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Abstract

We investigate two topics, coarser connected topologies and non-normality points.

The motivating question in the first topic is:

Question 0.0.1. When does a space have a coarser connected topology with a nice

topological property?

We will discuss some results when the property is Hausdorff and prove that if X is
a non-compact metric space that has weight at least ¢, then it has a coarser connected
metrizable topology.

The second topic is concerned with the following question:
Question 0.0.2. When is a point y € X \ X a non-normality point of BX \ X?

We will discuss the question in the case that X is a discrete space and then when
X is a metric space without isolated points. We show that under certain set-theoretic
conditions, if X is a locally compact metric space without isolated points then every

y € BX \ X a non-normality point of BX \ X.
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Chapter 1

Background and preliminaries

1.1 Outline

This chapter contains a development of the basic notions needed for the two topics
of this dissertation. In Section 1.3, we introduce set ultrafilters, open ultrafilters and
z-ultrafilters and discuss related terms. As with many results in general topology, the
theorems in Chapter 3 contain set-theoretic assumptions. We explain the set-theoretic
statements in Section 1.4 and talk about the consequences of including such assumptions
in the hypotheses of theorems.

We start Chapter 2 with some history on the topic of coarser connected topologies
(Section 2.1) and some examples illustrating the techniques for defining coarser con-
nected topologies (Section 2.2). In Section 2.3 we present the main theorem, that any
non-compact metric space with weight > ¢ has a coarser connected metrizable topology
(Theorem 2.3.8).

We define non-normality points and butterfly points in Section 3.1 and present some
background on the study of such points. We discuss the study of non-normality points
in the Stone-Cech compactification of discrete spaces (Section 3.2) and then look at

non-normality points in the Stone-Cech compactification of metric spaces (Section 3.3).



1.2 Topological terms

Nonstandard terms will be defined as needed. Other terms and notation will be consistent
with Engelking [5] and Jech [12].

For set inclusion we write C for C. We designate the Greek letters 7 and o for
topologies and p, v and p for metrics. We write (X, 7) for a topological space X with
topology 7. If X is a metric space and the topology 7 is generated by the metric i, we
write (X, 7,u). If (X, ) is a space and Y C X then we write 7|y for {UNY : U € 1},
the topology on Y as a subspace of X. Let ¢ and 7 be topologies on a space X. We say
that o is coarser than 7 and that 7 is finer than o if 6 C 7.

The following notions will be used in Chapter 2.

Definition 1.2.1. A space (X, 7) is minimal Hausdorff if there is no Hausdorff topol-

ogy, o on X coarser than 7.
Proposition 1.2.2. If a Hausdorf{f space X is compact then it is minimal Hausdorff.

The following are definitions of cardinal function for a space (X, 7): density, d(X),
extent, ¢(X) and weight, w(X).

d(X) =inf{|D| : D is dense in X}

e(X) = sup{|C| : C is closed discrete in X}

w(X) = inf{|A| : A is a base for 7}

Proposition 1.2.3. If X is a metric space then d(X) = e(X) = w(X).

We now introduce some notation and a technical lemma that will be useful for

Chapter 3.

Definition 1.2.4. Suppose that Y is a subspace of X. We say that Y is C*-embedded in
X if every bounded continuous real valued function on Y can be extended to a continuous

function on X.



Definition 1.2.5. A discrete subset D of a space X is called strongly discrete if there is

a pairwise disjoint collection of open subsets of X separating the points of D.

For a collection % of subsets of a space X we write % * = J% . We say a collection
of subsets, 7/, densely refines a collection % if clx(?™*) =clx(% *) and forall V € ¥
there is U € % such that V C U.

Lemma 1.2.6. Let X = X1 UX, where X1 N X, =0, and let f: X — Y be a closed map.

If f7fIX1]] = Xi, (we say X, is a full preimage) then f|x, is a closed map.

Proof. Let H C X; be closed in X;. There exists H' C X closed in X such that H =
H'NX;. Since f is closed, f[H'] is a closed subset of Y. So, to show that f[H] is closed
in f[X;] we argue that f[H] = f[H'| N f[X,]. First, f[H] = f[H' N X,] C fIH'] N f]X].
For the other direction, let y € f[H'] N f[X;]. Since y € f[H'], there is x € H' such that
f(x) =y. Since y € f[X1] and f~[f[X1]] = X1, f~'(y) C Xi. Hencex € X, NH' = H

and therefore y € f[H].

1.3 Filters

We introduce some basic concepts associated with filters to be used when discussing
neighborhood bases in Chapter 2 and points in the Stone Cech compactification in

Chapter 3.

Definition 1.3.1. An filter %/ on a set A is a collection of subsets of A that satisfies
1. 0¢ %
2.U€ % andU CVthenV € %

3. ifU,V € % then there is W € % suchthat W C UNV
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A filter 7% on A is an ultrafilter if it is maximal. In other words, for every filter
¥ on A such that %7 C ¥ it must be that 7 = ¥. Equivalently, a filter %/ on A is an
ultrafilter if for all U C A either U € % orA\U € % .

If the set A has no topology, we refer to an ultrafilter on A as a set-ultrafilter. Suppose
that the set A does have a topology, 7. A zero-set (z-set) is a set Z C A for which
there exists a continuous function f: A — Rsuchthat Z= f~(0) ={a €A : f(a) =0}.
Z-sets are closed and in a metric space, all closed sets are z-sets. Let 2 be the collection

of zero-sets in A.

Definition 1.3.2. An open filter (z-filter) %/ on a set A is a subset of 7 (a subset of ")

that satisfies
1. 0¢ %
2.ifVer(ifve),Uec% andU CV thenV € %
3. ifU,V € % then there is W € % suchthat W C UNV

An open filter (z-filter) % on A is an open ultrafilter (z-ultrafilter) if for every
open filter (z-filter) 7" on A such that % C ¥ it must be that % = 7. Equivalently,
Uet(fUe Z)theneitherU € % orthereisV e tN% (V€ ZN%) such that
V CA\U.

The collection 4" of open neighborhoods of a point x in a topological space X is an
open filter. However, .4 is usually not an open ultrafilter. For example in R, the open
set (0,1) is not a neighborhood of 0 and there is no open neighborhood of zero disjoint
from (0, 1).

A filter 7% is called fixed if the set of convergence points, (\{clU : U € %}, is not
empty. A filter % is called free if N{clU : U € % } is empty.

11



The collection of set-ultrafilters on a topological space gives no information (other
than cardinality) about the structure of the space. On the other hand, the z-sets and
z-ultrafilters can give information about the topological structure of a space X. For
example, one of the several constructions of the Stone Cech compactification, BX, is

developed using z-ultrafilters [[10], Ch. 6].

1.4 GCH and regular ultrafilters

The hypotheses of Theorem 3.3.4 and Corollary 3.3.6 contain set-theoretic assumptions

that we discuss here. The generalized continuum hypothesis (GCH) is the statement:

For all cardinals x, 2% =x™

GCH is a generalization of Cantor’s continuum hypothesis (CH) which states that
there is no set whose cardinality lies strictly between that of the natural numbers and

that of the real numbers. Symbolically, CH is the statement:

2%0 =,

Godel showed that GCH is consistent with the axioms of Zermelo and Frankel
(ZF) which, together with the axiom of choice (AC), form the foundation for most of
mathematics. In other words, it is safe to assume GCH is true. Topologists often aim to
prove topological statements using only ZF and AC (abbreviated ZFC). A common first
step towards proving a theorem in ZFC is to assume an extra consistent axiom (such as

CH or GCH) to prove the statement. There is, however, no guarantee that the theorem
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one is trying to prove is not itself independent of ZFC. In this case, one may investigate
the truth of the statement under different set-theoretic assumptions.

In Chapter 3, we will define regular ultrafilter, which is a special type of set-
ultrafilter. Donder [3] showed that the assumption that all set-ultrafilters are regular is
consistent with ZFC. In particular, assuming V = L, all set-ultrafilters are regular. To
understand the strength of assuming all set-ultrafilters are regular, it is helpful to note
that the existence of a non-regular set-ultrafilter is actually a hidden large cardinal axiom.
A cardinal x is measurable iff there is a uniform x-complete ultafilter g on k. As we will
see later, k-complete ultrafilters are non-regular. So, the assumption that all ultrafilters
are regular implies there are no measurable cardinals.

The existence of measurable cardinals makes the statement of some theorems in
general topology more complicated. For example, below are two ways of expressing a

theorem of Mrowka.

Theorem 1.4.1. (No measurable cardinals) Every regular paracompact space is real-

compact.

Theorem 1.4.2. (ZFC) Every regular, paracompact space whose cardinality is less than

the least measurable cardinal is realcompact.
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Chapter 2

Coarser connected topologies

2.1 Introduction

The general goal in this area is to find for a topological space (X, 7), a coarser topology
o C 7 such that (X, o) is connected. The coarsest topology on a set X is the indiscrete
topology: {X,0}, which is always connected. However, the indiscrete topology is not
even Hausdorff if X has more than one point. Therefore finding a coarser connected
topology is only interesting when (X, o) is required to have other nice properties; for
example Hausdorff, regular, collectionwise normal, metrizable. Certainly, if (X, ) is
connected then it has a coarser connected topology, namely 7 itself. Since compact
spaces are minimal Hausdorff, only non-compact disconnected spaces can have strictly
coarser connected Hausdortf topologies.

The study of coarser connected topologies was started by Tkacenko, Tkachuk, and
Uspenskij in [21]. They developed some necessary and sufficient conditions for a
topological space to have coarser connected Hausdorff or regular topologies. Continuing
the develpment, Gruenhage, Tkachuk, Wilson showed that a metric space, X, has a
coarser connected Hausdorff topology if and only if X is not compact [[11], Theorem

2.8].
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We mentioned before that the collection of neighborhoods of a point x in a space X
is a fixed open filter. Often, to define a topology on a space X, one describes the open
neighborhood filter of each point x € X. Likewise, to define a coarser topology, one
can define coarser neighborhood filters of points of X. If there is a free open filter 7
on the space X, it can be used to define a coarser neighborhood filter of a point, x € X:
let /" ={UUN:U € %,N € A} where ./ is the collection of neighborhoods of
x. Notice 4" C 4. Informally, in the new topology, the point x is closer to the sets
Ue¥.

For example in the disconnected subset of the real line X = (0,1) U [2,3], the col-
lection {(r,1) : r € [0,1)} is free open filter. Define a new topology for X by defining a
coarser neighborhood base of the point 2 that consist of sets of the form (r,1)U[2,2+r).
This coarser topology makes X homeomorphic to a single interval, and is hence Haus-
dorff and connected.

When a space has a large enough closed discrete set, there is a large number of free
open filters. Therefore, one can define coarser neighborhood bases of many points in the

space. For example, from [[7],Theorem 2]

Proposition 2.1.1. Let K be Hausdorffand X = K & D where D is discrete. If w(K) < 2IP|

then X has a coarser connected Hausdorff topology.

If a space, X, has a closed discrete set of size e(X) we say the extent of X is attained.
A space with extent attained has a large closed discrete set and in some cases this is
enough to define a coarser connected topology. For example, Druzhinina, [[4], Theorem
3.3] and Fleissner, Porter, Roitman [[8], Theorem 2.5] showed that a metric space, X,
with e(X) attained and w(X) > c¢ has a coarser connected metrizable topology.

When a space does not have attained extent, it may be more difficult to define a

coarser connected topology. However, Fleissner, Porter and Roitman showed that any
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zero-dimensional metric space, X, with weight greater than or equal to ¢ has a coarser
connected metrizable topology if and only if it is not compact [[8], Theorem 3.4]. On
the other hand, if w(X) < ¢, X does not necessarily have a coarser connected topology.
For example, the disjoint union of countably many Cantor sets is a separable, metrizable,

disconnected space with no coarser connected regular topology [[21], Example 2.18].

2.2 Tools for defining coarser topologies

Given an appropriate connected space (¥,v) and a set bijection, ¢, from Y onto a
subset of X, one can attempt to create a topology ¢ on X that make the maps id and ¢

continuous.
X,7) (Y,v)

X,0)

If the identity map from (X, 7) to (X, o) is continuous, then o is coarser than 7. If ¢
is continuous, then ¢[Y] is connected. So, if ¢[Y] is either dense in (X, 7) or intersects
each component of (X, 7), then (X, o) is connected. Therefore, the task of defining a
coarser connected topology for a space (X, T) becomes a search for suitable connected
space (Y,v) and a map ¢. Of course, both must be selected carefully to ensure that ¢
has a nice property like Hausdorff or metrizability. The hedgehog space and Bing’s

Tripod space are useful connected spaces for this purpose.

Example 2.2.1 ([5], pg. 381). The point set of Bing’s space is

QU {g+rV2:q€Q,reQ’}
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For ¢,r,e € R, letI(q,r,€) = (g +rvV2 —¢&,q+rv2+€)NQ. An open neighborhood
of g € Q,is (¢+ €, — €)NQ and an open neighborhood of g+ rv/2 is
{g+rV2}Ul(q,r,€)UI(q,—r1,€).

Bing’s space is a countable connected Hausdorff space. The natural numbers N C QQ are

a countable strongly discrete subset of B.

Example 2.2.2 ([5], pg. 314). Let k be a cardinal number. The point set of hedgehog
space of spininess x is the set, Z, defined by identifying all points (0, @) in [0,1] X k.

The metric it on Z is defined

=y ifo=p

x| Iyl ife#p

u((xva)a(yaﬁ)) =

The space Z is a connected metric space with density max{®, x}. For k > o, the

extent of Zy is attained by the closed discrete set {(1,@) : a € k}.

The following proposition gives two examples of defining a coarser connected

topology via a bijection from Bing’s space.

Proposition 2.2.3. The following disconnected subsets of the real line have coarser

connected Hausdorff topologies.
1. X =U{[2n,2n+1] :n € o}
2. X =U{C, :n € o} where C, is a Cantor set in [2n,2n+ 1] such that 2n € C,.

Proof. Let B be Bing’s space and let D = {2n:n € w} C X. In each case, X has the

topology generated by the Euclidean metric, d with € balls, B¢(x). For x # y € X, let
&(x,y) = min({d(x,D),d(y,D),d(x,y)} \ {0})/2.
1. Let ¢ be a bijection from B to D and let ¢ be the topology coarser than the

Euclidean topology on X that makes ¢ continuous. (X,o) is connected since
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¢ [B] intersects every component of X. We can also show that ¢ is Hausdorff. Let
x#ye€ X and let € = £(x,y). Let U, and Uy, be separating open neighborhoods of
¢! (x) and ¢ ~1(y) in B. For p = x,y, if 9 ~!(p) is not defined, let U, = 0. Then
U =Be(x) UU{Be(2) : $7'(2) € U} and V = Be(y) UU{Be(2) : 97" (2) € Uy}

are o-open sets separating x and y.

2. Let C be a countable strongly discrete subset of B and let ¢ be a bijection that takes
B\ C to D and C to a countable dense subset of X \D. Let ¥ = {V.:c€C} bea
pairwise disjoint open collection separating C. Let x # y € X and let € = €(x,y).
Let U, and U, be as in 1.with the extra condition that [{c € C: c € U, }| < 1. That
is, U,NC =0if p ¢ C, otherwise |U, NC| = 1. For p = x,y we inductively define

a o neighborhood of p.

Wp0 =Be(p) U J{Be(2) : 9~ ' () €Uy}

Wpin = J{Be: 97" (2) €Ue,c € 97 [Be(2)].Z € Wy, ND}

LetU =U{Wyn:necw}andV ={W,,:n € w}. Then, U and V are c-open

neighborhoods separating x and y in X.
O]

The strongly discrete subsets of D of X and C of B play an important role in the
defining of coarser neighborhoods of points x in X. New neighborhoods are a union of
intervals around points of a filter set on D. The filter is determined by a neighborhood
of ¢ ~1(x) in B. In the second example of Proposition 2.2.3, more and more points of
X \ D get picked up in the induction, but Hausdorff is maintained since these points are

associated with the discrete set C, subsets of which are separated by open sets in B.
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Note, though, that the coarser topologies above are not metrizable. As mentioned

before, X = J{C, : n € @} has no coarser connected metrizable topology.

2.3 Coarser connected metric topology

This bulk of this section comes from [23], submitted.

Lemma 2.3.1. Suppose that Y is a subset of a metric space (X,T,l), e(clY) > ¢ is
attained by C C int(Y) and diamy, (c1Y) = € < 1/2. Then there is a coarser topology T’

on X with corresponding metric ' such that

i) T/‘cl y I8 connected,

it) “|(x\y)2 = “/’(x\y)z and
i) p' < p+2e.

Proof. Lete(clY) = k. So |C| = k, C is closed discrete in cl; Y and therefore is closed
discrete in X. By replacing C with a subset, we may assume that |[Y \ C| = k. Let
% ={U. € T:c € C} be a discrete collection such that ¢ € U, C cl(U.) C Y. For
each ¢ € C define a continuous function f, : X — [0,¢€] such that f.(c) = {€} and
Je[X\Uc] = {0}. For each x,y € X define u”(x,y) = ecclfe(x) = fe(y)|+ px,y). Itis
easy to check that since C is closed discrete in X, (1™ generates T, ,u*| X\ = u} (X\r)2
and u* < u+2e.

Let (Z,p) be a hedgehog space with spininess k, let T = {(¢, 1) : @ € x} and let
S=Z\T. Let D CY\C be adense subset of Y \ C of size d(Y) = e¢(Y) = k. Define

a one-to-one map f : Z — clY such that f[T] = D and f[S] = C. For x,y € im(f), let

A(x,y) = min{p*(x,y),p(f ' (x), /' (y))}. Forall other x,y € X, let A (x,y) = p*(x,y).

19



Define a metric i’ on X as follows:

W (x,y) =inf{A (x,x1) + A (x1,22) + - + A (X1, X0—2) + A (¥, ) }

where x1,...,x, ranges over all finite sequences (including the empty sequence) of
distinct elements of X. Since p and pu* satisfy the triangle inequality, in defining u’ it

suffices to consider sums of the form

wex) +p(f ), f ) + o 1 (et X2)
+p(f ), )

2.1)

where the sum may start or end with either a p term or y*term and the terms of the
sum alternate between p and p*. Note also that since xi,...x, are in the image of f,
X1,...x, € DUC.

Since p’ is an infimum over all finite sequences in X, it satisfies the triangle inequality.
That p/(x,y) = p/(y,x) and p'(x,x) = 0 for all x,y € X is clear. It remains to show that

i (x,y) = 0 implies that x = y.

Claim (1). Suppose that for a particular sum in the form of (2.1), A (x;,x;+1) < € for each
i€ {mm+1,...,n—1}. Then, if A (X, %ms1) = P(f 1 n), f~ (Xmy1)) and x,,, € D,

then x,,; € C for all i odd and x,,,4; € D for all i even in {0, 1,...,n —m}.

Proof. Suppose that A (x;,x;11) < € foreachi € {mm—+1,....n— 1}, A (X, Xm+1) =
p(f'(xm),f"(xmi1)) and x,, € D. Fix i even such that 0 < i < n—m, and sup-
pose that x,,,+; € D. Since x,,1; € D, f’l(xm+,~) € T. But since the p and u terms of
the sum alternate, A (X1 i, Xmiit1) = P~ (omei)s f~ (Xmriv1)) < € < 2 and hence

F Y (%mait1) € S. By the definition of f, x,4ir1 € C.
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Now, since A (Xp+it1,Xmtit2) = L (Xmrit1,Xmriv2) < € and xp, 441 € C, it must
be that x,,1 ;.2 € D. So, since x,, € D, by induction, x,,4; € C for all i odd and x,,,1; € D

forallievenin {0,1,...,n—m}. O
Claim. p’(x,y) = 0 implies that x =y

Proof. Suppose there were x,y € X such that u’(x,y) = 0 but x # y. If defined, let
X = f'(x)and y = f~'(y). Letx1,x2,...x, € DUC be a sequence that yeilds an

alternating u*, p sum between x and y that is less than

6 = min{e, 1" (x,C\ {x}), 1" (»,C\ {y}), p (X, T\{x'}), p (', T\ {3’ D)}

Since C is closed discrete in X and T is closed discrete in Y, § is a postive real number.
Case (1). The alternating sum begins and ends with yu* terms.

If x; € C then p*(x,x1) > u*(x,C\ {x}) > &, which is a contradiction. Note that

nis even. If x; € D, then since A(x;,x;+1) < € for each 1 <i < n and A(x1,x;) =

p(f~1(x1), £~ (x2)), by Claim (1), x, € C. Hence p*(x,,y) > u*(y,C\ {y}) > 8, which

1s a contradiction.

Case (2). The sum begins with a u* term and ends with a p term. (or begins with p,

ends with u*).

If x; € C then pu*(x,x;) > u*(x,C\ {x}) > &, which is a contradiction. Note that

n is odd. If x; € D, then since A(x;,x;+1) < € for each 1 <i < n and A(x1,x) =

p(f~1(x1), £ (x2)), by Claim (1), x, € D. Then p(f " (x4),)’) > p(y/, T\ {)'}), which

is a contradiction.
Case (3). The sum begins and ends with p terms.

Suppose x; € D. Then p(x',x;) > p(x', T\ {x'}) > &, which is a contradiction.
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Suppose x; € C. Since A (x1,x2) = u*(x1,x2) < €, x € D. Note that n is even. Then
since A (x;,x;41) < € foreach2 <i<nand A(x2,x3) = p(f ' (x2), £ 1(x3)), by Claim

(1), x, € D. Then p(f~'(x,),y') > p(y/,T\ {y'}) > 8, which is a contradiction. [

So, p’ defines a metric on X. Let 7/ be the topology on X generated by u’. Since p*
generates T and p’ < u*, 7’ is coarser than 7. In order to show that 7/ |clY 1s connected,
we argue that (DUC, 7’| puc) is continuous image of the connected space Z. Then, since
clyY =cl Y =cle(DUC), we will have that (cl1Y, 7/ ‘Cly) is connected. To do this, we

show that u’ makes the map f continuous.

Claim. The map f: (Z,p) — (Y, ) is continuous.

Proof. Let x €Y, 6 > 0 and let U = B,y(x,5) be the p’-ball of radius § about x.
Suppose z € f[U]. Then p'(f(z),x) = 6" < d. Let & = S’T‘S/ Suppose 7 € Z such that
p(z,2) < &. We wish to show that u'(f(z'),x) < & so that By(z,&) C f[U]. Since

W (x, f(z)) = &', there is a sequence x1,x2,...,x, € Y such that
A(x,x1) +A(x1,x0) + -+ A(x, f(2) < 8"+ &
Adding the term p(z,7') = p(f 1 (f(2)), £~ (f(Z))) to this sum
A(x,x1) +A(x1,x0) + -+ A(xn, f(2) +p(2,7) < 8 +2E < 6

illustrates that the sequence xj,x,...,%,, f(z) yields a sum between x and f(7) that is
less than 8. Hence, u'(x, f(')) < & as desired. So, the map f is continuous and the

claim is proven. ]

Therefore, is connected. Since ' < u* and u* < u + 2¢, we have that

T/|CIY

' < p+2e.
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We now show that “‘(X\Y)Z = “/‘(X\Y)Z' Let x,y ¢ Y. We verify that u'(x,y) =
L (x,y). By definition, u’(x,y) < u*(x,y) = t(x,y) so we need only show that
i (x,y) > p*(x,y). Suppose for a contradiction that u’(x,y) < u*(x,y). In other words,

there exist x1,x3,...,x, € DUC such that

WoCe) +p (7 ), 7 () e G y) < 1 (x,Y)

Since x,y ¢ Y, f~!(x) and f~!(y) are not defined. Hence the sum above must start and
end with u* terms implying n is even. Also, since x,y ¢ Y, u*(x,y) = p(x,y). Now,

since diamy (Y) = €, for any 71,2 €Y,

px,y) < px,zi) + €+ u(z2,y)

Hence,

pxy) <p(xY)+e+p(yY)

Combining these inequalities we have

o) +p (7 (), S () e i () <

(2.2)
H(xY)+e+pu(yY)
Now, since x,y ¢ Y and xj,x, € CUD C Y, u*(x,x1) > p(x,x1) > pu(x,Y) and
1 (xp,y) > w(xn,y) > u(y,Y). Combining this with (2.2) gives:
PO 00 f T ) e (o x3) - p (7 () f T (1)) < €
L (,xy) <u(x,Y)+e (2.3)
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and

W (xn,y) < u(y,Y)+e€ (2.4)

Suppose x; € C, then pu*(x,x1) = p(x,x1) + € > u(x,Y) + € contradicting (2.3). So,

x1 ¢ C. Similarly, x,, € C contradicts (2.4). So, x,, ¢ C. So, we have shown that x;,x, € D.

Now, A (x;,x;+1) < e foreach 1 <i<nand A(x1,x2) =p(f ' (x1), £ (x2)). So, since

x1 € D and n is even, by Claim 1, x,, € C, which is a contradiction. So,

i (x,y) = u*(x,y) = u(x,y), and since x,y ¢ Y, we have shown “‘(X\Y)z = “/|(X\Y)2'
0

The following lemma contains Lemma 1 from [6] and Theorem 3.2 from [8].

Lemma 2.3.2. Let (X, ) be a metric space with metric L in which e(X) = K is not
attained. Let K be the set of points x of X such that every neighborhood of x has extent
K. Then

(1) x is a singular cardinal of cofinality .

(2) K is a compact, nowhere dense subset of X.

(3) If U is an open subset of X such that cl;tU NK =0, then e(U) < K.

(4) K is nonempty.

Recall Konig’s Lemma, cf(¢) > @. So, if (X, 7) is a metric space and e(X) = ¢, by

Lemma 2.3.2 the extent of X must be attained.

Definition 2.3.3 ([8], proof of Theorem 3.2). An open set V is called e — homogeneous
if for every nonempty open subset V' of V, ¢(V') = e(V). Also note that any nonempty

open subset U of a metric space has a nonempty open e-homogeneous set V.

Remark 2.3.4. If the extent of an open subset, U, of a metric space is not attained,
then as a consequence of Lemma 2.3.2 (2) and (4), there is V C U with e(V) < e(U).

Therefore, if U is an e-homogeneous subset of a metric space, e(U) is attained.
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Lemma 2.3.5. Let U be an e-homogeneous subset of a metric space (X,T,l) and

e(U) > Ry. Then e(cl.U) is attained by some closed discrete C C U.

Proof. Since U is e-homogeneous, ¢(U) = A is attained. Suppose that cf(1) > X,.
Then, e(U) is attained by some closed discrete (in U) subset C' C U of cardinality A.
However, it may not be the case that C’ is closed and discrete in c/;U. Let % be a
discrete collection of open subsets of V' that witnesses that C’ is closed discrete. Let
L=cl({J#%)\ | cltV. Note that L C cl,U\U. LetC, = {c € C" : pu(c,L) > 1/n}
and note that UC“/,,GZC’. Since cf(A) > X there is n € w so that |C,| = A. Set C = C,,.
By construction, C is closed and cl;CNL = 0, so C is closed discrete in cl; U, C C U
and |C| = A = e(cl; U) as desired. Now suppose that cf(1) = Xy. Let A, be such that
A =sup,c,An. Let W be an open subset of U such that cl; W C U. Note that since
U is e-homogeneous, e(W) = e(cl; W) = e(U) = A. Since e(cl; W) = A > X there is
C' C cl;W C U a countable closed discrete set in cl; W, hence closed discrete in U and
clU. Let % ={U, : n € o} be a discrete collection of open subsets of U that witnesses
C’ is discrete in U. For each n € w, e(cl;U,) = A > A,, so there is C,, C cl; U, a closed

discrete subset of cardinality A,,. Let C = |JC,. Since C,, is closed discrete in cl; Uy, it

is closed discrete in cl; U. Moreover, since % is discrete, C is closed discrete in cl; U.

Finally, |C| = A = e(cl; U) by construction and since U, C U foreachn,CCU. [

Lemma 2.3.6. Let (X, T) be a metric space with metric |1 in which e(X) = K is not
attained. Let K be the set of points x of X such that every neighborhood of x has extent
K. Then, for every open set U meeting K and every 0 < K there is an open subsetV of

U such that c1;V C U, e(cl; V) > 0 is attained by C CV and cl; VN K = 0.

Proof. Let 7 be a maximal pairwise disjoint collection of e-homogeneous subsets V of
U \ K such that c1; VN K = 0. Note that cl; VN K = 0 implies that (V') < k, by Lemma

0.2 (3). Suppose that for some V € ¥, e(cl; V) =e(V) > 0. By Lemma 2.3.5, e(cl; V) is
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attained by some C C V and we are done. Suppose on the other hand that e(V') < 6 for all
V' € . Note that | J ¥ is dense in U since ¥ is maximal, K is nowhere dense and every
open subset of X has an e-homogeneous subset. Since X is metric, e(W) = d(W) for any
open subset W. Suppose that |#'| = A < k. Then, d(U) =d(U?) <A -0 < k which is
a contradiction. So, |#'| = k. Since u(V’,K) > 0 for all V' € ¥ and cf(k) = o, there is
n€ osuchthat [{V' € ¥ :u(K,V')>1/n}|>0.Set V' ={V' e ¥ :u(K,V') > 1/n}.

We now refine #” to a discrete collection of size > 6. Let L =cl¢(|_J#”)\ | Jcl: V and
Yy

let Le ={x € U : u(x,L) < e}. Since (| Le =Land V'NL=0forall V/ € ¥, there is
m € o such that [{V' € ¥ : V’\Ll/me;OQ)H > 0. Set V" ={V' e V" :V'\L, #0}.
For each V' € 7", let W(V') = V'\ L, ,,,. The collection %" = {W (V') : V' € '} by
construction is discrete and has cardinality > 6. Set V = J# . For each W € #, choose
xw € W. Let C = {xw : W € #'}. Cis closed discrete in cl; V since # is discrete in X,
and |C|=|#'| > 6. Since e(cl; V) =e(V) <sup{e(W): We#}-|W|<6-|#|=|C|
we have that e(cl; V) > 0 is attained by C C V. O

Lemma 2.3.7. Let (Z,7) be a compact metric space and let % € [t]<? be a pairwise
disjoint collection such that \J % is dense in X. If € > 0 and V' is the collection of open
subsets of X with diameter less than €, then there exists a pairwise disjoint V' € [V]<%

such that V' refines % and \J V" is dense in X.

Proof. Since ¥ covers Z, compact, there is n € ® and V,V;,...,V, € ¥ such that
Z =U<i<nVi- Define Vi =V and for 1 <i<nletV; = Vi\el(Ui<j<; V). Let

¥ ={V;:1<i<n}. Note, ¥ is pairwise disjoint and | J ¥ is dense in X. Now define
V' ={vnU:Ve ¥ ,Uec¥}. Since VAU CU foreachV € ¥ andU € %, V'
refines 7 . Since diam(V NU) < diam(V) < V; for some 1 < i < n, diam(V’) < € for

all V/ € ¥'. Hence ¥’ C ¥. Since ¥ is pairwise disjoint, ¥” is as well. Finally,
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U7’ =U¥Y NU% and therefore | J ¥ is dense in Z, since | J ¥’ and |J% are open and

dense in X. n

Theorem 2.3.8. If (X,7,) is a metric space and e(X) = K > ¢ is not attained, then

there is 0, a topology on X coarser than T, such that (X, 0) is connected and metrizable.

Proof. Re-scale u so that diamy (X) < 1/2 by replacing it with ﬁ Let K be the set
of points x of X such that every neighborhood of x has extent k. By Lemma 2.3.2, K is
compact.

Let ¢; = {K}. For each n € w\ {0}, define €, C 7|, a pairwise disjoint finite

collection with the following properties:
e cl(U%)) =K.
o ¢, refines 6,
e B c ¢, implies diam(B) < 1/2"

Letn € w\{0}. Apply Lemma2.3.7withZ=K, 7, % =%, , and € =1/2" to get
¥, a pairwise disjoint collection of open sets with diameter less that 1 /2" that refines

%, and whose union is dense in K. Set ¢, = 7 !

Definition of B;’s

For n € o enumerate the elements of 6, as €, = {B; : i, <i < i,4+1} with an increasing
sequence of integers, i,. For eachic o, let L; ={x € X : u(x,B) < u(x,K\ B})}.
Fix n € w and let B;, = L;, and for i, < i < in+1,let B;=1L;\ Uin§j<l~cl(Bj). Note that
B C B; implies L; C L;.

We define 6, = {B; : iy <i < iy+1} and verify the following.

i) For each n € @, 6, is pairwise disjoint.
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ii) For eachn € w, |J%, is dense in X.
iii) For all i € w, int(B;) NK # 0.

From the definition of B; and %,, 1) is clear. Towards ii), let » € ® and let x € X.
Since |J%,; is dense in K, u(x,K) = u(x,J%,). Since €, is finite, there is i such
that i, <i <ipy1 and p(x,K) = u(x,B}). Therefore, u(x,B;) < u(x,K\ Bf) and either
x € cl(B;) or x € cl(U;,< j<;B;)- In either case, x € cl(J%,). For iii), note that

int(B;) NK = B \ cl(U;,< j; B}) which is nonempty since ¢, is pairwise disjoint.

LetUi={xeX : u(x,K) < 5i7}.
Claim (2). Forn € , i, <i<iyq1, diamy(L;NU,) < % forany m >n—1.

Proof. Note that if x € L;, u(x,B}) < u(x,K \ BY) which implies u(x,K) = p(x,By).
Hence for i, <i<i,11,m>n—1,x,y € L;NU, and € > 0 there exists xp,yo € B} such

that w(x,x0), 1(y,y0) < 1/2"H +€/2 < 1/2"+¢/2. So,
p(x,y) < p(x,x0) + 1 (y,y0) + 1 (x0,y0) <2/2" +e+1/2" <3/2"+¢
Hence, diamy (L; N Uyy) < 3. O

Definition of W;’s

We define # = {W; : i € o}, a pairwise disjoint collection of open subsets of X such

that
i) cl(W)NK =0,
ii) e(cl(W;)) > cis attained by C; C W;,

iii) fori, <i<i,y1, & = diamy (W;) < 237 and
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iv) % is densein X.

Let Wy = 0. Apply Lemma 2.3.6 with 8 = ¢ and U = int(By) = X to get an open subset
V of X such that e(cl; V) > 6 = ¢ is attained by Co C V and cl; VNK = 0. Set Wy = V.
Set Sy = V. Let kp = min{k : Sy C X \ Uy} > 1. By definition Wj is open, and since
clVNK =cl(Wy) NK = 0 i) holds. By Lemma 2.3.6, ii) holds and iii) is trivial since
diam(X) <1/2.

Suppose we have defined W; for all 0 < i < i, so that 1), ii), and iii) are satisfied.
Also suppose that S, = J{W; : i <41} is dense in X \ cl(Uy, ,+1) and that
ky =min{k: S, CX\Ui} >mforall 0 <m < n.

Let i be such that i, <i < i,,1. Let W; = Bi\ (cl(Ug, ,+1US,—1)). Since
int(B;i)NK # 0 and K C X \ cl(S,—1), int(B;) \ c/(S,—1) is an open set meeting K. So,
apply Lemma 2.3.6 with 8 = max{e(W;),c} and U = int(B;) \ cl(S,_1) to get an open
subset V of U such that cl; V C U, e(cl; V) > 0 is attained by C; C V and cl; VN K = 0.
Set W; = W; UV. By the lemma, W; satisfies (i) (ii) for each i such that i, <i <i,,1. Set
Sp=U{W; i, <i<iy41}US,—1. Letk, = min{k : S,, C X \ Uy} > n. By Claim (2.3),
diam(B;NU,_) < ;—n since B; C L; and i,, <i < ipy1. Also, S, is densein X \ Uy, , 1.
Therefore W; = W;UV C B;\ cl(S,—1) C BiNUy, ,+1 C BiNU,_1, since ky_p > n—2.
Hence diamy, (W;) < 5 and iii) is satisfied.

Towards iv), since K is nowhere dense in X, we only show that [J7# is dense
in X\ K. Letx € X \ K and let n € @ be such that x € X \ cl(Uy, ,+1). Then either
x €cl(Sp—1) Ccl(Sp) orx € X \cl(Ug, ,+1USn—1). f x € X\ cl(Ux, ,+1US,—1) then
since {B; : iy <i <ipt1}isdensein X, x € cl(B;\ (cl(Ug, ,+1USu—1)) Ccl(W;) Ccl(S,)
for some i. In either case x € cl(S,) . So, cl(U{Wi e w)) = cl(U{Sn ‘n€w})D
(X \ cl(Ug,, +1)) for each m € . But, X \ K = JX \ cl(Uy,,+1). Hence U{W; :i € o} is

dense in X \ K.
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Linking the W;’s

Suppose that if n,i, j € @ are such that i, <i <i,;| < j<i,2 and Bj. C Bj. Then,
W;CB;NU,—1 CLiNU,—yand W; C B;NU, C L;NU, C L;NU,_1. Hence by Claim (2),
x € W; and y € W; implies i (x,y) < &. For each j € o choose x; € W; \ C; arbitrarily.
For i, <i<ipyp, let Ji={j ipp1 <j< in+2,B;‘- C Bi}and let X; = {x; : j € J;}.
Notice that diam(W; UX;) < g C; C W; C int(W; UX;) and that by the definition of %*,
UicwJi = @\ {0}

Defining the connected topology on X

We define a sequence of metrics i, on X such that v = lim 11, is a well defined metric
that generates a coarser connected topology on X. We define u, by induction. Apply

Lemma 2.3.1 with Y = Wy U Xp, C = Cy, € =3/2 and p = u* to get 1y and Yy such that

i) TO}C]WOUXO is connected

i) 1 e o) = Hol e w2
iii) diamy, (c1WoUXp) <9/2 and
iv) o < u*+6/2.

Fix n and suppose we have for each 1 < m < n, U, defined on X such that y,, is a
metric that generates a coarser topology 7,, C T,,—1 in which §,, is a connected subset of
X.

Set 69 = 7,—1 and pg = W,—1. For i, <i <i,41,let j =i—i, and apply Lemma 2.3.1
withX =X, C=C;,71=0j, u=p;, Y =W;UX; and € = gto get 011 and p; such

that

1) 0j11 |c1W,~uX,~ is connected
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D)9z = Pl ooy w2

iii) diamy,, (c1W;UX;) < 3g < 5; and
iv) piy1 <pj+2&6<pi+

Let W, = pm, and 7, = 0,,,. As a consequence of ii) and iv), u, < pu* + % on
Ui,<i<ip., Wis Un = tn—1 on X\ U; <i<i,,, Wi and T”‘clvv,-ux,- is connected for each
in <i<lpyl.

Define v(x,y) = lim u,(x,y). This map is a well defined metric since for any x,y € X,
V(x,y) = Wn(x,y) for all m > max{n:i, <i<i,yjandx € W;ory € W;} U{0}. Let 7’ be
the topology generated by v. To show that T C T we show that v preserves convergent
i sequences. Suppose that {x, : n € @} and x are such that lim; . tt(x,x;) = 0. If x ¢ K
there is n,m € @ such that x,x; € X \ cl(Uy, 1) for all i > m. Then, v(x,x;) = U, (x,x;) for
all i > m, hence lim;_... V(x,x;) = lim;_.co Uy (x,x;) = 0, since u, preserves | convergent
sequences. Now suppose that x € K. For each n € o, there is m,, such that x, € U,,,,
and since u*(x,x,) — 0, m, — oo. If there is i € ® such that x,, € W; then it must be that
i > my, since x,, € Uy, . In this case, by the consequence of ii) and iv),

V(x,x,) < pu*(x,x,) +% < W (x,%n) + 5. If x ¢ W for all i € o then
V(x,%,) = ¥ (x,x,). In either case v(x,x,) < W*(x,%,) + 9 and therefore v (x,x,) — 0.

Notice v

= ‘L’n‘ for i, <i < i, 1. Hence W;UX; is connected in 7’. Notice
W;UX; WuX;

that X; "W; # 0 for each j € J; so that W; UJ jex; Wi is connected as well. This means
that W; is "linked’ to Wy for every 1 =i; <i < i, and since J;c,Ji = @\ {0}, any later
W; is ’linked’ to Wy. Therefore any 7’-clopen subset, Z, of X would have to be empty, or

contain W; for all i. Since J;cq, W; is dense in X, Z is trivial. Hence 7’ is connected. [
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Chapter 3

Non-normality points

3.1 Introduction

Definition 3.1.1. 1. A point y in a space X is called a non-normality point of X if

X \ {y} is not normal.

2. A point y in a space X is called a butterfly point of X if there are closed subsets

H,K of X such that {y} = cl(H\ {y}) Ncl(K\ {y}).

If a point y is a non-normality point of a normal space X, then a pair of disjoint
closed sets H,K that cannot be separated in X \ {y} actually demonstrate that y is a
butterfly point of X. It is not always the case, however, that a butterfly point in a normal
space is a non-normality point. For example, any point x in R, the real line, is a butterfly
point via the sets [x,x+ 1] and [x — 1,x]. However, x is not a non-normality point of R
since R is hereditarily normal.

One may ask the following questions for a topological space X.
Question 3.1.2. Which points y € X \ X are non-normality (butterfly) points of B X \ X.

Question 3.1.3. Under what set-theoretic conditions are all points y € BX \ X non-

normality (butterfly) points of BX \ X.
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Lemma 3.1.4. Let y be an element of a normal space X and suppose X \ {y} is C*-

embedded in X. If y is a butterfly point of X then y is a non-normality point of X.

Proof. Let y be a butterfly point of X such that X \ {y} is C*-embedded in X. Suppose
that X \ {y} is normal. Since y is a butterfly point, there are closed sets H and K
in X such that {y} =cl(H\ {y}) Ncl(K\{y}). Let H = H\{y} and K’ = K \ {y}.
Since X \ {y} is normal and H' and K’ are closed in X \ {y}, there is a continuous
function f: X \ {y} — [0,1] such that H' = f~ [{1}] and K’ = £ [{0}]. Since X \ {y}
is C*-embedded in X, there is a continuous extension, g, of f to X. However, since
yecl(H\{y})Ncl(K\{y}) it must be that 0 = g(y) = 1, a contradiction. Hence X \ {y}

is not normal and therefore y is a non-normality point of X. 0

As the next example shows, a butterfly point of BX \ X is not necessarily a non-

normality point of BX \ X.

Example 3.1.5. Let X = (w+ 1) X ®;. Then BX = (0w + 1) x (w; + 1). Notice that
BX \ X is a convergent sequence {(n,;) :n € o} U{(w,w;)}. Each (n, @) is neither
a buttterfly point nor a non-normality point of BX \ X. However, the point (®, @) is a
butterfly point of BX \ X via the sets H = {(2n,®;) : n € ®} and

K={(2n+1,) :n € o}. Even though the point (®, ®,) is a non-normality point of

BX, it is not a non-normality point of BX \ X; the subspace {(n,®;) : n € ®} is normal.

Because of the previous example, when aiming for non-normality points in BX \ X,
we may restrict our attention to a special class of spaces. In particular, we focus not on
arbitrary Tychonoff spaces X, but for discrete, or more generally, metrizable spaces.

We will use p and g for set-ultrafilters or ultrafilters on a discrete space and y for a
z-ultrafilter on a metric space. When considering the Stone Cech compactification, X,

we view the points y € BX as z-ultrafilters on X. In a Tychonoff space X, a z-ultrafilter
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can have at most one point of convergence. Associating each point x of X to the fixed
z-ultrafilter of all z-sets containing x gives an embedding of X into SX.

For an infinite cardinal x we write D(k) for the discrete space of cardinality k.
All subsets of D(k) are clopen z-sets. Therefore, any ultrafilter on D(k) is also an
open ultrafilter and a z-ultrafilter. We would like to extend some notions defined for

set-ultrafilters to z-ultrafilters.

Definition 3.1.6. 1. An ultrafilter p on D(k) is called uniform if |A| = x for each

AeEp.
2. Apointy € BX \ X is uniform if w(Z) = w(X) forall Z € y.

For an infinite cardinal x, we denote the set of uniform ultrafilters on the discrete

space of size k by U(k) and the set of non-uniform ultrafilters by NU (k).

Definition 3.1.7. 1. A uniform ultrafilter, p, on a D(k) is (X, k)-regular (or just
regular) if there exists {Sq : & € k} C p such that for all A € [k] o,

N{Se: €A} =0.

2. A uniform z-filter, y, on a metric space with weight k is regular if there exists

% C ysuchthat | 2| = x and 2 is a locally finite collection in X.

3.2 Discrete Spaces

A direct way of showing that a point y in a space Y is a non-normality point of Y, is to
exhibit two closed subsets of Y \ {y} that cannot be separated.

Blaszczyk and Szymanski [2] showed that if x is regular and p € BD(x) \ D(x) is in
the closure of a strongly discrete subset of BD(k) \ D(x) then p is a non-normality point

of BD(x) \ D(x). They used the closure of the strongly discrete set as one of the two
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closed sets that cannot be separated in BD (k) \ D(x) \ {p}. Blaszczyk and Szymanski’s
result addresses a question of the form 3.1.2, which points are non-normality points?
Notice that they did not assume extra axioms of set theory.

When the conclusion is strengthened to: all points are non-normality points, as in
3.1.3, the hypotheses usually include a set-theoretic assumption. For example, assuming
CH, any point p € Bo \ ® is a non-normality point of B® \ @. This theorem was proven
in two parts. Gillman, [9], showed that under CH, a certain class of points p € fo\ ®
are non-normality points of B \ ®. Then, Rajagopalan [18] and Warren [22] showed
all other points p € B \  are non-normality points. Since every free ultrafilter on @
is uniform, this result can be phrased: CH implies every p € U(®) is a non-normality
point of U ().

Note that closed subspaces of normal spaces are normal. So, an indirect way of
showing that a point y in a space Y is a non-normality point, is to embed a non-normal
space Z as a closed subspace of Y \ {y}. Warren [22] showed that NU (@) is not normal.
Then she showed, assuming CH, that NU (@;) ~ (B \ @) \ {y}, completing the proof
that y is a non-normality point.

Malyhin [17] showed the following.

Lemma 3.2.1.  [. If 0 is singular then NU () is not normal.
2. If O is regular and not a strong limit cardinal, then NU(0) is not normal.
Kunen and Parsons [[14], Theorem 1.11] then showed.

Lemma 3.2.2. The space NU(0) is not normal if and only if 0 is regular and not weakly

compact.

Beslagic and van Douwen [[1], Theorem 1.1] generalized the results for @ with the

following theorem.
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Theorem 3.2.3. (2¥ = k™) Every point p € U(K) is a non-normality point of U (k).

The set-theoretic assumptions of their theorem are, in fact, weaker than 2¥ = x; the
reaping number of x is equal to 2% and sup{2* : 1 < cf(2¥)} = 2¥. They showed that
NU (cf(2¥)) embeds as a closed subspace of U(x) \ {p} for any p € U(x). Note that
since U(x) is a closed subset of BD(x) \ D(k), if p is a non-normality point of U (k), it

is a non-normality point of BD(k) \ D(k).

Corollary 3.2.4. (GCH) Every point p € BD(x)\ D(x) is a non-normality point of
BD(x)\ D(x).

Proof. Let p € BD(x)\ D(x) and let A € p be such that |A| = min{|A’| : A" € p}. Since
D(x) is discrete, A is C*-embedded in BD(x), and so clgp () A = BA. Moreover, BA
is a clopen subset of BD(x)\ D(x). Since |A| is minimum, p|4 is a uniform on A.
Therefore, by Theorem 3.2.3, p is a non-normality point of BA\ A. Since BA\ A is
closed in BD(x)\ D(x), p is a non-normality point of BD(k) \ D(k). O

3.3 Metric Spaces

Since 2000, the study of non-normality points in X \ X has expanded to non-discrete
spaces X (see [16] and [20]). We start with a result proved by Logunov [15] and

Terasawa [19] independently.

Theorem 3.3.1. If X is metrizable, non-compact and has no isolated points, then every

point y in BX \ X is a non-normality point of BX.

They showed that any y € BX \ X is a butterfly point of SX. Because
X C BX\{y} C BX, we have that BX \ {y} is C*-embedded in BX. Then by Lemma

3.1.4,if y is a butterfly point of BX, it is also a non-normalilty point. Since BX \ (X U{y})
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is not necessarily C*-embedded in X, to be a non-normality point of the remainder,
BX \ X, it does not suffice that p is a butterfly point. Our goal is to strengthen the
conclusion of Theorem 3.3.1 to y in BX \ X is a non-normality point of X \ X. To do
this we will add set-theoretic hypotheses.

Before proving the main theorem we develop two tools; a special m-base and an
ultrapower. Terasawa [19] constructs a special 7-base for a metric space without isolated
points by modifying Arhangelski’s regular base [[5], pg. 411]. The following 7-base is
the same, but we assume the metric space to be locally compact and get more structure

(specifically, each B is split into four pieces).

Lemma 3.3.2. Let X be a locally compact metric space without isolated points. There

exists a collection X = \J,,c o, $Bn of open subsets of X such that

1. clx B is compact for each B € B, B, is pairwise disjoint, locally finite and

(%)) =X.
2. By refines By and |{B' € B, : B' C B}| =4 for all B € B,.
3. For B € B, there are B°, B! € B, such that c1B°NclB' =0 and c1B®,c1B' C B.

4. If % ={U,V} is an open cover of X, there is a pairwise disjoint locally finite

collection V' C A densely refining U .
5. Foreachn € o, |%,| = w(X).

Proof. Let O be an open cover of X consisting of sets U such that clU is compact.
Let %, be a locally finite open refinement of size < w(X). In fact, it must be that
|B)| = w(X). Otherwise, since clB is compact metric for each B € %, there is a
countable collection of open subsets of X that is a base for points in clB. Since %4,

covers, if |%)| < w(X) the union of each of these bases would be a basis for X of
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size < w(X), a contradiction. Let k = w(X). Well order |, as {B}, : a € k}. Define
Bo = By \Uy< c1By and set By = {Bq : & € k}. Notice that since %, is locally finite,
A is locally finite as well and each By, is open. Furthermore, since clBy C clB,, clBy,
is compact.

Fix a € k. Since cl By is compact and metric, there is a countable base for clBy,.
Let o7y = {A; C clBgy : i € @} be such a base such that Ay = cl By, and A; is open with
respect to cl Bg. Notice that int(A;) # 0 for all i € . Let #0 = {By}. Assume we have

defined for each i < n a collection WO’; of open (w.r.t. X) subsets of By, such that:
i) # is a pairwise disjoint finite collection such that cl((J#/}) = cl By
ii) #it! refines #{ and |[{B' € #i*!: B C B}| =4 forall B€ ¥#,.

iii) For B € # there are B’, B! € #*! such that c1B’ Ncl B! = 0 and

clB% c1B! C B.
iv) For each B € %/, either B C A; or B C By \ clA;.

Fix W e #,.
Case (1). WNA,1 =00rW\A,;1 =0.

Because X has no isolated points, we can find B” and B', non-empty open subsets of
W, such that c1B® NclB! = 0 and c1B° UclB' C W. Then let B> and B be non-empty
open subsets of W such that B> U B is dense in W \ (c1B° UclB').
Case (2). WNA,+1 #0and W\ A, #0.

Let B” be a non-empty open subset of W such that c1B® C W N A, and let
B? = (WNint(A,+1))\ clB’. Then let B! be a non-empty open subset of W such that
clB' CW\ A, and let B> =W\ (clA, 1 UclB'). Again, since X has no isolated

points, this can be done.
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Set #+!1 = {B':i=0,1,2,3}. By construction, #*! has properties (i) - (iv). Let
By =Ugex ?, - Properties (i)-(iii) for %, imply properties (1)-(3) for %,. It remains to
show that (4) holds. Let {U,V } be an open cover of X. Fix ¢ € k. If B, CU or Bq CV
then let ¥o = #) = {By}. Consider % = {A; € oy : A; CV}. Since clBy\U C V,
7 is an open (w.r.t. By) cover of the compact set clBy \ U, it has a finite subcover
{4 1k=1,...,m}. Let n = max{ix : k= 1,...,m}. Then, #} has the property that
forall W € #}, W C A; or W C By \ clA; for all i < n. So, either there exists iy for
some k=1,...,msuch that W CA;, CV,or W C{Bag\clA; :k=1,....m} CU.
Let Vo = #,).

Now, let 7 = Ugex Ya- Since ¥y = #,}, it is finite. Moreover, since |J 7 C Bgy
and A, is locally finite, ¥ is locally finite. Since cl(|J#};) = By and cl(U %) = X,
cl(U?) = X. Finally, ¥ refines {U,V } by construction. O

In the main theorem we will embed a non-normal space NU(0) into BX \ X. The
cardinal, 8, will be the cofinality order of an ultrapower that we will construct now.

Let k be an infinite cardinal and let @ be the collection of functions from «k to .
Given a filter p on D(x), we define an equivalence relation ~, as follows. For f,g €*,
f~pgif{aex: f(a)=g(a)} € p. We define a partial order, <, on @ as follows.
For f,g €¥m, f <, gif {a e x: f(a) < g(a)} € p. We write “w/p for o/ ~, and
[f] for the equivalence class of f in “w/p. For [f],[g] €®/p such that f <, g, if
f'€[f]and g’ € [g] then it is easy to see that /' <, g’. So, <, induces a partial order, <
on “w/p.

If p is an ultrafilter, for any f,g €“w one of {ox € x: f(a) < g()},

{aex: fla)=g(a)}or{o € x:f(ex) >g(e)}isin p. Hence < is a linear order on

“o/p.

Lemma 3.3.3. If p is a regular ultrafilter on D(x) then cf(*®/p) > x
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Proof. Let p be a regular ultrafilter on D(k). Let {Sqy : & € K} C p be such that for all
A € [k]¥0,N{Sq : @ € A} = 0. In other words, for each y € k, I, = {@ : Y € S¢ } is finite.
Let {fo : @ € K} be representatives from an increasing sequence in “@/p. For y € k
define f(y) = max{fu(y): & € I;} + 1. We wish to show that f, <, f forall o € k. Let
o€ kand S € Sy. Since a € Is, f(8) > fu(5) and therefore So C {0 : f(6) > fu(d)}.

Since S¢ € p, fa <p f- Hence, {[fo] : @ € x} cannot be cofinal in “@/p. O

From now on, X is a locally compact metric space without isolated points, k¥ = w(X)
and Z =J{%; :i € o} is a w-base as in 3.3.2. For a uniform y € BX \ X we will define
a uniform ultrafilter p, on k. Let Z € y, let %(Z) = {B € %y : cly BNZ # 0} and let
Ny = {%(Z) : Z € y}. Extend N to an ultrafilter, .4, on . Notice that cly * € y
for all 7 € Ap. If not, there would be Z € y such that ZNcly Z* = 0. But 2(Z) € A,
hence % (Z)N% # 0 and so % *NZ # 0, a contradiction.

List By = {Bgg: & € k} and %; = {Bgs : & € k,0 €4} such that By C Bgy if 6
extends v. We may assume that for o € k and 6 €4, cly By~ Nclx Byg~ = 0 and
clx Bys0:¢lx Byg~1 C Bao. Forany 7 C £, let
S(7) ={a € « :there is o such that By € ¥'}. Since 4 is an ultrafilter,
py=A{S(¥): ¥ € A} is an ultrafilter on k. Moreover, since y is uniform, for any Z €y,
w(Z) = k. Hence |%)(Z)| = x and therefore py is uniform.

For a uniform y € X \ X, let 6, = cf(*w/py).

Theorem 3.3.4. (GCH) Let X be a locally compact metric space with no isolated points.

Then for each uniform'y € BX \ X there is a closed copy of NU(6,) embedded into
BXA\X\{y}.

Proof. Lety € BX \ X be uniform and let 0 = 6, and p = py. Let {[fo] : ¢ € 6} be an

unbounded sequence in *@/p. Denote fu(7y) by n(a, 7).
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Following Terasawa [19], we defines a sequence of locally finite collections in %,
{&q : o € B}, and sequence of closed sets intersecting to y, {Hy : &t € 0}.

Fori € \{0},let& =% andfor o < o < O let £ = {Bys : Y€ K, 0 € *V)4}. We
inductively define .45, an ultrafilter on &,. Suppose that .43, has been defined and that
clxy eyforalln <oand % € My. LetZ € yand %a(Z) ={B € Eq : clx BNZ # 0}.
Define A = {« C &y :clxW* =cly?™* for some n < a and ¥ € 4y} and let
No ={Ua(2): Z €y} U C/I@ﬁ. The collection .4 has the finite intersection property by
the induction hypothesis. Extend Jf{x to an ultrafilter, .4, on &y. As with (), since
Uy (Z) € N for each Z € y, we have that 7 * € y for each % € Aj.

For S € pand o € 0, let £ (S) = Uyes{Byo : O e"(®7)4}, Note that for any
a,0 €0, clx(Eq(S))" =clx(&s(S))*. From the definition of p, if S € p then &y(S) € .
Therefore, £ (S) € N C Ny

Claim. For o < 8 < 6 and % € Ng, there is %' € Ap such that clx %" C clx % *.

Proof. For a < 3 € 6, fo <) fp and hence there is S € p such that fu(y) < fg(y) for
all ye S. If % € N, then g refines ¥ = % M Eq(S). Let Z = clx V™. Since ¥ € N,
Z € 'y. Moreover, %g(Z) € . Now, since Eg refines 7/, clx(%g(Z))* C clxy 7. Let
U' = U (Z). O

Defining H,,.
Let Hy = ﬂ{clﬁx(%*) LU € Ny}

Claim. If o < 8 then Hg C Hyg.

Proof. Suppose a < . Let % € A be arbitrary. To prove the claim, we show that
Hpg C clgy(%*). From the previous claim, there is %" € .43 such that

cly(%"™) C clx(%*). Therefore, clgy (%") C clgx (% *). Since Hp is the intersection
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over all such %', we have that Hg C clgx(%*). So, Hg C Hy and the claim is proven.

]

Since {Hy : o € 0} is a nested sequence of closed subsets of the compact space BX,

we have that {Hy : ot € 0} # 0.
Claim. N{Hy:a €0} ={y}.

Proof. Let W' € 1,. We will find a € 6 such that H, C W'. Let V.U’ € 7, be such
that clgy V' C U’ CclgyU' CW'. Let U =X NU’ and V =X \ clgy V'. Then, {U,V}
is an open cover of X. Let & C A be a refinement as guaranteed in Lemma 0.3 (4).
For each o € k, since & is locally finite and cly(Bg) is compact, {B € & : B C By}
is finite. So, Aq = {n € @ : there is 6 €"4 such that Bys € £} is also finite. Define
g(a) = max(AqU{0}) and let &' = J{Byo : 0 €8V4,y € k}. Note, &' refines & and
in turn refines {U,V}. Also, g € and hence there is & € 6 such that f, >, g. So,
there is S € p such that fu(y) > g(y) for all y € S. In other words, &y (S) refines
U{Byo: 0 €24, yc S} C &' Now, Z = clgx V'NX =X\V €y, hence %y (Z) € .
Since S € p, as noted before, {u (S) € Ay, s0, V' = Uy (Z) N E(S) € Ng. Let BE V.
Then, since B € %y(Z), BNZ =BN (X \V) # 0. But since B € £4(S), there is B € &’
such that B C B'. Therefore B'N (X \ V) # 0 and since &’ refines {U,V }, it must be the
case that B' C U. Hence B C U C U’ and therefore ¥ C U’ C clgy U’. Finally, since

V€ No, Hy Cclgy V" CclgyU' C W' O
Defining the Z’s
For a € 8 and i = 0, 1 define £}, = {BYGAZ- CYEK,O e”(“77)4},

Claim. Forall o € k™, clgx (U.Z5) Nelgx (UZLy) = 0.

Proof. For each ¥y € kK and © €4, cly B},GAO Ncly mel = (. Also, Bys mBYB = () for

0 # B €"®Y4, and fori =0, 1 we have cly B C Bys and cly B,g~; C Byg. Therefore

yo i
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cly B Ncly B =0fori,j=0,1. So,

Yo vB7J
U{clx Bygg: O enl@nqyn U{clx Byoo: O e®)4} = 0. Now, since {Byp : ¥ € k}
is a locally finite family and since clx B,;~; C By for each 6 € U,c,,"4 and i = 0,1, we
have that cly (J.22) Nclx (U-Z)) =

U{clx Bygg : 0 €"*M4 y € k} NU{clx B5~g : 0 €"%V4,y € k} = 0. Finally, since

clx (UZY) Nelx (UZy) = 0, clgy (UZ3) Nelgx (UZy) = 0. O

Since clﬁX(UofO?) ﬂclﬁX(UZ&) = (, y can be in at most one of clﬁX(UX&)) or
clgx (U Z1). Without loss of generality, assume y ¢ clgx (U Z£9) foreach a € 6.
A special case of the following claim, in particular when ® is constant, is proven in

[[19], Lemma 3].

Claim. Forany oo < 6 and ®: D C [o,0) — 2, the collection

{Hq} U{clgx(U qu) (Y)) : ¥ € D} has nonempty intersection.

Proof. Let a < 0 and @ : D — 2 for some D C [a, 0). To prove the claim we show that
{clgx %™ : U € Ny} U {Clﬁx(UX;Dm) : ¥ > o} has the finite intersection property.
Let 724,...,%, € Ng and let y;,...,%, € D be such that %, > --- > 71 > o. Since A
is an ultrafilter, there is % € A such that  C ({% : 1 <i <n}. Since

fa <p frn <p -+ <p fy there is S € p such that fo (1) < fy (1) < -+ < fy, (1) for
all u € S, in other words n(ot, 1) < n(y, 1) < -+ < n(Yu, ). Since Ey(S) € Mg,
Eq(S)N% # 0. Hence there is p € S and ¢ €"(*#)4 such that By € E4(S)N% . De-
fine o’ €"(¥mt)+14 a5 follows: O |n(ap) =0, 0 (n(Yi, 1) +1) = P(y) foreach 1 <i<m
and ¢’ (k) = 0 otherwise. Then, B, C Byq, since ¢’ extends ¢ hence

B, s C % *. Furthermore, By C Uf;’(%) since 6’ extends 6|,y u)+1 = ' [n(yu) P (%)
e.Lrm, O

and Bujcl‘n(w)ﬁq,(m
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We follow the argument found in [1] to embed NU(0) into BX \ (X U{y}), using the
Zy’s to play the role of the reaping sets.
The induction

Denote by 0 the discrete space of size 6. We define an embedding, g, of 6 into

BX \ X such that
1. y € clgy g[A] if and only if |A| = 6.
2. IfA,B € [6]<% and ANB = 0 then clgy g[A] Nclgy g[B] = 0.

Then, we extend g to Bg: BO — BX \ X and prove that U(0) = g~ [{y}]. Therefore
BX \ (X U{y}) contains a closed copy of NU(6).

Since we assume GCH we have that 6<% = 0. List 8 U {(A,B) : A,B € [8]<% and
ANB =0} as {T : n € 0} in such a way that if T;) = (A, B), then n > sup(AUB) and
if T, € 0,thenn > Tj.

Foroa € O let Do ={n: Ty = (A,B) and ¢ € AUB}U{n : a € T}. Note that
Dy C [0, 0).

For each o € 6 we define @ : Dy — 2 and choose g(a) to be any element of
N{Hq} U{clgx (U .iﬂfp“m) : ¥ € D}). We define @, by induction.

Let 1 € 6 and assume we have defined ®¢|nnp,. If Ty € 0, let @g(n) = 0 for all
B <Ty If Ty =(A,B),let $g(n) =0forall B € A and let g(n) = 1forall § € B.

Let Ko = N({Ho} U{clgx (U2 - y € Do }) = 0. By the claim, K # 0 for
each a € 0, so we may choose g(&) € K.

To show 1., let A C 6 be such that |A| < 6. There is ¥ € 8 such that A C [0,7). Let
1 be such that T, = y. Note, n > 7. For any a < y =Ty, $o(n) = 0. So, for o € A,
Ky C Z,g). But, y ¢ clgx (U 3,?) Hence, y ¢ clgy g[A]. For the other direction, let A C 6

be such that |A| = 6. Since 0 is regular, A is unbounded in 6. Let U € .#". There is
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Y € 0 such that Hy C U. For o € A such that @ > v, g(o0) € Hy, C Hy C U. Hence
y € clgx g[A].

To show 2., let A, B € [0]<? be such that AN B = 0. Let 1 be such that
Ty = (A,B). Then, for each a € A, ®4 (1) = 0 and for each & € B, (1) = 1. Hence
gla) e Ky C ClﬁX(U.i”,?) for ¢ € A and g(@) € Ky C CIBX(U.,Q”HI) for @ € B. But,
ClﬁX(UOSf,?) ﬂclﬁX(Uan) = 0. Hence clgy g[A] Nclgx g[B] = 0. Note, 2. implies g is
one-to-one.

Since 0 is discrete, g is continuous. Extend g to Bg: f6 — BX \ X.

Since B0 is compact, B¢ is a closed map. In order to show that Bg maps NU(6)

homeomorphically to a closed subset of BX \ (X U{y}), we must verify the following:

1. Bg[BO]\{y} = BgINU(0)]
2. BglU(0)] C {»}

3. Bglnu(e) is one-to-one

If 1. holds, NU(6) is mapped onto a closed subset of X \ (X U{y}). If 1. and 2. hold,
then NU () is a full preimage. Since Bg is a closed continuous map by 1.2.6, Bg|yu (g)
is a closed continuous map. Therefore if 3. holds, Bg|yy (6) is @ homeomorphism.

1. Let g € NU(6). There is A C 6 such that |A| < 6 and A € g. Since Bg is
continuous, g(g) € clgy g[A]. Hence, g(¢q) # y. Let z € Bg[BO]\ {y}. Let U be an open
neighborhood of z such that y ¢ clgy U. Since B¢ is continuous, A" = U N Bg[6] # 0.

LetA =g~ [A’]. Since y ¢ clgx U,

A| < 6, otherwise y € clgy A’ Cclgxy U. If g € g7 (2)
then g € clggA. Hence g € NU(0) and therefore z € Bg[NU(0)].

2. The preceding argument also shows that for any g € B0, if Bg(g) # y, then
q € NU(0). Hence Bg[U(0)] C {y}.
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3. Let g # ¢ € NU(6). There are A,B € [0]<% such that ANB =0 and g € clggA
and ¢' € clggB. By continuity, g(g) € clgy g[A] and g(q’) € clgx g[B]. But, by 2.

clgx g[A]Nclgx g[B] = 0. Hence g(q) # 8(q').
O

Corollary 3.3.5. (GCH) Let X be a locally compact metric space with no isolated points.

If py is regular, then each uniform'y € BX \ X is a non-normality point of BX \ X.

Proof. If py is regular, by lemma 3.3.3 6, = cf(*@/p,) > k. Certainly, cf(*w/p,) < 2¥,
so by GCH, 6, = k™ = 2¥ and hence 6} is regular and not a strong limit. By 3.2.1,

NU (6y) is not normal. Hence, by the theorem, y is a non-normality point of BX \ X. [

Corollary 3.3.6. (GCH) Suppose all ultrafilters are regular. Let X be a locally compact

metric space with no isolated points. Then each'y € BX \ X is a non-normality point of

BX\X.

Proof. Suppose all ultrafilters are regular. Then py, is regular for all y € BX \ X. We have
seen that if y € BX \ X is uniform then it is a non-normality point of BX \ X. Suppose
that y € BX \ X is not uniform. That is, there exists Z € y such that w(Z) < w(X). Let
Z € y be such that w(Z) is minimum. Then, there is a cover of Z consisting of sets clB
from a subcollection, 2, of A of size w(Z). Let Y = | J{clB: B € Z}. Since A, is
locally finite, Y is closed. Each B € 2 has no isolated points, so Y has no isolated points.
Also, y € clﬁ x Y. Since X is normal and Y is closed, Y is C*-embedded in X. Therefore,
BY = clgx Y and y|y is uniform on Y. So, by the theorem, y is a non-normality point of

the set clgy ¥\ Y and hence is a non-normality point of BX \ X.
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Chapter 4

Open questions

4.1 Coarser connected topologies

We know that a metric space has a coarser connected Hausdorff topology if and only if
it is not compact [11]. We also know that if a metric space has weight > ¢ then it has a
coarser connected metric topology if and only if it is not compact 2.3.8. There are still
open questions about coarser connected metrizable topologies of spaces with smaller

weight.

Question 4.1.1. Which non-compact metric spaces have coarser connected metrizable

topologies?
Druzhinina [4] asks the following question.

Question 4.1.2. Let X be a dense Gg-subset of a connected metrizable space. Does X

have a coarser connected metrizable topology?

Fleissner, Porter and Roitman, in [7] and [8], investigated coarser connected topolo-
gies on ordinal spaces. They characterized all ordinal spaces that have a coarser con-
nected Hausdorff topology. An ordinal 6 has a ‘minimal decomposition’ of the form

o+ B where a < 2Bl if and only if 6 has a coarser connected Hausdorff topology.
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From [21], no ordinal has a coarser connected regular topology. Urysohn is a
separation property stronger than Hausdorff and weaker than regular. If an ordinal has a
coarser connected Urysohn topology, then it has cofinality X [8]. The following is an

open problem:

Question 4.1.3. Which ordinals of countable cofinality have coarser connected Urysohn

topologies?

4.2 Non-normality points

The special m-base for the metric space X was important in the proof of Theorem 3.3.4.
In particular, since X was locally compact, every member, B, of the m-base had weight
X. It seems similar techniques can be applied to a metric space that is not necessarily
locally compact, but has a homogeneous 7-base. We mean by homogeneous that each
member of the 7-base has the same weight or even if every pair of comparable members
of the m-base have the same weight. More generally, we would like to know if the

following is true.

Question 4.2.1. Under GCH, is every y € BX \ X a non-normality point of BX \ X, for

a metric space X without isolated points?

The following are technical questions which would help to answer the above general

question.

Question 4.2.2. Can there be a cardinal x and an ultrafilter p on D(k) such that

cf(w®/p) is uncountable and weakly compact?

For more information about the above questions see the following paper by Jin and

Shelah [13].
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Question 4.2.3. Let X be a metric space, or more generally, any completely regular
space. Let y be a z-ultrafilter on X. Is there Z; € y such that y relative to Zj is a remote

point? In other words, is there Zy € y such that for all Z € y, intz,(ZNZp) # 0?
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