
Synthesis Techniques for Semi-Custom
Dynamically Reconfigurable Superscalar

Processors

BY

Jorge Ortiz

Submitted to the graduate degree program in Electrical Engineering and the
Graduate Faculty of the University of Kansas in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

Thesis Committee:

Dr. Perry Alexander: Chairperson

Dr. David Andrews: Co-Chair

Dr. Arvin Agah

Dr. Swapan Chakrabarti

Dr. James Sterbenz

Dr. Kirk McClure

Date Defended

2009 Jorge Ortiz

mailto:jorgeo.lothar@gmail.com


The Dissertation Committee for Jorge Ortiz certifies

that this is the approved version of the following dissertation:

Synthesis Techniques for Semi-Custom Dynamically Reconfigurable

Superscalar Processors

Committee:

Dr. Perry Alexander: Chairperson

Dr. David Andrews: Co-Chair

Dr. Arvin Agah

Dr. Swapan Chakrabarti

Dr. James Sterbenz

Dr. Kirk McClure

Date Approved

ii



Abstract

The accelerated adoption of reconfigurable computing foreshadows a com-

putational paradigm shift, aimed at fulfilling the need of customizable yet

high-performance flexible hardware. Reconfigurable computing fulfills this

need by allowing the physical resources of a chip to be adapted to the com-

putational requirements of a specific program, thus achieving higher levels of

computing performance. This dissertation evaluates the area requirements

for reconfigurable processing, an important yet often disregarded assessment

for partial reconfiguration.

Common reconfigurable computing approaches today attempt to create cus-

tom circuitry in static co-processor accelerators. We instead focused on a

new approach that synthesized semi-custom general-purpose processor cores.

Each superscalar processor core’s execution units can be customized for a

particular application, yet the processor retains its standard microproces-

sor interface. We analyzed the area consumption for these computational

components by studying the synthesis requirements of different processor

configurations. This area/performance assessment aids designers when con-

straining processing elements in a fixed-size area slot, a requirement for

modern partial reconfiguration approaches. Our results provide a more de-

terministic evaluation of performance density, hence making the area cost

analysis less ambiguous when optimizing dynamic systems for coarse-grained

parallelism.

The results obtained showed that even though performance density decreases

with processor complexity, the additional area still provides a positive contri-

bution to the aggregate parallel processing performance. This evaluation of

parallel execution density contributes to ongoing efforts in the field of recon-

figurable computing by providing a baseline for area/performance trade-offs

for partial reconfiguration and multi-processor systems.
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Chapter 1

Introduction

1.1 Background

Huge advancements made in general-purpose computing have created several paradigm

shifts within the field of computer architecture over the last three decades. The great

improvement of the individual components of computing systems, such as memory,

processing, and communication, led to a consequential improvement of the systems as

a whole. Microprocessor availability pushed the development of personal computers,

and the wide acceptance of the latter drove the research to increase performance and

productivity. Studies on the importance of instruction sets led to the emergence of ar-

chitectures tailored toward unit-cycle base instructions (RISC) and multi-cycle complex

instructions (CISC). Instruction pipelining increased throughput, while alternative ways

to solve data-dependencies and conditional branch instructions were unveiled. Deeper

pipelining became a mainstream practice for its consequential advantage of producing

higher clock frequencies. To reduce pipeline stalling penalties, out-of-order execution

and branch prediction were added to the architectures. The inherent timing differences

of heterogeneous instructions were exposed, giving birth to dedicated execution units.

As hardware became faster, smaller, and cheaper, it became an affordable resource.

Application-specific hardware became common practice for custom circuitry that de-

manded dedicated computation. For general-purpose processors, the conservative uti-

lization of hardware was sacrificed to move away from single-instruction, single data

1



stream (SISD) architectures and exploit instruction, data and thread parallelism. Spe-

cialized single-instruction, multiple data stream (SIMD) processors appeared to map

onto parallelizable problem domains, such as array and vector processing, and were

closely followed by processors whose circuitry allowed for multiple instructions per cycle

(VLIW). Returning to its roots, general-purpose computing inherited supercomputer

techniques used to exploit instruction-level parallelism in order to become superscalar

processors. Tomasulo’s algorithm [1] emerged to resolve data dependencies in varying

operational latency execution units. Thus, Tomasulo’s algorithm gave birth to register

renaming, a now common performance-enhancing technique both in commercial and

scientific computing.

Throughout this whole era, both application-specific and general-purpose static pro-

cessors were designed, manufactured, and used, followed by their inevitable fall to disuse

and obsolescence, as new product-lines and processors were implemented. At the same

time, the evolution of software code by means of high abstraction-level programming

showed how important flexibility and reusability is in a market of primarily static pro-

cessing. The notion of hardware with characteristics similar to its software counterpart

suddenly became relevant.

1.2 Reconfigurable Computing

Because of the increased programmability of reconfigurable hardware, reconfigurable

computing, a common ground for high-performance specialized systems and low-cost

general-purpose processors, was created. The emergence of reconfigurable computing

provided an alternate computing paradigm for engineers to exploit. This computing

paradigm, which allows the use of flexible hardware, was first proposed by Estrin in the

late 1950’s [2]. Within the last 10 years, the technology base has matured to a point

that enables us to use Estrin’s original vision, by statically configuring and allocating

reconfigurable components.

Reconfigurable computing invited interesting insights into the decades-old struggle

between application-specific and general computing. Initially, tightly-coupled reconfig-

urable co-processing units could be added as extensions to the general-purpose Central

Processing Unit (CPU) instruction set. They provided performance boosts by mapping

portions of the application onto a faster hardware circuit They also provided compile-

time versatility, by allowing different applications to be compiled and synthesized onto
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a single board. Current trends continue along this path and move the reconfigurable

fabric even closer to the general-purpose CPU. These trends seek to decrease the com-

munication costs of moving data between the CPU and field programmable gate arrays

(FPGA) across a general-purpose system bus, allowing data to be shared through the

CPU’s register set. Research work such as GARP [3] went as far as defining a new CPU

architecture that embedded reconfigurable fabric within the CPU. The reconfigurable

fabric could then be configured as a specialized execution unit within the CPU. Un-

fortunately this approach cannot exploit sufficient amounts of parallelism to justify the

overhead of moving data and instructions into and out of the reconfigurable fabric.

In contrast to the GARP approach of exploiting fine-grained parallelism through

loop unrolling, researchers are now investigating approaches to support coarse-grained

parallelism within FPGAs. Current work investigates thread level parallelism, such as

research done by Vuletic [4, 5] for static systems, Platzner [6, 7] for dynamic systems, and

Hybrid Threads [8, 9, 10] for hybrid systems. These approaches follow modern methods

of allowing programmers to express applications as sets of independent threads that can

communicate through shared memory or message-passing paradigms.

1.3 General-purpose specialized processor

Our approach, named Hephaestus, follows the trend of supporting thread-level paral-

lelism within a computational core, but at the same time allows the exploitation of

instruction-level parallelism through modern computer architecture approaches. The

processor core can statically reside in the reconfigurable fabric and allow different con-

figurations in terms of instruction issue, execution units, reservation stations, and com-

mon data bus width. These configurations can be tailored to try to achieve an optimal

design in which an application can achieve maximum number of instructions per cycle.

While multiple processors try to integrate reconfigurable logic into the processor

itself [3, 11, 12, 13], Hephaestus takes an orthogonal approach by implementing the

processor onto the reconfigurable logic. Other soft-core processors have been mapped

onto reconfigurable logic [14, 15, 16, 17, 18], providing scalar single-issue performance.

Implementing a superscalar architecture in reconfigurable fabric is much slower than the

processor’s built-in execution units for standard computations, such as floating point

and complex integer arithmetic [3, 11]. However, we can expect this timing cost to be
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amortized by flexibility of design, ability to increase the number of instructions issued,

and rising clock frequencies and density for reconfigurable logic.

The main motivation for this project was studying the relationship between the

increasing density advantage of FPGAs [19] versus the area cost associated with super-

scalar issue width growth, in which overhead increases quadratically [13]. Another one

was examining the number of opportunities for exploiting instruction-level parallelism

with different processor configurations.

1.4 Processor characteristics

A key element for the flexibility of the number of Execution Units (EU) and their

associated reservation stations is the adaptive Tomasulo’s algorithm, which controls

instruction issue and completion to/from the EUs. This register-renaming algorithm

is implemented in hardware and uses the processor’s configuration as parameters. At

synthesis time, the system assigns tags to all available EUs for name resolution. Regis-

ter renaming, with its well-documented advantages, is used when issuing instructions,

broadcasting results, and completing instructions. The processor handles the non-trivial

tasks of multi-instruction issue, name resolution, and instruction organization, dispatch,

execution, broadcast and completion. These were implemented for a variable number of

instruction widths, numbers and types of EUs, and sizes and bandwidth of the register

file.

To get the comparable speedups of custom-dedicated hardware, Hephaestus allows

application-specific user-logic to be implemented in its architecture. A user can re-

serve one or multiple execution units for such purpose, similar to the way a typical

co-processing unit architecture uses a co-processor to enhance performance. A restric-

tion placed on the user-logic is that it must adhere to the EU interface to fit in the

system.

1.5 Processor evaluation

The different configurations of the Hephaestus processor provides great system-component

versatility, and consequently, vastly different use of reconfigurable fabric resources. We
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synthesized an array of configurations, varied by discrete differences in the system’s

independent variables:

• Instruction issue

• Number of execution units

• Common data bus width

• Register file size

• Register file memory organization

• Reservation station organization

• Reorder buffer size

The effect of these variables on the system’s architecture is further explained in

section 4.1. The dependent variables were then evaluated from the resulting maximum

system clock frequency and resource use from synthesizing the permutations of the

independent variables.

1.6 Toward dynamic run-time reconfiguration

Finally, for the purposes of dynamic reconfiguration, an additional task was to partition

the superscalar processor and its execution unit configuration into regularly-sized ar-

eas. This allowed for synthesis of individual configurations, given a base system. These

pre-synthesized configurations are prime candidates to be replaced using run-time re-

configuration, provided the host reconfigurable platform supports the communication

needs between static and dynamic modules of the design.

1.7 Dissertation Organization

The rest of this dissertation is organized as follows: The objectives of the project are

presented in Chapter 2; related work is presented in Chapter 3, while Chapter 4 describes

the implementation methodology. Chapter 5 explains the evaluation of the project and

the results are shown on Chapter 6. Finally, Chapter 7 places this work in the current

state of the field.
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Chapter 2

Objectives

This dissertation investigated new directions for synthesizing semi-custom circuits for

dynamically reconfigurable systems. Our approach was to focus on synthesis techniques

for computational-cores that can be confined within regularly sized reconfiguration slots.

This enabled us to pursue the main objectives of the Hephaestus project:

• Create a configurable superscalar processor

• Synthesize the processor onto reconfigurable fabric

• Monitor resource use under different processor configurations

• Evaluate resource use and area expenditure

• Constrain the area for slotted synthesis

2.1 Create a configurable superscalar processor

In our approach we examined processor structures that allow a variety of execution Units

(EU’s) to operate in unison and exploit intrinsic instruction level parallelism (ILP).

For our superscalar processor, we explored classic computer architecture techniques

that allow multiple instructions to complete during any given clock cycle. Pipelining,

with its associated control logic, was used to allow our techniques to exploit the perfor-

mance increases from technology advancements. This is an important consideration and
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motivation within field programmable gate array (FPGA) reconfigurable devices, which

currently follow Moore’s law and will benefit from higher clock frequencies over the next

decade. The FPGA level of technology is at a level of speed and density comparable

to 1980’s CMOS fabrication techniques, promising to evolve at the same or faster rate

[19].

Hardware description languages (HDL) allow us to define hardware behavior in terms

of software code. We employed VHDL to define the model, interface, interconnect and

parameters of our processor. With it, we can change the entire processor’s configuration

by simply altering the system parameters to match our desired setup. This is another

motivation of the project, to allow a designer to easily balance the flexibility offered by

a general-purpose programmable processor and the benefits of custom circuits.

Our semi-custom approach further enables a system designer to include user-logic

into the Hephaestus processor. One (or more) of the generic execution units included

with the system can be replaced as needed by a designer, to accomplish specific tasks

on the target reconfigurable platform.

2.2 Processor’s synthesis onto reconfigurable fabric

Reconfigurable computing allowed us to define flexible system specifications for hard-

ware, and in addition, map the configured hardware onto its fabric.

We aimed not only to define the hardware specification but also to make it synthe-

sizable onto modern, commercially-available reconfigurable architectures. Hence, Hep-

haestus’ correct behavior is not only established by simulation, but also by synthesizing

onto these architectures.

The HDL source code for the reconfigurable processor was kept as technology-

independent as possible. This permitted the whole project to be easily portable be-

tween different reconfigurable platforms. Design portability is an important concern in

reconfigurable computing, since cross-platform implementation is directly dependent on

it. Lack of portability sometimes cripples development time when migration between

devices is needed, even within the same device family [20]. HDL coding styles were used

to make the design independent of technology or vendor-specific pragmas.
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2.3 Monitoring resource use under different configurations

The component configuration of our processor can have a startling impact on perfor-

mance, however, so can the nature of the program running on the provided processor

configuration. Performance maximization in a reconfigurable system is analogous to

customization. Thus, depending on the program’s requirements, our reconfigurable

processor can provide an appropriate configuration. This customization can enhance

and optimize the worst, average and best case computational scenarios as required, by

adjusting structural composition.

The varying types, numbers and complexity of the resources used by these structural

composition were collected for the various permutations of processors configurations,

to be analyzed into comprehensive relationships between requirements and necessary

resources.

2.4 Evaluating resource use and area expenditure

The flexibility of most reconfigurable architectures, especially FPGAs, is usually associ-

ated and exploited from its homogeneous arrays of logic gates [21, 22]. Nowadays, they

tend to be more heterogeneous, often including memory units, specialized processing

elements, and even embedded processors cores [14, 23]. Synthesizing tools referee the

use of device-specific resources for performance gains, but most of the system logic is

mapped onto homogeneous reconfigurable fabric. The evaluation of this area consump-

tion makes a metric suitable for resource use under different structural compositions.

The analysis portion of this work focuses on quantifying this performance versus gen-

eralization trade off. Clearly, performance benefits of a semi-custom processor structure

may fall short of those gained by a fully-custom implementation. However, the area,

reconfiguration overhead and scheduling implementation costs of the fully custom ap-

proach outweigh the loss of peak performance gains for semi-custom synthesis. By

collecting performance needs, and then correlating them with the associated resource

use, we evaluated the performance benefits of using our processor.
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2.5 Constraining area for slotted synthesis

We do not claim to achieve dynamic, or even partial, reconfiguration in our project.

Dynamic reconfiguration is still evolving, in search of the right problem for its benefits

to solve [24]. However, we did show that it can be adapted to different sized slotted areas

through (mostly vendor-specific) synthesis techniques. This property, in conformity to

reconfiguration techniques, can then support the necessary conditions to allow partial

reconfiguration to be used for multiple configurations of our processor(s).

Hence, one could take an array of suitable processor configurations, synthesize them

with the same area constraints in different board locations, and download one or more

of these onto an FPGA board. In this way, our project is able to meet the current

requirements for reconfigurable computing.

2.6 Thesis Statement

Our proposed objectives, mixed with the need to address area issues in reconfigurable

computing, thus combine into our thesis statement:

Synthesis techniques can confine soft-core processors to have a regularly sized

area while enhancing parallelism. Evaluation of the performance density pro-

vides a baseline for area / performance trade-offs for partial reconfiguration

and multi-processor systems.

2.7 Contributions

The end goal of Hephaestus is probing for computational performance gains while sub-

sidizing reconfiguration costs through synthesis. Other specific objectives of the project

were to attain competitiveness in performance, by using historically-significant advances

in processor design, mapping and pipelining heterogeneous instructions to different EUs,

increasing instruction throughput, and achieving higher clock frequencies. The methods

for achieving applicability, adaptability, optimization and reconfigurability are further

described in Chapter 4. The implementation of the reconfigurable superscalar processor

architeture contributes to the field by:
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• achieving a balance between flexibility offered by a general-purpose programmable

processor and the benefits of custom circuits,

• creating a flexible, extensible processor that adapts to an application’s compu-

tational needs, without the long implementation times needed for fully-custom

systems, and

• establishing a hybrid solution that allows custom parallel logic within standard

processor architecture framework.

Also notably, this work enhances modern reconfiguration techniques by defining and

refining a set of synthesis constraints to facilitate a multi-threaded fusion of general-

purpose and specialized computing. Application of specialized and general-purpose

processing in the reconfigurable computing research area is detailed in Chapter 3. The

data collection and analysis from processor performance and area use for different con-

figurations contributes to the field by:

• evaluating the attainable parallel execution for custom applications in a reconfig-

urable processor framework,

• quantifying the area requirements for parallel-execution gains, and

• calculating and predicting the performance in a confined area for partially recon-

figurable and multiprocessor systems.
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Chapter 3

Related Work

3.1 Introduction

Increasing performance for a specific application has traditionally been achieved by

customizing circuits for it. The gains achieved by customization are far superior to those

achieved by modifying commercial off-the-shelf components. With dedicated hardware,

the end product is usually an optimized system, meeting or exceeding the application’s

speed and area requirements.

Another way to enhance performance is by exploiting parallelism. The underlying

idea is to think smarter, not harder. With parallelism, performance is gained from

the decomposition of the problem into independent computations, and not from faster

dedicated hardware. These computations can then be executed simultaneously, at the

instruction, data or thread level. Early adopters of this paradigm included the CDC

6600 computer [25], which was the predecessor of pipelined Reduced Instruction Set

Computers (RISC), and IBM’s System 360/91 [26], which provided out-of-order in-

struction execution through floating point units executing in parallel with the main

processor.

Custom circuitry with parallel computations combines the advantages of both ap-

proaches. However, each approach has disadvantages that compound each other. Cus-

tom circuits have lengthy development and time-to-market times, are not reusable, and

are expensive in terms of non-recurring engineering and low-scale production costs.
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Parallel computing consumes an increased area in hardware, has a complex design, and

does not scale well. Custom circuitry with parallel computing generally results in a poor

implementation for the large array of applications which require high performance, but

can’t sacrifice adaptability, reusability, programmability, area and cost.

Emerging technologies like reconfigurable computing can address the balance be-

tween performance and system cost. The wide variety of existing and proposed re-

configurable systems deal with different aspects of what constitutes performance, and

what constitutes system cost. In this chapter we review these options and justify the

motivations, objectives and methodology of the Hephaestus project.

3.2 ASIC technologies

A well-established method of meeting a program’s computational demands is by using

an Application-Specific Integrated Circuit (ASIC). ASICs allow the use of custom logic

to tackle the demands mentioned before: optimization, area consumption and increased

performance. However, the cost, inflexibility, and time-to-ship of ASICs do not make

them a satisfactory solution in most of these cases [27, 28]. In fact, development costs

for ASICs are approaching $20 million for a 90-nm ASIC design with an embedded

System-on-Chip (SoC), and $40 million for the 45-nm version [29].

Non-recurring engineering costs comprise most of the ASIC’s price tag. While the

mass production of a finished ASIC is cheap, the costs associated with the development

of the circuit are not. FPGAs solve this problem by allowing implemented circuits to

be downloaded onto a single platform multiple times. They are becoming the default

platform for reconfigurable computing and even ASIC development, because in sharp

contrast to ASIC implementations, FPGAs can provide a SoC for a few hundred dollars

(at the time of writing). This is a common reason why hardware designers turn to

reconfigurable computing, either to design ASICs, to implement their application in an

FPGA, or a hybrid of both [30].

But ASICs are not without merit. When writing about the future of reconfigurable

systems, Scott Hauck, points out a law of FPGAs vs. ASICs [31]:

For any FPGA-based application, there is an ASIC implementation of the

system that is AT LEAST as fast, dense, power-efficient, and cheap in (very)

high volumes as the FPGA-based solution.
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Regardless, because of the inflexible limitations of ASICs, their hold on the hardware-

design market is diminishing. Conversely, reconfigurable computing and FPGA’s use

are flourishing because of their flexibility, as seen in Figure 3.1. Thus, reconfigurable

computing is an appropriate approach to deal with the defined problem, without the

disadvantages of ASICs.

Figure 3.1: ASIC vs FPGA Market - Market trends show diminished implementation
in ASICs and growing demand for FPGA systems [32].

3.3 Reconfigurable computing background

Multiple implementation solutions have addressed the performance and cost issue. These

solutions provided alternative hardware-based benefits where efficiency, speed, power

consumption, system cost, throughput, or other units of interest in particular applica-

tions and systems are concerned.

Recent years have seen a rise in Systems-on-Chip (SoC) [33, 34, 35], Hardware/-

Software Co-Design [18, 36, 37], Hardware Accelerators [17, 38, 39, 40] and Reconfig-

urable Computing [41, 42, 43, 44]. Each of these solutions are a response to inadequate

hardware mapping for efficiency to available computer infrastructures. This inadequacy

generally stems from the not-surprising fact that domain-specific problems that demand

high computational power can perform much better on specialized hardware.

As we established, ASICs are not the most appropriate platform for implementa-

tion, and alternative solutions to ASICs include the aforementioned ones. Systems-on-

Chip have tightly-coupled microcontrollers and memory among other interface compo-

nents. This design improves the functionality of the chip by adding peripherals. The
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SoC peripherals act as common extensions to a variety of applications like counters,

timers, and digital and analog functions. Hardware/Software Co-Design attempts to

capture this added computational flexibility not only in SoC, but also in programmable

and configurable processors. If these processors have a configurable fabric like that

of a PLD or FPGA attached to them, then it would be a common option to add an

application-specific hardware accelerators to boost performance. These hardware ac-

celerators usually provide condensed multi-cycle computations for problems like digital

signal processing, matrix operations, and fused multiplication/addition, and are loosely

coupled with the processor itself.

The last alternative is reconfigurable computing. While not new, this technology

is still in its adolescent stages, trying to establish an identity which helps define the

paradigm shift into programmable hardware. Researchers in both academia and indus-

try have addressed the possibilities and limitations of reconfigurable computing, creating

systems which make use of its flexibility, reusability and programmability. These sys-

tems can then provide optimizations, speedups, and increased performance by allowing

the parallel execution of data in reconfigurable fabric. This increased interest in recon-

figurable systems explains the growth that FPGAs have had for the past 10 years. Its

importance can also be seen in the growing market for FPGA-based solutions shown in

Figure 3.2.

Figure 3.2: FPGA Dollar Consumption - FPGA market history and forecast [45].
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The rise of available technologies to support reconfigurable computing enabled re-

searchers to tackle the demands of higher computational power in a variety of methods,

which we discuss next.

3.4 Types of reconfigurable computing

Reconfigurable computing allows several configurations that adapt to different compu-

tational environments. There are two main types of data processing in reconfigurable

computing: Reconfigurable architectures and soft-core processors.

3.4.1 Reconfigurable architectures

Several reconfigurable architectures exist, the most prevalent being FPGAs. These

architectures vary in their composition, with the three most important characteristics

of reconfigurable architectures being granularity, structure, and reconfigurability.

3.4.1.1 Granularity

Granularity, the datapath width of the architecture, determines the number and size

of the architecture’s Processing Elements (PEs). Low levels of granularity are called

fine-grained, while larger are coarse-grained. Granularities for these architectures vary

between 1, 4, 8, 16 and 32 bits. Fine-grained architectures are the most flexible, allowing

bit-routing capabilities, while coarse-grained ones provide area-efficiency for regular

multi-bit datapaths.

3.4.1.2 Structure

Structure, the positioning and inter-communication of the architecture’s PEs, estab-

lishes the channels necessary for communication among PEs. A common practice for

hardware processing is trading one fast-clocked large CPU, for a number of lower-clocked

and more efficient PEs [46]. The multiple PEs are then structured to encourage nearest-

neighbor links, increasing their communication bandwidth. Routing resources are im-

plemented in the reconfiguration fabric and used according to these links. Figure 3.3

shows some of the structures that reconfigurable architectures have taken.
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Figure 3.3: Regular Reconfigurable Architectures - Boxes represent processing ele-
ments, links are represented by lines. a) Crossbar allows for dynamic paths between PEs
b) Arrays are static links c) Meshes provide circular struture d) Hexagon arrays (like Chess
[47]) allow links with 6 neighbors.
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Once the structure is selected, the architectures can then reconfigure PEs function-

ality and the communication links between PEs to achieve a specific task. Depending

on the granularity used, they can be labeled in particular ways. To help clarify the

loosely used terminology for “reconfigurable architectures” and other terms used in

this proposal, we use the nomenclature proposed by morphware.net (Figure 3.4), which

disambiguates labels used in our research area.

Figure 3.4: Morphware Terminology - Nomenclature for configurable computing,
taken from Morphware.net.

The main approach for reconfigurable DataPath Unit Arrays (rDPAs) is to use

meshes, arrays or crossbar interconnects between processing units in the architecture

[41]. By using multiple nearest-neighbor interconnects between PEs, a high level of

communication is achieved for efficient parallelism. Some of these architectures even

present multi-granular options, such as Matrix [48], RAW [49], Chess [47], and Pleiades

[50]. Others like RaPiD [51] and PipeRench [52] present a linear approach, increasing

pipeline efficiency. To exploit data parallelism, these architectures gain performance by

adding more processing cores, but this approach degrades rapidly due to communication

overhead. Due to limited memory bandwidth, the performance of these machines will

level off or even decline with more cores [53].

Whereas multiple reconfigurable DataPath Units (rDPUs) and rDPU Arrays (rD-

PAs) are being or have been developed, especially in academia, none are commercially

successful. Those architectures which have seen commercial applications, like Cray’s

XD1 [54], are in essence fine-grained hardware accelerators in an FPGA fabric.

rDPUs and rDPAs propose a platform implementation to fit the needs of high granu-

larity datapath reconfiguration. Their purpose is to create a coarse-grained architecture

which facilitates low overhead run-time reconfigurability and favors data processing over
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bit manipulation. The main production bottleneck for these architectures is indeed their

end goal: implementability. To make progress in the construction process, these rDPUs

and rDPAs are frequently implemented in fine-grained, commercially available FPGAs

[55]. FPGAs are essentially fine-grained array structures, which can implement and

map all of the other architectures, at the cost of high placement and routing costs.

Hence, even though the offline synthesis, placement and routing costs for FPGAs might

be elevated, FPGAs are still cheap, flexible and available. These were essentially the

reasons we chose FPGAs as our reconfigurable architecture; section 4.2.1 provides more

details on our rationale for a specific FPGA device.

3.4.1.3 Reconfigurability

The reconfigurability of a platform can be divided into architectural, micro-architectural,

and implementation-level configurability [42]. Our project, Hephaestus, uses architec-

tural reconfigurability, in which the processor architecture can be configured in a variety

of ways. Processors with a reconfiguration fabric for custom instructions (including all

soft-core processors) have micro-architecture reconfigurability. Implementation-level re-

configuration platforms include multiple resource-efficient system implementations, with

power consumption minimization being a common design factor [46, 56]. FPGAs sup-

port all of the above types by providing bit-level fine-grained reconfiguration.

3.4.2 Soft-core processors

The second type of reconfigurable computing are soft-core processors. We established

that the first type, reconfigurable architectures, are a poor match for general-purpose

programming and common applications. These architectures coarse granularity and

reconfigurability prevent fine-tuning, and their structures are immutable. These rigid

structures benefit from regular datapaths, but they also limit the customization of

hardware for performance gains in non-structured applications. The alternative, micro-

processors, provide a more general-purpose solution. However, being hard-core, they

are not configurable.

Soft-core processors solve this by providing adaptability to an otherwise static de-

sign. They are implemented in high abstraction languages, or distributed as synthesized

netlists by FPGA vendors. Because their behaviors and structures can be manipulated

by a designer, this makes them particularly appropriate for reconfigurable computing.
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Predictably, the last few years have witnessed a growing trend to use embedded soft-core

microprocessors in FPGA designs [57] as shown in Figure 3.5.

Figure 3.5: Microprocessor Use in FPGAs - FPGA Designs with embedded micro-
processors [58].

Soft-core processors have many advantages over reconfigurable architectures. First,

optimizations can be achieved by implementing specific instructions into the processor.

Common choices for optimization are frequently-used and high-cost instructions or sets

of instructions. This is remarkably similar to having a reconfigurable co-processor. Garp

[3], Chimaera [12], OneChip [59], and the Cray XD1 [54] all use a fixed processor core

with a co-processing reconfigurable unit. However, pure soft-core processors are also

implemented in reconfigurable fabric. Hence, the optimization is part of the processor

itself, without the need of costly communication with a co-processor.

Second, because customization is done within the soft-core processor, communication

costs between the general purpose and custom modules are minimized. This in turn

can reduce delays between synchronous elements of the processor, increasing the clock

frequency and raw speed.

Last, the placement of the processor is dynamic. This allows for some mobility inside

the reconfiguration fabric, which can place the processor closer to input and output pins

or relevant surrounding components. As will be seen in the Evaluation Methodology

in Chapter 5, placement and area constraints are of particular importance for partial

reconfiguration. This method is used to time-multiplex the resources for FPGA func-

tionality, allowing logic blocks to be replaced, while others continue to execute their

tasks.
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FPGA vendors provide soft-core processors for their platforms, but other soft-core

processors are built from the ground up. These latter ones are necessary when existing

soft-core processors do not provide enough flexibility.

3.5 Current State of soft-core processors

To make soft-core processors competitive, vendors optimize them for each of their par-

ticular platforms. This guarantees an efficient use of the platform’s resources for the

users, at the expense of providing only limited control over the processor’s structure.

While this is an acceptable situation for pure general-purpose computing, the fact that

designers implement their systems in reconfigurable logic in the first place suggests a

desire for customization for an optimal design. These designers working in reconfig-

urable computing need general-purpose soft-core processor, yet they also need them to

be more flexible and customizable.

However, current soft-core processors are effectively vendor and technology depen-

dent, limiting further optimization by users and making these processors not portable.

In addition, since the processors are implemented using proprietary tool chains, their

high-level hardware description language definition are not available for customization,

except for a purchase price of several thousand dollars.

The amount of customization for current soft-core processors is defined mostly by a

small number of features and optional inclusion of multiple system peripherals. Further

customization can be achieved by implementing a co-processing unit, instead of modi-

fying the main soft-core processor setup. Nevertheless, co-processing units for custom

instructions tend to degrade the performance due to communication costs. Hence, it is

preferable to customize the main processor itself, and to avoid co-processors (and their

associated costs).

Current soft-core processors only allow small amounts of customization. A list of

the most popular ones is presented below.

• Xilinx’s MicroBlazeTM: 32-bit DLX, RISC architecture soft microprocessor. In-

cludes performance and size optimizations. Supports clock frequencies as high 200

MHz.
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• Altera’s Nios IITM: 32-bit instruction set based on RISC architecture. Includes

fast, economy and standard implementations. Supports clock frequencies as high

as 200 MHz.

• Lattice’s LatticeMico32TM: 32-bit Harvard, RISC architecture soft microproces-

sor.

As is evident with Xilinx’s MicroBlaze and Altera’s Nios II implementations, soft-

core processors can be optimized for area or speed, depending on the inclusion of dif-

ferent system resources. A compromise between area, versatility and clock frequency

should be selected by the system designer, but these processors will only allow a small

amount of datapath customization. Thus, we provide a soft-core processor that not

only allows datapath customization, but also lets a designer fine-tune its architecture

to meet computational needs.

We now take a closer look at the soft-core processors mentioned above.

3.5.1 Xilinx - MicroBlaze

The MicroBlaze processor has the following parameters relevant to data processing [60]:

• Barrel shifter: can enable speedup of shift operations

• Embedded divider: speedup integer division operations

• Embedded multiplier: speedup integer multiplications

• Floating Point Unit (FPU): For arithmetic and comparison operations with float-

ing point numbers

MicroBlaze uses a scalar pipelined DLX architecture [15]. This means that the

pipeline is stalled for high-latency operations, even if there were other independent

instructions which could be executing at the time. Six integer parallel instructions could

be executed while waiting for a floating point multiplication result, or thirty during a

floating point division. Because no instructions can be executed while another one is

already in execution, there is also no point in pipelining the floating point unit (FPU).

A pipelined FPU can handle multiple independent instructions in each of its pipeline

stages. Xilinx also states that the size of their FPU can not be reduced [61], even if

only a subset of the floating point operations are needed for a design.
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3.5.2 Altera - Nios II

Another soft-processor that allows for customization is Altera’s Nios II. This soft-core

processor comes with default compromises between speed and area: fast, economy and

standard implementations [23]. The economy version does not allow additional features

due to its small size, but the fast and standard implementations do. These features are:

• Hardware multiply: Can use DSP blocks, embedded multiplier, Logic Elements

(LE), or none (software implementation)

• Hardware divide: Implemented in LEs

• Custom Instructions: Implemented as a co-processing unit to the Nios II processor.

• Floating Point Unit (FPU): For arithmetic and comparison operations with float-

ing point numbers

• Floating point divider, which consumes more resources, is optional.

Custom instructions are implemented in the processor’s datapath [62]. This effec-

tively stalls the processor from executing additional operations while multi-cycle in-

structions are being resolved. Nios does allow for its most area-expensive operation,

floating point divide, to be an optional addition to the design. A Hardware descrip-

tion language implementation of the Nios processor has been made at the University of

Toronto [16] for added customization, but it does not address issues of performance or

parallelism.

3.5.3 Lattice - LatticeMico32

LatticeMico32 is a 32-bit soft processor core for Lattice FPGA devices [63]. Most of

the customization is done by selecting the size of data and instruction caches [64].

Customization is also done by selecting:

• Hardware multiply: Can use DSP blocks for pipelined multiplier, or multi-cycle

implementation in Look Up Tables (LUTs)

• Hardware divide: Implemented in LUTs

• Floating Point Unit (FPU): Not implemented
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• Barrel shifter: Pipelined to speedup shift operations

The Mico32 processor has a six-stage scalar pipeline to enhance efficiency, but per-

formance improvement is not achieved through parallelism.

3.5.4 Other soft-core processors

Other non-commercial soft-core processors have been developed to deal with shortcom-

ing of the above commercial ones. A good example is Leon3, a synthesizable VHDL

model of a 32-bit processor. This processor can implement up to 16 CPU cores for

asymmetric or synchronous multiprocessing [65]. Leon3 is a good platform to exploit

thread-level parallelism (TLP), yet it does not effectively use available hardware re-

sources to exploit instruction-level parallelism (ILP).

In a sense, Hephaestus is an extension of most soft-core processors. Multiple (differ-

ent) Hephaestus cores can be instantiated in a system to exploit TLP, but in addition,

each superscalar Hephaestus processor explicitly defines efficient configurations to ex-

ploit ILP in each computational thread. This satisfies the performance desires of specific

applications.

3.6 Instruction-level parallelism

Instruction Level Parallelism is important since it is one of the main sources of applica-

tion parallelism. Mechanisms for exploiting ILP can be implemented fully in hardware,

abstracting the underlying processor configuration to programmers. In addition, ILP

can be implemented without communication and synchronization overheads like those

of TLP mechanisms.

Evidence of the shifting paradigm from linear to parallel computations emerge when

analyzing the maximum amount of ILP different applications have had over the past

decade. In 1991, David W. Wall researched the limits of instruction-level parallelism,

suggesting that the maximum parallelism available for benchmarks was 3.2 [66] and

limited to a maximum of 5 [67]. But a decade later, conventional compilers showed

reasonable success extracting ILP in the range of 4-10 for VLIW and superscalar archi-

tectures [68].
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Instruction-level parallelism has not been efficiently used in the past decade. One of

the main reasons for this abandonment is that efforts have been rightfully concentrated

on Data-Level Parallelism (DLP) for vector-style processing, and Thread-Level Paral-

lelism (TLP) for multi-processor systems, a more common approach. DLP and TLP

techniques aim to exploit parallelism at a coarse-grained level, but neglect the fact that

ILP is not necessarily mutually-exclusive from them.

A problem with TLP is the need for a coherent global memory state with multiple

processors modifying it in parallel. This usually results in a serialized access to global

memory, becoming a system bottleneck. In addition, high performance requires access

to multiple memory ports, which creates coherence issues at the memory level, making

memory chips more expensive. To circumvent this issue, local memories are added to

each processor core, but the bandwidth to the global memory is still limited by serial

access.

Multi soft-core processors share the same issues of multi-core systems. Soft-core

processors have access to a local memory, from which they get a single stream of in-

structions, working on a single set of data. Multiple processors working on completely

independent sets of instructions and data are defined as embarrassingly parallel sys-

tems. These systems are only ideal for distributed computing and graphic processing.

However, typical numerical computations will have instruction, data and control de-

pendencies among multiple processors, which require a communication setup among

them.

Soft-core processor communication can be standardized over a bus, or can be more

a complex approach, similar to the communication structures of reconfigurable archi-

tectures in Figure 3.3. A communication bus is the more common of the two, with

tool chains from FPGA vendors setting it as default. Once inter-processor communica-

tion links are in place, multiple soft-core processors can be instantiated and placed to

potentially increase performance, if the inter-processor communication costs does not

actually degrade it.

Freitas et al showed the performance and area evaluation of multiple MicroBlaze

processors connected over a peripheral bus to shared memory [22]. The communication

latencies between processors were 4-8 cycles of arbitration and 3-4 cycles for bus read and

write requests. They also implemented a second design based on a 2D-mesh topology,

with a lower communication latency of 3 cycles for routing and 4 cycles for bus reads

and writes.
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Multi soft-core processor systems are also attainable with Altera Nios II [69]. Com-

munication is implemented by shared memory through the use of a mutex. This mutex

provides atomic operations on shared memory, but it is a mechanism that relies on

software arbitration to ensure the integrity of the data in memory. This arbitration is

not free, and comes at a cost of synchronization time.

The need to exploit TLP is evident, and necessary. Even though the multiproces-

sor systems above boast performance gains, they do so at increased communication,

synchronization and arbitration costs. Minimizing the amount of processors decreases

communication costs, but increases the workload on the computational threads running

on each processor. Each increased workload will include additional control, data and

instruction dependencies, which current soft-core processors can not run efficiently at

the instruction level.

A soft-core processor was needed, which could handle ILP. Additionally, it needed

to be flexible enough to be instantiated multiple times in an FPGA to exploit TLP,

while easily implementing custom logic. Hence, implementing a superscalar soft-core

processor in hardware was appropriate for performance and flexibility.

3.7 Hephaestus’ approach

Hephaestus provides a superscalar solution to the above issues. By exploiting ILP, it

gives high-performance to the soft-core processors in charge of computational threads,

which presumably, are also exploiting TLP. The amount of ILP to exploit is configured

at synthesis time; evaluation of the amount of resources used to support such system is

given in Chapter 5.

We are not the first to use soft-processors for executing multiple instructions in

parallel. OneChip provides a superscalar system in which a reconfigurable co-processor

can execute instructions in parallel with the main hard processor [70]. This provides

an adequate enhancement to performance. Their system claims to be superscalar not

because it can fetch multiple instructions at once, but because it can issue them to

the hard processor and soft co-processor in parallel: an augmentation of a hardware

accelerator. The throughput of the system is still delimited by a scalar processing limit

of one instruction per cycle.

Additionally, a fully soft-core reconfigurable FPGA processor with multiple func-

tional units was created at the Swiss Federal Institute of Technology [71]. This design
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provides a bit more flexibility than OneChip, by providing customizable functional units

for use by the system. Unfortunately, the functional units are dynamically reconfigured

into the system each time a custom instruction enters the pipeline. This means that 1)

the system performance pays the price of reconfiguration each time a switch in instruc-

tion types happen and 2) only one functional unit can be active at any given time.

Our processor is a fully-implemented superscalar processor. It fetches multiple in-

structions at once and uses register renaming to solve data, output and anti-dependencies

in the multi-instruction stream. As soon as instructions are ready they enter the execu-

tion stage, in parallel, and their results are broadcast to waiting dependent instructions.

Finally, multiple instructions can complete and be written to memory at once.

Hephaestus’ customization depends not on optional peripherals, but on specify-

ing parameters for the underlying structure of the superscalar processor. Our vendor-

independent approach allows this configuration, on top of portability. However, im-

plementing a flexible and reconfigurable soft-core processor design with these desired

characteristics uses an increased amount of resources.

However, FPGA’s resources, capacity and speed continue to increase at an acceler-

ated pace, following Moore’s Law, while their prices steadily decrease. Figure 3.6 shows

these different trends that make FPGAs an enticing platform. With FPGAs evolving so

rapidly, it is difficult to assess the amount of computation that we can fit in a specific

area within the FPGA.

Figure 3.6: FPGAs and Moore’s Law - This graph from Xilinx shows the trends on
capacity, speed and price for FPGAs with respect to Moore’s Law [72].
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An computational density analysis of performance against area is then needed to

evaluate the efficiency of our processor. Wentzlaff et al provided a insightful perfor-

mance/area analysis of bit-level computations for ASICs, FPGAs and microprocessors

[73]. Their rules of thumb are:

• ASICs provide a 2–3 times absolute performance improvement over an FPGA

implementation.

• FPGAs provide a 2–3 times absolute performance improvement over a micropro-

cessor implementation.

• ASICs provide 5–6 orders of magnitude better performance per area than software

implementation on a microprocessor.

• FPGAs provide 2–3 orders of magnitude better performance per area than software

implementation on a microprocessor.

• Parallel implementations on Tiled architectures yield competitive absolute perfor-

mance to that of FPGAs but use at least an order of magnitude more area to do

so.

We are careful to note that for bit-level, fine-grained computations, the playing-field

is biased towards FPGAs. Regardless, Wentzlaff et al show that ASICs provide the

fastest, smallest and most inflexible solution, followed by FPGAs with similar speed,

greater flexibility, but larger area consumption, and reconfigurable architectures with

similar performance, reduced flexibility and extra added area use. Their analysis is

a good foreshadowing of findings in our project. Hephaestus, working at word-level

computations, also provided some insights into the performance/area tradeoff of soft-

core microprocessors implemented in FPGAs.

This tradeoff was also refereed by constraints placed on the processor’s area. Hence,

the shape and location of the processor were explicitly determined, to allow for slotted

synthesis. Useful synthesis techniques for processor area and location have been pro-

posed by Natale et al [74]. In them, they use a 2D packing algorithm to efficiently place

Altera’s Nios II processors to maximize performance over area. However, currently only

Xilinx devices support partial reconfiguration. While we could use an efficient placement

of processors to yield performance density gains, we are limited to slotted synthesis to

support partial reconfiguration.
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This conformance to partial reconfiguration placement will potentially make the

processor more useful, as partial and dynamic reconfiguration techniques and their nec-

essary tool-chain support become more standardized. For example, a Hephaestus sys-

tem could be implemented to allow dynamically reconfigurable placement of superscalar

processors to enhance multi-threaded processing.

3.8 Summary

Application-specific circuits can be mapped onto reconfigurable logic, but reconfigurable

architectures do not provide enough flexibility of design as FPGAs. At the cost of

complex routing, the latter provide fine-grained reconfiguration, which can also sup-

port coarse-grained solutions. This flexibility makes FPGAs particularly appropriate

to implement general-purpose soft-core processors, while taking advantage of upcom-

ing next-generation reconfigurable platforms through high-level hardware description

languages.

Current soft-core processors lack flexibility, as they are mostly provided by FPGA

vendors without access to their lower level architectural details. The processors’ main

characteristic is to be generic enough to handle different computational tasks through

thread-level parallelism. But the costs of TLP become prohibitive with the increased

number of processors, and a reduced number of them either increases the processor’s

complexity or decreases their performance.

To avoid these performance penalties, we increased the complexity of soft-core pro-

cessors by allowing them to exploit instruction-level parallelism. Hephaestus’ super-

scalar processors consume an increased area and resources, but are able to increase lo-

cal performance by exploiting ILP on each processor. Additionally, each processor can

still be synthesized into slotted areas in the FPGA to support partial reconfiguration

techniques. Thus, we fill the need in the reconfigurable computing area for a general-

purpose, customizable, and high performance soft-core processor. Should multiple of

these processors be needed for TLP, they can also conform to dynamic reconfiguration,

making run-time custom processor swapping a possibility.
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Chapter 4

Implementation Methodology

This chapter rationalizes Hephaestus’ choice of the development platform and program-

ming language, outlines the implementation methodology and describes the data acqui-

sition techniques.

4.1 Structure and configuration variables

Most simple soft-core processors have scalar throughput, meaning that they can com-

plete a maximum of one instruction each clock cycle. While the processor may be

configured to execute multiple instructions at once, a performance bottleneck occurs

when forwarding each instruction’s results to other dependent instructions. In addi-

tion, in-order execution is enforced, preventing parallel execution of independent sets

of instructions. The main purpose of using parallel Execution Units (EUs) in simple

processors is to reduce the penalty of high latency instructions.

In our approach, we developed a full superscalar processor with multi-instruction

issue, various EUs, and broadcasting of results. The use of multiple EUs allows not

only the reduction of heterogeneous instruction-latency execution penalties, but also

multiple instructions to complete concurrently. This effectively avoids the Instructions

Per Cycle (IPC) upper limit of 1 for scalar processors.

The main configuration variables define the component, logic and interconnect gen-

eration rules of our system. Flexibility and ease-of-configuration were prime concerns

29



for the processor structure. Most of the system can be modified by simply changing

the numerical value of a parameter and re-synthesizing, without any further changes.

Figure 4.1 shows a simplified architectural view of a Hephaestus processor with the main

components controlled by system parameters. The architecture retrieves instructions,

and looks for the instructions’ operands in the register file. If they are not found, in-

structions must wait in the reservation stations until their operands become ready, at

which point they proceed to the execution units for processing. Their results are broad-

cast back to any dependent instructions waiting in the reservation stations. The final

stage sort the results in program order to recover from interruptions in the instruction

flow.

Figure 4.1: Simplified Hephaestus Structure - The main structure components altered
by a Hephaestus processor’s system parameters.

These main configuration variables for a superscalar processor were identified as:

• Instruction Issue: Indicates the total number of instructions issued from in-

struction memory at once. Also configures the instruction memory’s organization

and read/write ports.

• Number of Execution Units: Sets the total number of general-purpose and cus-

tom logic EUs in the system. Does not necessarily indicate types of EUs, except

when all EUs are different. EUs are manually added to allow design customization.
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• Common Data Bus width: The maximum number of broadcasted instruction re-

sults each clock cycle. The results of finished instructions are broadcast out-of

order to the reservation stations, but in-order completion of instructions is left for

the reorder buffer.

• Register File size: Indicates how many general-purpose registers the register

file has. It includes addressable ISA registers and architected registers available

for register renaming.

• Register File memory organization: Organizes the register file to have multi-

ple read and write ports at the cost of redundancy.

• Reservation Station organization: Sets up the maximum number of instruc-

tions waiting to execute in each EU. Each individual EU’s reservation station can

be configured to have a different number of waiting stations.

• Reorder Buffer size: Deterministic variable that sets the size of the reorder

buffer, which ensures in-order completion of instructions for precise interrupts.

Other variables are mostly dependent on the type of customization a developer might

use, but the ones above depict a clear configuration for a superscalar processing system.

With more control over the underlying processor architecture, a more suitable system

can be created for a particular application, even in systems with thread-level parallelism.

4.1.1 Rationale

To deal with Thread-Level Parallelism (TLP), designers tend to add more processors

to their systems, increasing communication and synchronization costs between threads.

These simple processors can handle reduced independent work loads. However, when

dependent instructions come into play, especially across threads, inefficient synchroniza-

tion policies and high latency mechanisms take a heavy toll on system performance and

throughput.

Capitalizing on TLP generally yields positive results, but we can also take advantage

of its non-mutually exclusive relationship with ILP. Parallelism at the instruction level

within a thread can prevent the use of extra threads, reducing the communication and

synchronization overhead. Thus, the rationale behind using superscalar processors is
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to benefit from both TLP and ILP. By examining their performance and area relation-

ship, one can quickly assess potential benefits and detriments of replacement of scalar

processors by superscalar ones.

4.1.2 Advantages

The performance/area assessment for a soft-core superscalar processor, provided in sec-

tion 5.3, lets designers evaluate (before implementation) whether potential performance

gains of ILP would be too costly in terms of area or clock frequency degradation. In

the case of potential benefits, the configuration of our system matches the application’s

degree of parallelism.

This refined configuration allows the system to maximize architectural parallelism

without crossing the point of diminishing performance returns. As a result, the proces-

sor’s complexity is kept at a minimum, thus enhancing clock frequency and reducing

the required area. Applications with high-ILP are configured in complex parallel su-

perscalar architecture processors, offering concurrent execution of instructions. In con-

trast, low-ILP applications also benefit from processor configurations with high speed,

low complexity and reduced area. When there is no potential ILP, the processor’s

configuration allows a single instruction issue, and consequently Hephaestus processors

gracefully degrade into pipelined RISC processors.

The independence of execution units provides great benefits to the system. EU

independence optionally allows a detachment from typical ALU-style combinatorial cir-

cuits for execution units. Mechanisms for EUs may also include finite state machines

(FSM), variable multi-cycle execution, and use of the platforms dedicated resources like

local memory. For example, the default load/store execution unit is set up to access

fast, small local memory directly, but it can also be set up for variable high-latency

large RAM memories (though FSMs). Unless extra inputs or outputs are needed, the

mechanism of each EU is hidden behind a default interface and protocol policy.

4.1.3 Disadvantages

A careful balance must be kept between functionality and performance degradation.

The more functionality we put into execution units or processor configurations, the

higher the chance of detrimental costs. As such, the main expected disadvantages of
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our approach were area and resource use. Because the processor fetches instructions

in-order, executes them out-of-order, and then reorders them for completion, much

information has to be replicated in each stage, especially during out-of-order execution.

During this execution stage, instructions wait for their operands to become available,

so we have to provide additional circuitry for each waiting instruction. These are the

reservation stations. Consequently, as these instructions execute out-of-order, we need

larger storage until they are reshuffled in chronological order by the reorder buffer.

Because we have an 11-stage pipeline to maximize clock frequency, a control or

data hazard in any stage effectively stalls all previous stages. Hazards can only be

detected after they happen, and they disrupt the natural flow of instructions through

the pipeline. When this occurs, all previous stages in the pipeline are stalled. This means

that each stage must keep their output signals constant until the hazard is solved and

the pipeline flows again. The output signals have an added storage cost per pipeline

stage, implemented as registered outputs of combinatorial stages.

These storage requirements use more resources and area, but fortunately FPGAs

continue to provide more resources with each generation evolving into faster, larger and

more dense devices. Figure 4.2 shows the trend for increasing density and resources for

FPGAs from major vendors, indicating how area is not necessarily a high price to pay.

Figure 4.2: FPGA logic element and memory capacity - Density and resource
increase with each generation of FPGA devices [75].

Having identified the overall system configuration parameters, which provide an

appropriate amount of architectural parallelism for specific applications, we now specify

the means by which the Hephaestus project is implemented.
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4.2 Instrumentation

A soft-core processor can be implemented using a variety of methods. In addition,

multiple tools exist to define, simulate, and implement logic circuits into multiple re-

configurable devices. Each selection has a potential impact on our processor’s resulting

performance. In addition, metrics of area use change depending on the devices cho-

sen for implementation. Careful consideration was taken when selecting the project’s

platform, programming language, simulator, and synthesis tools.

4.2.1 Platform Selection

Our previous discussion of reconfigurable platforms identified FPGAs as prime candi-

dates for our project. FPGAs are commercially available in various speeds and sizes by

multiple vendors. They are fine-grained array structures, which allow bit manipulation

but also implement coarse-grained datapaths at the expense of place and route costs.

The main vendors for FPGAs are Altera and Xilinx, each with a variety of devices

under their belt. Since logic can be synthesized into each vendor’s FPGA devices, we

had to pay attention to some of the more subtle differences between them. Some of these

details could make or break the underlying assumptions that we were using to build our

project. The two assumptions that we found were important system characteristics were

present in only one FPGA vendor, Xilinx.

First, Xilinx FPGAs contain both small (RAM based on configurable logic blocks)

and large (Block RAM) quantities of embedded RAM memory, while Altera only has

large ones. Distributed RAM based on Configurable Logic Blocks (CLB) is used to

implement the processor’s register file, which is only a few hundred bits in size, yet

heavily accessed. Routing congestion is eased by not using Block Ram memory, hence

keeping the CLB-based RAM close to the points of origin and destination for address

and data.

The second and main difference is the ability to partially reconfigure the device.

Altera does not support this feature. Xilinx allows this through the configuration of

column-wise slots in their Virtex FPGAs. It is important to note that while this project

does not use partial-reconfiguration, one of our objectives is to support the area shape

requirements to enable it in the future. Both vendors provide area constraints on syn-

thesis, yet only Xilinx allows partial reconfiguration.

We chose a Xilinx Virtex-II Pro board as our implementation platform.
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4.2.2 Programming language

FPGAs allow a variety of languages to describe the logic which will be mapped onto

them. We used VHDL as our high-level hardware description language because it is

mature and very well supported. In fact, synthesis tools can automatically infer compo-

nents like finite state machines and RAM from well-structured VHDL code. This frees

us from using pragmas to use device-specific components, and consequently making our

code vendor-independent and portable.

4.2.3 Simulation tools

Most of the processor development required careful design and thorough testing. Syn-

thesis times were considerably lengthy at times (about an hour per run), which made

simulation the best way to quickly evaluate correct behavior until the end design was

done. Most of the time spent creating the superscalar processor was used for debugging

the data, control and hazard signals through the simulation.

We used ModelSim SE 6.0a to create the test benches that tested incomplete versions

of the processor’s individual components. Once all of the components were completed

and shown to be true and interconnected, there was no further need for test benches.

The simulator would set up the processor’s instructions and data memories from the

same files that would load its initial values during synthesis.

ModelSim [76] was then mostly used to monitor signals internal to the processor

rather than its inputs and outputs. Because of the lack of a compiler for our processor,

we used a Python script to correctly format assembly code into the binary instructions

and data. This script allowed great flexibility, especially since the binary encoding of

instructions changed with different sets of execution units. These were also stored in

different locations according to the instruction issue width.

Additionally, the script also sets up initial data and register memory values.

4.2.4 Synthesis tools

Each FPGA family is tightly coupled with corresponding synthesis tools. For Xilinx

devices, the main tools are Xilinx Platform Studio Embedded Development Kit (EDK)

and Xilinx Integrated Software Environment (ISE). EDK includes a suite of tools to
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easily drop IP cores, and create software to run on MicroBlaze designs. ISE instead is

focused on hardware description language (HDL) synthesis and implementation.

We used Xilinx ISE 8.2.2 to synthesize, implement and download our project to the

FPGA board. Additionally, we synthesized our project using Altera Quartus II. This

last part was to remove any vendor-dependent HDL code and to compare and contrast

area use for our processors.

4.3 Model implementation

The processor model was first created in VHDL, simulated, and then synthesized. The

first iterations of the processor made use of VHDL generics, to pass appropriate pa-

rameters to each individual component at synthesis-time. When the list of generics and

number of components became too big to handle, we switched to a VHDL package of

constants, which were propagated into all components at once. A sample of the VHDL

package code is shown in Code 4.1.

Code 4.1: VHDL package definition

PACKAGE Hephaestus Conf igurat ion IS
−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
−− ∗∗∗∗∗ USER SELECTED PARAMETERS ∗∗∗∗∗
−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
−− Main S u p e r s c a l a r Parameters
CONSTANT I n s t r u c t i o n I s s u e : INTEGER := 04 ;
CONSTANT Number of EUs : INTEGER := 03 ;
CONSTANT Common Data Bus : INTEGER := 02 ;
−− I n s t r u c t i o n Parameters
CONSTANT I n s t r u c t i o n s i z e : INTEGER := 32 ;
CONSTANT Opcode Regs : INTEGER := 02 ;
CONSTANT Opcode Function : INTEGER := 04 ;
CONSTANT Reg Addres s s i z e : INTEGER := 04 ;
CONSTANT PC Address s ize : INTEGER := 08 ;

Once this became the central repository for system parameters, main work started on

the design of the processor. We used a mix of classic superscalar architecture literature

[77] and some more modern approaches [78]. Once the main design was in place, all

components were created, interconnected, and the design hierarchy was analyzed to

simplify control signals throughout the pipeline.

4.3.1 Design Overview

The design of a processor generally follows a chronological trip down its pipeline. First

the instructions are fetched and then decoded to extract the sources to be used. With

the retrieval of the sources, execution can begin. The results are then saved back to the
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register file, and finally memory is accessed for load/store instructions. This method

follows the DLX RISC processor pipeline proposed by Hennessy and Patterson [79].

Because our superscalar processor allows instructions to execute out-of-order, several

more components form our processor structure. To minimize the effect of the critical

path of performance, we separated each expensive operation into one or multiple addi-

tional pipelines stages, ending up with a total of 11 stages.

It is useful here to expand the simplified diagram in Figure 4.1 to include all of the

components for the superscalar processor. This figure only showed those components

directly affected by system parameters, while in reality all components are indirectly af-

fected by all system parameters. Figure 4.3 shows the main architecture of a Hephaestus

processor, and the 11 stages composing the processor’s instruction pipeline.

This complex design follows the typical pipeline functionality of a 5-stage pipeline

like DLX. The novel functionality stems from the synthesis of reconfigurable parameters

into the pipeline stages. In the first stage, the Program Counter inputs the address into

the Instruction Memory, and a number of instructions equal to the Instruction Issue

system parameter are returned in the second stage. These are checked in the next stage

by the Jump Decoder to update the program counter with any jump control signals

which do not depend on calculated values. The instructions’ destinations and sources

are register-renamed in the fourth stage to avoid data-, output- and anti-dependencies.

With these dependencies handled, we are ready to execute them out-of-order. Because

there are multiple Execution Units, as defined by the Number of EUs parameter, we

need to demultiplex each instruction into its correct EU path in stage five. In the stage

after that, each of the instructions’ sources are examined in the Instruction Dispatch

component, and contention for the register or future file ports is resolved. Results are

retrieved from either the Future File or the Register File in the seventh stage. Usually

the Future File will contain the most recently updated (out-of-order) value, while the

Register File has the latest (in-order) completed value. The retrieved data values and the

instructions then go into Reservation Stations at stage eight, until all of their operands

are retrieved. This can happen immediately if all values were retrieved from the Future

File, but usually an instruction must wait for other ones to complete and broadcast their

results. When an instruction is ready, it goes into an Execution Unit for execution of its

operands in stage nine. Once execution is done, it is then this instruction’s turn to do

the broadcasting through the Common Data Bus (CDB) located in stage ten. The CDB

will broadcast a maximum number of results indicated by the Common Data Bus system
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Figure 4.3: Hephaestus Superscalar Structure - All the components of the Hephaes-
tus processor are shown here with their interconnections.
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parameter. Finally, in the eleventh stage, the Reorder Buffer will store all out-of-order

broadcasted results and sort them in program-order, writing the values in the Register

File in the same order, allowing for precise interrupts.

4.3.2 Components

We now take a closer look at the functionality and methodology for creating each of the

processor’s components, listed below.

• Program Counter - Controls instruction address.

• Instruction Memory - Stores and output instructions.

• Jump Decoder - Decodes jump instructions and services them immediately.

• Register Rename - Renames destinations and sources to avoid false dependencies.

• Execution Unit Demultiplexer - Forwards each instruction to its corresponding EU.

• Instruction Dispatch - Solves contention for the register file’s ports.

• Register File/Future File - Writes/reads in- and out-of-order data.

• Reservation Station Manager - Stores instructions until operands are ready.

• Execution Unit Manager - Starts EUs for ready instructions.

• Common Data Bus - Arbitrates broadcasting of results.

• Reorder Buffer - Sorts instructions in program order.

• Data Memory - Contains extra memory besides register file

• Pipeline Control - Provides centralized control for pipeline hazards.

4.3.2.1 Program Counter

The program counter (PC) feeds the address lines in the instruction memory with

continuously updating values, which ensures new instructions are fetched each clock

cycle. It also receives jump and branch instructions, which update the PC’s value
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accordingly. The PC is also responsible for numbering outgoing instructions in ascending

order.

Normally, a program counter refers to the location in instruction memory of the next

instruction, but with superscalar processors, it refers to a set of instructions. When

jumps and branches modify the PC, they pinpoint a particular instruction within the

multiple instructions issued per cycle. This means that jump/branch locations do not

have to be aligned with the PC address but can point to a particular instruction within

the ones being retrieved from the PC address. When this situation is solved, the PC

validates or invalidates instructions accordingly and passes them down the pipeline.

Figure 4.4 shows the update modes of the PC with a sample Hephaestus processor

with an instruction issue of 4. In mode (a), the PC increases by one each cycle, making

the next set of 4 instructions valid. In (b) a jump instruction sets the PC to instruction

28. Since we have an issue of 4 and 28 is divisible by 4, the jump destination is aligned

with the jump address and all instructions are valid. Finally, situation (c) shows what

happens when a jump to an instruction does not align with the address. Instruction 18

is located in address 4, with an offset of 2. The PC sets the new address, but invalidates

previous instructions (16 and 17) that were not the target of the jump instruction.

Figure 4.4: Program counter updates - Three different kinds of updates: a) Normal
update b) Jump with instruction align c) Jump with no instruction align.

Branches are decoded into addresses and validation bits in a similar way to jump

instructions. For different instruction issue widths, the number of instructions per PC

address change accordingly.
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4.3.2.2 Instruction Memory

The instruction memory stores the assembly-coded instructions that are fed to the rest

of the processor. Like a normal memory, it has an address and read/write inputs, paired

with incoming and outgoing data ports. Its size depends on the size of the assembly-

coded software footprint, and its structure depends on the number of instructions issued

at once.

We used code inference to implement specific platform resources (Block RAM) with-

out instantiating these proprietary entities directly. This allows hardware abstractions

across multiple devices, device families and vendor platforms [80]. The same hardware

abstraction was used when creating the data memory, register file and future file compo-

nents. Code 4.2 shows the hardware implementation report of this component in Block

RAM resources.

Code 4.2: Instruction Memory in BlockRAM

Synthes i z ing Unit <RAM Memory 0> .
Related source f i l e i s " / u s e r s / o r t i z j / H e p h a e s t u s / RAM M e m o r y . vhd " .
Found 256x32−b i t dual−port block RAM f o r s i g n a l <Bram data>.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| ram s t y l e | Auto | |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| Port A |
| aspect r a t i o | 256−word x 32−b i t | |
| mode | read− f i r s t | |
| clkA | connected to s i g n a l <Clock> | r i s e |
| weA | connected to s i g n a l <Write Enable> | high |
| addrA | connected to s i g n a l <Write Add> | |
| diA | connected to s i g n a l <Value In> | |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| Port B |
| aspect r a t i o | 256−word x 32−b i t | |
| clkB | connected to s i g n a l <Clock> | r i s e |
| addrB | connected to s i g n a l <Read Add> | |
| doB | connected to s i g n a l <Value Out> | |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The synthesis report in Code 4.3 also shows how the instruction memory is instan-

tiated in multiple Block RAMs, each with a different initialization file. This avoids the

problem of writing the instructions to memory after the processor is loaded into the

reconfigurable platform.

Code 4.3: Instruction Memory synthesis report

Analyzing h i e ra rchy f o r en t i t y <RAM Memory> in l i b r a r y <work>
( a r c h i t e c t u r e <Component instance >) with g e n e r i c s .

Address S i z e = 8
I n i t F i l e = " / u s e r s / o r t i z j / H e p h a e s t u s / RAM / I n s t r u c t i o n s 0 . d a t a "
Value s i z e = 32

Analyzing h i e ra rchy f o r en t i t y <RAM Memory> in l i b r a r y <work>
( a r c h i t e c t u r e <Component instance >) with g e n e r i c s .

Address S i z e = 8
I n i t F i l e = " / u s e r s / o r t i z j / H e p h a e s t u s / RAM / I n s t r u c t i o n s 1 . d a t a "
Value s i z e = 32

We need multiple Block Rams because instructions need to be read from multiple

read ports at every clock cycle. Because we have Block RAMs with fewer reads ports
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than we need, we interleaved Block RAMs together. This allows each Block RAM to

hold the offset value corresponding to the instruction being issued at each particular

address. Figure 4.5 shows the arrangement of 4 Block RAMs for a system with an

Instruction Issue of 4. The address port A addrA in each Block RAM is set by the

program counter, and after a single clock cycle, the instruction data is output in each

doA data output port.

Figure 4.5: Instruction memory Block RAM configuration - All Block RAMs
have the same address input from the Program counter, and output Instruction Issue

instructions.

Figure 4.6 indicates the location structure of Block RAM memories with 4-way in-

terleaving. At each address, the Instruction Memory can read Instruction Issue in-

structions at at the same time. The instruction number can be calculated with modulus

arithmetic over the total number of instructions issued; 4 are issued in this example.

Figure 4.6: Instruction memory locations - Instructions are stored with 4-way inter-
leaving when the instruction issue width is 4.
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4.3.2.3 Jump Decoder

The main function of the jump decoder component is to detect jump instructions and

solve them immediately. Since jump instructions are independent of source registers,

we solved them at this stage, without paying the penalty associated with traversing

the whole depth of the pipeline. Branch instructions, which are dependent on source

registers, do have to go through the whole pipeline to get resolved. This deviates from

traditional approaches, where jump instructions are treated like branches, and traverse

the whole pipeline before being executed [81].

When a jump instruction is detected, the new PC address is either 1) calculated as

an offset of the current address or 2) passed as an immediate value. We passed this value

back to the program counter, which sets the appropriate validity flags and PC address

as depicted earlier in Figure 4.4. While the new instructions are passed into the first

2 pipeline stages, our jump decoder waits, without outputting any new instructions.

This continues until the PC indicates through the Jumped Address In input that it has

serviced the pending jump request.

Additionally, the jump decoder tags any instructions following a branch as specula-

tive. Because the target address for a branch can not be resolved until the instruction

is executed, the rest of the instructions in the sequence are allowed to execute spec-

ulatively. In the case a branch instruction is taken, the Reorder Buffer completes all

instructions in order until that branch, then sends the branch address request to the

program counter and resets the rest of the pipeline and all intermediate instructions. If

the branch instruction is not taken, then the speculative instructions are allowed to com-

plete, without penalties associated with a pipeline flush. This pipeline flush degrades

performance, and is a well-known necessary programming cost. Our system default is

to assume a branch won’t be taken, hence instructions can continue normal execution

until they reach the Reorder Buffer at the end of the pipeline. The ReOrder Buffer

prevents the writing of speculative results unless the branch was not taken.

4.3.2.4 Register Rename

The register renaming pipeline stage is the most important, as it eliminates output and

anti-dependencies, while order-enforcing only the necessary true data dependencies.

Register renaming allows for the parallel execution of instructions.
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Figure 4.7 shows the three types of inter-instruction dependencies. A true data-

dependency enforces program order: a previous instruction must be solved before a new

one can start. An output-dependency is usually the result of register reuse and having a

limited register file. Finally, anti-dependencies prevent newer instructions from writing

to a register, until previous instructions have finished reading the target value. This is a

classic example of overwriting a value which is still useful. In terms of reads and writes, a

data-dependency involves a read-after-write (RAW) hazard, the output-dependency is a

write-after-write (WAW) hazard and anti-dependencies involve write-after-read (WAR)

hazards.

Figure 4.7: Register-renaming dependencies - Instructions can have true-, output-
and anti-dependencies among them. Register renaming can solve two of them.

Register reuse is a common and practical practice, but creates false output depen-

dencies. With register renaming, we make use of extra architected registers to rename

the ISA registers and avoid these false dependencies. The example figure shows how

two sets of instructions, I1-I2, and I3, can be executed in parallel or out-of-order after

being register-renamed.

While register renaming is a technique which allows us to execute in parallel and out-

of-order, it is a complicated process. The processor now needs to track which register

contains the latest version of a particular value, which registers can be reclaimed for

renaming, and finally, which registers have pending reads from them. To implement

register renaming, we followed a modified version of the original Tomasulo’s algorithm
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[1]. This algorithm originally assigned reference tags and a busy bit to each register that

did not contain the value needed by future instructions. Tagged values were recovered

from broadcasting while untagged values were taken from the register file. However,

we can not simply recreate a static FPGA-based Tomasulo’s algorithm (an example

of a stripped-down static version of an FPGA-based Tomasulo’s algorithm was made

in [82]) because our system involves added flexibility for the processor’s underlying

architecture. We implemented a modified version of the algorithm that was adaptable

to our customization needs.

To modify Tomasulo’s algorithm, we used the techniques outlined by Moudgill et.

al in their alternative approach for register renaming and dynamic speculation [83]. We

kept track of four different pieces of information about the registers : 1) If a value had

been written to a register and hence the instruction is completed, 2) how many pending

reads exist per register, 3) which registers are mapped into other renamed registers, and

4) the target value of each renamed register.

To accomplish the task of correctly reading, using and modifying these pieces of

information, we declared four different signals in the VHDL description of the register

renaming components, as shown in the Code 4.4.

Code 4.4: Register rename signal declaration

−− R e g i s t e r Renaming s i g n a l s
SIGNAL Complete Flag : STD LOGIC VECTOR (0 to Phys i c a l Reg i s t e r s −1);
SIGNAL Unmap Flag : STD LOGIC VECTOR (0 to Phys i c a l Reg i s t e r s −1);
SIGNAL Renamed Registers : Reg i s ter Addresses Type ;
SIGNAL Reg Counters : RegCounter Acccum Type ;

The Complete Flag signal stores a bit value of 1 for each renamed register that

has been written to. When the Common Data Bus broadcasts the results of the in-

struction, the renamed destination register’s complete status bit is updated to 1. This

informs the register renaming mechanisms that a register has completed execution, and

dependent instructions within the pipeline have been notified. The initial state of the

Complete Flag has all registers set as completed.

When a register is renamed, the original register becomes unmapped: no instructions

will refer to this register and all future references are assigned the register’s new alias.

The Unmap Flag bit corresponding to this register is set to 1. Additionally, all references

to the original register in subsequent instructions now reference the new alias register.

The renamed register becomes mapped and its Unmap Flag bit is set to 0.

While the mapping status is kept at the Unmap Flag, it is the Renamed Registers

signal that has the original-to-alias mapping information. When a register is mapped,
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its Renamed Registers value is updated to reflect the new destination. Future in-

structions which require a value from a register will use the appropriate value in the

Renamed Registers signal, which contains its most recent name.

The final signal in the Register Rename component is the Reg Counters signal.

When instructions request values as their source operands, the processor must ensure

that these read requests have been handled before a register is reused for further renam-

ing. Even if the instruction for a register has been completed and has been unmapped,

we can not reuse the register until all read requests from it have been serviced.

Figure 4.8, created by Moudgill et al., shows the process of renaming registers with

these four signals (for a single scalar processor). The Op-Fetch stage in the figure is

equivalent to our Instruction Dispatch, while the Execute Stage corresponds to our

Execution Units. The final Write-Back stage is equivalent to our Common Data Bus,

where the results of the execution are broadcast.

Figure 4.8: Mapping and reclaiming registers - The image shows the process of
mapping, unmapping, and reclaiming registers under the techniques implemented above.
Image taken from ”Register Renaming and dynamic Speculation: an Alternative Approach”
[83]
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The combination of an unmapped and completed register with no pending read

requests creates a reclaimable register for further register renaming. As long as there

are available reclaimable registers, the Register Rename unit will continue doing its job

unhindered. Since the search for reclaimable registers must complete within one clock

cycle, we had to make sacrifices in the search algorithm. Priority encoders were used

to find the first Instruction Issue contiguous reclaimable registers from the pool of

architected registers. So, for a system with an Instruction Issue parameter of 4, the

priority encoders will locate the first instance of 4-contiguous reclaimable registers.

The Register Rename component is at the heart of many performance tradeoffs in the

processor implementation. A large Register File creates a large renaming pool, which

aids in preventing stalls due to lack of reclaimable registers. However, that same large

Register File degrades clock performance as the priority encoder’s search involves more

levels of logic and increased delay. Further, because of random access to the registers,

fragmentation of reclaimable registers occurs. This might prevent the priority encoders

from finding a suitable contiguous block of reclaimable registers, even though the total

of reclaimable registers might exceed this need in non-contiguous space. Instead of

stalling at this pipeline stage, a backup search is made for a single reclaimable register.

If at least a single register is found where a set for contiguous ones failed, then the

Register Rename stage will still rename at least one its incoming instructions, effectively

preventing a deadlock for the register resources.

The Register Rename implementation complexity also increases depending on the

Instruction Issue width. Since dependencies of issued instructions need to be solved

in each clock cycle, each extra issue involves increased complexity and delay. Source

registers need to be renamed if the previous renamed instructions in that clock cycle

has the same destination. Code 4.5 shows the pseudo code for this dependency-solving

algorithm. The space complexity is O(n2), where n = Instruction Issue.

Code 4.5: Register Renaming Issue Dependencies

FOR i n s t r u c t i o n IN 0 to I n s t r u c t i o n Issue−1 LOOP
−− Analyze d e s t i n a t i o n and source r e g i s t e r s
Renamed Dest inat ion ( i n s t r u c t i o n ) <= Next Free Reg i s t e r ;
Complete Flag (Renamed Dest inat ion ) <= ’ 0 ’ ;
Unmap Flag (Renamed Dest inat ion ) <= ’ 0 ’ ;
Unmap Flag ( Or i g ina l Des t inat ion ) <= ’ 1 ’ ;
FOR prev ious i n s t r u c t i o n IN 0 to i n s t ru c t i on −1 LOOP

−− Check i f the source s po int to a newly renamed d e s t i n a t i o n s
IF Source 1 = Or ig ina l Des t ina t i ons ( prev ious i n s t r u c t i o n ) THEN

Source 1 <= Renamed Dest inat ion ( prev ious i n s t r u c t i o n )
Counter ( Source 1) <= Counter ( Source 1) +1 ;
IF Source 2 = Or ig ina l Des t ina t i ons ( prev ious i n s t r u c t i o n ) THEN

Source 2 <= Renamed Dest inat ion ( prev ious i n s t r u c t i o n )
Counter ( Source 2) <= Counter ( Source 1) +1 ;

END LOOP;
END LOOP;
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Besides renaming destinations and sources, the Register Rename component also has

to keep track of outstanding read requests. Each instruction’s sources increment the

(renamed) source register count by one. Some instructions, like those with immediate

addressing modes, only require one register to be accessed, with the other value passed

inside the instruction. Other custom instructions might not even require accessing

registers. The Register Rename component also monitors read requests made to the

Register/Future File by the Instruction Dispatch component. When a register has been

read, the counter decrements accordingly. When a register’s counter reaches zero, it can

be reclaimed if it is unmapped and completed.

Finally, the renamed instructions are sent to their corresponding execution unit in

the next stage.

4.3.2.5 Execution Unit Demultiplexer

The Execution Unit Demultiplexer reads the target EU for each instruction. With that

information, it routes the instruction to one of its multiple output ports. The number

of outputs ports is equal to the variable Number of Execution Units, with each output

port corresponding to each EU defined in the system.

The Demultiplexer routes each of the issued instructions to its corresponding exe-

cution unit, but only one instruction can be routed per EU at a time. When contention

for one of the outputs occurs, only the first instruction (in terms of issue index and

sequence order) gets routed to the appropriate output. The remaining instructions are

saved in a register, and scheduled for routing in the next clock cycle.

Not only can issued instructions try to use the same EU, but each issued instruction

can use any execution unit. Figure 4.9 shows how issued instructions are routed to their

corresponding execution units. Because an instruction at this component’s input can be

routed to any of its outputs, the resulting circuit follows the behavior of a demultiplexer.

In contrast, the decision about which of the multiple inputs gets each individual output

behaves as a multiplexer.

Instead of defining the behavior of this component explicitly in terms of multiplexers

and demultiplexers, we used VHDL to express the behavior as a procedural statement.

This resulted in a better mapping onto the FPGA LookUp Tables during synthesis.

From this pipeline stage onwards, the area and performance are mostly dependent

on the variable Number of Execution Units.
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Figure 4.9: Demultiplexing instructions - Each of the four instructions can be sent
to any of the three execution units. The decoder sends every instruction to each EU and a
multiplexer selects among them.

4.3.2.6 Instruction Dispatch

The Instruction Dispatch stage resolves contention for the memory read ports. Each

instruction can request read access to at most two source registers. This potentially

creates the need of two read ports per instruction in the Register File. Realistically,

we can not satisfy this multi-port requirement in hardware without paying a huge cost

in delay and complexity, so we use dual-port memory instead. Howevwer, multiple

instructions can request to use the same memory port at the same time, creating a

many-to-one relationship. To make matters even more complicated, memory in FPGAs

are limited to two ports and a designer must reserve at least one of them as a write port.

This leaves the designer in the disadvantageous position of having only a single port

of read access. Clearly, multiple memories are needed to allow multiple instructions to

access the Register File in a timely fashion.

Our solution was to interleave the Register File, allowing the use of multiple mem-

ories to provide extra read (and write) ports, while spreading all read/write accesses

among the interleaved memories. Further, we duplicated the contents of the Register

File into another memory set, creating copies which supply extra read ports to access

the same information, as long as the information is kept coherent among all copies.
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The system variable Register File memory organization is really composed of two

different variables: Interleaving and Copies. These allow us to set an appropriate

interleaving amount and number of copies for the Register File.

The total number of outputs of the Instruction Dispatch stage is set equal to the

result of Interleaving x Copies. Each of these outputs allows the servicing of a

read request. We then route each instruction request to its appropriate output, in a

fashion similar to what we did in the Execution Unit Demultiplexer stage. We also

don’t immediately block conflicting port requests. Because we set multiple copies of the

Register File, each interleaved port can service a number of requests equal to the value

of Copies.

A second function of the Instruction Dispatch stage is monitoring each EU’s reserva-

tion stations. If a reservation station is full, the flow of instructions has to halt until the

station becomes available to store new instructions. To minimize the amount of halting

due to this conflict, we set the mechanism to halt only when a reservation station is full

and an instruction is being dispatched to that station. If both of this conditions are

met, the pipeline stalls, otherwise, the instruction flow continues unhindered.

Finally, this stage assesses if a memory port is actually needed by reading the

Complete Flag signal from the Register Rename stage. If an instruction has not been

completed, it means that its result has not been broadcast and written. Thus, it is

not necessary to read the Register File at that location; it contains an obsolete value.

Instead, we marked the read request as in-flight, postponing the retrieval of the up-to-

date value until the reservation station stsge. Due to the high-level of interdependency

between instructions, requests for source registers are usually made before previous in-

structions have finished writing to them. Hence most of the requests will be marked as

in-flight. This situation is beneficial because it helps reduce contention for the memory

ports, which consequently avoids halting our system’s pipeline.

4.3.2.7 Register File/Future File

So far, we have used the terminology Register File to indicate the location of values for

each register. However, the term Register File is an oversimplification of the multiple

locations in which a register’s value can be located. Even under a scalar RISC archi-

tecture, the value of a register might not have been written to the Register File after

execution, yet it is passed to dependent instructions through data forwarding. For our
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superscalar architecture, whenever an instruction requests to read its source operands,

the origin of these values can be read from three different types of instructions and

sources:

1. Instructions that have been completed in order. Read requests are made to the

Register File.

2. Incomplete instructions that have been executed and whose results have been

broadcast. Read requests are made to the Future File.

3. Instructions that have not been executed or are currently being executed. The

sources are made available during broadcasting by the Common Data Bus.

The third case is handled by the reservation stations and explained in the following

section. For the first case, when the ReOrder Buffer completes instructions in order,

we write that value to the Register File. Usually, by the time an instruction’s result is

written to the Register File, an updated value for the register is moving through the

pipeline, and, therefore, the Register File should not be accessed. However, the Register

File plays an important role when recovering from precise interrupts. When an interrupt

happens, the only location that stores in-order information enabling instruction flow

recovery is the Register File. After each interrupt (which can be a branch operation

changing the normal instruction flow), we flush the pipeline, but we make the Register

File retain the latest in-order values. We then access these values to restart the pipeline’s

instruction flow.

In-order completion through the Register File is necessary for precise interrupts.

However, we are letting instructions execute out-of-order to exploit performance ben-

efits. If dependent instructions have to wait for the results of previous instructions to

complete in-order, these benefits are lost. To prevent this, the Future File stores the

latest broadcasted out-of-order values for each register and makes these values avail-

able for dependent instructions as soon as possible. This satisfies the conditions of the

second case, in which an instruction has been executed but not completed. By using a

Future File in our system, we avoid implementing a centralized ReOrder Buffer, whose

associative lookup circuitry would make our system slow and more complex.
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As described earlier, the structure of the Register File is dictated by the system

parameters Interleaving and Copies. Figure 4.10 shows an example structure and

how Interleaving spreads read requests, while Copies increases the number of read

ports. We connect together the write ports of all Copies in each interleaved set, so

that all write requests affect copies uniformly. This solution maintains value coherence

among all copies.

Figure 4.10: Register/Future File Organization - Resulting organization of Register
and Future file with Interleaving=4 and Copies=2.

While the Register/Future File structures were modeled using BlockRAM memories,

their small sizes were implemented during synthesis as distributed RAM rather than

BlockRAMs. This prevents the use of a fixed-size 16 KB BlockRAM which will only

be sparsely filled. Regardless of this implementation, the Register and Future File

functionalities remains the same: to service read and write requests for register values.

Each register’s up-to-date value can reside in either the Register File or Future File, so

the results from both of them are multiplexed before being sent to the outputs. The

multiplexing is based on which of the two has the most recently updated value, which

is updated whenever there is a broadcast or an interrupt. We then forward the results

to the reservation stations.
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4.3.2.8 Reservation Station Manager

The reservation stations receive instructions from the Instruction Dispatch stage and

store the instructions until all of their operands are ready. The Instruction Dispatch

stage previously made read requests to the Register/Future File for the instructions’

operands which were not in flight. The resulting outputs from these requests are checked

to match those of the operands, and upon a match, we set the operand as valid. If the

instruction contains operands which are in flight, then the reservation station waits until

the results from previous operations are broadcast. Once a match is made, we set the

operand as valid. Figure 4.11 shows the necessary structure of an reservation station

entry that stores its current state. When all of the instruction’s operands become valid,

the instruction is sent to its target execution unit.

Figure 4.11: Reservation Station Entry - The dispatch read requests and results from
the result buses are read until all operands are valid, making the reservation station entry
valid and ready to be executed.

A second function of the Reservation Station Manager is instantiating all combina-

tions for the reservation stations. Normal superscalar microprocessors include a set size

for reservation stattions for each execution unit. However, our system allows for a lot of

flexibility when organizing reservation stations. Hence, a designer can select a specific

size for each execution unit’s station. For example, a designer might assign a larger

reservation station size to the EU for load/store operations than the others, since these

operations make up for the majority of instructions in sequential programs. If EU(0) is
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the execution unit for load/store operations, he could assign the size of this EU’s reser-

vation station to be 4, while setting the size for the two others to only 2 (for EU(1)) and

3 (for EU(2)). Code 4.6 shows how that can be achieved in our system through a single

line of VHDL code that feeds into the processor architecture definition. This example

follows the reservation station organization presented previously in Figure 4.3.

Code 4.6: VHDL reservation station definition and assignment for a system with
Number of Execution Units = 3

TYPE EU Reservat ion Sta t i on s Type
IS ARRAY (0 TO Number of EUs−1) OF INTEGER RANGE 1 TO Max RS ;

CONSTANT EU Reservat ion Stat ion numbers :
EU Reservat ion Sta t i on s Type := (4 , 2 , 3 ) ;

A potential problem with any reservation station is that it can become full. When

this happens, the station is not able to receive newly dispatched instructions for its EU,

and consequently they stall the pipeline. A full reservation station can be the result of

its small size, long-latency execution units, or a system instruction issue which is too

high to be serviced in a timely manner. To avoid penalties, a designer can set reservation

station sizes that allow dependencies to be resolved at an appropriate rate. Our flexible

system allows this kind of customization.

Multiple instructions within a reservation station can be ready at the same time.

That is, they all have their source operands valid. This creates a situation in which

the reservation station needs to pick one from among all possible readied instructions;

it is a decision that involves complicated non-scalable hardware and increased delay.

To solve this, our reservation stations take the simplistic approach of waiting until

the first instruction has its operands readied before servicing the next, in FIFO order.

This approach only incurs a minor performance hit of about 0.6% for an instruction

issue width of 2 and 2% for an issue width of 4 [77]. It is an appropriate solution

that prevents us from having to implement complex priority schemes for multi-sized

reservation stations that might degrade performance in even larger amounts.

4.3.2.9 Execution Unit Manager

The Execution Unit Manager instantiates all different execution units in the system,

allowing multiple EUs to operate in unison and exploit intrinsic instruction level par-

allelism (ILP). With this component a designer can select which EUs fit best in their

particular application, and even add custom logic. It has a standard interface for each
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EU, with inputs corresponding to two operand values and useful instruction informa-

tion like the original destination (to the Register File), the renamed destination (to the

Future File) and the instruction’s order number. The EU output forwards these signals

to the next stage, except that the operands are replaced by the computation result.

Each Execution Unit indicates if it is currently busy or executing an operation

through a ‘ready’ output bit. Simple combinatorial or arithmetic operations like those

of an ALU finish in a single clock cycle. Therefore, the ALU is always ready for new

instructions and its ready bit is 1 at all times. However, other EUs like floating-point

operations can take multiple clock cycles to finish executing a single instruction, and

during this time a value of 0 is assigned to the ready bit. When this happens, reservation

stations are not able to deliver instructions readied for execution to the EU.

To avoid this potential stalling by high-latency operations, we allow these operations

to be implemented in a fully-pipelined manner. If the state of the operation is saved

at each pipeline stage, then potentially an EU can receive instructions each clock cycle

without waiting for execution completion. A designer is then able to use these techniques

to increase throughput, without having to modify the processor at the architecture

level. This detachment from the underlying architecture allows a designer to concentrate

on the execution units, while abstracting away our processor’s implementation details.

However, some other EUs might still implement I/O functions or other operations that

require high-latency times to access off-processor devices like RAM memory. In these

cases, waiting might be the only option.

The load/store/branch execution unit is implemented as a default in our system.

This EU handles load/store requests, by instantiating the Data Memory as a component.

Requests to Data Memory are abstracted away from the rest of the system and handled

only inside this EU, according to the type of memory. This solution gives great flexibility

as to how Data Memory is architected. It can be local fast-access BlockRAM memory,

or off-chip larger memory like SRAM. Hence, when using single-cycle access BlockRAM

the EU can use the memory’s data and address input ports directly. Otherwise, when

dealing with high-latency SRAM memory, a finite state machine may be implemented so

it abides by the SRAM’s handshaking protocols while dealing with the non-deterministic

communication delays. In addition to load and store requests, the default EU also

handles branch instructions. It executes the appropriate operands for the branch, and

the result either sets the branch as taken or not-taken. For example a branch-if-equal

(BEQ) operation will compare the operand to zero, and if they are the same, will set the
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branch as taken. The branch result, along with the instruction’s order and the target PC

address, is sent to the ReOrder Buffer and the Program Counter. The Program Counter

will stop pumping new instructions into the pipeline until it receives confirmation from

the ReOrder Buffer that all instructions leading to the taken branch have been written

to the Register File. The pipeline flushes and the Program Counter restarts issuing

instructions from the branch target address, as previously shown in Figure 4.4. If the

branch is not taken, the instruction flow continues as usual.

Some instructions do not write to registers. For example, branches are purely control

operations and do not produce a value that is used by any other instructions. Store

operations write a register’s value in Data Memory but do not change or modify any

registers. Finally, a custom execution unit can be used for controlling a device, and

even though the device operation might produce beneficial system results, the control

instructions probably won’t produce useful values for the rest of the instructions. In

these cases, we can set an execution unit to mark the instruction as a non register-

writing instruction. These instructions are logged in the system to ensure program

order, but their results (if any) are never written to the registers by the ReOrder Buffer

nor broadcast by the Common Data Bus. Our system also capitalizaes on this situation

by not having them be part of the contention for resources in the ReOrder Buffer and

Common Data Bus stages, and consequently avoiding stalls.

4.3.2.10 Common Data Bus

When instructions finish executing in their EU, they are sent to the Common Data Bus

stage. Here, their results are broadcast to all waiting instructions in the reservation

stations. As with many of the other pipeline stages, there are only a limited number

of outputs, and contentions for them. The system parameter Common Data Bus width

defines the maximum number of broadcasted instruction results each clock cycle. While

it is a variable, we set it to a constant value of 2 buses in our implementations. A

designer might näıvely want to increase this number to allow more instructions to be

broadcast at a time. However, this involves a heavy penalty in both hardware and

place-and-route complexity, since each broadcast must reach every single entry of each

reservation station. Pragmatically, the number of buses is best left at a low value. While

immediate penalties from control hazards due to contention in the Common Data Bus

might seem limiting, the perceived benefits are mostly imaginary. Even at high levels
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of performance, bus utilization is about 50-55%, and the performance benefit of going

from 2 to 3 buses is less than 1% [77].

The Common Data Bus stage solves contention for its limited number of buses, but

also adds an extra limitation: the results’ destinations must have different interleaving

values. By enforcing this limitation in our system, we allow broadcasting and writing

to different interleaved input ports in the Future File at the same time. Once a result

has been broadcasted, read requests waiting in the reservation stations are fulfilled.

Subsequent read requests for braodcasted registers are then made to the Future File.

4.3.2.11 ReOrder Buffer

The broadcast of results is received not only by all reservation stations and the Future

File but also by the ReOrder Buffer. This component stores all the out-of-order instruc-

tion results and then sorts them by issue order (which was attached to the instruction

at the Program Counter) before writing them to the Register File.

Instead of handling a linked list as in software, we instead send insertion requests to

all list entries, which we call shift-cells. Each shift-cell has access to the ordering number

of its left and right neighbors. Given their neighbor information and the incoming order

number of the new value being added, each entry decides autonomously if it needs to

grab its left neighbor’s values, its right neighbor’s values, the new incoming values, or

if it needs to keep its current values. Figure 4.12 shows a string of 4 shift cells that

compare values against each other to ensure the single-cycle sorted insert into the list.

Figure 4.12: Shift Cell Logic - By comparing new entries with their left and right
neighbors’ contents, each cell maintains the sorted order in the ReOrder Buffer.
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Our goal was to avoid having to sort an unordered list, which is definitely not suitable

for a single clock-cycle hardware implementation because it is a time consuming task.

The above solution makes all inserts into the list be in-order insertions. Therefore, as

we receive a broadcasted result, it is inserted into the list at its corresponding place,

and the ReOrder Buffer always has access to the earliest instruction. Because dynamic

lists can’t be created in hardware, we set the system parameter Reorder Buffer size

to dictate how many entries the list will have.

When the ReOrder Buffer finds the next ordered instruction, it outputs it and deletes

it from the list. The values for all entries shift to the left (each entry grabs their right

neighbor’s values) and the left-most entry is written to the Register File. Since the

Reorder Buffer can both output a value and receive new values at the same time, the

shift logic for each cell becomes slightly more complex. Regardless, sorted inserts still

happen since values can shift left and right, or remain in place. Figure 4.13 shows how

the ReOrder buffer receives new unsorted instructions and outputs sorted instructions

in issue order, just like they came out of the Instruction Memory stage.

Figure 4.13: ReOrder Buffer Functionality - By examining their neighbors’ contents
and comparing them against the inserted new entries, each cell helps maintaining the sorted
order in the ReOrder Buffer.
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The shift-cell ordered queue only allows sorted insert for one instruction per clock

cycle, which corresponds to the functionality of a linear sorter [84, 85, 86, 87]. However,

we receive an Interleaving number of instructions from the Common Data Bus. We

solved this problem by creating the same number of queues in the ReOrder Buffer, with

each broadcasted instruction being inserted in its particular queue [88]. The outputs

do not need to be ordered or arbitrated again because each queue output is directly

connected to the corresponding interleaved Register File memory write port and their

copies.

The final function of the ReOrder Buffer is to complete branch instructions. For

this, it receives information from the Branch execution unit. When this EU processes

a branch instruction and determines it is taken, we sent the branch instruction’s order

number to the ReOrder Buffer. In this final stage of the pipeline, the ReOrder Buffer

writes all instructions leading to the taken branch. When it services the taken branch

instruction, a reset signal is sent to all components (except the Register File) and the

target address is sent to the Program Counter. The reset signal flushes all intermedi-

ate speculative instructions and values from the pipeline, while the Program Counter

restarts instruction flow at the target address. Our solution keeps the Register File with

all in-order completed instructions and allows the system to restart the instruction flow

normally.

4.3.3 Interconnect

All the components we have described are connected in a pipeline manner as shown in

Figure 4.3. The connections between each stage are implemented as registered outputs.

The reason for this is that we need the ability to hold output values in case of a control

hazard, that is, if a stage further down the pipeline is unable to process new instructions.

This situation is a natural consequence of contention for the stage’s resources or outputs,

which forces new instructions to wait until unserviced ones have been dispatched from

a stalled stage.

4.3.3.1 Pipeline Control

Each stage in which there is contention for resources can produce a control hazard.

Resolution of control hazards generally involves saving blocked requests for resources in
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registers and then servicing those requests during the next clock cycle, repeating this

process until all saved requests are serviced.

The list of all possible hazards locations and reasons are shown next.

• Jump Decoder - This stage does not stall the pipeline. However, upon detecting

a jump instruction, it sets the Program Counter accordingly and sets a flag to

ignore any obsolete incoming instructions. The Jump Decoder’s output resumes

when the jump instruction is retrieved from the Instruction memory.

• Register Rename - Hazards occur when trying to rename more instructions than

the amount of available free registers. If there was at least one free register, the

hazard still goes off, but one stalled instruction is renamed.

• Execution Unit Demultiplexer - Only one instruction can be forwarded to each

execution unit output. Otherwise a hazard is created.

• Instruction Dispatch - Unserviced instructions due to contention for the Register/-

Future File memory ports create a memory hazard.

• Reservation Station Manager - The reservation stations can get full, prompting a

hazard to occur when a dispatched instruction is sent to them.

• Common Data Bus - Only Common Data Bus width number of instructions can

broadcast their results. Hazards occur when additional instructions complete their

execution at the same time.

• Reorder Buffer - Hazard occurs when at least one of the shift cell sorting queues is

full and it receives a new value.

The only remaining source of control hazards are branch hazards. These occur when

a branch is taken, prompting the flushing of any subsequent intermediate signals. The

Pipeline Control stage sets the appropriate reset signals for all intermediate stages except

for the Register File, which contains the completed in-order instructions necessary to

restart the pipeline.

To arbitrate multiple concurrent hazards and stall only necessary stages, we created a

control system which prioritizes hazards depending on the dependencies between stages

and the type of hazard.
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4.3.3.2 Design Hierarchy

We initially implemented the prioritization of pipeline hazards in a distributed manner.

Every stage had access to other dependent stages’ hazard signals, using it to assess

whether they could process new instructions. Our initial implementation was not an

optimal solution because it recreated the same combinatorial logic multiple times at

different stages. However, it proved to be a scalable solution while each stage of the

processor was being implemented. Eventually, this implementation was scrapped and

replaced by a single Pipeline Control component, which was a centralized control scheme

in which a priority hierarchy was assigned to each stage.

The hierarchy for pipeline hazard stalls was mostly anti-symmetrical in comparison

to the pipeline stage’s depth. Deeper stages had priority, because a hazard meant that

probably every single stage preceding it would have to stall until the hazard was solved,

preventing instruction flow. Table 4.1 shows stage-hazard dependencies. Stages that can

create hazards are located on the top of the chart while stages stalled by these hazards

are located on the left. The Register File stage is never stalled since this stage does not

have any contention for resources (they were solved during Instruction Dispatch).
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1 Program Counter X X X X X X

2 Instruction Memory X X X X X X

3 Jump Decoder X X X X X X

4 Register Rename X X X X X

5 EU Demux X X X X

6 Instruction Dispatch X X X

7 Register File

8 Reservation Station X X

9 Execution Units X X

10 Common Data Bus X

11 ReOrder Buffer

Table 4.1: Hazard Hierarchy Label Pipeline stages (left) stalled by hazards (top)
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Each individual stage sends hazard signals to the Pipeline Control component to be

prioritized accordingly. Then, our centralized system replies with necessary halt signals

to all the dependent stages, making them halt their execution.

4.3.4 Protocols

Communication between the processor’s stages has to happen at a resolution of one

clock cycle. Because this setup only allows for simple combinatorial logic, communi-

cation protocols cannot be readily implemented in our system. This limitation is why

our processor relies on hazard and stall signals from the centralized Pipeline Control

component. Within this component, a simplified preemption system prioritizes hazard

signals and makes active pipeline stages stall their predecessors.

Our processor’s default data storage system is single-cycle latency memory imple-

mented in BlockRAMs, which does not need communication protocols to control it.

However, BlockRAMs can only hold a limited about of memory, and a larger amount

of memory in SRAMs might be needed for larger applications. An SRAM controller

involves a handshaking protocol with acknowledgments to requests. The requests are

quite possibly serviced with non-deterministic latency if the requests go over a standard

bus which requires arbitration. To handle data read and write requests, a designer can

implement this protocol in the load/store execution unit through a finite state machine.

The presence of other protocols in our system is possible through custom custom

execution units. These EUs might interface with off-processor devices or even other

processors. Due to the application-specific nature of such systems, the designer must

optimize such protocols for their specific system.

4.4 Processor assessment

Once the processor structure, components and connections were assembled, the proces-

sor functionality was assessed through software execution and synthesis. This process

involved multiple simulations followed by debugging, which led to a more robust as-

sessment of the processor’s capabilities, limitations and reconfigurability. Hephaestus’

instruction set architecture exposes this functionality to software, serving as an interface

between a program’s instructions and the processor’s underlying semi-custom hardware.
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4.4.1 Instruction set architecture

Our extendable superscalar architecture provides the benefits of mainstream optimized

general-purpose processors and custom hardware specialization for a variety of compu-

tational paradigms. However, this flexibility means that we cannot adhere completely

to a standard instruction-set architecture (ISA). Because we allow custom execution of

instructions, it necessarily follows that our ISA should be flexible enough to incorporate

encodings for these custom instructions. Even though RISC-style ISAs are becoming

a poor match for rapidly changing underlying fabrication technology [89], it would be

unproductive to require switch to a completely different ISA . In order optimize the

architecture, we created a solution that uses the most common instructions and ad-

dressing modes in the MicroBlaze processor [15]. The default processor configuration

implements an ISA which includes register and immediate addressing modes for ALU

and Load/Store operation. However, the ISA is flexible enough to accommodate new

or additional custom instructions.

To differentiate among addressing modes, we reserved two bits in the instruction

width. Each of these bits corresponds to each of the instruction’s operands. The bits

for not-needed operands are sent unchanged through the pipeline; thus, hard-coded

data values can be attached to the original instruction for immediate addressing. Jump

instructions don’t need any of their operands, so the whole instruction is left unchanged

and operands are concatenated with the immediate bits to create a larger immediate

value.

The target execution unit and the functions within the EU are encoded in necessary

instruction bits. There is no global method for doing this because of custom EUs.

However, we explicitly define the maximum number of functions per EU to automatically

set the encoding width to the minimum number of bits.

The remaining bits in the instruction are left for encoding the access registers for

the destination and operands. Depending on the user-set width for the instruction, an

appropriate number of bits will be padded to the end of the instruction, comprising

immediate value bits. Figure 4.14 shows the structure of a 32-bit instruction with

encoding for four execution units and a maximum of sixteen functions for each EU, and

a register file size of sixteen registers (with thirty-two physical registers).

Even though the locations and sizes of the ISA components change, they are directly

correlated to the parameters that a designer chose when creating the semi-custom sys-

tem. However, the designer can also override these automatically calculated minimum-
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Figure 4.14: Instruction Set Architecture - The number and location of bits are
dependent on four system parameters that use minimum binary encoding length.

length binary codes with larger widths to provide a more uniform instruction structure

across multiple configurations, allowing a simpler encoding of software instructions.

4.4.2 Software execution

The initial selection of software programs to execute in our processor included programs

like Dhrystone and other benchmarks. Dhrystone is a synthetic integer benchmark for

assessing performance characteristics. However, we quickly found out that synthetic

benchmarks could not provide a good assessment of our application-based processor,

and that Dhrystone was not appropriate as it does not mimic modern workloads within

specialized processors [90]. Other more robust application-based benchmarks were not

used since we did not have a compiler for our processor. Compilers generally target

sequential execution in time (software) and not parallel execution in space (hardware).

The necessary work to create a compiler for a polymorphic architecture provides an

interesting tangential research topic in reconfigurable computing, but it is beyond the

confines of this dissertation. Unfortunately, the lack of a compiler heavily hampered

our ability to evaluate our processor through more robust methods such as performance

benchmarks and complex applications.

Matrix multiplication was used as the testing software in our processor. Due to the

complexity of writing custom assembly code, the application complexity was kept at a
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minimum. The processor executed the multiplication of two matrices with sizes 2 × 3

and 3× 4 for a resulting matrix of size 2× 4. The result of the matrix multiplication is

shown below:

[
C11 C12 C13 C14

C21 C22 C23 C24

]
=

[
A11 A12 A13

A21 A22 A23

]
×

 B11 B12 B13 B14

B21 B22 B23 B24

B31 B32 B33 B34


where

C11 = A11 ×B11 +A12 ×B21 +A13 ×B31

and in general with m = 2, n = 3 and p = 4, 1 ≤ i ≤ m, 1 ≤ j ≤ p,

Cij =

n∑
r=1

Air ×Brj

The execution of this program requires 24 multiplications and 16 additions, not

counting the extra operations necessary to keep track of indexes and address location

offsets. There are multiple dependencies for calculating each value, making it an appro-

priate program to run an test in a soft-core processor. Its lack of custom instructions

also makes it suitable to compare our implementation against that of a MicroBlaze.

Table 4.2 shows the results obtained when executing the program in our processor and

in a MicroBlaze system for the same Xilinx Virtex 5 board.

MicroBlaze Hephaestus

Frequency(MHz) 200 137

Execution (clock cycles) 377 208

Execution time (µs) 1.89 2.04

Table 4.2: Soft-core processor execution comparison. Results obtained when run-
ning matrix multiplication in Hephaestus and MicroBlaze

The execution results show that while competitive, our processor is outperformed

by the MicroBlaze in overall timing. This is to be expected as MicroBlaze is a mature

product that has undergone many revisions. However, MicroBlaze’s optimization relies

on using particular board resources (which hamper portability) and utilizing an opti-

mized and immutable ISA (which prevent customization). On the other hand, Hephaes-

tus’ structure is independent of device-specific components, allowing portability at the

expense of performance tweaking. Additionally, our flexible ISA allows custom instruc-

tions and execution units, making application performance gains through local parallel
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execution possible. The performance results reflect the performance for general-purpose

multiplication and not a customized processor with for example dedicated cryptographic

or digital signal processing instruction cores.

4.4.3 Simulation and debugging

ModelSim [76] was used to test all the components and stages. Initial testing began

in simulation, with test benchmarks set up to stimulate the system with a flow of

instructions.

The Instruction Memory component was modified to initialize its values from a text-

file in both simulation and implementation, which resulted in a merging of our simulation

and implementation processes. From that point on the only difference between the

two was that the simulation file stimulated the clock signal while the implementation

connected it to the device’s global clock.

The simulation in Figure 4.15 shows the instruction flow from an initially empty

system. These instructions traverse the length of the pipeline from one stage of the

pipeline to the next. This traversal is represented visually in the horizontal time axis,

with the instructions moving left to right in time while crossing each pipeline stage. The

numeric data values shown in the simulation look esoteric because they are the encoded

values used by the processor.

The simulation is the result of feeding the processor the instructions for a matrix

multiplication of two matrices with sizes 2× 3 and 3× 4. The matrices were defined as

A= [
1 3 4
2 0 1

]
B=  1 2 3 1

2 2 2 2
3 2 1 4


Resulting in a multiplication matrix with values

C= [
19 16 13 23
5 6 7 6

]
To compensate for the lack of an appropriate compiler, a python script was used to

convert assembly language for the processor to the instruction set architecture, using

the minimum bit encoding lengths explained in section 4.4.1. The instruction and data

66



Figure 4.15: Pipeline Simulation - Pipeline traversal of instructions through all pro-
cessor stages.
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memories were initialized with the appropriate series of instructions and values before

simulation and implementation. Locations for the matrices data values were assigned

arbitrarily but ensuring there was enough allocated memory space to hold all the results

and variable values. The resulting data written to memory for the space allocated to

the C matrix were the correct matrix values from multiplying matrices A and B. Figure

4.16 shows the results that have been written in BlockRAM, after program execution,

corresponding to a linear memory array implementation of the matrix C values 19, 16,

13, 23, 5, 6, 7, 6.

Figure 4.16: Matrix Multiplication Results - The box shows the C-matrix data
written to main memory after the matrix multiplication. The matrix values are stored
linearly; A starting at address 128, B at 144 and C at 190.

The corresponding C code for the same array multiplication program in a MicroBlaze

processor can be seen in Code 4.7. The execution of the compiled program results in the

output illustrated on Code 4.8, thus achieving the same result as expected from both

analytical methods and execution in our processor.

While a lot of time was spent on implementation and simulation of the processor,

even more time was used for debugging the system during synthesis. The debugging

process was mostly comprised of testing, simulating and synthesizing the functionality

of individual components, and subsequently refining requirements, implementation and
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Code 4.7: C code for Array Multiplication

for ( i =0; i<m; i++) {
for ( j =0; j<p ; j++) {

for ( k=0; k<n ; k++) {
C[ i ] [ j ] += (A[ i ] [ k ] ∗ B[ k ] [ j ] ) ;

}
}

}

Code 4.8: Results from MicroBlaze Execution

Total execut ion c lock c y c l e s = 377

C [ 0 ] [ 0 ] = 19
C [ 0 ] [ 1 ] = 16
C [ 0 ] [ 2 ] = 13
C [ 0 ] [ 3 ] = 23
C [ 1 ] [ 0 ] = 5
C [ 1 ] [ 1 ] = 6
C [ 1 ] [ 2 ] = 7
C [ 1 ] [ 3 ] = 6

interfaces to fix errors. It was during this process that the tradeoff between ideal and

applicable implementation defined the structure of our processor.

4.4.4 Synthesis

Once the main hardware implementation is done, synthesis was used for determining the

maximum and minimum FPGA slot areas that the Hephaestus processor configurations

can take. The synthesis process on Xilinx ISE 8.2.2 was set with an optimization goal

for speed and a high optimization effort. Since many of the more complex processor

configurations might not fit in our Virtex-II Pro evaluation board, the synthesis target

device was a XC5VLX220 Xilinx Virtex 5 board, with a Configurable Logic Block (CLB)

array of 160 rows x 108 columns, 138240 slices and 6,912KB of BlockRAM (192 36KB-

BlockRAMs).

The main techniques used for synthesis involved the use of system-level parameters

listed in section 4.1. These parameters were defined as a VHDL package file, which all

processor components included. Through the use of this package, the system parameters

were propagated to all structural, combinatorial and processing hardware-description

language statements. Because of the high level of customization of our processor, great

care was used to make sure all parameters could interact with each other in unison. For

example, the implementation of the Register Rename component involves the use of ten

system parameters defined at synthesis time.
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1. ISA Registers: How many registers can be addressed by instructions.

2. Physical Registers: The size of the Register File, including rename registers.

3. Reg address size: Bits required for minimum binary encoding of register num-

ber.

4. Number of EUs: Number of execution units in the system.

5. EU Functions: Maximum number of operations per execution unit.

6. Opcode Size: Bits required for minimum binary encoding of EU, EU function and

addressing mode.

7. Immediate Size: Bits used for immediate addressing mode.

8. Instruction Size: Total bits allocated for instruction, which include op-code,

destination and two source registers, and immediate bits.

9. Interleaving: Number of write ports to the Register/Future File.

10. Instruction Issue: Number of instructions issued per clock cycle.

Figure 4.17 shows the relationships between these ten parameters. They all con-

tribute to define the generation of structures, loop limits, signal width and signal as-

signments for the Register Rename component described in section 4.3.2.4.

We limited the synthesis process to our specific design only. Hence, we did not make

our processor a component of a larger system, nor did we attach it to a bus. Because

there was no need to create a fully embedded system, we did not use Xilinx’s Embedded

Development Kit (EDK) software, which allows for the addition of user-defined IP-

cores into a system. Instead we used their Integrated Software Environment (ISE)

which focuses more on HDL-based synthesis. All processor communication was kept

local, including instruction and data memories. This default design would synthesize

directly onto an FPGA board without the need for other functional blocks. These other

functional blocks used in embedded systems include MicroBlaze processors, processor

local buses (PLB) and on-chip peripheral buses (OPB). The presence of multiple masters

in the buses would add a non-deterministic amount of delay for communication over the

bus. Even if no arbitration were needed, a minimum of five clock cycles would be used

in bus communication delay.
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Figure 4.17: Synthesis parameter dependencies - The figure shows all parameters,
assigned and calculated, necessary for register renaming.

Instead, we provide a fully autonomous and portable HDL processor solution which

can be dropped and used as needed by a designer. The processor can be used for

stand alone applications, multi-threaded hardware-based systems, and embedded sys-

tems. The HDL description of the processor might not provide the optimal synthesis

in a specific device, but it does allow synthesis in multiple devices and FPGA fami-

lies. This capability is consistent with current reconfigurable computing programming

models, where threads can migrate their location from software to a hardware-based

solution in multiple reconfigurable devices. Customization of a Hephaestus processor

can act as a computational thread executing on synthesized hardware, enabling coarse

grain thread-level parallelism (TLP) in a reconfigurable system. Multiple instances of

identical synthesized processors can lead to symmetric multiprocessing (SMP), while

synthesis of heterogeneous processors customized for specific tasks creates an asymmet-

ric multiprocessing (ASMP) system.

Our solution additionally allows a designer to provide synthesizable reconfigurable

custom logic, which can hone-in on exploitable application-level code that more generic

processing cannot compensate for.
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4.4.5 Reconfigurability

Another contribution of our project is providing processor reconfigurability through the

use of high-level system parameters, in essence abstracting away the implementation

details from a system designer. Our solution allows the designer to tailor the processor

architecture to the particular application at hand, a solution not available with standard

microprocessors. Even other soft-core processor implementations are limited to a rigid

architecture. Instead, by weighing the costs and gains of a flexible Hephaestus processor,

a designer is able to create an optimal solution, even in a confined area within an FPGA.

Area confinenment is important in reconfigurable computing because it can enable

partial run-time reconfiguration. This type of reconfiguration not only reduces the

overhead of having to reprogram the whole FPGA at once but also to reconfigure an area

of the FPGA while the rest is still active. This ability is the key point of current research

in reconfigurable computing [24, 91, 92, 93, 94, 95, 96, 97, 98], yet few researchers have

addressed the issue of the costs of parallelism and performance in terms of reconfigurable

area [19, 73, 99].

A global view of reconfiguration analysis shows a lack of fitting criteria to determine

the overall costs of a system. Our processor provides a flexible solution for parallel

performance gains through an optimized processor architecture, and also establishes a

performance criterion based on deterministic area use (Chapter 6). This deterministic

area, a requirement needed for partial run-time reconfiguration, limits the maximum

area that can be used by a partially reconfigurable module. It is useful if such modules

were to be a processing elements, and better yet independent processor cores like ours.

We can force all of our processor configurations in a multi-processor system to occupy

the same amount of fabric space and geometry. This ensures that each processor can be

replaced by any of its different instances, with minor disruption to the system. Because

of the high dependency between processor configurations and their associated area costs,

we delay the discussion of area constraints until Chapter 5, where we have establish what

constitutes the area of a processor and how it can be used for slotted synthesis.

4.4.6 Limitations

Hephaestus is a very flexible processor architecture, but this flexibility imposes some

limitations in our system. Communication support for microprocessor bus architectures

like the Processor Local Bus (PLB) or the On-chip Peripheral Bus (OPB) is not an
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integral part of the processor design. If needed, a designer can use a PLB or OPB

wrapper core to connect the processor to other devices attached to a bus.

Like the MicroBlaze, our processor connects to local memories for data and instruc-

tion. The sizes of such memories are often too small to store programs with large data

sets. To solve that, a hierarchical set of memories is often used, and the accesses to

memory are handled by a memory management unit (MMU). This is a solution which

offers virtual memory, address translation and memory protection. However, many em-

bedded systems do not need this level of memory management, and memory policies

can be created by a designer to best fit its system. We previously mentioned that our

data memory component was configurable and could be customized to an application,

even enabling support for data cache. Additionally, even though our instruction mem-

ory initializes its values during synthesis, it also allows instructions to be written, like

a normal memory unit.

The final limitation is the lack of a status register. Usually, this register stores

information like arithmetic overflow, rollover accumulations and zero-result operations.

However, since our processor executes out of order, access to this information might not

reflect the in-order state of instruction execution, making the information ambiguous.

The most common use of a status register is reading the zero-flag to determine the result

of a branch-if-equal (BEQ) or branch-if-not-equal (BNE) instructions. Our processor

instead reads the actual result when determining the result of a branch operation,

followed by a comparison. Because we broadcast this result as soon as it is available,

this generally result in no extra delay.

4.4.7 Complexity

Detrimental consequences of our processor included increased hardware fabric area use,

as anticipated. Evaluation of these costs will be examined in detailed in Chapter 5.

Additionally, when doing partial reconfiguration, area is bound to be wasted. To allow

a constant area for this process, we need to account for our maximum processor area

constraint, and force all configurations to use it. Hence, fabric area is bound to be

wasted in simpler or heterogeneous processor configurations due to less extensive use of

active resources, which is not mirrored in its use of bounded area.

The increased processor complexity also resulted in increased place-and-route com-

plexity and time when fitting each processor configuration into the allocated area. It
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is clear to see how increasing the parallelism of the processor creates and increased

need for resources. The next chapter evaluates not only this area increase but also the

associated performance gains.

4.5 Summary

We used the VHDL hardware description language to define a vendor-independent and

portable processor architecture. This superscalar processor allows the issuing of mul-

tiple instructions from memory while providing execution units for parallel execution

of instructions. The processor architecture’s structure is controlled through configura-

tion variables, and structural details are automatically implementated in reconfigurable

FPGA fabric, and hidden away from the programmer for ease of use.

The processor organization consists of an 11-stage pipeline, with in-order issue, out-

of-order execution and in-order completion of instructions. Hazards created by pipeline

stages were handled in a hierarchical centralized control unit. It solves contention for

limited resources by stalling the pipeline, and multiplexing such resources in time. We

set our interface with software with a RISC-like ISA that accomodates extensions for

custom logic and user-defined execution units.

The simulation and synthesis runs showed the correct behavior of our processor.

However, Hephaestus’ flexibility also creates ambiguity on the performance gains ac-

quired by sacrificing FPGA area.
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Chapter 5

Evaluation

In order to analyze the area requirements of our superscalar processors, we synthe-

sized configuration permutations with respect to the system’s independent variables

Instruction Issue, Number of EUs, Interleaving, Register File Size and Data Width.

These configurations provided the full selection criteria that a designer might need for

their particular system. Because performance for semi-custom circuitry, as with fully-

custom circuitry, is based on the specific application, many performance metrics like

integer and floating point benchmarks did not provide an adequate performance assess-

ment. In many instances, such benchmarks were not even applicable to the circuit.

Instead of using them, we generalized our performance metric to encompass the average

potential case for a well-designed hybrid hardware/software program. User logic was

not evaluated, but its restrictions and liberties when adhering to a synthesized system

are discussed as part of our results.

Each configuration’s synthesis resulted in a minimum time delay for correct syn-

chronous signal propagation, thus setting the system’s maximum processor clock fre-

quency. Additionally, the synthesis process specified the total FPGA area and resource

use. With this information, we evaluated our independent variables’ impact in resource

consumption, and analyzed their relationship to provide a deterministic assessment of

area, a useful evaluation for partial reconfiguration.
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5.1 Area use

As mentioned previously, our synthesis tool Xilinx ISE 8.2.2 was set with an optimization

goal for speed and a high optimization effort for a XC5VLX220 Xilinx Virtex 5 board.

This setup provided the largest processing performance while sacrificing FPGA area to

achieve it. The processor was initially synthesized for the FPGA device and the default

place-and-route setup (with no constraints) was used.

5.1.1 Synthesized area

Much of area used to synthesize our design resulted from low quality optimization by the

synthesis and the place-and-route algorithms. Historically, area-inefficient designs result

from the high complexity needed when mapping a system to finely granular hardware

[100]. Because the capacity of modern FPGAs surpass millions of equivalent ASIC

gates, routing becomes the dominant factor in the final performance of the design [101].

To reduce the synthesized area and consequently reduce routing, Xilinx provides

relational placements macros (RLOCs), which specify the placement of particular el-

ements with relationship to each other. RLOCs can potentially increase performance

between 30% and 50% for common applications with high device utilization. However,

this performance increase depends on the careful placement of static circuitry within

a regular design structure [102]. Because of our processor’s flexibility, its underlying

structure varies wildly and is therefore not a good candidate for RLOC constraints.

The usefulness of RLOC techniques is generally limited and we instead used the default

automatic tool placement with competitive results. Even with larger processor areas,

we could still constrain these areas for our purposes.

5.1.2 Area constraints

The potential benefit of our research is providing an area assessment for hardware pro-

cessing, as part of ongoing field efforts to better use dynamic partial reconfiguration

within FPGAs. Partial reconfiguration has multiple advantages, since it minimizes the

reconfiguration overhead from a full reconfiguration, and allows static parts of the FPGA

to continue running. To benefit from this technique, designers must use the aforemen-

tioned constraints to confine the synthesizable hardware area into a fixed synthesized

area. For our project, we defined the area a processor core takes and the placement
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boundaries for the processor. This facilitates the placement of multiple processor in-

stances (with possibly different configurations) within the FPGA, to exploit thread-level

style parallelism (TLP). Additionally, the fixed area per processor allows the swapping

of processor configurations in and out of the FPGA with minimum overhead through

partial reconfiguration methods.

To start evaluating the area needs of processor configurations, we synthesized,

placed and routed a processor with Instruction Issue = 2, Number of EUs = 2,

Register File Size = 16 and Data Width = 16 bits. This configuration has its sys-

tem variables near the average processor complexity, and as an average case, is a good

indicator of area requirements for processing. Figure 5.1 shows the area used by this

processor configuration in the target device, with color-coded information for the dif-

ferent area used per pipeline stage. This area reflects an automatic placement scheme

with no area constraints by the user.

Figure 5.1: Unconstrained Area - The area used by the processor is a result of auto-
matic placement by Xilinx’s place and route tools.

Xilinx’s synthesis tools shape the area of a particular design through user constraints.

Our user constraints file (UCF) used AREA GROUP constraints to fit our design within

specific area boundaries for the targeted device. AREA GROUP constraints are used for
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partitioning the design into different regions for mapping, packing, placement and rout-

ing [103], but we used them to affect the location and maximum area of our processor

as a whole. By placing suitable area constraints during synthesis, all processor config-

urations occupy the same amount of fabric space, thus making reconfiguration of the

system possible. This approach closely follows modern trends that seek performance in-

creases through multiprocessor architectures running multi-threaded applications, with

each thread executing in different reconfigurable locations.

According to current reconfiguration techniques, dynamic partial reconfiguration

requires a convoluted manual implementation [104, 105, 106]. The requirements for this

implementation detailed by Mermoud in [105] involve:

• Applying area constraints for each module to be implemented: The module areas

must follow some strict guidelines:

1. They must have a four-column minimum width.

2. Their width is always a multiple of four columns (e.g. 4, 8, 12, ...).

3. They are always the full height of the device.

4. The boundary between two modules is placed on an even column (e.g. C19-

C20).

5. The area groups defined in the .ucf file are in the .ucf file with MODE=RECONFIG.

• The floorplanning of all IOBs: Each IOBs has to be wholly contained within the

columnar space of their associated reconfigurable module.

• The floorplanning of all global logic: There must be no unconstrained top-level

logic.

• Constraining bus macros position: LOC constraints are inserted for each bus macro

into the .ucf file. Location of the bus macro is in the boundary between the

modules forming the communication bridge. Each bus macro will occupy a 1-row

by 8-column section of TBUF site space.

• Check for pseudo logic: Pseudo logic, created when a net connects one module to

another is strictly forbidden in dynamic partial reconfiguration.
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Following these requirements, we created the .ucf file in Code 5.1. The constraints

declare everything within a design to be part of the AREA GROUP AG Implementation,

and then set the area for this group to encompass all the slices from (column 0, row 0)

to (column 51, row 159), hence using 160 rows (Y axis) and 52 columns (X axis).

Code 5.1: Fixing the area to 52-column width and full height of device

# Star t o f Const ra int s ext rac ted by Floorp lanner from the Design
INST ”/∗/” AREA GROUP = ”AG Implementation” ; # This encompasses the whole des ign
#Y ranges from 0 to 159 , f u l l he ight o f dev i ce
AREA GROUP ”AG Implementation” RANGE = SLICE X0Y0 : SLICE X51Y159 ;
AREA GROUP ”AG Implementation” MODE = RECONFIG;

Since the height of the XC5VLX220 is 160 rows, we fulfill the full height constraint,

and the 52 columns fulfill the four-slice column boundary in an even column require-

ments. After applying these constraints to the processor in Figure 5.1, the placing and

routing of the processor elements constraint the area to the left hand side of the device,

as shown in Figure 5.2. The area in the middle of the FPGA indicates that some of

the inputs and outputs were routed in non-columnar IOBs. To solve this situation,

one would manually add more constraints for each input/output bit of each different

processor configuration (and location).

Figure 5.2: Constrained Area 1 - Processor with area constraints in the first 60 columns
of the device.
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The area in this processor was constrained to 160 rows × 52 columns, starting at

row 0, column 0. However, we can also force a different location for the processor with

the area remaining constant. We used Code 5.2 to force the location of the processor

to the adjacent slot to the right of the original location. The result of this placement is

seen in Figure 5.3.

Code 5.2: Fixing the location to start at column 52

# Star t o f Const ra int s ext rac ted by Floorp lanner from the Design
INST ”/∗/” AREA GROUP = ”AG Implementation” ; # This encompasses the whole des ign
#Y ranges from 0 to 159 , f u l l he ight o f dev i ce
AREA GROUP ”AG Implementation” RANGE = SLICE X52Y0 : SLICE X103Y159 ;
AREA GROUP ”AG Implementation” MODE = RECONFIG;

Figure 5.3: Constrained Area 2 - Processor with area constraints in the second 60
columns of the device.

To emulate a system which exploits TLP, we need multiple processors. Presum-

ably, each processor would adopt a computational thread to run, and there would be

some central module, which received the results from thread computations. A sample

system would implement this functionality directly, synthesizing different processor con-

figurations as needed. Figure 5.4 shows the implementation of a homogeneous double

processor system. No area constraints are used, thus each processor is automatically

placed and routed by the synthesis tools.
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Figure 5.4: Dual-processor system - Implementation of a double processor system.

This implementation is adequate, and shows the FPGA’s flexibility to implement

different system configurations, depending on the design requirements. However, this

setup does not capitalize in the potential for partial reconfiguration. Instead of syn-

thesizing different configurations for every new design, one can create the central static

module and make the different processors into dynamic modules. Hence, different com-

putational threads can be mapped into the dynamic modules, execute their tasks, and

be replaced by active threads afterwards through partial reconfiguration. This system

setup requires us to once again constrain the area of dynamic modules to static bound-

aries and locations. By adhering to these requirements, processors can be inserted,

removed or swapped in order to time-multiplex the resources of the FPGA, while let-

ting other modules continue running simultaneously.

A sample UCF file with corresponding area constraints for the double processor

system is shown in Code 5.3. Each processor occupies the same 160 rows × 52 columns

area as before, but their left boundary locations start at column 0 and column 104.
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Code 5.3: Double-processor User Constraints File

# Star t o f Const ra int s ext rac ted by Floorp lanner from the Design
INST ” Proc e s s o r 1 In s t anc e /∗” AREA GROUP = ”AG Implementation 1 ” ;
INST ” Proc e s s o r 2 In s t anc e /∗” AREA GROUP = ”AG Implementation 2 ” ;

#Y ranges from 0 to 159 , f u l l he ight o f dev i ce
AREA GROUP ”AG Implementation 1” RANGE = SLICE X0Y0 : SLICE X51Y159 ;
AREA GROUP ”AG Implementation 2” RANGE = SLICE X104Y0 : SLICE X156Y159 ;
AREA GROUP ”AG Implementation 1” MODE=RECONFIG;
AREA GROUP ”AG Implementation 2” MODE=RECONFIG;

Figure 5.5: Dual-processor floorplanning - Each processor occupies the same area but
is located in different sections of the FPGA.

We intentionally left a middle portion of the FPGA unused to reflect where a static

module for the system could be placed. Figure 5.5 shows the new placement and area

constraints for the processors, reflecting the dynamic setup explained previously. A

designer would enable partial reconfiguration by swapping pre-synthesized processor

configurations with the required constraints. The reconfiguration overhead would be

reduced to a fraction of the full partial reconfiguration costs, namely the constraint area

divided over the total FPGA area. However, our area constraints have been arbitrary

in nature up to this point. With the UCF and partial reconfiguration techniques and

requirements in place, we still need to evaluate how much performance is obtained per

area unit of the FPGA, and which FPGA resources are being used.
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5.1.3 FPGA resources

FPGA resources consumed by our design were measured by the total number of logic

elements used. Logic elements comprise the majority of the FPGA real estate, and are

implemented as a two dimensional mesh. For Xilinx devices, each logic cell contains

a Look-Up Table (LUT) and a D-type flip-flop. FPGA slices include LUTs combined

with multiplexers and some arithmetic logic like adders and carry-chains. Finally, a

configurable logic block (CLB) is comprised of slices and routing resources. The com-

binations for logic cells, slices and CLBs have changed with the evolution of Xilinx’s

FPGA families. Table 5.1 shows the logic arrangement for Virtex II families and Table

5.2 for Virtex 5 families.

Virtex II Pro

CLB Slices 4

Slice

LUTs 2

1-bit registers 2

Multiplexers 2

Adders 2

Carry chain 1

Logic Cell LUT inputs 4

Table 5.1: Virtex II-Pro components:

CLBs, slices and logic cells.

Virtex 5

CLB Slices 2

Slice

LUTs 4

1-bit registers 4

Multiplexers 3

Adders 2

Carry chain 1

Logic Cell LUT inputs 6

Table 5.2: Virtex 5 components:

CLBs, slices and logic cells.

The CLB’s LUTs, registers, adders and multiplexers are efficiently used by the syn-

thesis tools to create storage, arithmetic and logic elements. Storage elements comprise

RAM, ROM, registered memories and latched memories. Arithmetic elements include

adders, counters and accumulators. Finally, logical elements include comparators, mul-

tiplexers and priority encoders.

Storage elements for a pipelined design usually involve multi-bit flip-flop registers,
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but the registers can also be configured to act as latches. Additionally, LUTs provide

combinatorial bit storage in the form of Read-Only-Memory (ROM) logic truth tables.

Outside the CLB scope, we can use the embedded Block RAM components for larger

storage, like we did for the Instruction and Data memories of our processors.

Arithmetic elements in our design are mostly used by the execution units to calculate

results and address offsets. Most of the counters and accumulators were used in the

Register Rename stage for counting outstanding register read requests.

The logical elements were used extensively throughout each stage of the design.

Due to the polymorphic nature of our processor, a carefully designed ISA bit-encoding

scheme was not possible. Instead, we needed to use many comparators at every desicion

point in the pipeline. These points included testing for jump and branch instructions,

comparing source registers to previously renamed destination registers and comparing

each broadcasted result in every reservation station. Multiplexers were used for appro-

priate input selection to outputs, especially during the Execution Unit Demultiplexer

and Instruction Dispatch stages.

5.1.4 Area cost metrics

FPGA slices, which can be configured for storage, arithmetic and/or logic, were our

unit of measurement for design area costs. However, the use of FPGA-specific elements

like adders, comparators and multiplexers were also evaluated. Specifically, we collected

the bit-level aggregates required for all of our processor configurations. All these were

cross-tabulated with architecture configurations for different issue widths, execution

units, register files, data sizes and memory interleaving. This spanned processors with

Instruction Issue ∈ [1,4], Number of EUs ∈ [1,5], Register File Size ∈ {08, 16,

32} and Data Width ∈ {8, 16, 32} bits and Interleaving ∈ {1, 2, 4} for a total of 540

different synthesized processor configurations.

While FPGA slices are a good resource measurement unit, it remains difficult to

compare resource use among different FPGA families. We used CLBs, the smallest

discrete configurable elements in the FPGA, for our device comparisons. Table 5.3

shows the CLB density for Virtex II and Table 5.4 for Virtex 5 devices. Stating that

Virtex 5 has the same computational density of its predecessors just because of its

registered bits would be an understatement. To be more objective, for the aggregate

number of bits used for all 540 processor configurations, the average use of slices as
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Virtex II Pro CLB density

Slice
4-input LUTs 2

1-bit registers 2

Slice density
LUT bits 32

Register bits 2

CLB density
LUT bits 128

Register bits 8

Table 5.3: Virtex II-Pro CLB density:

LUT and register bits per CLB.

Virtex 5 CLB density

Slice
6-input LUTs 4

1-bit registers 4

Slice density
LUT bits 256

Register bits 4

CLB density
LUT bits 512

Register bits 8

Table 5.4: Virtex 5 CLB density: LUT

and register bits per CLB.

LUTs was 72% while register slices use was 28%, with less than 2% variation. When we

applied these percentages to the CLB density bit types, we obtained 0.72 × (512/128)

+ 0.28 × (8/8) = 3.16 density increase per CLB. Our evaluation for area costs can thus

be scaled up and down according to the device family.

Additionally, if the area cost were to be evaluated in terms of physical real estate,

we would use the slice cost results for the appropriate family (or even other vendor

FPGAs) and then normalize the area for the fabrication technology [19]. This fabrication

technology λ, expressed in nanometers, reflects the average half-pitch of a memory cell.

For Virtex 5 devices, λ = 65 nm, while for Virtex 4 devices and earlier λ = 90 nm.

For real state calculation, we would normalize each device by λ2. The physical density

increase for Virtex 5 devices, normalized by (65nm2), compared to Virtex 4 devices

normalized by (90nm2), is then 6.058 density increase per CLB.

With our area cost assessment, we are able to scale our FPGA resource-use to an

appropriate device. Depending on the necessary area constraints for partial reconfigu-

ration, designers can now chose the appropriate processor complexity to maximize their

system performance.
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5.2 Performance gains

The main dependent variables for our configurations were fclk (the system’s clock fre-

quency) and reconfigurable fabric area. The clock frequency has an important defining

role for overall performance of the superscalar processor, and hence the synthesis tool

was set with an optimization goal for speed and a high optimization effort to maximize

fclk and minimize delay.

5.2.1 Clock frequency limitations

During the design process, we identified the Register Rename and Instruction Dispatch

pipeline stages as the performance bottlenecks for our processors. These stages were

trimmed as much as possible to minimize their delay. However, the complex processes

of solving instruction dependencies and arbitrating register port requests are still the

main bottlenecks of the system.

Register renaming is dependent on Instruction Issue, and as stated before, its

processing complexity increases quadratically with larger issue widths. However, larger

issue widths increase the chances of finding ILP and executing multiple instructions

simultaneously. On the other hand, the Instruction Dispatch stage is dependent on the

Number of EUs parameter, where multiple instructions heading to each individual EU

request read ports from the Future/Register file in the next stage.

5.2.1.1 Register Rename delay

To aleviate some of the Register Rename complexity and associated delay, a designer is

able synthesize a system with a smaller Register File Size. This reduces the num-

ber of entries to examine when searching for reclaimable registers during the register

renaming process.

Like we described earlier (section 4.3.2.4), a large Register File Size creates a

large renaming pool. This pool prevents hazards from lack of reclaimable registers, but

creates a large delay. A small Register File Size improves the fclk, at the expense of

added clock cycles spent waiting for reclaimable registers from a small renaming pool.

In general, our superscalar processor will extract most of the ILP from the instruction

stream, and the decision for an appropriate Register File Size is mostly based on

maximum area requirements.
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5.2.1.2 Instruction Dispatch delay

An unexpected finding was the effect that the Register and Future File parameter

Interleaving had on the Instruction Dispatch stage (described in section 4.3.2.6). To

service requests, this stage assigned each instruction with its necessary read ports. But

our processor alleviated this need by broadcasting results, thus safely ignored port re-

quests for in-flight values. This reduced need for ports proved beneficial, and reduced

the amount of memory Interleaving needed, making the logic for port assignment

easier, smaller and faster. Table 5.5 shows the amount of instructions in-flight and in-

registers for a program running matrix multiplications in Hephaestus processors with

Interleaving = 4. The in-flight instructions comprise most of the instructions, im-

mensely relaxing the port requirements.

Interleaving 4

In-flight 72%

In-register 28%

Cycles 282

R.Buffer 4x4

Table 5.5: LUT and reg-

ister bits per CLB.

Interleaving 2

In-flight 72%

In-register 28%

Cycles 286

R.Buffer 2x8

Table 5.6: LUT and reg-

ister bits per CLB.

Interleaving 1

In-flight 73%

In-register 27%

Cycles 305

R.Buffer 1x20

Table 5.7: LUT and reg-

ister bits per CLB.

Table 5.6 shows minimal costs for slashing the number of available register ports

in half, with only 4 clock cycles (1.4%) of timing penalty. On average, for 180 pro-

cessors with varying issue widths and number of execution units, a reduction of the

Interleaving parameter to 2 yielded an 8.9% increase in fclk and 10.2% reduction in

area.

Interleaving can be further reduced to one. This means that the total number of

read ports available is equal to the value of Copies. Even though reducing this value

would reduce the Instruction Dispatch delay and area considerably, it will also put an

upper limit to the number of instructions able to be written to the Register File by

the ReOrder Buffer. Table 5.7 shows an 8.2% clock cycle penalty for this setup. Even
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though no hazards were found during the Dispatch Stage, there were extra execution

clock cycles needed at the ReOrder Buffer stage, slowing overall performance. Because

only one instruction can be written per clock cycle when Interleaving = 1, the Reorder

Buffer’s number of logic cells has to be increased to accomodate a larger number of in-

flight instructions waiting to be written. The total number of logic cells as described

in section 4.3.2.11 is equal to Interleaving × Reorder Buffer size. This value was

empirically found to be 16 for Interleaving = 4, 16 for Interleaving = 2 and 20

for Interleaving = 1 in the above example. The Interleaving parameter played an

important role in our results for performance density, as smaller values can enhance

run-time performance but at the cost of increased area.

5.2.2 Performance metrics

Standard performance metrics like instructions completed per second (IPS) or instruc-

tions per cycle (IPC) are not suitable for a computationally-intensive hardware based

systems. In semi-custom hardware systems, performance is achieved by ensuring that

execution units are actively performing computations or parts of computations. Fur-

ther, the use of specialized and custom units diverge from the norm of single-operation

instructions. Instead, to make maximum use of the available hardware, a single in-

struction could start a series of operations within a specialized execution unit, taking

multiple clock cycles while keeping the execution unit busy. Consequently, it was not

sensible to count all these operations as a single instruction for performance purposes.

We defined our basic unit of performance as the instruction execution rate. It is

similar in nature to instructions per second, but also deals with the ambiguity of not

knowing the throughput and latency composition of a semi-custom system’s functional

units a priori. To approximate the instruction execution rate, we used a value between

the minimum and maximum of Nissue (the value of Instruction Issue) and Neu (the

value of Number of EUs). The rationale for this was that neither the minimum nor

maximum values for Nissue and the Neu might reflect an accurate representation of the

system. A system with a high Nissue and small Neu might send a large number of in-

structions into the processor pipeline, but these instructions will stall while competing

for the execution units. Likewise, a system with a small Nissue width but large Neu will

be underused due to the limited number of instructions being issued into the EUs. By

consolidating these two parameters into a single value, we take into account the stalling
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from over-issuing and EU disuse from under-issuing, and also the added instruction par-

allelism from an increased number of execution units. Thus this value was an accurate

approximation of the total number of instructions executing each clock cycle. This was

an optimistic approximation for single-cycle instruction systems, but the possibility of

multi-cycle custom instructions in a system makes this value more realistic.

The maximum clock frequency fclk, which normalizes the processor implementations,

reflects the performance costs of complex processor configurations. However, the perfor-

mance gains are still not clearly defined. The reconfigurable execution units can handle

any custom logic, from ALU combinatorial logic to complex subsystems involving sets of

instructions. Assuming that the latter is the norm for hardware-based designs, we can

conclude that the execution units will be heavily used, even with minimal instruction

issue. Consider two cases of superscalar processor configurations with a single instruc-

tion issue and the functional units outlined in Table 5.8. The different functional units

represent a typical setups for floating point operations. Even though a single instruction

is issued per clock cycle (cc), the three floating point EUs can execute in parallel be-

cause of their extended execution latency, which is the time delay between starting and

finishing a single instruction execution. Conversely, a large instruction-issue width aids

in keeping instruction execution active in low-latency EUs. Table 5.9 shows a different

system setup for integer computations, where multiple instruction issuing is needed to

benefit from parallel execution in the system’s low-latency EUs.

Table 5.8: System Setup 1

EU Type Latency

1 ALU 1 cc

2 FP Adder 6 cc

3 FP Multiplier 5 cc

4 FP Divider 15 cc

Table 5.9: System Setup 2

EU Type Latency

1 ALU 1 cc

2 INT Adder 1 cc

3 INT Multiplier 1 cc

4 Custom 3 cc

Although we have presented single-instruction EUs in our example, the number,

types and latencies of the instructions contained within an EU can vary according to

the custom logic that they implement.
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The processor’s instruction parallelism can be expressed in terms of the instruction-

issue width and the number of EUs. The example using Table 5.8 shows that a system

with a single instruction issue is capable of executing in parallel a number of instruc-

tions equal to Neu, the number of EUs. Table 5.9, however, shows that Nissue, the

instruction-issue width, can also set the number of instructions executing in parallel.

We establish the lowest of these two values as the number of instructions that can be

executed in parallel per clock cycle. Added parallelism resulting from the difference of

the instruction-issue width and the number of EUs can be scaled by a coefficient α. The

resulting value is normalized by the maximum clock frequency fclk for the processor

configuration, thus defining the Instruction Execution Rate (IER) for parallel execution

within a reconfigurable processor framework:

IER = fclk × (MIN(Nissue, Neu)+

α×∆(Nissue, Neu)) (5.1)

This metric approximates the added performance from custom, high-latency and/or

multi-cycle instructions, which are the main draw when migrating a system to special-

ized hardware.

5.3 Performance/area evaluation

The performance/area tradeoff was established in three ways. The first one is the

instruction-execution density, the second one, bit-execution density, and the third one

is the maximum instruction execution per area.

5.3.1 Instruction-execution density

The instruction-execution density defines the number of instructions that can be achieved

per area unit, and is calculated for each configuration by dividing the IEPS over the

synthesized processor area. The resulting value then indicates how many instructions

are executed per second in each FPGA slice.

This approach shows some similarities to DeHon’s computational density metric. In

[19], DeHon suggests that an FPGA CLB roughly equates one ALU bit processor oper-

ation. He added that FPGAs gain computational density by executing multiple opera-

tions in parallel, while processors loose computational density due to added instruction
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overhead. However, this assessment of FPGA peformance is largely theoretical since

it addresses raw computational power. Most non-trivial, instruction inter-dependent

computations will require additional overhead for mapping an instruction stream into

an FPGA board.

Our approach when calculating instruction execution density takes into account

the instruction overhead and storage needs. This setup matches the requirements of

traditional microprocessor systems. This makes it more accurate representation of the

computational power per area unit within an FPGA.

5.3.2 Bit execution density

An advantage of reconfigurable computing is that it can match the data width require-

ments of a particular system. In the matrix multiplication example in section 4.4.2, the

data results were all integers that could be represented in less than 5 bits. A 32-bit

hard-processor executing such a program would have 85% of its available data band-

width wasted in unnecessary bits. Even soft processors like MicroBlaze do not allow

modifications to their 32-bit data path width. However, our processor modifies its data

path width to ease the system’s area requirements and increase performance.

The ability to fine-tune the data granularity is quite powerful. In terms of code size,

Hennessy and Patterson showed that using 16-bit instruction width can produce up to

40% code size reduction when compared to 32-bit wide instruction words [79]. In terms

of area, there will be a proportional reduction in use for all data storage locations and

signals. Consequently, the reduced area increases the instruction-execution density of

the system.

5.3.3 Maximum instruction execution

This method for analyzing performance and area tradeoffs relates directly to partial

reconfiguration. Given a fixed area requirement, we can use our results to maximize

the instruction execution within fixed space boundaries. The assesssment of which

processor configuration is most suitable to maximize performance is made through per-

formance/area graphs. When treating area as an independent variable, the graphs show

which configurations fit within the area limitations, and of those configurations, which

one yields the highest instruction-execution rate.
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When using this method, it is important to follow partial reconfiguration schemes,

like aligning dynamic module boundaries to 4-column increments and using the full

height of the device [106].

With the evaluation for instruction-execution density, bit-execution density and

maximum instruction execution, we can speculate the area requirements for a particu-

lar application and also define the performance gains per area unit. These evaluations

greatly aid in defining the performance/area tradeoff within FPGAs when optimizing

dynamic systems for coarse-grained parallelism.

5.4 Summary

The myriad of processor configurations that are possible with Hephaestus provide ample

opportunities for design optimization and performance tweaking. To evaluate the costs

associated with performance, we collected area and performance values for 540 different

processor configurations over a range of superscalar system parameters. These results

will be the central focus of the next chapter.

The synthesis of each processor showed its resource requirements in terms of FPGA

low-level resources like slices, adders, multiplexers and comparators. We used slices

as our main area cost metric, since they act as storage, arithmetic and/or logic. Each

processor can be shaped through slotted synthesis into a fixed area, which allows partial

reconfiguration.

The system’s clock frequency degrades with increasing processor complexity, and is

set by the longest delay in the pipeline’s bottleneck stage (usually Instruction Dispatch

or Register Rename). However, increased processor complexity allows a larger number

of instructions to execute in parallel. To approximate multi-cycle instructions typically

found in custom systems, we used the values for the instructions issued and available

execution units. This was a conservative approximation for the number of instructions

executing each clock cycle. When normalized by the clock frequency, we obtained the

processor’s instruction execution per second, used as our performance metric.

We combined the area and performance metrics to provide three methods for perfor-

mance/area evaluation for FPGAs: instruction-execution density, bit-execution density,

and maximum instruction execution. The later one can be directly used for maximizing
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performance in fixed area slots for partial reconfiguration, while the others enable a ro-

bust assessment of performance compromises in FPGAs. Chapter 6 presents the results

of our area and performance evaluation.
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Chapter 6

Results and Discussion

The previous chapter justified our instrumentation, area and performance metrics, and

data collection methodology. With the evaluation framework in place, we then collected

data on performance and resource use. Our results showed two important characteristics

for each processor. The first one was what level of parallel execution performance could

be achieved with a particular configuration, and the second one was the amount of

resources needed to achieve this parallelism. Even though the individual characteristics

of each processor configuration provided useful information, the aggregate values proved

to be more valuable when examining general trends in the performance and area trade

offs.

Performance mostly depended on the Nissue and Neu parameters, which allowed

increased issuing and parallel execution of instructions, respectively. The system pa-

rameters Register File Size and Interleaving make indirect contributions to the

instruction execution rate, and their impact is analyzed in section 6.3.4. The final sys-

tem parameter, Data Width, also did not contribute to the instruction execution rate

directly, but predictably, had a deep impact in area use and performance density.
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6.1 Performance

6.1.1 Clock frequencies

As stated previously, semi-custom system performance was expressed as the instruction

execution rate, IER. This instruction execution rate was calculated from the independent

variables Nissue and Neu, which conform the basic superscalar processor structure. The

dependent variable fclk expressed the logic and delay complexity of the synthesized

circuit, imposing an upper limit to performance in terms of maximum pipeline speed.

After synthesizing all of the 540 processor configurations, we obtained every imple-

mentation’s clock frequencies and calculated each IER. The processor’s clock frequency

mean value was 73.02 MHz with a standard deviation of 29.58 MHz, exposing the high

clock-frequency variance in our system. This was expected, as the logic time delay for

pipeline stages increased drastically in complex processors. This is in contrast with the

hand-optimized static Microblaze processor pipeline from Xilinx, which has a top speed

of 200 MHz on a Virtex-5 Xilinx FPGA.

Table 6.1 shows the clock frequencies fclk for processors with a register file size of

16 registers, an instruction interleaving of 2, a 16-bit datapath width and a varying

number of issue widths and execution units.

Table 6.1: Clock Frequencies (MHz) for processor subset.

Issue Width, Execution Units, Neu

Nissue 1 2 3 4 5

1 163.6 126.3 82.2 60.7 48.8

2 89.8 94.6 90.2 63.6 51.7

3 65.4 66.5 64.5 61.6 49.7

4 55.3 54.4 54.2 54.8 51.5

Clock frequency tables for processors with different datapath widths, memory in-

terleaving and register file sizes provide similar trends. Table 6.2 shows the averaging

of fclk over all twenty-seven different combinations of these three variables. It eval-

uates the change with respect to Nissue and Neu, normalized over a scalar processor

implementation (Nissue = 1 and Neu = 1).

The clock frequency rapidly decreases with increased processor complexity. How-

ever, these clock frequencies results only expose the timing delay costs, not the parallel
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Table 6.2: Normalized Clock Frequencies.

Issue Width, Execution Units, Neu

Nissue 1 2 3 4 5

1 1.00 0.84 0.57 0.42 0.34

2 0.63 0.63 0.57 0.42 0.34

3 0.45 0.45 0.45 0.41 0.34

4 0.40 0.40 0.40 0.38 0.33

performance that can be attained by these systems.

6.1.2 Logic and routing delays

There are two types of timing delays that occur in our processor: logic and routing

delay. Logic delays are the result of the propagation times needed for signals to travel

from the inputs of logic gates to their output, and increases accordingly with larger

amounts of logic levels. Routing takes into account interconnection delays among the

different FPGA logic cells, and is a function of circuit size, fanout of the net and

routing congestion [107]. It is important to discern the type of delay so that then they

may be used for targeted optimization. Our superscalar processor framework did not

provide much logic processing, as data processing was left for the customized executions

units. However, it routed the instructions and data to their appropriate destinations and

pipeline stages’ outputs. On average, the logic delay was 21.3% and the routing delay

was 78.7% of the total delay for all processor configurations. This coincides with current

assessments that processing data is not difficult, but moving it is [108]. However, because

our data is highly localized within the processor framework, our data routing cost is

minimal when compared to multi-core, multi-threaded and multi-processor systems.

There is room for improvement in our processor by combining some pipeline stages.

Figure 6.1 shows each pipeline stage’s time delay, divided as logic and routing types,

for a sample processor with Nissue = 2 and Neu = 2. Three main bottleneck stages

were identified: the Register Rename, Instruction Dispatch and ReOrder Buffer stages.

Unfortunately, due to the linear nature of the operations of these components and the

need for single clock cycle latency, further further pipelining is not possible.

The memory Interleaving for Figure 6.1 was set to two. Consequently, the In-

struction Dispatch and ReOrder Buffer stages needed additional time for their rout-
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Figure 6.1: Pipeline Stage Delay - Total delay in each of the eleven pipeline stages, by
type.

ing computations. However, this time was not as lengthy as the 11.8 ns required for

register renaming for register renaming. This high value is explained by the large

Register File Size value of 32 registers.

While the combination of memory interleaving and the register file size played fine-

tuning roles in subsequent pipeline delay, the three main pipeline bottleneck stages

remain fairly constant throughout all configurations. Hence, it is easy to see how in

the future we could combine some of the adjacent pipeline stages like the Register File

and the Reservation Stations, or the Execution Units the Common Data Buses. This

merging would potentially reduce the area needed for intermediate registers between

the stages, while decreasing the latency of instructions traveling through the processor.

The main culprits driving the system’s time delay were still the Nissue and Neu vari-

ables, which set the an appropriate processor configuration for a particular application.

Figure 6.2 shows the logic delay result after averaging together all processor configu-

rations with respect to Nissue and Neu. For simple configurations, Nissue was the main

contributor for logic delay due to register renaming.

However, as more and more execution units are added, the largest delay shifted to

the Instruction Dispatch stage, where a larger amount of read port requests have to

be arbitrated. Eventually, the delay caused by the increased number of execution units

dominated the overall system delay, adding 0.72ns of logic delay for each extra EU. This

was also true for routing delay, but with a higher delay cost. Figure 6.3 shows a more
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Figure 6.2: Logic Delay by EU - Logic delay increased linearly with respect to the
number of execution units.

pronounced 3.29ns route delay increase for each additional EU.

The linear nature of these logic and routing delay results showed that the costs of

time delay were predictable. Consequently, the clock frequency fclk of a system could

also be predicted depending on the number of execution units present, and considering

that each extra EU will add 4.01ns of total delay to the system. Of course, the negative

effects of extra execution units were counter-balanced by the positive increase in the

instruction execution rate from additional opportunities for parallel execution.

6.1.3 Instruction Execution Rate

The extent to which the potential benefits of added hardware benefited performance

were gauged by the independent parameter α. We reiterate the equation for IER, the

Instruction Execution Rate (previously shown in Section 5.2.2), for clarity:

IER = fclk × (MIN(Nissue, Neu)+

α×∆(Nissue, Neu)) (6.1)

We used Equation 6.1 to calculate the instruction execution rate for the five hundred

and forty synthesized permutations of processor configurations. The processors’ IER
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Figure 6.3: Route Delay by EU - Route delay increased linearly with respect to the
number of execution units.

values were averaged and grouped together by the number of instructions issued to

determine the effect of the coefficient α in the final execution rate values. Figure 6.4

shows this effect, with α ranging from 0 to 1. The IER generally tends to increase

as more instructions are issued. When α = 0.0, the minimum of the instruction-issue

width and the number of EUs is used to scale the clock frequency. At α = 1.0, the IER

clock frequency is scaled using the maximum of the two values. α = 0.5 corresponds to

scaling the resulting processor’s clock frequency by the average of the two values.

The same process was used to group the processors according to the number of

execution units they implemented. Figure 6.5 shows the effect of adding more EUs

to a system (also with a variable coefficient α). The decrease in IER is caused by

the bottleneck in the instruction-dispatch stage, which must solve contention for the

register file’s memory ports for instructions arriving at their respective execution unit.

Therefore, all operands for each EU must be examined sequentially, creating a long

delay and consequently degrading the clock frequency and ultimately the processor’s

IER.
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Figure 6.4: Instruction Issue IER - IER, grouped by instruction-issue width.

Figure 6.5: Functional Units IER - Multiple levels of IER, grouped by execution units.
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We restricted our focus for the value of α = 0.5 for IER calculations, which cor-

responds to an adequate level of added parallelism, without pessimistic or optimistic

assumptions on the processor configuration. The IER equation was applied to the same

system presented previously in Table 6.1, a processor architecture with a 16-bit datap-

ath width and register file size of 16 registers. The resulting IER, shown in Table 6.3,

shows the potential instruction execution rates for different processor configurations

that enable parallel execution.

Table 6.3: Maximum IER (millions/second)

Issue Width, Execution Units, Neu

Nissue 1 2 3 4 5

1 163.6 189.5 164.5 151.6 146.3

2 134.7 189.3 225.6 190.9 181.0

3 130.8 166.1 193.6 215.5 198.7

4 138.3 163.2 189.6 219.2 231.8

At the aggregate level, the analysis of all processor configurations shows that issuing

an additional instruction increased the IER by 7.3%, and including additional execution

units increased it by 7.9%. Note that these values do not necessarily represent appli-

cation speedup, but the number of expected instructions executing in parallel within

the reconfigurable processor architecture. With these values the best processor setup to

implement a custom system can be chosen.

The instruction execution rate increased as more instructions were issued and more

execution units were available, even with slower clock frequencies resulting from com-

plex synthesis. The IER aggregate for all the synthesized processors was 182.0 (millions

of instructions/second) with a standard deviation of 47.7M/s. The point of diminish-

ing returns was reached after adding a fifth execution unit, when the system’s clock

frequency degradation outweighs parallel gains.

6.1.4 Processor configuration performance

We grouped together all processors with the same instruction execution configurations,

regardless of register file size, datapath width and memory interleaving. This resulted

in twenty-seven processor configurations sharing the same instruction-issue width and

execution units, for a total of twenty different groups.
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Figure 6.6 shows the aggregate instruction execution rate for these different groups,

arranged by instruction issue and execution units. We see that for a constant (color-

coded) execution unit, the largest IER was attained when Nissue closely matched the

Neu in the system. However, for systems with two or fewer execution units, the clock

degradation resulting from issuing multiple instructions also decreased the instruction

execution rate.

Figure 6.6: Figure: Instruction Execution Rate - Aggregate IER by instruction-issue
width and execution units.

On average, the IER went up by 7.0% when increasing the instruction-issue width

by one, with the largest increase (11.5%) happening when increasing the instructions

issued simultaneously to two. When adding execution units, the IER average increase

was 7.6%, with a decrease of −4.2% occurring when adding a fifth execution unit.

Overall, our configuration flexibility introduced a hybrid solution that implements

custom logic inside a general-purpose processor. By tailoring our processor to a partic-

ular application setup, we increased the IER for the system. The configurations with

the largest amounts of IER occurred when Neu was slightly larger than Nissue. When

this happened, the logic and route delays introduced into two different pipeline stages

(which each depend on one parameter exclusively) closely matched each other. As a
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result, there was no bottleneck pipeline stage, but instead we had a system with a more

uniform delay per pipeline stage.

The results for the IER outline the potential benefits that Hephaestus provides to

an application by means of increased instruction execution rate [109]. A Hephaestus

system is more flexible than vendor soft-core processors, and achieves increased parallel

execution for superscalar configurations while enabling custom logic in its datapath

without disrupting it.

Even though we provide the framework for increased parallel execution, application

speedup is still reliant on custom logic provided by the system designer. Floating point

operators are suitable candidates for execution units, since they contain mostly logic and

little routing, as opposed to our processor framework were the routing is a limiting factor.

A sample synthesis for a six-stage pipelined floating point adder shows that the delay

for the critical path (29 logic levels) is comprised of 76.5% logic and 23.5% routing delay

(3.08ns logic, 0.95ns route), allowing for a clock frequency of 248.3 MHz. This of course,

is so fast when compared to our the processor’s clock frequencies, that it borders on

waste. A seasoned designer might take unorthodox approaches to fully benefit from the

underlying reconfigurable architecture. For example, we can use asynchronous floating

point operators for FPGAs to implicitly scale down the number of pipeline stages a

floating point operator uses [110]. Another way is to use parameterizable floating point

operators that allow us to explicitly set the number of pipeline stages, like with the

FloPoCo HDL floating point library [111]. Hence, if our system clock is slow, our

execution units can pack more logic in each of their pipeline stages, reducing clock cycle

latency. Designers can use the same logic-packing approach can be used in custom

execution units.
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6.2 Area

The area was evaluated through the synthesis of all configured processors into a XC5VLX220

Virtex 5 device. This FPGA contains 17,280 CLBs, equivalent to 34,560 slices. Each

Virtex 5 FPGA slice has four LookUp Tables (LUT) and four single-bit registers. These

slice resources provide a clear indication of the minimum necessary area requirements

to implement the design’s logical functions and storage.

6.2.1 Costs of Parallelism

Area costs were evaluated by the number of slices used. Post-synthesis results provided

us with the minimum necessary registers and LUTs as two separate values. However, a

Virtex5 slice accommodates four LUTs and four registers, making it necessary to merge

these two values for an accurate slice count. The maximum count value for LUTs or

registers dictates the minimum number of slice resources; in our design, LUTs were

consistently more numerous. Thus we divided the maximum LUT count by four to

obtain the minimum slice count.

The synthesis slice requirements were modified to fit the actual implementation

requirements. A factor of two was factored in to our calculations due to congestion

routing and interconnect resources during place-and-route [108]. Moreover, it is too

optimistic to assume that all CLBs will be used to their maximum potential, even with

high optimization efforts by the synthesis tools. Thus, we further relaxed the place-

and-route efforts by assuming that on average only 75% of the slices within each CLB

are used. Area slice use after the place-and-route implementation proved this synthesis

approximation method to provide a fairly accurate final area slice count. Thus our slice

area utilization was calculated as follows:

Slice count = MAX (Slice LUTs, Slice Registers) Synthesized Slices

× 2 Slices / Synthesized Slices

× 1 CLB / 4 Slices

× 75% Slices / CLB (6.2)
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6.2.2 Total area

Using Equation 6.2 we evaluated the FPGA slice area costs for the synthesized processors

by grouping them by their processor configurations (Nissue and Neu). We used aggregate

results from our synthesized processors to quantify the necessary area for increased

issuing and execution units. Table 6.4 shows the average slice utilization for all processor

configurations:

Table 6.4: FPGA Slice Use

Issue Width, Execution Units, Neu

Nissue 1 2 3 4 5

1 2389 3374 4393 5565 6599

2 3017 4049 5147 6231 7273

3 3870 4918 6037 7185 8312

4 5338 6431 7625 8757 9908

These same results are depicted in graphical form in Figure 6.7. We see that the

area increases dramatically but predictably with complex processor configurations.

Figure 6.7: Total Slice Count - Total slice count by processor configuration.
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The area increase was separately assessed by its Nissue and Neu variables, to observe

the percent area increase from a scalar configuration. Figure 6.8 shows the linear increase

in area with respect to Neu.

Figure 6.8: Area Increase per Execution Unit - Slice increase from a scalar system.

Increase of the instruction-issue width Nissue caused a quadratic effect on area over-

head [13]. However, the issue-width overhead further caused a quadratic reduction in

the clock frequency fclk (also expressed as a quadratic delay increase). The area in-

creased linearly with respect to the number of reconfigurable execution units Neu, with

an average 48.2% for each additional EU. Figure 6.9 shows the effect (again represented

as area percent increase from a scalar system) when increasing the instruction-issue

width for processors with different EUs.

Figure 6.9: Area Increase per Instruction Issue - Slice increase from a scalar system.
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The overall area-percentage increases from a scalar system are shown in Table 6.5,

and summarize the effect of adding parallel execution opportunities to the slice area

cost.

Table 6.5: Percent Area Increase by Processor Architecture

Issue Width, Execution Units, Neu

Nissue 1 2 3 4 5

1 0% 41% 84% 133% 176%

2 26% 69% 115% 161% 204%

3 62% 106% 153% 201% 248%

4 123% 169% 219% 267% 315%

The slice count increased an average of 23.5% with each increment of Nissue, but this

value does not represent the quadratic area increase. The total values for the FPGA

slice count for the different systems in terms of Nissue and Neu reflect the polynomial

nature of area expenses. For example, a system with 16 registers, 16-bit datapath width

and memory interleaving of two was curve-fitted to find the polynomial which predicted

its area in slices, obtaining the following area equation:

Slice count = 314 + (1185×Neu)

− (68×Nissue)

+ (172×N2
issue) (6.3)

The number of slices per increase of Neu (1185 slices) correspond to the area re-

quirements of an ALU, a reservation station with three entries, and the combinatorial

logic to receive instruction result broadcasts. This value will change depending on the

type of custom EU implemented by a designer.

Area also depends on the system parameters Register File Size, Interleaving

and Data Width. By generalizing Equation 6.3 we accounted for the effect each different

combination had on the slice values:

Slice count = α+ (β ×Neu)

+ (γ ×Nissue)

+ (δ ×N2
issue) (6.4)
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The variables α, β, γ and δ were then evaluated for all combinations of Nreg (the

value for Register File Size), Nmemport (the value for memory Interleaving) and

Ndata (the value of Data Width). Table 6.6 shows all the parameters to get the area for

any possible processor configuration.

Table 6.6: Area Equation Values by System Parameters

Ndata Nreg Nmemport α β γ δ
8 8 1 967 375 -262 183
8 8 2 658 629 64 104
8 8 4 963 847 31 116
8 16 1 584 566 19 165
8 16 2 500 833 114 161
8 16 4 875 1033 94 169
8 32 1 1279 576 -243 362
8 32 2 994 919 -21 317
8 32 4 1550 1075 46 305
16 8 1 1841 460 -376 208
16 8 2 816 990 -229 171
16 8 4 1256 1072 48 120
16 16 1 849 809 76 157
16 16 2 314 1185 68 172
16 16 4 1425 1161 198 113
16 32 1 1471 829 -152 349
16 32 2 1159 1115 12 311
16 32 4 1930 1308 -8 316
32 8 1 996 796 -255 186
32 8 2 1448 1314 -154 157
32 8 4 1631 1633 -53 136
32 16 1 551 1002 49 158
32 16 2 914 1606 -66 195
32 16 4 1547 1810 9 184
32 32 1 848 1080 -205 353
32 32 2 1606 1541 -61 334
32 32 4 2393 1821 -65 323

This reconfigurable area assessment is particular to the Virtex 5 FPGA family.

However, the area requirements may be scaled appropriately to other devices, using

slice information among FPGAs with different families and transistor sizing [112].

Equation 6.4 can be used by a system designer in conjunction with Table 6.6 to

predict the total number of slices in a system configuration, with all the required system

parameters. This is an important consideration when area is a limited resource due to

partial reconfiguration or multiprocessor system designs.
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6.2.3 Area Constraints

Partially reconfigurable and multi-processor systems must use area constraints in their

coarse grain components to benefit from parallelism. Reducing the synthesized area

allows allocation of additional components. FPGA area-allocation algorithms may be

used to achieve optimal reconfigurable component placement in dynamic systems [113],

once the task area is known.

To determine the area of a particular processor configuration, we used Equation 6.4

to calculate the necessary slices. For example, in a system with Ndata = 16, Nreg = 16,

and Nmemport = 2, we can use the simplified Equation 6.3 to calculate the slice count

for a processor configuration of Nissue = 2 and Neu = 2. The calculated slice count is

3926 slices. Without any area restrictions, the actual slice use can be higher, but using

constraints increases the place-and-route effort, thus reducing the number of slices.

Xilinx’s partial reconfiguration techniques specify that area boundaries must be

located at 4-column increments using the full height of the device. The XC5VLX220

device has 160 rows and 108 CLB columns, and being a Virtex 5 FPGA, has 2 slices

per CLB. This means the area increases by 1280 slices every four CLB-columns. At the

12 CLB column boundary, the slot area is 3840 slices, which is not enough to map our

predicted 3926-slice superscalar processor. Figure 6.10 shows multiple physical FPGA

implementations of this processor, with varying degrees of area constraints.

Figure 6.10: Floorplanning - Physical implementation in (a) all columns (b) 52 columns
(c) 40 columns (d) 28 columns (e) 16 columns.

Attempts to place-and-route the processor in 12 CLB-columns failed from lack of

space, as our calculations predicted. These calculations allowed us to predict the number

of CLB columns needed to implement a reconfigurable processor architecture before

implementation, cross verifying our analytical model. However, there are situations in
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which the area is fixed, and the processor configuration can vary. Section 6.3.1 shows

the parallel performance evaluation of a processor that fits in a limited area.

We can determine the area use for a multi-processor system by following the same

guidelines we outlined earlier. Each instantiated processor’s area can be predetermined

by using Equation 6.4 with the desired parameters, given the same or different target

configurations to perform the tasks of that particular processor. Figure 6.11 shows a

Symmetric Multiprocessor System (SMP) implementation with seven processors config-

ured identically. For visual clarity, each processor was constrained to a separate area

slot in the FPGAs.

Figure 6.11: Seven processors 16 columns - SMP system with seven processors.

6.2.4 Area Use Reduction

Datapath minimization is not offered in commercial FPGA soft processors, even though

FPGAs provide bit-level granularity. Our extra level of adaptability for custom designs
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helped reduce the area for smaller designs. The reduction comes as a the result of

trimming data bits, usually the unnecessary highest significance bits for low-precision

arithmetic. In addition, our processor aids in fine-tuning the datapath width to match

the requirements of a particular application while decreasing the use of FPGA resources.

The reduction in area was demonstrated by synthesizing a processor’s datapath at

bit-level resolution up to the standard 32 bits. The selected processor configuration had

two instructions issued simultaneously and two execution units. Its register file size was

sixteen registers, and memory interleaving was set to two memory banks. The resulting

IER was 189.5M/s, close to our aggregate average of 182.0M/s encompassing all config-

urations. In summary, we used an average processor implementation representative of

the rest of the configuration permutations.

As the datapath width of the processor was reduced bit by bit, so did the area that

it consumed in the FPGA. Predictably, the percent reduction in slice utilization was

a linear function inversely proportional to the number of datapath bits, as shown in

Figure 6.12.

Figure 6.12: Datapath Area Use - Area reduction, normalized over 64-bit datapath
implementation.

The processor’s IER was not greatly affected (± 4%), but we achieved a reduction in

area of up to 63% for single-bit computations. A less trivial datapath of 8 bits reduced
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the area by 52%. The architecture research group at Hewlett Packard demonstrated

how an average reduction of 49% in total gate count can be achieved through datapath

optimization for integer operations [114]. Their analysis however, was applicable to non-

programmable hardware accelerators. For our programmable semi-custom processors,

we obtained a 29% average FPGA-slice reduction for datapath width optimization for

a range of 1 to 64 bits.

6.2.5 Synthesis time

With less bits and area to map onto the FPGA, the synthesis tools took less time

to implement the design. This is particularly useful when judging the best processor

configuration for a specific application, since reduced datapath widths also result in

reduced prototyping times.

Time reduction also predictably followed a linear relationship to the datapath width.

Over a range of 1 to 64 bits, average synthesis time savings averaged 46%. Figure 6.13

shows the time percent reduction for variable datapath width in single-bit granularity,

normalized over a 64-bit implementation, with a maximum of 81% reduction in synthesis

time for a single data bit and 73% reduction for an 8-bit implementation.

Figure 6.13: Datapath Synthesis Time - Synthesis time reduction, normalized over
64-bit datapath implementation.
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6.3 Performance/Area trade offs

So far, we have evaluated the performance and area cost for processor configurations

independently from each other. However, the two are tightly coupled and must be

evaluated together. For example, designers planning to incorporate multiple processors

for parallel execution within a single FPGA must often follow area specifications that

enable them to do this. Partially reconfigurable areas must follow strict guidelines, and

multiprocessor systems must balance the number of processors with the capacity of the

FPGA. Additionally, parallel performance needs to be maximized. While the computa-

tional density research by DeHon gives us the maximum theoretical performance that

can be achieved in a fully custom FPGA solution [19], we focused on the achievable

parallelism within the confines of reconfigurable processor architectures.

6.3.1 Maximum execution rate

Because we can alter the processor architecture by specifying the parameters Nissue and

Neu, we can optimize the instruction execution rate in constrained areas, like those

for partial reconfiguration or multi-processor systems. Figure 6.14 shows the IER for

different processor configurations, encompassing all the permutations of Nissue and Neu.

Figure 6.14: IER by Area Costs - IER and area use by processor structure. Data labels
represent execution units.
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The figure’s horizontal axis shows the area cost with units of FPGA slices, while

the vertical axis indicates the corresponding IER performance. The numbers under

each data point correspond to Neu for that instruction-issue width. We can see that

each curve shows a maximum execution rate that then declines under the weight of

increased logic and routing delay from added execution units. For systems with larger

instruction-issue widths, the maximum IER becomes asymptotically larger with the IER

maximum at 232M/s. The FPGA area is increased when increasing either Nissue and

Neu as described in the previous section.

It must be noted that Figure 6.14 represents values grouped by Nissue and Neu, with

the IER and slice area averaged with regard to Ndata, Nreg, and Nmemport variables.

Section 6.2.4 showed the area reduction from smaller datapaths, and section 6.3.4 will

show how the area used is also affected by the latter two variables. However, the

curve shapes for the system’s IER remain fairly constant, but scaled vertically and

horizontally. Figure 6.15 also shows the IER area costs, but averaged only for 32-bit

datapath width systems.

Figure 6.15: IER by Area Costs - 32 bits - IER and area use by processor structures
with 32-bit datapaths. Data labels represent execution units.

114



The area costs for the resulting IER are greatly increased due to the wider datapath

of 32 bits. This area reduction can have a deep impact in the IER density, which is the

amount parallel execution obtained per area unit. Pragmatically, rather than using the

IER density information to fit area constraints, a system designer would instead use the

information depicted in IER/area graphs to best match their system.

We can choose the highest level of parallelism from IER/area graphs by selecting the

processor configuration with the maximum IER and with a smaller number of slices than

the targeted area size. For example, an Nissue = 1, Neu = 2, Ndata = 32, Nreg = 16, and

Nmemport = 2 partially reconfigurable system might require to use an extra EU (Neu = 3)

for added functionality. Using Equation 6.4 and Table 6.6 results in a calculated area of

5861 slices for this system. To follow partial reconfiguration methods, this system needs

at least 20 CLB-columns, which encompass a total of 6400 slices, shown in Figure 6.16

as a grey box. The Nissue = 1, Neu = 3 system is labeled as “Minimal Configuration”.

Figure 6.16: Best IER Configuration - 32 bits - Optimal IER in Limited Area. Data
labels represent execution units.
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Figure 6.16 also shows that a larger amount of parallelism can be achieved within

the confines of that area by increasing to instruction issue to Nissue = 2, labeled as

“Best Configuration” . The instruction execution rate is consequently increased from

170M/s to 214M/s with the new processor configuration, while still fitting the required

execution units in the same confined area of 6400 FPGA slices.

Our method of assessing performance/area trade offs thus provides a two-pronged

analysis of the maximum instruction execution rate. Not only does it answer the ques-

tion of how much area is needed for a target parallel execution rate, but also how much

parallelism can be obtained for a confined area [115]. These two questions can be merged

by analyzing the results for the instruction execution density in FPGAs.

6.3.2 Instruction execution rate density

We have seen that different instruction execution rates can be achieved with different

processor combinations taking different amounts of area. A more generic analysis of

performance/area trade offs would be to use the instruction execution rate density. By

itself, it specifies the individual contribution to parallel execution that is obtained for

each additional area unit.

The aggregate value for the IER density is 34,630 instructions/second/slice. This

means that each individual FPGA slice added to any particular configuration augments

the parallel execution rate by 34,630 instructions per second in a reconfigurable super-

scalar processor system. However, the IER density varies per processor configuration,

so a linear approach for assessing average contribution per slice is not appropriate.

The processor’s instruction execution rate value can not be simply increased by

adding individual slices, but instead is done by changing processor configurations. These

processor configurations also have an effect on IER density. Figure 6.17 shows the IER

density for processor with different instruction-issue widths, and Figure 6.18 shows the

same density with respect to execution units.

Both figures show that the parallel performance per area in larger processors decays

as the processors get more complex. Thus, even though the processors use a larger

amount of area to achieve higher performance, the efficiency of this additional area

quickly diminishes from the initial value of 63,000 instructions/second/slice. Moreover,

it asymptotically approaches a density value of 20,000 instructions/second/slice as more
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Figure 6.17: IER Density by Instruction Issue - IER performance per slice over total
area used, categorized by instruction issue. Data labels represent execution units

Figure 6.18: IER Density by Execution Units - IER performance per slice over total
area used, categorized by execution units. Data labels represent instructions issued
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area is used. This non-zero contribution to parallel execution identifies the minimal per-

formance/area trade off for FPGA-based processors with reconfigurable architecture.

By contrast, the performance execution density of a MicroBlaze processor implemented

on the same Virtex-5 system was a constant 102,828 instructions/second/slice. The

1.6 increase in performance density against our maximum performance density can be

attributed to the hand-optimization of MicroBlaze processors combined with their lack

of architecture customization, which results in a more efficient structure. Our processor

allows not only for architecture customization, but also datapath customization. Be-

cause the area changes abruptly with the datapath width, it is also convenient to express

this performance density in terms of the particular number of data bits that are being

executed per instruction.

6.3.3 Bit execution density

Our processor’s ability to reduce area through datapath minimization increased the

Instruction Execution Rate density in the FPGA. Since our performance unit, IER, and

the processor framework are based on the number of instructions executed, reducing

the size of the executed data increases the density of execution within this area. Thus,

the opposite is also true: the larger the datapath size needed, the smaller the execution

density per area, as Figure 6.19 depicts.

Figure 6.19: IER Density per Data Bit - IER performance per slice per data bit shows
better instruction execution density for smaller datapaths.
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Though the results are not necessarily encouraging for larger datapath widths, they

only correspond to the number of instructions being executed, not the number of bits

being executed upon. A more data-centric approach is to instead use the bit-density of

execution. Figure 6.20 shows the rate at which bits are being executed per second per

slice, over a wide range of datapaths.

Figure 6.20: IER Data Bit-Density by Datapath Width - Bit-level IER density
increases rapidly for larger datapaths, but decreases as more register area is needed.

We can see that the larger the datapath width, the more number of bits that are

executed per area unit. This occurrs because for small datapaths, the data storage

area is small compared to the instruction storage and architecture area overhead. As

the datapath length increases, the necessary storage area for data bits also increases,

reducing the bit-level IER density. Eventually, the data area becomes large enough to no

longer have a positive effect in density, since the datapath’s required area overshadows

the bit-level performance increase.

6.3.4 Secondary Independent Variables

We have mostly focused on Nissue and Neu, but the other independent system variables

also have a profound effect on performance. Nreg, the value for Register File Size,
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dominates the logic bottleneck during register renaming, and Nmemport, the value for

the memory Interleaving, influences the bottleneck during the dispatching of memory

ports. These two variables do not directly contribute to the number of instructions that

can execute in parallel, that is, execution in space. Rather, they contribute to reducing

impediments when executing in time.

The evaluation of time/space computations depends on the specific application.

Therefore, a system designer must evaluate if increasing or decreasing the sizes for Nreg

and Nmemport will be beneficial or detrimental. Large sizes prevent choke points while

small ones increase speeds. For the memory interleaving, a low Nmemport value would

not affect an application with high levels of instruction-level parallelism, as most of

the dependent values will be in-flight and would subsequently be broadcast to waiting

instructions. On the other hand, applications that have high data-level parallelism will

benefit from extra memory access ports for independent data.

The register file size has the largest impact on performance besides the instruction

issue and number of execution units. A small register file can be used for control-based

applications with low amounts of register writes, while a larger register file benefits

more scientific computations. Figure 6.21 shows the performance and area trade offs

for different register file sizes, with instruction execution rate on the vertical axis and

area on the horizontal one.

Figure 6.21: IER/Area per Register File Size - Small register files show a better
performance and area use.

It is evident that larger register files increase area use and decrease the IER. However,

the run-time performance of an application can suffer immensely due to the stall when

there are no available free registers to do register renaming, so small is not necessarily

better. Fortunately, our flexible processor allows the seamless modification of register
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file size to better suit performance or area concerns: a small register file can be selected

for systems with space constraints, while a larger one enhances execution of applications

with time constraints.
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6.4 Summary

The results of synthesis techniques for performance evaluation in reconfigurable pro-

cessors showed that superscalar processor configurations excel in parallel execution op-

portunities by increasing total performance on complex processor configurations. The

cost for these opportunities are decreasing clock frequencies for complex processors, as

the logic and routing delay start to dominate the performance. However, this speed

decay occurs at a rate which still allows benefits from parallel execution of instructions.

To evaluate these benefits, we presented a parallel performance metric, the instruction

execution rate, which takes into account the advantages of added execution units and

number of instructions issued while normalizing them over the resulting clock frequen-

cies. The processor configurations that can be selected to maximize the instruction

execution rate for particular applications. The maximum parallel execution rates hap-

pened when the instructions issued closely matched the number of execution units.

In these instances, the delay differential of the bottleneck pipeline stages for register

renaming and instruction dispatching was minimal.

The synthesis optimization efforts were focused on speed and not area, meaning the

costs of parallelism in our system were subsidized by a larger FPGA area use. The

metric for this area use were slices, which conveniently pack LookUp Tables (LUTs),

registers, and arithmetic functions. An empirical formula was derived from synthesis

and place and route area use, involving routing and interconnect resources, sub-par logic

mapping, FPGA family and processor configuration variables. Area increased linearly

with respect to the number of execution units, and quadratically with respect to the

number of instructions issued. The shape of this deterministic area can be modified

for situations like multi-processor and partial reconfiguration systems, which require

constrained areas. An advantage of our system is the configurable datapath width,

which reduces the area used by an average of twenty percent. This ability, in turn, lets

instructions execute with a smaller area footprint.

Our joint performance and area evaluation shows the trade offs that can be achieved

by synthesizing processor configurations with different instruction-issue widths and exe-

cution units. The instruction execution rate was maximized when these two parameters

matched each other. Larger parameter values generally resulted in more parallel execu-

tion, but systems with more than five execution units result in diminished performance.
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Within confined areas, we can either use our empirical equations or the instruction ex-

ecution rate graphs to maximize performance through the selection of an appropriate

processor configuration. Regardless of what these configurations are, the larger the area

used, the less effective performance mapping becomes. The instruction execution rate

per unit area, or IER density, rapidly decreased from over sixty thousand instructions

per second per slice to about a third of this initial value, identifying the minimal perfor-

mance/area trade off for FPGA-based reconfigurable processors. Performance density

gains can be further achieved by changing other aspects of the superscalar processor

like the datapath width. Additionally, changing the register file size and the number of

memory ports allowed space/time execution trade offs.
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Chapter 7

Conclusions

In this dissertation we have presented the implementation and methodology to evaluate

the available parallelism and subsequent required area in a reconfigurable superscalar

processor architecture. This area and performance evaluation is critical for understand-

ing the benefits and costs of the paradigm shift towards reconfigurable computing sys-

tems. Through the use of synthesis techniques to design, synthesize and implement

superscalar processors onto reconfigurable fabric, we were able to monitor, evaluate,

predict and control area resources. Thus this evaluation aided us in the search for par-

allel spatial execution through different processor configurations and area costs. Con-

sequently, our findings benefit the reconfigurable computing community by providing

means to calculate and quantify the maximum parallel-execution rates in a confined

area for partially reconfigurable and multiprocessor systems.

Reconfigurable computing creates an arena where the higher performance of application-

specific circuitry constantly battles with general-purpose and standardized solutions

with lower non-recurring engineering costs. In the middle of the turmoil are a multi-

tude of reconfigurable architectures that enable different amounts of datapath granu-

larity. Among them, the FPGA’s single-bit fine granularity makes it the most custom

solution, while soft-processors create the most general purpose solution. Vendor soft-

processors lack flexibility to exploit instruction and data-level parallelism, a limitation

which we overcame by creating a configurable hybrid solution allowing custom paral-

lel logic within a standard processor architecture framework. Our processor, named

Hephaestus, achieves a balance between the flexibility offered by a general-purpose
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programmable processor and the benefits of custom circuits. It is an adaptable, re-

configurable, superscalar architecture that supports multiple issuing of instructions and

execution units executing in parallel.

The structure of a Hephaestus processor is defined in VHDL with system-level pa-

rameters. The two main parameters were the instruction-issue width and the number

of execution units, both of which enhance the parallel execution of instructions. Three

other important parameters included the register file size, the number of memory ports,

and the datapath width. We used HDL techniques to automatically synthesize the ap-

propriate components, interconnect and communication protocols for any permutation

of these parameters. The system was implemented in a Xilinx FPGA as an eleven-stage

superscalar pipeline with register renaming for added performance. The execution units

remained autonomous and independent entities, meaning that any custom user logic can

be placed in them without affecting the rest of the system. To enable custom instruc-

tions, we set our software interface with a RISC-like ISA that accommodates extensions

for custom logic and user-defined execution units.

By abstracting away custom circuits and implementing them as reconfigurable ex-

ecution units, we were able to assess the number of instructions that could execute

concurrently in a superscalar system. The instruction-execution rate was thus a func-

tion of the instruction-issue width, the number of parallel execution units, and the

maximum clock frequency for that configuration. The area for the different processor

configurations was evaluated by the total count of multi-purpose FPGA slices. This

area had to follow explicit design rules for partial reconfiguration, so we subjected our

processor to constrained areas following these rules. As for performance, the instruction

execution rate metric was defined to merge the clock frequency and increased parallel

execution opportunities for larger issue widths and increased execution units. The per-

formance/area trade offs were evaluated by combining this performance and the area

assessment.

Our results answered the fundamental questions driving this research: 1) What

performance can be attained for this area? and 2) what area is needed for this perfor-

mance? We provided an empirical equation for calculating the total FPGA slices used

by a processor configuration, which was a polynomial function of the instruction-issue

width and the number of reconfigurable execution units. By quantifying the area uti-

lization necessary for parallel execution gains, we can also assess the maximum parallel

performance in constrained areas.
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The benefits of this assessment are two-fold: the area of a processor configuration

can be calculated, and the optimal processor architecture can be selected for a delim-

ited area within an FPGA. Different flavors of this assessment include the maximum

execution rate per area block, the instruction-execution density per area unit, and the

bit-execution density per area unit. The instruction-execution density showed that on

average 34,630 instructions/second/slice can be achieved in a reconfigurable processor,

with 20,000 instructions/second/slice as a minimum. Alternatively, the bit-execution

density results showed that the apex of data execution occurs at a datapath width of

51 bits, with larger values no longer contributing to higher execution densities. These

metrics can be used to evaluate partial reconfiguration costs, assisting in the automation

of the partial reconfiguration process. In essence, we can now better understand the

implementation compromises that await us during the upcoming paradigm shift towards

reconfigurable parallel computing.

7.1 Limitations and Future Work

It is true that most general-purpose application can not benefit from architectures that

exploit instruction-level parallelism. Of course, such applications are not the target of

reconfigurable computing methods. Our processor not only allows ILP for computation-

intensive applications, but also allows a customized ILP framework. Therefore, our

solution can execute multiple instructions in parallel, and it can further execute sets of

instructions within each custom execution unit.

Our processor can not achieve the performance levels of application-specific inte-

grated circuits, nor it can match the speed and integrated application environment of

vendor-dependent commercial processors. However, the implementation costs with our

reconfigurable solution are greatly reduced, by avoiding the time and effort needed to

modify fully-custom circuits. And even though our processors achieves comparatively

slow clock frequencies, we noted that this detriment can be offset by packing more

complex custom logic inside each execution unit to reduce latency.

One alternative to our processor solution is to use the vendor-specific soft-processors.

These are obviously optimized for their companion vendor devices, and not surprisingly

performed better than simple configurations of our processor. In addition, the config-

uration of these processors allowed the automatic addition of peripherals, and memory
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hierarchy control. While our research does not integrate peripherals and design automa-

tion for specific devices, it does provide vendor independence and design portability.

Our focus was not on system integration, but in flexibility at the architecture level, a

feature that vendor processors do not provide. To better compete with alternative solu-

tions, performance needs to be enhanced and area reduced. By merging pipeline stages

that are not bottleneck stages, we can decrease the execution latency and intermediate

storage requirements, thus alleviating routing complexity to reduce delay.

Reducing the complexity and size of the processor will also reduce the system’s

place-and-route complexity. Due to the procedural nature of the hardware-description

language code defining the processor’s behavior, the place-and-route procedure needs an

excessive amount of system memory to synthesize the processor. Such requirements can

be relaxed by defining structural (rather than procedural) components to implement

the register renaming logic. We believe this will give us more control over the register

renaming logic and reduce delay, fomenting a faster, cleaner processor design.

Finally, to extend the implications of this research work beyond the devices currently

in existence, we can scale our area assessment to different FPGA families, and eventu-

ally, different FPGA vendors. We have already provided a methodology to do this for

different slice configurations within Xilinx families, but ideally, our vendor-independent

approach should be evaluated in other FPGA platforms like those from Altera or Actel.

7.2 Concluding Remarks

This dissertation showed the implementation of a competitive superscalar processor

core which is fit to produce speedups for a variety of applications. By itself, it allows

the evaluation of many superscalar trade offs which might have only been possible

by software simulation rather than implementation. Flexibility was the focus of the

implementation, and we have not analyzed all the system variables to their full extent.

Further analysis of the variables controlling the common data buses, instruction size,

register file organization, memory addressing, branch prediction and reorder buffer is

possible, but beyond the confines of this dissertation.

The impact of our results confirm that soft-core processors can be expressed as relo-

catable objects for reconfigurable architectures and tread level parallelism exploitation.

Our analysis further assisted the field of reconfigurable computing by providing genuine

metrics for the consequential costs of dynamic reconfiguration.
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