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ABSTRACT 

The Paradisaeidae, or birds of paradise (BOPs), comprises 42 species in 17 genera, 

although these numbers could change as more molecular studies are conducted. BOPs 

are distributed from the Moluccan Islands east through New Guinea to Tagula Island 

and northeastern Australia. This analysis set out to develop a multidimensional view 

of conservation threats to BOP species, looking towards their conservation. For 

example, under future climatic conditions and considering loss of forest cover, 

Astrapia nigra may face extinction within just 2-4 decades. Generally, under future 

climatic conditions, BOP distributional areas decrease. Relatively few BOP species 

face distributional losses owing to sea level rise; however, land use change and future 

changed climatic conditions present more serious threats. I analyze distributional 

patterns and likely threats for each species and identify optimal suites of areas for 

BOP protection based on the results. 

 

INTRODUCTION 

The family Paradisaeidae (birds of paradise, or BOPs) comprises 42 species in 17 

genera (Frith and Beehler 1998), although some debate exists regarding these 

numbers. For instance, Dickinson (2003) recognized 39 species in 16 genera, while 

Sibley and Monroe (1990) recognized 46 species in 17 genera. Cracraft (1992) 

increased the numbers to ~90 species in 20 genera under the phylogenetic species 

concept.  Heads (2001b) pointed out that Cracraft’s phylogenetic species parallel the 

subspecies of other authors (Iredale 1956; Cooper and Forshaw 1977; Frith and 
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Beehler 1998) under the biological species concept (Mayr 1962; Gilliard 1969; 

Diamond 1972). A synthetic understanding of BOPs, including dimensions of 

geographic distributions, field identification, and speciation studies, would greatly 

enable proper management and conservation action (Cracraft and Feinstein 2000; 

Dumbacher et al. 2003; Filardi and Moyle 2005).  

 

 Frith and Beehler (1998) reviewed the taxonomic arrangements of the BOPs that 

have been proposed over the years. Even so, contention still remains regarding 

relationships within the family, so arrangements of taxa remain a work in progress, as 

new methods are applied to questions of systematic and phylogenetic relationships in 

the clade (Cracraft and Feinstein 2000; Scholes 2008). Here, I base discussion and 

analyses on the Frith and Beehler (1998) classification, except that their inclusion of 

the genera Cnemophilus and Macgregoria as sister to the Paradisaeinae has been 

invalidated: Cracraft and Feinstein (2000), using molecular data, showed that these 

genera are only distantly related to the BOP clade.  

 

Scholes (2008), using ethological data analyzed in a phylogenetic context, showed 

that Parotia includes 6 species instead of the traditional 4 species: the basal P. 

wahnesi, separation of P. helenae as a full species, P. lawesii, P. sefilata, and two 

species usually allotted to P. carolae (Mt Stolle population and Crater Mountain 

population).  Recent expeditions to the Foya Mountains (Beehler et al. 2007) have 

also confirmed the distinctiveness of a population, P. berlepschi, first described by 
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Kleinschmidt (1897). Given these recent findings and certainly more to come, we 

expect the classification of the clade to continue to change. 

 

BOP biology 

BOPs have a near-obligate association with closed humid tropical forests, although a 

few BOP species extend into habitats like second-growth forests, forest edges, and 

mixed forests including savannah (Bell 1970; Diamond 1972; Frith and Beehler 1998; 

Grant and Litchfield 2003). Frith and Beehler (1998) presented a detailed summary of 

habitats used by all BOPs for nesting. As such, BOP habitat use ranges from primary 

montane and lowland rainforest, e.g., in Parotia lawesii, Paradisaea raggiana, and 

Paradisaea decora (LeCroy et al. 1980; Pruett-Jones and Pruett-Jones 1988; Frith and 

Beehler 1998; Frith and Poulsen 1999), second-growth forest as in Paradisaea 

rudolphi (Mack 1992), and mangroves as in Seleucidis melanoleuca (Frith and 

Beehler 1998) and possibly Semioptera wallacii (Frith and Poulsen 1999). 

 

BOP habitat use as defined by Frith and Beehler (1998) is good for describing nesting 

areas, but is restricted in detail and could possibly obscure important behavioral traits 

important in defining habitat usage as well as accounting for species distributions. For 

instance, LeCroy (1981), in her monograph of BOP display and evolution, described 

display areas for different species, and Diamond (1972) found elevational differences 

in male and female distributions in Lophorina. Foraging in most BOPs occurs in the 

upper portion of the forest canopy, occasionally moving to lower habitats when birds 
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join mixed flocks (Frith and Beehler 1998). Distributions and habitat usage of BOPs 

may thus to some extent be associated with foraging strategies and seasonal fruiting 

of fruit trees (Beehler 1983; Beehler and Dumbacher 1996).  

 

BOP biogeography 

BOPs have a wide distribution in the Australo-Papuan region, ranging from sea level 

to 3500 m (Frith and Beehler 1998; Heads 2001a; 2001b). Most species (18 of 34 

species in New Guinea) occur around 1000-2000 m of elevation (Heads 2001a; 

2001b); 9 species are found from 0-1000 m; and 7 species occur from 2000-3000 m 

(Frith and Beehler 1998; Heads 2001a; 2001b). BOP species diversity is concentrated 

in the areas of Mt. Hagen, Wahgi Valley, and Jimi Valley (including the Mendi area; 

Heads 2001a; 2001b). Similarly, Beehler et al. (1986) and Pruett-Jones and Pruett-

Jones (1986) observed the central highlands region (Victor Emmanuel Mountains, 

Mt. Giluwe, Mt. Hagen) as the area of highest BOP diversity.  

 

Early authors (Diamond 1972; Diamond 1981; Beehler and Beehler 1986; Whitney 

1987, Frith and Beehler 1998) attempted to describe the biogeography of BOPs. 

However, the most detailed work on BOP biogeography is from a series of papers by 

Heads (2001a; 2001b; 2002) based on panbiogeographic approaches. BOPs are 

distributed throughout New Guinea, as well as across eastern Australia, the Moluccas, 

Yapen Island, the Aru Islands, the Trobriand and D’ Entrecasteuax Islands and Sudest 

Island (Bell 1970; LeCroy et al. 1980; Diamond 1986; Frith 1992; Beehler and Swaby 
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1991; Frith and Beehler 1998; Frith and Poulsen 1999; Heads 2001a; Heads 2002; 

Grant and Litchfield 2003). Heads (2002) explained distributions of BOPs as mostly 

of vicariant origin, and less via dispersal (Frith and Beehler 1998). While this 

explanation could be true for some species, a more thorough analysis of BOP 

phylogenetic relationships will clearly reveal more detail on the origins of the various 

species. 

 

Ecological niche modeling 

Ecological niche modeling (ENM) offers a means of predicting geographic 

distributions of species via estimates of their ecological niches (Peterson et al. 1999; 

Peterson et al. 2001; Soberón and Peterson 2005). In ENM, the scenopoetic (or 

abiotic) ecological niche of a species is the range of environmental and physical 

conditions within which the species is able to maintain populations without 

immigration (Soberón and Peterson 2005). A species’ geographic distribution is 

defined by its autecological needs, in addition to effects of biotic interactions and 

historical barriers (Soberón and Peterson 2005). 

 

ENM uses known occurrences of species, in combination with raster map datasets 

describing relevant environmental characteristics to predict distributional and 

ecological niches (Soberón and Peterson 2005; Gaubert et al. 2006). Various 

algorithms have been developed and used to model ecological niches, exploring a 

range of questions. For instance, Maxent has been used to map species’ distributions 
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(Phillips et al. 2006; Phillips and Dudík 2008) and assess threat status of species (e.g., 

Sergio et al. 2007); the Genetic Algorithm for Rule-set Prediction (GARP) has been 

used in mapping species’ distributions (Peterson et al. 2001), assessing conservation 

status of poorly known taxa (Gaubert et al. 2006), locating Pleistocene refugia 

(Waltari et al. 2007), and assessment of climate change implications for species 

(Martínez-Meyer 2005; Papeş 2007). Besides GARP and Maxent, other ENM 

approaches include BIOCLIM, DOMAIN, and HABITAT (Guisan and Zimmerman 

2000; Finch et al. 2006; Hernandez et al. 2006) and a variety of statistical approaches 

(Elith et al. 2006). Comparisons of the different algorithms have been developed, 

with a variety of results (Elith et al. 2006; Tsoar 2007; Ward 2007).  

 

ENMs have been used to evaluate implications of global climate change for species. 

Previous studies have assessed mammals (Martínez-Meyer et al. 2004; Gaubert et al. 

2006), birds (Peterson et al. 2001; Araújo et al. 2005; Anciães and Peterson 2006), 

salamanders (Parra-Olea et al. 2005), plants (Peterson et al. 2008), and diseases 

(Nakazawa et al. 2007). Basically, under changing climatic conditions, a species 

either shifts spatially to track changing conditions, or adapts in terms of ecological 

tolerances; otherwise, populations will go extinct (Holt 1990). Since ENMs map the 

distributional potential of species (Peterson et al. 2001; Pearson and Dawson 2003; 

Thuiller 2003), climate change effects on species’ distributions can be assessed 

(Martínez-Meyer 2005; Anciães and Peterson 2006) under this rationale. ENMs in a 

climate change context require explicit assumptions regarding dispersal ability to 
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produce distributional estimates (Guisan and Zimmerman 2000; Peterson et al. 2001; 

Parra-Olea et al. 2005; Gaubert et al. 2006; Papeş 2007).  

 

Sea level rise 

Sea level rise (SLR) refers to long-term increases in mean sea level, a consequence of 

several processes of non-linearly coupled components of the Earth system, e.g., 

global warming and agricultural practices (Bindoff et al. 2007). Currently, SLR is 

predicted to increase in coming years, which may have serious consequences for 

living organisms, their habitats, human well-being, and economics (Kennish 2002; 

Knogge et al. 2004; Gopal and Chauhan 2006; LaFever et al. 2007; Bindoff et al. 

2007).  

 

Present rates of ice sheet melt have potential for substantial global SLR impacts 

(Shepherd and Wingham 2007). The Greenland Ice Sheet contains a volume of water 

equivalent to 6 m of global sea level rise, and the West Antarctic Ice Sheet contains a 

volume of water equivalent to 5 m of global sea level rise (Bindschadler 1998). Both 

are currently showing rapid increases in mass loss that will significantly increase 

global sea levels if such mass loss continues (Thomas et al. 2004; Rignot and 

Kanagaratam 2006). Greenland and Antarctica are estimated to contribute 0.35 mm/yr 

of sea level rise globally, a modest amount compared to the present rate of increase of 

3.0 mm/yr of SLR (Shepherd and Wingham 2007). Additionally, increases in current 

SLR are attributed to anthropogenic changes in land hydrology, changes in the 
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atmosphere and vertical land movements, tectonics, and sedimentation that occur to 

influence local measurements (Bindoff et al. 2007). 

  

As SLR effects become more pronounced (Bindschadler 1998; Thomas et al. 2004; 

Shepherd and Wingham 2007), only very few studies to date have attempted to 

estimate SLR effects on ecosystems and the wildlife that depend on those ecosystems.  

At most risk are small island nations that currently confront sea level-related 

problems more directly. As such, already, Tuvalu and other small islands in Papua 

New Guinea are experiencing storm-caused over-wash and loss of land area by 20 

vertical cm per year; by 2025, some atolls in the Maldive Islands are expected to be 

inundated completely by SLR (Ghina 2003). SLR effects in these small island states 

include loss of estuarine ecosystems, land area, and fresh water (Kennish 2002; Ghina 

2003; Knogge et al. 2004; Gilman et al. 2006; Gilman et al. 2007), as well as loss of 

wildlife (DeVantier et al. 2004; Legra et al. 2008). Although effects on wildlife may 

seem less critical than socioeconomic impacts on tourism, living areas, and 

agricultural systems, these phenomena are usually linked, so effects on one ecosystem 

eventually affect others as well (DeVantier et al. 2004; Gilman et al. 2006). 

 

Conservation in New Guinea 

The island of New Guinea comprises Papua New Guinea in the east and the 

Indonesian provinces of West Papua and Papua in the west (Heads 2002). 

Geologically, the island is complex, its formation resulting from a series of events of 
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drifting, rafting, and sweeping up of islands arcs that combined to form present-day 

New Guinea (Charles 1991; Heads 2002). Given its isolation, New Guinea is now a 

biologically diverse region both in terrestrial realms and marine systems surrounding 

the island. New Guinea holds 700-800 species of birds, including globally unique 

concentrations of BOPs (38 species), parrots (46 species), and pigeons and doves (45 

species; Beehler et al. 1986; Miller et al. 1994; Mack and Dumbacher 2007). 

Mammal diversity reaches ~200 species, including marsupials, monotremes, rats and 

bats (Miller et al. 1994; Flannery 1995; Beehler 2007). Sixty of these species are 

endemic, occupying habitats from lowland rainforest to snow line. The New Guinea 

flora totals >20,000 species of ferns and flowering plants, including >3000 species of 

orchids alone (Womersley 1978; Beehler 2007; Takeuchi 2007). As a consequence, 

New Guinea has been included among the list of megadiverse regions (Mittermeier et 

al. 2003) and global biodiversity hotspots (Myers et al. 2000). 

 

Included within this diversity are the people that inhabit New Guinea and its satellite 

islands. In all, >1200 language groups and a hyperdiverse cultural base linked to 

different systems of beliefs, trade, traditional customs, and land tenure systems 

sprouted since the settlement of New Guinea ~40,000 years ago (West 2005; 

Mansoben 2007; Pasveer 2007). Dependency on the surrounding forests, seas, rivers, 

and wildlife has always been key to the survival and well-being of past and present 

generations of New Guineans (West 2005; Mansoben 2007). Studies such as those by 

Carrier and Carrier (1983), Steadman et al. (1999), Foale (2005), Mack and West 
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(2005), Case et al. (2005), and Cinner et al. (2005) indicate the level of dependency 

on wildlife and forests for sustenance. Given this dependency, management that leads 

to sustainable usage of wildlife and their habitats by humans within the region is 

necessary (Mack and West 2005). 

 

Currently, conservation in Papua New Guinea is done within the framework of 

wildlife management areas (WMAs), such as the Crater Mountain Wildlife 

Management Area in Eastern Highlands Province (Johnson et al. 2004; Mack and 

Wright 1996); marine protected areas (MPAs) such as the Kimbe Bay area 

(Koczberski et al. 2006; Green et al. 2007) and the Milne Bay area (Kinch 2001; 

Foale 2005; Baines et al. 2006); intergrated conservation and development projects 

(ICADs), such as the LAK ICAD project in New Ireland (McCallum and Sekhran 

1997); national and provincial parks (NPs and PPs) like the Varirata National Park 

(Gare 1987); and recently conservation areas (CAs), such as the YUS Conservation 

area in Morobe (Acrenaz et al. 2007; Stabach et al. 2009).  

 

Within New Guinean Indonesia, conservation is also in the form of protected area 

systems. For instance, the Lorentz National Park, one of the largest and highly diverse 

park systems in the world, was formed to protect ecosystems and wildlife ranging 

from glacial mountaintop fauna and habitats to seacoast (Alcorn 2000; Meyers and 

Hitchcock 2008). Since the Papuan region contains ~50% of Indonesia’s biodiversity 

(McKenna et al. 2002; Richards and Suryadi 2002; Patiselanno 2003; Sheil et al. 
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2004), protecting and managing this diversity is important. Currently, protected area 

systems in the region have many flaws: protected areas do not necessarily keep out 

logging, mining, and large-scale agriculture plantations (Richards and Suryardi 2002; 

Sheil et al. 2003; Murdiyarso and Kunianto 2008). In addition, designating an area as 

protected without research and follow-up monitoring can lead to impacts not detected 

until they become a problem, such as introductions of macaques in Papua (Kemp and 

Burnett 2003) and forest dieback in Nothofagus forests (Meyers and Hitchcock 2008).  

 

Given this diversity of degree and manner of protection, is the protected area system 

sufficient to guarantee adequate protection of biodiversity? Reports on the protected 

area systems of the countries outline factors that influence (and often hinder) 

protection of biodiversity: lack of government support, disenfranchising of local 

communities, mismanagement, minimal policing, and inadequate legislation, lack of 

management and research capabilities, and increasing pressures from anthropogenic 

activities (Sheil et al. 2003; WWF PNG 2006; Baines et al. 2006; Dowie 2008). 

While the need for protection of biodiversity is growing, given climate change, 

increasing human populations, and increasing pressures from anthropogenic 

activities, protection in any form should entail detailed scientific study, good 

management strategies, collaborative efforts with local communities and other 

stakeholders, and (minimally) protection that encompasses the distributions of species 

being conserved (Sarkar et al. 2004; Sánchez-Cordero et al. 2005b). 
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BOPs are an iconic part of New Guinean biodiversity, so their conservation is of 

considerable interest. As a result, this study aims to present a multidimensional view 

of distributions of BOP species, and to develop prioritizations of areas for their 

optimal protection. Under future climatic conditions and environmental changes, 

species’ distributions may shift, decrease in distribution, or become extinct. I 

examined the biogeographic patterns of BOPs, using ecological niche models to 

assess effects of future climate, land use change, and future sea level rise on BOP 

distributions and diversity.  

 

METHODS 

BOP distributions 

Biological specimens in museum collections are useful sources of information 

regarding geographic distributions of species (Ballesteros-Barrera et al. 2007; 

Peterson 2003; Gaubert et al. 2006; Papeş 2007). BOP locality information was 

downloaded from the Global Biodiversity Information Facility (GBIF) portal. I also 

visited two museums to look at specimens and gather locality data (see 

acknowledgments for a full list). For each species, I collected information on 

taxonomic identification, collector, date of collection, catalog number, and locality 

description (country, province/state, and village name). Species lacking sufficiently 

detailed information to guarantee accurate georeferencing were not included. A total 

of 986 localities for 37 species, including 3 hybrid “species” (Diphyllodes guiliemie, 

Paradiseae intermedia and P. mariae; not analyzed), were extracted and 
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georeferenced to the nearest degree of latitude and longitude and used to create 

locality maps for each species (Fig. 1). 

 

From the locality dataset above, 686 (the 3 hybrid species excluded) occurrence 

records were used for building ecological niche models: each of the locality data was 

georeferenced to within 1' of latitude and longitude using the Geonames geographic 

database server (http://www.geonames.org), including gazetteers and published 

literature. The final occurrence dataset comprised 2-55 localities for each of 34 

species. Species restricted to particular small islands (for instance, Cicinnurus 

respublica, Manucodia comrii, Lycoccorax pyrrhopterus, Paradisaea decora and 

Semioptera wallacii) were excluded from ENM model building. 
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Figure 1. Bird of Paradise occurrence localities across New Guinea, Australia, and the Moluccas 

islands.  

 

Ecological niche models- climatic conditions 

ENMs were developed using the Genetic Algorithm for Rule-Set Prediction (GARP; 

Stockwell and Noble 1992; Stockwell and Peters 1999), specifically the DesktopGarp 
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software package (http://www.lifemapper.org/desktopgarp/); a method that is robust 

and has seen the broadest application in terms of questions related to ecological niche 

evolution (Anciães and Peterson 2006; Papeş 2007). GARP uses presence only data; 

thus, for absence information, absences are derived from the set of pixels where the 

species has not been detected (Anciães and Peterson 2006; Papeş 2007).  

 

Within GARP processing, data are used to generate initial suites of rules, which then 

undergo an iterative process of rule selection, evaluation, testing, and incorporation or 

rejection. First, a method is selected from a range of possibilities, is applied to the 

training data, and a rule developed; rules may evolve by a number of means (e.g., 

truncation, point changes, crossing-over among rules) to maximize predictivity. 

Predictive accuracy for each of the rules is then evaluated based on 1250 points 

resampled from the test data and another 1250 points randomly selected from the 

study region as a whole where the species is not known to occur. The change in 

predictive accuracy from one iteration to the next is used to evaluate whether a 

particular rule should be incorporated into the model, and the algorithm runs either 

1000 iterations or until it converges. Projection of GARP models onto landscapes 

provides an estimate of the geographic distribution of suitable conditions, and allows 

tests of model predictivity.   

 

In all, 100 models were generated for each species, and the 10 best distribution 

models were selected using a best-practices procedure for identifying optimal models 



 18

(Anderson et al. 2003) based on omission (leaving out true areas of occupation) and 

commission (including areas not potentially habitable) error statistics. Specifically, I 

used a soft omission threshold, focusing on the extreme 20% of the distribution of 

omission values (as measured based on ability to predict held-out subsets of the 

original input data) across models. I then chose models presenting intermediate levels 

of commission (i.e., proportional area predicted across the study area).  

 

The 10 best models were summed in ArcView 3.2, as a best and most conservative 

distribution estimate of the areas in which a species was likely to be present. Finally, 

because species are often prevented from inhabiting the entire spatial extent of areas 

presenting appropriate ecological niche conditions by barriers to dispersal (Soberón 

and Peterson 2005), I reduced modeled distributions for the present to areas to within 

or contiguous to known current distributions by trimming (Papeş 2007), based on 

maps presented for each species in Frith and Beehler (1998), effectively adding 

assumptions regarding dispersal limitations. 

 

ENMs-forest cover 

Studies such as Turner (1996), Schmiegelow and Monkkonen (2002), and Sala et al. 

(2000), have related reductions in distributions of species ranges to loss of major 

forest types. I used forest cover data layers spanning BOP distributions from the ESA 

Global Cover project 2008 (http://www.esa.int/due/ionia/globcover; Bicheron et al. 

2008) and intersected them with distributions of species estimated based on climatic 
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data. GLOBCOVER has a much finer resolution (300 m resolution) than other 

previous land use/land cover maps (e.g., 1 km2 spatial resolution in University of 

Maryland Global Land Cover Facility LULC maps; Giri et al. 2005). Given that land 

use patterns and species occurrence data do not necessarily come from the same time 

periods, land cover information could not be included in building niche models 

(Chapman et al. 2005), but rather were intersected post hoc with estimated 

distributional areas for each species. Since BOP ecological distributions are relatively 

simple (see text above; Frith and Beehler 1998), I reclassified land cover types (22 

classes in GLOBCOVER, Bicheron et al. 2008) into 3 major types: (1) primary forest, 

(2) secondary forests/scrublands, and (3) grasslands interspersed with sparse 

vegetation. This simpler map was then used to refine the distributional estimate for 

each species according to its specific land cover needs. 

 

ENMs- sea level rise 

I mapped effects of SLR on distributions of BOPs by linking species’ distributions 

with spatially explicit projections of marine intrusion caused by SLR. A new GIS 

analysis by Li et al. (2009) provides detailed marine intrusion projections. These 

forecasts were derived as follows. Cells that are below a projected SLR are initially 

flagged. Of the flagged cells, only those that are connected to the ocean are selected. 

The selected cells are then checked to see whether or not they correspond to existing 

inland water bodies. Only those cells that connect to the ocean and are not inland 
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water bodies are designated as inundation cells. The method was implemented for a 6 

m SLR scenario; full details of the method are provided in Li et al. (2009).  

 

Already, several studies (Legra et al. 2008; Menon et al. 2009) have used this method 

with interesting results, and more studies are underway (Legra et al. unpubl. data). 

For BOPs, with distributions ranging to low elevations, I intersected predicted 

distributional areas with the marine intrusion estimates to assess the proportion of 

distributions lost, focusing on the maximum SLR scenario of 6 m.  

 

Protected areas- Conservation prioritization 

Conservation efforts across Australia and New Guinea are either lacking, or are not 

necessarily designed optimally for particular species. Many protected areas were 

developed based on minimal information, which is often quite general, so protection 

of particular species is not always achieved (Pressey et al. 1994). An approach to 

solving this problem is objective selection of priority sites for conservation (Eken et 

al. 2004; Sarkar et al. 2006) based on clear goals. The aim in prioritization for 

conservation is not necessarily to augment systems of protected areas, but rather to 

ensure that protected areas are designed and located in best places to conserve 

biodiversity (UNDP 2004; Urquiza-Hass et al. 2009).  

 

Using place prioritization methods, I evaluated BOP distributions to identify suites of 

areas most suitable for protecting BOPs. I used the ResNet software package 
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produced at the University of Texas at Austin (Garson et al. 2007). ResNet is unique 

in that it uses dynamic memory allocation, and thus is not constrained by the size of 

the data set used. ResNet uses algorithms modified, verified, and extended from 

original proposals by Margules et al. (1988). 

 

In ResNet, a particular region is divided into sets of places, either using geographic 

coordinates (Sarkar et al. 2002; Garson et al. 2007; Illoldi-Rangel et al. 2008) or 

ecological regions (Sarkar et al. 2002; Sánchez-Cordero et al. 2005; Garson et al. 

2007). Algorithms within the program then order places according to their 

biodiversity content (Sarkar et al. 2002; Garson et al. 2007).  The algorithm uses 3 

input parameters: (1) an explicit target has been set for adequate representation of 

each surrogate (here, the number of selected places at which a species must occur), 

(2) maximum allowed area such that the algorithm orders places until this maximum 

is reached, and finally (3) the maximum allowed cost of a proposed set of priority 

places. The goal for such algorithms is to achieve the target as economically as 

possible; that is, they aim to choose as few places as possible while meeting 

conservation goals (Margules et al. 1988; Pressey and Nicholls 1989, Sarkar et al. 

2004).  

 

Within ResNet, 3 principles or rules are incorporated: 
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(i) Rarity: surrogates are first ordered inversely by their frequency of 

appearance in the data set. Places are then ordered by presence of 

the rarest surrogates (in this case species), 

(ii) Complementarity: places are ordered based on numbers of 

surrogates present that have not met their targeted representation, 

and 

(iii)  Richness: places are ordered based on overall number of 

surrogates present; however, richness is used only in the initial step 

i.e., selection of first place, since it has been shown previously that 

reliance on richness results in inefficient place selection (Williams 

et al. 1996; Csuti et al. 1997; Sánchez-Cordero et al. 2005).   

 

For both initialization and iterative place selection, ties are broken arbitrarily by 

selecting the first place on the list, so that a unique place is chosen. Iterations 

continue until all surrogates are adequately represented or the maximum allowed area 

cost is exceeded. If no explicit target is set, the procedure continues until all places 

are selected (Sarkar et al. 2002; Garson et al. 2007). The order in which places are 

selected produces a ranking of places based on their biodiversity content. Biodiversity 

content is thus implicitly defined by the algorithm, and the intuition behind this 

approach is that diversity is adequately captured by rarity and complementarity 

(Sarkar et al. 2002; Sarkar and Margules 2002). As expected, depending on 
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initialization and iteration criteria chosen, a number of different solutions can thus be 

achieved (Sarkar et al. 2002). 

 

For BOPs, I divided relevant portions of New Guinea and Australia into 15,738 grid 

cells (each cell covers ~123 km2), and then ordered these cells under richness 

considerations using both distributional and locality data. Since place prioritization 

differs somewhat in terms of the type of dataset used (Loiselle et al. 2003), I wanted 

to assess how much of a difference existed in prioritizing places using just locality 

data versus interpolated distributions of species. Using the prioritized places, I then 

created a dataset that indicated prioritized places already protected in existing 

protected areas, and ran ResNet again, this time accounting for existing protected 

areas (WDPA 2009). [Protected areas were downloaded from the World Database on 

Protected Area website (http://www.wdpa.org/) and edited in ArcView to include 

only areas contained within the extent of the grid.] For all ResNet runs, both for 

richness and existing protected areas, I used two target scenarios, 10% and 75%: 

target scenarios indicate the cells selected when 10% or 75% of species occurrence 

points or in the case of distributional area, the percentage of grid cells for each 

species is targeted for protection. Finally, I compared the derived prioritized places 

under the different targets to assess the effectiveness of using both distributional 

datasets and locality datasets. 

 

 



 24

RESULTS 
 
Ecological niche models--BOP distributions 

The ecological niche models (on which all subsequent analyses are based) developed 

were significantly better at predicting spatial distributions than random for all species 

(based on random data subsetting; χ2 tests, P<< 0.05). Predicted distributions ranged 

from very large, covering the entire island of New Guinea, for instance, Cicinnurus 

regius (504,891 km2, Table 1A), or both New Guinea and large areas of Australia, for 

instance, Manucodia keraudrenii (639,442 km2, Table1A) and Ptiloris magnificus 

(604,126 km2, Table 1A), or restricted to a narrow area, such as Astrapia nigra (429 

km2, Table 1A).  

 

Current predicted spatial distributions show certain BOP species to occupy certain 

altitudinal zones. For instance, Astrapia rothschildi is restricted to the Huon 

Peninsula and the Finisterre Range, and is distributed at lower or middle elevations 

around both ranges (Fig. 2). In addition, Epimachus bruijnii is distributed throughout 

the Mamberamo Basin, the lower parts of the Van Rees and Foja mountains and the 

interior floodplains of the Sepik and Green rivers and is found at elevations below 

900 m a.s.l. 
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Figure 2. Current predicted distribution of Astrapia rothschildi across different elevational zones. Gray 

shade color shows predicted distribution and blue circles indicate known occurrence points. 
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Figure 3. Present distribution of Astrapia mayeri (shown in gray, fig A) overlaid with occurrence 

points (yellow squares, fig A). Future potentional distributions of A. mayeri given climatic changes are 

shown in green. A = present distribution, B = distribution at 2020, C = distribution at 2050, and D = 

distribution at 2080. Green shades in B, C, and D show future predicted distributions while gray shows 

the present distribution. 

 

 

A B

C D
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Table 1A
.  Species’ distributional areas at present and under projected future clim

ates based on assum
ptions of no dispersal. Y

ears 2020, 2050, and 
2080 show

 future potential distributions of species using EN
M

. The colum
n “current” indicates present distributional areas of particular species, w

ith 
percentages of distributional loss in parenthesis. Forest cover (FC

) is given in km
2, w

ith projected forest cover loss (in parenthesis) under present and 
future clim

ates (FC
_2020, FC

_2050, and FC
_2080). D

ash (-) indicates zero potentional distributional area. 
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Table 1B
. Loss of projected species distributional areas under 6 m

 of sea level rise. Total areal losses are show
n here as percentages at 

different tim
e periods, i.e., areal loss under present projected distributions (current), future projected distributions (2020, 2050, and 2080) 

and areal loss under projected present (Present FC
) and future forest cover (FC

_2020, FC
_2050, and FC

_2080). D
ashes (-) indicate no 

loss of area under sea level rise predictions. 
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Ecological niche model--climatic effects 

Under climate changes, BOP species are projected to lose varying amounts of their 

distributions, and in one case experience extinction, under assumptions of no 

dispersal. For instance, Astrapia mayeri, is projected to lose 34% (5173 km2) by 

2020, 62% (9484 km2) by 2050, and 53% (8098 km2) of its distributional area by 

2080 (Fig. 3A-D). By 2020, Astrapia nigra is projected to experience total loss 

(100%, 428 km2, Table 1A), with Manucodia atra projected to experience the 

smallest loss (1%, 5295 km2, Table 1A) in distributional area. By 2050, aside from 

Astrapia nigra, Epimachus bruijnii and Cicinnurus regius are projected to experience 

the biggest (85%, 39,266 km2, Table 1A) and smallest (1%, 3929 km2, Table 1A) loss 

in distributional areas, respectively. Finally by 2080, Parotia wahnesii is projected to 

see the biggest (95%, 1089 km2, Table 1A) loss, with Cicinnurus magnificus 

projected to experience the smallest (1%, 3866 km2, Table 1A) loss in distributional 

area. 

 

Taking into account climate change and present land cover, results ranged from large 

losses (100%) to negligible losses (1%). For instance, by 2050, Astrapia nigra is 

projected to go extinct, Epimachus bruijnii is projected to experience the next biggest 

loss (85%, 39,266 km2, Table1A), with Cicinnurus regius projected to experience the 

smallest loss (1%, 3929 km2, Table 1A). By 2080, Paradiseae guilielmi is projected 
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to experience a loss of 98% (437 km2, Table 1A) of its distribution, while Manucodia 

keraudrenii will experience the least loss (1%, 2694 km2, Table 1A). 

 

Ecological niche model--sea level rise effects 

Under sea level rise predictions, 32% (N = 11) of BOP species will experience no 

effect of marine intrusion on their distributional areas, such as in Astrapia mayeri, A. 

nigra, and A. rothschildi (Table 1B). Within present distributional areas, Manucodia 

atra is projected to experience the largest loss (74%, 99,646 km2, Table 1B) in its’ 

distributional area to marine intrusion, with Ptiloris victoriae projected to experience 

the smallest loss (1%, 458 km2, Table 1B) of its distributional area to marine 

intrusion. Species that experienced no loss in distributional areas due to marine 

intrusion generally also experience no loss owing to forest cover (i.e., 32%, N = 11 

species). Forest cover marine intrusion losses across BOP species’ distributions 

ranged from 74% to 1% (Table 1B) of present distributional areas. 

 

BOP conservation- Place-prioritization 

BOPs distributions overlapped one or more existing protected areas, obviously. 

Current protected area systems within the study region cover only ~8% (153,141 

km2) of total area (1,993,077 km2), but represented 74% and 100% of BOP species 

for both BOP occurrence and projected present distributional data respectively. For 

BOP localities, under a target representing 10% of a species occurrence records, 0.5% 

(N = 79 prioritized cells, 9976 km2) of area was prioritized whereas at a 75% target, 



 31

1.2% (N = 190 prioritized cells, 23,993 km2; Fig. 4A-C) of area was prioritized. 

Using present day distributional data, 0.3% (N = 53 prioritized cells, 6693 km2) of 

distributional area was prioritized under a target representing 10% of a species 

distribution, while at 75% target scenario; an area covering 3% (N = 406 prioritized 

cells, 51,2670 km2) was prioritized (Fig. 4D-F).  

 

For BOP localities, 10 prioritized cells covering an area of 1230 km2 are needed to 

represent all species of BOPs under a 10% target scenario. For a 75% target scenario, 

13 (1599 km2) prioritized cells are needed to fully represent all species. Under present 

day distributions, 7 (861 km2) prioritized cells are needed to represent all species of 

BOPs under both 10 and 75% target scenarios. 
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Figure 4. All prioritized cells across BOP distributional areas (A-B). C and D show sections (Huon 

Peninsula region) of the prioritized cells under 10 and 75% target scenarios. C shows prioritized cells 

using BOP localities and D shows prioritized cells using BOP distributions. Green polygons show 

current protected area networks; black triangles (10%) and orange circles (75%) in C show different 

target scenarios. In D target scenarios are indicated as blue triangles (10%) and gray circles (75%). 

 

DISCUSSION 

ENMs have been widely used to map species’ distributions (Anderson et al. 2003; 

Raxworthy et al. 2003; Meynard and Quinn 2007) and predict responses to climatic 

changes (Pearson and Dawson 2003; Martínez-Meyer 2005; Anciães and Peterson 

2006). While ENMs have been widely used (see Phillips et al. 2006 and Phillips and 

Dudík 2008), applications of ENMs specific to New Guinea are lacking. A factor 

hindering use of ENMs for New Guinea fauna is the lack of biodiversity datasets that 

could be used to develop niche models; even if such data do exist, they are not recent 

or are spread throughout many museums, and are not easily accessible. Secondly 

environmental layers are often based at global scales and thus reprojecting of 

environmental layers to specific scales can compromise fine-scale predictability of 

models (see Pearson and Dawson 2003; Martínez-Meyer 2005 and Phillips and Dudík 

2008). Given these caveats, recent efforts to make natural history collections 

available electronically (see Brooke 2000; Graham et al. 2004) and much higher-

resolution environmental datasets (see Pearson and Dawson 2003; Martínez-Meyer 
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2005), make it possible to do bioinformatics type research on New Guinea flora and 

fauna. 

 

I present here distributional data for 34 BOP species using ENMs. BOP distributional 

estimates developed herein complement earlier biogeographic descriptions of BOP 

distributions. This study also provides clear distributional patterns of species, unlike 

earlier summaries (see Heads 2001a; 2001b; 2002) that mostly outlined only general 

patterns. BOPs distributions ranged from narrow, as seen for Astrapia nigra, to very 

large, i.e., spanning the entire island of New Guinea, such as for Cicinnurus regius, or 

both New Guinea and Australia, as seen in Manucodia atra. However, for certain 

species of BOPs, the paucity of recent locality data made validation of species 

distributional predictions (see Thuiller 2003; Guisan and Thuiller 2005; Phillips et al. 

2006) impossible, so certain estimates may not be as accurate as expected (see 

Anderson and Martínez-Meyer 2004; Martínez-Meyer 2005).  

 

Under climate change effects, BOPs will experience loss of distributional areas, and 

probable extinction for Astrapia nigra. Species such as Manucodia atra, Cicinnurus 

regius, and C. magnificus are projected to experience smallest losses in distributional 

areas, while A. nigra, Epimachus bruijnii and Parotia wahnesii are projected to see 

big losses within their distributional ranges. Taking into account land use change (in 

the present) and the effects of marine intrusion, BOPs are likely to see further losses 

in distributional ranges over time.  
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Prioritization of areas using distributional data can enhance and effectively aid 

conservation efforts. Here I used BOP distributions and locality data to prioritize 

cells. Prioritization of cells differed with use of locality or distributional data; i.e., 

prioritization with locality data required more cells (see Loiselle et al. 2003) to 

represent all 34 species than prioritizations based on interpolated distributional data.  

Conservation efforts using as few areas as possible that fully represent a suite of 

species (Margules et al. 1998; Sarkar et al. 2004); in this case to the extent that my 

interpolations are correct, the prioritization for BOPs would greatly enhance species 

conservation across New Guinea, i.e., with few areas conservation of species can be 

achieved at minimal cost and with a concentrated effort. However due care must be 

taken in implementing conservation using areas developed under prioritization 

procedures because prioritization can be affected by the occurrence datasets used in 

developing distribution models and thus could potentially misdirect conservation 

action. Prioritization using an array of biodiversity surrogates across New Guinea 

would greatly improve prioritization efforts, identify gaps in existing networks, and 

help strengthen existing networks by specifically prioritizing areas that represent a 

variety of biodiversity surrogates (Pawar et al. 2007; Urquiza-Haas et al. 2009). 
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