as shown in 

Figure 64; thus, the power losses due to the higher ESR of the toroidal inductor will be 

less significant.   

 

 

Figure 64: FT50-61 RF Choke Inductor 

Furthermore, as seen in the ADS simulations in Appendix C, the self-resonant frequency 

(SRF) of the toroidal core is about 40 MHz, which means the RF choking reactance is 

actually capacitive from 140 to 210 MHz, ranging from -450 to -350 Ω.  This ‘capacitive’ 

choking reactance should also be beneficial for the drain pulsing circuit, since the 

effective capacitance is less than 2.5 pF rather than an equivalent inductance of about 

265 nH required to realize the same impedance using ‘inductive’ choking reactance. 

Since the power amplifier stage experiences higher currents, the power loss due to the 

ESR is significant; therefore, an air core inductor was constructed using 15 turns of 20 

AWG wire on a 141 mil form (i.e. inner diameter = 141 mil) as shown in Figure 65.   As 

seen in the ADS simulation results in Appendix C, the air core inductor provides an 

inductance reactance of 235 to 1100 Ω from 140 to 210 MHz. 
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Figure 65: Air Core RF Choke Inductor 

 5.2.7.3 Results and Conclusions 

The drain pulsing circuit was initially tested without the transistors in the circuit.  An 

equivalent resistance of 25 Ω and capacitances from the datasheet for each transistor 

based on the equivalent circuit model of Figure 57 were used to initially test the drain 

pulsing circuit.  Initial testing showed a rise-time of 110 ns and fall-time of 150 ns.   

However, when the drain pulsing circuit was tested with the transistors in the circuit, 

the SD703 transistor was continuously being destroyed.  It was determined that the 

SD703 transistor was being damaged due to the ‘dv/dt capability’ (or ‘dv/dt induced 

turn-on’) of a MOSFET transistor.  This occurs when a positive, fast-changing voltage (dv) 

appears across the drain-to-source junction within a very short time interval (dt).  The 

applied dv/dt results in an instantaneous current flow through the charge of the 

MOSFET parasitic drain-to-gate capacitance (CGD) as depicted in Figure 57 and an 

induced voltage is generated at the gate of the MOSFET [31].  It was determined that 

the +28 V drain voltage was being induced onto the gate which exceeded the maximum 

VGS of +20 V for the SD703.  This conclusion was verified by applying a drain voltage of 

+15 V which would be less than the VGS maximum of +20 V, then measuring the induced 

gate voltage transient at the gate of each transistor.  As seen in Figure 66, the VGS of the 

SD703 (blue trace) reaches a maximum voltage of +15 V.    
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Figure 66: SD703 Induced VGS of Drain Pulsing Circuit 

The induced gate voltage measurements of the SP202 and SP203 were similar; 

therefore, only the SP203 measurement is provided in Figure 67 to verify that neither 

the SP202 nor the SP203 experienced an induced gate voltage.  This was because a RC 

drain-to-gate feedback stability network was used with a resistance of 221 Ω and 

capacitance of 10 nF for the SP202 and SP203 as depicted in Figure 68, which resulted in 

a larger charging time constant than the SD703.  Ultimately, it was determined that 

drain pulsing would not be implemented due to the damaging effects of the dv/dt 

induced voltage; therefore, modifications were made to the design as described in 

Section 5.2.7.4. 

 

 

Figure 67: SP203 VGS of Drain Pulsing Circuit 
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Figure 68: MOSFET Equivalent Circuit with RC Drain-to-Gate Feedback 

Furthermore, the toroidal RF choke inductors caused ringing on the drain voltage; 

therefore, the RF choke inductors for the SP202 and SP203 were also changed. 

 5.2.7.4 Switching Circuit Modifications 

In order to correct for the limitations of pulsing the drain current as described in Section 

5.2.7.3, a modified version of the drain pulsing circuit was designed to switch the gate 

bias voltages as shown in Figure 69.  However, once again due to the RC drain-to-gate, a 

large current was needed in order to switch the gate bias under 500 ns; thus, the 

voltage divider network used to generate the gate bias voltages for the SP202 and 

SP203 transistors would require as low as possible resistor values to maintain a higher 

current for quickly charging the RC drain-to-gate feedback network.  Nevertheless, the 

higher current will generate larger power dissipation in the low valued biasing resistors; 

therefore, a trade-off between power dissipation and switching time was considered 

and the resulting value of 100Ω was selected as shown in Figure 69.  The 100 Ω 

resistance should be implemented with at least three, parallel, 1 W, 300 Ω resistors for 

operation at 10-kHz PRF; however, in the prototype depicted in Figure 73 only one, ½ 

Watt resistor was used and the prototype was only tested at a PRF of 1-kHz.  Also, a 

small valued resistor of 20 Ω was placed in parallel with the tuning potentiometer in 

order to protect the gate of the transistors from exceeding the maximum VGS of +20 V.  

Furthermore, the bypass capacitors on the gate of each transistor were removed along 

with the 1 kΩ resistors.  
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Figure 69: Gate Pulsing Circuit with MOSFET Biasing 

5.2.8 Printed Circuit Board Design and Packaging 

A 2-layer PCB layout of the original design (without the switching circuit modifications), shown 

in Figure 70, was generated using CadSoft’s Eagle 4.16r2 PCB design software.  The red area is 

the top layer, the blue area is the bottom layer and the pink lines are the cut layer.  Figure 70 

also provides an indication of how the PCB will fit into the T/R module enclosure along with 

mounting locations of external SMA connectors, DC bias pins and LEDs.  The two yellow lines 

running across the board indicate the need for jumper wires from the ‘+28V’ feed pin on the 

right side of the board to the ‘+28V_FEED’ pad on the upper left side of the board.  Another 

jumper wire is needed to connect the ‘+28V_CTRL’ feed pin on the right side of the board to the 

‘+28V_CTRL’ pad on the upper left side of the board.  Creating a multi-layer board would easily 

remove the need for jumper wires; however, in the prototype design it was deemed 

unnecessary and not cost effective.  Furthermore, the RF choke inductors described in Section 

5.2.7.1 are not shown in Figure 70; however, the mounting locations are indicated as ‘L1_A’ & 

‘L1_B’ for L1, ‘L4_A’ & ‘L4_B’ for L4, ‘L7_A’ & ‘L7_B’ for L7 and ‘L8_A’ & ‘L8_B’ for L8.  The PCB 

schematic used to generate the original prototype layout can be found in Appendix D.  Also, the 

PCB schematic for the modified prototype is also located in Appendix D. 
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Figure 70: Power Amplifier Board Layout with Packaging (without modifications) 

5.2.9 Prototype Fabrication 

CadSoft’s Eagle 4.16r2 was also used to generate the gerber files needed for manufacturing the 

circuit board.  Table 10 provides the file extensions that were submitted to Sierra Proto-Express 

for manufacturing.  It is important to note that the ‘.cut’ file includes the internal cuts so the 

transistors can be mounted to the mounting plate.  However, the ‘.drd’ file also includes the drill 

holes for mounting the transistor.  By assumption, the manufacturer may ignore the internal 

cuts and only drill the holes; thus, it is a good idea to inform the manufacturer that the internal 

cuts need to be removed even though there are drill holes inside the boundaries of the cuts.  It 

may seem counter-productive to include drill holes inside a cutout region; however, the drill 

holes are included on the ‘.drd’ file because the same gerber files are used in order to fabricate 

the mounting plate, shown in Figure 71 and Figure 72.  The mounting plate was fabricated in the 

CReSIS machine shop on the Haas CNC mill with the assistance of Dennis Sundermeyer.  The 

mounting plate was made out of aluminum for lighter weight.  The height of the mounting pads 
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for the SP202 and SP203 transistors are at the same level as the corner mounting hole pads (i.e. 

0.250”), while the SD703 height is 60-70 mils shorter since the SD703 transistor mounting base 

is about twice the thickness of the SP202 and SP203 transistors.  The switching circuit 

modifications could be made using the original prototype fabricated board; thus, the prototype 

in the T/R module enclosure with switching circuit modifications is shown in Figure 73 and the 

schematic for the modified prototype is provided in Appendix D.  The total weight of the PA with 

enclosure and mounting plate as shown in Figure 73 was 12.9 ounces which is less than the 

desired 16 ounces.  A significant amount of the weight is from the aluminum mounting plate 

which can be removed if surface mount potentiometers are used.  The primary purpose of the 

mounting plate is to elevate the board so the through-hole potentiometer leads do not touch 

the bottom of the enclosure.  If surface mount (or other packaging style) potentiometers are 

used, they need to be rated at 1/2 watt power or greater.  Also, since there are traces on the 

bottom layer of the 2-layer board, there needs to be some kind of insulation layer to protect the 

trace from touching the bottom of the enclosure.     

Table 10: Gerber Files Used for Manufacturing 

File Extension Description 

.top Top Layer 

.tsm Top Solder Mask 

.tsk Top Silk Screen 

.bot Bottom Layer 

.bsm Bottom Solder Mask 

.cut Cut Layer 

.drd Drill File 
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Figure 71: Manufactured Mounting Plate – Top View 

 

 

Figure 72: Manufactured Mounting Plate - Side View 
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Figure 73: Final Prototype with Modifications in T/R Module Enclosure 

 

5.3 UAV VHF Power Amplifier Characterization 

5.3.1 Gain and Output Power 

The maximum output power was measured in continuous-wave (CW) mode; thus, a constant   

+5 V was applied to the ‘TTL control line’ of the UAV PA.  The maximum input power of +4.5 

dBm (2.82 mW) was used to determine the maximum output power of the UAV PA.  The large 

signal output power of the UAV PA was measured from 140 to 160 MHz and 180 to 210 MHz at 

5-MHz intervals using the HP437B power detector according to the block diagram of Figure 74.  

The 50-dB of attenuation varied about 0.5 dB on the network analyzer which results in a power 

variance of about 12 W at 50 dBm.  To obtain a more accurate measure of the attenuation, the 

50-dB of attenuation was measured independently and the average of five measurements was 

used at each frequency interval.  The large signal gain was calculated using the maximum output 

power measurements (i.e. at Pin = +4.5 dBm) at each frequency interval.  The large signal gain 

and output power results are shown in Figure 75.  The plots for the PA output power transfer 
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function at each 5-MHz interval from 140 to 160 MHz and 180 to 210 MHz are provided in 

Appendix F.   

 

 

Figure 74: Large Signal Output Power and Gain Measurement Block Diagram 

 

Figure 75: Large Signal Output Power and Gain Measurement Results 

 5.3.2 Linearity 

The linearity of the UAV PA was determined for each frequency using the 1-dB compression 

point, as well as, the 2
nd

 and 3
rd

 harmonic power levels.  The linearity measurement setup is 

similar to the output power setup of Figure 74, except the HP8565E spectrum analyzer (SA) was 

used to measure the output power level of the fundamental and harmonic components.  Even 

though the power detector provides a more accurate power measurement of the fundamental, 

the SA was used in order to measure the harmonics and express their power level in relation to 

the fundamental output power level (i.e. dBc) using the same power measurement instrument.  
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Using the measurement setup of Figure 76, the UAV PA transfer characteristic was measured 

from 140 to 160 MHz and 180 to 210 MHz at 5-MHz intervals to determine the 1-dB 

compression point at each frequency.  The measured results were then linearly interpolated 

between each 5-MHz interval to generate an estimated 1-dB compression point at each 

frequency, as shown in Figure 77.  Since the maximum output power of the DDS is +4.5 dBm, the 

PA was designed to reach the 1-dB compression point at or around +4.5 dBm input power.  

Typically, for a transmitter PA , the 1-dB compression point is stated as output power.  However, 

to illustrate the accuracy of the PA design relative to the maximum output power of the DDS, 

the 1-dB compression point is given as input power as shown in Figure 77.  The transfer 

characteristic for each of the measured frequencies is provided in Appendix F.  It is important to 

note that the drain current (Id) was also measured at the same time as the transfer characteristic 

measurements in order to be used for the efficiency calculations of Section 5.3.3. 

 

Figure 76: Linearity and Efficiency Measurement Block Diagram 

 

Figure 77: 1-dB Compression Point Measured Results with Interpolation 
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As seen in Figure 77, the PA operates very closely to the 1-dB compression point when the +4.5 

dBm maximum input power is used.  Therefore, since the purpose of the predistortion is to 

linearize the PA at or around the 1-dB compression point, the 2
nd

 and 3
rd

 harmonic output 

power levels were measured using the +4.5 dBm maximum input power level from 140 to 210 

MHz at 5-MHz intervals using the setup in Figure 76.  The measured results were then linearly 

interpolated between each 5-MHz interval to generate an estimated 2
nd

 and 3
rd

 harmonic 

output power level at each frequency, as shown in Figure 78. 

 

Figure 78: Measured 2
nd

 and 3
rd

 Harmonic Output Power Levels  

 5.3.3 Efficiency 

The PAE was calculated using Equation 5 where Pin(fo), Pout(fo) and Id were taken from the 

transfer characteristic data measured in Section 5.3.2.  The PDC was calculated by multiplying the 

+28 V supply voltage times the measured drain current, Id.  The graphs of the measured PAE 

from 140 to 160 MHz and 180 to 210 MHz at 5-MHz intervals are provided in the Appendix.  

Once again, the efficiency measurements shown in Figure 79 were calculated at +4.5 dBm rather 

than at the 1-dB compression point since the PA operates very closely to the 1-dB compression 

point when the +4.5 dBm maximum input power is used.         
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Figure 79: Measured PAE at +4.5 dBm Maximum Input Power 

5.3.4 Input and Output Impedance 

The input and output impedance were measured using a 1-port network analyzer measurement.  

An .s1p file was created for each measurement and the results were plotted in ADS.  The return 

loss and VSWR for the input and output are shown in Figure 80 and Figure 81, respectively.  
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Figure 80: Large Signal S11 and Input VSWR Measurement 
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Figure 81: Large Signal S22 and Output VSWR Measurement 

 

5.3.5 Operational Bandwidth and Frequency Response 

The measurement results of Figure 75 indicate the PA has a 3-dB bandwidth of 70-MHz with a 

frequency response from 140 to 210 MHz. 

5.3.6 High-Speed Pulsing Circuit   

The measurement setup of Figure 82 was used to determine the rise and fall time of the 

switching circuit.  The rise time was determined by decreasing the ‘TTL’ lines in the DDS gui 

under the ‘Receive’ tab until the transmit chirp waveform began to display an RC charging 

distortion.  The rise time was measured to be 391 ns using a 10-µs, 1-kHz pulse.  Since the rise 

time was less than 1 µs, it was assumed the 1-µs pulse would generate similar results.   

The fall time was determined by decreasing the ‘TTL’ lines in the DDS gui under the ‘Receive’ tab 

which would generate the TTL control signal to turn off the PA about half-way through the pulse 

as seen in Figure 84.  The fall time was measured to be 79.1 ns using a 10-µs, 1-kHz pulse.  Once 

again since the fall time was less than 1 µs, it was assumed the 1-µs pulse would generate 

similar results. 
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Figure 82: High Speed Pulsing Circuit Measurement Block Diagram 

 

 

Figure 83: Rise Time Measurement of 10us Pulse  
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Figure 84: Fall Time Measurement of 10us Pulse 

As a final test, the PA was continuously operated in the lab from 180 to 210 MHz at maximum 

output power (i.e. DDS weight = 65,535) with a 10-μs pulse at 1-kHz PRF for 12 hours with no 

instabilities or over-heating problems of any of the components.  The average current was 117 

mA.  Although a 10-kHz PRF would increase the current consumption and stress the PA even 

more, the current through the biasing resistors would be too large for the ½ W resistors.  

Therefore, it was assumed that the PA would operate at 10-kHz PRF with the modified PA design 

implemented with the three, paralleled 300 Ω, 1 W biasing resistors.   

 

Chapter 6: Implementation of Digital Predistortion for the UAV VHF 

Power Amplifier 

6.1 Experimental Setup 
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Figure 85: Amplitude Digital Predistortion Measurement Block Diagram 

After initializing the 1U-DAQ digital system, the following procedure was followed to implement 

the digital predistortion for the PA using a 10-µs pulse at 1-kHz PRF: 

1. Run ‘dds_gui_pd.pro’ to start the DDS gui and generate the waveform 

a. Select ‘tukey’ under the ‘window’ drop-down menu 

b. Insert operating frequency range with ‘start’ and ‘stop’ frequency boxes 

c. Insert ‘65535’ in the ‘weight’ box  

d. Select ‘on’ under the ‘DDS Output’ drop-down menu 

2. Run ‘daq_gui.pro’ to start the DAQ gui to record the data 

a. Record data for 10 seconds 

3. On the DDs gui, turn off the DDS output by selecting ‘off’ under the ‘DDS Output’ drop-

down menu 

4. Open MATLAB program ‘DDS_Predistortion.m’ to determine predistortion algorithm 

a. Adjust weighting for the appropriate operating frequency range  

b. Run ‘DDS_Predistortion.m’ to generate ‘amp.txt’ file 

5. Generate the predistorted waveform 

a. On the DDS gui, Select ‘predistort’ under the ‘window’ drop-down menu 

b. Select ‘update’ and wait until ‘DDS Output’ box is not greyed out 

c. Select ‘on’ under the ‘DDS Output’ drop-down menu 

6. On the DAQ gui, record data for 10 seconds 
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6.2 Experimental Results and Discussion 

Using the procedure in Section 6.1 for 140 to 160 MHz, it can be seen from Figure 86, Figure 87 

and Figure 88 that the predistortion algorithm provided the necessary correction to linearize the 

PA output signal and provide a relatively flat response across the FM chirp signal.  

 

Figure 86: DAQ GUI Screenshot of 140 to 160 MHz Pulse with Tukey Weighting (Zoomed) 

 

 

Figure 87: DAQ GUI Screenshot of 140 to 160 MHz Pulse with Amplitude Predistortion (Zoomed) 
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Figure 88: 140 to 160 MHz MATLAB Amplitude Comparison (Zoomed)  

The relative improvement in side-lobe levels can be seen by comparing Figure 89, Figure 90, and 

Figure 91.  Figure 89 shows the pulse compression response of the DDS generated waveform 

without predistortion using only a tukey window on the transmit signal (i.e. the signal shown in 

Figure 86) and a Blackmann
2
 window on the receive signal.   Figure 90 shows the pulse 

compression response of the DDS generated waveform with predistortion which also includes a 

tukey window on the transmit (i.e. the signal shown in Figure 87) and a Blacmann
2
 window on 

the receive signal.  Figure 91 provides a comparison of the range side-lobe levels with the non-

predistorted signal on the left side and the predistorted signal on the right side.   The level of 

improvement varied depending on the time range; therefore, Table 11 provides a summary of 

the side-lobe level of improvement based on the time range. 

Table 11: Pulse Compression Side-Lobe Level Improvement 

Time Range [µs] Side-lobe Level Improvement [dB] 

-10 to -5 ~17 

-5 to 0 ~ 10 

0 to 5 ~1 

5 to 10 ~6 
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Figure 89: 140 to 160 MHz Pulse Compressed Response with Tukey Weighting 

 

 

Figure 90: 140 to 160 MHz Pulse Compressed Response with Amplitude Predistortion 
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Figure 91: 140 to 160 MHz Pulse Compressed Response Side Lobe Levels 

Chapter 7: Conclusion 

7.1 Summary 

A high-speed, pulsed, VHF power amplifier was developed and linearized using memoryless 

digital predistortion (DP) to obtain high linearity and high efficiency.  The frequency response 

was 140 to 210 MHz with 70-MHz bandwidth and PAE ranging from 25 to 56%.  The switching 

circuit reduced current consumption to 117 mA (or 3.28 W at +28 V) for a 10-µs, 1-kHz PRF pulse 

at maximum output power with a rise time of 391 ns and a fall time of 79.1 ns.  The digital 

predistortion (DP) linearization decreased far range side-lobe levels below -57 dBc, with a 

maximum reduction of 17 dB over the Tukey (transmit) and Blackmann^2 (receive) windowing 

alone.  Altogether, all the design constraints and objectives were either met or exceeded. 

7.2 Significant Contributions 

It is often humorously stated that power amplifier design is an art more than a science due to 

the complex combination of components, erratic behavior and difficult design constraints.  The 

transistors themselves are difficult to model and often behave differently depending on 

numerous external conditions, such as temperature.  Also, the constant battle of design trade-

offs, specifically the famous struggle of obtaining high linearity with high efficiency.  This 

research work has conquered many of the major difficulties in power amplifier design, as well 

as, radar transmitter design.  The following list emphasizes some of the more significant 

contributions of this research work. 
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1. A 3-stage PA was designed using discrete transistors with each requiring an input 

and output matching network that were each designed using custom, hand-made, 

miniature impedance transformers.   

2. The switching circuit reduced the current consumption to a mere 117 mA (3.28 W at 

+28 V) for a 10-µs pulse at 1-kHz PRF even at maximum power output of over       

100 W.  This allowed the PA to operate without the need of any heatsink, 

decreasing the weight and size of the PA which is crucial for UAV applications. 

3. The final prototype design fit into an enclosure measuring 3 ¾” x 3 ¾” x 1” and 

weighed only 12.9 ounces including the enclosure and mounting plate.  

4. The memoryless digital predistortion improved the linearity on average by 7 dB 

implemented with amplitude predistortion only.  This improvement was obtained 

without adding any external circuitry or components to the radar system since a 

digital system is already utilized in CReSIS radar systems. 

7.3 Future Work 

Although the results of this research produced a prototype design which met the design 

requirements, further contributions can be made to improve the design before final 

deployment.  The following areas of improvement or study are topics for future research work: 

A. The prototype was fabricated using a 2-layer board and modifications to the switching 

circuit were made using this 2-layer board; therefore, a new multi-layer board layout can be 

designed for easier implementation and a more compact package.  The modified schematic 

provided in Appendix D should be used for the new board layout. 

B. The modified switching circuit uses a PMOS transistor for providing the high current 

switching.  Using an NMOS transistor for the high current switching circuit instead of a 

PMOS transistor could decrease the switching time.  NMOS devices traditionally have lower 

Rds_on than PMOS devices; however, they require higher gate voltages for biasing which 

introduces more complicated circuitry.  Since the PMOS switching circuit satisfied the design 

requirements, there was no need for further investigation of alternative switching 

techniques.  For all these reasons, the NMOS switching circuit can be considered for future 

research. 

C. As explained in Chapter 4, only memoryless digital predistortion (DP) was implemented in 

this research work.  Thus, DP with memory (i.e. amplitude and phase correction) can be 

considered for future work to better improve the linearity of the PA.  Furthermore, as 

explained in Chapter 3, memory effects can also be corrected by implementing adaptive DP. 

D. Due to the extreme sensitivity of the depth-sounding radar systems used by CReSIS and the 

proximity of the PA module to the antenna, the UAV PA should be tested for 

electromagnetic compatibility (EMC).  
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APPENDIX A 

‘dds_gui_pd.pro’ IDL Program Code 

; DDS GUI ----------------------------------------- ------------------------ ; 
 
; ------------------------------------------------- ------------------------ ; 
; ROUTINE TO GENERATE GUI STRUCTURE ; 
; ------------------------------------------------- ------------------------ ; 
FUNCTION gen_gui_struct 
  nwaveforms = 2  
  nchannels = 1 
  nlines = 4  
  max_weight = 65535 
  RETURN, { $ 
  transmit:  {wid:         0, $ 
              tab_name:    'transmit', $ 
              sel_name:    'waveform', $ 
              sel_number:  nwaveforms, $ 
              sel_index:   0, $ 
              procedure:   'gui=config_ddsreg(gui)' , $ 
              extra:       0, $ 
              properties: { $ 
                           enable:     {wid:0, name :'DDS Output      ', 
units:['off','on'],             value:INTARR(nwavef orms),         
procedure:'gui=start_stop(gui)'}, $ 
                           trig:       {wid:0, name :'Trigger         ', 
units:['internal','external'],  value:INTARR(nwavef orms),         
procedure:''}, $ 
                           fclk:       {wid:0, name :'DDS frequency   ', 
units:' MHz',                   value:FLTARR(nwavef orms)+1000, 
procedure:'gui=const_clk(gui)'}, $ 
                           sync:       {wid:0, name :'MultiChip Sync  ', 
units:' ',                      value:INTARR(nwavef orms),         
procedure:''}, $ 
                           prf:        {wid:0, name :'PRF             ', 
units:' Hz',                    value:FLTARR(nwavef orms)+1000,    
procedure:'gui=const_prf(gui)'}, $ 
                           fstart:     {wid:0, name :'start frequency ', 
units:' MHz',                   value:FLTARR(nwavef orms)+140,     
procedure:''}, $ 
                           fstop:      {wid:0, name :'stop frequency  ', 
units:' MHz',                   value:FLTARR(nwavef orms)+220,     
procedure:''}, $ 
                           length:     {wid:0, name :'pulse length    ', 
units:' us',                    value:FLTARR(nwavef orms)+10,      
procedure:''}, $ 
                           taper:      {wid:0, name :'window          ', 
units:['none','rect','hann','tukey','inv','predisto rt','user'],  
value:INTARR(nwaveforms)+1,         procedure:''}, $ 
                           user:       {wid:0, name :'user window (rs)', 
units:'',                       value:STRARR(nwavef orms),         
procedure:''}, $ 
               weight:     {wid:0, name:'weight          ', 
units:'',      value:INTARR(nwaveforms)+max_weight,  
procedure:''}}}, $  
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 $ 
  digital:   {wid:         0, $ 
              tab_name:    'ttl lines', $ 
              sel_name:    'line', $ 
              sel_number:  nlines, $ 
              sel_index:   0, $ 
              procedure:   'gui=config_ttlreg(gui)' , $ 
              extra:       0, $ 
              properties: { $ 
                           start:      {wid:0, name :'start           ', 
units:' samples',              value:INTARR(nlines) +1,          
procedure:''}, $ 
                           length:     {wid:0, name :'length          ', 
units:' samples',              value:INTARR(nlines) +1500,          
procedure:''}}}, $ 
  $ 
  receive:   {wid:         0, $ 
              tab_name:    'receive', $ 
              sel_name:    'channel', $ 
              sel_number:  nchannels, $ 
              sel_index:   0, $ 
              procedure:   'gui=config_daqreg(gui)' , $ 
              extra:       0, $ 
              properties: { $ 
                           start:      {wid:0, name :'start index     ', 
units:' samples',               value:INTARR(nchann els)+281,          
procedure:''}, $ 
                           length:     {wid:0, name :'record length   ', 
units:' samples',               value:INTARR(nchann els)+5000,          
procedure:''}, $ 
                           presum:     {wid:0, name :'presums         ', 
units:' ',                      value:INTARR(nchann els)+1,       
procedure:''}, $ 
                           bits:       {wid:0, name :'output range    ', 
units:['0','1','2','3'],        value:INTARR(nchann els),        
procedure:''}}}, $ 
  $ 
  gui_name:   'HARDWARE GUI', $ 
  tab_number: 3, $ 
  tab_index:  0, $ 
  procedure:  'stop_on_exit, gui', $ 
  extra:      0} 
END 
; ------------------------------------------------- ------------------------ ; 
;FUNCTION serial_flush 
;  x = SIZE(serial_read(1)) 
;  WHILE x[0] DO x = SIZE(serial_real(1)) 
;END 
;  
;PRO dds_write, x 
;  num = SIZE(x,/N_ELEMENTS) 
;  serial_write, x 
;  y = serial_read(1) 
;  n = SIZE(y) 
;  IF n[0] EQ 0 THEN PRINT, 'Serial error - no resp onse' 
;  IF y NE x[num-1] THEN PRINT, 'Serial error - bad  return' 
;END 
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FUNCTION config_daqreg, gui 
  FOR i0 = 0,gui.transmit.sel_number-1 DO BEGIN 
    gui.transmit.properties.enable.value[i0] = 0 
  ENDFOR 
  WIDGET_CONTROL, gui.transmit.properties.enable.wi d, SET_COMBOBOX_SELECT=0 
  serial_write, ['77'XB,'34'XB,'00'XB] 
  start = gui.receive.properties.start.value[gui.re ceive.sel_index] 
  length = gui.receive.properties.length.value[gui. receive.sel_index] 
  presum = gui.receive.properties.presum.value[gui. receive.sel_index] 
  bits = gui.receive.properties.bits.value[gui.rece ive.sel_index] 
  print, bits 
  daq_change, length, start, presum, bits 
 
  ;gui = config_ddsreg(gui) 
  RETURN, gui 
END 
; ------------------------------------------------- ------------------------ ; 
; ROUTINE TO TURN DDS ON AND OFF ; 
; ------------------------------------------------- ------------------------ ; 
FUNCTION start_stop, gui 
  FOR i0 = 0,gui.transmit.sel_number-1 DO BEGIN 
    gui.transmit.properties.enable.value[i0] = 
gui.transmit.properties.enable.value[gui.transmit.s el_index] 
  ENDFOR 
  IF gui.transmit.properties.enable.value[gui.trans mit.sel_index] EQ 0 THEN 
BEGIN 
    PRINT, 'DDS Output off' 
    serial_write, ['77'XB,'34'XB,'00'XB] ;Wavegen C onfig Reg - [7:3]-NA, [2]-
1int/0ext timing, [1]-1int/0ext clk, [0]-1en/0disab led 
  ENDIF ELSE BEGIN 
    daq_reset;, gui.receive.properties.start.value[ gui.receive.sel_index], 
gui.receive.properties.length.value[gui.receive.sel _index] 
    PRINT, 'DDS Output on' 
    data = '05'XB + 
BYTE(24*gui.transmit.properties.trig.value[gui.tran smit.sel_index]) 
    print, data 
    serial_write, ['77'XB,'34'XB,data] ;enabled usi ng internal timing and 
external clock. 
  ENDELSE 
  RETURN, gui 
END 
; ------------------------------------------------- ------------------------ ; 
PRO stop_on_exit, gui 
  FOR i0 = 0,gui.transmit.sel_number-1 DO BEGIN 
    gui.transmit.properties.enable.value[i0] = 0 
  ENDFOR 
  gui    = start_stop(gui) ;force all channels to s top before updating 
  serial_close 
END 
; ------------------------------------------------- ------------------------ ; 
; ROUTINE TO CHANGE ALL WAVEFORMS CLOCKS (THERE IS NO REASON WHY THEY SHOULD 
BE DIFFERENT ; 
; ------------------------------------------------- ------------------------ ; 
FUNCTION const_clk, gui 
  PRINT, 'Changing DDS clock for all waveforms' 



Page 88 of 137 

  FOR i0 = 0,gui.transmit.sel_number-1 DO BEGIN 
    gui.transmit.properties.fclk.value[i0] = 
gui.transmit.properties.fclk.value[gui.transmit.sel _index] 
  ENDFOR 
  RETURN, gui 
END 
; ------------------------------------------------- ------------------------ ; 
; ROUTINE TO CHANGE ALL WAVEFORMS PRFs (THERE IS NO  REASON WHY THEY SHOULD BE 
DIFFERENT ; 
; ------------------------------------------------- ------------------------ ; 
FUNCTION const_prf, gui 
  PRINT, 'Changing PRF for all waveforms' 
  FOR i0 = 0,gui.transmit.sel_number-1 DO BEGIN 
    gui.transmit.properties.prf.value[i0] = 
gui.transmit.properties.prf.value[gui.transmit.sel_ index] 
  ENDFOR 
  RETURN, gui 
END 
; ------------------------------------------------- ------------------------ ; 
; ROUTINE TO GENERATE DEFAULT DDS REGISTERS ; 
; ------------------------------------------------- ------------------------ ; 
FUNCTION get_ddsreg 
RETURN,  {cfr1       :['00'XB,  $ ;00000000 Control  Function Register 1 
                       '40'XB,  $ ;0 1000000 7-RAM enable, 6:5-RAM destination 
(00=frequency,01=phase,10=amplitude,11=polar),  4:0 -Open 
                       '00'XB,  $ ;00000000 7-Manua l OSK, 6-Inv. Sinc, 5-
Open, 4:1-Int. Profile Control, 0-Sine output 
                       '60'XB,  $ ;01100000 7-Load LRR@IO, 6:5-Autoclear 
ramp/phase, 4:3-Clear ramp/phase, 2-Load ARR@IO, 1- OSK Enable, 0-Auto OSK 
                       '02'XB], $ ;00000010 7:4-PD digital/DAC/REFCLK 
in/AuxDAC, 3-Ext. PD control, 2-Open, 1-SDIO in onl y, 0-LSB first 
          cfr2       :['01'XB,  $ ;00000001 Control  Function Register 2 
                       '00'XB,  $ ;00000000 7:2-Ope n, 1-Ramp over pin enable, 
0-Amp profile scale enable 
                       '4E'XB,  $ ;01001110 7-Int. IO active, 6-SYNC_CLK 
enable, 5:4-Ramp destination, 3-Ramp enable, 2:1-Ra mp no-dwell high/low, 0-
Read eff FTW 
                       '00'XB,  $ ;00000000 7:6-IO rate control, 5:4-Open, 3-
PDCLK enable, 2-PDCLK invert, 1-TxEnable invert, 0- Open  
                       '20'XB], $ ;00100000 7-Match ed latency enable, 6-Data 
hold last, 5-SYNC Validation disable, 4-P-port enab le, 3:0-FM gain 
          cfr3       :['02'XB,  $ ;00000010 Control  Function Register 3 
                       '1D'XB,  $ ;00000000 7:6-Ope n, 5:4-DRV0, 3-Open, 2:0-
VCO Select 
                       '3F'XB,  $ ;00000000 7:6-Ope n, 5:3-Icp, 2:0-Open 
                       'C1'XB,  $ ;00000000 7:6-REF CLK input divider 
bypass/reset, 5:1-Open, 0-PLL enable  
                       '20'XB], $ ;00000000 7:1-PLL  N, 0-Open 
          auxdac     :['03'XB,  $ ;00000011 Auxilia ry DAC Control 
                       '00'XB,  $ ;00000000 7:0-Ope n 
                       '00'XB,  $ ;00000000 7:0-Ope n 
                       '00'XB,  $ ;00000000 7:0-Ope n 
                       'FF'XB], $ ;01111111 7:0-Ful l scale current 
          io_update  :['04'XB,  $ ;00000100 I/O Upd ate Rate 
                       'FF'XB,  $ ;11111111 
                       'FF'XB,  $ ;11111111 
                       'FF'XB,  $ ;11111111 
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                       'FF'XB], $ ;11111111 
          ftw        :['07'XB,  $ ;00000111 Frequen cy Tuning Word 
                       '04'XB,  $ ;00000000 
                       '00'XB,  $ ;00000000 
                       '00'XB,  $ ;00000000 
                       '00'XB], $ ;00000000 
          pow        :['08'XB,  $ ;00001000 Phase O ffset Word 
                       '80'XB,  $ ;00000000 
                       '00'XB], $ ;00000000 
          asf        :['09'XB,  $ ;00001001 Amplitu de Scale Factor 
                       '00'XB,  $ ;00000000 7:0-Amp litude ramp rate [15:8] 
                       '00'XB,  $ ;00000000 7:0-Amp litude ramp rate [7:0] 
                       '00'XB,  $ ;00000000 7:0-Amp litude scale factor [13:6] 
                       '00'XB], $ ;00000000 7:2-Amp litude scale factor [5:0], 
1:0-Amplitude step size 
          sync       :['0A'XB,  $ ;00001010 Multich ip Sync 
                       '00'XB,  $ ;00000000 7:4-Syn c validation delay, 3-Rec 
enable, 2:1-Generator enable/polarity, 0-Open 
                       '00'XB,  $ ;00000000 7:2-Sta te preset, 1:0-Open 
                       '00'XB,  $ ;00000000 7:3-Out put generator delay, 2:0-
Open 
                       '00'XB], $ ;00000000 7:3-Inp ut receiver delay, 2:0-
Open 
          ramp_limit :['0B'XB,  $ ;00001011 Digital  Ramp Limit 
                       '40'XB,  $ ;00000000 
                       '00'XB,  $ ;00000000 
                       '00'XB,  $ ;00000000 
                       '00'XB,  $ ;00000000 
                       '20'XB,  $ ;00000000 
                       '00'XB,  $ ;00000000 
                       '00'XB,  $ ;00000000 
                       '00'XB], $ ;00000000 
          ramp_step  :['0C'XB,  $ ;00001100 Digital  Ramp Step Size 
                       '00'XB,  $ ;00000000 
                       '00'XB,  $ ;00000000 
                       '00'XB,  $ ;00000000 
                       '01'XB,  $ ;00000000 
                       '00'XB,  $ ;00000000 
                       '00'XB,  $ ;00000000 
                       '00'XB,  $ ;00000000 
                       '01'XB], $ ;00000000 
          ramp_rate  :['0D'XB,  $ ;00001101 Digital  Ramp Rate 
                       '00'XB,  $ ;00000000 
                       '01'XB,  $ ;00000000 
                       '00'XB,  $ ;00000000 
                       '01'XB], $ ;00000000 
          profile0   :['0E'XB,  $ ;00001110 RAM Pro file 0 
                       '00'XB,  $ ;00000000 Open 
                       '00'XB,  $ ;00000000 Step ra te [15:8] 
                       '04'XB,  $ ;00000000 Step ra te [7:0] 
                       '20'XB,  $ ;00000000 End add ress[9:2] 
                       '80'XB,  $ ;00000000 7:6-End  address[1:0], 5:0-Open 
                       '00'XB,  $ ;00000000 Start a ddress[9:2] 
                       '00'XB,  $ ;00000000 7:6-Sta rt address[1:0], 5:0-Open 
                       '21'XB]}   ;00000000 7:6-Ope n, 5-No-dwell high, 4-
Open, 3-Zero xing, 2:0-RAM mode 
END 
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; ------------------------------------------------- ------------------------ ; 
; FUNCTION FOR READING IN EXTERNAL WEIGHTS FOR PRED ISTORTION ; 
; ------------------------------------------------- ------------------------ ; 
FUNCTION load_file_EXT, ram_size 
  PRINT, 'PREDISTORTION ON' 
  PRINT, 'RAM SIZE = ',ram_size  
  OPENR, lun, 'amp.txt', /GET_LUN ; amp.txt contain s DDS weighting values 
calculated in matlab 
  weights = MAKE_ARRAY(ram_size,VALUE=0) ; need to enforce that last value 
of array = 0 
  READF, lun, weights 
  FREE_LUN, lun 
  RETURN, weights 
END 
 
; ------------------------------------------------- ------------------------ ; 
; ROUTINE TO CONFIGURE THE DDS REGISTERS AND RAM TO  CURRENT GUI SETTINGS ; 
;-------------------------------------------------- ------------------------ ; 
FUNCTION config_ddsreg, gui 
  WIDGET_CONTROL, gui.transmit.properties.enable.wi d, SENSITIVE=0 ;don't 
allow dds enable select while configuring 
  FOR i0 = 0,gui.transmit.sel_number-1 DO BEGIN 
    gui.transmit.properties.enable.value[i0] = 0 
  ENDFOR 
 
  IF gui.transmit.properties.enable.wid NE 0 THEN B EGIN 
    WIDGET_CONTROL, gui.transmit.properties.enable. wid, SET_COMBOBOX_SELECT=0 
  ENDIF 
 
  gui    = start_stop(gui) ;force all channels to s top before updating 
  gui    = const_clk(gui)  ;make sure the DDS clock  is updated for all 
channels 
  gui    = const_prf(gui)  ;make sure the PRF is up dated for all channels 
  ;get all current parameters from the gui 
  index      = gui.transmit.sel_index 
  trig       = gui.transmit.properties.trig.value[g ui.transmit.sel_index] 
  clk        = gui.transmit.properties.fclk.value[i ndex]*1e6 
  prf        = gui.transmit.properties.prf.value[in dex] 
  fclk       = gui.transmit.properties.fclk.value[i ndex]*1e6 
  presum     = gui.receive.properties.presum.value[ gui.receive.sel_index] 
  pri_arr    = val2bytarr((clk/16)/prf - 1.0) 
  ttlram   = BYTARR(32) 
  print, gui.digital.sel_number-1 
  FOR i0 = 0,gui.digital.sel_number-1 DO BEGIN 
    print, i0 
    ttlram[i0*4+0] = BYTE(gui.digital.properties.st art.value[i0] MOD 256) 
    ttlram[i0*4+1] = BYTE(gui.digital.properties.st art.value[i0]/256) 
    ttlram[i0*4+2] = BYTE(gui.digital.properties.le ngth.value[i0] MOD 256) 
    ttlram[i0*4+3] = BYTE(gui.digital.properties.le ngth.value[i0]/256) 
  ENDFOR 
;  ;set ttl lines 
;  ttlram = ['0'XB,'00'XB,'00'XB,'01'XB, $  ; 
;         '0'XB,'00'XB,'00'XB,'01'XB, $  ; 
;         '0'XB,'00'XB,'00'XB,'01'XB, $  ; 
;         '0'XB,'00'XB,'00'XB,'01'XB, $  ; 
;         '0'XB,'00'XB,'00'XB,'01'XB, $  ; 
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;         '0'XB,'00'XB,'00'XB,'01'XB, $  ; 
;         '0'XB,'00'XB,'00'XB,'01'XB, $  ; 
;         '0'XB,'00'XB,'00'XB,'01'XB]    ; 
  init_dds, pri_arr, presum, ttlram 
  FOR ich = 0,1 DO BEGIN 
    ddsreg = get_ddsreg()   ;get default DDS regest ers 
    ddsreg.sync[4] = BYTE(gui.transmit.properties.s ync.value[ich]) 
    fstart     = gui.transmit.properties.fstart.val ue[ich]*1e6 
    fstop      = gui.transmit.properties.fstop.valu e[ich]*1e6 
    length     = gui.transmit.properties.length.val ue[ich]/1e6 
    fstart_arr = val2bytarr(LONG(2d0^32*fstart/fclk )) 
    fstop_arr  = val2bytarr(LONG(2d0^32*fstop/fclk) ) 
    frate      = (256*ddsreg.ramp_rate[1] + ddsreg. ramp_rate[2])/(0.25*fclk) 
    fstep      = (fstop-fstart)*frate/length 
    fstep_arr  = val2bytarr(LONG(2d0^32*fstep/fclk) ) 
    ram_step   = MIN(WHERE(length*.25*fclk/(MAKE_AR RAY(65535,/INDEX)+1) LT 
750))+1 
    ram_step_arr = val2bytarr(ram_step) 
    ram_size     = FIX(FLOOR(length*fclk/(4.0*ram_s tep))) 
    end_arr      = val2bytarr(ram_size*64) 
    ddsreg.ramp_limit[1:8] = [fstop_arr,fstart_arr]  
    ddsreg.ramp_step[1:8]  = [fstep_arr,fstep_arr] 
    ddsreg.profile0[2:3]   = ram_step_arr[2:3] 
    ddsreg.profile0[4:5]   = end_arr[2:3] 
    ram_size = FIX(ddsreg.profile0[4])*4+ddsreg.pro file0[5]/64+1 
    taper = gui.transmit.properties.taper.value[ich ] 
    up = ((fstop-fstart)/fclk)*(1.0-MAKE_ARRAY(ram_ size-
1,/FLOAT,/INDEX)/(ram_size-2.0))+(fstart/fclk) 
    rs = ram_size 
    weight = gui.transmit.properties.weight.value[i ch]      
    IF ich = 0 THEN BEGIN 
     PRINT ,'ram size = ', rs     
 PRINT ,'weight = ', weight 
    ENDIF     
    CASE taper OF 
      0:    win = [MAKE_ARRAY(ram_size,VALUE=weight )]   ;NONE 
      1:    win = [MAKE_ARRAY(ram_size-1,VALUE=weig ht),0]  ;RECT 
      2:    win = weight*[HANNING(ram_size-1),0]   ;HANNING 
      3:    win = weight*[tukey(ram_size-1,.2),0]   ;TUKEY 
      4:    win = weight*[(up/SIN(2.0*!DPI*up)),0]   ;INV 
      5:    win = load_file_EXT()      ;PREDISTORT 
      6:    success = EXECUTE('win='+gui.transmit.p roperties.user.value[ich])
 ;USER 
      ELSE: win = inv*[MAKE_ARRAY(ram_size-1,/INTEGER,VAL UE=30000),0] 
    ENDCASE 
    amp = BYTARR(4*ram_size) 
    FOR i0 = 0,ram_size-1 DO BEGIN 
      amp[i0*4+0] = win[i0] / 256 
      amp[i0*4+1] = win[i0] MOD 256 
      amp[i0*4+2] = 0 
      amp[i0*4+3] = 0 
    ENDFOR 
    ram = ['16'XB,amp] 
    config_channel, ddsreg, ram, ich 
  ENDFOR 
 
  serial_write, ['77'XB,'40'XB,'00'XB] 
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  WIDGET_CONTROL, gui.transmit.properties.enable.wi d, SENSITIVE=1 
  RETURN, gui 
END 
; ------------------------------------------------- ------------------------ ; 
PRO init_dds, pri_arr, presum, ttlram 
  ;Set GPS 
  serial_write, ['77'XB,'A0'XB,'01'XB] 
  WAIT, 3.0 
  serial_write, ['77'XB,'A0'XB,'00'XB] 
  WAIT, 0.1 
  serial_write, ['77'XB,'A1'XB,'00'XB] 
  serial_write, ['73'XB,'A2'XB,'00'XB,'20'XB,ttlram ] 
  WAIT, 0.1 
  ;Set PRI 
  serial_write, ['77'XB,'35'XB,pri_arr[1]] 
  serial_write, ['77'XB,'36'XB,pri_arr[2]] 
  serial_write, ['77'XB,'37'XB,pri_arr[3]] 
  WAIT, 0.1 
  ;Set EPRI (# of PRFs per cycle) 
  serial_write, ['77'XB,'38'XB,'00'XB] 
  serial_write, ['77'XB,'39'XB,BYTE(presum-1)] 
  WAIT, 0.1 
  ;Set delay between PRF and DDS trig 
  serial_write, ['77'XB,'3A'XB,'02'XB] 
  serial_write, ['77'XB,'3B'XB,'2B'XB] 
  WAIT, 0.1 
  ;Set the per-waveform values 
  ram = [ $ 
          '00'XB,'03'XB $ ;idle 00 
$ 
         ,'00'XB,'02'XB $ ;0x08 01 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
         ,'FF'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
$ 
         ,'FF'XB,'02'XB $ ;0x00 09 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
$ 
         ,'00'XB,'02'XB $ ;0x00 17 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
         ,'00'XB,'02'XB $ 
$ 
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         ,'00'XB,'01'XB $ ;0x08 25 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
         ,'FF'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
$ 
         ,'00'XB,'01'XB $ ;0x00 33 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
$ 
         ,'00'XB,'01'XB $ ;0x00 41 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
         ,'00'XB,'01'XB $ 
$ 
         ,'00'XB,'03'XB $ ;idle 49 
         ,'00'XB,'03'XB $ ;idle 50 
] 
 
  serial_write, ['77'XB,'4B'XB,'00'XB] 
  serial_write, ['73'XB,'4C'XB,'00'XB,'66'XB,ram] 
  WAIT, 0.1 
  ;send waveform config values 
  byte0 = BYTE(ISHFT(presum,-4)) 
  byte1 = BYTE(ISHFT(presum,4) MOD 256) 
  serial_write, ['77'XB,'50'XB,byte0] ; WF1 1 PRESU M 
  serial_write, ['77'XB,'51'XB,byte1] 
  serial_write, ['77'XB,'52'XB,'40'XB] ; NO zero/pi  addr=0 
  serial_write, ['77'XB,'53'XB,'00'XB] ; addr = 0 
  WAIT, 0.1 
  serial_write, ['77'XB,'54'XB,'00'XB] 
  serial_write, ['77'XB,'55'XB,'00'XB] 
  serial_write, ['77'XB,'56'XB,'40'XB] 
  serial_write, ['77'XB,'57'XB,'32'XB] ; addr = 50 
  WAIT, 0.1 
  ;Reset DDS 
  serial_write, ['77'XB,'40'XB,'0D'XB] ;dds reset &  bit-bang mode 
  serial_write, ['77'XB,'40'XB,'01'XB] ;dds enabled  & bit-bang mode 
  WAIT, 0.1 
END 
PRO config_channel, ddsreg, ram, channel 
  CS_N = BYTE('FF'XB - ISHFT('01'XB,channel)) 
  ;Set DDS registers 
  names = TAG_NAMES(ddsreg) 
  FOR i0 = 0,SIZE(TAG_NAMES(ddsreg),/N_ELEMENTS)-1 DO BEGIN 
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    number = BYTE(SIZE(ddsreg.(i0),/N_ELEMENTS)) 
    serial_write,['77'XB,'41'XB,CS_N] 
    serial_write,['73'XB,'43'XB,'00'XB,number,ddsre g.(i0)] 
    serial_write,['77'XB,'41'XB,'FF'XB] 
    serial_write,['77'XB,'3E'XB,'00'XB] ;update DDS  
    WAIT, 0.1 
  ENDFOR 
  ;Set DDS ram 
  ram_size = SIZE(ram,/N_ELEMENTS) 
  num_high = BYTE((ram_size)/256) 
  num_low  = BYTE((ram_size) MOD 256) 
  serial_write,['77'XB,'41'XB,CS_N] 
  serial_write,['73'XB,'43'XB,num_high,num_low,ram]  
  serial_write,['77'XB,'41'XB,'FF'XB] 
  serial_write,['77'XB,'3E'XB,'00'XB] ;update DDS 
  WAIT, 0.1 
  ;Enable DDS ram 
  ddsreg.cfr1[1] = ddsreg.cfr1[1] OR  '80'XB ;set r am enable bit 
  number = BYTE(SIZE(ddsreg.cfr1,/N_ELEMENTS)) 
  serial_write,['77'XB,'41'XB,CS_N] 
  serial_write,['73'XB,'43'XB,'00'XB,number,ddsreg. cfr1] 
  serial_write,['77'XB,'41'XB,'FF'XB] 
  serial_write,['77'XB,'3E'XB,'00'XB] ;update DDS 
  WAIT, 0.1 
END 
; ------------------------------------------------- ------------------------ ; 
; ROUTINE TO SEND THE SERIAL CONFIGURATION TO THE D DS BOARD ; 
; ------------------------------------------------- ------------------------ ; 
PRO send_serial, ddsreg0, ram0, ddsreg1, ram1, pri_ arr 
;  ;set ttl lines 
;  ram = ['0'XB,'00'XB,'00'XB,'01'XB, $  ; 
;         '0'XB,'00'XB,'00'XB,'01'XB, $  ; 
;         '0'XB,'00'XB,'00'XB,'01'XB, $  ; 
;         '0'XB,'00'XB,'00'XB,'01'XB, $  ; 
;         '0'XB,'00'XB,'00'XB,'01'XB, $  ; 
;         '0'XB,'00'XB,'00'XB,'01'XB, $  ; 
;         '0'XB,'00'XB,'00'XB,'01'XB, $  ; 
;         '0'XB,'00'XB,'00'XB,'01'XB]    ; 
; 
;  serial_write, ['77'XB,'A1'XB,'00'XB] 
;  serial_write, ['73'XB,'A2'XB,'00'XB,'20'XB,ram] 
;  WAIT, 0.1 
END 
; ------------------------------------------------- ------------------------ ; 
; MAIN PROGRAM - LOAD GENERIC GUI CODE, SET GLOBALS , AND WRAP TO GENERIC GUI 
--------------------------------------------------- ------------------------ ; 
PRO dds_gui_pd 
  daq_setup 
  serial_open 
  RESTORE, 'gui_base.sav' 
  generic_gui 
END 
; ------------------------------------------------- ------------------------ ; 
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‘DDS_Predistortion.m’ MATLAB Program Code 

% Written by: Kevin Player 

% December 2009 

% Generates weighting amplitudes for DDS & writes to ‘amp.txt’ file  

 

clc; close all; clear all; 

Max_wt      = 65535;      % Maximum weighting in AWG 

 ram_size    = 630;          % Size of RAM used to create DDS waveform (from IDL window) 

%************************* DETERMINE AMPLITUDE VALUES ******************* 

%  Amplitude weights for testing DDS  

% rect_test     = round((Max_wt./2).*ones(1,ram_size).*tukeywin(ram_size,0.2).'); 

% ramp_up        = round(linspace(0,Max_wt,ram_size)); 

% ramp_down   = round(linspace(Max_wt,0,ram_size)); 

% up_down        = round([linspace(0,Max_wt,ram_size/2) linspace(Max_wt,0,ram_size/2)-1]); 

% Algorithm for 140 to 160MHz ********************************************************** 

test1           = linspace(1,0.9,(0.8*ram_size)); 

test2           = linspace(0.9,0.72,(0.2*ram_size)); 

test_lin       = Max_wt.*[test1 test2]; 

% Frequency for 140 to 160MHz 

test_freq        = 140:((160-140)/(ram_size-1)):160; 

% Algorithm for 180 to 210MHz ********************************************************** 

% test1            = linspace(1,0.68,(0.5*ram_size));  

% test2            = linspace(0.68,0.48,(0.5*ram_size)); 

% test_lin         = Max_wt.*[test1 test2]; 

%Compensation for 180-210MHz 

% for i = 254:296 

%       test_lin(i) = 0.98*test_lin(i);     % Correct for amplitude spike from 192 to 194MHz 

% end 

% Frequency for 180 to 210MHz 

% test_freq        = 180:((210-180)/(ram_size-1)):210; 

% *********************************************************************************** 

% Plot weights 

figure;plot(test_freq,test_lin) 

% Apply tukey window to calculate predistortion amplitude weighting 

test_lin        = test_lin.*tukeywin(ram_size,0.2).'; 

% **NOTE: the DDS is loaded in reverse(i.e. last MATLAB value=1st DDS value) 

for i = 1:length(test_lin) 

      if test_lin(i) > Max_wt  

         test_lin(i) = Max_wt-200;  % ensure all values are less than 65,535 (max weight) 

      end 

end 

 

test_lin_flip   = fliplr(test_lin);  % reverse order of array 

%  Write reversed amplitude weighting values to text file ************************************* 

format short; 

dlmwrite('weighting.txt',test_lin_flip,'newline','pc');  % write weighting to .txt file 

figure; 
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subplot(1,2,1);plot(test_lin) 

title('Calculated Weighting Amplitude') 

xlabel('Ram Location');ylabel('Actual Amplitude Value') 

subplot(1,2,2);plot(test_lin_flip) 

title('Calculated DDS Amplitude') 

xlabel('Ram Location');ylabel('DDS Amplitude Value ') 

 



Page 97 of 137 

APPENDIX B 

ADS DC Bias Simulation – SP202 and SP203 

 

ADS DC Bias Simulation – SD703 
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Polyfet SP202 Non-Linear ADS Model  
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Polyfet SP203 Non-Linear ADS Model 
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Polyfet SD703WA Non-Linear ADS Model (Workaround Model) 
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ADS Stability Simulation – SP202 

 

 

‘SP202_DA_FINAL_MODEL’ Amplifier Model 
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ADS Stability Simulation – SP203 

 

 

‘SP203_DA_FINAL_MODEL’ Amplifier Model 



Page 103 of 137 

ADS Stability Simulation – SD703 
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‘SD703WA_PA_FINAL_MODEL’ Amplifier Model 
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ADS Stability Simulation – Final Design (SP202 + SP203 + SD703) 
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ADS Load-Pull Simulation – SP202 

 

 

ADS Load-Pull Simulation – SP203 
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ADS Load-Pull Simulation – SD703 
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ADS Simulation – UT-047-25 1:4 Equal Delay Unun Transformer 

 

ADS Simulation Results – UT-047-25 1:4 Equal Delay Unun Transformer 
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ADS Simulation – UT-047-25 4:1 Balbal Transformer 

 

ADS Simulation Results – UT-047-25 4:1 Balbal Transformer 
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ADS Simulation – UT-085C-15 1:9 Balbal Transformer  

 

ADS Simulation Results – UT-085C-15 1:9 Balbal Transformer  
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’1to4_EQ_UNUN_UT47_EQ_MODEL’ Transformer Model 

 

 

‘1to4_UT47_25_EQ_MODEL’ Transformer Model 

 

 

‘1to9_2COAX_Balun_UT85_EQ_MODEL’ Transformer Model  
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APPENDIX C 

ADS Simulation - RF Choke Inductor Equivalent Circuit Model  
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ADS Simulation Results – Air Core RF Choke Inductor Equivalent Circuit Model  
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ADS Simulation Results – FT50-61 Core RF Choke Inductor Equivalent Circuit Model  
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APPENDIX D 

Eagle PCB Original Prototype Layout Schematic – Page 1 
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Eagle PCB Original Prototype Layout Schematic – Page 2 
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Eagle PCB Original Prototype Layout Schematic – Page 3 
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Eagle PCB Original Prototype Layout Schematic – Page 4  
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Eagle PCB Modified Prototype Schematic – Page 1 
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Eagle PCB Modified Prototype Schematic – Page 2 
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Eagle PCB Modified Prototype Schematic – Page 3 
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Eagle PCB Modified Prototype Schematic – Page 4 
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APPENDIX E 

UT-047-25 Micro-Coax Datasheet 
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UT-085C-15 Micro-Coax Datasheet 
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APPENDIX F 

UAV Pin vs Pout at 140 MHz  

Pin vs Pout [140MHz]
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UAV Pin vs Pout at 145 MHz  

Pin vs Pout [145MHz]

y = 0.597x + 47.091
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UAV Pin vs Pout at 150 MHz  

Pin vs Pout [150MHz]

y = 0.572x + 47.121
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UAV Pin vs Pout at 155 MHz 

Pin vs Pout [155MHz]

y = 0.562x + 47.536
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UAV Pin vs Pout at 160 MHz 

Pin vs Pout [160MHz]

y = 0.518x + 48.144
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UAV Pin vs Pout at 180 MHz 

Pin vs Pout [180MHz]

y = 0.523x + 48.984
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UAV Pin vs Pout at 185 MHz 

Pin vs Pout [185MHz]

y = 0.539x + 49.822
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UAV Pin vs Pout at 190 MHz 

Pin vs Pout [190MHz]

y = 0.454x + 50.127
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UAV Pin vs Pout at 195 MHz 

Pin vs Pout [195 MHz]

y = 0.419x + 50.292
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UAV Pin vs Pout at 200 MHz 

Pin vs Pout [200MHz]

y = 0.368x + 50.174

49

49.5

50

50.5

51

51.5

52

-3 -2 -1 0 1 2 3 4 5

Pin [dBm]

P
o

u
t 

[d
B

m
]

  



Page 129 of 137 

UAV Pin vs Pout at 205 MHz 

Pin vs Pout [205MHz]

y = 0.357x + 49.796
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UAV Pin vs Pout at 210 MHz 

Pin vs Pout [210MHz]

y = 0.415x + 49.225

48

48.5

49

49.5

50

50.5

51

51.5

-3 -2 -1 0 1 2 3 4 5

Pin [dBm]

P
o

u
t 

[d
B

m
]

  

 



Page 130 of 137 

APPENDIX G 

MATLAB Code: Waveform Simulations using Measured UAV PA DAQ Data 

% Written by: Anthony Hoch  
% Modified by: Kevin Player - Nov 2009  
% script to simulate variations in transmitted waveform  
% pulse compression of the waveform A(t) * exp( 2*pi*j*f*t + Phi(t) )  
%   
clear all ; close all ; clc; 
% fTUK is the output file of the PA with Tukey weighting (i.e. no PD)  
% fPD is the output file of the PA with Tukey & PD weighting  
fTUK      = 'C:\Documents and 
Settings\playerk\Desktop\Backup\Cresis\Thesis\Measurement_Data\UAV_PA\01_02_10\140_160
_TUK_01_02_10.dat' ; 
fPD       = 'C:\Documents and 
Settings\playerk\Desktop\Backup\Cresis\Thesis\Measurement_Data\UAV_PA\01_02_10\140_160
_PD_01_02_10.dat' ; 
recs_2_load = 1;            % number of records to analyze  
coh_avgs    = 1;            % number of coherent averages  
wf_gen_freq = 1e9/8;        % sampling frequency: 111MHz < 2*Fmax=210MHz  
Fs          = wf_gen_freq;  % shorter naming convention  
start_cut   = 970;          % samples to remove from beginning  
cut_length  = 7530;         % samples to remove from end  
record      = 1;            % record to analyze  
% Read DAQ data from file  
[DAQ_TUK_hdr, DAQ_TUK_data] = 
Read1UDAQ(fTUK,rec_start,recs_2_load,coh_avgs,wf_gen_freq,start_cut,cut_length); 
[DAQ_PD_hdr, DAQ_PD_data] = 
Read1UDAQ(fPD,rec_start,recs_2_load,coh_avgs,wf_gen_freq,start_cut,cut_length); 
% Measurement Setup: DDS(@ weight = 65,535)-->PA-->~50dB Atten-->DAQ  
f0          = 140;      % Minimum operating frequency [MHz]  
f1          = 160;      % Maximum operating frequency [MHz]  
Min_wt      = 10e3;     % Minimum weighting in AWG  
Max_wt      = 65535;    % Maximum weighting in AWG  
wt          = 60e3;     % Current operating weight in AWG  
samples     = length(DAQ_TUK_data);      % number of samples  
nt          = samples;                   % shorter naming convention  
% Create TUK_data and PD_data array (non-equalized)  
TUK_data    = DAQ_TUK_data(:,record);    % TUK with DC offset  
PD_data     = DAQ_PD_data(:,record);     % PD with DC offset  
% Remove DC offset from TUK_data and PD_data array  
PA_TUK      = TUK_data - mean(TUK_data); % TUK with DC offset removed  
for  i=1:length(PA_TUK) 
    if  PA_TUK(i) == max(PA_TUK)     % Find spike in data  
        PA_TUK(i) = mean(PA_TUK);   % Set spike equal to mean  
    end  
end  
PA_PD      = PD_data - mean(PD_data);   % Vin with DC offset removed  
PA_TUK     = PA_TUK/max(PA_TUK);        % Vout [Normalized]  
PA_PD      = PA_PD/max(PA_PD);          % Vin [Normalized]  
% DEFINE STANDARD VARIABLES, (used in all processes)    ==================  
dt          = 1/Fs;         % Sampling Period  
tau         = 10e-6;        % Pulse Length (3uS needs 0.25 tukey)  
time        = [(0:1:nt-1)*dt].';             
% DEFINE AMPLITUDE RESPONSE, A(t) (apply to 'rx' and 'ref') ==============  
type_A                              = 'tukey' ; 
switch  type_A 
    case  'square'  
        A = ones(nt,1); 
    case  'tukey'  
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        A = tukeywin(nt,0.20); 
end  
% DEFINE PHASE RESPONSE, P(t)  (apply to 'rx' and 'ref')    ==============  
type_P                              = 'linear frequency' ; 
switch  type_P 
    case  'linear frequency'     % CReSIS standard  
        f0      = 140e6; 
        f1      = 160e6; 
        alpha   = pi*(f1-f0)/tau; 
        f       = f0; 
        P       = alpha*(time.^2); 
    case  'linear phase'  
        f       = 150e6; 
        P       = [1:1:nt].'.*1e-6*[2*pi/nt];      
    case  'flat'  
        f       = 150e6; 
        P       = ones(nt,1); 
end  
% PRODUCE IDEAL CHIRP WAVEFORM  ===========================================  
waveform        = A.*exp(2*pi*j*f.*time + j.*P);    % Transmit Waveform with tapering 
= A  
% DEFINE FREQUENCY FILTER, F(t) (apply to one part of match)    ==========  
% F             = ones(nt,1);          % Rectangular window  
% F             = hamming(nt);         % Hamming window  
% F             = hanning(nt);         % Hanning window  
% F             = blackman(nt);        % Blackman window  
% F             = chebwin(nt);         % Dolph-Chebyshev window  
F               = blackman(nt).^2;     % Double Blackman window  
% PROCESS RANGE COMRESSION  ============================================== 
% IDEAL_TX   = IDEAL TRANSMIT CHIRP  
% DDS_TX     = DDS TRANSMIT CHIRP (MEASURED AT OUTPUT OF DDS)  
% IDEAL_RX   = IDEAL RESPONSE CHIRP  
% PA_TX      = PA TRANSMIT CHIRP (MEASURED AT OUTPUT OF PA + 50dB ATTENUATION)  
% TARGET1    = SIMULATED DELAYED WEAK RETURN OF LAYER (USING PA_Tx)  
ideal_Tx     = [zeros(nt/2,1); waveform; zeros(nt/2,1)];   % Ideal Tx chirp  
ideal_Tx_dB  = 20.*log10(abs(ideal_Tx));                   % Convert to dB  
TUK_Tx       = [zeros(nt/2,1); A.*PA_TUK; zeros(nt/2,1)];  % Tx chirp with TUK applied 
in DDS  
TUK_Tx       = TUK_Tx/max(TUK_Tx);                         % Normalize TUK amplitude  
TUK_Tx_dB    = 20.*log10(abs(TUK_Tx)+1e-9);                % Convert to dB  
PD_Tx        = [zeros(nt/2,1); A.*PA_PD; zeros(nt/2,1)];   % PA Tx chirp with RECT 
applied in DDS  
PD_Tx        = PD_Tx/max(PD_Tx);                           % Normalize PA amplitude  
PD_Tx_dB     = 20.*log10(abs(PD_Tx)+1e-9);                 % Convert to dB  
% Simulation of bedrock return  
atten        = 3.162e-3;    % 50dB Attenuation of Ideal Response  
ideal_Rx     = [zeros(nt/2,1); atten.*F.*waveform; zeros(nt/2,1)];  % Filtered Ideal 
Rx chirp  
ideal_Rx_dB  = 20.*log10(abs(ideal_Rx)+1e-9);                       % Convert to dB  
TUK_Rx       = [zeros(nt/2,1); F.*atten.*PA_TUK; zeros(nt/2,1)];    % Filtered TUK Rx 
chirp (after 50dB atten)  
TUK_Rx_dB    = 20.*log10(abs(TUK_Rx)+1e-9);                         % Convert to dB  
PD_Rx       = [zeros(nt/2,1); F.*atten.*PA_PD; zeros(nt/2,1)];      % Filtered PD Rx 
chirp (after 50dB atten)  
PD_Rx_dB    = 20.*log10(abs(PD_Rx)+1e-9);                           % Convert to dB      
% Simulation of ice layer return (delayed to the left of ideal_Rx)  
% Simulation of surface clutter (delayed to the left or right of ideal_Rx)  
delay      = round(nt/24);      % Delay of weak return  
att_tar    = 1.75e-3*atten;     % dB attenuation level of weak return  
layerTUK   = [zeros(nt/2-delay,1); att_tar.*F.*PA_TUK; zeros(nt/2+delay,1)];    % 
Delayed weak return (internal layer)  
layerPD    = [zeros(nt/2-delay,1); att_tar.*F.*PA_PD; zeros(nt/2+delay,1)];    % 
Delayed weak return (internal layer)  
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tarTUK_dB  = 20.*log10(abs(layerTUK)+1e-9); % Convert to dB  
tarPD_dB   = 20.*log10(abs(layerPD)+1e-9); % Convert to dB  
% Convolution of Ideal Tx and Rx Chirp - Range Compressed  
RC_ideal       = fftshift(ifft(fft(ideal_Rx).*conj(fft(ideal_Tx)))); 
normalization  = max(abs(RC_ideal)); 
RC_ideal_Tx_dB = 20.*log10(abs(RC_ideal)./normalization); 
% Convolution of TUK_Tx and TUK_Rx Chirp - Range Compressed  
RC_TUK         = fftshift(ifft(fft(TUK_Rx).*conj(fft(TUK_Tx)))); 
RC_TUK_dB = 20.*log10(abs(RC_TUK)./max(abs(RC_TUK)));   % Normalized dB  
% Convolution of PD_Tx and PD_Rx Chirp - Range Compressed  
RC_PD = fftshift(ifft(fft(PD_Rx).*conj(fft(PD_Tx)))); 
RC_PD_dB = 20.*log10(abs(RC_PD)./max(abs(RC_PD)));      % Normalized dB  
% Convolution of TUK_Tx and delayed weak return (layerTUK) - Range Compressed  
RC_tarTUK = fftshift(ifft(fft(layerTUK).*conj(fft(TUK_Tx)))); 
RC_tarTUK_dB = 20.*log10(abs(RC_tarTUK)./max(abs(RC_TUK)));    % Normalized dB  
% Convolution of PD_Tx and delayed weak return (layerPD) - Range Compressed  
RC_tarPD = fftshift(ifft(fft(layerPD).*conj(fft(PD_Tx)))); 
RC_tarPD_dB = 20.*log10(abs(RC_tarPD)./max(abs(RC_PD)));    % Normalized dB  
% Calculate Phase Results  
ideal_phase    = hilbert(unwrap(angle(ideal_Tx))); % Phase values of ideal [rad]  
TUK_phase      = hilbert(unwrap(angle(TUK_Tx)));   % Phase values of DDS [rad]  
PD_phase       = hilbert(unwrap(angle(PD_Tx)));    % Phase values of Vout [rad]  
% PLOT RESULTS  ==========================================================  
time_plot = 1e6*[(-nt:1:nt-1)*dt].'; 
tp = time_plot; 
freq_plot = [1:1:nt].'.*Fs./nt; 
% CREATE SUBPLOTS ========================================================  
% Plot Transmit Waveforms  
figure; subplot(3,2,1); 
plot(tp,abs(ideal_Tx));hold on        
plot(tp,abs(PD_Tx), '-g' ) 
plot(tp,abs(TUK_Tx), '-r' );hold off  
axis([tp(1) tp(end) -0.1 max(abs(ideal_Tx))+0.1]);grid 
title( 'Magnitude of Transmit Waveforms' ); 
xlabel( 'Time [seconds]' ); 
ylabel( 'Ideal, Tukey & PD Tx [Normalized]' ) 
% Plot Return Waveforms  
subplot(3,2,3); 
plot(tp,abs(TUK_Rx), '-r' );hold on 
[AX,H3,H4]  = plotyy(tp,abs(ideal_Rx),tp,abs(layerTUK), 'plot' );hold off  
set(get(AX(1), 'Ylabel' ), 'String' , 'Ideal Response [linear mag]' ) 
set(get(AX(2), 'Ylabel' ), 'String' , 'Target Response [linear mag]' ) 
axis(AX(1),[tp(1) tp(end) -atten/5 max(abs(TUK_Rx))+atten/5]) 
axis(AX(2),[tp(1) tp(end) -att_tar/5 max(abs(layerTUK))+att_tar]);grid 
tarTUK_dBr    = max(tarTUK_dB) - max(TUK_Rx_dB); 
text(4.5,max(abs(ideal_Rx)+atten/3),strcat( 'Target = ' ,num2str(max(tarTUK_dBr)), ' 
dBr' )) 
title( 'Magnitude of Return Waveforms [Blackmann^2]' ); 
xlabel( 'Time [usec]' ); 
% Plot Magnitude of Amplitude Distortion (Zoomed) in dB  
subplot(3,2,5); 
plot(tp,ideal_Tx_dB);hold on 
plot(tp,TUK_Tx_dB, '-r' );hold off  
axis([tp(1) tp(end) -1 max(ideal_Tx_dB)+0.5]);grid 
title( 'Amplitude Distortion (Zoomed)' ); 
xlabel( 'Time [usec]' ); 
ylabel( 'Ideal & PA Amplitude [Normalized dB]' ) 
% Plot Pulse Compression Response  
subplot(2,2,2); 
plot(tp,RC_TUK_dB, '-r' );hold on 
[AX,H5,H6] = plotyy(tp,RC_ideal_Tx_dB,tp,RC_tarTUK_dB, 'plot' );hold off  
set(get(AX(1), 'Ylabel' ), 'String' , 'Ideal Pulse Compression [dBr]' ) 
set(get(AX(2), 'Ylabel' ), 'String' , 'Target 1 Pulse Compression[dBr]' ) 
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axis(AX(1),[tp(1) tp(end) -110 max(RC_ideal_Tx_dB)+5]);grid 
axis(AX(2),[tp(1) tp(end) -110 max(RC_TUK_dB)+5]) 
title( 'Pulse Compression Responses' ); 
xlabel( 'Time [usec]' ); 
% Plot Pulse Compression Response (Zoomed)  
subplot(2,2,4); 
plot(tp,RC_ideal_Tx_dB);hold on 
plot(tp,RC_tarTUK_dB, '-g' ) 
plot(tp,RC_TUK_dB, '-r' );hold off  
crop = 8.5; 
axis([tp(1)+crop tp(end)-crop -110 0]); grid; 
title( 'Pulse Compression Responses (Zoomed)' ); 
xlabel( 'Time [usec]' ); 
ylabel( 'Magnitude [dBr]' ); 
% PLOT WAVEFORMS IN SEPARATE FIGURES =====================================  
% Plot Amplitude of Transmit Waveforms  
figure; plot(tp,abs(ideal_Tx));hold on        
plot(tp,abs(TUK_Tx), '-r' ) 
plot(tp,abs(PD_Tx), '-g' );hold off  
axis([tp(1) tp(end) -0.1 max(abs(ideal_Tx))+0.1]);grid 
title( 'Magnitude of Transmit Waveforms' ); 
xlabel( 'Time [seconds]' ); 
ylabel( 'Ideal, Tukey & PD Tx [Normalized]' ) 
% Plot Phase of Transmit Waveforms  
figure; plot(tp,ideal_phase);hold on 
plot(tp,TUK_phase, '-r' ) 
plot(tp,PD_phase, '-g' );hold off  
title( 'Phase of Transmit Waveform [Tukey]' ); 
xlabel( 'Time [seconds]' ); 
ylabel( 'Phase [radians]' ); 
legend( 'Ideal' , 'TUK' , 'PD' , 'Location' , 'Northwest' ) 
% Plot Magnitude of PA Amplitude Distortion in dB  
figure; plot(tp,ideal_Tx_dB);hold on 
plot(tp,TUK_Tx_dB, '-r' ) 
plot(tp,PD_Tx_dB, '-g' );hold off  
axis([tp(1)+5 tp(end)-5 -1.0 max(ideal_Tx_dB)+0.5]);grid 
title( 'Magnitude of PA Amplitude Distortion (Zoomed)' ); 
xlabel( 'Time [usec]' ); 
ylabel( 'Ideal, TUK & PD Amplitude [Normalized dB]' ) 
legend( 'Ideal' , 'TUK' , 'PD' ) 
% Plot TUK Return Waveforms  
figure; plot(tp,abs(TUK_Rx), '-r' );hold on 
[AX,H7,H8]  = plotyy(tp,abs(ideal_Rx),tp,abs(layerTUK), 'plot' );hold off  
set(get(AX(1), 'Ylabel' ), 'String' , 'Ideal Rx [linear mag]' ) 
set(get(AX(2), 'Ylabel' ), 'String' , 'Delayed TUK Rx (Layer) [linear mag]' ) 
axis(AX(1),[tp(1) tp(end) -atten/5 max(abs(ideal_Rx))+atten/5]) 
axis(AX(2),[tp(1) tp(end) -att_tar/5 max(abs(layerTUK))+att_tar]);grid 
tarTUK_dBr    = max(tarTUK_dB) - max(TUK_Rx_dB); 
layer_str  = [ 'Layer = '  num2str(max(tarTUK_dBr)) ' dBr' ]; 
text(4.5,atten/2,layer_str) 
title( 'Magnitude of TUK Return Waveforms [Blackmann^2]' ); 
xlabel( 'Time [seconds]' ); 
legend( 'Layer' , 'Bedrock' , 'Ideal' ) 
% Plot PD Return Waveforms  
figure; plot(tp,abs(PD_Rx), '-r' );hold on 
[AX,H9,H10]  = plotyy(tp,abs(ideal_Rx),tp,abs(layerPD), 'plot' );hold off  
set(get(AX(1), 'Ylabel' ), 'String' , 'Ideal Rx [linear mag]' ) 
set(get(AX(2), 'Ylabel' ), 'String' , 'Delayed PD_Rx (Layer) [linear mag]' ) 
axis(AX(1),[tp(1) tp(end) -atten/5 max(abs(ideal_Rx))+atten/5]) 
axis(AX(2),[tp(1) tp(end) -att_tar/5 max(abs(layerPD))+att_tar]);grid 
tarPD_dBr    = max(tarPD_dB) - max(PD_Rx_dB); 
layer_str  = [ 'Layer = '  num2str(max(tarPD_dBr)) ' dBr' ]; 
text(4.5,atten/2,layer_str) 
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title( 'Magnitude of PD Return Waveforms [Blackmann^2]' ); 
xlabel( 'Time [seconds]' ); 
legend( 'Layer' , 'Bedrock' , 'Ideal' ) 
% Plot Pulse Compression Response: Ideal, TUK, tarTUK  
figure; subplot(1,2,1);plot(tp,RC_TUK_dB, '-r' );hold on 
[AX,H11,H12] = plotyy(tp,RC_ideal_Tx_dB,tp,RC_tarTUK_dB, 'plot' );hold off  
set(get(AX(1), 'Ylabel' ), 'String' , 'Ideal Pulse Compression [dBr]' ) 
set(get(AX(2), 'Ylabel' ), 'String' , 'Layer Pulse Compression [dBr]' ) 
axis(AX(1),[tp(1) tp(end) -120 0]);grid 
axis(AX(2),[tp(1) tp(end) -120 0]) 
title( 'Pulse Compression Responses with Tukey Weighting' ); 
xlabel( 'Time [usec]' ); 
legend( 'Layer' , 'Bedrock' , 'Ideal' ) 
% Plot Pulse Compression Response: Ideal, TUK & tarTUK (Zoomed)  
subplot(1,2,2);plot(tp,RC_tarTUK_dB, '-g' );hold on 
plot(tp,RC_TUK_dB, '-r' ) 
plot(tp,RC_ideal_Tx_dB);hold off  
crop    = 8.5; 
axis([tp(1)+crop tp(end)-crop -120 0]); grid; 
title( 'Pulse Compression Responses (Zoomed)' ); 
xlabel( 'Time [usec]' ); 
ylabel( 'Magnitude [dBr]' ); 
legend( 'Layer' , 'Bedrock' , 'Ideal' ) 
% Plot Pulse Compression Response: Ideal, PD, tarPD  
figure; subplot(1,2,1);plot(tp,RC_PD_dB, '-r' );hold on 
[AX,H11,H12] = plotyy(tp,RC_ideal_Tx_dB,tp,RC_tarPD_dB, 'plot' );hold off  
set(get(AX(1), 'Ylabel' ), 'String' , 'Ideal Pulse Compression [dBr]' ) 
set(get(AX(2), 'Ylabel' ), 'String' , 'Layer Pulse Compression [dBr]' ) 
axis(AX(1),[tp(1) tp(end) -120 0]);grid 
axis(AX(2),[tp(1) tp(end) -120 0]) 
title( 'Pulse Compression Responses with Amplitude PD' ); 
xlabel( 'Time [usec]' ); 
legend( 'Layer' , 'Bedrock' , 'Ideal' ) 
% Plot Pulse Compression Response: Ideal, PD & tarPD (Zoomed)  
subplot(1,2,2);plot(tp,RC_tarPD_dB, '-g' );hold on 
plot(tp,RC_PD_dB, '-r' ) 
plot(tp,RC_ideal_Tx_dB);hold off  
crop    = 8.5; 
axis([tp(1)+crop tp(end)-crop -120 0]); grid; 
title( 'Pulse Compression Responses (Zoomed)' ); 
xlabel( 'Time [usec]' ); 
ylabel( 'Magnitude [dBr]' ); 
legend( 'Layer' , 'Bedrock' , 'Ideal' ) 
% Plot Pulse Compression Response: Ideal, TUK & tarTUK (Zoomed to  
% Side-lobe)  
figure; 
subplot(1,2,1);plot(tp,RC_tarTUK_dB, '-g' );hold on 
plot(tp,RC_TUK_dB, '-r' ) 
plot(tp,RC_ideal_Tx_dB);hold off  
axis([tp(1) tp(end) -90 -45]); grid; 
title( 'Pulse Compression with Tukey Weighting (Zoomed)' ); 
xlabel( 'Time [usec]' ); 
ylabel( 'Magnitude [dBr]' ); 
legend( 'Layer' , 'Bedrock' , 'Ideal' ) 
% Plot Pulse Compression Response: Ideal, PD & tarPD (Zoomed to Side-lobe)  
subplot(1,2,2);plot(tp,RC_tarPD_dB, '-g' );hold on 
plot(tp,RC_PD_dB, '-r' ) 
plot(tp,RC_ideal_Tx_dB);hold off  
axis([tp(1) tp(end) -90 -45]); grid; 
title( 'Pulse Compression with Amplitude PD (Zoomed)' ); 
xlabel( 'Time [usec]' ); 
ylabel( 'Magnitude [dBr]' ); 
legend( 'Layer' , 'Bedrock' , 'Ideal' ) 
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