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Executive Summary 

  
 At XYZ Corporation (XYZ), the standard method of creating aircraft performance 

guarantees does not incorporate engineering risk or uncertainty.  Since performance 

guarantees are a contractual agreement to the customer, the customer is not obligated to 

take delivery of the aircraft if the guarantees are not met.  This results in considerable 

financial loss and immeasurable damage to the company’s reputation. Because of this, the 

need for a simple method of evaluating the risk of a performance guarantee arose.   

Although a myriad of risk assessment techniques exist in literature, a specific 

technique for performance guarantees was not available.  This research develops a 

specific statistical risk assessment method (SRAM) that fits with XYZ’s tools and 

culture.  By implementing sensitivity analysis, design of experiments, response surface 

modeling, and Monte Carlo simulation, a Risk / Guarantee matrix can be developed.  

This matrix compares the level of risk associated with a particular performance value, 

allowing Management to select a guarantee based upon the amount of risk the company is 

willing to accept.  In its initial implementation, SRAM successfully led Management to 

select a takeoff field length guarantee more conservative than initially desired due to the 

initial value’s risk.  Additionally, the other two desired performance values (range and 

maximum speed) were found to be within acceptable risk; therefore, they were selected 

for guarantees. 

 Potentially the greatest value of SRAM is its ability to evaluate risk in areas 

outside of performance guarantees.  This research found that SRAM’s potential for 

evaluating airplane configuration risk can greatly reduce the probability that a new 

product falls short of desired performance, ultimately reducing down stream engineering 
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cost.  Identified as an extremely valuable tool, SRAM can potentially be applied in 

countless other aspects of design and engineering to better understand variation and 

assess risk.  
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Chapter 1 – Introduction 

 
XYZ Corporation (XYZ), a business aircraft manufacturer, has a reputation of 

building and selling some of the finest aircraft available.  When a new aircraft is 

developed, it is typical practice in the industry to begin sales of the product before a 

flying prototype is built.  To boost sales and quell uncertainty, the company always 

makes three guarantees to a customer as a “promise” of what they will receive when the 

aircraft is delivered.  These three guarantees are: aircraft range, takeoff field length, and 

maximum speed.   

Since a prototype of the new aircraft is not available when these guarantees are 

made, a heavy responsibility lies on Engineering to successfully predict these 

performance points.  If a performance guarantee is not met when an aircraft is delivered, 

it is considered a breech of contract and the customer is no longer required to take 

delivery of that aircraft.  This can have serious financial impact since the customer has 

not yet made their final payment and can seek legal action to recover their initial down 

payment.  Furthermore, damage to XYZ’s reputation causes immeasurable financial 

impact.  

In its current state, the method for guarantee generation only requires Engineering 

to use nominal (most likely) input parameters when modeling aircraft performance.  A 

nominal input results in a nominal output, thereby giving the user no gauge of the risk 

inherent in its value.  Marketing and Sales apply a standard  3% to the guarantee to 

account for any variation in manufacturing, yet this does not cover engineering 

uncertainty since it is assumed engineering guarantees will be met.  The goal of this 

research is to develop a method that takes a statistical approach to risk assessment so 
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data-based-decisions can be made about aircraft performance.  Risk assessment should be 

based on engineering uncertainty and allow the user to observe the final output and select 

a level of aircraft performance based upon a corresponding level of risk.   

In addition, the potential for using the resulting statistical risk assessment method 

(SRAM) beyond risk assessment of performance guarantees will be discussed briefly in 

Chapter 4 – Results.  
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Chapter 2 – Literature Review 

 
A literature review was conducted to identify any defined methods for statistical 

risk assessment and determine if they can successfully be applied to the stated problem.  

The literature search started with no specific focus given to the industry of concern.  This 

was done with the intent of identifying different methods that could be applied to the 

aviation industry.  Following the broad search, a more focused search of risk analysis in 

aviation was conducted.  The last step was a final highly focused search on statistical risk 

assessment of aircraft performance.  This final search yielded results in aircraft 

component risk but no results for overall aircraft performance risk.  

Since no specifically defined method for statistical risk assessment of aircraft 

performance could be found, the need for such a method was affirmed.  The following 

review addresses the strengths, weaknesses, and potential application of each text as it 

relates to risk assessment. 

General Research 
 

The first text reviewed was a paper entitled “Empirical Evaluation of the 

Association between Methodological Shortcomings and Estimates o f Adverse Events” 

(Chou, Fu et al. 2006).  This is a medical paper focusing on the risk of adverse effects of 

new prescription drugs.  Although this paper presents strong use of statistical risk 

assessment, it is based on sampling.  The main method for sampling is completed through 

clinical trials, in which the results of a drug are observed on a small group of volunteers.  

The results of multiple trials are then collaborated to represent the reaction of the entire 

public.   
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Although valid for evaluating the risk of a new drug, sampling is not a method 

that can be used for the stated problem.  The goal is to accurately account for the risk 

before a prototype is developed.  Even if sampling was completed on the prototype, this 

is only one sample point – far too small for a legitimate statistical sample.  In addition, it 

would take years to gather enough data to create a viable model since only 20 to 30 

aircraft are built a year.  For these reasons, statistical sampling cannot be used to solve 

the proposed problem and as a result will not be considered for the problem solution.  

A paper by Steve Verrill and Richard Johnson entitled “Confidence Bounds and 

Hypothesis Tests for Normal Distribution Coefficients of Variation” (Verrill and Johnson 

2007) was the next to be reviewed.  The paper was written for the United States 

Department of Agriculture with the intent of identifying the risk of chemical 

concentrations in particular environments.  This paper is very similar to the medical 

example presented previously, due to its use of statistical sampling.  To determine the 

risk of chemical concentrations, sampling is completed at areas of interest where the 

chemicals already exist.  For the same reasons as in the medical text, the methods 

utilizing sampling for statistical risk assessment cannot be applied to the stated problem.  

Degrees of Belief: Subjective Probability and Engineering Judgment (Vick 2002), 

a book on geotechnical engineering was the next item to be reviewed.  The first statistical 

risk analysis method this book examines is the decision tree.  A decision tree allows the 

user to compare multiple paths given the probabilities of potential events and their 

resulting consequences.  An example decision tree is shown in Figure 1.  
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Figure 1: Example Decision Tree 

 

Although the Decision Tree Method is successful at predicting the “best” outcome 

given the risk (probability) of each event, it requires the user to know (or have a good 

idea) of the probability of each event occurring.   Knowing exact probabilities in XYZ 

Engineering is unlikely, however, the probability of variation is known.  For example, an 

engineer may not be able to identify the probability a new engine will be delivered under 

design specification; however, they will be able to specify the variation bounds of an 

expected new engine.  Since the decision tree requires exact probabilities, it is not 

considered a practical solution to the stated problem.  

The decision tree method does have strength in enabling the user to see the 

probability of each defined outcome and compare each outcome’s likelihood against 

another.  This has value when identifying the risk of a given performance point.   
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The next method identified in Vick’s book is the Likelihood / Consequence 

Matrix.  In this method, the user creates a matrix where one axis is Likelihood and the 

other Consequence.   Each axis has numeric scoring to identify the severity of either the 

likelihood or consequence of a given scenario.  An example Likelihood / Consequence 

Matrix is shown in Figure 2. 

 
Figure 2: Example Likelihood / Consequence Matrix 

Although the Likelihood / Consequence Matrix is useful in determining a two-

dimensional aspect of risk (likelihood and consequence), it cannot be applied to the stated 

problem.  This is due to the fact that the stated problem is only concerned with one 

consequence, the failure to meet a guarantee.  Also the Likelihood / Consequence Matrix 

is more qualitative than quantitative and does not meet the statistical assessment aspect of 

the problem statement. 

The last subject of interest in this text is more of a general guideline for risk 

assessment.  In the process of risk assessment it is important to use the input of Subject 

Matter Experts (SMEs).  SMEs are used to identify the probability of events or the values 

of likelihood and consequence.  The SME’s value comes from their experience and 

something the author calls the “hard-easy”.  “Hard-easy” refers to a situation where a 
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difficult question is asked of someone with little subject knowledge and they perceive the 

question as easy.  The less the individual knows about the subject, the quicker and less 

educated the response.  This appears to be a result of not knowing how little they know.  

Due to a SME’s experience however, they know what they do not know and therefore 

give better estimates.  SMEs are recognized as a valuable part of evaluating risk in 

guarantees and can play a key role in the solution to the stated problem.  

The next book examined was Operational Risk: Modeling Analytics (Panjer 

2006).  This book was written with a focus on risk in banking and the insurance sector.  

The first point in Panjer’s book explains that the definition of risk is something that 

results in financial loss.  All other “risks” are ignored.  This definition aligns with the 

stated problem since financial loss is the company’s only concern as a result of a missed 

guarantee. 

To successfully identify risk, the author suggests creating a model of the system 

in question to explore potential outcomes.  Since the creation of guarantees is completed 

through modeling (no aircraft exists yet, all predictions are made using computer models) 

this method is well received.  The author advocates varying inputs to the model to 

understand their effect on the total outcome.  In addition, the author suggests running the 

model multiple times with the same inputs to identify the variation in the model itself.  

The model used for performance predictions is based on the physics of flight; therefore, 

given constant inputs, the output will always be the same.  For that reason, this research 

does not need to consider model variation.  However, the point about input parameter 

variation is very valuable.  The “real-world” variation of a parameter is what can cause a 

missed guarantee.  The author also explains that by understanding the output variation, 
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the user can utilize standard deviation and confidence intervals to understand the risk of 

the system.  These methods appear to have great value in evaluating the risk of aircraft 

performance modeling. 

Risk Modeling for Determining Value and Decision Making (Koller 2000), a 

general book on risk analysis was the next book to be reviewed.  The main discussion in 

this book revolves around creating a model, much like what was suggested in the 

previous text.  Before modeling is discussed however, more simple methods such as 

decision tree analysis and linear programming are discussed.  

Mentioned previously, decision tree analysis does not work for the stated problem 

because of its requirement for event probabilities and the deterministic outcome.  Linear 

programming offers more flexibility since the interaction of input parameters can be more 

clearly understood.  However, since a working model of the aircraft already exists, linear 

programming is passed over to give more focus on the modeling section of Koller’s text.  

To develop a successful model, the author suggests identifying the input 

parameters that contain risk.  Although it is important to understand all of the inputs 

required to create a successful model, by specifically noting the parameters with variation 

(risk), the user can begin to focus on what causes output variation.  Once the risk 

parameters are defined, the user should identify the maximum, minimum, and most- likely 

value for each parameter.  This process fits well with the engineering practices at XYZ.  

As stated previously, an engineer may not understand the probability that a parameter 

will not be accurate; however, SMEs can identify the maximum, minimum, and most-

likely value of a given parameter.  This is considered a strength of the modeling method.  
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Along with maximum, minimum, and most- likely value of a parameter, the author 

suggests assigning a peakedness value as well.  The peakedness value is an assignment of 

likeliness, giving each parameter weight in the overall model.  Peakedness is not 

necessary for the stated problem since the existing model already “assigns weights” to 

input parameters through the equations of the model (the model is based on physics of 

flight).  Therefore this suggestion is not needed for the stated problem.  

After the model is developed and the input parameter variation is known, the 

author recommends using Monte Carlo simulation to statistically vary the inputs to 

identify the overall variation (risk) in the output.  There are seven statistical distributions 

that can be applied to input parameter variation.  These distributions are: symmetrical, 

skewed, spike, flat, truncated, discrete, and bimodal.  From the result of the Monte Carlo 

analysis, the user can identify confidence intervals on the outcome to identify the risk of a 

given output value.  This technique appears to have excellent application for the proposed 

problem.  Engineering can identify variation in input parameters and the user can then 

identify the risk of a resulting guarantee.  A weakness of this method, however, is that the 

model used for performance predictions does not directly “link” to any commercial 

Monte Carlo simulation.  Therefore Monte Carlo simulation is not a straightforward 

process. 

Very similar to the two previously discussed texts, “Framework for Quantifying 

Uncertainty in Electric Ship Design” (Porche, Willis et al. 2004) uses modeling and 

Monte Carlo simulation to determine final system risk.  This document was written 

specifically for risk assessment of different electric propulsion systems for Navy ships.  

The authors specify that the first step in risk analysis is to identify the input parameters 
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that contain variation.  After input variation is identified, the model is then linked to a 

Monte Carlo simulation that runs through the variation of input parameters to determine 

the resulting performance output variation.  This report adds more validity to the use of 

modeling and Monte Carlo simulation by concurring with the other texts already 

reviewed.  An apparently powerful method, the downfall for the proposed problem 

remains that the existing performance model cannot link to a Monte Carlo simulation.   

Industry-focused Research 
 

The next resources examined focus on the aviation industry.  The first in this area 

is entitled Risk Management and Error Reduction in Aviation Maintenance (Patankar and 

Taylor 2004).  This book concentrates on the application of risk management in aviation 

systems with the purpose of improving system safety to prevent incidents/accidents.  The 

method promoted by this book is the SHELL model.  Where SHELL represents controls 

capable of improving safety: S-software, H-hardware, E-environment, L- liveware 

(liveware = human in the loop).  The discussion in Patankar and Taylor’s book revolves 

around the interaction of each SHELL component and how they can be implemented to 

improve aircraft safety, thereby reducing risk.  This type of risk analysis and mitigation 

does not apply to the stated problem; therefore, the methods of this text are not 

considered as a potential solution. 

 Introduction to Aviation Insurance and Risk Management (Wells and 

Chadbourne 1992) is a book that centers on risk assessment in aviation insurance.  

Similar to the previous banking and insurance text that was reviewed, this book specifies 

that risk is only defined as potential financial loss.  No other type of risk should be 

considered.  As mentioned before, this definition of risk does agree with the stated 
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problem.  XYZ’s only concern about missing a guarantee is the financial loss that comes 

as a result. 

A method for understanding potential risk in insurance is to evaluate past data for 

a similar situation (data sampling) and establish the standard deviation and confidence 

intervals for a given scenario.  Since sampling is not a viable method for the stated 

problem, this approach cannot be used.  The use of standard deviation and confidence 

intervals agrees with previously reviewed texts, so this piece of risk assessment still has 

value.   

Wells and Chadbourne’s text also discusses methods for risk control: inspection, 

safety programs, and training.  Although these are valid methods that could be used to 

improve manufacturing, thereby minimizing the variation that exists in the model’s input 

parameters, this is outside of the scope of the research.  It is not the intent of this research 

to improve manufacturing; rather, the problem focuses on understanding the risk that 

currently exists prior to manufacturing and properly assessing the magnitude of risk.  

Therefore, these methods will be left for further discussion in Chapter 5.  

The last text to be reviewed in this search was Safety Management Systems in 

Aviation (Stolzer, Halford et al. 2008).  According to the authors, risk assessment begins 

with a subjective view using a Likelihood / Severity Matrix (see Figure 2).  As described 

in a previous review, this matrix technique does not apply to the stated problem.   

A more detailed approach to risk assessment is the use of a model to predict 

variation.   The author suggests using probabilistic risk assessment such as Monte Carlo 

simulation to evaluate a system’s risk.  Appearing as a common theme in many texts, this 

method fits well with the engineering approach at XYZ because all of the required inputs 
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are available, but the current model does not directly link to a commercial Monte Carlo 

simulation.  This can be considered a shortfall for the stated problem. 

Aircraft Performance Risk Research 
 
 A final search was conducted focused on statistical risk assessment of aircraft 

performance.  It yielded a paper entitled “Risk-Based Probabilistic Approach to 

Aeropropulsion System Assessment” (Tong 2002).  This paper outlines a method to 

determine the probable variation of an aircraft engine during development.  The 

document, written for NASA, assumes that a model has already been developed to 

predict the performance of an engine.  XYZ’s existing performance model allows for 

such a process.  With an established model, the inputs and the input variation are then 

identified so they can be implemented in what the author calls “the fast probability 

integration technique (FPIT)”.  FPIT is a NASA built, Monte Carlo-style tool that links to 

the model to simulate thousands of input variations.  The simulation output can then be 

studied to determine the overall system variation.  Mentioned in many of the reviewed 

texts, the concepts defined by this author appear to have vast potential for the stated 

problem.  The only major deficiency that still remains is the inability to link XYZ’s 

performance model to a Monte Carlo simulation.  

Key Findings 
 

Substantial value was found in the literature review as common themes for risk 

assessment emerged.  The method of modeling the system matches well with the stated 

problem since the process of creating guarantees already requires a model.  By 

identifying the required input parameters and understanding those that contain variation 

(risk), the variation (risk) of the output can be understood.  Also, SMEs can be utilized to 

assign variation to parameters, which ultimately bound the problem.  Since a statistical 
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risk assessment method as it applies to total aircraft performance was not found in current 

literature, the need for such a method was reaffirmed.  
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Chapter 3 – Research Procedure 

 
The guidance from the literature review was used to develop a research procedure 

to create a method that is capable of assessing aircraft performance risk.  The intent of 

this research was to create a method that integrates well with XYZ processes and 

engineering tools.  The various stages of the research process are outlined below.  

The first stage of the research procedure was to identify the performance 

programs that are available within XYZ.  The program selected was then used to model 

and predict the aircraft performance.  Selection was based on which program provided 

the greatest ease of use and functionality for statistical risk assessment of performance 

guarantees.  

Once the performance program was selected, the input parameters that cause 

performance variation were identified.  It is important to identify every parameter that 

can cause performance variation.  If all variation sources are not recognized, the 

statistical assessment will be an incomplete and inaccurate representation of risk.   

With the input parameters identified, SME expertise was utilized to provide the 

expected variation of each parameter.   All input parameters can be categorized under an 

engineering discipline such as aerodynamics, structures, weights … etc.  For each 

discipline, there is at least one SME available to indicate the expected variation of a given 

input parameter.  The variation specified by the SME should account for all the expected 

engineering variation in a given parameter; however, the estimate should not be overly 

conservative or contain excessive variation.  

Next, the tools within XYZ that are capable of Monte Carlo simulation were 

identified and evaluated.  The Monte Carlo tools were assessed on their simulation speed 
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and their versatility for modeling different variation distributions.  Additionally, the 

tool’s ability to communicate with the selected performance program was reviewed and 

weighed into the selection of the Monte Carlo tool used.  

Once the Monte Carlo tool was selected, different methods of linking the 

performance program and the Monte Carlo simulation were explored. The methods 

available within XYZ capable of connecting the performance program and Monte Carlo 

simulation were first identified and then evaluated.  Ease of implementation and ability to 

provide an interface between the performance program and Monte Carlo simulation was 

assessed.  The best option was selected for the SRAM method.  

The final step was to identify a presentation method to summarize the Monte 

Carlo output and communicate the risk of a given performance value in a straightforward 

manner.  By reviewing the output data from the Monte Carlo simulation and the 

presentation styles of the output, an easy to understand form was created to express the 

risk in aircraft performance values.   
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Chapter 4 – Results 

 
Following the steps outlined in Chapter 3, a method capable of assessing the 

statistical risk of an aircraft performance guarantee was developed.  The first step in 

developing SRAM was the identification and assessment of XYZ’s tools that are capable 

of modeling and predicting aircraft performance.       

Overview of Existing Performance Model 
 
 Numerous computer programs capable of modeling aircraft performance are 

available at XYZ.  The performance program selected is the same tool that is used to 

create the Pilot’s Operating Manual (POM) for delivered airplanes.  By using this same 

performance program for SRAM, it ensures that the SRAM performance values are 

compatible with information published in the POM.  The tool is known as the 

Computerized Aircraft Model (CAM) and was developed within XYZ.  CAM takes user-

defined inputs for aircraft characteristics and uses physics equations to calculate aircraft 

performance.  For instance: 

 Takeoff Field Length = f (weight, thrust, drag, etc…)   

The form of the CAM model does not change for different aircraft; it remains constant 

and the input values are adjusted to represent different aircraft.  At the highest level CAM 

acts as a simple Input/Output Code – supply the required inputs, specify the desired 

performance calculation, and the performance value is calculated for the user.  CAM is a 

powerful tool and is able to calculate many aspects of airplane performance.  

Identification of Input Parameters 
 
 Identifying all the potential inputs that cause performance variation can appear 

impractical due to the perceived enormity of the task.  However, the task is made 

relatively simple since the CAM software does not change from model to model.  The 



  25 

input parameters that cause variation are simply the inputs required in CAM for a 

particular performance calculation.  For example, the only inputs required to calculate 

maximum speed are: weight, thrust, and drag.  Therefore, only these parameters need to 

be considered when determining input variation for the Monte Carlo simulation.   

Furthermore, only parameters that cause significant performance variation need to 

be considered.  By completing a relatively simple sensitivity study, the parameters with 

the most significance can be identified.  To do this, CAM is run through a series of cases 

where each input parameter is varied one at a time.  The resulting change in the output 

helps to identify the parameters with very little or no impact.  These insignificant 

parameters are not considered to have variation, which helps to simplify the Monte Carlo 

simulation.   

Monte Carlo Simulation 
 
 Two different tools available within XYZ are capable of Monte Carlo simulation 

and possess linking capability.  The tool that provided the best functionality and speed 

was Crystal Ball, developed by Decisioneering Inc.  Crystal Ball allows the user to define 

the maximum and minimum variation and expected distribution (normal, flat, skewed, 

etc…) of input parameters; it then uses the probable variation of the inputs to calculate 

the output variation for numerous cases.  This yields a statistical distribution of the output 

and allows the user to observe variation that occurs due to input uncertainty.   

The ideal implementation of a Monte Carlo simulation is to directly link to a 

model and allow the simulation to run thousands of cases.  Although Crystal Ball has 

linking capability, it is incapable of linking to CAM.  Additionally, some calculations in 

CAM are computationally intensive and take several minutes to obtain a result.  This is 
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not conducive to a 1000+ case simulation.  Both of these disadvantages are shortfalls for 

the selected tools, so further attention is given to solving these issues.  

Response Surface Modeling 
 
   By using a response surface representation of a performance calculation, both 

the computational time and direct- link to Crystal Ball issues can be resolved.  A response 

surface is an equation that represents the relationship of known inputs and outputs.  It can 

be likened to a trend-line equation that is fit to a set of data.  A linear relationship was 

found to be adequate for cases used to develop guarantees.  It is recognized that some 

scenarios may be complex enough to require a higher-order representation. Since a linear 

equation was acceptable, it was used for this research due to its simplicity.  The equation 

developed is of the form: 

  = C1 ∙ x1 + C2 ∙ x2 + C3 ∙ x1 ∙ x2 + … + Cn ∙ xn + K 
 

where:  is the performance value (range, maximum speed, etc...)  
C is the coefficient of x 

x is an input parameter (drag, weight, thrust, etc…) 
and K is a constant 

This equation can be used directly with Crystal Ball.  Plus, the utilization of a single 

equation allows for thousands of case iterations in a short amount of time.  

 The method for obtaining a response surface is relatively simple and for this 

research was accomplished by using MiniTab 15, a product of MiniTab Inc.  All that is 

required to create a response surface in MiniTab is the minimum and maximum values 

that bound the variation of input parameters and the resulting outputs for combinations of 

inputs.  This information defines the relationship between inputs and outputs.  MiniTab 

then uses this information to define the K and C terms of the response surface equation.  

It is important to note, that by selecting the minimum and maximum value of input 
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parameters, the response surface is limited to evaluating input variation that lies within 

the bounds used to create the surface.  Extrapolation outside of the input extremes can 

lead to inaccurate results.  

The most robust method for creating a response surface is known as a full 

factorial experiment.  This is completed by using CAM to calculate the performance 

output for every permutation of maximum and minimum inputs.  Calculations are 

completed for range, takeoff field length, and maximum speed, yielding three different 

response surface equations.  Unfortunately, to do a full factorial representation of some 

performance values, 64 separate cases would be required in CAM.  With computational 

time of 10 to 20 minutes for some cases, a full factorial representation of the performance 

calculation was far too prohibitive  

Design of Experiments  
 
 To accelerate the development of the response surface, Design of Experiments 

(DOE) was used to reduce the number of CAM runs required to create a response surface.  

Table 1 shows a representation of a full factorial experiment with two parameters.  

Table 1: Example Full Factorial Experiment 
 

Experiment # x1 x2 Performance Output 

1 Max Max 1  

2 Max Min 2  

3 Min Max 3  

4 Min Min 4  

 
It is shown that each parameter varies through its maximum and minimum value for 

every possible permutation of inputs xn.  This yields every possible maximum and 

minimum permutation of the performance output n.  The number of experiments in a 

full factorial depends on the number of parameters and the number of levels for each 
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parameter (e.g. 2; “max” & “min”).  The number of experiments required can be found 

using the following equation: 

Number-of-Experiments = LP 

where: L is the number of levels 

P is the number of parameters 
 

For example, with as few as two levels and 10 parameters, the number of cases required 

for a full factorial is 1024.   

By implementing a fractional design, the number of runs required to develop a 

response surface can be greatly reduced.  Table 2 shows the number of experiments 

required for a full, half, and quarter factorial.  

Table 2: Cases Required for Fractional Factorial 
 

 Full Factorial DOE ½ Factorial DOE ¼ Factorial 

4 parameters, 2 levels 16 8 N/A 

6 parameters, 2 levels 64 32 16 

8 parameters, 2 levels 256 128 64 

 
Some fidelity of the resulting response surface is lost when a fractional factorial is 

implemented.  The two values highlighted in Table 2 represent the limits of a fractional 

design, where the information excluded from the design starts to adversely affect the 

accuracy of the response surface.  For the purpose of this research, if a fractional design 

from the highlighted area was used to develop a response surface, the equation was 

evaluated at multiple points and checked against actual CAM outputs to verify its 

accuracy.  In general, this is good practice when implementing marginal DOEs.  

Example Method Use 
 
 Having established the methods required to allow Monte Carlo simulation of the 

performance calculations, the method was implemented on a current development 

project.  A new XYZ product, X-03, was used as the basis for development and 
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implementation of SRAM.  The first step of the method is to define the input parameters 

required to calculate each performance output.  This information is taken directly from 

the CAM user interface. Then, detailed discussions with SMEs are held to establish the 

maximum and minimum value for each input parameter.   

The maximum and minimum specified are then used as the maximum and 

minimum of a BetaPERT distribution (one of the possible distribution shapes used by 

Crystal Ball).  When the distribution is considered symmetrical, the maximum and 

minimum value represent +/- three standard deviations (±3 ) from the mean.  ±3  

represents 99.7% of the variation expected in that parameter.  In other words, 99.7% of 

the data falls between the ±3  bounds; this is known as a confidence interval (CI).  More 

attention will be given to CIs later in this section 

 Once the parameters and their maximum and minimum values are identified for 

each performance calculation, the sensitivity of each parameter is determined by running 

CAM at each input’s maximum one at a time.  When completed, this data is collected in a 

table for each performance calculation.  Table 3 shows the parameters and sensitivities of 

range for X-03.  Parameter names and units have been removed and values adjusted to 

maintain company confidentiality.  

Table 3: Parameters and Sensitivity of Range 
 

Parameter Minimum Nominal Maximum 
Sensitivity 

(nm/unit) 

x1 8960 9117 9198 0.1 

x2 1451 1481 1510 22.6 

x3 3631 3646 3652 0.68 

x4 5880 6000 6120 20.8 

x5 0.0294 0.0300 0.0309 4.6 

x6 0.0379 0.0389 0.0416 5.4 
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 When observing the sensitivity, it is important to recognize that it is nautical miles 

(nm) per unit of change.  Though parameter x1 and x3 have relatively small sensitivities, 

the unit change that occurs from their maximum and minimum is still considered 

significant.  The total variation of x3 results in a range spread of only 14 nm, yet it was 

still considered significant enough to remain in the DOE.  Therefore, all the parameters 

shown in Table 3 were considered for the creation of the response surface.  

 A full factorial for 6 parameters (x1 through x6) and 2 levels (max & min) requires 

64 cases, and range calculations in CAM can take upwards of 20 minutes for one case.  

Therefore, at a total time exceeding 21 hours, it was determined that a fractional factorial 

be used.  A quarter factorial was finally selected due to the time investment still required 

for a half factorial.  Since this design is at the limit of the DOE (see Table 2), it was 

checked against CAM calculations to verify its accuracy.  

 Next, takeoff field length was evaluated.  Table 4 shows the parameters and 

sensitivities associated with takeoff field length.  

Table 4: Parameters and Sensitivity of Takeoff Field Length 
 

Parameter Minimum Nominal Maximum 
Sensitivity 

(ft/unit) 

x1 8960 9117 9198 0.5 

x2 93 95 97 0 

x3 90 92 94 0 

x4 1.035 1.054 1.073 83 

x5 0.475 0.5 0.525 6 

x6 0.0351 0.0355 0.0359 0.6 

x7 13.1 13.2 13.3 0 

x8 5880 6000 6120 36 

x9 0.0294 0.0300 0.0309 0.8 

x10 0.0379 0.0389 0.0416 4 

 

Although the takeoff field length performance calculation starts off with 10 parameters, 

which would result in 1024 cases for a full factorial, sensitivity analysis identifies 6 
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insignificant parameters that can be removed from the design.  The parameters removed 

from consideration are highlighted in gray in Table 4.  By removing unimportant 

parameters, a full factorial can be completed with just 16 cases.  

 Finally the maximum speed parameters were considered.  Their values and 

sensitivities are shown in Table 5.  

Table 5: Parameters and Sensitivity of Maximum Speed 
 

Parameter Minimum Nominal Maximum 
Sensitivity 
(kts/unit) 

x1 8960 9117 9198 0.002 

x2 5880 6000 6120 1.26 

x3 0.0294 0.0300 0.0309 0.34 

x4 0.0379 0.0389 0.0416 0.04 

 
Initially with four factors, sensitivity analysis suggests a two parameter DOE.  This 

results in only four required cases for a full factorial.  The parameters removed from the 

DOE are once again highlighted in gray.   

 Having the risk parameters defined for each performance calculation and the 

optimal factorial design selected, the DOEs for generating the three response surfaces 

were created.  By specifying the number of parameters, levels, and factorial type (full, 

half, or quarter), MiniTab 15 will generate a corresponding DOE outline.  The DOE-

outlines for range, takeoff field length, and maximum speed are shown in Tables 6 

through 8. 
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Table 6: Quarter Factorial DOE for Range 
 

Case # x1 x2 x3 x4 x5 x6 Range 

1 Min Min Min Min Min Min 1  

2 Max Min Min Min Max Min 2  

3 Min Max Min Min Max Max 3  

4 Max Max Min Min Min Max 4  

5 Min Min Max Min Max Max 5  

6 Max Min Max Min Min Max 6  

7 Min Max Max Min Min Min 7  

8 Max Max Max Min Max Min 8  

9 Min Min Min Max Min Max 9  

10 Max Min Min Max Max Max 10 

11 Min Max Min Max Max Min 11 

12 Max Max Min Max Min Min 12 

13 Min Min Max Max Max Min 13 

14 Max Min Max Max Min Min 14 

15 Min Max Max Max Min Max 15 

16 Max Max Max Max Max Max 16 

   

Table 7: Full Factorial DOE for Takeoff Field Length 
 

Case # x1 x2 x3 x4 Takeoff Field Length 

1 Min Min Min Min 1  

2 Max Min Min Min 2  

3 Min Max Min Min 3  

4 Max Max Min Min 4  

5 Min Min Max Min 5  

6 Max Min Max Min 6  

7 Min Max Max Min 7  

8 Max Max Max Min 8  

9 Min Min Min Max 9  

10 Max Min Min Max 10 

11 Min Max Min Max 11 

12 Max Max Min Max 12 

13 Min Min Max Max 13 

14 Max Min Max Max 14 

15 Min Max Max Max 15 

16 Max Max Max Max 16 

  



  33 

Table 8: Full Factorial DOE of Maximum Speed 
 

Case # x1 x2 Maximum Speed 

1 Min Min 1  

2 Max Min 2  

3 Min Max 3  

4 Max Max 4  

 
Each experiment for the three performance calculations was run in CAM and the 

resulting performance ( n) recorded.  Once all the experiments were completed, Tables 6 

through 8 (with n) were put into MiniTab 15 where the equations for the three response 

surfaces were generated.  The equations were then transferred to Crystal Ball to be 

utilized by the Monte Carlo simulation.  

In Crystal Ball, the input parameters are defined by their maximum, minimum, 

most likely value, and desired distribution shape.  This information is available in Tables 

3 through 5 and a BetaPERT distribution was selected for all parameters.  Once the 

parameter information and response surface equation were properly setup in Crystal Ball, 

50000 trials were run to develop an output variation of each performance guarantee.   

The CIs of the resulting statistical distribution were then used to identify the risk 

of a corresponding performance value.  Since a CI defines what amount of data is known 

to be within a specific number of standard deviations of the mean, it also defines what is 

known to be outside of that number of standard deviations.  Table 9 shows the CIs for 

different standard deviations (Solutions 2008). 

Table 9: Standard Deviations and Corresponding Confidence Intervals  
 

Standard Deviation Confidence Interval 

1  68.3% 

2  95.5% 

3  99.7% 

 

  



  34 

Risk in general is then defined as the amount of data not accounted for in the CI.  

  = 1 – CI 

If the methods of the Insurance and Banking Industry are followed, risk should 

only be defined as something that poses a financial threat.  In that light, the above 

definition of risk is redefined.  For a guarantee such as range, the customer is only 

concerned if the resulting range is less than the guarantee.  There is no financial risk if the 

range is better than the guarantee.  The above equation for risk considers whether 

performance will be higher or lower than the guarantee.  Since financial risk only exists if 

airplane performance is deficient of the guarantee, risk is redefined as: 

  = (1 – CI)/2 

 Crystal Ball conveniently allows the user to input the CI they desire and the upper 

and lower bounds of the distribution for that CI are displayed.    Figure 3 shows the 

Crystal Ball output for X-03 range with a 95% CI. 

Figure 3: Crystal Ball Output for Range 
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 As seen in Figure 3, with a 95% CI the range varies from 1450 nm to 1544 nm.  

At the 95% CI there is a 2.5% risk that the production aircraft’s range will fall short of 

1450 nm.   

 Figure 4 shows the Crystal Ball output for the takeoff field length.  The takeoff 

field length at 95% CI is 3827 ft.  Unlike Range, the upper boundary for takeoff field 

length is used because it is the more restrictive value (a lower value for takeoff field 

length is better).   

Figure 4: Crystal Ball Output for Takeoff Field Length 
 

 
 

The Crystal Ball output for maximum speed is shown in Figure 5.  With a 95% 

confidence interval, the maximum speed is 467 kts, ensuring that 97.5% of the expected 

variation results in speeds faster than 467 kts.  
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Figure 5: Crystal Ball Output for Maximum Speed 
 

 
 

Once Crystal Ball is run and the variation plots are obtained, the user can create a 

Risk / Guarantee matrix.  By adjusting the CI interval input in Crystal Ball, the upper and 

lower boundaries of the distribution plot shift to incorporate or exclude data.  The user 

records the CI and the boundary that corresponds to the guarantee (lower boundary for 

range and speed, and the upper boundary for field length).  The data is then compiled into 

a Risk / Guarantee matrix.  The Risk / Guarantee matrix for range and takeoff field length 

is shown in Figures 6 and 7 respectively.  The maximum speed guarantee matrix was not 

included because at 95% CI (2.5% risk), the speed of 467 exceeds the maximum 

operating speed of X-03.  Therefore, it is recognized that the variation required to reduce 

the maximum speed to less than the maximum operating speed poses no risk and the 

guarantee can be set at the maximum operating speed limit of the airplane.  
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Figure 6: Risk / Guarantee Matrix for 

Range 
 

CI (risk) Guarantee 

95% (2.5%) 1450 nm 

90% (5.0%) 1458 nm 

85% (7.5%) 1463 nm 

80% (10.0%) 1467 nm 

 

Figure 7: Risk / Guarantee Matrix for 

Takeoff Field Length 
 

CI (risk) Guarantee 

95% (2.5%) 3827 ft 

90% (5.0%) 3810 ft 

85% (7.5%) 3799 ft 

80% (10.0%) 3788 ft 

 

The presentation form, CI ( ): , where  is the performance value associated 

with a level of risk  was selected as the standard method for summarizing and 

presenting the results of the Monte Carlo simulation.  The matrices are provided to 

Management instead of single guarantee values.  The concept is that the lower the CI 

selected, the more optimistic the resulting performance, but the less sure XYZ will be that 

the guaranteed performance will be met.  With a standard risk level defined by the 

airplane program or potentially the entire company, the performance guarantee is a 

simple lookup from the matrix.  This provides Management with a straightforward 

process for guarantee selection and also supplies data to support the selection of the 

guarantee value. 

Example Method Outcome 
 

During SRAM’s development and first implementation, it was well received by 

both Engineering and Management.  It had a noteworthy impact on the performance 

guarantees selected for X-03.  Upon review of the Guarantee / Risk matrix with 

Management and Marketing, it was determined that the marketing-desired takeoff field 

length carried far too much risk to be used as a guarantee.  Therefore, based on the risk 

Management was willing to accept, a new takeoff field length was selected for the 

published guarantees.  It was also determined that the range and maximum speed values 

desired by Marketing had acceptable risk; therefore, the desired performance was used as 



  38 

the guarantee points.  In its first implementation, SRAM proved valuable by providing 

data that supported two of the desired guarantee points and data that would lead 

management to select a less risky guarantee for the third.  It was viewed as such a 

valuable method that it has been made the standard method for development of future 

airplane guarantees. 

The SRAM method provides a straightforward method to help evaluate risk in 

performance guarantees.  It also provides the ability to identify how much risk must be 

accepted if a guarantee be improved by x amount.  It allows Management to select a 

guarantee that has an increased level of risk, where the increased risk might be offset by 

the increased number of sales generated due to the improved guarantee.  Ultimately the 

Risk / Guarantee matrix allows management to select the guarantee that best fits XYZ’s 

goals and risk plan.  

SRAM not only lessens the risk of a guarantee, but it also shifts the burden of 

guarantee selection from Engineering to Management.  Arguably, guarantee selection 

should be Management’s responsibility; however, with the past process, the guarantee 

was a single point resulting from an assessment of nominal inputs.  This caused the 

guarantee to essentially be set by Engineering.  By placing the responsibility of guarantee 

selection on Management, it ensures the selection of guarantees that best suit the 

company. 

  SRAM also had another large impact in the final wing configuration of X-03.  

Two configurations were under consideration, a wing with winglets and a wing without.  

The marketing-desired range was achievable with both configurations; however, the 

configuration with winglets had less risk and showed much greater potential of achieving 



  39 

the desired range.  Based on this information, a wing with winglets was selected for the 

final configuration.   

The functionality of SRAM outside of performance guarantees is considered a 

significant strength of the method.  As brought to light in the winglet study of X-03, 

SRAM is a valuable tool for risk assessment of configuration design.  For example, 

during configuration design (well before guarantee selection) the size of the wing, tail, or 

thrust of the engine is selected to provide the marketing-desired performance of a new 

product.  Much like the guarantees, the performance evaluation of these components is 

based on nominal expected values, which ultimately results in a design that nominally 

meets its performance goals.  However, when variation is introduced in the components, 

the nominally ideal configuration may no longer meet the desired goals.  By using SRAM 

to account for variation in components, a more robust configuration can be designed, 

resulting in a higher quality product.     
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Chapter 5 – Suggestions for Additional Work 

 
Although SRAM has proven to be a powerful method for risk assessment and is 

potentially adaptable to many different applications, it is recognized that the process can 

be streamlined and its usability improved.  If CAM were made to integrate with a tool 

such as Crystal Ball, the need for response surfaces and DOE would be greatly reduced.  

With these processes removed from SRAM, the process time would diminish 

significantly along with the initial learning curve.  

As mentioned at the end of Chapter 4, SRAM has great potential beyond risk 

assessment of performance guarantees.  It is expected that a large amount of value lies in 

SRAM’s application outside of performance guarantees and configuration design.  

Further implementation of SRAM should be explored and evaluated.  

Beyond SRAM in engineering, there is always the potential to focus on and 

improve manufacturing processes.  This lies outside of SRAM’s utilization, but the 

sensitivity analysis implemented within SRAM can be used to identify areas that pose the 

largest threat of variation.  In general, by improving processes, training, and equipment, 

the overall variation in a product is reduced.  This directly drives the variation of input 

parameters in SRAM, which results in less performance risk, and thus, less financial risk 

to the company.    
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