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ABSTRACT 

 
Philip W. Livanec, Ph.D. 

Department of Chemistry, December 2009 
University of Kansas 

 
 

Biological membranes are highly heterogeneous structures that are thought to use 

this heterogeneity to organize and modify the function of membrane constituents.  

Probing membrane organization, structure, and changes therein are crucial for linking 

structural metrics with function in biological membranes.   

Single-molecule fluorescence studies were used to measure membrane structure at 

the molecular level.  Several groups have shown that polarized total internal reflection 

fluorescence microscopy (PTIRF-M) using p-polarized excitation can reveal single-

molecule orientations when spherical aberrations are introduced into the optics train.  

This approach was used here to measure the orientation of fluorescent lipid analogs 

doped into Langmuir-Blodgett and bilayer films of DPPC and DPPC/sterol mixed 

monolayers.   

Two commonly used fluorescent lipid analogs, BODIPY-PC and DiIC18 which 

have their fluorophores located in the tailgroup and headgroup, respectively were used 

and a variety of other probes are currently being studied.  It was found that the tilt 

orientation of BODIPY-PC is very sensitive to the surface pressure at which the DPPC 

films are transferred onto the substrate.  At low surface pressures, the tailgroups are 

largely lying in the plane of the film and evolve to an orientation normal to the surface as 

pressure is increased.  For DiIC18, however, no evolution in orientation with surface 

 iii



pressure is observed which is consistent with the headgroup located fluorophore being 

less sensitive to changes in membrane packing.   

The monolayer / bilayer “equivalent surface pressure” was also found to be ~23 

mN/m by directly comparing the molecular structure in the two films.  Using this 

information, the condensing affect of cholesterol and other biologically relevant sterols 

on monolayers and bilayers at the equivalent surface pressure was studied.  Molecular 

dynamics simulations were also compared with the experimental results to probe the 

insertion of BODIPY-PC into membrane lipids. 
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Chapter 1 

The Structure, Function, and Heterogeneity of Biological Membranes 
 

1.1  Introduction  

Since the discovery of cells by Robert Hooke and Anton van Leeuwenhoek in the 

mid 1600’s using homemade microscopes, scientists have studied these minute structures 

that make up the smallest unit of life.  Cells are intricate and complex structures that have 

many different roles in maintaining life.  In order for cells to perform their basic 

functions, their intracellular components need to be kept safe and separate from their 

extracellular environment.  This is one role provided by cell membranes.  Cell 

membranes provide a semi-permeable barrier that allows the movement of substances in 

and out of the cell. 

The cell membrane forms the defining structures of the cell.  Biological 

membranes are made from a highly complex and diverse set of, among other things, 

phospholipid molecules, proteins, and cholesterol and are only about 30-50 Ǻ in 

thickness. Through the studies of lipidomics, it now appears that there are thousands of 

different lipids incorporated into these membranes that total about 5% of a cell’s genes.1  

There is great diversity in the number and types of lipids used in the membranes of 

different cells and even between the organelles within the same cell.  It is thought that the 

cells use this large variety of lipid molecules to fine tune the properties and structures of 

their membranes.  There is a hypothesis that there must be an evolutionary advantage that 

derives from the complex lipid collection found in membranes, but it remains unclear 

exactly what this advantage is.  

 1



1.2 Composition of Biological Membranes 

1.2.1 The Structural Diversity of Lipids 

All lipid molecules are amphipathic in nature, with a hydrophobic tail group and a 

hydrophilic headgroup. They vary, however, in headgroup structure, acyl chain 

saturation, and tailgroup lengths.  Figure 1.1 shows some of the structural diversity found 

in the lipid headgroup.  As Table 1.1 suggests, the structural diversity in membranes is 

large.2  This table shows only a few different animal and bacterial membranes and the 

large diversity that exists within them.  The tailgroup can consist of different chain 

lengths and different degrees of saturation and unsaturation that greatly change their 

properties.  One of the most abundant lipids in eukaryotic cells is 

dipalmitoylphosphatidylcholine (DPPC) lipid, which has two 16 carbon chains that are 

saturated (16:0), as shown in Fig. 1.1.   

 The structures of lipids are extremely important in determining the properties of 

membranes.  As discussed above, by simply changing the head group, the properties can 

be drastically changed.  Most lipids are zwitterionic (without overall charge) but some 

lipids are charged.  Negatively charged lipids make up about 10-20 % of lipids in 

membranes and are important in many ways.3  For example, if the outer leaflet of the cell 

membrane contains the negatively charged lipid phosphatidylserine (PS), macrophages 

will be able to detect that the cell has undergone apoptosis and will digest the cell.  Also, 

by varying the saturation and length of the lipid acyl chains, properties such as the 

transition temperature can be altered.  This allows membranes to be in a condensed or 

fluid state at a given temperature.  At the chain melting transition, the film is transformed 

from a highly ordered crystalline solid state to a less ordered liquid state. Changes in lipid  

 2



 

 

 

 

 

Figure 1.1 The structure of the phospholipid molecule dipalmitoyl- 
phosphatidylcholine (DPPC) is represented schematically.  Head groups for other classes 
of phospholipids are also shown. 
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Table 1.1 Lipid composition of some animal cell and bacterial membranes 
Membranes Major Lipids 
Myelin  PC 10% 
(human) PE 20% 
  PS 8.5% 
  SM 8.5% 
  Ganglioside 26% 
  Cholesterol 27% 
    
Disk Membranes PC 41% 
(bovine) PE 39% 
  PS 13% 
  Trace of Cholesterol 
    
Erythrocytes  PC 25% 
(human) PE 22% 
  PS 10% 
  SM 18% 
  Cholesterol 25% 
    
Rectal Gland  PC 50.4% 
Plasma Membrane PE 35.5% 
(dogfish) PS 8.4% 
  PI 0.5% 
  SM 5.7% 
  Cholesterol 
    
Cholinergic receptor PC 24% 
membranes PE 23% 
(Torpedo marmorata) PS 9.6% 
  Cholesterol 40% 
    
Sarcoplasmic reticulum PC 66% 
(rabbit) PE 12.6% 
  PI 8.1% 
  Cholesterol 10% 
    
E. coli PE 74% 
(inner membrane) PG 19% 
  CL 3% 
    
Purple membrane PG 52% 
(Halobacterium halobium) Glycolipids 30% 
  Neutral lipids 6% 

Abbreviations used: PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, 
phosphatidylserine; SM, sphingomyelin; PI, phosphatidylinositol; PG, 
phosphatidylgylcerol; CL, cardiolipin. Data from reference 2. 
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transition temperature, therefore, can lead to domain formation, which will become 

important as discussed later. 

 

1.2.2 Lipid Structures Formed in Solution 

 Due to the amphiphilic nature of lipids, when lipids are added into solution, they 

tend to congregate with one another.  This property allows for several different structures 

to be obtained based on the structure and properties of the lipid molecules.  Because 

water exists in an energetically favored state of maximum entropy, this leads to the 

segregation of the hydrophobic domains away from the water molecules, causing the 

hydrophobic portions to congregate with one another.  This interaction has been termed 

the hydrophobic effect and leads to acyl chains minimizing their interactions with the 

bulk aqueous phase.  This is the basis for the formation of monolayers, bilayers, and 

micelles.4 

 Lipid monolayers are formed at the air/water interface based on these amphiphilic 

properties.  The hydrophilic headgroups are in contact with the water subphase and the 

hydrophobic tailgroups orient into the air above, in order to minimize their interactions 

with the water molecules.  This provides a convenient way to analyze monolayer 

structures formed at the air/water interface as will be discussed in further detail in 

Chapter 2.   

Vesicles and micelles are formed by these same types of interactions.  A vesicle 

or a micelle will form depending on the overall shape of the lipid molecule.  By changing 

the headgroup or the tailgroup, the excluded volume can be changed, thereby altering the 

structure that is formed by the congregation of lipid molecules.  The three main classes of 

 5



lipid shapes are cones, cylinders, and inverted cones as shown schematically in Fig. 1.2.  

The shape dictates what type of structure is formed by the lipid.  In most biological 

systems, a bilayer is the most prominent lipid structure present.  Bilayers are stabilized by 

orienting their lipid acyl chains towards each other in order to minimize their interactions 

with water molecules.  This drives spontaneous bilayer formation in aqueous solvents.  

Planar bilayers are formed by cylindrical shaped lipids, as shown in Fig. 1.2, and exist in 

a tension free state at equilibrium.  Bilayers can also be made by sequential dipping of 

two monolayers which is known as the Langmuir-Blodgett / Langmuir-Schaffer (LB/LS) 

method, or by using vesicle fusion on a solid support as will be discussed further in 

Chapter 2.   

  Vesicles are formed by bilayers with positive curvature.  Lipids such as 

lysophospholipids and detergent molecules have an inverted cone shape in which the 

headgroup is larger than the tailgroup, thus forming micelles with positive curvature.  

Several types of vesicles can be made based on the method used.5  Multilamellar vesicles 

(MLVs) are formed by a series of concentric shells that contain multiple bilayers and 

were the first type of vesicles formed.  Later, both small and large unilamellar vesicles 

(SUVs and LUVs) were created that contain a single bilayer, and are most often used to 

mimic biological vesicles.  Lipids molecules with a conical shape such as diacylglycerol, 

tend to form structures with negative curvature, such as the inverted hexagonal phase of 

tubes as shown in Fig. 1.2. 
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Figure 1.2 Schematic representation of structure formed by different shaped lipid 
molecules.  (a) Inverted conical shaped lipid molecules form structures such as micelles, 
(b) cylindrical shaped lipid molecules form flat bilayer structures, and (c) conical shaped 
lipid molecules form inverted hexagonal structures. Figure used with permission from 
reference.5 
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1.2.3 Various Membrane Structures Found in Biological Systems 

 Although biological membranes usually exist as bilayers, they can also exist as 

vesicles and monolayers and each of these structures has a purpose and function.  One 

example of a process in which vesicles are utilized biologically, is in the transport of 

neurotransmitters such as dopamine.  Dopamine is synthesized and packaged into 

vesicles to be delivered to the synaptic terminal.  Once at the synaptic terminal, the 

vesicles can fuse and burst open, releasing the dopamine.  Monolayers are also present 

in biological systems.  Lung surfactant (LS) is a monolayer mixture of lipids and proteins 

that coat the inner surface of the lungs and help the lungs to compress and expand as will 

be further discussed in Chapter 2.  There is a long standing history in the literature of 

studying LS monolayers as many pre-mature infants are born every year with respiratory 

distress syndrome (RDS).  RDS is a debilitating disease that can result in labored 

breathing, reduced oxygen transport, and even death. 

  

1.3 Lipid Rafts 

1.3.1 Brief History of Lipid Rafts 

Biological membranes were once believed to be a homogenous fluid-like structure 

with proteins adsorbed or embedded.  This idea was termed the fluid mosaic model and 

was proposed by Singer and Nicolson in 1972 to explain the structural features in 

biological membranes.6  Shortly after, experimental results, such as X-ray diffraction 

studies supported the idea that some molecules do not diffuse freely, but rather 

congregate, creating lateral heterogeneities in the lipid bilayer.  In 1982 Karnovsky and 

co-workers formalized the concept of lipid rafts by using the dye, 1,6-dipenyl-1,3,5-
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hexatriene (DHP), which indicated there were multiple phases present in the membrane,7 

as will be discussed in further detail later.   

Numerous other experiments were performed which suggested membranes 

contain small regions of coexisting lipid phases or microdomains, termed lipid rafts, 

which segregate or isolate different membrane components.  While the functional roles of 

lipid rafts are not completely understood, experimental evidence shows that they can 

sequester membrane bound proteins thereby altering their biological activity.  The small 

size and dynamic nature of lipid rafts has made direct physical measurements difficult.  

These structures, however, have long been studied by a host of techniques including 

AFM, NSOM, NMR, fluorescence microscopy, electron microscopy, and X-ray 

diffraction to name just a few. 

Lipid rafts are enriched in sphingolipids, cholesterol and certain proteins.  There 

are two main classes of lipid rafts; glycosphingolipid enriched membranes (GEM) and 

caveolae.  GEM enriched rafts are the traditional detergent resistant portions of the 

membrane and some are thought to be enriched with certain proteins such as 

Immunoglobulin E (IgE).  Caveolae are flask shaped invaginations of the plasma 

membrane that contain caveolin proteins.  It is thought that rafts are responsible for 

certain cell signaling processes involving, for example, IgE.8-10   

Historically, lipid rafts were first identified through detergent resistant fractions 

isolated by Triton X-100.  Evidence of lipid rafts included the decreased solubility in 

Triton X-100 of FcεR (a high affinity IgE receptor) from steady state to the cross-linking 

state.  These results show that specialized membrane domains may be involved in the 

coupling of receptor aggregation to the activation of signaling events.9 This was among 
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the first convincing evidence of lipid rafts involving signaling processes.  It was also 

reported by Brown and Rose that GPI-anchored proteins selectively partitioned into a 

Triton-insoluble membrane fraction that was enriched with glycosphingolipids and 

cholesterol.11  These initial results led to numerous reports of proteins that were 

selectively found in the detergent-resistant lipid rafts and caveolae.12-13  

An additional example of protein enrichment in lipid rafts is illustrated by the 

case of T-cell antigen receptors (TCR).  TCRs are molecules found on the surface of T 

lymphocytes (T-cells) and comprised of αβ-heterodimers.  The α and β subunits contain 

extracellular binding sites for peptides and proteins on the surface of the antigen 

presenting cells.   During the signaling process, peptides and proteins bind to the TCRs 

and bring two or more receptors together forming small domains for signal 

transduction.14-15  The results presented here are examples of only a few processes that 

are believed to be influenced by lipid rafts.   

The complexity of biological membranes has driven the need to find better and 

more controlled ways to study the structure and function of these systems.  According to 

the Gibbs Phase Rule, the maximum number of phases that can coexist is determined by 

the equation:  

P = C – F + 2         (1.1) 

Where P is the number of phases present, C is the number of components in the system, 

and F is the degrees of freedom, i.e., the number of intensive variables that are 

independent of other intensive variables.  For example, in a one component system (C = 

1), with two intensive variables (F = 2, temperature and pressure), then the maximum 

number of coexisting phases is three (P = 3).  As shown in Fig. 1.3, a schematic of a  
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Figure 1.3 A schematic representation illustrating the complex and heterogeneous 
nature of biological membranes. Figure used with permission from reference 16. 
 

 

 

 

 

 

 

 11



representative biological membrane illustrates the heterogeneity and complexity of the 

system.16  There are many different lipids and proteins in natural membranes; therefore 

the number of possible phases that can coexist becomes extremely high.  If we want to 

understand the role of lipids in domain formation or the effects of additives such as the 

addition of cholesterol on the lipid structure, we need simpler models for examining these 

properties.  There is a long standing history in the literature of utilizing model membrane 

systems to better control properties, in order to better understand exactly what is being 

probed. 

 

1.3.2 Fabrication of Model Membranes 

Due to the high complexity and heterogeneous nature of biological membranes, 

model membranes are often used as a mimic of natural systems.  By utilizing model 

membranes, the complexity associated with biological membranes is reduced and studies 

can be performed in an environment where membrane constituents and properties can be 

precisely controlled.  By studying these types of systems, we can add to our basic 

understandings of membrane structure, phase behavior, and mechanisms of protein 

insertion.   

Model membranes can be fabricated by the use of several different techniques.  

These techniques can create monolayers, bilayers, multilayers, vesicles, and micelles just 

to name a few.  The Langmuir-Blodgett (LB) technique offers a simple way to control 

several variables of the film, for example, the surface pressure which affects the lipid 

phase structure.  Another benefit that LB deposition offers is that the film can be 

transferred to a solid substrate for easy analysis.  Methods such as vesicle fusion lack the 
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control over some of these parameters, but are equally as important in the elucidation of 

membrane structure and function as they offer a much more representative mimic of 

natural membranes.  Both of these methods for fabricating model membranes will be 

discussed in detail in Chapter 2.  These methods have been instrumental in understanding 

the phase behavior of lipids.   

 

1.3.3  Experimental Studies of Phase Behavior in Biological and Model Membranes 

Some of the earliest studies of phase behavior involved freeze fracture sample 

preparation followed by imaging using scanning electron microscopy (SEM).  One study 

measured the X-ray diffraction patterns of lipid films before and after freeze-fracture in 

order to study the lateral packing of the acyl chains.  It was determined that different 

phases do exist in model membranes, and that this method could be used to monitor 

phase domain formation.17  However, while this technique is useful for analyzing 

domains in lipid membranes, the sample preparation methods are involved and require 

vacuum compatible samples for analysis with SEM.  

Fluorescence microscopy is a commonly used technique to study domain 

formation in model membranes.  One of the earliest studies, as discussed above, involved 

using the membrane dye DHP which has been shown to partition equally between the 

fluid and less fluid regions of the membrane.7  This dye molecule locates in the 

hydrophobic acyl chains of the membrane and its fluorescence lifetime decay has been 

shown to be dependent on the phase of the lipids in which it resides.  In homogenous 

systems the decay rate is exponential while in heterogeneous systems the decay rate is 

multiexponential.  Moreover, the lifetimes are seen to be shorter in fluid phases than in 
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the more solid-like phases.  This early study was among the first to support the idea that 

lipid rafts could exist. 

Later, measurements utilizing fluorescence recovery after photobleaching (FRAP) 

were performed to study the diffusion rates between raft like domains and the rest of the 

membrane.  This method has been used extensively to probe microdomains in many 

different model and biological lipid membranes.18-22  In FRAP, a tightly focused intense 

beam of light is used to irreversibly photobleach a desired membrane area containing a 

fluorophore.  By monitoring the recovery in fluorescence signal after photobleaching, the 

rate at which the fluorophore diffuses back into the bleached region is measured.  From 

this, diffusion coefficients of the probe molecules can be quantified.  It has been shown 

that by monitoring the lateral diffusion rates of the probe molecules, multiple diffusion 

rates are often observed which are attributed to the presence of different lipid domains.  

For example, Jones et al tracked the diffusion rates of the reporter probe, 5-(N-

octadecanoyl)aminofluorescein (ODAF), loaded into various membranes of 5 species of 

mammalian spermatozoa.23  By utilizing FRAP measurements, they were able to show 

that the diffusion rates of the reporter probe differed significantly depending on what 

region of the spermatozoa was being analyzed.  It was concluded that the lipid diffusion 

in the plasma membrane is highly dependent on the presence of surface domains.  This 

could be due to the heterogeneity, differences in constituents, or the presence of 

intramembranous barriers that can hinder diffusion between domains.  This study stressed 

the importance of membrane lipids in regulating the migration of sperm surface antigens 

during developmental stages and further suggests the presence of submicron domains on 

the surface of living cells. 
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Studies have also looked at the effects that different environmental conditions, 

such as the effect of additives, can have on lipid membranes.  One recent study 

investigated the effects of Ganglioside GM1 on lipid films of DPPC at the air-water and 

solid-air interfaces.  By utilizing the propensity of a fluorescent lipid analog to partition 

into the more expanded or fluid regions of the film, they were able to analyze the fluid 

and condensed regions with increasing concentration of Ganglioside GM1.  It was found 

that with increasing concentrations of Ganglioside GM1 (up to 25 mol %), that the mixed 

monolayers were continually condensed.  But with concentrations over 25 mol %, the 

mixed monolayers became more expanded or fluid-like.24   

The main limitation to optical techniques is that the spatial resolution is limited to 

the diffraction limit of light or ~ λ/2.  This has created the need for higher resolution 

methods such as atomic force microscopy (AFM), which can detect the small height 

differences between lipid phases.  AFM has been widely used to study domains and 

phases present in model membranes.  One early study utilized AFM to analyze the 

domains present in LB monolayers of DPPC.  Wei and group analyzed the liquid-

expanded to liquid-condensed (LE / LC) phase transition of DPPC monolayers and they 

studied the effects of compression rates on domain formation.25  By utilizing AFM, they 

were able to see the formation of small domains with chiral structure for the first time.  

 

1.4 Motivation and Overview of this Dissertation 

As indicated in the previous sections, many experiments have been done in order 

to understand the structure and function of biological membranes through the use of 

model membranes.  What was once thought to be a homogenous fluid like structure is 
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now understood to be much more complex.  Through the use of different biological and 

biophysical techniques, the heterogeneity and complex structure of membranes has been 

brought to the forefront.   

Chapter 2 of this dissertation will discuss the techniques utilized in this 

dissertation to investigate model membrane structure.  Specifically, the fabrication of 

model membranes, using both the Langmuir-Blodgett deposition technique and the 

vesicle fusion technique is discussed.  These deposition methods offer a reliable and well 

controlled way to produce supported model membranes used for these studies.  The use 

of confocal microscopy, Atomic Force Microscopy (AFM), and Near Field Scanning 

Optical Microscopy (NSOM) to probe the structure of model membranes will also be 

discussed.  These complimentary methods are used to study membrane structure from the 

mesoscale to the micron length scales.  Finally, single molecule fluorescence 

measurements using polarized total internal reflection fluorescence microscopy (PTIRF-

M) will be discussed.  These measurements enable the characterization of single 

molecule orientations which, as we shall show, provides a new approach for measuring 

membrane structure at the molecular level. 

The ordering and lateral packing of lipid acyl chains is a very important property 

of both model and natural membranes.  We show in Chapter 3 that by utilizing single 

molecule orientation measurements, we can analyze the orientation of reporter molecules 

doped into model membrane films.  By using a tailgroup labeled lipid analog as the 

reporter molecule, the ordering of the lipid acyl chains with increasing surface pressure 

can be tracked at the single molecule level.  Furthermore, we show that the effects of 

additives such as cholesterol to lipid membranes can be probed using this method. 
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Monolayers are useful models of membrane behavior due to the ease of control 

over important properties, but bilayers, provide a better mimic of biological membranes.  

Bilayers, however, exist in a tension free state at equilibrium so surface pressure is not a 

well defined parameter. Therefore, establishing corresponding states between monolayers 

and bilayers is important for comprehensive studies of model membranes.  As will be 

shown in Chapter 4, we are able to extend the linear trend of acyl chain ordering vs. 

surface pressure in monolayers to bilayers in order to assign a monolayer / bilayer 

“equivalent surface pressure” which is important for establishing a baseline for future 

comparisons.  In chapter 4, these measurements are extended to probe the effects that 

sterols have on both monolayers and bilayers at the “equivalent surface pressure” found 

earlier.   

A collaboration was also initiated with Dr. Wonpil Im and Kevin Song at the 

University of Kansas to use molecular dynamics (MD) simulations to model the effect of 

the reporter molecule on the membrane and understand its orientation as a function of 

surface pressure.  A comparison between the average tilt angle of the reporter molecule in 

bilayers and monolayers in the MD simulations was made.  This study showed that at 

higher pressures, comparisons between monolayers and bilayers agreed relatively well. 

Chapter 5 also compares the MD simulations with the experimental data performed at 

temperatures above the transition temperature of the lipid, and showed the same trends in 

ordering of the lipid acyl chains with an increase in surface pressure. 

Chapter 6 describes a method to easily nano-pattern large surfaces quickly and 

efficiently using model lipid membranes as templates of the desired structure.  Micro-

patterning techniques often require expensive equipment and long periods of time to 
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pattern surfaces.  The method developed here utilizes the LB technique as well as a 

diblock copolymer deposition technique to create nanometric patterns on flat or curved 

solid substrates that template the growth of 3-D structures.  A host of different patterns 

can be created on fairly large scales that range from the micron-scale to the nano-scale.  

By simply fuming the template structure with cyanoacrylate, 3-D structures can be 

fabricated.   

Finally, chapter 7 discusses preliminary studies underway and continuing that are 

related to the previous chapters.  The possible directions and implications of future 

studies will be outlined and discussed.  First, the placement of the fluorophore on the 

lipid analog will be probed.  The depth dependence and sensitivity of reporter molecules 

can be analyzed based on these measurements.  Secondly, the effect of relative humidity 

of model membranes will be discussed.  The goal is to achieve more biological-like 

samples to examine the orientations of single molecules.  Lastly, antibody orientations 

will be discussed.  By utilizing the single molecule method presented in this dissertation, 

antibody orientations may be able to be directly probed.   
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Chapter 2 

Preparation of and Techniques Used to Image Model Membranes  

 

2.1  Introduction 

 There are numerous techniques used to study biological and model membranes as 

briefly mentioned in chapter 1.  This chapter will focus on the high resolution techniques 

employed in this dissertation to study model membranes.  First, several methods used to 

prepare model membranes will be briefly discussed.  This is followed by a discussion of 

fluorescence microscopy and two higher resolution techniques, atomic force microscopy 

(AFM) and near field scanning optical microscopy (NSOM).  While fluorescence 

microscopy provides a convenient and powerful approach for probing membrane 

structure with micron spatial resolution, the latter techniques enable measurements with 

nanometric spatial resolution.  Finally, we introduce a new single molecule approach for 

characterizing membrane structure and dynamics at the molecular level 

 

2.2 Preparation of Model Membranes 

2.2.1 Langmuir Blodgett Monolayers 

In 1773, Benjamin Franklin dropped a teaspoon on oil on the surface of a pond 

and noticed that the oil spread for about half an acre.  Lord Rayleigh was able to quantify 

this phenomenon over a century later.1  By knowing the volume of the oil and the total 

coverage, he was able to calculate the thickness of the film and show it was a monolayer.  

Afterward Lord Rayleigh received a letter written from Agnes Pockels who found that 

these monolayers could be compressed in her kitchen sink using barriers.2  This set the 
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stage for the work of Irving Langmuir and Katherine Blodgett.  Langmuir created what is 

now known as the Langmuir trough,3 and Blodgett discovered that when a solid substrate 

is inserted into the monolayer created at the air/water interface, that this monolayer could 

be controllably deposited onto this solid substrate.4  With the help of Blodgett, in 1932 

Langmuir was rewarded with the Nobel Prize for his work.  The compression of a 

monolayer at the air/liquid interface, followed by its transfer onto a substrate is now 

known as the Langmuir-Blodgett (LB) technique.  This technique is widely used to create 

mimics of biological membranes. 

Figure 2.1 shows a typical LB trough used for transferring monolayers onto 

substrates.  Briefly, amphiphilic molecules dissolved in a volatile solvent are deposited 

onto a water subphase in the LB trough, as shown in Fig. 2.1.  Once the solvent 

evaporates, a movable barrier compresses the amphiphilic molecules trapped at the air-

water interface to the desired surface pressure.    The surface pressure is monitored with a 

Wilhelmy plate, which measures the surface or interfacial tension at the air/liquid 

interface.  Once compressed to the desired surface pressure, the monolayer can be 

transferred to a solid substrate by a mechanical dipping mechanism. 

 LB films of lipids can be deposited at any point along the pressure-area isotherm.  

Figure 2.2 shows a typical pressure/area isotherm for the lipid DPPC at room 

temperature.  As the barrier is compressed and the area per lipid is reduced, the lipid 

monolayer undergoes several phase transitions, which are reflected in the pressure-area 

isotherm.  At low surface pressures, a gas-like state known as the liquid expanded (LE) 

phase is dominate.  As the monolayer is further compressed, there exists a plateau region,  
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Figure 2.1 Schematic of a Langmuir-Blodgett trough, in which the amphiphilic lipids 
trapped at the air-water interface are shown.  The barrier used to compress the monolayer 
to a target pressure is shown along with the dipper used to deposit the monolayer onto a 
solid substrate. 
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in which the LE/LC (liquid condensed) phases coexist, as shown in the pressure-area 

isotherm in Fig. 2.2.  Upon compression to higher surface pressures, the LC phase is 

dominant and the lipid molecules are in a tightly ordered state.  When the monolayer is 

compressed to higher pressures above the LC region, the monolayer goes through a solid 

condensed (SC) phase and eventually collapses into the subphase.  Using the LB 

technique, monolayers are easily created and can be made under highly controlled 

conditions where membrane constituents, surface pressure, and temperature are easily 

controlled.  However they do not mimic biological membranes as well as bilayers.  

Bilayers and multilayer films can also be created in which the asymmetry of each leaflet 

can be controlled.   

 

2.2.2 Vesicle Fusion Technique 

Model bilayers made through the vesicle fusion technique also offer a controllable 

and reproducible way to make lipid films.  Vesicle fusion onto solid supports offers many 

advantages, such as ease of preparation, stability, and they are amendable to a wide 

variety of surface techniques for their analysis.  Two main types of vesicles can be 

formed for vesicle fusion ranging from tens of nanometers (small unilamellar vesicles or 

SUVs) to tens of microns (giant lamellar vesicles or GUVs).  These vesicles can be free 

standing in solution, tethered to a substrate, or fused to a substrate to form planar 

supported bilayers.  Numerous studies from protein insertion to domain formation have 

been performed on these systems.  Here we use the vesicle fusion technique to form 

planar lipid bilayers on a solid supports to study lipid structure in model films at the 

single molecule level. 
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Figure 2.2 Representative pressure-area isotherm for DPPC at room temperature in 
which the liquid expanded (LE), liquid condensed (LC) and the LE/LC coexistence 
region are all visible.   
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Briefly, the lipid is dissolved in a volatile solvent at a desired concentration.  The 

solution is evaporated to dryness using a nitrogen stream, and placed under vacuum to 

remove any residual solvent.  The lipids are then reconstituted in a buffer solution and 

allowed to hydrate.  The suspensions are vortexed and sonicated to clarity to yield small 

unilamellar vesicles (SUVs).  The SUV suspensions are incubated at 60˚C in PDMS 

wells to form bilayers.  Vesicle fusion takes place as illustrated in Fig. 2.3, where vesicles 

first adsorb to the hydrophilic solid substrate and then accumulate and rupture.  Once 

ruptured, the vesicles coalesce to form a supported bilayer.  This is one theory on how 

vesicle fusion proceeds, however, the molecular level details remain unclear.5   

Supported lipid bilayers can also be formed using giant unilamellar vesicles 

(GUVs).  Briefly, lipid suspensions are deposited between two indium tin oxide (ITO) 

coated slides and dried under vacuum.  The slides are then rehydrated using water, and 

sandwiched around a PDMS gasket.  The temperature of the slides is controlled using a 

temperature controlled stage and a function generator applies a 10 Hz, 1V sine wave 

across the slides to produce GUVs.  Reducing the frequency to 1 Hz leads to GUVs 

detachment and the solution can be used to make supported bilayers as previously 

discussed.   

 

2.3 Fluorescence Microscopy 

Of all the imaging techniques developed to probe biological samples, optical 

microscopy methods remain the most versatile and popular.  The instrumentation is 

relatively inexpensive, there has been a long historical development in optical contrast 

agents, and the techniques are compatible with fragile biological tissues under viable  
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Figure 2.3 A schematic representation of the process of vesicle fusion to form a 
supported bilayer on a hydrophilic surface. First the vesicles adsorb to the glass, 
accumulate and rupture, then coalesce into a uniform bilayer.5 
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conditions.  Moreover, a vast array of approaches have been developed that take 

advantage of the unique properties of light to probe various aspects of the samples.  In 

addition to the spectroscopic capabilities available with light microscopy, polarization 

and time-resolved methods can provide additional information about sample properties.  

These attributes have made optical microscopy an invaluable tool in the biological 

sciences. 

The propensity of fluorescent lipid analogs to preferentially partition into specific 

lipid phases makes fluorescence microscopy a convenient technique to analyze phases 

and domains in model membrane systems.  Our lab and others have used confocal 

microscopy to examine the phase structure present in model membranes. For example, 

Fig. 2.4 shows a typical 35μm x 35μm confocal fluorescence image of a complete 

monolayer of DPPC deposited onto mica at 9 mN/m in the LE/LC coexistence region 

(see Fig. 2.2).  While the bright regions denote the less ordered liquid expanded (LE) 

region in which the dye is incorporated, the semi-circular dark regions are the more 

ordered liquid condensed (LC) regions that exclude the dye.6  This provides a convenient 

way to examine the phase coexistence and domains present in model membranes.   

 While fluorescence microscopy is a powerful technique to study domains formed 

in lipid films, one major drawback involves spatial resolution.  The resolution of 

conventional fluorescence microscopy is limited by the diffraction of light, and for 

coherent radiation can be quantified by equation (2.1) as shown later.  For high numerical 

aperture objectives, the resolution is often approximated by ~ λ/2.  When working in the 

visible region of the spectrum, the maximal resolution is ~ 250nm - 300nm.  While many 

model membranes exhibit large domains that are easy to resolve with this method (as  
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Figure 2.4 A 35μm x 35μm confocal image showing dark and bright domains.  The 
bright regions are the less ordered liquid expanded (LE) regions in which the dye is 
entropically favored to partition into.  The large, semi-circular dark regions are the more 
ordered liquid condensed (LC) regions in which the dye is excluded.6  
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shown in Fig. 2.4), biologically relevant domains such as lipid rafts are thought to exist 

on the mesoscale which is beyond the reach of conventional light microscopy.  This 

highlights the need for better resolution which has led to the widespread use of atomic 

force microscopy to study model membranes. 

 

2.4 Atomic Force Microscopy (AFM) used to Study Model Membranes 

Atomic Force microscopy (AFM) is a commonly used surface method that can 

reveal structural information at the Ǻngstrom level.  In 1986, Gerd Binnig, Calvin Quate, 

and Christoph Gerber developed the first AFM, which created a new way to measure, 

manipulate, and image matter on the nanometric scale.  This section will focus on a brief 

overview of AFM and how it can be used to analyze model membranes.   

As shown schematically in Fig. 2.5, AFM utilizes a sharp stylus (tip) fabricated at 

the end of a cantilever to detect small topography features on a sample surface.  In 

contact force AFM, the tip is brought near the surface and repulsive interactions between 

the tip and the sample cause the deflection of the cantilever.  By reflecting a laser off the 

back of the cantilever onto a quadrant detector, as shown in Fig. 2.5, these small 

deflections can be detected and used to reveal small topographical changes in the sample 

surface.   

For the tip to track the sample surface, a feedback mechanism needs to be 

employed.  The sample is mounted on a piezoelectric tube that can move the sample in 

the z-direction to maintain a constant force between the tip and the sample as the tip 

scans over the surface.  This constant force method enables the topography of the sample 

to be tracked while keeping the tip a constant distance from the sample.  The  
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Figure 2.5 Schematic of a typical atomic force microscope.  A laser is reflected off 
the back of the cantilever.  In contact mode, as the tip is tracked along the surface, the 
reflection of the laser spot on a quadrant detector is changed, resulting in a topographical 
image of the surface.   
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piezoelectric tube also scans the sample under the tip in the x- and y-directions.  

Piezoelectric materials, such as many ceramics, expand or contracts proportional to an 

applied voltage which enables precise control over small distance changes.  The 

piezoelectric tube is fabricated incorporating three different sections responsible for the x, 

y, and z movements.  This forms a scanner that can precisely control the movement of a 

sample in all three-dimensions with Ǻngstrom level resolution. 

 

2.4.1 Studies of Model Membranes  

Fig. 2.6 shows a representative AFM image of a DPPC monolayer deposited on a 

mica substrate in the LE/LC coexistence region of the pressure/area isotherm (see Fig. 

2.2).  The 10μm x 10μm AFM image shows large semi-circular regions of higher 

topography, which reflect the LC domains present in the film as seen as dark domain in 

the fluorescence image shown in Fig. 2.4.  The LC domains are surrounded by regions of 

lower topography which reflect the LE phase as was also seen in Fig. 2.4 as bright 

regions.6  In the AFM measurements, contrast between the LE and LC regions arises 

from the small height difference between these two phases which is only ~6-8 Ǻ.  Also 

visible in Fig. 2.6 are small coexisting domains in the LE region.6  These small domains, 

not resolved in the fluorescence image (Fig. 2.4), suggest that the LE domains are not 

homogenous and illustrate the need for high resolution techniques in studying domain 

formation in model membranes. 

While the use of monolayers is valuable in characterizing the structure and 

function of biological membranes, bilayers often provide a more faithful representation of 

biological membranes.  However, even though the system gets only slightly more  
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Figure 2.6 A 10μm x 10μm AFM scan of a DPPC monolayer deposited in the LE/LC 
coexistence region.  The small ~6-8 Ǻ height differences can be seen illustrating the two 
phases present.6  
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complicated in going from monolayers to bilayers, the analysis becomes much more 

difficult with AFM.  For example, Fig. 2.7 shows a 10μm x 10μm AFM image of a DPPC 

bilayer which was deposited on mica using the LB / LS (Langmuir-Schaffer) technique.6  

Each layer of the bilayer was deposited in the LE/LC phase coexistence region (at 9 

mN/m).  For monolayers, shown in Fig. 2.6, the small ~ 6 to 8 Å height differences 

between the two lipid phases enable their characterization with AFM.  However, the 

AFM image of the bilayer shown in Fig. 2.7 reveals three distinct height levels which 

represent the convolution of height information from each monolayer of the bilayer.  The 

lowest topography regions correspond to LE on LE while the tallest features correspond 

to LC on LC, with the intermediate height level corresponding to LE on LC or LC on LE.  

While it is clear that both monolayers of the bilayer have distinct phase partitioning, 

assigning a particular phase structure within either leaflet is not possible because of the 

convolution of height information from each side.6  

The difficulty therefore becomes identification of the phase structure present in 

each leaflet in the bilayer using AFM.  Asymmetry, as discussed previously, is an 

important property of biological membranes and it is important to be able to probe this 

property with high spatial resolution.  Confocal fluorescence microscopy can delineate 

the larger domains present when the dye is incorporated into one monolayer of the 

bilayer, but still lacks the resolution to see the sub-micron domains as detected by AFM.  

These limitations motivated the development of a method that combines fluorescence and 

topography information with high spatial resolution.  Near field scanning optical 

microscopy (NSOM), combines sub-diffraction limited optical resolution with high  
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Figure 2.7 A 10μm x 10μm AFM scan of a DPPC bilayer deposited by the LB/LS 
method in the LE/LC coexistence region.6  
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resolution topographical information needed to differentiate the small domains present, as 

illustrated below. 

 

2.5 Near Field Scanning Optical Microscopy (NSOM) 

Near field scanning optical microscopy (NSOM) was designed to combine the 

favorable aspects of several different techniques.  By utilizing NSOM, we can combine 

the specificity, high time resolution, and spectral properties of optical microscopy with 

the high spatial resolution that AFM provides.  This section will focus on a brief 

overview of NSOM and how it can be used to study model membrane systems, with an 

emphasis on research performed in our group. 

When a lens is used to focus light, spatial resolution is limited by the diffraction 

of light from the aperture.  Light passing through this circular lens interferes around the 

focal point and thus generates a diffraction pattern.  This forms a well known Airy disk 

pattern that was described in the early 1870’s by Ernst Abbe.  He defined the size of the 

Airy disk pattern as the distance from the highest intensity point within the center of the 

disk to the first node of the pattern that was created.  The size of the central spot of the 

Airy disk pattern is defined as: 

 

         spot size =  0.61 λvac / n sinθ                  (2.1) 

 

where, λvac = the vacuum wavelength, n = refractive index of the medium, and θ = the 

half angle through which the light is focused by the objective.  The n sinθ term in 

equation (2.1) determines the spot size and is known as the numerical aperture (NA) of 
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the objective.  In order to resolve two features, the features must be separated by a 

distance greater than or equal to that given in equation (2.1).  This is referred to as the 

Rayleigh criterion and is the generally accepted criterion for the minimum resolvable 

detail.  This diffraction limit dictates the maximum resolution possible in conventional 

microscopy and is often approximated by ~ λ/2.  When working in the visible region of 

the spectrum, therefore, spatial resolution is limited to several hundred nanometers, or ~ 

250 – 300 nm. 

Due to these limitations, in 1928, E.H. Synge proposed the idea of using a small 

aperture to image a surface with sub-wavelength resolution.7  His original idea was based 

on illuminating the backside of a thin opaque metal film containing a small pinhole as 

shown in Fig. 2.8.  The aperture, which is smaller than the wavelength of light, is placed 

within one wavelength of the sample such that light exiting the aperture interacts with the 

sample before diffracting out.  This results in wavelength independent spatial resolution 

on the order of the size of the aperture.   

Although conceptually straightforward, it was not until 1972 that Ash and Nichols 

implemented Synge’s idea using microwave radiation with a wavelength of 3 

centimeters.8  This long wavelength simplified aperture fabrication and placement and 

they were able to demonstrate resolution of ~ λ/60.  Not until about 12 years later did 

Pohl et. al. publish a paper that used a submicron, metal coated optical aperture to make 

similar high resolution measurements using visible light.9  A feedback mechanism was 

implemented to maintain a constant probe distance of a few nanometers of the sample 

surface.  They were able to obtain sub-diffraction limited resolution using a visible 

wavelength of 488nm.   
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Figure 2.8 Schematic representation of E.H. Synge’s original experiment.  Light is 
passed through a sub-wavelength diameter aperture (~100nm) of an opaque screen 
producing a near field region and held in close proximity to the sample surface.7 

 

. 

 

 

 

 39



 This has lead to the development of NSOM which combines the favorable 

attributes inherent to optical microscopy with the high spatial resolution of the other 

techniques.  There are several ways that NSOM can be implemented, but for the purpose 

of this dissertation we will restrict our discussion to fluorescence measurements using 

aperture NSOM.  In aperture NSOM, light is delivered to the nanometer dimension using 

specially fabricated tapered single-mode optical fibers coated with a reflective coating 

around the tapered region.  Figure 2.9a and 2.9b shows magnified views of a typical 

NSOM probe.  In the electron microscopy image shown in Fig. 2.9a, the aperture at the 

distal end can be seen along with the metal coating around the sides of the taper that is 

used to confine the light.  Light emerging from the end of the NSOM probe can be seen 

in the magnified optical image shown in Fig. 2.9b.10  The aperture size and transmission 

characteristics are strongly tied to the exact geometry of the NSOM probe, but typically 

probe apertures have sub-100 nm diameters and can deliver hundreds of nanowatts of 

light.   

To achieve high spatial resolution, the NSOM probe must be positioned and held 

within nanometers of the sample surface as the probe is scanned across the surface.  

Numerous feedback systems have been introduced to achieve this, with most based on 

force interactions between the probe and the surface.  The schematic shown in Fig. 2.9 

(bottom panel), for example, outlines one approach implementing feedback based on 

shear-force.  Because of this force feedback, a topography image of the surface is also 

generated along with the NSOM fluorescence information, which can be particularly 

informative for biological applications.    
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Figure 2.9 (a) An SEM image of an aluminum coated NSOM probe with the aperture 
clearly visible. (b) A magnified view of a typical aluminum coated NSOM probe with a 
well-defined spot of light emerging from the aperture at the end. A schematic of a typical 
NSOM microscope is shown at bottom. Laser light is directed into an optical fiber, the 
end of which is fashioned into a NSOM tip as shown above (a and b). The sample is 
scanned below the NSOM tip and fluorescence is collected from below with a high 
numerical aperture objective. The fluorescence is filtered and detected with an avalanche 
photodiode detector (APD). To maintain the tip-sample gap, a shear-force feedback 
mechanism is implemented. In the shear-force feedback method, the NSOM probe is 
dithered laterally with respect to the sample surface and the amplitude of the motion is 
detected by shining a laser across the tip and onto a split photodiode. The dither 
amplitude is detected by a lock-in amplifier, the output of which creates an error signal 
that is used to maintain a constant gap between the tip and sample.10 
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The high-resolution optical and topography information available from NSOM 

measurements has proven particularly useful in probing the microscopic structure of 

membranes.11-17  For example, the addition of fluorescent lipid markers to model 

membranes can reveal information about the phase partitioning of the lipids which can be 

compared to the simultaneously collected NSOM topography.18-19  Much of this work has 

been motivated by the implication of small lipid domains, such as the lipid rafts discussed 

in chapter 1, in a number of functional pathways.  Because of their small size, however, 

most evidence for lipid rafts remains indirect and it was hoped that the high-resolution 

afforded by NSOM could directly probe these elusive structures.   

 

2.5.1 Monolayer Systems 

NSOM measurements on LB monolayers have been used to probe the phase 

partitioning in lipid films,16, 18-19 measure models of lipid rafts,11-13, 17, 20 understand the 

distribution of membrane proteins,21-23 and map the physical characteristics of model lung 

surfactants.24  Initial NSOM studies compared high-resolution fluorescence images with 

the simultaneously collected topographical information to understand the phase 

partitioning in lipid monolayers.6   For example, Figs. 2.10a and 2.10b show 15 μm x 15 

μm NSOM fluorescence and topography images, respectively, of a LB monolayer of 

DPPC transferred onto cleaved mica in the phase coexistence region (∼9 mN/m) of the 

pressure-area isotherm (as shown in Fig. 2.2 above).  At this surface pressure, less 

ordered LE phase coexists with the more ordered LC lipid phase as discussed before.  In 

these studies, ∼0.25 mol% of the fluorescent lipid analog, 1,1’-dioctadecyl-3,3,3’,3’-

tetramethylindocarbocyanine perchlorate (DiIC18), was doped into the monolayer, which 
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gives rise to the contrast seen in the NSOM fluorescence image.  As mentioned before, 

this fluorescent lipid analog preferentially partitions into the LE phase and is excluded 

from the LC regions, thus allowing each phase to be quantified from images such as that 

shown in Fig. 2.2.   

The LE and LC domains are also distinguishable in the NSOM topography image 

shown in Fig. 2.10b through the small ~ 6 to 8 Å height differences between the two 

phases.  A direct correlation is observed between bright domains in Fig. 2.10a with 

regions of lower topography in Fig. 2.10b, confirming that these areas represent regions 

of LE phase lipid.6  These measurements help illustrate the utility of NSOM in measuring 

both fluorescence and topography simultaneously and how the high-resolution can detect 

small domains such as that expected for lipid rafts.   

The effects of proteins or peptides added to model lipid monolayers have also 

been studied with NSOM.  Often these studies rely on the high-resolution fluorescence 

capabilities of NSOM to reveal structures previously unseen in far-field measurements.  

However, the unique collection of a simultaneous force mapping of the surface 

topography can be particularly informative, especially when complementing the 

fluorescence information.  For example, both NSOM fluorescence and topography 

measurements were recently used to probe the mechanism of monolayer collapse in 

models of the lung surfactant (LS) 24.   

 

2.5.2 Bilayer Systems 

In moving from model monolayers to bilayers, the level of complexity vastly 

increases and the development of new high-resolution methods becomes especially  
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Figure 2.10 A 15μm x 15μm high resolution NSOM scan of a DPPC monolayer 
deposited at 9 mN/m onto freshly cleaved mica. (a) Fluorescence image showing sub-
diffraction limited domains. The bright domains show the LE phases where the dye 
partitions and the dark domains show the LC phase where the dye is excluded. (b) NSOM 
topography image collected simultaneously with the fluorescence image shown in (a). 
The same LE/LC coexistence regions are found as with AFM, but now a pixel-by-pixel 
mapping of the fluorescence and topography can be compared.6  
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important.  The asymmetry that biological membranes are known to contain across their 

bilayer membranes has been studied by many different techniques.  Loss of this 

asymmetry can be a sign that the cell is undergoing apoptosis and is therefore an 

important indicator.  However, the thickness of the bilayer, typically ~50Ǻ, makes 

studying these systems difficult.  As shown with AFM before (Fig. 2.7), bilayer systems 

can be problematic because of the convolution of height information from domains 

present in each leaflet.  Figures 2.11a and 2.11b displays NSOM topography and 

fluorescence images, respectively, of a DPPC bilayer similar to that shown in Fig. 2.7 

above.6  As in the AFM measurement, the NSOM topography image in Fig. 2.11a 

measures the convolution of height information from both sides of the bilayer making 

specific domain assignments complicated.  However, by selectively adding a fluorescent 

lipid analog to one leaflet of the bilayer, the NSOM fluorescence image shown in Fig. 

2.11b is able to selectively map the submicron phase partitioning present in this leaflet.  

These capabilities suggest that NSOM will be an asset in characterizing the structural 

characteristics of model lipid bilayers and become a useful tool in determining submicron 

heterogeneities in biological membranes. 

Recent progress using aperture NSOM to probe model and biological systems has 

expanded our understanding of nanometric structures previously hidden from traditional 

far-field techniques.  The examples discussed here help to highlight the utility of 

collecting both high-resolution fluorescence and topography information with NSOM.  

The continued evolution in probe design, feedback, and contrast mechanisms, however, is 

necessary to expand the biological applications of NSOM and reduce some of the barriers 

that currently limit its use.   
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Figure 2.11 A 10μm x 10μm NSOM image of a DPPC bilayer fabricated by the LB/LS 
method.  Three distinct height levels are observed which are due to overlapping LE and 
LC regions from the two leaflets. NSOM (Left) topography and (Right) fluorescence 
images of a DPPC bilayer similar to that shown in Fig. 2.XXX(AFM above). The NSOM 
fluorescence image shown at (Right) reveals the phase structure present in one leaflet of 
the bilayer.6 
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The examples of fluorescence microscopy, AFM, and NSOM discussed thus far 

in this chapter illustrate how these methods can be used to probe structural information in 

model membranes.  Fluorescence microscopy, with the addition of a membrane dye, can 

detect large domains present in model membranes.  AFM can further resolve submicron 

sized domains present that were not previously seen in the fluorescence measurements.  

NSOM simultaneously collects both the high resolution topography information and 

fluorescence measurements with high spatial resolution.  But even with NSOM, we are 

limited to about 50 nm resolution.  In order to extract more information about the 

heterogeneity of membrane structures, we want to explore down to the molecular level.  

By utilizing single molecule measurements as described below, we can achieve structural 

information at the molecular level. 

 

2.6 Single Molecule Orientations 

 Single molecule studies in the gas phase at ultralow temperatures have been 

around for decades, but it wasn’t until 1989 that W.E. Moerner and Lothar Kador were 

able to study single molecules in the condensed phase.25  With the advent of very 

sensitive commercial optical detectors, it is now a relatively simple task to image the 

fluorescence from single molecules.  This section will briefly discuss single molecule 

techniques with an emphasis on defocused imaging to obtain single molecule orientations 

in model membranes.  This technique will be used to obtain information about the 

structure of model membranes at the molecular level. 

 Single molecule experiments concentrate on investigating the properties of 

individual molecules in their environment and distinguishing these properties from the 
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bulk average.  A variety of experiments can be done to study the property, structure, and 

position of these single molecules.  More recently, single molecule fluorescence has been 

used for analysis of biological samples.  Proteins such as myosin/actin enzymes found in 

muscle tissues have been a widely studied system.  In a recent study, Cappello et al 

tagged individual myosin V motors with quantum dots and introduced them into the 

cytoplasm of living HeLa cells and recorded their motion at the single molecule level.  

Myosin V is an actin-associated protein that is involved with transport inside the cell.  

This motor uses ATP to produce energy that is then used to carry cargo through the 

cytoplasm.  They found discrepancies between the in vitro and in vivo studies performed.  

In vitro studies have previously shown a mean velocity of 200-450 nm/s while the in vivo 

studies suggest they move much faster in organelles at a rate of 1 μm/s or faster.26  It was 

not until the advent of single molecule studies that the true consecutive step motion of 

these molecules was realized. 

 The ability to study the properties of each single molecule and to investigate 

structural heterogeneity is the true strengths of this method.  When the bulk or ensemble 

average is analyzed, the true heterogeneity of the system is often missed.  It is for this 

reason that we chose to study single molecule orientations in model membranes for this 

dissertation.  By studying membrane properties at the single molecule level, the structural 

heterogeneity present can be entirely quantified.  A representative single molecule 

fluorescence image is shown in Fig. 2.12 in which ~ 10-8 mol % of a membrane dye was 

added into a monolayer of DPPC.  With a high signal-to-noise ratio, the fluorescence 

from each individual fluorophore molecule doped into the membrane can be seen in the 

image.  
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Figure 2.12 A representative in focus single molecule fluorescence image is shown 
illustrating the fluorescence from each individual molecule with a high signal-to-noise 
ratio. 
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Several groups have previously shown that by using polarized total internal 

reflection fluorescence microscopy (PTIRF-M), single molecule orientations can be 

measured.27-31  To understand how this technique works, let’s first consider how single 

fluorophores emit light.  Fluorophores emit light in a sine-squared spatial pattern relative 

to the transition dipole orientation.  When a molecule is brought close to an interface with 

differing refractive index, the emission pattern is distorted.32  As shown in Fig. 2.13, 

molecules oriented with their transition dipoles aligned parallel to the membrane plane 

couple fluorescence predominately along the optical axis.  Molecules with their transition 

dipoles oriented perpendicular to the membrane plane couple fluorescence through the 

interface at high angles, as shown in Fig. 2.13. 

In order to excite randomly oriented fluorophores, we employ polarized total 

internal reflection fluorescence microscopy (PTIRF-M). The probe molecules are excited 

by a laser excitation source that is undergoing total internal reflection (TIR) at the glass / 

air interface.  This creates a non-propagating, exponentially decaying, evanescent field 

into the sample surface, as shown schematically in Fig. 2.14.32  TIR is achieved by 

increasing the angle at which the incident ray is brought to the interface of two materials 

with differing refractive indexes.  When the incident beam is brought to the interface 

from a higher refractive index medium to a lower refractive index medium, the light is 

refracted away from the normal and totally internally reflected at the critical angle as 

defined by Snell’s law, or θcrit = arcsin (n2/n1), where n1>n2.  This creates evanescent 

field polarizations in the x, y, and z directions depending on the polarization of the 

incident beam.  P-polarization “cart-wheels” through the sample and allows for 

interactions with molecules that are oriented in all directions in the film, as shown by the  
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Figure 2.13 Schematic representation of two transition dipole orientations.  With the 
parallel emission dipole as shown on the left, most of the fluorescence is reflected 
straight back into the interface or directly back into the objective.  With the perpendicular 
emission dipole as shown on the right, most of the fluorescence is collected at high 
angles.32 
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red wave in Fig. 2.14, and s-polarized light is in the plane of the glass slide as shown by 

the blue wave in Fig. 2.14.  

The fluorescence from single molecules can then be collected back through the 

high NA objective in epi-fluorescence geometry.  Dichroic and emission filters are used 

to filter any stray excitation light.  In order to probe the distorted emission patterns from 

single reporter molecules, spherical aberrations were induced.  By defocusing the optics 

by ~500nm, spherical aberrations are created in the optical train, in which the light 

collected at high angles is out of focus with the light collected directly into the objective.  

The resulting image contains emission patterns representative of the transition dipole 

orientation of the single molecules.  Fig. 2.15 shows a representative defocused single 

molecule fluorescence image in which a small amount of a dye (~ 10-8 mol %) was doped 

into the lipid monolayer.  Each individual emission pattern collected contains angle 

dependent information. 

Emission patterns of each single reporter molecule can be analyzed and the 

mathematical representation of these patterns mapped using a MatLab code created by 

Dr. Jörg Enderlein.  The convention shown in Fig. 2.16 will be used where Φ is the polar 

angle, or tilt away from the membrane normal and θ is the azimuthal angle. 
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Figure 2.14 Schematic representation of polarized total internal reflection (PTIR).  As 
an incident ray is brought to the interface of two refractive indexes (n1 > n2) the light is 
refracted away from the normal.  At the critical angle, as defined by Snell’s law (θcrit = 
sin-1 (n2/n1)), the light is totally internally reflected and a non-propagating, exponentially 
decaying evanescent field is created.  P-polarization is represented by the red waves that 
“cart-wheel” through the sample and s-polarization is represented by the blue wave that 
“snakes” through the interface.  By selecting for p-polarized light, molecules oriented in 
all directions can be excited.32 
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Figure 2.15 By utilizing PTIRF-M, and defocusing ~ 500nm, this representative out of 
focus single molecule fluorescence image can be obtained.   This image contains 
orientation specific information about each individual probe molecule in the film. 
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Figure 2.16 Schematic of an emission dipole oriented in space showing the convention 
used here for the polar (Φ) and azimuthal (θ) angles. 
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Most of the emitted fluorescence is collected back into the glass at orientation 

specific angles by using TIRF-M as the imaging technique.33  As discussed before and 

shown in the top panel of Fig. 17, molecules oriented perpendicular to the membrane (0˚ 

from the membrane normal) produce patterns that look like “donuts”, or symmetric 

fluorescent rings, and molecules that are oriented parallel to the membrane (90˚ from the 

membrane normal) produce “wing-like” features, as shown in the bottom panel of Fig. 

2.17.  The observed shapes collected are due to the orientation specific coupling of 

fluorescence into the glass slide.  Very small amounts (~ 10-8 mol%) of the reporter 

molecule is required for single molecule imaging and therefore should have extremely 

low perturbation effects on the membrane.  Other scanning techniques such as AFM and 

NSOM lack the temporal resolution of this technique.  Therefore, this method can be 

used as a complimentary technique to analyze the structure of model membranes. 

Using this technique, we may probe single molecule orientations in model 

membranes.  Fig. 2.18 shows a schematic representation of how each reporter molecule is 

oriented in a monolayer of DPPC (shown in left panel) using modeled bar-bell type 

molecules (shown in right panel).  Both the polar and azimuthal angles can be assigned, 

but for the purposes of this dissertation, only the polar angles will be assigned, as the 

distribution of azimuthal angles are isotropic.   
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Figure 2.17 Three representative orientations obtained are shown.  The observed single 
molecule orientation images are shown at left, while the calculated images are shown at 
right.  The top image is representative of a transition dipole oriented ~ parallel to the 
membrane normal, the middle image is representative of a transition dipole oriented at a 
~ 45˚ tilt from the membrane normal, and the bottom image is representative of a 
transition dipole oriented ~ perpendicular to the membrane normal. 
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Figure 2.18 Each single molecule emission pattern (shown at left) can be 
schematically represented and modeled to represent its 3-D orientation (shown on right). 
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2.7 Conclusion  

The combination of the high resolution techniques described above offers a 

particularly informative view of membranes.  Model membranes can be fabricated in a 

controllable fashion and used as biological mimics to study their structure and function.  

Fluorescence microscopy is commonly used to study domains formation in model 

membranes, due to the propensity of fluorescent lipid analogs to partition into one phase.  

While this technique is useful in studying the microscopic domains present, the 

nanoscopic domains present has created the need for higher resolution techniques.  AFM 

is a high resolution technique that can be used to study structural features of model 

membranes.  This technique has Ängstrom level resolution, but lacks the specificity of 

optical microscopy.  To combine the optical benefits of fluorescence microscopy, and the 

nanometric topographical resolution of AFM, NSOM is used.  NSOM can obtain 

simultaneous topographical and fluorescence information with high spatial resolution.  

However, as stated before, even with NSOM, we are limited to ~ 50nm at best. 

In order to study the structure and function of model membranes and to probe the 

structural heterogeneity, we use a single molecule technique that allows for large, 

simultaneous areas of individual molecules to be collected and analyzed.  The majority of 

this dissertation will discuss single molecule orientations in model membranes.  The 

following chapter will show that these measurements can be made in a predictable and 

accurate fashion by studying how the molecular order is affected by an increase in 

surface pressure.  We will also discuss the comparisons between monolayer and bilayer 

systems using single molecule orientation measurements and also study the effects of 

sterols on model membranes.   
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Chapter 3 

Single-Molecule Probes of Lipid Membrane Structure 

 

3.1  Introduction 

Because of the importance that membranes play in biological function, a host of 

techniques have been applied to probe the microscopic structure in both natural and 

model membranes.  Fluorescence microscopy and atomic force microscopy (AFM) have 

proven especially useful for understanding the phase partitioning in model membranes.1-6  

These methods are particularly useful for reasons discussed in Chapters 1 and 2. 

Bulk lipid order and orientational information has been obtained by methods such 

as quasielastic neutron scattering (QENS),7 NMR relaxation studies,8-11 small angle x-ray 

diffraction,12 and wide angle x-ray scattering.13  Structural information has also be 

obtained from optical techniques such as infrared (IR) spectroscopy,14-16 polarized total 

internal reflection fluorescence (PTIRF) microscopy,17-18 variable acquisition angle 

polarized TIRF (VAATIRF),19 and polarized epifluorescence (PEF).18-19  These 

techniques, however, often average over large populations of molecules and therefore 

provide an ensemble view of membrane organization and lack information at the single-

molecule structural level.   

The recent advances in single molecule fluorescence detection provide new 

opportunities for probing membrane structure at the molecular level.  Single molecule 

fluorescence detection is now well established using both near-field and far-field 

approaches.20-25  Moreover, these measurements have been extended to probe the three-

dimensional orientation of fluorescent molecules doped into samples.  For example, 
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several groups have shown that polarized total internal reflection fluorescence 

microscopy (PTIRF-M) measurements with p-polarized excitation can probe single 

molecule orientation in a sample.17, 26-33  As shown in Chapter 2, the orientation of single 

molecules can be mapped by analyzing their emission patterns created when brought near 

an interface, such as a glass substrate. 

Briefly, by defocusing the optics, distinct emission patterns are observed in the 

single molecule fluorescence image which reflects the orientation of the molecule in the 

sample.  As has been shown, these emission patterns can be modeled to extract the 

orientation of the emission dipole moment for each molecule.  Here we show that this 

provides a powerful new approach for probing membrane structure.   

Langmuir-Blodgett monolayers of dipalmitoylphosphatidylcholine (DPPC) and 

arachidic acid (AA) are doped with small amounts of commonly used fluorescent lipid 

analogs.  Taken with slightly defocused PTIRF-M, single-molecule fluorescence images 

reveal changes in the single-molecule orientation as the surface pressure of the monolayer 

is changed.  The reorientations of the reporter dye reflect the evolution in order within the 

film as the surface pressure is increased and demonstrates that this technique can be used 

to probe membrane structure at the molecular level.  Having shown that single molecule 

emission patterns can track membrane order, similar measurements are made on DPPC 

monolayers incorporating cholesterol.  The addition of cholesterol is known to lead to 

dramatic ordering in membranes34-36 which is reflected in the single molecule emission 

patterns.  These measurements yield both the orientation and location of the dye 

molecules in the film which should be particularly informative in cellular applications.  

Moreover, unlike ensemble averaging techniques, the entire orientation distribution is 
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measured in single-molecule measurements which should be very useful for 

heterogeneous membrane systems.  Finally, because only trace quantities of the reporter 

dye are incorporated into the membranes, this approach is less perturbative than 

conventional fluorescence approaches.   

  

3.2  Experimental and Methods 

3.2.1 Langmuir-Blodgett (LB) Monolayers 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (Avanti Polar Lipids, 

Alabaster, AL), arachidic acid, and cholesterol (Sigma Aldrich, St Louis, MO) were 

obtained at >99% purity and used without further purification.  The fluorescent lipid 

analogs 2-(5-butyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-3-nonanoyl)-1-

hexadecanoyl-sn-glycero-3-phosphocholine (β-C4-BODIPY 500/510 C9 HPC) (BODIPY-

PC) (Invitrogen Corporation, Carlsbad, CA, B3794) and 1,1’-dioctadecyl-3,3,3’,3’-

tetramethylindocarbocyanine perchlorate (DiIC18) (Invitrogen Corporation, Carlsbad, 

CA, D-282) were doped into lipid films at a concentration of approximately 1x10-8 

mol%.   

DPPC and arachidic acid were dissolved in chloroform (1mg/ml), doped with an 

appropriate reporter dye, and dispersed on a subphase of ultra-pure water (18 MΩ) in a 

Langmuir-Blodgett trough (Type 611, Nima Technology, Coventry, England).  Once 

dispersed on the subphase, the chloroform was allowed to evaporate for 15 minutes.  

DPPC monolayers were compressed at a speed of 100 cm2/min to approximately 42 

mN/m and then expanded at a speed of 80 cm2/min.  The compression cycles were 

repeated twice to anneal the monolayer and it was then compressed to the target pressure 
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and held there for approximately 15-20 minutes.  The film was then transferred in a 

heads-down geometry onto a Piranha cleaned glass substrate at a dipping speed of 25 

mm/min.  For DPPC films containing cholesterol, the appropriate amount of cholesterol 

(from a 1mg/ml in chloroform stock solution) was added to the DPPC solution to make 

the appropriate concentration in mol%. 

For arachidic acid films, glass slides were first treated in a 3% octatriethoxysilane 

(OTS) / toluene (v/v) solution for 6 hours and rinsed with water (18 M Ω) to produce a 

hydrophobic surface.  The first monolayer of pure AA was transferred onto the OTS 

treated substrate with tailgroups down.  A second layer of AA doped with ~10-8 mol% 

DiIC18 was then deposited on top to produce a Y-type film.  All films were prepared at a 

temperature of ~21˚C.   

 

3.2.2 Imaging Technique 

 The films were imaged using a total internal reflection fluorescence microscope 

(TIRF-M) (Olympus IX71, Center Valley, PA) equipped with a 100x objective (1.45 NA 

achromat).  The 514 nm line from an argon ion laser (Coherent Innova 70 Spectrum, 

Santa Clara, CA) was directed through half-wave and quarter-wave plates (Newport, 

Irvine, CA) to generate p-polarized excitation.  Excitation was directed through the 

objective, and fluorescence was collected in an epifluorescence geometry with the optics 

defocused ~500 nm.  The fluorescence was filtered with a combination of a dichroic 

mirror and long pass filters (Chroma, Rockingham, VT) and imaged onto a CCD camera 

(Cascade 650, Roper Scientific, Tucson, AR).  Image collection was controlled with 
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Slidebook software (Version 4.2, Intelligent Imaging Innovations, Denver, CO) and 

analyzed using MatLab software (Natick, MA).   

 

3.3  Results and Discussion 

3.3.1 Single Molecule Orientations – Tracking Acyl Chain Order in Membranes 

To explore the structural information available from single molecule orientation 

measurements, PTIRF-M studies on the fluorescent lipid analogs BODIPY-PC and 

DiIC18 doped into Langmuir-Blodgett (LB) films were studied over a range of surface 

pressures.  For these studies, lipid monolayers were formed from DPPC, arachidic acid 

(AA), and DPPC/cholesterol mixed monolayers.  Figure 3.1 shows the structures of 

DPPC, AA, cholesterol, and the two fluorescent lipid analogs that were doped into the 

films.  The two fluorescent lipid analogs shown in Fig. 3.1 were chosen for the placement 

of the fluorophore.  For DPPC monolayers transferred onto glass with headgroups down, 

the BODIPY-PC probe with the fluorophore in the tailgroup is expected to be more 

sensitive to changes in membrane packing while the DiIC18, with the fluorophore in the 

headgroup, should be less sensitive and will act as a control in these studies.  Each of 

these fluorophores has an emission dipole aligned along the long axis of the chromophore 

as shown schematically in Fig. 3.1.  For the BODIPY chromophore, anisotropy 

measurements suggest there is an angle of ∼13o between the absorption and emission 

dipoles.37  Previous studies have shown the propensity of fluorescent lipid analogs to 

partition into the more expanded phase in these films 

Figure 3.2 shows a pressure-area isotherm for DPPC with arrows denoting the 

surface pressures at which monolayers were transferred onto a glass substrate.  The  
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Figure 3.1 (A) Structures of the lipids, cholesterol, and fluorescent lipid analogs used 
in film formation are shown. (B) A schematic of how BODIPY-PC and DiIC18 insert into 
the monolayer is also shown. 
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pressure-area isotherm for DPPC shows the phase coexistence plateau region where 

liquid expanded (LE) and liquid condensed (LC) phases coexist.  Also shown in Fig. 3.2 

are AFM images (as described in Chapter 2) of the DPPC monolayers transferred at 

pressures of 25 mN/m and 40 mN/m.  Height differences indicative of coexisting phases 

remain visible in the AFM image of the film transferred at 25 mN/m, where a single 

phase is expected for an ideal single component film.  The departure from ideal behavior 

is common and arises from small amounts of impurities.38  At 40 mN/m, the AFM image 

reveals a nearly homogeneous film with only small, < 15 nm width, structures remaining.   

As an example of how out-of-focus PTIRF-M measurements can probe lipid 

membrane organization, Fig. 3.3 shows a typical single molecule fluorescence image 

taken of a DPPC monolayer doped with ∼10-8 mol% of the reporter molecule BOPIPY-

PC.  This monolayer was transferred onto a glass substrate at a surface pressure of 25 

mN/m.  Each bright spot in the image reflects the emission from a single BODIPY-PC 

molecule in the monolayer.  With the optics defocused ~500 nm, the single molecule 

fluorescence shows distinct shapes that reflect the orientation of the BODIPY-PC 

fluorophores in the monolayer.  As shown previously by others, donut-like shapes in the 

fluorescence image reflect emission dipoles oriented normal to the substrate.26-33  At this 

defocus length, these features become asymmetric as the dipole orients away from the 

normal and appear as elliptical bright spots surrounded by wings when the emission 

dipole lies in the plane of the membrane.  As seen in Fig. 3.3, a range of single molecule 

emission patterns are observed that qualitatively reflect the order present in the lipid 

membrane at this surface pressure.   
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Figure 3.2 Pressure-area isotherm for DPPC with arrows denoting pressures used to 
transfer monolayers onto the glass substrate. Below are AFM images of typical films 
transferred at the higher pressures. 
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Representative single molecule emission patterns, extracted from the full image, 

are also shown in Fig. 3.3.  The top single molecule emission feature shows the donut-

like shape indicative of molecules oriented normal to the surface.  The middle image 

shows an asymmetric emission suggesting a molecule tilted away from the normal while 

the bottom image reveals the emission pattern measured for molecules lying in the plane 

of the film.  As shown previously,26-33 the degraded imaging system that leads to the 

emission shapes can be modeled to extract the emission dipole orientation.  For LB films 

this is simplified because the thinness of the film leads to all dye molecules being located 

at the same z position.   

Figure 3.3 shows modeled emission patterns for the three extracted single 

molecule features, along with the angles used in the modeling.  As shown in Fig. 2.16, we 

use the convention that φ represents the polar angle and θ denotes the azimuthal angle.  

Figure 3.3 also shows a schematic representation of the emission dipole orientation for 

each extracted emission pattern.   

To explore the use of single molecule emission measurements to reveal 

membrane structure, DPPC monolayers were doped with ∼10-8 mol% BODIPY-PC and 

transferred onto substrates at surface pressures of π = 3 mN/m, 25 mN/m, and 40 mN/m.  

Figure 3.4 shows representative emission images taken on monolayers transferred at 

these pressures.  Qualitatively, comparison of the emission images shows an evolution in 

the emission patterns as the surface pressure increases and the films become more 

ordered.  At low surface pressure (3 mN/m) where there is maximal orientational freedom 

around the probe molecule, the single molecule emission patterns consist primarily of 

patterns associated with emission dipoles lying in the plane of the film.  Relatively few  

 72



 

 

 

 

 

 

Figure 3.3  Typical single-molecule fluorescence image of a DPPC monolayer doped 
with BODIPY-PC. This monolayer was transferred onto a glass substrate at a surface 
pressure of 25 mN/m. Representative single-molecule emission patterns have been 
extracted to illustrate the range of patterns observed. Modeling of the emission patterns 
leads to the orientation of the emission dipole. 
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donut-like single molecule emission patterns are observed at this pressure where the 

average area per molecule is approximately 75 - 80 Å2/molecule.  

As shown in Fig. 3.4, as the surface pressure of the film is raised, an increase in 

the appearance of donut-like emission patterns is observed.  For example, the emission 

image shown in Fig. 3.4 for the DPPC monolayer transferred at 40 mN/m shows single 

molecule patterns that are dominated by donut-like features.  These features arise from 

emission dipoles oriented normal to the membrane plane and are consistent with the 

tailgroups of the fluorescent probe positioned vertically in the monolayer.  At this surface 

pressure, the area per molecule of DPPC is ∼40 Å2/molecule which is approximately half 

that for monolayers transferred at 3 mN/m, where few donut-like features are observed.   

Using the same procedure outlined in Fig. 3.3, the three-dimensional orientation 

of each emission feature in the images can be extracted.  These orientations are mapped 

schematically below each of the measured emission images shown in Fig. 3.4.  A clear 

trend towards vertically oriented emission dipoles is seen as the surface pressure of the 

film increases.  A more quantitative view is found in population histograms of the polar 

angle (φ) extracted from the modeled emission patterns.  For each pressure studied, at 

least three different films where analyzed at various locations to create the histograms 

shown in Fig. 3.4.  In all, at least 700 individual molecules where analyzed at each 

surface pressure with the exact number for each histogram shown in Fig. 3.4.  At a 

surface pressure of 3 mN/m, this measure of the tilt from the membrane normal shows 

that most of dye probes have their emission dipoles lying in the plane of the film with an 

average tilt angle of 67.4˚ ± 5˚.  As the pressure is increased to 25 mN/m, a bimodal 

histogram is found with roughly ∼ 39% of the molecules oriented in the plane (≥ 81o) and 
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∼ 42% orientated normal to the plane (≤ 10o), with the remaining 19% approximately 

evenly spread through the remaining orientations.   

The AFM measurements in Fig. 3.2 show that expanded phases in the DPPC 

monolayer persist even at 25 mN/m.  The bimodal distribution of BODIPY-PC 

orientations, seen in Fig. 3.4, reflects dye molecules located in the differing phases.  

Emission dipoles oriented normal to the surface arise mainly from dye molecules in 

condensed regions of the film while those located parallel to the film plane reflect 

expanded regions.  Even though the AFM measurements show a nearly 95% to 5% 

condensed to expanded phase distribution in the films by area, the dye orientations in the 

histogram are almost evenly divided between upright and parallel due to the selective 

partitioning of BODIPY-PC into the expanded phase.  If the bimodal distribution is 

combined, the average tilt angle at 25 mN/m is 48.7˚ ± 5˚.   

At a surface pressure of 40 mN/m, the increased packing in the film produces a 

histogram with the majority of probes oriented normal to the film.  At this elevated 

surface pressure, ~68% are oriented normal to the surface and only ∼ 12% lie in the plane 

of the film producing an overall average tilt angle of 22.4˚ ± 5˚.  These results show a 

clear trend towards vertically oriented tailgroups as the surface pressure increases. 
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Figure 3.4  Single-molecule fluorescence images of DPPC monolayers doped with 
BODIPY-PC and transferred at the surface pressures shown at the top. As the pressure 
increases, more donut-like features are observed reflecting the increased packing and 
order in the monolayers. The orientation for each molecule is shown schematically in the 
middle row of images with the polar angle (Φ) population histograms plotted below. 
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3.3.2    Control Studies Using a Headgroup Labeled Probe 

Measurements similar to those shown in Fig. 3.4 were conducted on DPPC 

monolayers incorporating the fluorescent lipid analog DiIC18.  As shown in Fig. 3.1, this 

probe has the fluorophore located in the headgroup with the transition dipole aligned 

along the long axis of the conjugated ring system.  This positions it along the plane of the 

membrane when incorporated into a lipid monolayer as shown schematically in Fig. 3.1.  

With the fluorophore located in the headgroup, DiIC18 should be much less sensitive to 

membrane packing in LB monolayers transferred in headgroup down geometry.  These 

studies, therefore, act as a control to confirm that membrane packing is the predominant 

metric leading to changes in the observed emission patterns.   

Figure 3.5 shows representative single molecule emission images of ∼10-8 mol% 

DiIC18 incorporated into DPPC monolayers transferred at surface pressures of 3 mN/m, 

25 mN/m, and 40 mN/m.  As before, Fig. 3.5 also shows schematic representations of the 

extracted emission dipole orientations and population tilt histograms for each surface 

pressure studied.  As before, at each pressure several areas were imaged from at least 

three different films to construct the histograms.  In contrast to the studies carried out 

with BODIPY-PC, the tilt histograms measured for DiIC18 are not sensitive to the surface 

pressure or packing of the DPPC monolayer.  The histograms reveal that most of the 

probes are oriented with their emission dipoles lying in or near the plane of the film.  At a 

surface pressure of 3 mN/m, for example, approximately 88% of the dye molecules are 

oriented in the plane of the film (≥ 81o).  As surface pressure is increased to 25 mN/m 

and 40 mN/m, approximately 96% and 94% are oriented in the plane of the films, 

respectively.  From the population histograms, average tilt angles of 80.7˚ ± 5˚, 83.5˚ ± 
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5˚, and 81.9˚ ± 5˚ are calculated for surface pressures of 3 mN/m, 25 mN/m, and 40 

mN/m, respectively, showing no appreciable changes in tilt angle with surface pressure.  

Since these films are deposited with the headgroups on the glass substrate and DiIC18 has 

its emission dipole in the headgroup aligned along the plane of the film, the insensitivity 

to membrane packing is expected.  The BODIPY-PC, on the other hand, with the 

emission coming from the tailgroup region is much more sensitive to membrane packing 

as shown in Fig. 3.4.   

 
 
3.3.3 Comparison of Single Molecule Measurements to Previous Bulk Studies 

Other groups have used polarized fluorescence techniques to measure the 

ensemble orientation of fluorescent probes doped into thin films.  In particular, several 

studies have reported on the orientation of DiIC18 doped into thin films of arachidic acid.  

In one study, LB films consisting of three layers of pure cadmium arachidate followed by  
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Figure 3.5  Single-molecule fluorescent images of DPPC monolayers doped with 
DiIC18 and transferred at the surface pressures shown at the top. As in Figure 3.4, the top 
shows representative single-molecule fluorescence images, the middle displays schematic 
representation of the emission dipole orientations, and polar angle (Φ) population 
histograms are shown below. With the fluorophore aligned along the long axis of the 
headgroup in DiIC18 and by insertion into the headgroup region of the monolayer, this 
probe is less sensitive than BODIPY-PC at sensing changes in membrane packing. 
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two layers of arachidic acid doped with DiIC18.  These measurements found a mean tilt 

angle of 75˚ ± 4.1˚ away from the membrane normal.39  A similar tilt angle of 77˚ ± 5˚ 

was measured using polarized epifluorescence and polarized total internal reflectance 

fluorescence measurements.18  This study measured the DiIC18 tilt angle in LB films 

consisting of a doped bilayer of arachidic acid deposited on top of a pure bilayer of 

cadmium arachidate.   

Figure 3.6 shows the results from single molecule measurements on DiIC18 doped 

into an arachidic acid film.  For these measurements, a pure arachidic acid monolayer 

was transferred in a tailgroup down geometry onto an OTS treated glass substrate.  A 

second monolayer doped with ∼10-8 mol% DiIC18 was then transferred onto the first.  

Both layers of the film were transferred at a surface pressure of 35 mN/m to match that 

used in previous studies.  The results shown in Fig. 3.6 reveal that most of the DiIC18 

molecules are oriented with their emission dipoles lying in or near the plane of the film.  

Averaging all the orientations results in an average orientation of 71o ± 5˚ of the dye 

molecules, which is close to that measured in the previous studies on similar films.  This 

suggests the single molecule measurements agree well with other bulk averaging 

techniques. 

 
 
3.3.4 Condensation Effect of Cholesterol on Model Membranes 
 

Having shown that single molecule orientation measurements can probe 

membrane structure, the influence of cholesterol on monolayers of DPPC was 

investigated.  Cholesterol is ubiquitous in biological membranes and influences a vast 

number of biological functions.35-36, 40-43  Cholesterol inserts into membranes with its  
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Figure 3.6. From these measurements, the average tilt angle (Φ) calculated from the 
histogram is approximately 71 ± 5°. This is in good agreement with bulk measurements 
in similar systems. 
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rigid four-ring structure aligned along the tailgroups of the lipids in the bilayer and its 

single hydroxyl group oriented towards the headgroups.  The incorporation of cholesterol 

leads to dramatic changes in the biophysical properties of membranes which has been the 

subject of many excellent reviews.35-36, 41-42  

In general, the incorporation of cholesterol leads to ordering in lipid membranes.36   

Cholesterol increases the average motional order of the hydrocarbon chains in lipid 

bilayers, thus leading to a decreased average area per lipid and a new physical state 

known as the liquid-ordered (lo) state.35-36, 40-42  For phospholipids with chain lengths up 

to approximately 16 carbon atoms, this cholesterol induced ordering leads to an overall 

increase in membrane thickness and decrease in membrane permeability.   

Figure 3.7 shows single molecule emission measurements of DPPC monolayers 

doped with increasing amounts of cholesterol at a surface pressure of 25 mN/m.  As 

shown previously in Fig. 3.4, pure monolayers of DPPC doped with BODIPY-PC exhibit 

a predominantly bimodal distribution of dye molecule orientations at this surface 

pressure.  This is shown in the top image of Fig. 3.7with 0 mol% added cholesterol.  With 

no added cholesterol to the DPPC monolayer, approximately 42% of the dye molecules 

are oriented normal to the surface (≤ 10o).  As seen in Fig. 3.7, the addition of small 

amounts of cholesterol into the DPPC monolayer leads to a dramatic shift in the single 

molecule orientations.  With the addition of just 5 mol% cholesterol, the population 

histogram shows that ∼ 59% of the dye molecules orient normal to the surface.  This 

increases to ∼ 65% at 10 mol% and finally ∼ 70% at 33 mol%.  These measurements 

agree with previous studies illustrating the ordering effect that cholesterol has on lipid 
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membranes and illustrates the utility of single molecule measurements in more 

complicated and hence biologically relevant membrane models.   

The results presented here suggest that single molecule emission patterns can be 

used to reveal structural changes in membranes.  This technique compliments other 

approaches for studying membrane structure and provides several advantages.  There is 

minimal perturbation to the membrane from the fluorescent lipid probe because of the 

small amount of probe needed.  Typical fluorescence studies of membranes use dyes 

doped at concentrations ranging from ~0.25 to ~2 mol%.  While this is typically 

considered non-perturbative and does not affect the monolayer transition pressures, 

miscibility studies on mixed membranes have found an effect from the added fluorescent 

lipid analogs at concentrations as low as 0.05 mol%.44  To avoid crowding in the single 

molecule emission images, dye concentrations of approximately 10-8 mol% where 

utilized here which are several orders of magnitude lower than that in typical studies.   

Probing membrane order at the single molecule level also has the advantage that 

the entire distribution of orientations is measured.  Even simple membranes can be highly 

heterogeneous and this heterogeneity can be lost in bulk measures of average properties.  

For example, the results shown in Fig. 3.4 for DPPC monolayers transferred at 25 mN/m 

reveal a bimodal tilt distribution.  This would be lost in average measures of tilt and 

reflects the structure remaining in this monolayer even at pressures where single phase 

behavior is expected for an ideal single component film.  Moreover, because this is a 

microscopy technique, both dye orientation and location are measured which may prove 

especially informative in natural biological membranes where correlations may provide 

new insights.   
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Figure 3.7  Single-molecule emission images and tilt histograms from measurements 
on DPPC monolayers as a function of mol% cholesterol.  All monolayers were doped 
with ~10-8 mol % of the reporter dye BODIPY-PC and transferred at the same surface 
pressure of 25 mN/m.  As the percentage of cholesterol is increased, the films become 
more ordered as seen in the increased observation of donut-like single-molecule emission 
patterns in the images.  Analysis of the images reflects this ordering as an increase in the 
number of dye molecules with emission dipoles oriented normal to the film (tilt angle 
≤10°). 
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3.4     Conclusions 

Molecular orientations measured at the single molecule level are used here to 

probe the microscopic order in model membranes.  Using TIRF-M with p-polarized 

excitation, the single molecule emission from the fluorescent lipid analogs BODIPY-PC 

and DiIC18 doped into LB films of DPPC and AA are measured.  As shown by others, 

defocusing of the optics leads to distinct emission patterns in the single molecule images 

which reflect the orientation of the dye.26-33  DPPC monolayers doped with ~10-8 mol% 

BODIPY-PC were deposited at a range of surface pressures and changes in the single 

molecule orientations tracked the increasing order in the monolayer.  At low surface 

pressures, the emission dipole in the tailgroup of the BODIPY-PC was mostly lying in 

the plane of the film which evolved to a more upright orientation at high surface 

pressures where the area per molecule is reduced and the order of the monolayer 

increased.  Similar experiments using DiIC18 found no significant changes in emission 

dipole orientation with surface pressure, as expected since its fluorophore is located in the 

headgroup.  Measurements of DiIC18 in films multilayer of AA transferred at 35 mN/m 

found an average tilt away from normal of 71o ± 5˚, which compares favorably with 

previous bulk measurements.18, 39  Incorporation of cholesterol into monolayers of DPPC 

is shown to increase the number of BODIPY-PC dye molecules oriented normal to the 

membrane, consistent with the known propensity of cholesterol to condense membrane 

structure.  These results show that orientational measurements taken at the single 

molecule level provide a useful approach for probing membrane structure.   
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Chapter 4 

Exploring the Effects of Sterols in Model Lipid Membranes using 
Single-Molecule Orientations 

 

4.1  Introduction 

As discussed in the previous chapters, the complexity of biological membranes 

often makes direct studies of membrane properties difficult in intact tissues.  The number 

and distribution of membrane components is highly variable and not easily controlled, 

complicating both the experimental approaches and interpretation of the resulting data.  

These difficulties have led to the long historical development of model membrane 

systems, using both lipid monolayers and bilayers.  These simplified models provide 

more control over parameters such as membrane composition, but questions remain 

regarding their utility in understanding the vastly more complex natural biomembranes.  

Regardless, it is clear that these model systems have been invaluable for understanding, 

for instance, the phase behavior of lipid films and the physical effects of membrane 

additives such as cholesterol.   

Bilayers formed from vesicle fusion onto substrates provide a conceptually 

appealing mimic of biomembranes while monolayers fabricated using the Langmuir-

Blodgett (LB) technique offer the advantage that the surface pressure can be precisely 

controlled.  As discussed in Chapter 2, in the LB technique, the propensity of lipids to 

spread at the air-water interface is countered by an external mechanical pressure provided 

by a moving barrier.  This enables the precise measurement and control over film lateral 

surface pressure (Π) which is the first derivative of free energy with respect to surface 

area.  These measurements, therefore, provide a direct link between surface pressure and 
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film thermodynamics which can be studied over a wide range of pressures, temperatures 

and film compositions.   

For model bilayers, surface pressure is not well defined at equilibrium, since the 

films exist in a tension free state.  For bilayers it is the lateral compressibility that is the 

useful parameter when discussing such properties as protein insertion or conformational 

changes.  In monolayers, lateral compressibility can be directly measured from the slope 

of the pressure-area isotherm.  This illustrates the utility of comparative studies done with 

both monolayers and bilayers.  While monolayers often provide a more direct measure of 

quantities such as surface pressure and compressibility, bilayers provide a more faithful 

representation of biological membranes.  This necessitates a need for measureable 

parameters which establish corresponding states between monolayers and bilayers.   

While surface pressure in monolayers is a thermodynamically precise quantity, 

for bilayers a more relaxed quantity, termed the equivalent surface pressure, is often 

discussed.  The equivalent surface pressure is the collective interactions that balance the 

cohesive bilayer pressure that arises from the hydrophobic interactions between the lipid 

acyl chains and water.1  Quantifying an equivalent surface pressure in bilayers is 

obviously important for studies comparing properties of monolayers and bilayers and for 

establishing conditions under which monolayers can be used as bilayer mimics.   

While direct measures of surface pressure in bilayers is not possible, the 

monolayer-bilayer equivalence pressure can be estimated through indirect studies 

comparing membrane properties.  For example, the partitioning of dibucaine, a local 

anesthetic, in monolayers of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) at a 

surface pressure of 30.7-32.5 mN/m closely matched that in bilayers, suggesting similar 
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surface pressures.2  A similar study found that the partitioning of myristic acid into 

phosphatidylcholine bilayers closely matched that of monolayers compressed to a surface 

pressure of 35 mN/m.3  Finally, the partitioning of the small 22 residue peptide, 

phosphotransferase glucitol permease, into POPC vesicles was found to be similar to 

POPC monolayers compressed to a surface pressure of 32 mN/m.4  Assuming that the 

insertion of species is similar in monolayers and bilayers, these partitioning studies 

suggest that bilayers have an equivalent surface pressure of ~30-35 mN/m.   

Equilibrium spreading experiments have also been used to estimate the bilayer 

equivalence pressure.  Vesicles in a subphase are allowed to form bilayers across an 

opening separating two solutions and form a monolayer at the air/subphase interface.  

When these films reach equilibrium, measurement of the surface pressure at the 

air/subphase interface yields insight into the equivalent surface pressure of the suspended 

bilayer.  Using vesicles from the Torpedo electroplax, an equivalence bilayer pressure 

was estimated to be ~34 mN/m using this technique.5   

In chapter 3, we used out-of-focus single-molecule fluorescence measurements to 

quantify the orientation of single dye molecules doped into lipid monolayers of DPPC.6  

Several groups have previously shown that polarized total internal reflection fluorescence 

microscopy (PTIRF-M) can be used to quantify the three-dimensional orientation of dye 

molecules in samples when spherical aberrations are introduced into the optics train 

through defocusing.7-11  Using this approach, we showed that the orientation of 

fluorescent lipid analogs doped into LB monolayers of DPPC could be used to track 

membrane order.  In this chapter we extend those measurements to fully explore the 

single-molecule orientation of BODIPY-PC doped in DPPC monolayers as a function of 
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surface pressure.  Results from these measurements are used to find the equivalent 

surface pressure in DPPC bilayers formed through vesicle fusion onto a substrate.  

Single-molecule orientation measurements suggest that supported DPPC bilayers formed 

from both giant unilamellar vesicles (GUVs) and small unilamellar vesicles (SUVs) 

exhibit equivalent surface pressures of ∼23 mN/m.  This value is somewhat smaller than 

the currently accepted value of ∼30 to 35 mN/m.1-5, 12-13  

Having established a corresponding surface pressure between monolayers and 

bilayers of DPPC, single-molecule orientation measurements are used to compare the 

effects of biologically relevant sterols added to the lipid films.  Cholesterol is an essential 

component of biological membranes that contributes up to 40-50 mol % of the plasma 

membrane in eukaryotic cells and leads to a well known condensing effect when added to 

membranes containing saturated lipids such as DPPC.14-15  In general, this condensation 

of the lipids leads to an increase in lateral packing and ordering of the hydrocarbon 

chains, a reduction in the area per molecule, decreased membrane permeability, and an 

increase in membrane mechanical strength.14-18   

Ergosterol is a plant sterol similar in structure to cholesterol which differs by an 

extra double bond in the acyl chain.  The effects of ergosterol on membrane properties is 

less clear with some studies suggesting it has a greater condensing effect than cholesterol 

while others suggest the opposite.19-21  Finally lanosterol, a biological precursor to 

cholesterol, is known to induce little condensing effects when added to model 

membranes.19-21  These sterols therefore demonstrate a range of effects on membrane 

properties that are explored at the single-molecule level using defocused PTIRF-M 

measurements.  
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4.2  Experimental and Methods 

4.2.1 Langmuir-Blodgett (LB) Monolayers 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (Avanti Polar Lipids, 

Alabaster, AL), cholesterol (>99%), ergosterol (≥98), and lanosterol (≥97%) (Sigma 

Aldrich, St Louis, MO) were obtained and used without further purification.  The 

fluorescent lipid analog 2-(5-butyl-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-3-

nonanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (β-C4-BODIPY 500/510 C9 

HPC) (BODIPY-PC) (Invitrogen Corporation, Carlsbad, CA, B3794) was doped into 

lipid films at a concentration of ~10-8 mol %.   

For the preparation of monolayers, DPPC was dissolved in chloroform (1mg/ml 

stock solutions) and the appropriate amount of sterol was added.  The solutions were 

doped with ~10-8 mol % BODIPY-PC reporter dye, and dispersed onto a subphase of 

ultra-pure water (18 MΩ) in a Langmuir-Blodgett trough (Type 611, Nima Technology, 

Coventry, England).  Once dispersed on the subphase, the chloroform was allowed to 

evaporate for 15 minutes.  DPPC monolayers were compressed at a speed of 100 cm2/min 

to approximately 45 mN/m and then expanded at a speed of 80 cm2/min.  The 

compression cycles were repeated twice to anneal the monolayer.  The monolayer film 

was then compressed to the target pressure, held for approximately 15-20 minutes, and 

then transferred in a heads down geometry onto a Piranha cleaned glass substrate at a 

dipping speed of 25 mm/min.  All monolayers were prepared at a temperature of ∼21oC.   
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4.2.2 Bilayer Technique – Vesicle Fusion 

 For the preparation of supported DPPC bilayers, the appropriate mol% of each 

sterol was added into a 5mg/mL chloroform solution of DPPC.  After doping each 

solution with ~10-8 mol % BODIPY-PC reporter dye, 380 μL of DPPC / sterol solution 

was added to a separate vial, evaporated to dryness with nitrogen, and placed under 

vacuum for ~1hr to remove residual solvent.  The DPPC/sterol films were reconstituted 

in a buffer solution containing 20mM HEPES, 100mM NaCl, and 0.02 wt % NaN3 

adjusted to neutral pH.  The vials were capped and incubated at ~60o C for 1hr to hydrate 

the phospholipids.  The suspensions were vortexed and sonicated to clarity to yield small 

unilamellar vesicles (SUVs).  The SUV suspensions were incubated in PDMS wells on 

Piranha cleaned glass for 30min at 60oC.  The wells were thoroughly washed with 

nanopure water to remove unruptured vesicles, and the excess water was removed 

immediately before imaging.   

Supported lipid bilayers were also formed using giant unilamellar vesicles 

(GUVs) prepared by electroformation.  Briefly, 50μL of a 5mg/mL chloroform solution 

of DPPC/sterol with ~10-8 mol% BODIPY-PC reporter dye was deposited on two ITO 

microscope slides coated with the indium tin oxide (ITO).  The solution was dried onto 

the slides under vacuum for ~1hr.  The coated sides were rehydrated with ~1mL of ultra 

pure water (18 MΩ) and sandwiched together with a 1.5 mm thick PDMS gasket.  The 

slide assembly was placed on a temperature-controlled stage set to 50°C and the lipids 

were allowed to hydrate for ~20 minutes.  Following hydration, a function generator was 

used to apply a 10 Hz, 1 V sine wave across the ITO coated slides for ~3hr to produce 
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giant unilamellar vesicles.  The GUVs were separated from the surface by reducing the 

frequency to 1Hz for ~30min and the suspension isolated.   

 

4.2.3 Imaging Technique 

All films were imaged using a total internal reflection fluorescence microscope 

(TIRF-M) (Olympus IX71, Center Valley, PA) equipped with a 100x objective (1.45 NA 

achromat).  The 514 nm line from an argon ion laser (Coherent Innova 70 Spectrum, 

Santa Clara, CA) was directed through half-wave and quarter-wave plates (Newport, 

Irvine, CA) to generate p-polarized excitation.  Excitation was directed through the 

objective and fluorescence collected in an epifluorescence geometry with the optics 

defocused ~500 nm.  The fluorescence was filtered with a combination of a dichroic 

mirror and long pass filters (Chroma, Rockingham, VT) and imaged onto a CCD camera 

(Cascade 650, Roper Scientific, Tucson, AR).  Image collection was controlled with 

Slidebook software (Version 4.2, Intelligent Imaging Innovations, Denver, CO) and 

analyzed using MatLab software (Natick, MA).   

 

4.3  Results and Discussion 

4.3.1    Single Molecule Orientations Studied at a Range of Surface Pressures 

Previously we have shown that single-molecule fluorescence measurements using 

PTIRF-M can reveal insight into membrane structure at the molecular level.6  Here we 

expand those initial studies to characterize the equivalent surface pressure in bilayers and 

compare both monolayers and bilayers doped with the biologically important sterols 

cholesterol, ergosterol, and lanosterol.  Figure 4.1 shows the structures of DPPC and the 
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sterols studied along with the fluorescent lipid analogue, BODIPY-PC that was doped 

into the membranes to act as the reporter probe.  Other studies have shown that unique 

single-molecule emission patterns are observed in slightly defocused PTIRF-M images, 

which reflect the orientation of the dye in the sample.7-11, 22  Analysis of the emission 

patterns, therefore, enables the three-dimensional orientation of each dye molecule doped 

into the lipid film to be characterized.  BODIPY-PC was chosen as the fluorescent 

reporter dye due to its placement of the fluorophore in the tailgroup, which has been 

shown to be sensitive to membrane order.6  The absorption and emission dipoles of 

BODIPY-PC lie along the long axis of the chromophore with ~13˚ between the two.23  

Figure 4.2 shows representative single-molecule emission images of ~10-8 mol% 

BODIPY-PC doped into DPPC monolayers, which were transferred onto glass substrates 

at surface pressures of 3 mN/m, 25mN/m, and 40 mN/m using the Langmuir-Blodgett 

(LB) technique.  A shown in Chapter 3, as the surface pressure of the LB monolayers is 

increased, an evolution towards donut-shaped emission features is observed which arise 

from emission dipoles oriented normal to the membrane plane.  As shown by others, 

these emission patterns can be modeled to quantitatively extract the three-dimensional 

orientation of the emission dipoles in the sample.7-11  Using this approach, each emission 

feature is analyzed to extract the tilt angle (Φ) away from the membrane normal.  Figure 

4.2 shows representative tilt angle histograms for monolayers prepared at five different 

surface pressures along with the number of molecules analyzed at each pressure.   
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Figure 4.1.  Structures of DPPC and the sterols studied in both monolayers and bilayers.  
Also shown is the structure of the fluorescent lipid analog BODIPY-PC which is used to 
quantify changes in the surrounding membrane film.  BODIPY-PC has its fluorophore 
located in the tailgroup region so that its emission dipole (arrow) orientation is sensitive 
to changes in acyl chain orientation.   
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Figure 4.2.  Representative single-molecule fluorescence images of DPPC monolayers 
doped with ∼10-8 mol% BODIPY-PC, transferred onto glass substrates at the surface 
pressures (Π) indicated.  As the surface pressure is increased, a rise in the number of 
donut-shaped single-molecule emission patterns is observed.  These patterns arise from 
probes oriented with their emission dipole normal to the film surface and their increase 
reflects the increased order of the acyl chains at high surface pressures.  Single-molecule 
tilt angle (Φ) histograms for all surface pressures studied are also shown.   
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At a surface pressure of 3 mN/m, the single-molecule tilt histogram reveals most 

of the dye probes are oriented in the plane of the film (≥81˚), reflecting the disorder in the 

DPPC monolayer at low surface pressures.  This is seen in the corresponding emission 

image which contains mostly single-molecule features consisting of bright spots 

surrounded by wings that are characteristic of molecules oriented with large tilt angles.  

The tilt angle histogram, therefore, reveals a large population of emission dipoles 

oriented in the plane of the film with a smaller population spread through the remaining 

angles.  The average tilt angle calculated from the histogram is 67.4 ± 5˚ (N = 711) at a 

surface pressure of 3 mN/m.    

At the other surface pressure extreme, the single-molecule emission image for 

DPPC transferred at 40 mN/m reveals a large population of donut-like features reflecting 

emission dipoles that are oriented normal to the membrane surface.  The corresponding 

tilt angle histogram shown in Fig. 4.2 reveals that most of the dye population have tilt 

angles ≤10˚ at this elevated surface pressure.  This reflects the increased membrane order 

in the lipid monolayer at 40 mN/m, which reduces the average tilt angle to 22.4 ± 5˚ (N = 

764).   

At intermediate surface pressures, Fig. 4.2 reveals bimodal tilt distributions with 

the majority of molecules adopting orientations either normal or parallel to the membrane 

plane, with fewer adopting intermediate tilts.  The bimodal distribution in tilt angles 

reflects BODIPY-PC partitioning into the lipid phases in the DPPC monolayer.  At 

intermediate surface pressures, DPPC monolayers partition into domains of less ordered 

liquid-expanded (LE) phase and more ordered liquid-condensed (LC) phase leading to 

the observed bimodal tilt distribution.   
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As shown in Fig. 4.2 there is a steady rise in the population of molecules oriented 

normal to the DPPC monolayer as the surface pressure of the film is increased.  A plot of 

the population of molecules oriented normal to the surface (Φ ≤ 10˚) as a function of 

surface pressure is shown in Fig. 4.3.  DPPC monolayers were transferred onto glass 

substrates at eight different surface pressures between 3 mN/m and 45 mN/m with the 

results plotted in Fig. 4.3.  The linear dependence with surface pressure provides a 

convenient marker of membrane order and a useful calibration for characterizing the 

surface pressure in bilayers.   

 

4.3.2    Tracking Single Molecule Orientations in Supported Lipid Bilayers 

Figure 4.4 (top panel) shows a defocused single-molecule PTIRF-M fluorescence 

image of a supported DPPC bilayer doped with ~10-8 mol% BODIPY-PC.  Analysis of 

the single-molecule emission patterns leads to the emission dipole orientations shown in 

the middle panel.  Analysis of 743 individual molecules from several bilayers results in 

the tilt angle histogram shown in the bottom panel of Fig. 4.4.  As observed with DPPC 

monolayers formed with the LB technique, there is a bimodal distribution in the tilt angle 

histogram of the BODIPY-PC doped into the DPPC bilayers.  From the histogram, the 

average tilt angle for the BODIPY-PC dye doped into DPPC bilayers is measured to be 

45.2˚ ± 5˚.   
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Figure 4.3.  The percentage of BODIPY-PC probes oriented normal (Φ ≤ 10o) to the 
membrane plane in DPPC monolayers as a function of surface pressure.  A linear 
dependence (R2 = 0.96) is observed which is used to quantify the equivalent surface 
pressure of bilayers (Figure 4.4).  Also plotted above is the percentage area of LC regions 
in the DPPC monolayers as a function of surface pressure. 
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Figure 4.4.  Representative single-molecule fluorescence image of a DPPC bilayer doped 
with ∼10-8 mol% BODIPY-PC.  Analysis of the single-molecule emission patterns results 
in the orientations shown schematically in the middle panel.  Analysis of emission 
features from several bilayers results in the tilt angle histogram shown in the bottom 
panel.  Using the percent of probes oriented normal to the surface and the plot in Fig. 4.3 
results in an equivalent surface pressure of ~23 mN/m for DPPC bilayers.   
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The tilt angle histogram measured for supported bilayers in Fig. 4.4 can now be 

used to estimate the equivalence surface pressure of the bilayer using the data plotted for 

monolayers in Fig. 4.3.  From the histogram in Fig. 4.4, the percentage of emission 

dipoles oriented normal to the membrane plane (Φ ≤ 10˚) in supported bilayers of DPPC 

is 41%.  Single-molecule measurements on supported bilayers formed from both small 

unilamellar vesicles (SUV’s) and giant unilamellar vesicles (GUV’s) resulted in 

statistically identical results.  The measured equivalent surface pressure of ~ 23 mN/m is 

somewhat smaller than the values obtained from other experiments (∼30-35 mN/m).1-5, 12-

13  

 

4.3.3  Sterols – Effects of Additives on Monolayers and Bilayers at the “Equivalent 

Surface Pressure” 

Having established the equivalent surface pressure for supported DPPC bilayers, 

the influence of sterol additives were compared in both LB monolayers transferred at 23 

mN/m and DPPC bilayers.  Cholesterol is widely distributed in biological membranes 

and exerts a well-known condensing effect.14-17, 24-25  The profound influence of 

cholesterol on membrane properties can be traced to its structure, which is shown in Fig. 

4.1.  Cholesterol consists of a fused ring structure that is responsible for its rigid, planar 

geometry.  There is a single hydroxyl group located at the C3 position and an iso-octyl 

acyl chain extending from the opposite side of the ring at position C17.  Two methyl 

groups extend from the same side of the ring structure as the acyl chain, forming a β-

configuration.  When cholesterol inserts into lipid monolayers and bilayers, it orients with 

its polar hydroxyl group lying towards the hydrophilic phospholipid headgroups and the 
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hydrophobic ring structure aligned along the lipid acyl chains.  The cohesive interactions 

between cholesterol and the lipid acyl chains are strongly linked with the degree of lipid 

saturation, making these interactions particularly important for lipids such as DPPC. 

Figure 4.5 compares the effects of cholesterol on monolayers and bilayers of 

DPPC as probed through single-molecule orientation measurements.  LB monolayers 

were transferred onto a glass substrate at a surface pressure of ~23 mN/m, which 

corresponds to the equivalent surface pressure of pure DPPC bilayers measured 

previously.  Shown in Fig. 4.5 are the tilt angle histograms for monolayers and bilayers 

incorporating 0 mol%, 5 mol%, 10 mol%, and 33 mol% cholesterol.  With no added 

cholesterol, the tilt angle histograms for both monolayers and bilayers are bimodal and 

closely agree with one another, as expected from their corresponding surface pressures.  

The population of BODIPY-PC molecules oriented normal to the film plane (Φ ≤10˚) is 

approximately 42% for both monolayers and bilayers, respectively.   

As shown in Fig. 4.5, the addition of even small amounts of cholesterol (5 mol%) 

leads to a dramatic shift in the single-molecule tilt histograms.  Upon the addition of 5 

mol% cholesterol, the ordered abundance (Φ ≤10˚) increases from 42% to 59% in 

monolayers and from 41% to 52% in bilayers.  The single-molecule tilt histograms 

summarized in Fig. 4.5 reveal a steady increase in the ordering of the acyl chains with 

increasing cholesterol content for both monolayers and bilayers.  As cholesterol is 

increased, a steady rise in the number of BODIPY-PC molecules oriented normal to the 

plane (Φ ≤ 10˚) is observed with an associated drop in the population oriented in the 

membrane plane (Φ ≥ 81˚).   
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Figure 4.5.  Comparison of tilt angle (Φ) histograms for DPPC monolayers (deposited at 
~23 mN/m) and bilayers doped with increasing concentrations of cholesterol.  At no 
added cholesterol, the tilt angle histograms for monolayers and bilayers reveal bimodal 
distributions that closely match one another, illustrating the corresponding surface 
pressure.  As cholesterol increases, both films show large shifts in the single-molecule tilt 
populations toward more upright orientations (Φ ≤ 10o).  This is consistent with the well-
known condensing effect of cholesterol.   
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Ergosterol and lanosterol provide useful structural analogs of cholesterol that can 

help clarify the unique role of cholesterol in modifying membrane properties.  Ergosterol 

is generally found in the membranes of plants, while lanosterol predates cholesterol in the 

evolutionary pathway.  As shown in Fig. 4.1, the structure of ergosterol is very similar to 

cholesterol and only differs slightly with a carbon-carbon double bond in the second 

steroid ring, an unsaturated side chain, and methylation at position C24.  Both cholesterol 

and ergosterol lead to condensing effects in membranes, although there is some 

disagreement regarding which has a larger effect.19-21  Lanosterol, on the other hand, has 

three extra methyl groups on the α-surface of the ring system that are believed to increase 

the steric costs associated with membrane insertion (Fig. 4.1).  Although lanosterol still 

has a condensing effect on membranes, studies agree that the effect is much smaller than 

that of either cholesterol or ergosterol.19-21  

Figure 4.6 summarizes the results from defocused single-molecule PTIRF-M 

studies on monolayers and bilayers incorporating cholesterol, ergosterol, and lanosterol 

as a function of sterol concentration.  Sterol concentrations of 0 mol%, 5 mol%, 10 

mol%, and 33 mol% sterol are compared.  Once again, LB monolayers were transferred 

at a surface pressure of ~23 mN/m to match the bilayer equivalent surface pressure 

determined earlier for pure DPPC.  The results are summarized in Fig. 4.6 which plots the 

percentage of BODIPY-PC molecules oriented normal to the membrane plane (Φ ≤ 10˚) 

as a function of sterol concentration.  The plot in Fig. 4.6 (top panel) shows that for both 

monolayers and bilayers, the population of dyes ordered normal to the membrane 

increases rapidly with cholesterol concentration and levels off at higher concentrations.   
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Figure 4.6.  To compare the effects of cholesterol, ergosterol, and lanosterol on 
monolayers and bilayers of DPPC, the normalized population of BODIPY-PC probes 
oriented normal (Φ ≤ 10o) to the surface is plotted versus sterol concentration.  
Monolayers were transferred at the bilayer equivalent surface pressure of ~23 mN/m.  
Small increases in cholesterol concentration lead to dramatic changes in both monolayers 
and bilayers while ergosterol is less effective at ordering the films.  Lanosterol is the least 
effective at ordering DPPC films, with little or no change observed in the single-molecule 
tilt angle histograms.   
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The results for ergosterol, shown in Fig. 4.6 (middle panel), indicate a more subtle 

increase in membrane order with sterol concentration.  Both monolayers and bilayers 

reveal an increase in order in the single-molecule PTIRF-M images, with monolayers 

being slightly more sensitive to ergosterol addition.  Unlike the results for cholesterol, 

little effect on membrane ordering is observed at low ergosterol concentrations and only 

becomes significant in the single-molecule results at higher ergosterol concentration.  For 

lanosterol, single-molecule orientation measurements reveal little influence on membrane 

ordering.  Figure 4.6 (bottom panel) shows that the percentage of single-molecules 

oriented normal to the plane remains essentially constant for both monolayers and 

bilayers throughout the concentrations studied.    

The bimodal distribution of single-molecule orientations observed in DPPC 

bilayers suggest coexisting lipid phases are present in both pure DPPC bilayers and those 

in which cholesterol has been added.  Bulk fluorescence measurements on similar films 

find no evidence for coexisting domains on the sub-micron length scale.26  However, both 

energy transfer measurements and some NMR studies have found evidence for coexisting 

domains in these systems.27-30  These differences are often ascribed to the different 

length/time scales that are probed by the different techniques.  The results shown here 

suggest single-molecule orientation measurements can provide a unique view of model 

lipid film properties that compliments other well established approaches.   

The influence of cholesterol on high melting temperature lipids such as DPPC has 

been widely studied, yet a clear picture of its effects has yet to emerge.  Different phase 

diagrams have been constructed based on results using different techniques, but most 

agree that these mixed bilayers can exist in the gel phase (So), liquid-crystalline (Lα), and 
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liquid-ordered (Lo) states.  The latter is a cholesterol induced state whose name 

summarizes the combination of structural order with liquid-like dynamics in this state.  

The well-known condensing effects of cholesterol lead to extended acyl chains in this 

state, while translational diffusion and rotational motion remain liquid-like.14-18  

 

4.3.4    Order Parameter – A Comparison with Literature Values 

The single-molecule orientation measurements can be compared with previous 

bulk measures of membrane structure through the use of the order parameter, S.  The 

order parameter is defined as 

S = ½ (3〈cos2θ〉 - 1) 

where θ is the angle with respect to the membrane normal.  Order parameters have been 

characterized in DPPC films as a function of cholesterol using techniques such as nuclear 

magnetic resonance (NMR), fluorescence anisotropy, and X-ray scattering.19, 29, 31  The 

trends from these studies are summarized in Fig. 4.7 along with the results from our 

single-molecule measurements.   

There is a striking similarity in the trends that are observed from our room 

temperature single-molecule studies and previous studies done above the transition 

temperature.  Order parameters calculated using the average tilt angle from the single-

molecule histograms show a sharp rise in S at low cholesterol concentration that levels 

off at higher concentrations.  As shown in Fig. 4.7, this agrees closely with S values 

calculated from X-ray studies done at 45 oC.31  Similar trends are also observed in the 

NMR and fluorescence studies carried out at 45 oC.   
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Figure 4.7.  The order parameter, S, calculated from the average tilt angle found from the 
single-molecule tilt histograms is plotted as a function of cholesterol concentration.  Also 
shown are trends in S found previously using NMR, fluorescence anisotropy, and X-ray 
measurements below and above the transition temperature for DPPC. (Adapted from 
references 19, 29, 31) 
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Also plotted in Fig. 4.7 are the results from NMR and fluorescence anisotropy 

studies done at room temperature that reveal high initial S values that decrease with 

cholesterol content.19, 29  These changes do not track the changes we find in the single-

molecule measurements which can be understood by recognizing that different 

techniques measure different aspects of membrane order.  For example, S values derived 

from the NMR experiments provide a measure of the orientational freedom around the 

acyl chain axis.  These measurements, therefore, provide insight into membrane packing.  

At room temperature, below the melting temperature for DPPC, NMR measurements of 

pure DPPC films yield high values for the order parameter.  This results from the small 

degree of rotational freedom around the acyl chains and the high degree of lateral packing 

in the So phase.  Upon the addition of cholesterol, however, the S values decrease due to 

the disruption of the gel state packing and increase in acyl chain freedom.  Additional 

cholesterol further disrupts the lateral packing of the film and leads to the formation of 

the Lo phase, which has a greater degree of rotational freedom and thus a smaller S as 

compared to the gel phase.   

Above the melting temperature, NMR studies of pure DPPC films in the fluid 

state yield S values that are small.  The low S values arise from the increased freedom 

around the disordered acyl chains in this state.  The addition of cholesterol, which has a 

condensing effect on DPPC, therefore, increases the order parameter as the Lo phase is 

formed.  This transition is accompanied by a gel-like lateral packing with diffusional 

characteristics similar to the fluid phase. 

For the single-molecule measurements summarized here at room temperature, the 

acyl chains in pure DPPC films have a high lateral packing and large tilt angles with 
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respect to the membrane normal which leads to the low calculated S values.  The addition 

of cholesterol, which induces Lo phase formation, increases acyl chain order which is 

reflected in the PTIRF-M images as an increase in donut-like single-molecule emission 

features.  This results in the large increase in S values calculated from the single-

molecule measurements as cholesterol is increased.  Since the NMR measurements track 

the lateral packing and rotational freedom of the acyl chains and the single-molecule 

measurements quantify the orientation of the acyl chains with respect to the membrane 

normal, the differences observed at room temperature in Fig. 4.7 are expected.  At 

elevated temperature, however, the onset of the Lo phase increases lateral packing and 

decreases acyl chain tilt with respect to the membrane normal.  This explains why the 

room temperature single-molecule measurements closely agree with previous studies 

done at 45 oC.  Therefore, despite the differences in temperature between these studies, 

Fig. 4.7 reveals very good agreement between the single-molecule results and bulk 

measures of cholesterol added to DPPC membranes.    

While the average single-molecule orientations leads to agreement with previous 

studies characterizing S in model mixed membranes of DPPC and cholesterol, the 

bimodal distribution observed illustrates the detailed information available from 

measuring the entire orientation distribution.  Using single-molecules as probes of lipid 

environments can complement other more established techniques and provides a new tool 

for understanding these complicated systems at the molecular level.   
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4.4  Conclusions 

Single-molecule fluorescence measurements taken using out-of-focus PTIRF-M 

are used to characterize the three-dimensional orientation of single BODIPY-PC dye 

molecules doped into model films of DPPC.  For LB monolayers of DPPC, 

characterization of single-molecule orientation histograms as a function of surface 

pressure reveals an evolution in membrane order.  At all surface pressures studied, a 

bimodal orientation histogram is observed which reflects the coexisting LE and LC 

phases present in the monolayer.  There is a linear dependence in the number of 

BODIPY-PC molecules with transition dipoles oriented normal to the surface with 

surface pressure which is used to find the equivalent surface pressure in supported 

bilayers.  Comparison of the single-molecule orientation histogram from DPPC bilayers 

with the results from the LB monolayers suggests an equivalent surface pressure of ∼23 

mN/m for bilayers.  This is somewhat lower than the currently accepted value of ∼30-35 

mN/m.1-3, 5, 12-13  

With the equivalent surface pressure for bilayers established, single-molecule 

studies comparing the effects of cholesterol, ergosterol, and lanosterol on membrane 

properties are compared between DPPC bilayers and LB monolayers transferred at ~23 

mN/m.  Single-molecule orientation as a function of sterol content tracked closely 

between monolayers and bilayers.  Cholesterol had the largest effect on membrane order, 

increasing the number of BODIPY-PC molecules oriented normal to the surface even at 

low cholesterol content.  Lanosterol had essentially no effect on the single-molecule 

orientations while ergosterol did affect orientations, but to a lesser extent than 

cholesterol.  Using the average orientation from the histograms as a function of 
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cholesterol content, the order parameter S was calculated and compared with previous 

NMR and X-ray studies.29, 31  Close agreement is observed between the room temperature 

single-molecule results and previous bulk measures of membrane order done at higher 

temperatures.   

Now that we have a useful technique for tracking membrane order at the single 

molecule level, we can extend these studies to look at the affects the probe has on the 

films.  As will be discussed in the next chapter, we can compare our experimental data 

with the results from a collaboration utilizing Molecular Dynamics studies.  We can also 

study several different lipid analogs by simply changing the placement of the 

chromophore along the acyl chain, and use this to probe different aspects of membrane 

properties, as will be discussed in the future directions in Chapter 7.   
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Chapter 5 

Probing Lipid Membrane Properties using Orientation of Fluorescent 

Lipid Analog BODIPY-PC: Experimental and Simulation Studies 
 

5.1  Introduction 

 The bulk of the research presented in this dissertation is directed towards 

obtaining a better understanding of lipid membrane structure at the single molecule level.  

By utilizing p-polarized total internal reflectance fluorescence microscopy and slightly 

defocusing the optics, the emission patterns from single molecules can be analyzed, and 

therefore, the emission dipole orientations found.1-8  This chapter focuses on a 

collaboration with Dr. Wonpil Im and Kevin Song in the Bioinformatics Department at 

the University of Kansas, on molecular dynamics (MD) simulations of the lipid analog, 

BODIPY-PC, in monolayers and bilayers of DPPC.  Comparisons between experiment 

and simulation provide detailed views of how BODIPY-PC inserts into lipid membranes 

and how monolayers and bilayers compare with one another.   

 

5.2 Molecular Dynamics (MD) Simulations and Experimental Comparison 

5.2.1 Introduction 

As discussed before, model lipid membranes have been widely used as models for 

biological membranes due to the difficulties associated with studying intact tissues.  

These simplified models enable precise control over membrane components and 

experimental conditions.  As such, these studies have collectively revealed detailed 

insights into membrane structure, phase behavior, and the influence of important 

membrane additives, such as cholesterol.  As shown in the previous chapter, single-
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molecule fluorescence measurements reveal insights into membrane properties in both 

monolayers and bilayers.1-2  These studies utilized out-of-focus polarized total internal 

reflectance fluorescence microscopy (PTIRF-M) to characterize the three-dimensional 

orientation of the fluorescent lipid analog BODIPY-PC, doped into DPPC membranes.  

For Langmuir-Blodgett monolayers, these measurements showed that the tilt angle of the 

BODIPY-PC fluorophore is sensitive to surface pressure.2  As surface pressure is 

increased, a linear evolution towards small tilt angles was observed, reflecting the 

increase in the acyl chain order.  The tilt angle dependence on surface pressure was used 

to construct a calibration plot to find the equivalent surface pressure for bilayers.1  

While trends in the single-molecule orientation measurements clearly reflect 

changes in membrane structure, many important questions remain unresolved: 1) what is 

the correspondence between monolayer and bilayer systems, 2) where does the probe 

position within the membrane, and 3) what are the microscopic driving forces 

determining the orientation of the reporter dye at different surface pressures.  To address 

these questions, a total of 1.5 μs comparative molecular dynamics (MD) simulations of 

monolayer and bilayer DPPC systems incorporating one BODIPY-PC molecule per 

leaflet were carried out at low (~3 mN/m), mid (~10 mN/m), and high (~40 mN/m) 

pressures. The simulation results are compared with experimental data measured at 323 

K.  The orientation of reporter molecules will be compared between MD simulations and 

experimental results to evaluate the insertion of the fluorophore into the membranes and 

the microscopic driving forces responsible for their properties. 
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5.2.2 Molecular Dynamics (MD) Setup 

Using Membrane Builder on www.CHARMM-GUI.org, a DPPC membrane with 

64 lipids on each leaflet was created.  Single BODIPY-PC molecules were inserted into 

the upper and bottom leaflets, respectively that contained a total of 4635 water molecules 

and 0.15M KCl. The simulations were carried out with fixed surface pressure and 

constant surface area. The temperature of the system was set to 323 K, and the 

simulations ran for 50 ns after 3 ns equilibration for each of 30 systems. 

 

5.2.3 Varying Pressure Systems 

Five bilayer and five monolayer systems were created at three different pressure 

systems: low pressure (~3 mN/m), medium pressure (~10 mN/m), and high pressure (~40 

mN/m). While keeping the number of lipids on top and bottom leaflets constant, the 

surface area (i.e., the XY plane of the simulation box) was changed to alter the surface 

pressure applied to the membranes, as shown in Fig. 5.1. The surface areas of low 

pressure, medium pressure, and high pressure were 77 Ǻ2, 64 Ǻ2, 40 Ǻ2 per lipid, 

respectively. The five bilayer and five monolayer systems were assigned different 

velocities in order to increase the conformational sampling.  
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Figure 5.1 Molecular Systems of bilayer (top) and monolayer (bottom) systems at ~3 
mN/m (low pressure, left), ~10 mN/m (medium pressure, middle), and ~40 mN/m (high 
pressure, right). The red boxes represent approximate system sizes.9 
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5.2.4 Experimental Setup 

DPPC (Avanti Polar Lipids, Alabaster, AL) was obtained and used without 

further purification.  The fluorescent lipid analog BODIPY-PC (Invitrogen Corporation, 

Carlsbad, CA, B3794) was used, as in the previous chapters.  For the preparation of 

monolayers, DPPC was dissolved in chloroform (1mg/ml stock solutions).  The solutions 

were doped with ~10-8 mol % BODIPY-PC reporter dye, and dispersed onto a subphase 

of ultra-pure water (18 MΩ) in a Langmuir-Blodgett trough (Type 611, Nima 

Technology, Coventry, England).  For studies done above the transition temperature of 

DPPC, a water circulator bath (Neslab RTE-140, Thermo Scientific, Waltham, MA) was 

used to circulate water under the Teflon surface of the LB trough to maintain a 

temperature of 50 ±1˚C.  Once the lipid/chloroform mixture was dispersed on the 

subphase, the chloroform was allowed to evaporate for 15 minutes.  DPPC monolayers 

were compressed at a speed of 100 cm2/min to approximately 45 mN/m and then 

expanded at a speed of 80 cm2/min.  The compression/expansion cycles were repeated 

twice to anneal the monolayer.  The monolayer film was then compressed to the target 

pressure, held for approximately 15-20 minutes, and then transferred in a headgroup 

down geometry onto a Piranha cleaned glass substrate at a dipping speed of 25 mm/min.  

Monolayers were prepared above the transition temperature of DPPC (~50˚C). 

All films were imaged using a total internal reflection fluorescence microscope 

(TIRF-M) (Olympus IX71, Center Valley, PA) equipped with a 100x objective (1.45 NA 

achromat).  The 514 nm line from an argon ion laser (Coherent Innova 70 Spectrum, 

Santa Clara, CA) was directed through half-wave and quarter-wave plates (Newport, 

Irvine, CA) to generate p-polarized excitation.  Excitation was directed through the 
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objective and fluorescence collected in an epifluorescence geometry with the optics 

defocused ~500 nm.  The fluorescence was filtered with a combination of a dichroic 

mirror and long pass filters (Chroma, Rockingham, VT) and imaged onto a CCD camera 

(Cascade 650, Roper Scientific, Tucson, AR).  Image collection was controlled with 

Slidebook software (Version 4.2, Intelligent Imaging Innovations, Denver, CO) and 

analyzed using MatLab software (Natick, MA).   

 

5.3 Analysis 

5.3.1 Tilt Angle Distributions 

 The orientation of BODIPY-PC molecules was characterized in terms of its tilt, 

azimuthal, and rotation angles by defining two primary vectors on the BODIPY-PC 

molecule.  The tilt angle is defined by the angle between CL2-CR2 vector and the Z-axis 

(the membrane normal). Azimuthal angle is defined by the angle between CL2-CR2 

vector and the Y-axis. Rotation angle is defined by projecting the Z-axis onto a plane that 

uses CL2-CR2 vector as normal and finding the angle between B-CC vector and the 

projected vector, as shown in Fig. 5.2. 

 

5.3.2 Energetics 

To characterize the microscopic driving forces of the dye molecule tilt, the non-

bonded interaction energy between the dye molecule and the environment (DPPC and 

water molecules) as a function of dye tilt from the trajectories, was calculated. This 

energy is constituted as the enthalpic energy contribution on the tilt of the dye molecule 

as will be discussed later. 

 125



 

 

 

 

 

 

 

 

 

 

Figure 5.2 BODIPY-PC molecule and the definitions of the vectors. The CL2-CR2 
vector is the principal vector that is used to calculate tilt and azimuthal angles by finding 
the angle between the vector and the z-axis and y-axis, respectively. The B-CC vector 
was used to calculate the rotation angle by projecting the z-axis onto a plane parallel to 
the B-CC vector and calculating the angle between the z-axis and the B-CC vector. 
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5.4 Comparison of Results for MD and Experimental  

Figure 5.3 shows the distribution of BODIPY-PC tilt angles (CL2-CR2 vector 

shown in Fig. 5.2) in monolayer and bilayer MD simulations of DPPC at three different 

surface pressures. The tilt angle distributions reveal striking similarities between the 

monolayer and bilayer systems at each pressure. In addition, between monolayers and 

bilayers, the azimuthal and rotation angles show the same similarity (results not shown). 

At high surface pressure, the fluorophore molecule is predominantly aligned normal to 

the membrane with most of the population lying with tilt angles less than 20˚ from the 

membrane normal. As the pressure is reduced, the BODIPY-PC tilt angle becomes larger 

and broader in both monolayers and bilayers.  A second peak around 40-50˚ in the high-

pressure bilayer system, which is missing in the monolayer results, is due to a dye 

molecule trapped in a tilted conformation during the simulations.  Interestingly, 

BODIPY-PC can have a tilt angle close to 180˚ intermittently.  This can occur when the 

BODIPY fluorophore, which is located in the tailgroup, bends back around and interacts 

with the headgroup region.  It is unclear whether this orientation would persist in longer 

simulations.  The experiments cannot distinguish this tilt angle as 180˚ looks the same as 

0˚.  This shows that MD simulations can add new insight into how reporter probes insert 

into model membranes and what interactions occur on the mesoscale.   

These results strongly suggest that the fluorescent lipid analog BODIPY-PC does 

respond to changes in the surrounding membrane environment and that its tilt angle is a 

sensitive marker of membrane surface pressure, as shown experimentally.  In addition, a 

close agreement between the monolayer and bilayer systems suggests that monolayers 

can be used to approximate bilayer systems.   
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Figure 5.3 BODIPY tilt angle distributions from the Molecular Dynamics simulations 
of low (blue), mid (black), and high (red) pressure systems.9 
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The fluorescence from single BODIPY-PC dye molecules doped into membranes 

at ∼10-8 mol % are also individually analyzed to extract the three-dimensional orientation 

of the emission dipole (approximated by vector CL2-CR2 shown in Fig. 5.2).  

Measurements such as these, therefore, enable a direct comparison to be made between 

the single molecule orientation measurements and the single molecule simulations 

discussed above.  Langmuir-Blodgett (LB) monolayers of DPPC were transferred onto 

glass substrates at the low (3 mN/m), medium (10 mN/m), and high (40 mN/m) surface 

pressures to match those in the simulations. The films were transferred at a temperature 

of 323 K, above the transition temperature of DPPC.  Figure 5.4 shows the distributions 

of BODIPY-PC tilt angles measured using the single molecule fluorescence 

measurements discussed in earlier chapters. Figure 5.4 shows the results from single 

molecule orientations at both low and high surface pressures.   

A bimodal distribution in tilt angles is observed at both surface pressures, 

consistent with previous measurements done at room temperature.1-2  At both pressures, 

large populations of molecules are observed oriented normal to the surface (≤10o) and in 

the plane of film (≥80o), with roughly 20 % oriented at intermediate angles, consistent 

with coexisting phases.  The MD results are also plotted in Fig. 5.4 from 0o to 90o.  The 

MD results shown in Fig. 5.3 have been re-weighted and plotted from 0˚ to 90o since the 

experimental studies cannot distinguish between tilts separated by 180˚ from each other.  

As discussed earlier, the MD simulations at low pressure reveal a broad distribution of tilt 

angles centered at large angles, which sharpen and shift to smaller angles at higher 

pressure.  There is a clear trend of increased order in the system as the surface pressure is 

increased in both the experiments and MD simulations.   
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Unlike the experimental results, however, the MD simulations do not show the 

bimodal distribution mostly due to the relatively small membrane areas simulated, which 

are not capable of capturing macroscopic phase behavior.  The characteristic bimodal 

distributions in the experimental results arise from lipid phase coexistence that is not 

captured in the relatively small membrane areas used in the simulations. Nonetheless, the 

agreement between experiment and simulation, showing a shift in the tilt angle 

populations upon the increase of surface pressure, demonstrates that such experiments 

can capture the membrane properties. 

To explore the order present in the lipid membranes, the order parameters of all 

the lipids in the monolayer and bilayer systems were calculated for each pressure in the 

MD simulations, as shown in Fig. 5.5. As expected, order parameters for all carbons are 

highest in the high-pressure systems and decrease as surface pressure decreases. Again, 

we find very close agreement between monolayers and bilayers with only a slight 

discrepancy in the low-pressure systems. This may arise from the increased 

interdigitation between the tail groups in bilayer systems at low surface pressure, which is 

absent in the monolayer systems.10   
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Figure 5.4 A comparison between the MD simulations and experimental results is 
shown. A clear trend of increased ordering in the system is seen as the surface pressure is 
increased. The bimodal distribution is also seen in both the MD simulations (combination 
of results) and the experimental data.9 

 

 

 

 

 

 

 131



 

 

 

 

 

Figure 5.5 The order parameters for all lipids in the MD system are shown at low 
(LP), high (HP) and mid (NP) pressures.  At high and mid pressures the results between 
monolayers and bilayers agree relatively well, but at low pressure, the monolayer and 
bilayer systems diverge slightly.  
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It is interesting to compare the order parameters from the MD simulations with 

those extracted from the single molecule orientation measurements. For comparison, 

order parameters are calculated from the experimental data by using the average tilt angle 

and from the MD simulations by averaging order parameters from all carbons (Fig. 5.5), 

using the equation:  

2
1cos3 2 −

=
θS                  (5.1) 

Where S is the order parameter and θ is the average tilt angle of the acyl chain.  Both 

experiments and simulations reveal linear trends with similar slopes in the order 

parameter that increases with surface pressure. The offset obtained in Fig. 5.6likely arises 

from the phase coexistence in monolayer experiments. 

Additional questions exist, such as, what are the microscopic driving forces that 

govern such orientational changes of the BODIPY-PC dye molecule with surface 

pressure changes? Lee and Im have previously shown that single-pass transmembrane 

helix tilting in membranes is governed by the intrinsic entropy from the helix precession 

around the membrane normal as well as specific helix-membrane interactions.11-13  Using 

a similar approach, the interaction energies (i.e., the enthalpic contribution) on BODIPY-

PC were calculated as a function of tilt angle for the BODIPY-PC / DPPC system. Figure 

5.7 shows that at low and mid pressures, the enthalpic contribution remains 

approximately constant as a function of dye tilt angle. This illustrates that tilting of the 

dye molecule at these pressures is driven by the entropic contribution, which is consistent 

with the increased freedom of movement for the dye at these pressures. However, there is 

a significant interaction energy cost associated with larger tilt angles of BODIPY-PC at 

high surface pressure. Therefore, the enthalpic contribution becomes dominant due to the  
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Figure 5.6 A plot of the order parameter vs. area per molecule for the experimental 
and MD monolayer results is shown.  The MD values are plotted by the blue dashed line 
and were calculated from the average of all carbons in the acyl chain (from Fig. 5.5).  The 
experimental values are plotted by the solid pink line and were calculated from the 
average tilt angle of the BODIPY molecule.  The results agree relatively well with the 
offset most likely due to phase coexistence in the experimental results. 
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increased membrane packing at high surface pressure.  This helps to identify the 

microscopic driving forces that reorient the reporter fluorophores with increasing surface 

pressures. 

The BODIPY fluorophore interacts predominately with the lipid acyl chains.  As 

shown in Fig. 5.8.  In the low and mid pressure monolayer and bilayer systems, the 

BODIPY-PC fluorophore interacts slightly with the water molecules (shown in blue) and 

lipid headgroups (shown in red), but mostly interacts with the lipid acyl chain (shown in 

green).  Also shown in Fig. 5.8, as the surface pressure is increased, the BODIPY-PC 

molecules interact almost exclusively with the lipid acyl chains (shown in green).  This 

suggests that the fluorophore resides mainly in the lipid acyl chain region and can act as a 

good reporter molecule for the structure of the lipid acyl chains. 
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Figure 5.7 (A) Interaction energy vs. tilt angle is plotted showing at lower surface 
pressures, entropic contributions are dominant, but at high pressures, enthalpic 
contributions become dominant.  Also illustrated in (B) is the entropic cost associated 
with larger tilt angles.9 
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Figure 5.8 Average number of contacts with water (blue), lipid acyl chains (green), 
and lipid headgroups (red) with the BODIPY-PC fluorophore.9  Low, mid, and high 
pressures for both monolayers and bilayers are listed. 
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5.5  Conclusions 

In summary, the MD simulations of the BODIPY-PC dye molecule at three 

surface pressures reveal very close agreement between the monolayer and bilayer 

systems in terms of the dye orientation and lipid order. This observation suggests that 

monolayer experiments can be used to approximate bilayer systems. Such comparisons 

help reveal any similarities between the monolayer and bilayer systems and provide a 

basis for understanding the recent single molecule measurements characterizing 

BODIPY-PC tilt angles in similar films. Finally, the simulations provide new insights 

into the microscopic driving forces governing dye molecule tilting; the enthalpic 

contribution is dominant at high pressure conditions to have smaller tilt angles and the 

entropy contribution is dominant at medium and low pressures to have larger tilt angles.  

It is also shown that the BODIPY fluorophore resides mainly in the hydrophobic acyl 

chains, thereby providing a useful reporter of the acyl chain orientation. 

 

 

 

 

 

 

 

 

 

 

 138



5.6 References 

 

1. Livanec, P. W.; Huckabay, H. A.; Dunn, R. C., Exploring the Effects of Sterols in 
Model Lipid Membranes Using Single-Molecule Orientations. J. Phys. Chem. B 2009, 
113 (30), 10240-10248. 

2. Livanec, P. W.; Dunn, R. C., Single-Molecule Probes of Lipid Membrane 
Structure. Langmuir 2008, 24 (24), 14066-14073. 

3. Bartko, A. P.; Dickson, R. M., Imaging three-dimensional single molecule 
orientations. J. Phys. Chem. B 1999, 103 (51), 11237-11241. 

4. Bartko, A. P.; Dickson, R. M., Three-dimensional orientations of polymer-bound 
single molecules. J. Phys. Chem. B 1999, 103 (16), 3053-3056. 

5. Forkey, J. N.; Quinlan, M. E.; Goldman, Y. E., Measurement of single 
macromolecule orientation by total internal reflection fluorescence polarization 
microscopy. Biophys. J. 2005, 89 (2), 1261-1271. 

6. Patra, D.; Gregor, I.; Enderlein, J., Image analysis of defocused single-molecule 
images for three-dimensional molecule orientation studies. J. Phys. Chem. A 2004, 108 
(33), 6836-6841. 

7. Toprak, E.; Enderlein, J.; Syed, S.; McKinney, S. A.; Petschek, R. G.; Ha, T.; 
Goldman, Y. E.; Selvin, P. R., Defocused orientation and position imaging (DOPI) of 
myosin V. Proc. Natl. Acad. Sci. 2006, 103 (17), 6495-6499. 

8. Hellen, E. H.; Axelrod, D., Fluorescence Emission at Dielectric and Metal-Film 
Interfaces. J Opt Soc Am B 1987, 4 (3), 337-350. 

9. Song, K. C.; Livanec, P. W.; Klauda, J. B.; Kuczera, K.; Dunn, R. C.; Im, W., 
Probing Lipid Membrane Properties using Orientation of Fluorescent Lipid Analog 
BODIPY-PC: Simulation and Experimental Studies. In Preparation 2009. 

10. Kaiser, R. D.; London, E., Determination of the depth of BODIPY probes in 
model membranes by parallax analysis of fluorescence quenching. Biochimica Et 
Biophysica Acta-Biomembranes 1998, 1375 (1-2), 13-22. 

 139



11. Jo, S.; Kim, T.; Iyer, V. G.; Im, W., Software news and updates - CHARNIM-
GUI: A web-based grraphical user interface for CHARMM. J. Comput. Chem. 2008, 29 
(11), 1859-1865. 

12. Lee, J.; Im, W., Transmembrane helix tilting: Insights from calculating the 
potential of mean force. Phys. Rev. Lett. 2008, 100 (1). 

13. Jo, S.; Lim, J. B.; Klauda, J. B.; Im, W., CHARMM-GUI Membrane Builder for 
Mixed Bilayers and Its Application to Yeast Membranes. Biophys. J. 2009, 97 (1), 50-58. 
 
 

 140



Chapter 6 

Fuming Method for Micropatterning Structures on Diblock Copolymer 
and Langmuir-Blodgett Films and Reducing Photo-bleaching Rates in 

Single Molecule Studies 
 

6.1  Introduction 

Exploring and developing new methods for fabricating and manipulating 

structures on the submicron length scale have rapidly developed over the last decade.  

Interest in these structures revolves around potential applications in fields such as 

sensing, drug delivery, or analysis on miniaturized platforms.1-3  These applications often 

take advantage of miniaturization to increase performance characteristics of a particular 

device or exploit unique phenomena that arise as a result of the reduced dimension.  As a 

result, much activity has centered on developing new methods for rapidly patterning 

surfaces.4  

Patterning techniques are often classified as conventional or unconventional 

depending on their stage of development.5-7  Conventional techniques are considered the 

more developed methods that are commercially available and utilized in manufacturing.  

This category includes methods such as photolithography and particle beam lithography, 

which are widely adopted in industry and form the mainstay of many manufacturing 

processes in the microelectronics industry.7-8  Photolithography approaches are rapid and 

allow for patterning large surface areas in parallel while serial techniques, such as particle 

beam lithography, are slower but generally enable higher spatial resolution.  Together 

these techniques provide powerful capabilities for micropatterning surfaces.  However, 

they often require expensive equipment, have limited flexibility in the materials 
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patterned, and generally do not work well on curved substrates.  These and other 

limitations have led to research exploring unconventional micropatterning approaches.   

A great deal of research has explored methods classified as soft lithographic 

approaches which have proven versatile for patterning structures onto surfaces.5, 9 In 

general, these approaches use a master manufactured using a conventional approach to 

act as a form for creating a polymer mold or stamp.5  These methods enable many 

replicas to be manufactured from a single master, thus relaxing the reliance on expensive 

instrumentation.  These techniques can pattern large surface areas with sub-100 nm 

features and are amenable to patterning curved surfaces.10  For even smaller features, 

scanning probe microscopy has proven useful. 

Scanning probe techniques such as scanning tunneling microscopy (STM) and 

atomic force microscopy (AFM) have been adapted for patterning surfaces down to the 

atomic level.11  Techniques such as dip-pen nanolithography use the transfer of material 

from an AFM tip to the substrate to write features as small as ∼10 nm onto a substrate.12-

13  While these techniques offer exquisite control over the lateral feature size, the serial 

nature of the process makes them generally slow.  This, however, is beginning to be 

addressed with the development of multi-tip platforms that enable the parallel writing of 

features.   

Other approaches for micropatterning surfaces have taken advantage of natural 

structures formed in thin films.  Inorganic films, self-assembled monolayers, and di-block 

copolymers can all be used to produce highly ordered, repeating structures on surfaces.14-

16  Self-assembly and self-organization processes have been extensively studied in the 

past decade.  Diblock copolymers consist of two chemically distinct polymer chains 
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covalently bonded to each other.  Usually, one chain is hydrophobic and the other 

hydrophilic.  The two chains are immiscible and, therefore, undergo phase separation and 

self assemble into ordered patterns that are dependent on the length of each copolymer 

chain.  Since the pattern dimensions depend on among other factors, the chain length, 

patterns on the order of tens to hundreds of nanometers and can be controlled by using 

copolymers with different chain lengths.  The self-assembly process is self-initiated so 

simply spin coating the copolymer onto an atomically smooth surface, such as mica, and 

allowing time to anneal is all that is required for the self assembly process to occur.  

Micro patterning surfaces using diblock copolymer thin films is advantageous for 

many reasons.  The process is much cheaper and faster than most conventional 

lithography techniques.  The copolymer chains can be tuned to change the features and 

properties of the resulting film.  Also, the chains can have different etching rates, which 

can lead to preferential etching of the hydrophilic or hydrophobic chain to remove one 

chain.  Diblock copolymer thin films can also be used for nano-reactors that provide high 

surface areas for the synthesis and catalysis of inorganic nano-particles, synthesis of 

nano-pores, and to fabricate vertical arrays of nano-wires with densities in excess of 1.9 x 

1011 cm-2.   

The Langmuir-Blodgett (LB) technique has also been extensively used to study 

the two-dimensional phase structure present in lipid monolayers and multi-layer films 

transferred onto a solid support17-23 as discussed in the previous chapter.   The phase 

structure present in the resulting LB monolayer leads to long range patterns in the film, 

the particular structure of which is influenced by the components of the film and the 

conditions used to transfer the film onto the support.  These two-dimensional films, 
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however, have found limited applications in microfabrication due to challenges 

associated with extending these structures into the third dimension.  Therefore, while the 

LB approach allows for periodic structures to be patterned onto surfaces rapidly, 

modifying and controlling the feature height has proven problematic.   

Here we demonstrate a technique for micropatterning surfaces that is rapid and 

offers a high degree of control over both the lateral and vertical feature size.  One method 

uses di-block copolymers to pattern solid substrates and the other uses the LB technique 

to transfer a lipid monolayer onto a substrate under conditions that leads to the formation 

of distinct two-dimensional structures.  We take advantage of the patterns formed in the 

di-block copolymer and LB film to template the growth of a polymer using a fuming 

method.  In the fuming method, a supported di-block copolymer or lipid LB film is 

exposed to fumes from a cyanoacrylate, such as ethyl 2-cyanoacrylate.24  The 

cyanoacrylate molecules undergo anionic polymerization in the presence of a weak Lewis 

base, such as water, to form a strong durable polymer.  The varying hydration levels of 

the structures formed in the underlying organic films, therefore, template the growth of 

the polymer.  This process leads to the growth of three-dimensional structures with lateral 

dimension controlled by the structure present in the underlying LB or diblock film and 

vertical dimension controlled by the length of the fuming process.  Using this process, we 

show that structures can be fabricated onto both flat and curved surfaces with nanometric 

control.  

 In addition to patterning surfaces, we also show that we can greatly reduce the 

amount of photo-bleaching for fluorophores suspended in the underlying film using this 

process.  BODIPY is a robust fluorophore, but still undergoes photo-bleaching quite 
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readily in the presence of oxygen.  By fuming the same single molecule films as studied 

in Chapters 2-5, we show that we can greatly increase the lifetime of the fluorophores 

while the molecular structure in the monolayers remains unchanged.  This may provide a 

very useful approach for applications that are plagued from loss of signal due to photo-

bleaching. 

 

6.2  Experimental and Methods 

6.2.1 Langmuir-Blodgett Deposition 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (Avanti Polar Lipids, 

Alabaster, AL) was dissolved in spectral grade chloroform (Fisher Scientific, Fairlawn, 

NJ) at a concentration of 1 mg/mL.  Approximately 50 μL of the DPPC solution was 

dispersed onto a water subphase (18 MΩ) in a computer controlled Langmuir-Blodgett 

(LB) trough (Model 611, Nima Technology, Coventry, England).  The suspended lipid 

monolayer was compressed at a rate of 100 cm2/min to the desired surface pressure, 

which was monitored with a Wilhelmy pressure sensor.  DPPC monolayers were 

transferred onto a freshly cleaved mica substrate in a head group down arrangement (Y-

type).  For experiments on curved substrates, DPPC monolayers were transferred onto 1.0 

mm O.D. x 0.75 mm I.D. borosilicate glass capillaries (Sutter Instrument, Novato, CA).  

Films were transferred at a rates ranging from 10 - 40 mm/min, depending on the 

patterning desired.  All films were transferred from a subphase held at ~ 21 ºC.   
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6.2.2 Di-block Copolymer Deposition 

Asymmetric copolymers of polystyrene (PS) and polyethylene oxide (PEO) were 

used in this study.  Poly(styrene-b-ethylene oxide) (PS-b-PEO = 19.0-6.4 (Mn x 103)) 

(Polymer Source, Inc.) was dissolved in HPLC grade benzene (Fisher Scientific) at a 

concentration of 5 - 10 mg/mL.  Approximately 50 μL of this prepared solution was 

placed on a freshly cleaved mica substrate and spin coated.  The prepared substrate was 

allowed to dry at room temperature for ~1 hour.  Mica substrates were spin coated at 

different speeds (using a Variac controller) depending on the features and thickness 

desired.  The same concentration solution can be used to coat the mica surface and let it 

dry without spin-coating.  This will produce larger holes and thicker films. 

The same asymmetric copolymer as above was used to coat curved surfaces.  A 

piece of double sided tape was placed on a small round magnetic puck.  Then a small 

piece of a stripped fiber optic (Nufern) diameter of 125μm ± 1.5μm (cleaned with 

isopropyl alcohol) was placed on the tape.  Approximately 50μL of the diblock 

copolymer solution was placed onto the puck and spin coated the same as above.  The 

prepared substrate was allowed to dry at room temperature for ~1 hour.   

After spin coating the substrates, the thin film could then be exposed to 

approximately 5mL of HPLC grade benzene vapors in a closed container for ~ 10 

minutes to 2 hours.  The exposure to the benzene vapors helped to further “organize” the 

nanodomains.   This was done when nanometric patterns were desired. 
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6.2.3 Cyanoacrylate Fuming 

Following diblock copolymer or LB deposition of DPPC onto a substrate, films 

were exposed to fumes from the cyanoacrylic resin, ethyl 2-cyanoacylate (Sigma-Aldrich, 

St. Louis, MO).  Briefly, the supported diblock copolymer film or DPPC monolayer was 

transferred into a sealed chamber containing approximately 0.03 g of ethyl 2-

cyanoacrylate.  Prior to sample introduction, the cyanoacrylate resin was heated to ~ 50 

ºC using a heat lamp to accelerate the fuming process.  Following cyanoacrylate heating, 

the diblock copolymer or LB film was introduced into the sealed chamber and exposed to 

the cyanoacrylate fumes for seconds to minutes, depending on the vertical feature size 

desired.  

 

6.2.4 Atomic Force Microscopy 

Atomic force microscopy (AFM) measurements (Nanoscope IIIa, Veeco 

Instruments, Santa Barbara, CA) were carried out in contact mode using silicon nitride 

cantilevers with a spring constant of 0.12 N/m (Veeco Instruments, Santa Barbara, CA).   

 

6.2.5 Intensity Decay Measurements 

DPPC (Avanti Polar Lipids, Alabaster, AL) was dissolved in spectral grade 

chloroform (Fisher Scientific, Fairlawn, NJ) at a concentration of 1 mg/mL.  BODIPY-

PC was added to a concentration of ~ 0.25 mol%.  Approximately 50 μL of the DPPC 

solution was dispersed onto a water subphase (18 MΩ) in a computer controlled 

Langmuir-Blodgett (LB) trough (Model 611, Nima Technology, Coventry, England).  

The suspended lipid monolayer was compressed at a rate of 100 cm2/min to the desired 
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surface pressure, which was monitored with a Wilhelmy pressure sensor.  DPPC 

monolayers were transferred onto a freshly cleaved mica substrate in a head group down 

arrangement (Y-type).  Films were transferred at the desired surface pressure.  All films 

were transferred from a subphase held at ~ 21 ºC.  Once the films were made, they were 

imaged using a total internal reflection fluorescence microscope (TIRF-M) (Olympus 

IX71, Center Valley, PA) equipped with a 100x objective (1.45 NA achromat).  The 514 

nm line from an argon ion laser (Coherent Innova 70 Spectrum, Santa Clara, CA) was 

measured with film in place, to be a constant 10.3 mW.  The fluorescence was filtered 

with a combination of a dichroic mirror and long pass filters (Chroma, Rockingham, VT) 

and imaged onto a CCD camera (Cascade 650, Roper Scientific, Tucson, AR).  Total 

integration time was 20-25 seconds, or until the fluorophores were photobleached.  Image 

collection was controlled with Slidebook software (Version 4.2, Intelligent Imaging 

Innovations, Denver, CO). 

 

6.3 Results and Discussion 

6.3.1 LB film analysis 

The pressure isotherm for DPPC, such as that shown in Chapter 2 (see Fig. 2.2), 

has been thoroughly studied and exhibits a plateau region at low surface pressures where 

the liquid-expanded (LE) and liquid-condensed (LC) phases coexist.21  LB films of DPPC 

can exhibit distinct patterns that are sensitive to the surface pressure and conditions under 

which the film is transferred onto the substrate.20  For example, LB monolayers of DPPC 

transferred in the phase coexistence region of the pressure isotherm exhibit distinctive 

semi-circular LC domains surrounded by LE regions in the monolayer (Fig. 2.4).  At 
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lower surface pressures and faster dipping velocities, previous studies have found that 

hydrodynamic instabilities lead to the formation of stripes in the films.18  

Figure 6.1A shows an AFM image of a typical DPPC monolayer transferred 

under conditions that lead to the formation of stripes.  The DPPC monolayer was 

deposited onto a mica substrate at a surface pressure of 3.0 mN/m and a dipping velocity 

of 10 mm/min.  Previous studies have shown that at these elevated dipping velocities, 

wetting instabilities lead to films with hydrophilic stripes separated by lipid regions that 

are hydrophobic.  The stripes are observed as small height differences in the 20 μm x 20 

μm AFM image shown in Fig. 6.1A.  There is a small ~ 1 nm height difference between 

the hydrophilic stripes and the taller hydrophobic lipid regions as shown in the line-cut in 

Fig. 6.1A.  Under these particular transfer conditions, the widths of the hydrophilic and 

hydrophobic stripes are ~0.85 μm and ~3.0 μm, respectively.   

Figure 6.1B shows a similar DPPC film that was subsequently exposed to fumes 

of ethyl 2-cyanoacrylate for approximately 2 minutes following transfer onto the mica 

substrate.  The stripes in the film are still clearly visible, however, as the line-cut 

displayed in Fig. 6.1B shows, the height differential has now grown to ~ 150 nm.  By 

exposing the LB film to the cyanoacrylate fumes, a preferential polymerization reaction 

takes place in the hydrophilic regions of the film which can be used to build up three 

dimensional structures.  The origin of this is understood from the reaction mechanism 

shown in Scheme 1 and the schematic shown in Fig. 6.2.   
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Figure 6.1  (A) AFM image of a LB film of DPPC transferred onto mica under 
conditions that lead to the formation of stripes in the film.  The line-cut shown below 
reveals a ~ 1 nm height difference between the hydrophobic lipid stripes and the mica 
substrate.  (B) A similar film following fuming with ethyl 2-cyanoacylate for 
approximately 2 minutes.  Preferential polymerization in the hydrophilic regions of the 
film leads to the formation of channels.  The line-cut below shows that the difference in 
feature height is now ~ 150 nm following polymer growth.   
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Figure 6.2  Schematic representation of the polymerization process.  Hydrophilic regions 
in the deposited LB film lead to the preferential polymerization and growth of three 
dimensional structures.   
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Cyanoacrylate molecules undergo anionic polymerization in the presence of a 

weak Lewis base, such as water, to form a strong durable polymer.  The patterned 

hydrophilic and hydrophobic areas in the LB film, therefore, provide a template that 

dictates where the polymerization reaction can proceed as shown in Fig. 6.2.  For the 

films shown in Fig. 6.1, therefore, the narrow hydrophilic stripes preferentially support 

the polymerization reaction leading to the increase in their height.   
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It is also straightforward to modify the size and spacing of the channels through 

changes in the film transfer conditions and fuming length.  As an example, Fig. 6.3 shows 

a range of channels fabricated by varying these conditions.  Figures 6.3A, 6.3B, and 6.3C 

display channels that are 530 nm, 700 nm, and 3.0 μm wide, respectively, templated by 

increasing the velocity at which the LB film was transferred.  The average height profiles 

displayed, moreover, show that the channel depths are 15 nm, 100 nm, and 150 nm, 

respectively, reflecting changes in exposure times during the fuming process.  With this 

approach, vertical features from a few nanometers to microns can be fabricated in 

minutes.   
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Figure 6.3  Series of AFM images illustrating the flexibility in channel dimensions 
created with the fuming method.  The channels shown are (A) 530 nm wide and 15 nm 
deep (Π = 3 mN/m, dipping velocity = 40 mm/min, fumed for 2 minutes); (B) 700 nm 
wide and 100 nm deep (Π = 3 mN/m, dipping velocity = 25 mm/min, fumed for ~ 1 
minute); and (C) 3.0 μm wide and 150 nm deep (Π = 3 mN/m, dipping velocity = 10 
mm/min, fumed for ~ 30 seconds).  The channel width is controlled by the underlying LB 
film and the depth is controlled by fuming duration.   
 

 

 

 153



Another advantage of this approach is that large surfaces can quickly be 

micropatterned since the entire surface is exposed during the fuming process.  As an 

example, Fig. 6.4 shows a 60 μm x 60 μm region of a film that was templated with a 

DPPC monolayer transferred to mica at a surface pressure of 3.0 mN/m and a dipping 

velocity of 10 mm/min.  Exposure to cyanoacrylate fumes for ~ 1 minute leads to the 

formation of enclosed channels, approximately 100 nm deep.  The line-cut shown below 

the image in Fig. 6.4 reveals the long range order present in these microfabricated 

structures.   

The fuming process can also be used to grow three dimensional structures directly 

onto the lipid monolayer.  Monolayers of DPPC transferred in the LE/LC phase 

coexistence region of the pressure isotherm lead to distinct patterns in the resulting films.  

Generally, these films consist of semi-circular LC lipid domains surrounded by the more 

expanded LE phase.  While these monolayers lead to generally hydrophobic surfaces due 

to the exposed lipid tail groups, greater access to the polar headgroups and underlying 

hydrophilic mica substrate in the disordered LE phase leads to preferential hydration 

compared to the more ordered and closely packed LC phase.   

Transferring DPPC monolayers to a mica substrate at slower speeds and higher 

surface pressures enables wells to be patterned onto the substrate, as shown by the films 

displayed in Fig. 6.5.  For the films shown in Fig. 6.5, DPPC monolayers were 

transferred onto mica at a surface pressure of 8.5 mN/m and dipping velocity of 10 

mm/min.  Under these conditions, the films contain semi-circular LC domains that are 5-

8 Å taller than the surrounding LE phase, consistent with previous measurements on 

similar films.  Figure 6.5A shows a film transferred under these conditions, following  
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Figure 6.4  A 60 μm x 60 μm AFM image of a fumed film with enclosed channels 
approximately 100 nm deep.  The line-cut shown below illustrates the long range 
consistency in the features grown on the underlying LB film.   
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fuming with cyanoacrylate for 2 minutes.  The line-cut shown indicates that the vertical 

structures in this film are 140 nm.  The fuming process leads to polymer growth in the LE 

regions of the film, creating wells in the film where the semi-circular LC domains are 

located.  The film shown in Fig. 6.5B was fumed for 10 minutes and the well depth is ~ 

450 nm.   

The series of films shown in Figs. 6.3 and 6.5 help to illustrate that the fuming 

method provides a fast, flexible approach for micropatterning surfaces with nanometer to 

micron control over both the lateral and vertical feature size.  While the LB film on the 

substrate templates the lateral features, the vertical feature size is controlled through the 

fuming step.  Using LB films to template the lateral pattern offers several advantages: 

different surface active molecules lead to other geometrical patterns, film transfer is rapid 

even for large surface areas, a range of substrates can be used, and films can be 

transferred to both flat and curved surfaces.  To illustrate the latter, fuming experiments 

were conducted on LB films transferred onto the outer walls of small glass capillaries.  

Figure 6.6 shows the results from fuming a DPPC monolayer transferred onto the 

outer surface of a glass capillary (outer diameter = 1.0 mm) at a surface pressure of 8.5 

mN/m and dipping velocity of 10 mm/min.  As shown in Fig. 6.6, a fluorescence image 

(middle panel) of the capillary surface reveals coexisting bright and dark structures in the 

film that are indicative of DPPC phase coexistence.  This confirms that an intact 

monolayer is transferred onto the outside of the glass capillary using the LB method.  

Also shown in Fig. 6.6 is an AFM image of the capillary surface following fuming (right 

panel).  The AFM image shows that the lateral structure present in the film is preserved 

following fuming while the height difference is increased to ∼ 30 nm.  In contrast to films  
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Figure 6.5  AFM images of DPPC monolayers transferred in the LE/LC phase 
coexistence region following fuming.  Fuming leads to preferential polymerization in the 
LE regions of the film, leading to the formation of wells in the semi-circular LC domains.  
The wells in the films are (A) ~ 140 nm and (B) ~ 450 nm deep.   
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transferred onto hydrophilic mica surfaces where polymerization occurs in the LE regions 

of the film, those transferred onto glass exhibit preferential polymerization in the LC 

regions of the monolayer.  This reflects the more hydrophobic nature of the underlying 

glass substrate and shows that both the LB film and substrate are important in directing 

polymer growth.  The results presented in Fig. 6.6 show that the fuming method can be 

used to micropattern highly curved surfaces, which have proven problematic for other 

approaches.   

 

 

 

 

 

Figure 6.6  (Left panel)  A Glass capillary tube (1.0 mm O.D. 0.75 mm I.D.) shown next 
to a U.S. quarter (23 mm diameter) for scale.  (Center panel)  Fluorescence image of a 
DPPC monolayer transferred onto the outer surface of a capillary tube using the LB 
technique.  The bright and dark structures observed in the fluorescence image are typical 
of DPPC monolayers transferred in the LE/LC phase coexistence region of the pressure 
isotherm (~8.5 mN/m).  (Right panel)  A 15 μm X 15 μm AFM image of the outer 
surface of the DPPC coated capillary following fuming.  Following fuming, the height 
differences in the DPPC film increase to ~ 30 nm while the lateral structure remains the 
same.   
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6.3.2 Diblock Copolymer film analysis 

Diblock copolymers can form many distinct shapes that depend on many factors.  

Spheres, cylinders, gyroids, and lamellae are some of the shapes that can be formed when 

the chain lengths, annealing times and conditions, and/or fraction volumes of the 

copolymer are varied.25-26  When imaged with AFM, the shapes appear as holes due to 

the separation of the hydrophilic and hydrophobic chains of the diblock copolymer.  The 

hydrophilic regions are, therefore, available for polymer growth through the fuming 

method as described above.   

Various diblock copolymer patterns were investigated using atomic force 

microscopy.  A number of different pattern types and sizes can be fabricated depending 

on the copolymer used, the spin casting speed, and annealing times.  For example, Fig. 

6.7A and 6.7B show AFM images of the diblock copolymer PS-b-PEO spin-casted onto a 

mica substrate.  Features as small as ~ 20 nm - 30 nm, as shown in the AFM image in 

Fig. 6.7B were made using this method.  Smaller sizes and uniform patterns were made 

by allowing the thin film to be exposed to benzene vapors for different periods of time, 

which helps organize the diblock copolymer patterns, as shown in the AFM image in Fig. 

6.7B. Before exposure to benzene vapors, the patterns are ~ 250 nm wide as shown in 

Fig. 6.7A.  The preferential interactions of the blocks with the substrate and the air 

promote orientations of the microdomains parallel to the surface.26  Exposure to benzene 

vapors which acts as a good solvent for both blocks leads to phase mixing, as opposed to 

phase segregation.  As the thin film is exposed to the vapors, the fumes must diffuse 

through the film, which causes a gradient normal to the film surface.  This gradient 

progresses through the thin film and translates to an ordering front.  Since benzene is a 
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good solvent for both blocks, preferential affinity of the blocks to the substrate surface is 

reduced, causing the orientation to be normal to the substrate.  As this ordering front 

moves through the thin film, microphase separation is templated by the existing domains 

present causing the domains to orient normal to the substrate.27  

By spin-casting at slower speeds and using higher concentrations of the diblock 

copolymer, larger patterns (~400 nm – 700 nm) can be fabricated as shown in the AFM 

image displayed in Fig. 6.8.  The conditions at which the diblock copolymer is deposited 

dictates the structures formed.  The larger patterns are spin-casted slower and for shorter 

periods of time as compared to the smaller patterns.  Thicker films and larger holes are 

also made by simply dripping the copolymer solution onto the mica slide and allowing it 

to dry.  This causes patterns similar to spin-casting at lower speeds with higher 

concentrations.   
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Figure 6.7 A 2.5 µm x 2.5 µm AFM scan of the diblock copolymer, PS-b-PEO spin-
casted onto a mica substrate showing different sized holes.  (A) Line cuts of the holes 
showing that the holes are approximately 250 nm wide and 100-150 nm deep before 
exposing to benzene vapors.  (B) Line cuts showing that after exposing the copolymer to 
benzene vapors for 1.5 hours, the holes become approximately 30 nm.  ((B) was exposed 
to benzene vapors reorganizing the diblock copolymer chains.) 
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Figure 6.8  A 10 µm x 10 µm AFM scan of the diblock copolymer, PS-b-PEO 
showing holes that are ~400 nm – 750 nm wide and ~ 200 nm deep.  This film was made 
by spin-casting the copolymer solution onto the mica slide at slow speeds and letting it 
dry. 

 

By allowing the film to be fumed with cyanoacrylate, three-dimensional 

structures can be made.  The cyanoacrylate selectively bonds to the hydrophilic regions 

of the film (the holes) and therefore pillars are made as shown in Fig. 6.9 and 6.10.  

Exposing the films to cyanoacrylate fumes for longer periods of time in attempt to make 

larger three dimensional structures results in the structures eventually merging together to 

form ‘worm like’ features.   
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Figure 6.9 A 2 µm x 2 µm AFM scan of the diblock copolymer, PS-b-PEO spin-
casted onto a mica substrate showing before and after fuming.  (A) Line cuts of the holes 
showing that the holes are approximately 30 nm wide before fuming.  (B) Line cuts 
showing that after fuming the copolymer film for ~ 2 minutes, the holes become pillars of 
~ 5-10 nm in height.  ((A) was exposed to benzene vapors reorganizing the diblock 
copolymer chains before fuming process.) 
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Diblock copolymer patterns were also made by spin-casting the copolymer onto a 

stripped fiber optic cable as shown in Fig. 6.10.  In the past, it has proven difficult to 

grow submicron patterns onto curved surfaces.  By using this method, the diblock 

copolymer can simply be spin-cast onto a stripped, cleaned fiber optic cable.  By just 

spin-casting the copolymer onto the fiber, patterns of 100 nm can consistently be made.  

Smaller patterns can be made by allowing the thin film to undergo benzene vapor 

treatment as described before and shown in Fig. 6.9.  Also shown in Fig. 6.10B is the 

same diblock copolymer film shown in Fig. 6.10A, but after fuming for 1.5 minutes.  The 

hydrophilic regions that appeared as holes before, now have become pillars that are ~ 

25nm tall. 

These patterns could potentially be used for many applications.  As stated before, 

photonic crystals have become of interest due to their unique properties as waveguides.  

The telecommunications industry is very interested in photonic technology because this 

would create a way to ‘bend’ or direct light around a very sharp corner with little or no 

loss.  The films created in this chapter could potentially be used for this new technology.  

New and better ways to anneal these thin films will be needed to achieve the extreme 

uniformity that photonic crystals need to function properly.  

These results show that diblock copolymer and LB films transferred onto both flat 

and curved substrates can be used to template lateral features for micropatterning using 

the fuming method.  The vertical feature size is controlled through the fuming step, which 

offers advantages that compliment current micropatterning techniques.  In the fuming 

method, vertical features can be easily tuned from nanometers to microns by controlling 

the exposure time to the cyanoacrylate fumes, providing a large dynamic range of feature  
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Figure 6.10 A 2 µm x 2 µm AFM scan showing the diblock copolymer (PS-b-PEO) 
thin film on a curved surface.  (A) Holes are ~75 - 100 nm wide and 25nm deep. (B) 
After cyanoacrylate fuming for 1.5 minutes, the holes become pillars that are ~75 - 100 
nm wide ~20-25 nm tall. 
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sizes.  Since it is a parallel approach, fuming takes minutes regardless of substrate size 

and cyanoacrylates have easily accessible functional groups for chemically modifying the 

surface properties of the patterned substrate.  Cyanoacrylates are also amenable to 

autoclaving for biological applications and are transparent which should facilitate the 

development of applications involving optical approaches.28   

 

6.4 Reduction of Photo-bleaching Rates by Cyanoacrylate Fuming 

 With any fluorescence technique, photobleaching can be a major problem.  

Photobleaching occurs when a fluorophore permanently loses the ability to fluoresce due 

to photon-induced chemical damage.  When a fluorophore transitions from an excited 

singlet state to an excited triplet state, fluorophores may interact with other molecules and 

produce irreversible covalent modifications.  The excited triplet state is relatively long 

lived in comparison to the excited singlet state, thereby giving the excited molecule more 

time to undergo chemical reactions with any environmental components that may be 

present.  For a given fluorophore, the average number of excitation and emission cycles 

that the fluorophore undergoes before photobleaching, is dependent on the properties of 

the molecule and its environment. 

When analyzing single molecules, as done in the previous chapters, it can be 

difficult to capture images with good signal-to-noise (S/N) ratio before the fluorophore 

signal is lost due to photobleaching.  There are several ways to help reduce 

photobleaching such as reducing the amount of oxygen present, using anti-fade reagents, 

and decreasing the intensity of the excitation source (which will also decrease the signal).  

There are also several factors such as the survival time, quantum yield and extinction 
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coefficient of the fluorophore that can limit the signal-to-noise when obtaining single 

molecule images.  In the previous chapters, BODIPY fluorophores were selected for our 

single molecule measurements because they are robust fluorophores with high quantum 

yields and large absorption cross-sections.  Moreover, they are relatively insensitive to 

their environment.   

The presence of oxygen is one major limiting factor that can affect the survival 

times of fluorophores.  In order to decrease the photobleaching rate of the fluorophores, 

we can reduce the amount of oxygen accessible to the film by creating a barrier.  

Photobleaching rates in single molecule measurements can be improved by using the 

fuming method discussed above to deposit a physical barrier above the lipid films.  After 

depositing a LB monolayer of DPPC onto a solid substrate, the film was exposed to the 

cyanoacrylate fumes for short amounts of time to apply a very thin film.  The thin film 

dramatically reduces the photobleaching rates of the dyes, but its effect on the underlying 

structure of the monolayer must be explored.  Figure 6.11 shows single molecule 

orientation histograms from a DPPC monolayer doped with 33 mol % cholesterol, 

deposited onto a glass substrate at 25 mN/m.  The film was doped with ~ 10-8 mol % 

BODIPY-PC.  The blue bars represent the single molecule orientations before fuming 

and the red bars represent the single molecule orientations after fuming.  As can be seen, 

there is no statistically relevant difference, illustrating that the fuming process does not 

perturb the molecular order in the underlying lipid films. 

 Having established that the fuming process does not alter the underlying lipid film 

structure, we now turn to the photobleaching rates.  Figure 6.12 compares the 

fluorescence intensity decay plots for representative monolayers at two surface pressures.   
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Figure 6.11 Monolayers of DPPC before and after fuming deposited at 25 mN/m with 
33 mol % cholesterol.  This example helps to illustrate that the thin film of cyanoacrylate 
does not affect the single molecule orientations in the lipid membranes. 
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In this experiment, monolayers of DPPC were made as described in Chapter 2 and doped 

with ~0.25 mol % BODIPY-PC.  The monolayer was positioned for imaging and the 

excitation power was held constant at 10.3 mW.  Each monolayer was imaged for 

approximately 20-25 seconds with a frame integration time of 1 second.  The total 

intensity was calculated from each frame and used to create decay plots such as those 

shown in Fig. 6.12.  At a surface pressure of 15 mN/m, the initial decay rates of the 

monolayers before fuming are fast, as shown by the pink line Fig. 6.12.  This is due to the 

loose packing of the lipid acyl chains in which the fluorophores are more accessible to 

oxygen.  At a higher surface pressure of 25 mN/m, the initial intensity decay rates of the 

monolayers before fuming are slower due to the increased lateral packing of the acyl 

chains.  The increased packing of the lipid acyl chains decreases the accessibility of the 

oxygen to interact with the fluorophores.   

By fuming the monolayers for a short period of time, thereby depositing a thin 

layer of cyanoacrylate and reducing the oxygen access to the film, the intensity decay rate 

for both films slows dramatically as shown by the blue lines in Fig. 6.12.  As stated 

before, when performing single molecule studies, photobleaching can be a limiting factor, 

therefore, the fuming process presented here to decrease the photobleaching rates of the 

reporter molecules can be very useful in single molecule imaging.   

A common accepted pathway of photobleaching is the reaction of triplet state 

oxygen with the fluorophore as discussed before.  If the oxygen can be partially blocked 

from reacting with the fluorophore, photobleaching rates can be decreased.  Thus, by  
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Figure 6.12 Two representative plots of fumed vs. not fumed monolayers are shown.  
As can been seen, at 15 mN/m, the intensity of not fumed monolayers decreases rapidly, 
then after fuming for a short period of time, the intensity decreases at a much slower rate.  
At 25 mN/m the intensity of the not fumed monolayers decreases at a slower rate than the 
lower surface pressure, but after fuming the intensity still decreases at a much slower 
rate. 
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coating the surface with a thin film of cyanoacrylate, this can be achieved.  With this 

fuming technique, it was shown that the fuming process does not affect the molecular 

order of the films, yet drastically reduces the photobleaching rates, helping to obtain 

longer lifetimes of the fluorophores.   

 

6.5 Conclusions 

A method for micropatterning flat and curved surfaces is developed that uses LB 

films to template the growth of a polymer on a substrate.  Patterns in LB films arising 

either from hydrodynamic instabilities during the dipping process or phase partitioning in 

the lipid monolayer are used to template different hydration levels across the film.  Upon 

exposure to fumes from ethyl 2-cyanoacrylate, anionic polymerization occurs in the 

hydrated regions of the film leading to polymer growth in those areas.  Feature height is 

controlled by the duration of the fuming step and structures from nanometers to microns 

can be fabricated in minutes.  This method offers a general approach for patterning 

surfaces that is rapid, amenable to different substrates and films, will work on both flat 

and curved surfaces, and does not require expensive instrumentation.   

The diblock copolymer method of creating submicron patterns has proven to be a 

fast and cost-effective way to create patterns on flat and curved surfaces. Lateral patterns 

ranging from ~ 20 nm to ~ 1 micron can be easily achieved.  By simply changing the 

conditions, i.e. chain link sizes and spin-casting speed, a variety of sizes can be quickly 

fabricated.  This method has also been proven efficient for coating curved surfaces, 

which has proven difficult in the past with most other nano-lithography techniques.  

Combining this method with the fuming technique proves to be a quick and simple way 
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to ‘grow’ three dimensional structures from a template of the diblock copolymer thin film 

patterns.   

It is also shown that fuming for very short periods of time, we can greatly reduce 

the photo destruction rates of the fluorophores used in single molecule orientation 

measurements.  It was shown that the thin layer of cyanoacrylate does not affect the 

molecular order of the films, but greatly reduces the photobleaching rates.  This method 

can easily be used to improve the signal to noise in single molecule images. 
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Chapter 7 

Conclusions and Future Directions 

 

7.1  Dissertation Summary 

 The bulk of the research outlined in this dissertation is directed towards obtaining 

a better understanding of lipid membrane structure.  Biological membranes are highly 

complex and heterogeneous structures that compartmentalize membrane components.  

Biological membranes serve as the dividing barrier between the inside of the cell and its 

environment, making their structure and function important.  Bilayer membranes are 

made of a variety of phospholipid molecules, cholesterol, and proteins, and as discussed 

in Chapter 1, there is great diversity in the number of phospholipid molecules that 

compose biological membranes.  There have been numerous techniques utilized to study 

the structure and function of biological and model membranes, and these studies have 

suggested the presence of small domains found in membranes.   

 The fluid mosaic model proposed by S.J. Singer to describe the nature of 

membranes has since been adapted.  Through many experimental results, it is now 

understood that while some molecules can diffuse freely through the membrane, others 

congregate to form small heterogeneous structures.  The term, lipid raft has been coined 

to describe these small regions of coexisting lipid phases or microdomains in which 

segregate or isolate different membrane components.  The small size, typically <100 nm, 

and dynamic nature of lipid rafts, makes them difficult to directly visualize.   

 Because of the complex nature of natural membranes, model membranes are 

commonly used to simplify the analysis.  There is a long standing history of utilizing 
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model membranes for the analysis of membrane structure and function.  As discussed in 

Chapter 2, we utilized monolayers made by the Langmuir-Blodgett (LB) technique and 

bilayers made from the vesicle fusion technique.  Fluorescence microscopy is a technique 

that is commonly used to elucidate domains in membranes.  Fluorescence imaging 

utilizes the propensity of fluorescent lipid analogs to partition into less ordered regions in 

the membrane.  Model membranes were examined to probe the domains present in DPPC 

monolayers using a phase sensitive membrane dye.   

High resolution AFM measurements were also performed on model systems.  The 

LC and LE regions seen in the fluorescence measurements were visible in the 

topographical AFM images as small 6-8 Å height differences.  However, it was found 

that there were also coexisting nanometric sized domains within the LE phase that were 

not resolved with the fluorescence measurements.  These nanometric sized domains have 

driven the need for further studies with high resolution techniques.  

Near field scanning optical microscopy (NSOM) was used to probe the 

nanometric domains present by simultaneously collecting topographical measurements 

with high spatial resolution optical measurements.  This provides a pixel-to-pixel 

mapping of the topography and fluorescence and a direct correlation is observed between 

bright domains with regions of lower topography, confirming that these areas represent 

regions of LE phase.  This illustrates the utility of NSOM when analyzing submicron 

sized domains. 

The bulk of this dissertation covers single molecule orientation measurements in 

model membranes.  We can utilize the way that fluorophores emit light, as described in 

Chapter 2, to analyze the structure of model membranes at the molecular level.  As 
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shown previously, by utilizing p-polarized total internal reflectance fluorescence 

microscopy (PTIRF-M) and slightly defocusing the optics, the emission patterns from 

single molecules may be used to determine the 3-D orientation of reporter molecules.  

The emission patterns arise from a distortion of the anisotropic emission characteristics of 

the fluorescent probes.  In Chapter 3, experiments showed that by inserting the tailgroup 

labeled fluorescent lipid analog, BODIPY-PC into DPPC monolayers as a reporter 

molecule, the ordering of the lipid acyl chains with increasing surface pressure was 

tracked at the single molecule level.  

Monolayers are often used as mimics of biological membranes because they offer 

a reproducible and simple way to control many properties such as lateral surface pressure 

and compressibility.  Therefore, it is important to be able to directly compare monolayers 

and bilayers.  Bilayers offer a more faithful representation of biological membranes, but 

exist in a tension free state at equilibrium.  While direct measurements of surface 

pressure in bilayers is not possible, the monolayer-bilayer equivalence pressure can be 

estimated through indirect studies comparing membrane properties.  In order to find a 

monolayer/bilayer “equivalent surface pressure”, in Chapter 4 we show that the ordered 

abundance (≤10˚ tilt away from the membrane normal) can be plotted with respect to 

surface pressure to create a calibration curve that describes the linear response of the lipid 

acyl chain tilt to surface pressure.  This can then be used for studies comparing properties 

of monolayers and bilayers and for establishing conditions under which monolayers can 

be used as bilayer mimics.  This equivalent surface pressure was found to be ~ 23 mN/m, 

which is somewhat lower than current literature values.1-7   
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After developing a reliable way to track membrane order in monolayers and 

bilayers, we examine the effects of membrane additives such as cholesterol which was 

also analyzed in Chapters 3 and 4.  It has previously been shown that cholesterol causes a 

condensing effect on lipid membranes.8-13  The condensation of lipid acyl chains induces 

a new phase known as the liquid ordered state (lo) in which has the ordered properties of 

the solid ordered state (so) and the fluid properties of the liquid disordered state (ld), 

which is important for the elucidation of lipid rafts.  We have shown that with the 

addition of small amounts of cholesterol to monolayers of DPPC, this condensing effect 

can be clearly observed in the single molecule measurements.  For example, with the 

addition of just 5 mol % cholesterol, the ordered abundance (≤10˚ tilt) increases from ~ 

42 % to ~ 60 %.14   

The condensing effect of cholesterol and two other biologically relevant sterols, 

ergosterol and lanosterol, were studied in monolayers and bilayers of DPPC at the 

“equivalent surface pressure” found previously.  A clear condensing effect was seen with 

the addition of both cholesterol and ergosterol, but not with lanosterol.  This is attributed 

to the non-planar structure of the lanosterol molecule.   

In a collaboration initiated with Dr. Wonpil Im and Kevin Song at the University 

of Kansas, we compared our single molecule measurements with molecular dynamics 

(MD) simulations to analyze how BODIPY-PC inserts into monolayers and bilayers of 

DPPC.  A clear trend in ordering of the lipid acyl chains with respect to surface pressure 

was shown for both MD simulations and experimental results above the transition 

temperature of DPPC.  The MD studies also analyzed the microscopic driving forces that 

determine the orientation of the reporter molecule at different surface pressures.  At low 
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and medium surface pressures, it was found that entropic contributions are dominant but 

at high surface pressures, enthalpic contributions are dominant.   

Finally, in Chapter 6, a method was developed to reproducibly fabricate micro- 

and nanoscopic patterns onto solid substrates.18  By utilizing diblock copolymers and 

monolayers created by the Langmuir-Blodgett (LB) deposition technique, surfaces were 

patterned in parallel on flat or curved surfaces.  By fuming with cyanoacrylate, two-

dimensional structures were “grown” into three-dimensional structures in a short period 

of time.  The fuming process was also found to decrease the photobleaching rates in 

single molecule imaging without altering the structure of the underlying film.  Fuming 

creates a thin physical barrier that decreases the access of oxygen to the fluorophores, 

thereby decreasing chemical modifications to the fluorophores.   

 

7.2 Future Directions 

7.2.1 Probing Different Lipid Analogs for the Placement of the Fluorophore Along the 

Lipid Acyl Chain 

The BODIPY-PC fluorophore used throughout this dissertation was chosen 

because of its properties as discussed previously.  As shown in Fig. 7.1, the BODIPY 

fluorophore can be placed at many positions along the lipid acyl chain, thereby enabling 

the depth dependence of the reporter molecule to be probed.  Other analogs such as the 

FM 1-43, BODIPY C4,C9 and BODIPY C8, C5 shown in Fig. 7.1, can also analyze the 

depth dependence of the fluorophore.   

 The initial studies of ordered abundance (≤10˚ tilt) vs. surface pressure are 

reported for three different lipid analogs, as shown in Fig. 7.2.  Initial studies show that 
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the probe placement affects the sensitivity of the reporter probe to the membrane packing.  

The original BODIPY-PC (C9) is the most sensitive to lipid acyl chain ordering, while 

C5 and C12 BODIPY-PC molecules are less sensitive.  This could be due to the insertion 

depth of the fluorophore in the membrane.  The original BODIPY-PC molecule also 

contains a 4-carbon chain on the terminal end of the fluorophore, in which seems to have 

an effect on insertion into membranes.  By utilizing different reporter molecules, different 

aspects of the membrane structure and properties may be probed.   
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Figure 7.1 Schematic representation of several different lipid analogs.  The BODIPY 
fluorophore can be placed at several different places along the acyl chain.  The membrane 
dye FM 1-43 is also shown.  The depth dependence of the BODIPY fluorophore can be 
probed. 
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Fig. 7.2 Three different BODIPY-PC lipid analogs are graphed.  The original 
BODIPY-PC analog (shown in blue) has the highest sensitivity (slope = 1.50) to 
membrane packing, while the C5 BODIPY-PC and C12 BODIPY-PC (shown in green 
and red, respectively) have lower sensitivity (slope  = 0.65 and 0.72, respectively).  
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7.2.2 Direct Observation of Antibody Orientation Through Single Molecule 

Orientations 

Antibodies are gamma globulin proteins that are used by the immune system to 

identify foreign objects in the body.  Antibodies can be arranged onto a solid substrate 

and used for purification of proteins and bio-sensing application.  Numerous studies have 

been performed to arrange antibodies onto a solid substrate in an oriented fashion.  The 

orientation of the antibody on the surface directly affects the binding of the antigen.  

Methods such as selective polymer-protein noncovalent interactions,19 use of protein A,20 

and self assembled monolayers,21 just to name a few, have been used to improve the 

binding of antigens to antibodies. 

The most common way to analyze the orientation of an antibody deposited on a 

substrate is by performing an affinity assay.  By simply analyzing how much of the 

antigen binds to the antibody, a correlation between binding and the orientation of the 

antibody can be made.  This, however, still does not show the true orientation of the 

antibody.  We would like to develop a method to directly probe the orientation of 

antibody on a surface by utilizing the single molecule method as described in this 

dissertation.   

The antibody can be attached to the surface by utilizing several well-known 

methods of attachment and orientation.  Then by using a fluorescently tagged antigen, 

binding will occur and the orientation can be analyzed, as described in Chapter 2.  For the 

orientation of the antibody to be analyzed, the fluorescent tag has to be attached to the 

antigen in a rigid fashion.  The tag could also possibly be attached to the antibody itself in 
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order to obtain structural orientation.  This method should prove useful for the 

determination of antibody orientations, and should be amenable to a variety of antibodies.   

We have shown that the single molecule orientations can probe membrane 

structure at the molecular level.  This molecular level structure can help reveal the 

heterogeneity and complex structure of membranes. The further exploration of other 

membrane dyes may enable tuning the sensitivity and sense the different aspects of 

membrane structure and function and future exploration of orientation measurements to 

other biological applications such as antibody/antigen binding may also be useful. 
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