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Abstract 

 
 

With the prevalence of HIV-associated neurocognitive disorders (HAND) 

increasing, understanding the mechanisms by which HIV induces neuro-inflammation 

and subsequent neuronal damage is of paramount importance.  We hypothesized that 

HIV-1 and IFN-γ/TNF-α co-operation could increase CXCL10 expression in 

astrocytes through redox sensitive pathways.  Our initial studies focused on 

determining which signaling pathways were involved in CXCL10 induction in HIV-1 

and cytokine treated astrocytes. The next studies were aimed at determining which 

HIV-1 protein was co-operating with IFN-γ and TNF-α to cause this effect. 

Additionally, to verify if an oxidative burst was impacting CXCL10 regulation 

through redox sensitive pathways we utilized apocynin, an inhibitor of NADPH 

oxidase. Apocynin was also able to diminish Jnk, Erk1/2, and Akt pathway activation, 

decrease NF-κB activation and decrease CXCL10 expression, improving neuronal 

survival. This data has implications for the development of therapeutic strategies 

aimed at reducing the release of pro-inflammatory agents to prevent HIV-1 

neuropathogenesis. 
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HIV-associated Dementia (HAD) 

There are 40 million people world wide infected with Human Immunodeficiency 

Virus-1 (HIV-1) [1]. Shortly after infection, HIV-1 penetrates the brain eventually 

resulting in HIV-1 associated CNS disease [2].  Studies show that 60% of HIV-1 

carriers have some form of neuropsychiatric impairment diagnosed by behavioral, 

cognitive, and motor abnormalities broadly termed HIV-associated neurocognitive 

disorders (HAND) [3].  HIV associated dementia (HAD), the most severe form of 

HAND [4], is clinically characterized by motor and behavioral dysfunctions leading 

to seizures, coma, and death within six months of onset [5]. Before the era of 

combinational antiretroviral therapy (cART) 20-30% of adults and 50% of children 

infected with HIV-1 would develop HAD [6]. Even with cART, 60% of individuals 

are affected by HAND and 9-11% of HIV-1 infected individuals still develop HAD 

[6]. HIV encephalitis (HIVE), the pathologic correlate of HAD reveals a broad 

spectrum of pathological changes including widespread reactive astrogliosis, 

multifocal and sub-acute encephalitis, focal accumulation of macrophages & 

multinucleated giant cells, cerebral cortical atrophy, loss of specific neuronal 

subpopulations, and diffuse white matter pallor [7-11].  

 

Brain inflammation and HAD 

The CNS has been thought to be an immunologically privileged organ.  However, 

increasing evidence suggests that inflammation is actively involved in the 
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pathogenesis of HAD [2, 6, 12, 13].  In the CNS of patients with HAD, astrocytes 

serve as mediators for inflammatory events, thereby controlling the cascade of actions 

contributing to the disruption of neuronal homeostasis and development of 

neurological abnormalities.  HIVE is characterized by widespread astrogliosis, 

cytokine/chemokine dysregulation, oxidative stress, and neuronal degeneration  [5, 6, 

14]. Since the severity of HAD/HIVE correlates with the presence of activated 

astroglial and microglial cells rather than with the presence and amount of HIV-

infected cells in the brain, the current thinking about the disease is that CNS injury is 

mainly caused by the release of neurotoxic factors by immune-activated glial cells [6, 

14].  Activation of astroglia, through direct infection or their interactions with the 

host factors from infected cells or viral products thus contributes to HIV-associated 

neuropathology. 

 

Critical role for astrocytes in HAD 

Since the severity of HAD/HIVE correlates with the presence of activated glial cells 

rather than with the viral load in the brain [6, 14] it is critical to understand the 

immune capabilities and consequences of immune activation within these cells. 

Astrocytes, the most numerous cell type within the brain, provide an important 

reservoir for the generation of inflammatory mediators in response to HIV-1 

infiltration into the brain [14-16]. One of the main functions of astrocytes is to protect 

neurons from injury by metabolizing neurotoxins and regulating their homeostatic 

environment with the release of neurotropic factors [17].  However, once activated by 
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insult/injury astrocytes under go astrogliosis characterized by proliferation and 

release of several different cytokines and chemokines, along with amplifying 

neurotoxic signals from activated microglia [18, 19]. Although HIV-1 does not 

productively infect astrocytes, the viral proteins Tat, Rev, and Nef are expressed in 

astrocytes in brain tissue derived from HAD patients [17, 20].  Tat and Nef, along 

with gp120, have been shown to activate several signaling pathways that lead to the 

dysregulation of cytokine/chemokine release and oxidative stress in astrocytes [17, 

21]. This increase in cytokine/chemokine dysregulation and oxidative stress can lead 

to less effective astrocyte function and perhaps death. Studies show that astrocyte 

apoptosis can be directly correlated with the neurological symptoms of HAD [16].  

Brain tissue derived from patients with HAD have significantly more apoptotic 

astrocytes than brain tissues from HIV-1 positive individuals who do not develop 

HAD [16].  These findings further demonstrate that normally functioning astrocytes 

are needed to maintain neuronal health and their loss results in neurological disease. 

 

Role of TNF-α and IFN-γ in HAD 

The neuronal apoptosis that occurs in HAD is thought to occur by indirect toxicity 

from the increased secretion of pro-inflammatory cytokines by activated astroglia and 

microglia. These pro-inflammatory cytokines play a critical role in the pathogenesis 

of several neurodegenerative diseases, including HAD [19, 22-24].   

TNF-α is a pro-inflammatory cytokine produced by activated astrocytes and 

microglia cells in response to HIV-1 [19, 25].  Levels of this cytokine are positively 
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correlated with HAD disease pathogenesis with studies showing that brain tissue 

derived from patients afflicted with HAD demonstrate significantly higher levels of 

TNF-α mRNA than control tissues [19, 25-29].  Underscoring the importance of this 

pro-inflammatory cytokine in the pathogenesis of HAD is that the inhibition of TNF-

α is able to profoundly reduce the inflammation in the brain and decrease neuronal 

loss in a murine model of HAD [19, 30]. TNF-α is able to exert its neurotoxic effects 

in several different ways.  This cytokine can elicit increased expression of iNOS in 

astrocytes to increase amounts of nitric oxide, resulting in oxidative stress that can be 

detrimental to neuronal health [19, 25, 31].  During HIV-1 infection TNF-α can 

synergize with the HIV-1 viral proteins gp120 [32] and Tat [33] to cause oxidative 

stress in neurons, leading to neuronal apoptosis [19, 25, 32-34]. Furthermore, TNF-α 

can increase chemokine expression not only by itself [25, 35], but can also synergize 

with different host factors to increase the toxicity and inflammation in the 

surrounding environment [19, 25, 36-39]. One of the host cellular factors that has 

been shown to synergistically interact with TNF-α in respect to CXCL10 release is 

the pro-inflammatory cytokine IFN-γ [37, 39].  

IFN-γ has been shown to be markedly increased in CNS tissues during HIV-1 

infection in the brain and has been implicated in the pathophysiology of HAD [40].  

IFN-γ can exert wide ranging effects on several cell types within the brain, in 

particular, astrocytes and neurons. This cytokine is a known inducer for the 

expression of CXCL10 in several cell types including astrocytes [37, 41, 42]. This 

pro-inflammatory cytokine can also affect astrocytes by causing an up-regulation of 
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CXCR4 and CCR5, the co-receptors for HIV-1 [43] while at the same time 

augmenting the restricted viral replication that occurs in these cells [44, 45]. In 

neurons, IFN-γ can act in concert with HIV-1 viral proteins gp120 and Tat to enhance 

neuronal damage by taking advantage of the dysregulation of the JAK/STAT pathway 

[3, 46]. This signaling pathway is critical to the regulation of proinflammatory and 

apoptotic signals during the inflammatory processes within the brain [3, 46]. Both 

IFN-γ and TNF-α utilize the JAK/STAT pathway offering a mechanism by which not 

only the two cytokines can synergize with each other, but also with HIV-1 viral 

proteins to cause increased inflammation and apoptosis within the HIV-1 infected 

brain.  

 

CXCL10 involvement in HAD 

Chemokines in the brain have been recognized as essential elements in 

neurodegenerative disease and related neuroinflammation.  Chemokines and their 

receptors are expressed by a wide variety of cells, including those intrinsic to the 

CNS.  These proteins can regulate inflammatory responses by recruiting lymphocytes 

and monocytes/macrophages to areas of inflammation within the brain [47, 48].  

Chemokines also contribute to injury and eventual loss of neurons [49, 50].  Cerebral 

expression of various chemokines and their receptors is increased in HIVE.  CXCL10 

(interferon γ-inducible peptide, or IP-10) was first identified as an early response 

gene induced after IFN-γ treatment in a variety of cells [41, 42].  Interactions of 

soluble host factors, such as those between IFN-γ and TNF-α, have been shown to 
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synergistically induce the expression of this chemokine [37, 51]. In addition to its 

induction by host factors, CXCL10 can also be induced by the HIV-1 viral proteins 

gp120, Tat, and Nef [52-54].   

 Increased levels of CXCL10 have been detected in the CSF and plasma of 

individuals with HIV-1 infection [55]. Additionally, brain tissue derived from patients 

with HAD also reveal increased expression of mRNA for CXCL10 [54, 56, 57] and 

this expression can be localized to astrocytes [58-60].  Levels of this neurotoxic 

chemokine are positively correlated with HAD disease progression [55].  It has been 

previously demonstrated that in SHIV-infected macaque brains with lentiviral lesion, 

CXCL10 is significantly up-regulated and apoptotic to neurons [57].  Treatment of 

fetal neuronal cultures with exogenous CXCL10 produced elevations in intracellular 

Ca2+ and this effect was modulated via the CXCL10 receptor, CXCR3 [56].  

Furthermore, the increased Ca2+ was associated with mitochondrial membrane 

permeabilization and cytochrome c release, followed by activation of initiator 

caspase-9 and effector caspase-3, ultimately resulting in apoptosis [56].  More 

recently, occupation of the CXCR3 receptor by the proteolytically cleaved chemokine 

SDF-1α has also been shown to be apoptotic for neurons [61], thereby underscoring 

the role of CXCL10 and its homologs in neurodegeneration. Our recent preliminary 

studies suggest a synergistic induction of CXCL10 in astrocytes exposed to HIV-1, 

IFN-γ, and TNF-α, which can lead to increased inflammation and enhanced neuronal 

death.  
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Detrimental effects of oxidative stress (OS) in HAD 

One of the main characteristics of HIVE, and a hallmark feature of several other 

neurodegenerative diseases, is extensive OS in the brain [14, 62].  Oxidative stress is 

defined as an accumulation of reactive oxygen species (ROS), oxidized proteins and 

DNA, lipid peroxidation, and a depletion of reduced thiols [14, 63, 64]. In HIVE, 

immunohistochemistry against markers of OS reveals widespread effects 

concentrated in the glial cells and neurons [63].  Several studies indicate that the  

HIV-1 viral proteins Tat and gp120 can cause OS in astrocytes and neurons [63, 65-

68].  Increasing evidence suggests that OS mediated by HIV-1 or its protein products 

leads to the apoptosis of astrocytes [69, 70].  Additionally, exposure of neurons to 

HIV-1 gp120, and/or the ROS generated from HIV-1 activated glial cells, triggers 

stress-induced neuronal apoptosis [66-68]. Another mechanism by which OS can 

mediate its effect is through intracellular signaling pathways that culminate in the 

activation of transcription factors impacting inflammatory cytokine/chemokine 

regulation [71-73]. A recent study has shown that HIV-1 induced OS in astrocytes 

can regulate certain genes under the control of NF-κB [74]. 

NF-κB is one of the crucial transcription factors activated by OS stress 

signaling pathways [71-73]. There is evidence that OS in astrocytes can influence the 

expression of the NF-κB regulated chemokine, MCP-1 [73]. Therefore, it is probable 

that CXCL10 expression, which is under the control of NF-κB as well, is also 

modulated by OS occurring within the cell. Since astrocytes are responsible for 

maintaining the sensitive neuronal environment, such a disruption in chemokine 
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release could tip the balance towards neuronal degeneration, thus presenting another 

mechanism for enhanced progression of HAD.   

 

Role of NADPH oxidase in HAD 

Recently, the role of oxidative stress in the regulation of cytokine and chemokine 

expression has garnered increases awareness. One mechanism by which oxidative 

stress can mediate its effect is through intracellular signaling pathways that culminate 

in the activation of critical transcription factors [71-73]. Interestingly, 

immunohistochemistry against markers for oxidative stress reveal widespread effects 

concentrated in the glial cells and neurons in HIVE [63]. Several studies indicate that 

the HIV-1 Tat can cause oxidative stress in astrocytes [63, 65-68] possibly leading to 

cell death [66, 69, 70]. Song et. al. has shown that HIV-1 induced oxidative stress in 

astrocytes can regulate certain genes under the control of NF-κB, one of the essential 

transcription factors responsible for CXCL10 induction [74].  

One mechanism by which oxidative stress is able to impact signaling 

pathways and their corresponding transcription factors is through a respiratory burst 

orchestrated by the activation of NADPH oxidase [71-73, 75, 76]. NADPH oxidase, a 

multi-subunit membrane associated enzyme, is capable of producing superoxide [77-

80].  This enzyme consists of two membrane associated subunits, gp91phox and 

p22phox, and the cytosolic components p67phox, p47phox, p40phox, and the small 

GTPase Rac1/2 [77-79, 81-83].  In the active state p47phox is phosphorylated, 

leading to the recruitment of itself, p67phox, p40phox, and activated Rac1/2 to the 
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membrane bound components [78-80].  Once the cytosolic subunits have docked with 

the membrane associated subunits, the interaction between p67phox and gp91phox 

results in the transfer of electrons from NADPH oxidase to molecular oxygen, 

resulting in the production of superoxide [78-80, 83].  This superoxide is later 

converted to hydrogen peroxide, a critical redox signaling intermediate [77, 80, 84]. 

Due to recent studies linking NADPH oxidase activity to cytokine and 

chemokine production in microglia, macrophages, and astrocytes [73, 75] we became 

interested in whether NADPH oxidase could have a role in CXCL10 induction in 

human astrocytes stimulated with HIV-1 Tat and the cytokines IFN-γ and TNF-α. 

 

Significance 

HIV encephalitis (HIVE), the pathologic correlate of HAD is characterized by 

astrogliosis, cytokine/chemokine dysregulation, oxidative stress, and neuronal 

degeneration [5, 6, 14]. The severity of HAD/HIVE seems to correlate with the 

presence of activated glial cells rather than with the presence and amount of HIV-

infected cells in the brain [6, 14, 85]. The current thinking about the disease is that 

CNS injury is mainly caused by the release of neurotoxic factors, such as CXCL10, 

by immune-activated glial cells [6, 14].  Alone, both HIV-1/HIV-1 Tat or the pro-

inflammatory cytokines IFN-γ and TNF-α can induce CXCL10 release from 

astrocytes.  However, the interplay between HIV-1/HIV-1 Tat and host factors greatly 

exacerbates the effect on CXCL10 production, thus contributing to HIV-associated 

neuropathology.  Along with marked cytokine/chemokine dysregulation, another 
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main characteristic of HIVE, and a hallmark feature of several other 

neurodegenerative diseases, is extensive OS in the brain [14, 62].   

One mechanism by which OS can mediate its effect is through intracellular 

signaling pathways that culminate in the activation of transcription factors impacting 

inflammatory cytokine/chemokine regulation [71-73]. NF-κB, a known regulator of 

CXCL10 transcription, is one of the transcription factors affected by OS mediated 

signaling, presenting another mechanism by which the synergistic induction of 

CXCL10 in virus and host factor stimulated astrocytes may occur [74].  

Studies outlined in this thesis, designed to understand the molecular 

mechanisms involved in the induction of CXCL10 by viral and host factors, will 

therefore provide a key to developing therapeutic strategies against HAD.  One 

approach for developing such a strategy is the use of the antioxidant and NADPH 

oxidase inhibitor, apocynin, as a therapy to reduce the amount of CXCL10 and 

neuronal loss in the brain. The ultimate goal of this thesis is to test the hypothesis that 

an antioxidant therapy can lower the neurotoxic levels of CXCL10 and reduce 

neuronal damage/loss. If this form of intervention is successful this methodology 

could be used in conjunction with the currently available antiretroviral drugs, which 

although successful in treating the periphery, are often ineffective in the CNS.  This 

approach could also be applicable as a therapy for other types of chronic 

inflammatory processes in the brain. 

This hypothesis was tested by exploring the following questions: 

Question 1: What is the molecular mechanism(s) by which HIV-1 co-operates with 
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IFN-γ and TNF-α to induce CXCL10 expression in astrocytes? This question 

is addressed in Chapter 2. 

Question 2: Which HIV-1 viral protein(s) is co-operating with IFN-γ and  TNF-α to 

enhance CXCL10 release from astrocytes and by what mechanism? This 

question is addressed in Chapters 3 and 4. 

Question 3: What is the role of oxidative stress in the induction of CXCL10, and can 

the  

NADPH oxidase inhibitor, apocynin, be used as a therapy for reducing 

CXCL10 release and concomitant neuronal damage? This question is 

addressed in Chapter 5. 
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Chapter 2 

Pro-inflammatory cytokines and HIV-1 synergistically enhance CXCL10 
expression in human astrocytes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 14 

Abstract 

HIV encephalitis (HIVE), the pathologic correlate of HIV-associated dementia 

(HAD) is characterized by astrogliosis, cytokine/chemokine dysregulation and 

neuronal degeneration.  Increasing evidence suggests that inflammation is actively 

involved in the pathogenesis of HAD. In fact, the severity of HAD/HIVE correlates 

more closely with the presence of activated glial cells than with the presence and 

amount of HIV-infected cells in the brain. Astrocytes, the most numerous cell type 

within the brain, provide an important reservoir for the generation of inflammatory 

mediators, including interferon-γ inducible peptide-10 (CXCL10), a neurotoxin and a 

chemoattractant, implicated in the pathophysiology of HAD. Additionally, the pro-

inflammatory cytokines, IFN-γ and TNF-α, are also markedly increased in CNS 

tissues during HIV-1 infection. In the present study we hypothesized that the 

interplay of host cytokines and HIV-1 could lead to enhanced expression of the toxic 

chemokine, CXCL10. Our findings demonstrate a synergistic induction of CXCL10 

mRNA and protein in human astrocytes exposed to HIV-1 and the pro-inflammatory 

cytokines. Signaling molecules, including JAK, STATs, MAPK (via activation of 

Erk1/2, AKT, and p38), and NF-κB were identified as instrumental in the synergistic 

induction of CXCL10. Understanding the mechanisms involved in HIV-1 and 

cytokine mediated up-regulation of CXCL10 could aid in the development of 

therapeutic modalities for HAD. 
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Introduction 

There are more than 40 million people infected with human immunodeficiency 

virus (HIV)-1 worldwide. Approximately 10-15% of HIV-1 infected individuals 

suffer from CNS pathologies including HIV-associated encephalitis (HIVE) and HIV-

associated dementia (HAD), collectively termed NeuroAIDS [2, 5, 86]. HIVE, the 

pathologic correlate of HAD is characterized by increased astrocytosis, microglial 

activation, enhanced expression of inflammatory mediators and  neuronal 

dysfunction/death [5, 6, 14]. While the exact mechanism by which HIV-1 causes 

these neuropathologies is not completely understood, increasing evidence suggests 

neuronal damage results in part from microglial and astroglial mediated inflammation 

[6, 14, 87]. In fact, the severity of HIVE/HAD seems to correlate better with the 

presence of activated glial cells than with the presence and number of HIV-infected 

cells in the brain [6, 14, 85]. 

Brain tissue derived from patients with HAD reveals increased expression of 

mRNA for the chemokine, CXCL10, which is both a neurotoxin and a 

chemoattractant [54, 57].  Astrocytes, the most numerous cell type within the brain, 

provide an important reservoir for the generation of inflammatory mediators, 

including CXCL10 [14-16]. Additionally, the pro-inflammatory cytokines, IFN-γ and 

TNF-α, are markedly increased in CNS tissues during HIV-1 infection in the brain 

and are implicated in the pathophysiology of HAD [26, 40]. While both the cellular 

(IFN-γ and TNF-α) [37, 39, 88, 89] and viral factors (Tat and gp120) [52, 53] induce 
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CXCL10, it remains unclear how the interplay of host factors and virus modulate 

chemokine expression.  

Because the severity of HAD/HIVE correlates with the presence of activated 

glial cells rather than with the viral load in the brain [6, 14],  the current thinking 

about the disease is that CNS injury is mainly caused by the release of neurotoxic 

factors from immune-activated glial cells. These secreted host immune factors are 

capable of exerting toxicity on their own or in concert with HIV-1/HIV-1 proteins to 

increase the pathogenic effects on the neurons [6, 14].  

Chemokines in the brain have been recognized as essential elements in 

neurodegenerative disease and related neuroinflammation through their regulation of 

inflammatory responses [41, 47, 48] thereby contributing to injury and eventual loss 

of neurons [49, 50]. Cerebral expression of various chemokines, including CXCL10 

(interferon γ-inducible peptide, or IP-10), and their receptors are increased in HIV-E 

[55, 58-60]. Increased levels of CXCL10 have been detected in the CSF and plasma 

of individuals with HIV-1 infection [55] and in the brains of individuals with HAD 

[58-60].  Importantly, CXCL10 levels in the CNS of HIV-1 infected individuals 

correlated positively with disease progression (28). There is also evidence that 

CXCL10 participates  in the neuropathogenesis of SHIV-infected macaques [90, 91] 

by contributing to the degeneration of neurons possibly through activation of a 

calcium dependent apoptotic pathway [56, 57]. Increased CXCL10 levels were 

critical for the increased migration of inflammatory cells into the CNS, a hallmark 

feature of HAD [5, 8].  



 17 

 Additionally, the pro-inflammatory cytokines, IFN-γ and TNF-α, are also 

markedly increased in CNS tissues during HIV-1 infection and have been implicated 

in the pathophysiology of HAD [19, 26, 40]. Furthermore, IFN-γ and TNF-α, interact 

to synergistically up-regulate CXCL10 expression [37, 51]. Besides its induction by 

host factors, CXCL10 can also be induced by the HIV-1/HIV-1 proteins [52-54].  

Due to the potentially neurotoxic function of CXCL10 in disease states, it is crucial to 

analyze how combinatorial interactions of the virus and host factors can lead to an 

increased pool of this toxic chemokine in the CNS.  There is a paucity of information 

on the combined effects of IFN-γ/TNF-α with HIV-1 on CXCL10 expression. In the 

current study we hypothesized that IFN-γ and TNF-α not only synergize with each 

other, but also have the potential to synergize with HIV-1 to induce CXCL10 

expression in astrocytes.  To our knowledge, this is the first published report 

characterizing the synergistic enhancement of astroglial CXCL10 expression by IFN-

γ/TNF-α and HIV-1. Furthermore, our findings demonstrate that this synergistic 

increase in CXCL10 expression involves the signaling cascades of the JAK/STAT 

and MAPK pathways. Together, these insights may be instrumental in the 

development of therapeutic strategies aimed at treating or preventing HIV-1 

neuropathogenesis. 

 
MATERIALS AND METHODS 
 

Astrocyte cell culture and treatments: Primary human astrocytes (cat# HA1800; 

ScienCell Research Laboratories, Carlsbad, CA) were plated on poly-L-lysine coated 
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plates (2µg/cm2) at a density of 5,000 cells/cm2 in Astrocyte Medium (cat.# 1801) 

containing 2% FBS, growth supplement (cat.# 1852), and penicillin/streptomycin 

solution (cat.# 0503) as described by the supplier. Primary human astrocytes were  

allowed to grow for two weeks in order to reach 90% confluence. The human 

astrocytic cell line, A172 (ATCC #CRL-1620; American Type Culture Collection, 

Manassas, VA), were grown to confluency in Dulbecco’s modified Eagle’s medium 

containing 2 mM L-glutamine, 10% fetal bovine serum, 1% nonessential amino acids, 

50 U/ml penicillin, 0.05 mg/ml streptomycin and 2 µg/ml amphotericin B. All 

cultures were maintained in a humidified incubator at 37°C, 5% CO2 and 95% air and 

culture medium replenished every 48-72 hours.  Cells were serum-starved for 24 

hours prior to treatment. Cells (triplicate or quadruplicate wells) were treated for 6-12 

hrs (A172) or 24 hours (primary astrocytes), with: 1) a combination of the cytokines 

IFN-γ (100ng/ml) and TNF-α (30ng/ml), 2) HIV-1 NL4.3  (multiplicity of infection 

of 0.01) [92], or 3) HIV-1 NL4.3 and cytokines. The rationale for using CXCR4 

(X4)-tropic NL4.3 in these studies is based on published reports indicating increased 

activation of astrocytes by X4 viruses [18, 93].  In addition, X4 viral strains are 

capable of penetrating the blood brain barrier during the late stages of infection and 

have a greater impact on intracellular signaling and apoptosis in astrocytes and 

neurons than their R5 counterparts [94].  

The following specific pharmacological inhibitors were used at the final 

concentration specified: PI3-K Inhibitor LY294002,  PLC inhibitor U73122, MEK 

inhibitor U0126, JAK inhibitor I, JNK inhibitor II, P38 inhibitor SB203580, and the 
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PLC inhibitor U73122 (all at 20µM, Calbiochem, Gibbstown, NJ), and NF-κB 

inhibitor N-p-Tosyl-L-phenylalanine chloromethyl ketone  (TPCK) (2µM, Sigma, St. 

Louis, MO). Inhibitor concentrations chosen for this study were based on published 

reports demonstrating their effectiveness in inhibiting the respective signaling 

molecules [95-99].   

 

CXCL10 mRNA analysis: RNA was extracted from A172 astrocytes that were 

either untreated or treated with HIV-1 NL4.3 and/or the cytokines IFN-γ and TNF-α 

using TRIzol reagent following the 6 hour treatment period (Invitrogen Life 

Technologies). Quantitative analysis of CXCL10 mRNA was done by Real-Time RT-

PCR using the SYBR Green detection method. RT2 PCR primer pair set for CXCL10 

was obtained from SuperArray Bioscience and amplification of CXCL10 from first 

strand cDNA was performed as described earlier [100] using ABI Prism 7700 

sequence detector.  Data were normalized using Ct values for the house-keeping gene 

hypoxanthine-guanine phosphoribosyl transferase (HPRT) in each sample. To 

calculate relative amounts of CXCL10, the average Ct value of the HPRT was 

subtracted from that for each target gene to provide changes in Ct value. The fold 

change in gene expression (differences in changes in Ct value) was then determined 

as log2 relative units. 

 

CXCL10 protein analysis by ELISA: Supernatants collected from both primary 

human astrocytes and A172 astrocytes that were either untreated or treated with HIV-
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1 and/or cytokines, were examined for secreted CXCL10 protein levels using a 

commercially available ELISA kit (R&D Systems, Minneapolis, MN).  

 

Western Blot Analysis: Treated A172 cells were lysed using the Mammalian Cell 

Lysis kit (Sigma, St. Louis, MO) and the NE-PER Nuclear and Cytoplasmic 

Extraction kits (Pierce, Rockford, IL). Equal amounts of the corresponding proteins 

were electrophoresed in a sodium dodecyl sulfate-polyacrylamide gel (12%) in 

reducing conditions followed by transfer to PVDF membranes. The blots were 

blocked with 5% non fat dry milk in phosphate buffered saline. Western blots were 

then probed with antibodies recognizing the phosphorylated forms of Erk1/2, AKT, 

P38, p706S (Cell Signaling, Danvers, MA 1:200),  PI3-K (Santa Cruz Biotechnology, 

Santa Cruz, CA, 1:100), Stat1-α and Stat-3 (Cell Signaling, 1:500), NF-κB p65 (Cell 

Signaling, 1:1000), and β-actin (Sigma, St. Louis, MO,1:4000) The secondary 

antibodies were alkaline phosphatase conjugated to goat anti mouse/rabbit IgG 

(1:5000).  Signals were detected by chemiluminescence (CDP-star; Tropix, Bedford, 

MA).  

 

Immunocytochemistry: Immunocytochemical analysis for NF-κB activation was 

performed on A172 astrocytes cultured on coverslips and treated with HIV-NL4.3 

and cytokines for 60 minutes. Following treatment cells were fixed with 4% 

paraformaldehyde for 10 minutes at room temperature followed by permeabilization 

with 0.5%Triton X 100 in PBS.  Cells were then incubated with a blocking buffer 
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containing 5% BSA in PBS for 1 hour at room temperature. Following blocking, anti-

human NF-κB p65 rabbit polyclonal antibody (1: 500, Cell Signaling)  was added to 

each coverslip and incubated for 2 hours at room temperature. Finally the secondary 

antibody, AlexaFluor 488 goat anti-rabbit IgG, was used at a 1:1000 dilution for 2 

hours to view NF-κB activation in cells. DAPI was used to stain the cell nuclei. 

Fluorescent digital images were obtained using a Zeiss LSM510
 
confocal microscope 

equipped with an Argon/2 laser (25
 
mW) for the excitation (488 nm) and detection 

(band pass 505–530
 
nm filter; BP505–530) of the Alexa Fluor 488. Images were

 

acquired in Multitrack channel mode (sequential excitation/emmision)
 
with LSM510 

(version 3.2) software and a Plan-Apochromat objective
 
with a zoom factor of 1 or 2 

and frame size of 1024 x 1024 pixels.
 
Detector gain was set initially to cover the full 

range of all
 
of the samples and background corrected by setting the amplifier

 
gain, 

and all images were then collected under the same photomultiplier
 
detector conditions 

and pinhole diameter. Control coverslips comprised of: 1) cells without any 

secondary antibody treatment and, 2) cells treated with secondary antibody only. 

 
Results 

Synergistic induction of CXCL10 in astrocytes exposed to HIV-1 and pro-

inflammatory cytokines.  Astrocytes, the most numerous cell type within the brain, 

provide an important reservoir for the generation of inflammatory mediators in 

response to HIV-1 infiltration into the brain [14-16]. Several studies have shown that 

IFN-γ and TNF-α can synergistically induce CXCL10 in several cell types, including 

astrocytes [43, 101].  Other studies have shown that HIV-1/HIV-1 proteins can also 
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induce CXCL10 expression [52-54]. The objective of this study was to determine 

whether HIV-1 in conjunction with the pro-inflammatory cytokines IFN-γ, and TNF-

α can synergistically impact the expression of CXCL10 in astrocytes. Serum-starved 

A172 cells were treated with CXCR4 tropic HIV-1 NL4.3 and/or the cytokine mix 

(IFN-γ and TNF-α) for six hours, following which the cells were lysed in Trizol for 

RNA extraction and Real Time RT-PCR analysis for CXCL10. As shown in Fig. 1 

there was a dramatic induction of CXCL10 RNA (about 80,000 fold) in cells treated 

with both HIV-1 and the cytokine mix compared with astrocytes treated with either 

the cytokine mix or virus alone. 

The next step was to determine whether such a dramatic increase in CXCL10 

mRNA also translated into a concomitant increase in CXCL10 protein levels.  Serum-

starved A172 cells were treated with HIV-1 NL4.3 in presence or absence of the 

cytokine mix for 12 hrs and CXCL10 release in the supernatant was quantified by 

CXCL10 ELISA. As shown in Figure 2A, virus and cytokine treatment of the 

astrocyte cell line resulted in a dramatic up-regulation of CXCL10 protein expression. 

The phenomenon of CXCL10 protein induction by combination of HIV and cytokines 

was also reproduced in primary normal human astrocytes (Fig.2B).  Astrocytes 

exposed to the cytokines and inactivated virus (UV and heat treated), on the other 

hand, failed to demonstrate virus-mediated synergy of CXCL10 induction. 

Conversely, UV-inactivated virus was able to synergize with the cytokines with 

respect to CXCL10 release (data not shown), indicating thereby that it is not the 

infectious virus, rather it is the viral protein(s) that could be mediating the effect. Heat 
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treatment of the virus would render the denaturation of proteins and thus negatively 

impact the synergy. This could explain the lack of synergy observed with cytokines 

and heat-inactivated virus. These data confirmed the importance of HIV-1 in the 

synergistic enhancement of astroglial CXCL10 expression. 

 

Signaling pathways involved in HIV-1 and cytokine-mediated synergistic 

induction of CXCL10. 

Role of the JAK-STAT pathway. 

Since IFN-γ and TNF-α in conjunction with HIV-1 synergistically induced expression 

of CXCL10, and because IFN-y is known to mediate its effects primarily via the 

JAK/STAT1 signaling pathways [3, 43, 101, 102] we chose to assess the role of this 

signaling pathway in stimulated astrocytes. STAT proteins are a family of 

transcription factors that are present in many cell types and function as major signal 

transduction pathway in IFN-γ signaling. Following the binding of ligands to their 

receptors, JAKs are activated and, in turn, phosphorylate STAT-1α and/or STAT 3 

proteins. Phospho-STATs dimerize and translocate into the nucleus, binding to the 

interferon stimulated response element (ISRE) on the promoter regions of target 

genes, such as CXCL10 [103]. Since IFN-γ is a major inducer of CXCL10 expression 

and efficiently induces its transcription without intervening protein synthesis, we 

rationalized that augmented induction of CXCL10 by HIV-1 in co-operation with 

IFN-γ/TNF-α, must involve increased activation of the JAK/STAT1 signaling system 

in astrocytes.   
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Western blot analysis of the nuclear extracts from astrocytes treated with the virus 

and cytokines showed time-dependent activation of both STAT-1α and STAT-3 (Fig. 

3A). As shown in Fig. 3B, pre-treatment of A172 astrocytes with the JAK inhibitor 

followed by stimulation with HIV-1 and cytokines resulted in a substantial decrease 

in CXCL10 protein expression to a level lower than that achieved with cytokines 

alone.  These findings suggested a crucial role for JAK/STAT signaling in the 

synergistic induction of CXCL10 in HIV-1 and IFN-γ/TNF-α treated astrocytes.   

 

Role of Mitogen activated protein kinase (MAPK) signaling pathways 

Mitogen activated protein kinase (MAPK) activation is critical in regulating 

inflammatory responses, such as cytokine/chemokine secretion in response to 

multiple stimuli [104-107]. Therefore, we next explored the involvement of Erk1/2 

and p38 MAP kinases in the regulation of CXCL10 induction by HIV-1 and cytokine 

mix. As shown in Figure 4A, A172 cells stimulated with HIV-1 and the cytokine mix 

demonstrated a time-dependent activation of Erk1/2.  Confirmation of the specificity 

of Erk1/2 in the synergistic induction of CXCL10 was further carried out by 

examining the chemokine expression by ELISA in the supernatants collected from 

virus and cytokine-stimulated A172 cells in the presence of the pharmacological 

inhibitor of MEK signaling, U0126.  As shown in Figure 4B, levels of CXCL10 were 

significantly decreased in the presence of the inhibitor, thus confirming the role of 

Erk1/2 MAPK signaling pathway in the induction of CXCL10. 
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 We next assessed the role of another MAPK signaling pathway, p38 in the 

synergistic induction of CXCL10 in astrocytes.  A172 cells stimulated with the virus 

and cytokines led to the activation of p38 protein as early as 10 min following 

stimulation with peak activation attained at 30 min (Fig. 4A). To determine the 

functional role of p38 pathways in CXCL10 regulation, cells were treated with 

SB203580, a pharmacological inhibitor of p38 MAPK and assessed for CXCL10 

release in the supernatant by ELISA (Fig. 4B).  In the presence of the inhibitor 

synergistic increase of CXCL10 with HIV-1 and cytokine mix was significantly 

decreased thereby indicating the importance of p38 signaling pathway in the 

induction of the chemokine.  

Role of Phospho-inositol 3-kinase (PI3-Kinase) signaling pathway  

Phospho-inositol 3-kinase (PI3-K) is a signaling protein that can be activated by 

various stimuli and is critical in the regulation of extracellular signals along with 

modulation MAPK activity [108]. To dissect the role of the PI3-K pathway in HIV-1 

and cytokine-mediated synergy of CXCL10 expression, cell lysates from A172 

stimulated cells were examined for phosphorylation of PI3-Kinase and its 

downstream effectors, Akt and p70S6 kinase. As shown in Figure 5A, there was a 

temporal activation of the signaling proteins of the PI3-Kinase pathway in cells 

stimulated with the virus and cytokines. PI3-K, which is directly upstream of Akt, 

was activated as early as 10-15 min, followed by activation of Akt at around 30-120 

min and this, in turn, was followed by phosphorylation of p70S6 at 60-120 min (Fig. 

5A).  To address the functional role of PI3-K in the synergistic induction of CXCL10, 
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A172 cells were pretreated with the PI3-K inhibitor, LY294002,  and with the PLC 

inhibitor U73122 as a negative control, followed by stimulation of the cells with HIV-

1 and the cytokines, then subsequently monitoring the supernatants for CXCL10 

expression. As shown in Fig. 5B, pretreatment of A71 cells with the PI3-K inhibitor 

led to a significant decrease in the synergistic induction of CXCL10 expression, while 

inhibition of PLC did not significantly decrease CXCL10 levels.  

NF-κB Signaling  

The transcription factor NF-κB plays a pivotal role in inflammatory and immune 

responses [3, 109]. This family of transcription factors is present in the cytosol in an 

inactive state complexed with the inhibitory IκB proteins. Activation occurs via the 

phosphorylation of the inhibitory protein and the subsequent release of active p65 

subunit of NF-κB [110].  Both TNF-α and IFN-γ have been shown to synergistically 

increase CXCL10 expression through the transcription factor NF-κB [37, 39, 88, 89].  

We next examined the role of NF-κB in the synergistic induction of CXCL10 by 

HIV-1 and cytokines. Nuclear lysates were isolated from A172 cells stimulated with 

the virus and host factors for different time intervals and probed for the release of p65 

subunit of NF-κB in the nuclear fraction by Western blot analysis (Fig. 6A).  

Stimulation of astrocytes with the virus and cytokines induced time-dependent 

nuclear translocation of NF-κB p65, which was observed by 10 min and peaked by 60 

min as indicated by Western blot analysis (Fig. 6A).   
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Immunocytochemistry was used to further visualize the nuclear translocation 

of NF-κB.  Figure 6B clearly shows the nuclear translocation of NF-κB p65 in virus 

and cytokine treated cells versus control untreated cells, where the NF-κB is seen 

localized to the cytoplasm. To further confirm the role of NF-κB in the synergistic 

induction of CXCL10 in HIV-1 and cytokine stimulated astrocytes, we pre-treated the 

cells with TPCK, an inhibitor of NF-κB followed by stimulation of cells. Cell 

supernatants were then monitored for CXCL10 expression by ELISA. There was a 

significant decrease in the amount of CXCL10 released from astrocytes stimulated 

with the virus and cytokine mixture in the presence of TPCK (Fig. 6C) compared 

with cells not pre-treated with the inhibitor. Clearly, NF-κB plays a pivotal role in the 

synergistic induction of CXCL10 in astrocytes activated by the pro-inflammatory 

cytokines, IFN-γ and TNF-α in conjunction with HIV-1. 

 
Discussion: Despite the use of combinational antiretroviral therapy (cART) HIV-

associated cognitive impairments afflict 60% of the HIV-1 infected population [3, 

101]. HAD, the most severe form of these impairments [4, 102], is pathologically 

characterized by astrocytosis, cytokine/chemokine imbalance, and neuronal 

degeneration [5, 6, 14].  Because of the crucial role astrocytes play in maintaining 

neuronal homeostasis, astrocyte hyper-activation can severely impact the neuronal 

environment, resulting in disease pathogenesis [103, 111].  

During HIV-1 infection there is an imbalance of the pro-inflammatory cytokines, 

IFN-γ and TNF-α, which have been shown to be markedly increased in CNS tissues 
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[26, 40].  In addition to cytokine dysregulation, enhanced expression of chemokines, 

such as CXCL10 and MCP-1, is also known to correlate with the severity of HAD 

[112].  Functionally, astroglial CXCL10 recruits inflammatory cells into the CNS, 

and has also been demonstrated to exhibit potent neurotoxic effects [56, 57]. 

Consequently, it is critical to comprehend the regulation of the CXCL10 expression 

in the inflamed brain. Therefore, the objective of this study was to understand how 

these dysregulated host cytokines can interact with HIV-1 in astrocytes to amplify 

CXCL10 expression in the CNS.   

Due to the ability of CXCL10 expression to be regulated by diverse stimuli 

and studies demonstrating the synergistic effects of IFN-γ and TNF-α on CXCL10 in 

multiple cell types [104-106, 113-115], we evaluated whether these two cytokines in 

combination with HIV-1 could further increase CXCL10 expression in astrocytes.  

Based on our findings, it was evident that HIV-1 in combination with the pro-

inflammatory cytokines, synergistically enhanced CXCL10 mRNA and protein 

expression in both the human A172 astroglia and primary human astrocytes. These 

findings have implications for increased neuronal toxicity in HIV-1-infected 

individuals and underscore the importance of host-virus interactions in the 

pathogenesis of HAD.   

Having determined the co-operative interaction of HIV-1 with the pro-

inflammatory cytokines, it was of interest to explore the signaling pathways involved 

in this synergy. IFN-γ activates the JAK/STAT pathway through the  α- and β- 

subunits [103, 107, 108, 116] leading to activation of JAK1 and JAK2 kinases 
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followed by tyrosine phosphorylation of STAT1 [103, 107, 109, 110, 117, 118]. 

Complete activation of STAT 1 by IFN-γ requires phosphorylation of serine 727 in 

addition to tyrosine 710 [4, 111, 119, 120]. Herein, we found nuclear translocation 

and time-dependent phosphorylation of both STAT1 and STAT 3, with activation as 

early as 15 min following stimulation of cells.  Inhibition of JAK, an upstream 

effector of STAT1/3, through a specific pharmacological inhibitor drastically reduced 

the amount of CXCL10 expressed by stimulated astrocytes. These findings suggested 

that JAK/STAT pathway played a crucial role in the cooperative induction of 

CXCL10 in IFN-γ, TNF-α, and HIV-1 stimulated astrocytes. These findings are in 

agreement with those reported by Dhillon et. al. on the synergistic induction of 

CXCL10 by IFN-γ and PDGF in macrophages [99, 113]. 

Since HIV-1/viral proteins, TNF-α, and IFN-γ all have the ability to activate 

MAPK signaling cascades [52, 53, 114, 121, 122], we next investigated the role of 

these pathways in the induction of CXCL10 in stimulated astrocytes.  In congruence 

with the findings by Lee et. al. on gp120-stimulated macrophages [108, 115], we also 

found that both the Erk1/2 and p38 MAPK pathways were strongly activated 

following stimulation of astrocytes with HIV-1 and cytokines. Both of these pathways 

have also been implicated in the induction of proinflammatory genes [99, 113] and 

such activation is responsible for the transcriptional stabilization of the target 

proinflammatory genes [99, 113]. Thus it is possible that these pathways are critical 

for the autocrine feed forward loop involved in the maintenance of the pro-

inflammatory state associated with HAD [108, 115]. 
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 Furthermore, we also demonstrated temporal activation of the PI3-K 

pathway, involving sequential phosphorylation of Akt and its downstream p706S-

kinase. Confirmation of the role of this pathway in CXCL10 expression was 

examined by pre-treating the cells with the PI3-K inhibitor, LY294002. A significant 

decease in the amount of CXCL10 was observed in stimulated cells pre-treated with 

the inhibitor compared with the cells not exposed to the inhibitor.  Interestingly, a 

similar pathway has been reported in the enhanced expression of TNF-α in gp120-

treated macrophages [108, 123]. Furthermore, Western Blot analysis demonstrated 

clear evidence of Akt activation, a critical survival factor [124-126] and a 

downstream target of PI3-K.  Taken together, these results indicate a role for the PI3-

K pathway in CXCL10 induction in virus and cytokine stimulated astrocytes. 

Several studies have shown that astrocytes activated by HIV-1/viral proteins 

have increased nuclear translocation and activation of the transcription factor NF-κB 

[112, 120, 121, 127, 128], which, in turn, can regulate CXCL10 expression. Since 

activation of the Erk1/2, p38, and PI3-K signaling pathways can converge on a 

common transcription factor such as NF-κB, and since the CXCL10 promoter has 

NF-κB binding sites [37, 39, 123, 129], we next examined the activation and 

translocation of NF-κB in stimulated astrocytes. Our findings showed dramatic and 

sustained activation of NF-κB in the nucleus of stimulated astrocytes. These findings 

are consonant with other reports implicating the role of NF-κB in the regulation of 

various chemokines and cytokines, such as MCP-1 and IL-6, in astrocytes [112, 120, 

124, 130]. The role of NF-κB was further confirmed by pre-treating the cells with 
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TPCK, a NF-κB inhibitor, which resulted in significant decrease in expression of 

CXCL10. These findings underscore the role of this transcription factor in the 

synergistic induction of CXCL10. 

As mentioned earlier, the CXCL10 promoter region has two NF-κB sites and 

one ISRE site. The NF-κB site, κB2, in conjunction with the ISRE site are necessary 

for the synergistic induction of CXCL10 in IFN-γ and TNF-α simulated astrocytes 

[88]. Both IFN-γ and TNF-α have been shown to activate the JAK/STAT and 

MAPK/NF-κB pathways. HIV-1/viral proteins also have the ability to activate the 

MAPK pathways Erk1/2, JNK and p38 [53] in astrocytes, and viral gp120-mediated 

induction of CXCL10 is independent of the STAT1 pathway [52, 122].   

Thus, while activation of MAPK and NF-κB can be attributed to all the three 

stimuli in astrocytes, STAT 1 activation is unique to IFN-γ and thus IFN-γ plus TNF-

α.  It has been well documented that activation of the MAPK pathways by HIV-

1/viral proteins can lead to the activation and nuclear translocation of NF-κB [112, 

128] potentially increasing the amount of NF-κB available to the κB2 site essential 

for synergistically up-regulating CXCL10.  Therefore, while IFN-γ is activating the 

JAK/STAT pathway providing for the binding of the ISRE site on the CXCL10 

promoter, all three stimuli can impact the amount of NF-κB needed for the binding of 

the two NF-κB binding sites.  In addition, none of the inhibitors tested were able to 

totally abolish the release of CXCL10 in our study thereby indicating the involvement 

of more than one pathway in the synergy. This does not however, preclude cross talk 

between the pathways. 
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In conclusion, we have shown that HIV-1 NL4.3 in co-operation with the 

cytokines IFN-γ and TNF-α is capable of synergistically inducing CXCL10 in human 

astrocytes at both the RNA and protein levels.  This induction is likely due to the 

activation of the JAK/STAT and PI3-K signaling pathways, along with the MAPK 

pathways, Erk1/2 and p38 (Fig. 7). The significance of the potential synergistic 

interactions between HIV-1 and soluble host factors and the implications of this type 

of complex interplay on the progression of HAD is progressively garnering more 

attention.  Our studies demonstrating the signal transduction pathways activated by 

HIV-1 and the pro-inflammatory cytokines in the enhancement of CXCL10 

expression, define a precarious proinflammatory mechanism that exacerbate the 

pathogenesis of HAD.  Due to the neurotoxic potential of CXCL10 these findings 

lend to important implication in the progression of AIDS-associated dementia. The 

consequences of CXCL10 over expression may include amplified neuronal 

dysfunction and death, as well as an enhanced influx of inflammatory cells into the 

CNS, a combination that creates elevated toxic, pathological responses characteristic 

of end-stage HAD.  These findings have implications in the development of 

therapeutic strategies aimed at inhibiting glial cell activation to prevent HIV-1 

neuropathogenesis. 
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Figure 1 

 

 

Figure 1: Real Time PCR analysis showing a significant increase in CXCL10 RNA 

in virus and cytokine treated A172 astrocytes.  Cell were stimulated with HIV-1 

NL4.3 (moi of 0.01), the cytokines IFN-γ (100ng/ml) and TNF-α (30ng/ml), or both 

for 6 hrs followed by total cell lysis and RNA extraction.  The graph shows and 

80,000 fold induction of CXCL10 RNA in the virus and cytokine stimulated 

astrocytes over the untreated astrocytes.  The average Ct value of the housekeeping 

gene hypoxanthine-guanine phosphoribosyl transferase (HPRT) was subtracted from 

that of the CXCL10 gene to give changes in Ct (dCt).  The fold change in gene 

induction (differences in dCt, or ddCt) was then determined as log2 relative units.  

The data represents the mean ± SD from three independent experiments (**, p < 

0.01). 
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Figure 2 

 

Figure 2: Synergistic induction of CXCL10 protein in astrocytes treated with virus 

and cytokines.  Supernatants from cells treated with either virus or cytokine or both 

virus and cytokines were collected at A) 12hrs for A172 cells and B) 24hrs for 

primary human astrocytes and analyzed for CXCL10 protein levels by ELISA.  Both 

A172 and primary human astrocytes showed a significant increase in CXCL10 

protein levels in the cells treated with virus in conjunction with the cytokines, then 

either treatment alone.  The data represents the mean ± SD from three independent 



 35 

experiments. Statistical significance from independent experiments was calculated 

(***, p < 0.001, **, p < 0.01). 
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Figure 3 

 

Figure 3: The JAK/STAT pathway is a critical player in the regulation of CXCL10 

expression in virus and cytokine stimulated astrocytes.  A) Western Blot analysis 

using phosphorylated antibodies against STAT1α and STAT3 on the nuclear lysates 

from untreated or HIV-1 NL4.3 and cytokine (T+I) treated A172 cultures. Blots were 

stripped and reprobed with β-actin for normalization. B) CXCL10 ELISA on 

supernatants collected from A172 astrocytes pretreated with JAK inhibitor for 1 hour, 

then stimulated with HIV-1 (N) and the cytokines (T+I) for 6hrs before analysis.  

CXCL10 protein content in JAK inhibitor treated cells was compared to cells that 

receive virus and cytokine stimulation in the absence of the inhibitor. Values are 

mean ± SD from three independent experiments (***, p < 0.001). 
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Figure 4 

 

Figure 4: The Erk1/2 and p38 MAPK pathways mediate CXCL10 expression in 

stimulated astrocytes.  A) Western Blot analysis of cytosolic lysates from untreated 

and virus and cytokine treated A172 astrocytes was conducted at various time points 

using antibodies against the phosphorylated forms of Erk1/2 and p38.  An antibody 

against β-actin was used to reprobe the blots for normalization.  (B) Activation of 

these pathways were shown to be involved in the synergistic increase in CXCL10 

protein expression in these cells through inhibition of the Erk1/2 pathway by U0126 

and of the p38 pathway by SB203580.  Values are mean ± SD from three independent 

experiments (***, p < 0.001, **, p < 0.01). 
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Figure 5 

 

Figure 5: The PI3-Kinase pathway is involved in CXCL10 expression in virus and 

cytokine treated astrocytes.  A) Western Blot analysis of cytosolic lysates from 

untreated and virus and cytokine treated A172 astrocytes was conducted at various 

time points using antibodies against the phosphorylated forms of PI3-K, and its 

downstream targets Akt and p706S-kinase.  An antibody against β-actin was used to 

reprobe the blots for normalization. (B) Confirmation of the involvement of the PI3-K 

pathway in production of CXCL10 in virus and cytokine treated astrocytes was 

confirmed by pretreating the cells with an inhibitor of PI3-K, LY294002, and the 



 39 

PLC inhibitor U73122 followed by CXCL10 ELISA. Values are mean ± SD from 

three independent experiments (***, p < 0.001). 
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Figure 6 

 

Figure 6: NF-κB plays a role in the synergistic induction of CXCL10 by HIV-1 and 

cytokines in astrocytes. A) Western Blot analysis of nuclear lysates from untreated 

and virus plus cytokine treated cells using an antibody against the p65 subunit of NF-

κB.   B) A172 astrocytes grown on coverslips were either untreated or treated with 

HIV-1 plus cytokines for 60 min and stained with an anti- NF-κB p65 antibody 

followed by treatment with an Alexa Flour 488-conjugated secondary antibody. 

Slides were mounted in Slow Fade antifade reagent (with DAPI, blue nuclear stain) 
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and images were captured by confocal microscopy (magnification X 250).  After 60 

min nuclear translocation of NF-κB is clearly evident in the treated cells, as show by 

the green (NF-κB) and blue (DAPI) stains overlapping. C) To confirm the role of NF-

κB in the synergistic induction of CXCL10 in stimulated astrocytes a CXCL10 

ELISA utilizing the NF-κB inhibitor TPCK was conducted on stimulated cells 

untreated or treated with the inhibitor.  Values are mean ± SD from three independent 

experiments (***, p < 0.001).  
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Figure 7 

 

Figure 7: Schematic of signaling pathways involved in the synergistic induction of 

CXCL10 in astrocytes stimulated with HIV-1 in conjunction with IFN-γ and TNF-α.  

The major signaling pathways activated include JAK/STAT, MAPK, and PI3-K.  The 

latter two are capable of converging on NF-κB, resulting in the transcription of 

CXCL10. 
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Chapter 3 

Dissecting out which HIV-1 protein(s) is responsible for the co-operative 

induction of CXCL10 in IFN-γ and TNF-α stimulated astrocytes  
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Introduction 

Shortly after infection, HIV-1 penetrates the brain eventually resulting in HIV-1 

associated CNS disease [2].  Studies show that 60% of HIV-1 carriers have some 

form of neuropsychiatric impairment diagnosed by behavioral, cognitive, and motor 

abnormalities [3].  HIV associated dementia (HAD), the most severe form of HIV-1 

induced CNS impairment [4], is clinically characterized by motor and behavioral 

dysfunctions leading to seizures, coma, and death within six months of onset [5]. 

HIV-encephalitis (HIVE), the pathologic correlate of HAD, is characterized by 

widespread astrogliosis, cytokine/chemokine dysregulation, and neuronal 

degeneration  [5, 6, 14] . Since the severity of HAD/HIVE correlates better with the 

presence of activated glial cells rather than with the viral load in the brain [6, 14] it is 

critical to understand the immune capabilities and consequences of immune activation 

within these cells.  

Astrocytes, the most numerous cell type within the brain, provide an important 

reservoir for the generation of inflammatory mediators in response to HIV-1 

infiltration into the brain [14-16]. Once activated by insult/injury astrocytes under go 

astrogliosis characterized by proliferation and the release of several different 

cytokines and chemokines [18, 19]. Although HIV-1 does not productively infect 

astrocytes, the viral proteins Tat and Nef are expressed in astrocytes in brain tissue 

derived from HAD patients [17, 20].  Tat and Nef, along with gp120, activate several 

signaling pathways that lead to the dysregulation of cytokine/chemokine release in 
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astrocytes [17, 21]. This increase in cytokine/chemokine dysregulation can lead to 

less effective astrocyte function and concomitant neuronal damage.  

Chemokines in the brain have been recognized as essential elements in 

neurodegenerative disease and related neuroinflammation.  Cerebral expression of 

various chemokines and their receptors is increased in HIVE.  Increased levels of the 

chemokine CXCL10  have been detected in the CSF and plasma of individuals with 

HIV-1 infection [55]. Additionally, brain tissue derived from patients with HAD 

reveal increased expression of mRNA for CXCL10 [54, 56, 57] and this expression 

can be localized to astrocytes [58-60].  CXCL10 expression can be induced by the 

HIV-1 viral proteins gp120, Tat, and Nef, along with being synergistically enhanced 

by IFN-γ and TNF-α [52-54].   

Our recent preliminary studies suggested a synergistic induction of CXCL10 

in astrocytes exposed to HIV-1, IFN-γ, and TNF-α. However, the whole virus was 

used for those studies, leaving the issue of which HIV-1 protein was actually 

responsible for the synergistic induction of CXCL10 unanswered.  In these studies the 

HIV-1 proteins Nef, gp120, and Tat have been examined for their ability to co-

operate with IFN-γ and TNF-α in the synergistic induction of CXCL10. 

 
Materials and Methods 
 
Astrocyte cell culture and treatments: The human astrocytic cell line, A172 (ATCC 

#CRL-1620; American Type Culture Collection, Manassas, VA), were grown to 

confluency in Dulbecco’s modified Eagle’s medium containing 2 mM L-glutamine, 

10% fetal bovine serum, 1% nonessential amino acids, 50 U/ml penicillin, 0.05 
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mg/ml streptomycin and 2 µg/ml amphotericin B. All cultures were maintained in a 

humidified incubator at 37°C, 5% CO2 and 95% air and culture medium replenished 

every 48-72 hours.  Cells (triplicate or quadruplicate wells) were treated for 24 hours 

with either gp120 (LAV), Nef, Tat, HIV-1 NL4.3, or HIV-1 NL4.3 ΔNef individually 

or in combination with the cytokines IFN-γ (50ng/ml) and TNF-α (5ng/ml).  In 

certain instances the gp120 neutralizing antibodies 1511 and 1510 (AIDS References 

and Reagent Program) were incubated with HIV-1 NL4.3 prior to the virus’ addition 

to the cells. 

CXCL10 protein analysis by ELISA: Supernatants collected from both primary 

human astrocytes and A172 astrocytes that were either untreated or treated with HIV-

1 and/or cytokines, were examined for secreted CXCL10 protein levels using a 

commercially available ELISA kit (R&D Systems, Minneapolis, MN).  

 
Results and Discussion 
 
HIV-1 Nef is not involved in the synergistic induction of CXCL10 

Nef was investigated for it’s ability to co-operate with IFN-γ and TNF-α in the 

synergistic induction of CXCL10 due to the fact that in HIVE Nef can be co-localized 

to astrocytes [17, 20].  Nef has also been demonstrated to increase CXCL10 

expression in astrocytes [52-54].  Therefore two methods were used to determine 

Nef’s potential role in the synergistic induction of CXCL10.  First a replicate virus of 

HIV-1 NL4.3 was created with the nef gene deleted, named NL4.3ΔNef (AIDS 

Reference and Reagent Program).  This virus was used to treated astrocytes along 

with the original NL4.3 virus with or without the cytokines before the supernatants 
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were collected and analyzed by ELISA (Fig. 1A).  If Nef were to play a role in the 

synergistic induction of CXCL10 then the NL4.3ΔNef virus would not have shown an 

increase in CXCL10 in the presence of IFN-γ and TNF-α.  However, no difference 

was seen in CXCL10 expression between the NL4.3 and NL4.3ΔNef viruses in the 

presence of the cytokines.  To further rule out the possibility of Nef involvement the 

astrocytes were treated with exogenous Nef protein with or without the cytokines 

before the supernatants were collected and analyzed by ELISA (Fig. 1B).  Again, 

there was no significant difference between the cytokine treatment alone, and the 

cytokine treatment with Nef.  This was solid evidence that Nef was not responsible 

for the synergistic induction of CXCL10 in IFN-γ and TNF-α treated astrocytes. 

 
Gp120 may be involved in the induction of CXCL10 
 
The role of gp120 in the synergistic induction of CXCL10 in IFN-γ and TNF-α 

treated astrocytes was investigated due to gp120 inherent location on the HIV-1 virus.  

Gp120 is the coat protein for HIV, meaning that it is the first protein to come into 

contact with the cell membrane surface of the astrocytes. Not only is gp120 the first 

protein of HIV-1 to initiate contact between the host cell and the virus, but gp120 has 

been demonstrated to activate astrocytes and induce CXCL10 expression [52-54] .  

This made gp120 a prime suspect in the synergistic induction of CXCL10.  

 Gp120 neutralizing antibodies were utilized to assess the effect of viral bound 

gp120 on astrocytes.  These neutralizing antibodies were incubated with the virus 

before the virus was added to the cells.  Then the cellular supernatants were collected 

and analyzed for CXCL10 content by ELISA (Fig 2A).  There was a significant 
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reduction in CXCL10 expression in astrocytes exposed to the gp120 neutralizing 

antibody treated virus.  This indicated a role for gp120 in the synergistic induction of 

CXCL10 in IFN-γ and TNF-α treated astrocytes.  This trend was further investigated 

by the treatment of astrocytes with exogenous gp120 with or without the cytokines 

before the collection of the supernatants and analysis by CXCL10 ELISA (Fig. 2B).  

This method, however, did not reproduce the results demonstrated by the gp120 

neutralizing antibodies.  This could be due to the fact that the gp120 protein used to 

treat the cells was monomeric, whereas on the virus gp120 is a trimer, and this trimer 

is what the gp120 neutralizing antibodies bind to.  Therefore, gp120 is probably 

involved in the induction of CXCL10 in IFN-γ and TNF-α treated astrocytes, though 

it’s action is limited to it’s trimeric form. 

 

Tat co-operates with IFN-γ and TNF-α to increase CXCL10 expression in 

astrocytes 

HIV-1 Tat was investigated for it’s ability to co-operate with IFN-γ and TNF-α in the 

synergistic induction of CXCL10 due to the fact that in HIVE Tat can be co-localized 

to astrocytes [17, 20].  Tat has also been demonstrated to increase CXCL10 

expression in astrocytes [52-54].  Therefore, astrocytes were treated with exogenous 

Tat with or without the cytokines before supernatants were collected and analyzed for 

CXCL10 content by ELISA (Fig. 3).  The results indicated that Tat, in combination 

with the cytokines, IFN-γ and TNF-α, significantly increased CXCL10 concentrations 

above those found for either treatment alone.  Thus, Tat is the HIV-1 protein 
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responsible for the synergistic induction of CXCL10 in IFN-γ and TNF-α stimulated 

astrocytes and will be used for future studies. 

 Of note, however, is the fact that Tat in combination with the cytokines did 

not increase CXCL10 levels to those reached by HIV-1 in combination with the 

cytokines.  This leaves room for the possibility that more than one HIV-1 protein 

could be responsible for the synergistic induction of CXCL10.  Furthermore, none of 

the HIV-1 proteins elicited an increase of CXCL10 by themselves, contrary to what 

previous literature had reported.  Interestingly, while Tat did not increase CXCL10 by 

itself, it was able to potentiate CXCL10 expression in the presence of IFN-γ and 

TNF-α, which neither gp120 nor Nef were able to do.  Regardless of the 

inconsistencies with previous literature and the uncertainty of gp120’s potential, the 

results with Tat were reproducible and significant, making Tat the HIV-1 protein of 

choice for continued studies. 
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Figure 1 
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Figure 1:  HIV-1 Nef is not involved in the synergistic induction of CXCL10 in 

astrocytes co-stimulated with IFN-γ and TNF-α.  A) A CXCL10 ELISA representing 

the HIV-1 laboratory strain NL4.3 and it’s counterpart ΔNL4.3 in which the Nef gene 

is deleted.  The deletion of Nef made no significant difference in CXCL10 

expression.  B) A CXCL10 ELISA showing that treatment of astrocytes with the Nef 

protein in combination with IFN-γ and TNF-α does not increase CXCL10 expression. 
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Figure 2 

 

       A 

 

 

 

 

 

 
        B 

 

 

 

 

 

Figure 2: HIV-1 gp120 (LAV) may or may not be involved in the synergistic 

induction of CXCL10 in astrocytes co-stimulated with IFN-γ and TNF-α.  A) A 

CXCL10 ELISA showing that gp120 neutralizing antibodies were successful in 

mitigating CXCL10 expression in astrocytes treated with HIV-1 and the cytokines, 

IFN-γ and TNF-α. B) A CXCL10 ELISA demonstrating that treatment of astrocytes 

with gp120 protein in combination with IFN-γ and TNF-α does not increase CXCL10 

expression. 
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Figure 3 

 

 

 

 

 

 

 

 

Figure 3: HIV-1 Tat can significantly increase CXCL10 expression in astrocytes co-

stimulated with IFN-γ and TNF-α. A) A CXCL10 ELISA demonstrating Tat’s ability, 

in the presence of the cytokines, to increase CXCL10 expression to levels over that 

achieved by either treatment alone.  
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Chapter 4 

HIV-1 Tat co-operates with IFN-γ and TNF-α to increase CXCL10 in human 
astrocytes 
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Abstract 

HIV-associated neurological disorders (HAND) are estimated to affect 60% of the 

HIV infected population.  HIV-encephalitis (HIVE), the pathological correlate of the 

most severe form of HAND is often characterized by glial activation, 

cytokine/chemokine dysregulation, and neuronal damage and loss.  However, the 

severity of HIVE correlates better with glial activation rather than viral load.  One of 

the characteristic features of HIVE is the increased amount of the neurotoxic 

chemokine, CXCL10. This chemokine can be released from astroglia activated with 

the pro-inflammatory cytokines IFN-γ and TNF-α, in conjunction with HIV-1 Tat, all 

of which are elevated in HIVE.  In an effort to understand the pathogenesis of 

HAND, this study was aimed at exploring the regulation of CXCL10 by cellular and 

viral factors during astrocyte activation.  Specifically, the data herein demonstrate 

that the combined actions of HIV-1 Tat and the pro-inflammatory cytokines, IFN-γ 

and TNF-α, result in the induction of CXCL10 at both the RNA and protein level. 

Furthermore, CXCL10 induction was found to be regulated transcriptionally by the 

activation of the p38, Jnk, and Akt signaling pathways and their downstream 

transcription factors, NF-κB and STAT-1α.  Since CXCL10 levels are linked to 

disease severity, understanding its regulation could aid in the development of 

therapeutic intervention strategies for HAND.   
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Introduction 
 

Despite the use of combinatorial anti-retroviral therapy (cART) HIV-

associated dementia (HAD), a neurological complication in end stage AIDS, still 

afflicts 9-11% of the HIV infected population [2, 5, 86]. Even more disturbing is the 

fact that HIV-associated neurocognitive disorders (HAND), which includes HAD, 

Minor Cognitive Motor Disorders (MCMD), and other HIV related neuropsychiatric 

impairments, are estimated to affect almost 60% of HIV-1 patients [3, 131].  These 

patients are diagnosed by changes in behavior, and cognitive and motor abnormalities 

[3].  HAD, the most severe form of HIV-1 induced CNS impairment [4], is clinically 

characterized by motor and behavioral dysfunction that in the absence of therapy may 

lead to seizures, coma, and death within six months of onset [5].  

HIV-1 is capable of penetrating the brain shortly after initial infection [2]. 

However, while cART is able to control the virus in the periphery, the drugs have 

inferior penetration across the blood brain barrier [62].  So while HIV-1 patients are 

living longer, they now have to deal with the long term effects of having HIV in the 

brain.  With the increasing prevalence of HAND it is essential to understand the 

cellular and molecular mechanisms by which HIV exerts its detrimental effects on the 

CNS.  However, since this virus does not infect neurons, the mechanism of neuronal 

damage and loss seen in HIVE, a pathological correlate of HAD, is not completely 

understood [6, 14]. Neuronal toxicity is thought to occur, in part, through glial 

activation and the release of cytotoxic chemokines/cytokines [6, 14], a hallmark 

feature of HIVE.     
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Astrocytes are a type of glial cell in the brain capable of releasing neurotoxic 

chemokines/cytokines after activation by either infection or injury.   CXCL10, one of 

the neurotoxic chemokines released by stimulated astrocytes is up-regulated in the 

brains and CSF of patients with HIVE and is known to be positively correlated with 

disease progression [54-56].  Furthermore, two regulators of CXCL10 expression, 

IFN-γ and TNF-α, are pro-inflammatory cytokines that are elevated in the brains of 

patients with HIVE and are also associated with neuropathogenesis [19, 25-27]. 

Another positive regulator of CXCL10 induction is the HIV-1 protein, Tat 

[17, 21, 53].  While astrocytes are not productively infected with HIV-1, the provirus 

in these cells is able to make the early HIV-1 genes, Tat, Rev and Nef [53, 54].  Tat is 

not only expressed in astrocytes and other productively infected cells like microglia, 

but it can also be released from these cells to activate other neighboring cells. Kutsch 

et. al. (2000) has reported that astrocytes activated with Tat have the ability to release 

CXCL10.  Thus, with the increased expression of Tat and the pro-inflammatory 

cytokines IFN-γ and TNF-α in brains of patients with HIVE, there exists a perfect 

milieu for exaggerated induction of CXCL10 and the corresponding neuronal 

damage. 

Increased levels of CXCL10 can be damaging to neurons both directly and 

indirectly [56, 57, 132]. CXCL10 has direct toxic effects by initiating the activation 

of a calcium-dependent apoptotic pathway in neurons [56, 57]. Indirectly, CXCL10 

has the ability to create a chemotactic gradient between the brain and the periphery, 

allowing T-cells to infiltrate the brain, a hallmark feature of HAND [6, 132].  This T-
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cell assault not only weakens the blood brain barrier, but increases local 

inflammation, which can be damaging to the neurons.  

While both cellular (IFN-γ and TNF-α) and viral (Tat) mediators are known to 

induce CXCL10, it remains unclear how the interplay of these host and viral factors 

modulates chemokine expression in astrocytes.  The data herein demonstrates the 

increased induction of CXCL10 at both the RNA and protein level in astrocytes 

activated with HIV-1 Tat, IFN-γ, and TNF-α.  The data also reveals that this increase 

is regulated transcriptionally by the activation of the p38, Jnk, and Akt signaling 

pathways and their downstream transcription factors, NF-κB and STAT-1α.  Since 

CXCL10 levels are linked to disease severity, understanding its regulation could lead 

to therapeutic intervention strategies for those suffering from HAND. 

 
Materials and Methods 
 
Astrocyte cell culture and treatments: Primary human astrocytes (cat# HA1800; 

ScienCell Research Laboratories, Carlsbad, CA) were prepared as described by the 

supplier. The human astrocytic cell lines, U-87 and A172 (ATCC; American Type 

Culture Collection, Manassas, VA), were grown as described previously [133]. The 

cells (triplicate or quadruplicate wells) were treated for 6-12 hrs (U87/A172) or 24 

hours (primary astrocytes), with: 1) HIV-1 Tat (1-72), 2) a combination of the 

cytokines IFN-γ (50ng/ml) and TNF-α (5ng/ml) or 3) HIV-1 Tat and the cytokines. 

Control treatments included heat inactivated HIV-1 Tat and cells receiving no 

treatment. The concentration of Tat in the cerebral spinal fluid (CSF) has been 

reported at 16ng/ml [134].  However the concentration of Tat in the brain is unknown, 
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though expected to be much higher than in the CSF [135].  The Tat concentration 

utilized in this in vitro study is generally accepted [136-140]. 

The following specific pharmacological inhibitors were used at the final 

concentration specified: PI3-K Inhibitor LY294002,  PLC inhibitor U73122, JAK 

inhibitor I, JNK inhibitor II, P38 inhibitor SB203580, (all at 10µM, Calbiochem, 

Gibbstown, NJ), and NF-κB inhibitor N-p-Tosyl-L-phenylalanine chloromethyl 

ketone  (TPCK) (2µM, Sigma, St. Louis, MO) [95-99]. 

CXCL10 mRNA analysis: RNA was extracted from U-87 astrocytes that were either 

untreated or treated with HIV-1 Tat and/or the cytokines IFN-γ and TNF-α using 

TRIzol reagent following the treatment periods (Invitrogen Life Technologies). 

Quantitative analysis of CXCL10 mRNA was done by quantitative Real-Time PCR 

using the SYBR Green detection method. RT2 PCR primer pair set for CXCL10 was 

obtained from SuperArray Bioscience and amplification of CXCL10 from first strand 

cDNA was performed as described earlier [100] using ABI Prism 7700 sequence 

detector. Data were normalized using Ct values for the house-keeping gene 

hypoxanthine-guanine phosphoribosyl transferase (HPRT) in each sample. To 

calculate relative amounts of CXCL10, the average Ct value of the HPRT was 

subtracted from that for each target gene to provide changes in Ct value. The fold 

change in gene expression (differences in changes in Ct value) was then determined 

as log2 relative units. 

Luciferase assay: To determine the effects of HIV-1 Tat, IFN-γ, and TNF-α on the 

transcriptional regulation of CXCL10, astrocytes were transfected with either the 
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Luciferase reporter plasmid, TGL-CXCL10 or a GFP plasmid (Amaxa Biosystems, 

using a Nucleofector kit (Amaxa Biosystems) and allowed to recover overnight [99].   

The transfection efficiency of astrocytes was around 30% as determined by analyzing 

the number of GFP expressing cells in the GFP reporter plasmid transfected wells. 

Following recovery the astrocytes transfected with the TGL-CXCL10 plasmid were 

treated with HIV-1 Tat and the cytokines, IFN-γ and TNF-α.  After 12 hours the cells 

were lysed and Luciferase activity was measured using the Luciferase Reporter Assay 

System (Promega) according to the manufacturer’s instructions. The resulting data 

was normalized by the protein content in each sample. The data represents results 

obtained from three independent experiments. 

CXCL10 protein analysis by ELISA: Supernatants collected from primary human 

astrocytes or the astrocytes cell lines U-87 and A172 that were either untreated or 

treated with HIV-1 Tat and/or cytokines were examined for secreted CXCL10 protein 

levels using a commercially available CXCL10 ELISA kit (R&D Systems, 

Minneapolis, MN). The data represents results obtained from three independent 

experiments. 

Western Blot Analysis: Treated U-87 cells were lysed using the NE-PER Nuclear 

and Cytoplasmic Extraction kits (Pierce, Rockford, IL). Equal amounts of the 

corresponding proteins were electrophoresed in a sodium dodecyl sulfate-

polyacrylamide gel (12%) in reducing conditions followed by transfer to PVDF 

membranes. The blots were blocked with 5% non fat dry milk in phosphate buffered 

saline. Western blots were then probed with antibodies recognizing the 
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phosphorylated forms of Jnk, Akt, p38, (Cell Signaling, Danvers, MA 1:200), 

STAT1-α (Cell Signaling, 1:500), NF-κB p65 (Cell Signaling, 1:1000), and β-actin 

(Sigma, St. Louis, MO,1:4000) The secondary antibodies were alkaline phosphatase 

conjugated to goat anti mouse/rabbit IgG (1:5000).  Signals were detected by 

chemiluminescence (CDP-star; Tropix, Bedford, MA).  

Statistical Analysis: All of the statistical analyses were performed by using a one-

tail, independent, Student’s t-test.  The results were judged as statistically significant 

at p values ≤ 0.05.   

 

Results 

Up-regulation of CXCL10 mRNA in astrocytes treated with Tat, IFN-γ and 

TNF-α. 

It has been previously shown that HIV-1 in conjunction with the pro-inflammatory 

cytokines IFN-γ and TNF-α can induce expression of CXCL10 in astrocytes [141]. In 

this study we wanted to dissect the contribution of HIV-1 Tat in this phenomenon. U-

87 astrocytes treated with either the cytokines alone or with Tat plus the cytokines 

show a significant increase in CXCL10 mRNA as early as three hours by Real Time 

PCR (Fig. 1A). While Tat by itself did not induce CXCL10 mRNA transcription, 

when combined with IFN-γ and TNF-α, it was capable of eliciting an increase in 

CXCL10 mRNA. As shown in Figure 1, cells treated with both Tat and the cytokines 

for just 6 hours demonstrated an almost 4000 fold increase in CXCL10 mRNA as 
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compared with the cells treated with the cytokines alone, thus underscoring the role of 

HIV-1 Tat in potentiating the transcriptional regulation of CXCL10. 

To confirm the role of Tat in the transcriptional regulation of CXCL10, we 

performed luciferase reporter assays utilizing the TGL-CXCL10 plasmid [99].  

Briefly, U-87 cells were transfected with a TGL-CXCL10 plasmid followed by a 12 

hour treatment with HIV-1 Tat and the cytokines, IFN-γ and TNF-α.  There was a 

significant increase in luciferase expression in the cells exposed to both Tat and the 

cytokines, as compared with cells treated with the cytokines alone, thereby 

confirming a role for Tat in the transcription of CXCL10 (Fig. 1B).  Furthermore, 

when the U-87 astrocytes were transfected with the TGL-CXCL10 plasmid 

containing a mutated IFN-stimulated response element (ISRE) or a mutated κB 

binding site followed by treatment with Tat plus the cytokines, there was little to no 

luciferase detected above negative control levels.  These data thus suggest that Tat in 

combination with the cytokines can strongly activate the CXCL10 gene, and this 

activation is highly dependent on the occupancy of the two key regulatory sequences, 

ISRE and κB.   

CXCL10 protein expression is increased in the presence of Tat and the 

cytokines. 

To confirm that the increase in CXCL10 RNA correlated with an increase in 

CXCL10 protein, supernatants from U-87 astrocytes, A172 astrocytes, and primary 

human astrocytes were collected and analyzed for CXCL10 expression using an 

ELISA assay.  As shown in Figure 2 and similar to the mRNA study, in both the 
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astrocyte cell lines, Tat by itself was unable to induce CXCL10 expression. Similarly 

to the RNA studies, Tat in combination with IFN-γ and TNF-α, exerted a 2 fold 

increase in CXCL10 protein levels over that of levels from cells treated with only the 

cytokine mix. This phenomenon was confirmed in primary human astrocytes and, 

similar to findings in cell lines, Tat in conjunction with the cytokines resulted in a 2 

fold increase in CXCL10 expression over that of the cytokines by themselves. Similar 

findings in both the cell lines as well as in primary human astrocytes lend credence to 

the important role of Tat in potentiating cytokine-mediated up-regulation of CXCL10.  

Tat enhances activation of IFN-γ/TNF-α signaling pathways involved in 

CXCL10 regulation. 

Past studies have demonstrated that mitogen activated protein kinase (MAPK) 

activation is critical in regulating inflammatory responses such as 

cytokine/chemokine expression in response to multiple stimuli [104-107]. We next 

sought to explore whether HIV-1 Tat could potentiate the existing signaling pathways 

used by IFN-γ and TNF-α. U-87 astrocytes were treated with Tat alone, the cytokines 

IFN-γ and TNF-α alone, or a mixture of Tat and the cytokines for 30min.  This time 

point was chosen based on the time-dependent activation of p38, Jnk, and Akt in 

astrocytes treated with Tat and the cytokines, where 30min post-treatment was the 

optimal time for enhanced phosphorylation as determined by Western blot analysis 

(data not shown). As shown in Figure 3A there was an increase in the activation of 

Jnk, p38, and Akt in cells treated with the combination of Tat and cytokines 

compared with cells exposed to either treatment alone. In each instance, as expected 
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each of the cytokine was able to induce phosphorylation of each of the pathways. 

While Tat was able to mediate only a modest activation of these pathways by itself, in 

the presence of cytokines, it potentiated a robust activation of these pathways as 

compared with the cytokines by themselves. These data demonstrate the ability of Tat 

to enhance signaling pathways activated by other pro-inflammatory molecules, 

thereby resulting in an increased expression of the target gene CXCL10. 

 The roles of Jnk, p38, and Akt activation in CXCL10 induction were further 

examined using a pharmacological approach. U-87 astrocytes were pretreated with 

either the Jnk II inhibitor, the P38 inhibitor SB203580, or the PI3-K Inhibitor 

LY294002, all at a concentration of 10µM, followed by stimulation of cells with Tat 

and the cytokine mix for 6 hrs (Fig. 3E).  Supernatants from treated cells were 

collected and analyzed for CXCL10 content by ELISA.  Pre-treatment of the 

astrocytes with the Jnk, p38, and Akt inhibitors followed by stimulation with Tat and 

cytokines resulted in significant reduction of CXCL10, thus underscoring the role of 

these signaling pathways in the induction of CXCL10.  

Role of transcription factors NF-κB and STAT-1α in induction of CXCL10.  

The transcription factors NF-κB and STAT-1α play key roles in the induction of 

CXCL10 [3, 37, 39, 43, 88, 89].  Both of these transcription factors mediate CXCL10 

regulation by binding to specific regulatory sequences in the promoter region, the 

ISRE site for STAT-1α and the κB1 and κB2 sites for NF-κB. Binding of both NF-

κB and STAT-1α is necessary for the synergistic increase in CXCL10 

mRNA/protein. IFN-γ and TNF-α, through their respective signaling pathways and 
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subsequent activation of NF-κB and STAT-1α, are known to synergistically increase 

CXCL10 [37, 88]. Therefore, U8-7 cells were treated with either Tat or the cytokines, 

or Tat in conjunction with the cytokines for 60min followed by cell lysis and isolation 

of nuclear proteins.  Nuclear extracts were subsequently analyzed for p65- NF-κB 

and pSTAT-1α content by Western Blot analysis. 

As demonstrated in Figure 4A the ability of Tat to enhance IFN-γ/TNF-α 

signaling directly correlates with an increase in the phosphorylation/activation of NF-

κB and STAT-1α. To link the increased activation of NF-κB and STAT-1α to 

CXCL10 regulation, U-87 cells were pretreated with the inhibitors specific for NF-κB 

(TPCK at 2µM) or JAK I (JAK I inhibitor at 10µM) followed by stimulation of cells 

with Tat and cytokine mix and analyzed for CXCL10 by ELISA.  As shown in Fig. 

4D inhibition of both NF-κB and STAT-1 resulted in a significant and remarkable 

reduction in CXCL10 expression in astrocytes, thereby confirming the role of these 

factors in viral and cytokine-mediated synergistic induction of CXCL10.   

Discussion 

Up-regulated expression of chemokines in the brain has been recognized as an 

important correlate of various neurodegenerative diseases and related 

neuroinflammation.  Chemokines and their receptors are expressed by a wide variety 

of cells, including those intrinsic to the CNS.  These proteins can regulate 

inflammatory responses by recruiting lymphocytes and monocytes/macrophages to 

areas of inflammation within the brain contributing to the  injury and eventual loss of 

neurons [49, 50].  Cerebral expression of various chemokines and their receptors is 
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increased in HIVE.  CXCL10 was first identified as an early response gene induced 

after IFN-γ treatment in a variety of cells [41, 42]. Interactions of soluble host factors, 

such as those between IFN-γ and TNF-α, have been shown to synergistically induce 

the expression of this chemokine [37]. In addition to its induction by host factors, 

CXCL10 can also be induced independently by the HIV-1 viral protein Tat [52-54]. 

 Increased levels of CXCL10 have been detected in the CSF and plasma of 

individuals with HIV-1 infection [55]. Additionally, brain tissue derived from patients 

with HAD also reveal increased expression of mRNA for CXCL10 and this 

expression can be localized to astrocytes [54, 60]. Levels of this neurotoxic 

chemokine are positively correlated with HAD disease progression [55].  

Additionally, up-regulated expression of CXCL10 and its neurotoxic role has also 

been previously demonstrated in SHIV-infected macaque brains with lentiviral 

lesions [56, 57]. 

In the current study we sought to explore the regulation of CXCL10 in human 

astrocytes stimulated with a mixture of IFN-γ, TNF-α, and HIV-1 Tat.  The rationale 

for using three different stimulants was based on the premise that several host 

immune and viral factors have the potential to interact during HAD, resulting in 

neuronal damage and loss. The pro-inflammatory cytokine TNF-α was chosen 

because it is a key cytokine  produced by activated astrocytes and microglia in 

response to HIV-1 [19, 25]. Levels of this cytokine are also known to positively 

correlate with HAD pathogenesis [19, 25-29]. Furthermore, TNF-α has the ability of 

not only inducing CXCL10 expression by itself [25, 35], but also synergistically with 
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various other host factors, such as IFN-γ, thus increasing the toxicity and 

inflammation in the surrounding milieu  [19, 25, 36-39].  

One of the well-studied host factors that has been shown to co-operatively 

interact with TNF-α to induce CXCL10 is the pro-inflammatory cytokine IFN-γ  [37, 

39]. Therefore IFN-γ was also chosen as an additional stimulant in the present study. 

IFN-γ is a known inducer for the expression CXCL10 in several cell types, including 

astrocytes [37, 41, 42]. Additionally, IFN-γ has been shown to be markedly increased 

in CNS tissues during HIV-1 infection in the brain and has been implicated in the 

pathophysiology of HAD [40].   

HIV-1 in combination with IFN-γ and TNF-α has been shown to 

synergistically up-regulate CXCL10 expression in human astrocytes. However, which 

viral protein contributes to this effect remains poorly understood. In our attempts to 

dissect the role of known viral toxins involved in cytokine-mediated induction of 

CXCL10, we initially examined the effects of HIV-1 Nef, the envelope protein 

gp120, and Tat in conjunction with the cytokine mix for their ability to up-regulate 

CXCL10 in U-87 astrocytes. The rationale for selecting these viral toxins stems from 

their expression in astrocytes and their ability to activate astrocytes [52-54]. Since 

HIV-1 Tat (Fig. 2A) but not gp120 or Nef (data not shown) demonstrated the most 

significant increase with the cytokines in inducing both CXCL10 RNA and protein 

(Figs 1A and 2A and B), we used HIV-1 Tat for our further studies.  

Increased induction of CXCL10 RNA in astrocytes was mediated via 

transcriptional regulation as demonstrated by transfection of promoter constructs 
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linked to luciferase reporter gene.  Using these assays it was demonstrated that 

combinatorial treatment of astrocytes with the viral and host factors resulted in 

increased transcription of the luciferase gene.  Promoter constructs with mutations in 

the ISRE (STAT-1α) binding site or IκB (NF-κB) binding sites, the two major 

regulatory sequences in the CXCL10 promoter [39, 89, 103], however, resulted in 

abrogation of luciferase expression, thus underscoring the role of each of these 

binding sites in the induction of CXCL10.   

Exploration of the signaling pathways critical for the increased induction of 

CXCL10 in astrocytes suggested the involvement of the Jnk, p38, and Akt pathways. 

These findings are in agreement with the synergistic induction of CXCL10 mediated 

by intact HIV-1 virus and the cytokine mix as reported earlier [141].  In each of the 

three pathways (Jnk, p38, and Akt) there was modest activation by Tat alone, and 

definitive activation by the cytokines themselves, however, in the presence of all the 

three stimulants there was a significant activation of each of these pathways, more so 

than with either treatment alone. Confirmation of these pathways using specific 

pharmacological inhibitors further indicated their involvement in the regulation of 

CXCL10 expression. Activation of the survival factor Akt [124-126] in the presence 

of viral and host factors leads us to speculate that this could be a mechanism by the 

virus to hijack the host machinery in order to maintain a long term reservoir of the 

neurotoxic inflammatory mediators, including CXCL10. It should be pointed out that 

inhibition of one specific signaling pathway or transcription factor never completely 
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abrogated the expression of CXCL10, thus indicating involvement of parallel 

signaling pathways and transcription factors that could be working in unison. 

All three pathways (Jnk, p38 and Akt) once activated, can in turn activate the 

downstream transcription factor NF-κB, which has two separate, yet vital binding 

sites on the CXCL10 promoter [88].  Multiple studies have demonstrated that 

astrocytes activated by HIV-1/viral proteins have increased nuclear translocation and 

activation of the transcription factor NF-κB [112, 120, 121, 127, 128, 141], which, in 

turn, can regulate CXCL10 expression. In the present study we demonstrate that 

exposure of astrocytes to Tat and the cytokines results in increased activation and 

nuclear translocation of the p65 subunit of NF-κB compared with cells treated with 

either the viral or cellular stimuli. Since Jnk, p38, and Akt all have the ability to 

activate NF-κB, their convergence on NF-κB could lead to a dramatic increase in 

CXCL10 induction.  In fact, when NF-κB was pharmacologically inhibited, there was 

a significant inhibition of CXCL10 expression. 

While activation of NF-κB can be attributed to all the three stimuli in 

astrocytes, STAT-1α activation is unique to IFN-γ or IFN-γ plus TNF-α.  Intriguingly, 

our data indicated significant activation of STAT-1α in astrocytes treated with all 

three stimuli and this was further confirmed using the JAK I specific inhibitor, 

resulting in a dramatic decrease also in CXCL10 expression.  Since Tat does not bind 

to a known cell receptor, and instead acts by diffusing through the cell membrane, it 

should be noted that while Tat activation of MAPK signaling pathways and 

transcription factors has been reported [112], there is a paucity of information of how 
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Tat actually activates these proteins.  Recent studies point to the role of Tat-mediated 

activation of NADPH oxidase, a membrane protein, as a key upstream player 

involved in the activation of MAPK signaling pathways [75]. It is thus likely that the 

activation of NADPH oxidase could explain the ability of Tat to activate Jnk, p38, 

Akt and their downstream transcription factors NF-κB and STAT-1α. Further studies 

exploring the role of NADPH oxidase in this process are warranted.  

In conclusion, we have provided evidence that HIV-1 Tat in conjunction with 

the cytokines, IFN-γ and TNF-α, is capable of regulating CXCL10 expression in 

human astrocytes at both the RNA and protein levels.  This regulation is likely due to 

the activation of the Jnk, p38, and Akt signaling pathways and activation of their 

downstream transcription factors NF-κB and STAT-1 as demonstrated in an overall 

schematic in Figure 5. 

Given that the neuronal toxicity in HAD is thought to occur through glial 

activation and the release of cytotoxic chemokines/cytokines, dissecting the complex 

interplay between host factors and viral proteins can lead to a better understanding of 

disease pathogenesis. The ability of Tat to potentiate activation of signaling pathways 

stimulated by IFN-γ and TNF-α is an ingenious approach by the virus to exploit the 

activated cells into generating reservoirs of pro-inflammatory factors, such as 

CXCL10. This in turn could aid in perpetuating activation, infection, and destruction 

of several other cell types in the CNS. 

Since excessive amounts of CXCL10 can be neurotoxic, our findings lend 

further credence to the role of CXCL10 in progression of AIDS-associated dementia. 
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The consequences of CXCL10 over expression not only include enhanced influx of 

inflammatory cells into the CNS, but also amplification of neuronal dysfunction/death 

in end-stage HAD. Since CXCL10 levels are linked to disease severity, understanding 

its regulation could aid in the development of therapeutic intervention strategies for 

HAND. 

 

Acknowledgments 

We would like to thank Dr. Avindra Nath (Department of Neurology, Johns Hopkins 

University for generously providing the HIV-1 Tat (1-72). We acknowledge the 

technical assistance of Shannon Callen in the preparation of this manuscript 

 

 

 

 

 

 

 

 

 

 

 

 



 71 

Figure 1 

 

Figure 1: (A) Real Time PCR analysis showing a significant increase in CXCL10 

RNA in U-87 astrocytes treated with a combination of Tat and cytokines. Cells were 

stimulated with either HIV-1 Tat alone, the cytokines IFN-γ and TNF-α, or Tat and 

the cytokines together for 6 hour followed by total cell lysis and RNA extraction. (B) 

Luciferase assay demonstrating the ability of Tat in combination with the cytokines to 

transcriptionally regulate the CXCL10 gene.  The induction of CXCL10 is dependent 
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upon the binding of the ISRE and IκB regulatory sequences.  The data represents the 

mean ± SD from three independent experiments (*, p< 0.05, ***, p< 0.001). 
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Figure 2 

 

Figure 2: Increased CXCL10 protein expression in (A) primary human astrocytes or 

(B) U-87 and A172 astrocytes cell lines treated with HIV-1 Tat alone, the cytokines 

IFN-γ and TNF-α, or Tat and the cytokines together for 24 and 12 hours respectively.   

Both primary and cell line astrocytes showed a significant increase in CXCL10 

protein levels in the cells treated with HIV-1 Tat and the cytokines, than with either 
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treatment alone.  Treatment of U-87 and A172 cells with heat inactivated (HI) Tat in 

conjunction with the cytokines did not lead to an increase in CXCL10 protein levels 

compared with cells treated with the cytokines alone. The data represents the mean ± 

SD from three independent experiments (**, p< 0.01, ***, p< 0.001). 
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Figure 3 

 

 

Figure 3: The p38, Jnk, and Akt signaling pathways mediate CXCL10 induction in 

stimulated U-87 astrocytes.  A) Western Blot analysis of cytosolic lysates collected 
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from cells untreated, HIV-1 Tat treated, IFN-γ and TNF-α treated, or treated with Tat 

in combination with the cytokines for 30 min. The blots were probed with antibodies 

against phospho-p38, phospho-Jnk, and phosphor-Akt. An antibody against β-actin 

was used to reprobe the blots for normalization. B), C) and D) Densitometric scans 

illustrating the ratio of phospho-p38, Jnk, and Akt to β-actin levels. E) Activation of 

these pathways was shown to be involved in the increased expression of CXCL10 

through inhibition of the p38 pathway by SB203580, the Jnk pathway by Jnk II 

inhibitor, and the Akt pathway by LY294002.  Inhibition of the PLC-γ pathway by 

U73122 had no effect on CXCL10 protein levels.  The data represents the mean ± SD 

from three independent experiments (*, p< 0.05, **, p< 0.01, ***, p< 0.001). 
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Figure 4 

 

Figure 4: STAT-1α and NF-κB play a role in the increased induction of CXCL10 by 

HIV-1 Tat and the cytokines in U-87 astrocytes. A) Western Blot analysis of nuclear 

lysates collected from cells untreated, HIV-1 Tat treated, IFN-γ and TNF-α treated, or 

treated with Tat in combination with the cytokines for 60 min. The blots were probed 

with antibodies against phospho- NF-κB p65 and phospho-STAT-1α. Antibodies 

against β-actin were used to reprobe the blots for normalization. B), C) Densitometric 

scans illustrating the ratio of phospho- NF-κB p65 and phospho-STAT-1α to β-actin 

levels. E) Activation of these transcription factors was shown to be involved in the 

increased expression of CXCL10 through inhibition of the NF-κB by TPCK and the 
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inhibition of the Jak/STAT pathway by a Jak I inhibitor.  The data represents the 

mean ± SD from three independent experiments (***, p< 0.001). 
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Figure 5 

 

 

 

Figure 5: Schematic of the signaling pathways involved in the increased induction of 

CXCL10 in astrocytes stimulated with HIV-1 Tat in conjunction with IFN-γ and 

TNF-α.  The major signaling pathways activated include p38, Jnk, and Akt, which are 

able to converge on NF-κB.  The activation of NF-κB, along with the activation of 

STAT-1α, results in the transcription of CXCL10. 
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Chapter 5 

Co-operative induction of CXCL10 involves NADPH Oxidase: Implications for 
HIV Dementia 
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Abstract 

With the increasing prevalence of HIV-associated neurocognititve disorders (HAND), 

understanding the mechanisms by which HIV-1 induces neuro-inflammation and 

subsequent neuronal damage is of paramount importance.  The hallmark features of 

HIV-encephalitis, the pathological correlate of HIV-associated Dementia (HAD), are 

gliosis, oxidative stress, chemokine dysregulation, and neuronal damage/death.  Since 

neurons are not infected by HIV-1, the current thinking in the field is that these cells 

are damaged indirectly by pro-inflammatory chemokines released by activated glial 

cells.  CXCL10 is a neurotoxic chemokine that is dramatically up-regulated in 

astroglia activated by HIV-1 Tat, IFN-γ, and TNF-α. In this study we have 

demonstrated that HIV-1 Tat increases CXCL10 expression in IFN-γ and TNF-α 

stimulated human astrocytes via NADPH oxidase.  We have shown that the treatment 

of astrocytes with a mixture of Tat and the cytokines leads to a respiratory burst that 

is abrogated by apocynin, an NADPH oxidase inhibitor. Pre-treatment of Tat, IFN-γ, 

and TNF-α stimulated astrocytes with apocynin also resulted in concomitant 

inhibition of CXCL10 expression.   Additionally, apocynin was also able to reduce 

Tat and cytokine-mediated activation of the corresponding signaling molecules 

Erk1/2, Jnk, and Akt with a concomitant decrease in activation and nuclear 

translocation of NF-κB, all of which are important regulators of CXCL10 induction. 

Understanding the mechanisms involved in reducing both oxidative stress and the 

release of pro-inflammatory agents could lead to the development of therapeutics 

aimed at decreasing neuro-inflammation in patients suffering from HAD. 
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Introduction 

 
Shortly after infection, HIV-1 is able to penetrate the brain, eventually resulting in 

HIV-1 associated complications in the CNS [2].  Studies in the literature show that 

60% of HIV-1 infected individuals have some form of neuropsychiatric impairment 

diagnosed by behavioral, cognitive, and motor abnormalities categorically classified 

as HIV-associated neurocognitive disorders [3].  HIV associated dementia (HAD), the 

most severe form of HAND [4], is clinically characterized by motor and behavioral 

dysfunctions leading to seizures, coma, and death within six months of onset [5]. 

HIV-encephalitis (HIVE), the pathological correlate of HAD, is characterized by 

widespread astrogliosis, oxidative stress, cytokine/chemokine dysregulation, and 

neuronal degeneration [5, 6, 14]. Since the severity of HAD/HIVE correlates better 

with the presence of activated glial cells rather than with the viral load in the brain, 

the current thinking about the disease is that the neuronal damage is an indirect 

consequence of pro-inflammatory cytokines and chemokines released by activated 

glial cells [6, 14].    

Astroglia, the most numerous cell type within the brain, provide an important 

reservoir for the generation of inflammatory mediators in response to HIV-1 [14-16]. 

Once activated by the virus/viral proteins astrocytes undergo astrogliosis 

characterized by the release of several different cytokines and chemokines, including 

the neurotoxic chemokine, CXCL10. Increased levels of CXCL10 (interferon γ-

inducible peptide, or IP-10) have been detected in the CSF and plasma of individuals 

with HIV-1 infection [55]. Additionally, brain tissue derived from patients with HAD 
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reveal increased expression of CXCL10 mRNA [54, 56, 57] and this expression can 

be localized to astrocytes [58-60].  Levels of this neurotoxic chemokine are positively 

correlated with HAD disease progression [55]. In SHIV-infected macaque brains with 

lentiviral lesions, CXCL10 has been shown to be significantly up-regulated and is 

apoptotic to neurons [57].  Furthermore, treatment of fetal neuronal cultures with 

exogenous CXCL10 induces neuronal apoptosis through the caspase-3 cascade [56].  

In addition to its synergistic induction by the pro-inflammatory cytokines IFN-γ and 

TNF-α, CXCL10 can also be induced by the HIV-1 viral proteins gp120, Nef, and Tat 

[52-54]. 

Although HIV-1 does not productively infect astrocytes, Tat is expressed in 

astrocytes in brain tissue derived from HAD patients [17, 20].  Studies have 

demonstrated that Tat can activate several signaling pathways that lead to the 

dysregulation of cytokine/chemokine release in astrocytes [17, 21].  Furthermore, Tat, 

in the presence of IFN-γ and TNF-α, is able to enhance the expression of CXCL10 

compared the cytokines themselves.  It has been proposed that Tat increases CXCL10 

expression by potentiating both the activation of signaling pathways and transcription 

factors utilized by the IFN-γ and TNF-α receptors through an unknown mechanism 

[142]. 

Recently, the role of oxidative stress in the regulation of cytokine and 

chemokine expression has garnered increased awareness. One possible mechanism by 

which oxidative stress can mediate its effect on protein expression is through 

intracellular signaling pathways that culminate in the activation of critical 
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transcription factors [71-73]. Interestingly, in HIVE oxidative stress markers have 

been found to co-localize with glial cells and neurons [63]. Several studies point to 

the effect of HIV-1 Tat in mediating oxidative stress in astrocytes [63, 65-68, 143] 

possibly leading to cell death [66, 69, 70]. Furthermore, it has also been demonstrated 

that HIV-1 induced oxidative stress in astrocytes can regulate target genes that are 

under the control of NF-κB, one of the essential transcription factors responsible for 

CXCL10 induction [74].  

One mechanism by which oxidative stress is able to impact signaling 

pathways and their corresponding transcription factors is through a respiratory burst 

orchestrated by the activation of NADPH oxidase [71-73, 75, 76]. NADPH oxidase, a 

multi-subunit membrane associated enzyme, is capable of producing superoxide [77-

80].  This enzyme consists of two membrane associated subunits, gp91phox and 

p22phox, and the cytosolic components p67phox, p47phox, p40phox, and the small GTPase 

Rac1/2 [77-79, 81-83].  Following its phosphorylation, p47phox forms a complex with 

p67phox, p40phox, and activated Rac1/2 before being recruited to the  membrane bound 

components [78-80].  Once the cytosolic subunits have docked with the membrane 

associated subunits, the interaction between p67phox and gp91phox results in the 

transfer of electrons from NADPH to molecular oxygen, resulting in the production 

of superoxide [78-80, 83].  The superoxide is subsequently converted to hydrogen 

peroxide, a critical redox signaling intermediate [77, 80, 84]. 

Based on recent findings linking NADPH oxidase activity to cytokine and 

chemokine production in microglia, macrophages, and astrocytes [73, 75] we 
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hypothesized that NADPH oxidase could have a role in CXCL10 induction in human 

astrocytes stimulated with HIV-1 Tat and the cytokines IFN-γ and TNF-α. In this 

study we have demonstrated that the treatment of astrocytes with a mixture of Tat and 

the cytokines leads to a respiratory burst, an effect that is abrogated by apocynin, an 

NADPH oxidase inhibitor. Treatment with apocynin also decreased CXCL10 

expression in Tat, IFN-γ, and TNF-α stimulated astrocytes.  Western blot analysis of 

U-87 astrocytes treated with apocynin and the Tat/cytokine mixture demonstrated 

decreased activation of the signaling molecules  Erk1/2, Jnk, and Akt, and subsequent 

decreased activation and nuclear translocation of NF-κB.  Understanding the 

mechanisms involved in reducing both oxidative stress and the release of pro-

inflammatory agents could aid in the development of therapies targeted at reduction 

of overall neuro-inflammation in patients affected by HAD. 

 

Materials and Methods 
 
Astrocyte cell culture and treatments: The human astrocytic cell line, U-87 

(ATCC; American Type Culture Collection, Manassas, VA), was grown as described 

previously [133]. Primary human fetal astrocytes were a generous gift from Dr. Anuja 

Ghorpade (University of North Texas Health Science Center, Fort Worth, Texas). The 

cells (triplicate or quadruplicate wells) were treated for 24 hours with: 1) HIV-1 Tat 

(1-72) (supplied by Philip Ray, University of Kentucky), 2) a combination of the 

cytokines IFN-γ (50ng/ml) and TNF-α (5ng/ml) or 3) HIV-1 Tat and the cytokines. In 

the instances where the NADPH Oxidase inhibitor apocynin (Sigma, St. Louis, MO) 
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was utilized cells were pretreated for one hour with the inhibitor (50µM-1mM) before 

stimulation with Tat and cytokines.  

Measurement of oxidative stress:  U-87 astrocytes were untreated, treated with the 

Tat/IFN-γ/TNF-α mixture, or pre-treated with apocynin (250µM) for one hour 

followed by treatment with the Tat/IFN-γ/TNF-α mixture. Cells were then trypsinized 

and centrifugation and the resulting cell pellet was stained for 30min with 15µM of 5-

(and -6)-carboxy-2’,7’-dichlorodihydroflourescein diacetate (carboxy-H2-DCF-DA) 

(Molecular Probes, Inc, Eugene, OR), to assess cytoplasmic reactive oxygen species 

(ROS) [144]. During the last five minutes of incubation Hoechst (1µM) was added to 

the cell suspension. After the 30min incubation period the cells were washed and 

resuspended in PBS containing 20mM glucose before being analyzed by a Tecan 

fluorescence plate reader at two separate excitation/emission settings.  In the first 

setting the plate was read at an excitation of 485nm with an emission of 530nm for 

DCF, the second setting measured the Hoechst at an excitation of 355nm and 

emission of 460nm.  The DCF fluorescent values were divided by their corresponding 

Hoechst fluorescent values for normalization.  The data represents the mean ± SD 

from three independent experiments (* p<0.05, **, p< 0.01, ***, p< 0.001). 

CXCL10 protein analysis by ELISA: Supernatants collected from primary human 

astrocytes or the astrocytic cell line U-87 that were either untreated or treated with 

HIV-1 Tat and/or cytokines were examined for secreted CXCL10 protein levels using 

a commercially available CXCL10 ELISA kit (R&D Systems, Minneapolis, MN). 
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The data represents the mean ± SD from three independent experiments (* p<0.05, 

**, p< 0.01, ***, p< 0.001). 

Gp91phox knock down: U-87 astrocytes were incubated with the siRNA 

transfection reagent, Ribojuice (Novagen, Gibbstown, NJ), and 400nM of Accell 

Green Non-targeting siRNA, or a Human CYBB (gp91phox) siGENOME 

SMARTpool siRNA consisting of four different siRNA sequences (Dharmacon Inc, 

Chicago, IL). The sequences of the siRNA’s are as follows 5’-

GAAGACAACUGGACAGGAA-3’, 5’-GGAACUGGGCUGUGAAUGA-3’, 5’-

GUGAAUGCCCGAGUCAAUA-3’, and 5’-GAAACUACCUAAGAUAGCG-3’.  

Forty eight hours after transfection the cells were lysed using TriZol reagent for RNA 

extraction and assessed for gp91phox knock down using RT-PCR analysis.  Primers for 

gp91phox were as follows: forward primer 5’-

CAAGATGCGTGGAAACTACCTAAGAT-3’ and reverse 5’-

TCCCTGCTCCCACTAACATCA-3’.  The RT-PCR set up consisted of  1 cycle of 

500C for 30min, a 1 cycle 950C, 15min hot start, and 40 cycles of 940C for 1min, 

550C for 1min, and 720C for 1min followed by one extension cycle of 720C for 

10min. Following confirmation of the gp91phox knock down, U-87 cells were again 

transfected and 48 hours later were stimulated with either IFN-γ/TNF-α or the 

combination of Tat/ IFN-γ/TNF-α for 24 hours before supernatants were collected 

and analyzed for CXCL10 content by ELISA. The data represents the mean ± SD 

from three independent experiments (* p<0.05, **, p< 0.01, ***, p< 0.001). 
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Western Blot Analysis: Treated U-87 cells were lysed using the NE-PER Nuclear 

and Cytoplasmic Extraction kits (Pierce, Rockford, IL). Equal amounts of the 

corresponding proteins were electrophoresed in a sodium dodecyl sulfate-

polyacrylamide gel (12%) in reducing conditions followed by transfer to PVDF 

membranes. The blots were blocked with 5% non fat dry milk in phosphate buffered 

saline. Western blots were then probed with antibodies recognizing the 

phosphorylated forms of Erk1/2, Jnk, Akt, p38, (Cell Signaling, Danvers, MA 1:200), 

Stat1-α (Cell Signaling, 1:500), NF-κB p65 (Cell Signaling, 1:1000), and β-actin 

(Sigma, St. Louis, MO,1:4000) The secondary antibodies were alkaline phosphatase 

conjugated to goat anti mouse/rabbit IgG (1:5000).  Signals were detected by 

chemiluminescence (CDP-star; Tropix, Bedford, MA).  

MTT Assay: Astrocytes were untreated, treated with Tat/IFN-γ/TNF-α, or pre-treated 

for one hour with apocynin (250µM) then treated with Tat/IFN-γ/TNF-α in serum free 

neuronal media.  After 48 hours the supernatants were placed on primary rat cortical 

neuronal cultures prepared as previously described [145].  Half of the supernatants 

from the Tat/IFN-γ/TNF-α treated astrocytes were incubated for one hour at room 

temperature with a CXCL10 neutralizing antibody as described earlier [146].  This 

was followed by an additional one hour incubation period with protein-G sepharose 

beads (Sigma, St. Louis, MO) to pull down the antibody/antigen complex by 

centrifugation. The resulting supernatant was added to the neurons. After 24 hours 

cell viability was measured by mitochondrial dehydrogenases [3(4,5-dimethylthiazol-

2-yl)-2.5 diphenyltetrazolium bromide] (MTT) (Sigma, St. Louis, MO) assay as 
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described earlier [147]. The data represents the mean ± SD from three independent 

experiments (* p<0.05, **, p< 0.01, ***, p< 0.001). 

Results 

Tat/IFN-γ/TNF-α induce oxidative stress in human astrocytes 

Oxidative stress is a hallmark feature of several neurodegenerative diseases, 

including HAD [63].  Since oxidative stress has been demonstrated to impact 

signaling pathways and cytokine/chemokine production, we sought to explore 

whether treatment of human astrocytes with Tat/IFN-γ/TNF-α could cause an 

oxidative burst.  U-87 astrocytes were treated with Tat/IFN-γ/TNF-α over a period of 

60min prior to staining with H2DCF-DA and assessed for the presence of reactive 

oxygen species by flourometer. Our findings demonstrated that in stimulated cells 

there was a time dependent increase in the formation of reactive oxygen species 

(ROS) with a peak at 30min post treatment, indicative of an oxidative burst (Fig. 1A).   

Recent reports have shown both Tat exposure and TNF-α receptor 

engagement can activate NADPH oxidase, a membrane protein capable of producing 

oxidative burst [75, 148]. In order to examine whether NADPH oxidase was involved 

in the oxidative burst of Tat and cytokine stimulated of astrocytes, cells were 

pretreated for one hour with the NADPH oxidase inhibitor, apocynin (250µM) 

followed by stimulation and subsequent staining with H2DCF-DA.  The data in 

Figure 1B demonstrated the ability of apocynin to abrogate the Tat and cytokine mix-

mediated oxidative burst in U87 astrocytes. Taken together these data suggest that 
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Tat/IFN-γ/TNF-α have the ability to activate NADPH oxidase, resulting in an 

oxidative burst. 

Inhibition of NADPH oxidase resulted in decreased CXCL10 expression 

Based on our findings that treatment of astrocytes with Tat/IFN-γ/TNF-α 

generated ROS through NADPH oxidase, it was of interest to examine first whether 

ROS played a role in the induction of CXCL10. We thus pre-treated U-87 astrocytes 

with various concentrations of apocynin (50µM-1mM) prior to stimulation with the 

Tat and cytokine mixture.  Supernatants were collected after 24 hours and assessed 

for CXCL10 content by ELISA.  As seen in Figure 2A, apocynin was able to dose 

dependently decrease CXCL10 levels, with the optimal inhibition occurring at a  

concentration of 250µM apocynin. All further experiments were thus conducted with  

apocynin at 250µM.   

The next step was to identify whether the apocynin-mediated reduction of 

CXCL10 in astrocytes was attributable to treatment with Tat, the cytokine mix, or 

both. Therefore both the U-87 and primary human astrocytes were pre-treated with 

apocynin prior to stimulation with  Tat alone, cytokines alone, or the Tat/cytokine 

mix followed by collection of the supernatants 24hrs later and assessment of  

CXCL10 content by ELISA.  As shown in Figures 2B and 2C, apocynin treatment 

significantly decreased the amount of CXCL10 generated by both the cytokine mix 

alone and the Tat/cytokine mixture.  However, the extent of  apocynin-mediated 

reduction of CXCL10 expression was greater in the Tat/cytokine mix-treated cells 

compared with cells treated with only the cytokine mix, suggesting a role for NADPH 
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oxidase in Tat-mediated potentiation of CXCL10 expression.  It should be pointed out 

that while apocynin was able to significantly decrease CXCL10 expression in both 

the Tat/cytokine and cytokine alone groups, it was unable to completely inhibit  

CXCL10 expression.  Therefore, it is likely that while the ROS generated from 

NADPH oxidase activation is involved in the induction of CXCL10, there could be 

other pathways contributing to CXCL10 induction. 

siRNA knockdown of  gp91phox resulted in decreased CXCL10 expression.  

In order to confirm the role of NADPH oxidase in the induction of CXCL10, 

we used the approach of a siRNA targeted knock down of gp91phox, the critical 

subunit of NADPH oxidase. The rationale for choosing gp91phox was based on its 

critical role in the activation of NADPH oxidase.  In the absence of gp91phox the 

activated cytosolic subunits of NADPH oxidase are unable to dock with the 

membrane components (gp91phox and gp22phox), resulting in the failure of enzyme 

activation.  It has also been demonstrated that gp91phox is up-regulated in activated 

astrocytes [149, 150], possibly through a positive feedback loop with the transcription 

factor NF-κB [151]. 

We thus sought to examine whether blocking gp91phox expression in U-87 

astrocytes by siRNA transfection could result in the inhibition of CXCL10 

expression. U-87 astrocytes were transfected with either the siRNA pool against 

gp91phox or with the scrambled siRNA conjugated with GFP.  Effective transfection 

was confirmed at 48 hrs in the scrambled-GFP transfected cells as shown in Fig 3A. 

Knockdown of gp91phox was subsequently confirmed by RT-PCR analysis (Fig. 3B).  
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Having achieved the siRNA-mediated knockdown, we next stimulated U-87 

astrocytes either with the Tat and cytokine mix or with the cytokine mix alone for 24 

hours prior to collection of supernatants for assessment of CXCL10 content by 

ELISA.  As shown in Figure 3C, there was a significant reduction of CXCL10 

expression in cells transfected with  gp91phox siRNA compared with cells transfected 

with scrambled siRNAs. These findings underscore the role of NADPH oxidase in 

Tat and cytokine-mediated induction of CXCL10.   

NADPH oxidase impacts the activation of the Erk1/2, Jnk, and Akt signaling 

pathways 

NADPH oxidase activation can affect cell signaling by several different 

mechanisms.  Its activation relies on the phosphorylation of Rac1 or Rac2, both of 

which, when activated can affect MAPK pathways [79, 84, 152].  Another 

mechanism of action for NADPH oxidase is the production of superoxide, which is 

then dismutated to hydrogen peroxide, a critical redox signaling intermediate [76, 77, 

80, 84].  Increased levels of hydrogen peroxide can activate Ras, which in turn can 

activate MAPK pathways or the PI3-K-Akt pathway [152-154].   

We next wanted to examine the downstream mediators of NADPH oxidase 

activation in stimulated astrocytes. Stimulated U-87 astrocytes in the presence or 

absence of apocynin (250µM) were lysed after 60 min (time based on our previous 

findings –unpublished results) and analyzed for MAPK activation by Western Blot 

analysis.  As shown in Figure 4 Tat and cytokine mix-mediated activation of MAPK 

proteins, Jnk and Erk1/2, was inhibited in the presence of apocynin.  Interestingly, the 
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Tat and cytokine mix-mediated activation of p38 was not affected by apocynin 

treatment, thus leading to the speculation that p38 activation was independent of 

NADPH oxidase activation.  

Since Akt signaling has been shown to be critical in the induction of CXCL10 

in stimulated astrocytes [141], we next wanted to examine the role of NADPH 

oxidase in this signaling pathway. Stimulated U-87 astrocytes in the presence or 

absence of apocynin (250µM) were lysed and analyzed for Akt activation by Western 

Blot analysis.  As shown in Figure 5 the Tat and cytokine mix-mediated activation of 

Akt was inhibited in the presence of apocynin.  Taken together these findings 

underpin the role of NADPH oxidase-mediated activation of Jnk, Erk1/2, and Akt in 

CXCL10 induction in astrocytes. 

Inhibition of NADPH oxidase decreased NF-κB activation and translocation 

The Jnk, Erk1/2, and Akt pathways are capable of converging on a common 

transcription factor, NF-κB. NF-κB is one of several transcription factors sensitive to 

redox related signaling, and has been shown to affected by the generation of ROS [73, 

74].  It has been previously reported that NADPH oxidase activation can be directly 

linked to NF-κB phosphorylation and nuclear translocation [84, 151, 155].  Taking 

into account the decreased activation of the Jnk, Erk1/2, and Akt pathways in 

response to apocynin and the fact that NF-κB has been previously linking to NADPH 

oxidase, the effect of apocynin on NF-κB activation and translocation in Tat/IFN-

γ/TNF-α stimulated U-87 cells was assessed by Western Blot analysis.  As shown in 

Figure 6, treatment with apocynin was able to decrease the phosphorylation of IκB-α, 



 94 

which sequesters NF-κB in the cytosol until phosphorylation leads to its degradation, 

resulting in the activation and nuclear translocation of NF-κB. Since NF-κB is one of 

the critical transcription factors responsible for CXCL10 induction, its decreased 

activation could therefore negatively impact CXCL10 expression. 

Treatment with apocynin decreased the overall toxicity to neurons. 

Since CXCL10 has been demonstrated to be neurotoxic, it was of interest to 

examine whether blocking CXCL10 expression in astrocytes via the NADPH oxides 

inhibitor could result in decreased neuronal toxicity in conditioned-media 

experiments. In these studies, primary rat cortical neurons were cultured in the 

presence of conditioned media collected from stimulated astrocytes treated or 

untreated with apocynin. Additionally, stimulated astrocytes conditioned media was 

also incubated with a CXCL10 neutralizing antibody prior to exposure to neurons.   

Neuronal survival was assessed after 24 hrs using the MTT survival assay.   

As demonstrated in Figure 7, astrocyte conditioned media from the untreated 

astrocytes had no effect on neuronal survival as compared with neurons incubated 

with neuronal media. However, the astrocyte conditioned media from the stimulated 

astrocytes significantly decreased neuronal survival, and this effect was reversed in 

the apocynin treated group.  Since astrocytes are capable of releasing a plethora of 

cytokines and chemokines in response to the Tat/cytokine mixture, the CXCL10 

neutralizing antibody was utilized to confirm the neurotoxic potential of CXCL10.  

Neurons treated with conditioned media exposed to the CXCL10 neutralizing 

antibody demonstrated significantly increased survival compared with the neurons 
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treated with conditioned media from stimulated cells. However, CXCL10 neutralizing 

antibody conditioned media did not exert complete reversal of cell toxicity, thus 

implying release of other neurotoxic factors in addition to CXCL10, in stimulated 

astrocytes.  

Discussion 

Oxidative stress is a common denominator in several neurodegenerative 

diseases, including HAD, the most severe form of HAND.  However, the exact cause 

and mechanism for its generation and the impact it has on disease pathogenesis is 

poorly understood. In this study we explored the mechanism by which HIV-1 Tat and 

the cytokines, IFN-γ and TNF-α, induce oxidative stress in astrocytes and the 

implications of NADPH oxidase in inducing the respiratory burst involved in 

generation of CXCL10. Furthermore, we have also demonstrated the ability of the 

NADPH oxidase inhibitor, apocynin, to diminish this response, ultimately sustaining 

neuronal health. 

The chemokine, CXCL10, was of interest in these studies because levels of 

this neurotoxic chemokine are positively correlated with HAD disease progression 

[55]. Moreover, in SHIV-infected macaque brains with lentiviral lesions, CXCL10 is 

significantly up-regulated and is apoptotic to neurons [57]. Additionally, brain tissue 

derived from patients with HAD revealed increased expression of CXCL10 mRNA 

[54, 56, 57] and this expression was localized to astrocytes [58-60].   

 CXCL10 also has the capacity to be both directly and indirectly neurotoxic 

[56, 57, 132]. CXCL10 has direct toxic effects by initiating the activation of a 
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calcium-dependent apoptotic pathway in neurons [56, 57]. Indirectly, CXCL10 has 

the ability to create a chemotactic gradient between the brain and the periphery, 

allowing cells from the periphery to infiltrate the brain, a hallmark feature of HAD, 

that increases local neuro-inflammation [6, 132].   

We have previously demonstrated that HIV-1 Tat in combination with the 

cytokines, IFN-γ and TNF-α, is able to potentiate the expression of CXCL10 

compared with cells treated with only the cytokines [142].  The mechanism of Tat-

mediated induction of  CXCL10 involved enhanced activation of the Jnk, p38, and 

Akt pathways that were already triggered by the cytokines and their cognate 

receptors.  This potentiation lead to the activation of NF-κB and STAT-1α, critical 

transcription factors involved in the synergistic induction of CXCL10 by the 

cytokines [142].   

In the current studies we sought to explore additional pathways by which HIV 

Tat mediated CXCL10 potentiation in the presence of cytokines. The membrane 

associated enzyme, NADPH oxidase, has been garnering increased attention for its 

ability to participate in signal transduction, ultimately impacting cytokine and 

chemokine production [75, 84, 149, 151]. A recent study by Turchan-Cholewo et. al. 

demonstrated the ability of Tat to activate NADPH oxidase, inducing the production 

of ROS that ultimately lead to the increased expression of TNF-α, IL-6, and MCP-1 

in microglia and macrophages [75].  Furthermore, the chemokine MCP-1 has been 

shown in astrocytes to be regulated by the transcription factor, NF-κB, in response to 



 97 

ROS [73].  Based on these findings we hypothesized that CXCL10 expression, which 

is also a target of NF-κB, is modulated by ROS and possibly NADPH oxidase. 

We thus decided to investigate the role of NADPH oxidase in the regulation 

of CXCL10 in astrocytes treated with Tat, IFN-γ, and TNF-α. First we confirmed that 

there was indeed the production of ROS in U-87 astrocytes treated with the 

Tat/cytokine mixture by way of DCF staining, which non-discriminatorily visualizes 

ROS in the cytoplasm. There was a time-dependent increase in DCF fluorescence 

with a peak at 30min following stimulation of astrocytes (Fig. 1A).  To determine 

whether NADPH oxidase may be influencing the release of ROS in the stimulated 

cells, we pretreated the cells with the NADPH oxidase inhibitor, apocynin prior to 

stimulation of cells.   The rationale for choosing apocynin was based on its specificity 

to block activation of NADPH oxidase, the proposed mechanism of action being its 

interference with the ability of  p47phox subunit to associate with the membrane bound 

subunits [156]. In the presence of apocynin there was abrogation of the Tat and 

cytokine-mediated respiratory burst observed at 30 min of cell stimulation (Fig. 1B), 

thus underscoring the role of NADPH oxidase activity in generation of ROS.  

Since NADPH oxidase activity has been reported to impact the expression of 

several different immunomodulatory proteins [75, 84, 149, 152], we next sought to 

examine whether it also played a role in Tat and cytokine-mediated induction of 

CXCL10 in astrocytes.  U-87 cells were pre-treated with apocynin, followed by 

stimulation with Tat and the cytokines to determine if inhibiting NADPH oxidase 

activity could decrease the expression of CXCL10.  Our findings demonstrated a 
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dose-dependent decrease in CXCL10 expression in the presence of apocynin in 

stimulated astrocytes (Fig. 2A), thereby confirming the role of NADPH oxidase in the 

induction of CXCL10. 

In order to further confirm the role of NADPH oxidase in the induction of 

CXCL10 expression U-87 cells were transfected with either siRNAs against gp91phox 

or scrambled siRNA conjugated to GFP.  This critical membrane bound subunit was 

chosen because in the absence of gp91phox the activated cytosolic subunits of NADPH 

oxidase are unable to dock with the membrane components (gp91phox and gp22phox), 

consequently leading to lack of enzymatic activity.    It has also been demonstrated 

that gp91phox is up-regulated in activated astrocytes [149, 150], possibly through a 

positive feedback loop with the transcription factor NF-κB [151].  Additional support 

for selection of gp91phox as a target comes from the use of gp91phox knock out mice.  

The neuro-inflammation, and thus the neuronal toxicity, caused by cells in these mice 

is greatly reduced, indicating that therapies targeting NADPH oxidase could be 

beneficial [75, 149]. 

To assess the role of NADPH oxidase in CXCL10 induction, 48 hours 

following transfection with siRNA against gp91phox U-87 cells were stimulated for 24 

hours before the supernatants were collected and analyzed for CXCL10 content.  

Similar to findings with apocynin pretreatment, knock down of the gp91phox subunit 

also resulted in a concomitant reduction of CXCL10 expression, thus underlining the 

role of NADPH oxidase in this process.   
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 Given that NADPH oxidase can participate in signal transduction in a 

multitude of ways [84, 152-154], ultimately impacting transcriptional regulation, 

several signaling pathways were assessed for changes in the presence of apocynin.  

Since the Rac1/2 subunit of NADPH oxidase can effect MAPK signal pathways [84], 

and the dismutation of superoxide to hydrogen peroxide affects Ras activation leading 

to MAPK and Akt phosphorylation [152-154], these pathways were selected for 

further examination.  Previously it has been shown that Tat in combination with the 

cytokines IFN-γ and TNF-α, was able to increase the phosphorylation states of p38, 

Jnk, and Akt compared with cells stimulated with the cytokines alone.   Interestingly, 

in our previous findings we have demonstrated that Tat-mediated potentiation of 

CXCL10 did not involve Erk1/2 phosphorylation, unlike the cytokine-mediated 

activation of CXCL10 that did involved Erk1/2 activation [141].  In our current 

findings we demonstrated that pre-treatment of astrocytes with apocynin followed by 

stimulation with  the Tat/cytokine mix resulted in decreased phosphorylation of the 

MAPK proteins Jnk and Erk1/2, but not that of p38 (Fig. 4A).  This data thus 

implicates that NADPH oxidase is involved, at least, in part, in the activation of Jnk 

and Erk1/2, but plays no role in Tat-mediated activation of p38.   

In addition to diminished activation of MAPK, apocynin was also able to 

decrease the activation of the Akt survival pathway  (Fig. 5A).  One possible 

explanation for this could be the ability of superoxide (generated via NADPH 

oxidase) to impact Ras through its conversion to hydrogen peroxide, and Ras in turn, 

can result in activation of PI3K- Akt pathway [84, 152-154].  These findings this 
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suggest the pivotal role of NADPH oxidase in regulation of various  signal 

transduction pathways at multiple levels. 

It has been well documented that the Jnk, Erk1/2, and Akt pathways are 

capable of converging on a common transcription factor, NF-κB. NF-κB is sensitive 

to redox related signaling, and has been show to affected by the generation of ROS 

[73, 74].  It has been previously reported that NADPH oxidase activation can be 

directly linked to NF-κB phosphorylation and nuclear translocation [84, 151, 155].  

Taking into account apocynin-mediated reduction of Jnk, Erk1/2, and Akt activation, 

and the fact that NF-κB has been previously linking to NADPH oxidase, we next 

examined the effect of apocynin on NF-κB activation and translocation in U-87 cells 

stimulated with the Tat/cytokine mix  Astrocytes pretreated with apocynin followed 

by stimulation with the Tat/cytokine mix resulted in the decreased phosphorylation of 

cytosolic IκBα (Fig. 6A).   IκBα normally sequesters NF-κB in the cytosol, but upon 

phosphorylation IκBα is degraded, thereby releasing NF-κB which subsequently 

tranlocates into the nucleus.   

In addition to decreased levels of phosphorylated IκBα in the cytosol, 

apocynin treated astrocytes also displayed a corresponding reduction of activated NF-

κB p65 subunit in the nuclear extracts of treated cells.   Decreased expression of 

CXCL10 in apocynin pretreated, stimulated astrocytes could therefore be explained 

by the inhibition of NF-κB activation, which has been implicated as a critical 

regulatory factor in the transcription of CXCL10.   
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Having determined the mechanism by which apocynin pre-treatment of 

stimulated astrocytes resulted in decreased CXCL10 expression, it was of interest to 

examine the functional implications of this process in CXCL10-mediated 

neurotoxicity.  Neuronal survival was monitored in the presence of astrocyte 

conditioned media collected from stimulated astrocytes in the presence or absence of 

apocynin pre-treatment.  The astrocyte conditioned media from the control astrocytes 

did not impact neuronal survival.  As expected, astrocyte conditioned media from the 

Tat/cytokine mix stimulated cells was significantly toxic to the neurons.  In contrast, 

apocynin pre-treated conditioned media from stimulated astrocytes was able to rescue 

neuronal toxicity.  The role of CXCL10 as a player in astrocytes conditioned media 

was validated by blocking the CXCL10 effect using a CXCL10 neutralizing antibody. 

It was of interest, however, that blocking CXCL10 activity with a neutralizing 

antibody did not reverse the neuronal toxicity to control levels. This lead us to 

speculate that there must be other neurotoxic factors, such as MCP-1 and/or IL-6, that 

could be toxic to the neurons and are released by stimulated astrocytes.  Both MCP-1 

and IL-6 expression are regulated  NADPH oxidase activation, and apocynin 

treatment has been shown to decrease their expression.  

Taken together these data suggest the mechanism(s) by which Tat, IFN-γ, and 

TNF-α can activate NADPH oxidase to augment CXCL10 induction in astrocytes.  

Using pharmacological and gene knock down approaches, we demonstrate that Tat 

and cytokine-mediated activation of astrocytes and induction of CXCL10 involves 

generation of ROS, activation of Jnk, Erk1/2, and Akt pathways and subsequent 
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activation of NF-κB leading to CXCL10 gene transcription.  Released CXCL10 could 

in turn, be toxic for neurons, thereby enhancing neuropathogenesis.  These findings 

have implications for patients affected by HAD in that it represents a mechanism 

whereby therapeutic reduction of both oxidative stress and the release of pro-

inflammatory agents, can have beneficial effects for HIV-infected patients. 
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Figure 1 

 

Figure 1: Measurement of oxidative stress. (A) U-87 astrocytes were either untreated 

or treated with the Tat/IFN-γ/TNF-α mixture for 0-60min, prior to incubation with 

carboxy-H2-DCF-DA and assessed for oxidative stress.  Values are displayed as a 

ratio of the DCF fluorescent value/Hoechst (nuclear stain) fluorescent value. A 

respiratory burst culminates after 30 min of stimulation.  (B) U-87 astrocytes were 
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untreated, treated with the Tat/IFN-γ/TNF-α mixture, or pre-treated with apocynin 

(250µM) followed by stimulation with the Tat/IFN-γ/TNF-α mixture for 30min.  

Apocynin pre-treatment was able to abrogate the respiratory burst observed in the 

Tat/cytokine treated astrocytes. The data represents the mean ± SD from three 

independent experiments (*, p< 0.05, ***, p< 0.001). 
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Figure 2 
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Figure 2: Apocynin decreases CXCL10 expression. (A) U-87 astrocytes were pre-

treated with various doses of apocynin (50µM-1mM) for one hour prior to stimulation 

with the Tat/IFN-γ/TNF-α mixture.  After 24hours of incubation supernatant fluids 

were assessed for CXCL10 content by ELISA.  Both U-87 (B) and primary human 

astrocytes (C) were treated either with the cytokines alone, the Tat/cytokine mixture, 

or pretreated with apocynin followed by stimulation with either the cytokines or the 

Tat/cytokine mixture.  The data represents the mean ± SD from three independent 

experiments (**, p< 0.01, ***, p< 0.001). 
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Figure 3 

 

Figure 3: Knocking down the NADPH oxidase subunit gp91phox decreased CXCL10 

expression.  (A) U-87 cells demonstrating transfection of the scrambled siRNA 
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conjugated to GFP 24hours after transfection. (B) RT-PCR for gp91phox 48hours after 

mock transfection or transfection with gp91phox siRNA or scrambled siRNA. (C) 

CXCL10 ELISA demonstrating decreased CXCL10 in U-87 astrocytes transfected 

with gp91phox siRNA as compared to mock transfected or scrambled siRNA 

transfected cells. The data represents the mean ± SD from three independent 

experiments (**, p< 0.01, ***, p< 0.001). 
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Figure 4 

 

 

Figure 4: The Jnk and Erk1/2 signaling pathways, but not p38, are affected by 

apocynin treatment in stimulated U-87 astrocytes.  (A) Western Blot analysis of 

cytosolic lysates collected from cells untreated, treated with Tat/IFN-γ/TNF-α, or pre-

treated with apocynin prior to stimulation with Tat/IFN-γ/TNF-α for 60 min. The 

blots were probed with antibodies against phospho-p38, phospho-Jnk, and phospho-

Akt. An antibody against β-actin was used to reprobe the blots for normalization. (B, 
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C and D) Densitometric scans illustrating the ratio of phospho-Jnk, Erk1/2 and p38 

normalized to β-actin levels.  
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Figure 5 

 

 

Figure 5: The Akt signaling pathway is affected by apocynin treatment in stimulated 

U-87 astrocytes.  (A) Western Blot analysis of cytosolic lysates collected from cells 

untreated, treated with Tat/IFN-γ/TNF-α, or pre-treated with apocynin prior to 

stimulation with Tat/IFN-γ/TNF-α for 60 min. The blots were probed with antibodies 

against phospho-p38, phospho-Jnk, and phospho-Akt. An antibody against β-actin 

was used to reprobe the blots for normalization. (B) Densitometric scans illustrating 

the ratio of phospho-Akt to β-actin levels.  
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Figure 6 
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Figure 6: NF-κB activation and nuclear translocation was affected by apocynin pre-

treatment of stimulated astrocytes. (A) Western Blot analysis of the cytosolic (pIκBα) 

and nuclear (NF-κB p65) lysates collected from cells untreated, treated with Tat/IFN-

γ/TNF-α, or pre-treated with apocynin prior to stimulation with Tat/IFN-γ/TNF-α for 

60 min.  The blots were probed with antibodies against phospho- IκBα and phospho- 

NF-κB p65. Antibody against β-actin was used to reprobe the blots for normalization. 

(B, and C) Densitometric scans illustrating the ratio of phospho- IκBα and phospho- 

NF-κB p65. 
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Figure 7 

 

 

Figure 7: An MTT cell survival assay utilizing primary rat cortical neurons treated 

with U-87 astrocytes conditioned media.  U-87 astrocytes were untreated, treated with 

Tat/IFN-γ/TNF-α, or pre-treated with apocynin (250µM) before stimulation with 

Tat/IFN-γ/TNF-α for 48 hours. The conditioned media collected from treated cells 

was then added onto primary rat cortical neurons for 24 hours prior to conducting the 

MTT assay. Portion of the Tat/IFN-γ/TNF-α treated conditioned media from the 

astrocytes was also incubated with a CXCL10 neutralizing antibody prior to addition 
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to the neurons.  The data represents the mean ± SD from three independent 

experiments (**, p< 0.01, ***, p< 0.001). 
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Chapter 6 

Conclusions 
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To this date there has been a paucity of information on the molecular 

mechanisms surrounding signal transduction in astrocytes during HIVE and the 

impact these signaling pathways have had on the induction of cytokines and 

chemokines within these astrocytes. While several studies have reported on the ability 

of activated astrocytes to release specific cytokines and chemokines, such as 

CXCL10, MCP-1, IL-6, and TNF-α, these papers failed to navigate through the 

molecular mechanisms driving such production.  Additionally, very little work on 

signal transduction in astrocytes activated as a result of multiple stimuli has been 

published regardless of the stimulating factor(s) or end product. 

CXCL10 was the end product chosen for our studies due to it’s increased 

presence in HIVE, that fact that it is positively correlated with HIV 

neuropathogenesis, and it’s innate ability to be both directly and indirectly 

neurotoxic. Astrocytes have been demonstrated to release CXCL10 upon treatment 

with several individual stimulants, including the pro-inflammatory cytokines IFN-γ 

and TNF-α. These cytokines are two well studied molecules in their own right, but of 

more significance might be the fact that they can act synergistically on CXCL10 in 

several cell types, including astrocytes. Astrocytes also express CXCL10 in the 

presence of three HIV-1 proteins, Tat, Nef, and gp120, although at modest levels. 

However, despite that fact that HIV/viral proteins and the cytokines had been 

demonstrated to affect CXCL10 expression individually, there were no reports using 

all three as a stimulus.  Without a doubt it is challenging to assess the impact that 

three stimulants will have on a cell, yet the physiological relevance of using several 
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stimuli is explicit.  During HIVE there are a plethora of inflammatory factors and 

other host factors, along with HIV/viral proteins interacting with cells of the CNS at 

the same time.  Assessing the singular effect of one stimulant does not give an 

accurate picture of the stresses of a cells exposed to multiple stimulants.  To this end 

we engaged in evaluating the effect that all three stimuli, IFN-γ/TNF-α/HIV, had on 

CXCL10 induction in astrocytes by exploring the molecular and cellular mechanisms 

through which this induction occurred. 

We started by asking the question, what is the molecular mechanism(s) by 

which HIV-1 co-operates with IFN-γ and TNF-α to induce CXCL10 expression in 

astrocytes? What we found was that in the presence of HIV/IFN-γ/TNF-α the RNA 

and protein levels of CXCL10 synergistically increased compared to either treatment 

alone. Delving into the cellular and molecular mechanism of this synergistic 

induction we found that astrocytes, in the presence of all three stimuli, under go 

massive signal transduction in the MAPK pathways Erk1/2 and p38, along with the 

Akt pathway, all of which were crucial for CXCL10 induction as determined by 

inhibitor assays.  Furthermore, these pathways converged on the essential 

transcription factors in CXCL10 regulation, NF-κB and STAT-1α as a means to 

increase CXCL10 expression. These results represented the first time that signal 

transduction was explored in astrocytes treated with three different stimuli in an effort 

to establish the pathways responsible for CXCL10 induction.  Since there were so few 

reports on astrocyte signaling these results are helping to lay the groundwork on 

detailed molecular and cellular mechanisms of chemokine induction in astrocytes.   
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 However, the signaling pathways examined in that study did not look at the 

effects of the individual stimuli on the pathways.  Therefore, there was no way of 

knowing whether HIV-1 was actually acting on any of these pathways, or if the 

activation was a result of only the cytokine/receptor mediated events.  This is a 

crucial piece of information since astrocytes lack CD4, the receptor for HIV-1.  So if 

HIV-1 is causing changes in signal transduction, how is it doing so? 

 We addressed that question in Chapters 3 and 4 when we asked ourselves, 

which HIV-1 viral protein(s) is co-operating with IFN-γ and TNF-α to enhance 

CXCL10 release from astrocytes and by what mechanism?  Since the receptor for 

HIV-1 on astrocytes is unknown we decided to examine the individual viral proteins 

known to activate astrocytes and induce CXCL10 expression.  These proteins were 

Nef, Tat, and gp120.  While results for Nef and gp120 were less than inspiring, Tat in 

combination with IFN-γ and TNF-α was able to increase CXCL10 expression 

significantly compared to either treatment alone.  Therefore, Tat was the HIV-1 

protein chosen for the continuation of the study.  We found that although Tat had 

little effect on signal transduction on it’s own, when in the presence of the cytokines 

IFN-γ and TNF-α it was able to potentiate the activation of those signals.  In doing so 

Tat was also able to potentiate the activation and translocation of the transcription 

factors NF-κB and STAT-1α to impact CXCL10 regulation.   

These findings were novel on several fronts: 1) there was little to no literature 

available on the effect of Tat on astrocyte signaling; 2) the idea that Tat is able to 

potentiate the activation of signaling pathways being utilized by the IFN-γ and TNF-α 
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receptors is very intriguing and has not been reported elsewhere; and 3) the ability of 

Tat in combination with IFN-γ and TNF-α to significantly increase CXCL10 

expression in astrocytes, or any cell type for that matter, had not been published.  

Therefore these findings advanced the knowledge base of astrocyte signaling in the 

field.  However, since Tat is able to diffuse through the cellular membrane the 

mechanism by which it was impacting signal transduction in astrocytes remained 

undetermined. 

 In an effort to elucidate the mechanism by which Tat was able to potentiate 

cellular signaling responsible for CXCL10 induction we examined the role of 

oxidative stress in Chapter 5.  When utilizing the DCF assay to verify the presence of 

a respiratory bust we found that treatment of the astrocytes with IFN-γ/TNF-α/Tat 

lead to a significant respiratory burst that was abrogated by the NADPH oxidase 

inhibitor, apocynin.  Furthermore, treatment of the stimulated astrocytes with 

apocynin was able to decrease CXCL10 expression remarkably.  Upon examining the 

cellular signaling pathways involved in CXCL10 regulation we found that apocynin 

was able to decrease the activation of these pathways, leading to a decrease in the 

activation and nuclear translocation of the transcription factor, NF-κB.  Thus, we 

proposed that Tat was able to potentiate the effects of IFN-γ and TNF-α by activating 

the membrane bound enzyme NADPH oxidase, resulting in increased CXCL10 

expression. 

 With a possible mechanism teased out for Tat potentiation of CXCL10 

expression in IFN-γ and TNF-α treated astrocytes, we wanted to know if inactivating 
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this pathway would result in less expression of the neurotoxic CXCL10, and therefore 

increased neuronal survival.  We found that inhibiting NADPH oxidase with 

apocynin not only decreased CXCL10, but significantly increased neuronal survival.  

Taken together these results represented the first time NADPH oxidase has been 

linked to CXCL10 regulation in non-phagocytic cells and the first implication that Tat 

may be able to interact with membrane proteins as it diffuses through the cell.   

 The information gathered from the studies conducted in this dissertation 

define a mechanism by with HIV-1 Tat can potentiate CXCL10 expression in IFN-γ 

and TNF-α stimulated astrocytes.  These results are critical to field of HIV 

neuropathogenesis because they represent a wealth of information on astrocyte 

signaling biology, of which there was little prior knowledge, and introduces a novel 

mechanism in which Tat exploits cellular NADPH oxidase to increase the neurotoxic 

chemokine, CXCL10.  While these studies contributed significantly to the field, they 

also raised pivotal questions regarding the role of NADPH oxidase in non-phagocytic 

cells and what the exact mechanism by which Tat activates NADPH oxidase may be. 

With any luck, future studies will be able to identify these mechanisms utilizing the 

signaling foundation laid down by the research conducted for this dissertation. 
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Chapter 7 

Future Directions 
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Recently, the role of oxidative stress in the regulation of cytokine and 

chemokine expression has garnered increased awareness. Recent studies have linked 

NADPH oxidase activity to cytokine and chemokine production in microglia, 

macrophages, and astrocytes [73, 75].  Indeed, our studies utilizing apocynin support 

the role for NADPH oxidase in the regulation of CXCL10 in Tat, IFN-γ, and TNF-α 

stimulated astrocytes at the cellular level.  Future studies will utilize gp91phox 

deficient mice to further explore the role of NADPH oxidase/the therapeutic benefit 

of apocynin in the regulation of CXCL10.  A number of studies have utilized this 

mouse model to explore the impact of NADPH oxidase on neuro-inflammation [75, 

149, 157].  In particular Turchan-Cholewo et. al. used these mice to demonstrate 

decreased ability of these mice to express the pro-inflammatory factors such as  

MCP-1, IL-6, and TNF-α in activated microglia and macrophages [75].  Furthermore, 

this decrease in MCP-1, IL-6, and TNF-α resulted in enhanced neuronal survival in 

neurons subjected to microglia/macrophage conditioned media from the gp91phox 

deficient mice as compared to the microglia/macrophage conditioned media from WT 

mice [75].  

In our future studies we will utilize the gp91phox deficient mice at both the in 

vitro and in vivo level.  For the in vitro studies we would harvest primary astrocytes 

and neurons [145] from WT and gp91phox deficient mice.  The astrocytes from both 

groups would then be treated with Tat, IFN-γ, and TNF-α as previously described 

[142] and assessed for CXCL10 content by ELISA. An additional experiment would 

be to take the supernatants from the stimulated WT and gp91phox deficient astrocytes, 
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and place them on WT neurons and assess the cells for neuronal damage using an 

MTT assay described previously [142].  Using an NADPH oxidase inhibitor 

(apocynin) as a therapeutic target to decrease both CXCL10 expression and the 

concomitant neuronal dysfunction/death could aid in the development of therapeutic 

intervention strategies for HAND. 

For the in vivo study we would again utilize the gp91phox deficient mice along 

with the WT mice. In these studies the mice would be injected with either saline or a 

Tat/IFN-γ/TNF-α mixture via the carotid artery.  The carotid artery approach will be 

utilized in hopes of decreasing the amount of neuronal tissue damage caused by direct 

micro-injection into the brain.  After injection the brains will be extracted and flash 

frozen for RNA and protein analysis.  If our data from cell culture holds true for in 

vivo work, then the levels of the pro-inflammatory agents should be decreased in 

gp91phox deficient mice injected with the Tat/cytokine mixture as compared to the 

Tat/cytokine injected WT mice at both the RNA and the protein level and we should 

see increased neuronal survival.  

Utilizing the gp91phox mouse model would determine whether NAPDH 

oxidase plays a critical role in HIV-associated neuroinflammation.  With that 

information it would be useful to see if apocynin, the specific pharmacological 

inhibitor of NADPH oxidase, can cross the BBB and be an effect anti-inflammatory 

drug for the CNS.  To accomplish this apocynin could be injected I.P. or I.V. into a 

mouse and after a certain period the mouse brain would be analyzed of the presence 

of apocynin either by mass spectrometry or by tagging apocynin with a dye or 
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fluorescent molecule.  Enzymatic activity of CNS derived NADPH oxidase could also 

be assessed.   

If apocynin has the potential to cross the blood brain barrier and lower HIV-

associated neuro-inflammation, it might also be a valid adjunct therapy for other 

causes of neuroinflammation, be it viral/bacteria or stroke/traumatic brain injury.  In 

each of these cases neuroinflammation can spiral out of control, with the end result 

being detrimental instead of helpful.  In the process of inflammation, cytokine and 

chemokines are release from activated cells and activate or recruit other cells to the 

area, but another aspect of inflammation is the release of growth factors and other 

molecules to help facilitate repair of the damage.  Therefore, completely inhibiting 

inflammation would not solve the problem. Since apocynin selectively inhibits 

NADPH oxidase, it doesn’t completely abrogate the release of inflammatory 

agents/growth factors.  Thus, apocynin may represent a treatment option for those 

who still need a partially functioning immune system to fight off infection or heal 

neuronal damage.  This hypothesis could be tested in animal models of viral/bacterial 

meningitis or in animal models of stroke/traumatic brain injury to see if it can reduce 

neuroinflammation while decreasing the recovery period. 

Taken together, the data from these experiments could have implications for 

the use of apocynin as an anti-inflammatory not only for those suffering from HAND, 

but also for other causes of CNS inflammation. 
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