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Abstract

We investigate two topics, coarser connected topologies and non-normality points.

The motivating question in the first topic is:

Question 0.0.1. When does a space have a coarser connected topology with a nice

topological property?

We will discuss some results when the property is Hausdorff and prove that if X is

a non-compact metric space that has weight at least c, then it has a coarser connected

metrizable topology.

The second topic is concerned with the following question:

Question 0.0.2. When is a point y ∈ βX \X a non-normality point of βX \X?

We will discuss the question in the case that X is a discrete space and then when

X is a metric space without isolated points. We show that under certain set-theoretic

conditions, if X is a locally compact metric space without isolated points then every

y ∈ βX \X a non-normality point of βX \X .
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Chapter 1

Background and preliminaries

1.1 Outline

This chapter contains a development of the basic notions needed for the two topics

of this dissertation. In Section 1.3, we introduce set ultrafilters, open ultrafilters and

z-ultrafilters and discuss related terms. As with many results in general topology, the

theorems in Chapter 3 contain set-theoretic assumptions. We explain the set-theoretic

statements in Section 1.4 and talk about the consequences of including such assumptions

in the hypotheses of theorems.

We start Chapter 2 with some history on the topic of coarser connected topologies

(Section 2.1) and some examples illustrating the techniques for defining coarser con-

nected topologies (Section 2.2). In Section 2.3 we present the main theorem, that any

non-compact metric space with weight > c has a coarser connected metrizable topology

(Theorem 2.3.8).

We define non-normality points and butterfly points in Section 3.1 and present some

background on the study of such points. We discuss the study of non-normality points

in the Stone-Cech compactification of discrete spaces (Section 3.2) and then look at

non-normality points in the Stone-Cech compactification of metric spaces (Section 3.3).
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1.2 Topological terms

Nonstandard terms will be defined as needed. Other terms and notation will be consistent

with Engelking [5] and Jech [12].

For set inclusion we write ⊂ for ⊆. We designate the Greek letters τ and σ for

topologies and µ,ν and ρ for metrics. We write (X ,τ) for a topological space X with

topology τ . If X is a metric space and the topology τ is generated by the metric µ , we

write (X ,τ,µ). If (X ,τ) is a space and Y ⊂ X then we write τ|Y for {U ∩Y : U ∈ τ},

the topology on Y as a subspace of X . Let σ and τ be topologies on a space X . We say

that σ is coarser than τ and that τ is finer than σ if σ ⊂ τ .

The following notions will be used in Chapter 2.

Definition 1.2.1. A space (X ,τ) is minimal Hausdorff if there is no Hausdorff topol-

ogy, σ on X coarser than τ .

Proposition 1.2.2. If a Hausdorff space X is compact then it is minimal Hausdorff.

The following are definitions of cardinal function for a space (X ,τ): density, d(X),

extent, e(X) and weight, w(X).

d(X) = inf{|D| : D is dense in X}

e(X) = sup{|C| : C is closed discrete in X}

w(X) = inf{|B| : B is a base for τ}

Proposition 1.2.3. If X is a metric space then d(X) = e(X) = w(X).

We now introduce some notation and a technical lemma that will be useful for

Chapter 3.

Definition 1.2.4. Suppose that Y is a subspace of X . We say that Y is C∗-embedded in

X if every bounded continuous real valued function on Y can be extended to a continuous

function on X .
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Definition 1.2.5. A discrete subset D of a space X is called strongly discrete if there is

a pairwise disjoint collection of open subsets of X separating the points of D.

For a collection U of subsets of a space X we write U ∗ =
⋃

U . We say a collection

of subsets, V , densely refines a collection U if clX(V ∗) = clX(U ∗) and for all V ∈ V

there is U ∈U such that V ⊂U .

Lemma 1.2.6. Let X = X1∪X2 where X1∩X2 = /0, and let f : X → Y be a closed map.

If f←[ f [X1]] = X1, (we say X1 is a full preimage) then f |X1 is a closed map.

Proof. Let H ⊂ X1 be closed in X1. There exists H ′ ⊂ X closed in X such that H =

H ′∩X1. Since f is closed, f [H ′] is a closed subset of Y . So, to show that f [H] is closed

in f [X1] we argue that f [H] = f [H ′]∩ f [X1]. First, f [H] = f [H ′∩X1] ⊂ f [H ′]∩ f [X1].

For the other direction, let y ∈ f [H ′]∩ f [X1]. Since y ∈ f [H ′], there is x ∈ H ′ such that

f (x) = y. Since y ∈ f [X1] and f←[ f [X1]] = X1, f−1(y) ⊂ X1. Hence x ∈ X1∩H ′ = H

and therefore y ∈ f [H].

1.3 Filters

We introduce some basic concepts associated with filters to be used when discussing

neighborhood bases in Chapter 2 and points in the Stone Cech compactification in

Chapter 3.

Definition 1.3.1. An filter U on a set A is a collection of subsets of A that satisfies

1. /0 /∈U

2. U ∈U and U ⊂V then V ∈U

3. if U,V ∈U then there is W ∈U such that W ⊂U ∩V
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A filter U on A is an ultrafilter if it is maximal. In other words, for every filter

V on A such that U ⊂ V it must be that U = V . Equivalently, a filter U on A is an

ultrafilter if for all U ⊂ A either U ∈U or A\U ∈U .

If the set A has no topology, we refer to an ultrafilter on A as a set-ultrafilter. Suppose

that the set A does have a topology, τ . A zero-set (z-set) is a set Z ⊂ A for which

there exists a continuous function f : A→R such that Z = f←(0) = {a ∈ A : f (a) = 0}.

Z-sets are closed and in a metric space, all closed sets are z-sets. Let Z be the collection

of zero-sets in A.

Definition 1.3.2. An open filter (z-filter) U on a set A is a subset of τ (a subset of Z )

that satisfies

1. /0 /∈U

2. if V ∈ τ (if V ∈Z ), U ∈U and U ⊂V then V ∈U

3. if U,V ∈U then there is W ∈U such that W ⊂U ∩V

An open filter (z-filter) U on A is an open ultrafilter (z-ultrafilter) if for every

open filter (z-filter) V on A such that U ⊂ V it must be that U = V . Equivalently,

U ∈ τ (if U ∈ Z ) then either U ∈ U or there is V ∈ τ ∩U (V ∈ Z ∩U ) such that

V ⊂ A\U .

The collection N of open neighborhoods of a point x in a topological space X is an

open filter. However, N is usually not an open ultrafilter. For example in R, the open

set (0,1) is not a neighborhood of 0 and there is no open neighborhood of zero disjoint

from (0,1).

A filter U is called fixed if the set of convergence points,
⋂
{clU : U ∈U }, is not

empty. A filter U is called free if
⋂
{clU : U ∈U } is empty.
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The collection of set-ultrafilters on a topological space gives no information (other

than cardinality) about the structure of the space. On the other hand, the z-sets and

z-ultrafilters can give information about the topological structure of a space X . For

example, one of the several constructions of the Stone Cech compactification, βX , is

developed using z-ultrafilters [[10], Ch. 6].

1.4 GCH and regular ultrafilters

The hypotheses of Theorem 3.3.4 and Corollary 3.3.6 contain set-theoretic assumptions

that we discuss here. The generalized continuum hypothesis (GCH) is the statement:

For all cardinals κ, 2κ = κ
+

GCH is a generalization of Cantor’s continuum hypothesis (CH) which states that

there is no set whose cardinality lies strictly between that of the natural numbers and

that of the real numbers. Symbolically, CH is the statement:

2ℵ0 = ℵ1

Gödel showed that GCH is consistent with the axioms of Zermelo and Frankel

(ZF) which, together with the axiom of choice (AC), form the foundation for most of

mathematics. In other words, it is safe to assume GCH is true. Topologists often aim to

prove topological statements using only ZF and AC (abbreviated ZFC). A common first

step towards proving a theorem in ZFC is to assume an extra consistent axiom (such as

CH or GCH) to prove the statement. There is, however, no guarantee that the theorem
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one is trying to prove is not itself independent of ZFC. In this case, one may investigate

the truth of the statement under different set-theoretic assumptions.

In Chapter 3, we will define regular ultrafilter, which is a special type of set-

ultrafilter. Donder [3] showed that the assumption that all set-ultrafilters are regular is

consistent with ZFC. In particular, assuming V = L, all set-ultrafilters are regular. To

understand the strength of assuming all set-ultrafilters are regular, it is helpful to note

that the existence of a non-regular set-ultrafilter is actually a hidden large cardinal axiom.

A cardinal κ is measurable iff there is a uniform κ-complete ultafilter q on κ . As we will

see later, κ-complete ultrafilters are non-regular. So, the assumption that all ultrafilters

are regular implies there are no measurable cardinals.

The existence of measurable cardinals makes the statement of some theorems in

general topology more complicated. For example, below are two ways of expressing a

theorem of Mrowka.

Theorem 1.4.1. (No measurable cardinals) Every regular paracompact space is real-

compact.

Theorem 1.4.2. (ZFC) Every regular, paracompact space whose cardinality is less than

the least measurable cardinal is realcompact.
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Chapter 2

Coarser connected topologies

2.1 Introduction

The general goal in this area is to find for a topological space (X ,τ), a coarser topology

σ ⊂ τ such that (X ,σ) is connected. The coarsest topology on a set X is the indiscrete

topology: {X , /0}, which is always connected. However, the indiscrete topology is not

even Hausdorff if X has more than one point. Therefore finding a coarser connected

topology is only interesting when (X ,σ) is required to have other nice properties; for

example Hausdorff, regular, collectionwise normal, metrizable. Certainly, if (X ,τ) is

connected then it has a coarser connected topology, namely τ itself. Since compact

spaces are minimal Hausdorff, only non-compact disconnected spaces can have strictly

coarser connected Hausdorff topologies.

The study of coarser connected topologies was started by Tkacenko, Tkachuk, and

Uspenskij in [21]. They developed some necessary and sufficient conditions for a

topological space to have coarser connected Hausdorff or regular topologies. Continuing

the develpment, Gruenhage, Tkachuk, Wilson showed that a metric space, X , has a

coarser connected Hausdorff topology if and only if X is not compact [[11], Theorem

2.8].
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We mentioned before that the collection of neighborhoods of a point x in a space X

is a fixed open filter. Often, to define a topology on a space X , one describes the open

neighborhood filter of each point x ∈ X . Likewise, to define a coarser topology, one

can define coarser neighborhood filters of points of X . If there is a free open filter U

on the space X , it can be used to define a coarser neighborhood filter of a point, x ∈ X :

let N ′ = {U ∪N : U ∈ U ,N ∈N } where N is the collection of neighborhoods of

x. Notice N ′ ( N . Informally, in the new topology, the point x is closer to the sets

U ∈U .

For example in the disconnected subset of the real line X = (0,1)∪ [2,3], the col-

lection {(r,1) : r ∈ [0,1)} is free open filter. Define a new topology for X by defining a

coarser neighborhood base of the point 2 that consist of sets of the form (r,1)∪ [2,2+ r).

This coarser topology makes X homeomorphic to a single interval, and is hence Haus-

dorff and connected.

When a space has a large enough closed discrete set, there is a large number of free

open filters. Therefore, one can define coarser neighborhood bases of many points in the

space. For example, from [[7],Theorem 2]

Proposition 2.1.1. Let K be Hausdorff and X = K⊕D where D is discrete. If w(K) ≤ 2|D|

then X has a coarser connected Hausdorff topology.

If a space, X , has a closed discrete set of size e(X) we say the extent of X is attained.

A space with extent attained has a large closed discrete set and in some cases this is

enough to define a coarser connected topology. For example, Druzhinina, [[4], Theorem

3.3] and Fleissner, Porter, Roitman [[8], Theorem 2.5] showed that a metric space, X ,

with e(X) attained and w(X)≥ c has a coarser connected metrizable topology.

When a space does not have attained extent, it may be more difficult to define a

coarser connected topology. However, Fleissner, Porter and Roitman showed that any
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zero-dimensional metric space, X , with weight greater than or equal to c has a coarser

connected metrizable topology if and only if it is not compact [[8], Theorem 3.4]. On

the other hand, if w(X) < c, X does not necessarily have a coarser connected topology.

For example, the disjoint union of countably many Cantor sets is a separable, metrizable,

disconnected space with no coarser connected regular topology [[21], Example 2.18].

2.2 Tools for defining coarser topologies

Given an appropriate connected space (Y,υ) and a set bijection, φ , from Y onto a

subset of X , one can attempt to create a topology σ on X that make the maps id and φ

continuous.
(X ,τ) (Y,υ)

(X ,σ )

φ
id

If the identity map from (X ,τ) to (X ,σ) is continuous, then σ is coarser than τ . If φ

is continuous, then φ [Y ] is connected. So, if φ [Y ] is either dense in (X ,τ) or intersects

each component of (X ,τ), then (X ,σ) is connected. Therefore, the task of defining a

coarser connected topology for a space (X ,τ) becomes a search for suitable connected

space (Y,υ) and a map φ . Of course, both must be selected carefully to ensure that σ

has a nice property like Hausdorff or metrizability. The hedgehog space and Bing’s

Tripod space are useful connected spaces for this purpose.

Example 2.2.1 ([5], pg. 381). The point set of Bing’s space is

Q ∪ {q+ r
√

2 : q ∈Q,r ∈Q+}

16



For q,r,ε ∈ R, let I(q,r,ε) = (q+ r
√

2− ε,q+ r
√

2+ ε)∩Q. An open neighborhood

of q ∈Q, is (q+ ε,q− ε)∩Q and an open neighborhood of q+ r
√

2 is

{q+ r
√

2}∪ I(q,r,ε)∪ I(q,−r,ε).

Bing’s space is a countable connected Hausdorff space. The natural numbers N⊂Q are

a countable strongly discrete subset of B.

Example 2.2.2 ([5], pg. 314). Let κ be a cardinal number. The point set of hedgehog

space of spininess κ is the set, Zκ , defined by identifying all points (0,α) in [0,1]×κ .

The metric µ on Z is defined

µ((x,α),(y,β )) =

 |x− y| if α = β

|x|+ |y| if α 6= β

The space Zκ is a connected metric space with density max{ω,κ}. For κ ≥ ω , the

extent of Zκ is attained by the closed discrete set {(1,α) : α ∈ κ}.

The following proposition gives two examples of defining a coarser connected

topology via a bijection from Bing’s space.

Proposition 2.2.3. The following disconnected subsets of the real line have coarser

connected Hausdorff topologies.

1. X =
⋃
{[2n,2n+1] : n ∈ ω}

2. X =
⋃
{Cn : n ∈ ω} where Cn is a Cantor set in [2n,2n+1] such that 2n ∈ Cn.

Proof. Let B be Bing’s space and let D = {2n : n ∈ ω} ⊂ X . In each case, X has the

topology generated by the Euclidean metric, d with ε balls, Bε(x). For x 6= y ∈ X , let

ε(x,y) = min({d(x,D),d(y,D),d(x,y)}\{0})/2.

1. Let φ be a bijection from B to D and let σ be the topology coarser than the

Euclidean topology on X that makes φ continuous. (X ,σ) is connected since
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φ [B] intersects every component of X . We can also show that σ is Hausdorff. Let

x 6= y ∈ X and let ε = ε(x,y). Let Ux and Uy be separating open neighborhoods of

φ−1(x) and φ−1(y) in B. For p = x,y, if φ−1(p) is not defined, let Up = /0. Then

U = Bε(x)∪
⋃
{Bε(z) : φ−1(z) ∈Ux} and V = Bε(y)∪

⋃
{Bε(z) : φ−1(z) ∈Uy}

are σ -open sets separating x and y.

2. Let C be a countable strongly discrete subset of B and let φ be a bijection that takes

B\C to D and C to a countable dense subset of X \D. Let V = {Vc : c ∈C} be a

pairwise disjoint open collection separating C. Let x 6= y ∈ X and let ε = ε(x,y).

Let Ux and Uy be as in 1.with the extra condition that |{c ∈C : c ∈Up}| ≤ 1. That

is, Up∩C = /0 if p /∈C, otherwise |Up∩C|= 1. For p = x,y we inductively define

a σ neighborhood of p.

Wp,0 = Bε(p)∪
⋃
{Bε(z) : φ

−1(z) ∈Up}

Wp,n =
⋃
{Bε : φ

−1(z) ∈Uc,c ∈ φ
←[Bε(z′)],z′ ∈Wp,n−1∩D}

Let U =
⋃
{Wx,n : n ∈ ω} and V =

⋃
{Wy,n : n ∈ ω}. Then, U and V are σ -open

neighborhoods separating x and y in X .

The strongly discrete subsets of D of X and C of B play an important role in the

defining of coarser neighborhoods of points x in X . New neighborhoods are a union of

intervals around points of a filter set on D. The filter is determined by a neighborhood

of φ−1(x) in B. In the second example of Proposition 2.2.3, more and more points of

X \D get picked up in the induction, but Hausdorff is maintained since these points are

associated with the discrete set C, subsets of which are separated by open sets in B.
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Note, though, that the coarser topologies above are not metrizable. As mentioned

before, X =
⋃
{Cn : n ∈ ω} has no coarser connected metrizable topology.

2.3 Coarser connected metric topology

This bulk of this section comes from [23], submitted.

Lemma 2.3.1. Suppose that Y is a subset of a metric space (X ,τ,µ), e(clY ) > c is

attained by C ⊂ int(Y ) and diamµ(clY) = ε < 1/2. Then there is a coarser topology τ ′

on X with corresponding metric µ ′ such that

i) τ ′
∣∣
clY is connected,

ii) µ
∣∣
(X\Y )2 = µ ′

∣∣
(X\Y )2 and

iii) µ ′ ≤ µ +2ε .

Proof. Let e(clY ) = κ . So |C|= κ , C is closed discrete in clτ Y and therefore is closed

discrete in X . By replacing C with a subset, we may assume that |Y \C| = κ . Let

U = {Uc ∈ τ : c ∈ C} be a discrete collection such that c ∈ Uc ⊂ cl(Uc) ⊂ Y . For

each c ∈ C define a continuous function fc : X → [0,ε] such that fc(c) = {ε} and

fc[X \Uc] = {0}. For each x,y ∈ X define µ
∗(x,y) = Σc∈C| fc(x)− fc(y)|+ µ(x,y). It is

easy to check that since C is closed discrete in X , µ∗ generates τ , µ∗
∣∣
(X\Y )2 = µ

∣∣
(X\Y )2

and µ∗ ≤ µ +2ε .

Let (Z,ρ) be a hedgehog space with spininess κ , let T = {(α,1) : α ∈ κ} and let

S = Z \T . Let D ⊂ Y \C be a dense subset of Y \C of size d(Y ) = e(Y ) = κ . Define

a one-to-one map f : Z→ clY such that f [T ] = D and f [S] = C. For x,y ∈ im( f ), let

λ (x,y) = min{µ∗(x,y),ρ( f−1(x), f−1(y))}. For all other x,y∈X , let λ (x,y) = µ∗(x,y).
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Define a metric µ ′ on X as follows:

µ
′(x,y) = inf{λ (x,x1)+λ (x1,x2)+ · · ·+λ (xn−1,xn−2)+λ (xn,y)}

where x1, . . . ,xn ranges over all finite sequences (including the empty sequence) of

distinct elements of X . Since ρ and µ∗ satisfy the triangle inequality, in defining µ ′ it

suffices to consider sums of the form

µ
∗(x,x1)+ρ( f−1(x1), f−1(x2))+ · · ·+ µ

∗(xn−1,xn−2)

+ρ( f−1(xn), f−1(y))
(2.1)

where the sum may start or end with either a ρ term or µ∗term and the terms of the

sum alternate between ρ and µ∗. Note also that since x1, . . .xn are in the image of f ,

x1, . . .xn ∈ D∪C.

Since µ ′ is an infimum over all finite sequences in X , it satisfies the triangle inequality.

That µ ′(x,y) = µ ′(y,x) and µ ′(x,x) = 0 for all x,y ∈ X is clear. It remains to show that

µ ′(x,y) = 0 implies that x = y.

Claim (1). Suppose that for a particular sum in the form of (2.1), λ (xi,xi+1) < ε for each

i ∈ {m,m + 1, . . . ,n−1}. Then, if λ (xm,xm+1) = ρ( f−1(xm), f−1(xm+1)) and xm ∈ D,

then xm+i ∈C for all i odd and xm+i ∈ D for all i even in {0,1, . . . ,n−m}.

Proof. Suppose that λ (xi,xi+1) < ε for each i ∈ {m,m + 1, . . . ,n−1}, λ (xm,xm+1) =

ρ( f−1(xm), f−1(xm+1)) and xm ∈ D. Fix i even such that 0 ≤ i < n−m, and sup-

pose that xm+i ∈ D. Since xm+i ∈ D, f−1(xm+i) ∈ T . But since the ρ and µ terms of

the sum alternate, λ (xm+i,xm+i+1) = ρ( f−1(xm+i), f−1(xm+i+1)) < ε < 2 and hence

f−1(xm+i+1) ∈ S. By the definition of f , xm+i+1 ∈C.
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Now, since λ (xm+i+1,xm+i+2) = µ∗(xm+i+1,xm+i+2) < ε and xm+i+1 ∈C, it must

be that xm+i+2 ∈ D. So, since xm ∈ D, by induction, xm+i ∈C for all i odd and xm+i ∈ D

for all i even in {0,1, . . . ,n−m}.

Claim. µ ′(x,y) = 0 implies that x = y

Proof. Suppose there were x,y ∈ X such that µ ′(x,y) = 0 but x 6= y. If defined, let

x′ = f−1(x) and y′ = f−1(y). Let x1,x2, . . .xn ∈ D∪C be a sequence that yeilds an

alternating µ∗,ρ sum between x and y that is less than

δ = min{ε,µ
∗(x,C \{x}),µ

∗(y,C \{y}),ρ(x′,T \{x′}),ρ(y′,T \{y′})}.

Since C is closed discrete in X and T is closed discrete in Y , δ is a postive real number.

Case (1). The alternating sum begins and ends with µ∗ terms.

If x1 ∈C then µ∗(x,x1) ≥ µ∗(x,C \ {x}) ≥ δ , which is a contradiction. Note that

n is even. If x1 ∈ D, then since λ (xi,xi+1) < ε for each 1 ≤ i < n and λ (x1,x2) =

ρ( f−1(x1), f−1(x2)), by Claim (1), xn ∈C. Hence µ∗(xn,y)≥ µ∗(y,C\{y})≥ δ , which

is a contradiction.

Case (2). The sum begins with a µ∗ term and ends with a ρ term. (or begins with ρ ,

ends with µ∗).

If x1 ∈C then µ∗(x,x1) ≥ µ∗(x,C \ {x}) ≥ δ , which is a contradiction. Note that

n is odd. If x1 ∈ D, then since λ (xi,xi+1) < ε for each 1 ≤ i < n and λ (x1,x2) =

ρ( f−1(x1), f−1(x2)), by Claim (1), xn ∈D. Then ρ( f−1(xn),y′)≥ ρ(y′,T \{y′}), which

is a contradiction.

Case (3). The sum begins and ends with ρ terms.

Suppose x1 ∈ D. Then ρ(x′,x1)≥ ρ(x′,T \{x′})≥ δ , which is a contradiction.
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Suppose x1 ∈C. Since λ (x1,x2) = µ∗(x1,x2) < ε , x2 ∈D. Note that n is even. Then

since λ (xi,xi+1) < ε for each 2≤ i < n and λ (x2,x3) = ρ( f−1(x2), f−1(x3)), by Claim

(1), xn ∈ D. Then ρ( f−1(xn),y′)≥ ρ(y′,T \{y′})≥ δ , which is a contradiction.

So, µ ′ defines a metric on X . Let τ ′ be the topology on X generated by µ ′. Since µ∗

generates τ and µ ′ ≤ µ∗, τ ′ is coarser than τ . In order to show that τ ′
∣∣
clY is connected,

we argue that (D∪C,τ ′|D∪C) is continuous image of the connected space Z. Then, since

clτ ′Y = clτ Y = clτ(D∪C), we will have that (clY,τ ′
∣∣
clY ) is connected. To do this, we

show that µ ′ makes the map f continuous.

Claim. The map f : (Z,ρ)→ (Y,µ ′) is continuous.

Proof. Let x ∈ Y , δ > 0 and let U = Bµ ′(x,δ ) be the µ ′-ball of radius δ about x.

Suppose z ∈ f←[U ]. Then µ ′( f (z),x) = δ ′ < δ . Let ξ = δ−δ ′

3 . Suppose z′ ∈ Z such that

ρ(z,z′) < ξ . We wish to show that µ ′( f (z′),x) < δ so that Bρ(z,ξ ) ⊂ f←[U ]. Since

µ ′(x, f (z)) = δ ′, there is a sequence x1,x2, . . . ,xn ∈ Y such that

λ (x,x1)+λ (x1,x2)+ · · ·+λ (xn, f (z)) < δ
′+ξ

Adding the term ρ(z,z′) = ρ( f−1( f (z)), f−1( f (z′))) to this sum

λ (x,x1)+λ (x1,x2)+ · · ·+λ (xn, f (z))+ρ(z,z′) < δ
′+2ξ < δ

illustrates that the sequence x1,x2, . . . ,xn, f (z) yields a sum between x and f (z′) that is

less than δ . Hence, µ ′(x, f (z′)) < δ as desired. So, the map f is continuous and the

claim is proven.

Therefore, τ ′
∣∣
clY is connected. Since µ ′ ≤ µ∗ and µ∗ ≤ µ + 2ε , we have that

µ ′ ≤ µ +2ε .
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We now show that µ
∣∣
(X\Y )2 = µ ′

∣∣
(X\Y )2 . Let x,y /∈ Y . We verify that µ ′(x,y) =

µ(x,y). By definition, µ ′(x,y)≤ µ∗(x,y) = µ(x,y) so we need only show that

µ ′(x,y)≥ µ∗(x,y). Suppose for a contradiction that µ ′(x,y) < µ∗(x,y). In other words,

there exist x1,x2, . . . ,xn ∈ D∪C such that

µ
∗(x,x1)+ρ( f−1(x1), f−1(x2))+ · · ·+ µ

∗(xn,y) < µ
∗(x,y)

Since x,y /∈ Y , f−1(x) and f−1(y) are not defined. Hence the sum above must start and

end with µ∗ terms implying n is even. Also, since x,y /∈ Y , µ∗(x,y) = µ(x,y). Now,

since diamµ(Y ) = ε , for any z1,z2 ∈ Y ,

µ(x,y)≤ µ(x,z1)+ ε + µ(z2,y)

Hence,

µ(x,y)≤ µ(x,Y )+ ε + µ(y,Y )

Combining these inequalities we have

µ
∗(x,x1)+ρ( f−1(x1), f−1(x2))+ · · ·+ µ

∗(xn,y) <

µ(x,Y )+ ε + µ(y,Y )
(2.2)

Now, since x,y /∈ Y and x1,xn ∈C∪D⊂ Y , µ∗(x,x1)≥ µ(x,x1)≥ µ(x,Y ) and

µ∗(xn,y)≥ µ(xn,y)≥ µ(y,Y ). Combining this with (2.2) gives:

ρ( f−1(x1), f−1(x2))+ µ
∗(x2,x3)+ · · ·+ρ( f−1(xn−2), f−1(xn−1)) < ε

µ
∗(x,x1) < µ(x,Y )+ ε (2.3)
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and

µ
∗(xn,y) < µ(y,Y )+ ε (2.4)

Suppose x1 ∈ C, then µ∗(x,x1) = µ(x,x1)+ ε ≥ µ(x,Y )+ ε contradicting (2.3). So,

x1 /∈C. Similarly, xn ∈C contradicts (2.4). So, xn /∈C. So, we have shown that x1,xn ∈D.

Now, λ (xi,xi +1) < ε for each 1≤ i < n and λ (x1,x2) = ρ( f−1(x1), f−1(x2)). So, since

x1 ∈ D and n is even, by Claim 1, xn ∈C, which is a contradiction. So,

µ ′(x,y) = µ∗(x,y) = µ(x,y), and since x,y /∈ Y , we have shown µ
∣∣
(X\Y )2 = µ ′

∣∣
(X\Y )2 .

The following lemma contains Lemma 1 from [6] and Theorem 3.2 from [8].

Lemma 2.3.2. Let (X ,τ) be a metric space with metric µ in which e(X) = κ is not

attained. Let K be the set of points x of X such that every neighborhood of x has extent

κ . Then

(1) κ is a singular cardinal of cofinality ω .

(2) K is a compact, nowhere dense subset of X.

(3) If U is an open subset of X such that clτ U ∩K = /0, then e(U) < κ .

(4) K is nonempty.

Recall Konig’s Lemma, cf(c) > ω . So, if (X ,τ) is a metric space and e(X) = c, by

Lemma 2.3.2 the extent of X must be attained.

Definition 2.3.3 ([8], proof of Theorem 3.2). An open set V is called e−homogeneous

if for every nonempty open subset V ′ of V , e(V ′) = e(V ). Also note that any nonempty

open subset U of a metric space has a nonempty open e-homogeneous set V .

Remark 2.3.4. If the extent of an open subset, U , of a metric space is not attained,

then as a consequence of Lemma 2.3.2 (2) and (4), there is V ⊂U with e(V ) < e(U).

Therefore, if U is an e-homogeneous subset of a metric space, e(U) is attained.
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Lemma 2.3.5. Let U be an e-homogeneous subset of a metric space (X ,τ,µ) and

e(U) > ℵ0. Then e(clτ U) is attained by some closed discrete C ⊂U.

Proof. Since U is e-homogeneous, e(U) = λ is attained. Suppose that cf(λ ) > ℵ0.

Then, e(U) is attained by some closed discrete (in U) subset C′ ⊂U of cardinality λ .

However, it may not be the case that C′ is closed and discrete in clτU . Let U be a

discrete collection of open subsets of V that witnesses that C′ is closed discrete. Let

L = clτ(
⋃

U )\
⋃

V∈U
clτ V . Note that L⊂ clτ U \U . Let Cn = {c ∈C′ : µ(c,L)≥ 1/n}

and note that
⋃

Cn = C′. Since cf(λ ) > ℵ0 there is n ∈ ω so that |Cn|= λ . Set C = Cn.

By construction, C is closed and clτ C∩L = /0, so C is closed discrete in clτ U , C ⊂U

and |C|= λ = e(clτ U) as desired. Now suppose that cf(λ ) = ℵ0. Let λn be such that

λ = supn∈ω λn. Let W be an open subset of U such that clτ W ⊂U . Note that since

U is e-homogeneous, e(W ) = e(clτ W ) = e(U) = λ . Since e(clτ W ) = λ > ℵ0 there is

C′ ⊂ clτ W ⊂U a countable closed discrete set in clτ W , hence closed discrete in U and

clτ U . Let U = {Un : n ∈ω} be a discrete collection of open subsets of U that witnesses

C′ is discrete in U . For each n ∈ ω , e(clτ Un) = λ > λn, so there is Cn ⊂ clτ Un a closed

discrete subset of cardinality λn. Let C =
⋃

Cn. Since Cn is closed discrete in clτ Un, it

is closed discrete in clτ U . Moreover, since U is discrete, C is closed discrete in clτ U .

Finally, |C|= λ = e(clτ U) by construction and since Un ⊂U for each n, C ⊂U .

Lemma 2.3.6. Let (X ,τ) be a metric space with metric µ in which e(X) = κ is not

attained. Let K be the set of points x of X such that every neighborhood of x has extent

κ . Then, for every open set U meeting K and every θ < κ there is an open subset V of

U such that clτ V ⊂U, e(clτ V ) > θ is attained by C ⊂V and clτ V ∩K = /0.

Proof. Let V be a maximal pairwise disjoint collection of e-homogeneous subsets V of

U \K such that clτ V ∩K = /0. Note that clτ V ∩K = /0 implies that e(V ) < κ , by Lemma

0.2 (3). Suppose that for some V ∈V , e(clτ V ) = e(V ) > θ . By Lemma 2.3.5, e(clτ V ) is
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attained by some C⊂V and we are done. Suppose on the other hand that e(V ′)≤ θ for all

V ′ ∈ V . Note that
⋃

V is dense in U since V is maximal, K is nowhere dense and every

open subset of X has an e-homogeneous subset. Since X is metric, e(W ) = d(W ) for any

open subset W . Suppose that |V |= λ < κ . Then, d(U) = d(
⋃

V )≤ λ ·θ < κ which is

a contradiction. So, |V |= κ . Since µ(V ′,K) > 0 for all V ′ ∈ V and cf(κ) = ω , there is

n ∈ω such that |{V ′ ∈ V : µ(K,V ′) > 1/n}|> θ . Set V ′ = {V ′ ∈ V : µ(K,V ′) > 1/n}.

We now refine V ′ to a discrete collection of size > θ . Let L = clτ(
⋃

V ′)\
⋃
V ′

clτ V and

let Lε = {x ∈U : µ(x,L) < ε}. Since
⋂
ε>0

Lε = L and V ′∩L = /0 for all V ′ ∈ V ′, there is

m ∈ ω such that |{V ′ ∈ V ′ : V ′ \L1/m 6= /0}|> θ . Set V ′′ = {V ′ ∈ V ′ : V ′ \L1/m 6= /0}.

For each V ′ ∈ V ′′, let W (V ′) = V ′ \L1/m. The collection W = {W (V ′) : V ′ ∈ V ′} by

construction is discrete and has cardinality > θ . Set V =
⋃

W . For each W ∈W , choose

xW ∈W . Let C = {xW : W ∈W }. C is closed discrete in clτ V since W is discrete in X ,

and |C|= |W |> θ . Since e(clτ V ) = e(V )≤ sup{e(W ) : W ∈W }· |W | ≤ θ · |W |= |C|,

we have that e(clτ V ) > θ is attained by C ⊂V .

Lemma 2.3.7. Let (Z,τ) be a compact metric space and let U ∈ [τ]<ω be a pairwise

disjoint collection such that
⋃

U is dense in X. If ε > 0 and V is the collection of open

subsets of X with diameter less than ε , then there exists a pairwise disjoint V ′ ∈ [V ]<ω

such that V ′ refines U and
⋃

V ′ is dense in X.

Proof. Since V covers Z, compact, there is n ∈ ω and V1,V2, . . . ,Vn ∈ V such that

Z =
⋃

1≤i≤nVi. Define V̂1 = V1 and for 1 < i≤ n let V̂i = Vi \ cl(
⋃

1≤ j<iVj). Let

V̂ = {V̂i : 1≤ i≤ n}. Note, V̂ is pairwise disjoint and
⋃

V̂ is dense in X . Now define

V ′ = {V ∩U : V ∈ V̂ ,U ∈ U }. Since V ∩U ⊂ U for each V ∈ V̂ and U ∈ U , V ′

refines U . Since diam(V ∩U) ≤ diam(V ) ≤ Vi for some 1 ≤ i ≤ n, diam(V ′) < ε for

all V ′ ∈ V ′. Hence V ′ ⊂ V . Since V̂ is pairwise disjoint, V ′ is as well. Finally,
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⋃
V ′ =

⋃
V̂ ∩

⋃
U and therefore

⋃
V ′ is dense in Z, since

⋃
V ′ and

⋃
U are open and

dense in X .

Theorem 2.3.8. If (X ,τ,µ) is a metric space and e(X) = κ > c is not attained, then

there is σ , a topology on X coarser than τ , such that (X ,σ) is connected and metrizable.

Proof. Re-scale µ so that diamµ(X) < 1/2 by replacing it with µ

2(1+µ) . Let K be the set

of points x of X such that every neighborhood of x has extent κ . By Lemma 2.3.2, K is

compact.

Let C ∗0 = {K}. For each n ∈ ω \ {0}, define C ∗n ⊂ τ|K , a pairwise disjoint finite

collection with the following properties:

• cl(
⋃

C ∗n ) = K.

• C ∗n refines C ∗n−1

• B ∈ C ∗n implies diam(B) < 1/2n

Let n ∈ ω \{0}. Apply Lemma 2.3.7 with Z = K, τ , U = C ∗n−1 and ε = 1/2n to get

V ′, a pairwise disjoint collection of open sets with diameter less that 1/2n that refines

C ∗n−1 and whose union is dense in K. Set C ∗n = V ′.

Definition of Bi’s

For n ∈ ω enumerate the elements of C ∗n as C ∗n = {B∗i : in ≤ i < in+1} with an increasing

sequence of integers, in. For each i ∈ ω , let Li = {x ∈ X : µ(x,B∗i ) ≤ µ(x,K \B∗i )}.

Fix n ∈ ω and let Bin = Lin and for in < i < in+1, let Bi = Li \
⋃

in≤ j<i cl(B j). Note that

B∗j ⊂ B∗i implies L j ⊂ Li.

We define Cn = {Bi : in ≤ i < in+1} and verify the following.

i) For each n ∈ ω , Cn is pairwise disjoint.
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ii) For each n ∈ ω ,
⋃

Cn is dense in X .

iii) For all i ∈ ω , int(Bi)∩K 6= /0.

From the definition of Bi and Cn, i) is clear. Towards ii), let n ∈ ω and let x ∈ X .

Since
⋃

C ∗n is dense in K, µ(x,K) = µ(x,
⋃

C ∗n ). Since C ∗n is finite, there is i such

that in ≤ i < in+1 and µ(x,K) = µ(x,B∗i ). Therefore, µ(x,B∗i )≤ µ(x,K \B∗i ) and either

x ∈ cl(Bi) or x ∈ cl(
⋃

in≤ j<i B j). In either case, x ∈ cl(
⋃

Cn). For iii), note that

int(Bi)∩K = B∗i \ cl(
⋃

in≤ j<i B∗j) which is nonempty since C ∗n is pairwise disjoint.

Let Ui = {x ∈ X : µ(x,K) < 1
2i+1}.

Claim (2). For n ∈ ω, in ≤ i < in+1, diamµ(Li∩Um) < 3
2n for any m≥ n−1.

Proof. Note that if x ∈ Li, µ(x,B∗i ) ≤ µ(x,K \B∗i ) which implies µ(x,K) = µ(x,B∗i ).

Hence for in ≤ i < in+1, m≥ n−1, x,y ∈ Li∩Um and ε > 0 there exists x0,y0 ∈ B∗i such

that µ(x,x0),µ(y,y0) < 1/2m+1 + ε/2≤ 1/2n + ε/2. So,

µ(x,y)≤ µ(x,x0)+ µ(y,y0)+ µ(x0,y0)≤ 2/2n + ε +1/2n ≤ 3/2n + ε

Hence, diamµ(Li∩Um) < 3
2n .

Definition of Wi’s

We define W = {Wi : i ∈ ω}, a pairwise disjoint collection of open subsets of X such

that

i) cl(Wi)∩K = /0,

ii) e(cl(Wi)) > c is attained by Ci ⊂Wi,

iii) for in ≤ i < in+1, εi = diamµ(Wi) < 3
2n and
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iv)
⋃

W is dense in X .

Let Ŵ0 = /0. Apply Lemma 2.3.6 with θ = c and U = int(B0) = X to get an open subset

V of X such that e(clτ V ) > θ = c is attained by C0 ⊂V and clτ V ∩K = /0. Set W0 = V .

Set S0 = V . Let k0 = min{k : S0 ⊂ X \Uk} ≥ 1. By definition W0 is open, and since

clV ∩K = cl(W0)∩K = /0 i) holds. By Lemma 2.3.6, ii) holds and iii) is trivial since

diam(X)≤ 1/2.

Suppose we have defined Wi for all 0 < i < in so that i), ii), and iii) are satisfied.

Also suppose that Sm =
⋃
{Wi : i < im+1} is dense in X \ cl(Ukm−1+1) and that

km = min{k : Sm ⊂ X \Uk} ≥ m for all 0 < m < n.

Let i be such that in ≤ i < in+1. Let Ŵi = Bi \ (cl(Ukn−1+1∪Sn−1)). Since

int(Bi)∩K 6= /0 and K ⊂ X \ cl(Sn−1), int(Bi)\ cl(Sn−1) is an open set meeting K. So,

apply Lemma 2.3.6 with θ = max{e(Ŵi),c} and U = int(Bi)\ cl(Sn−1) to get an open

subset V of U such that clτ V ⊂U , e(clτ V ) > θ is attained by Ci ⊂V and clτ V ∩K = /0.

Set Wi = Ŵi∪V . By the lemma, Wi satisfies (i) (ii) for each i such that in ≤ i < in+1. Set

Sn =
⋃
{Wi : in ≤ i < in+1}∪Sn−1. Let kn = min{k : Sn ⊂ X \Uk} ≥ n. By Claim (2.3),

diam(Bi∩Un−1) < 3
2n since Bi ⊂ Li and in ≤ i < in+1. Also, Sn−1 is dense in X \Ukn−2+1.

Therefore Wi = Ŵi∪V ⊂ Bi \ cl(Sn−1)⊂ Bi∩Ukn−2+1 ⊂ Bi∩Un−1, since kn−2 ≥ n−2.

Hence diamµ(Wi) < 3
2n and iii) is satisfied.

Towards iv), since K is nowhere dense in X , we only show that
⋃

W is dense

in X \K. Let x ∈ X \K and let n ∈ ω be such that x ∈ X \ cl(Ukn−1+1). Then either

x ∈ cl(Sn−1) ⊂ cl(Sn) or x ∈ X \ cl(Ukn−1+1∪Sn−1). If x ∈ X \ cl(Ukn−1+1∪Sn−1) then

since {Bi : in≤ i < in+1} is dense in X , x∈ cl(Bi\(cl(Ukn−1+1∪Sn−1))⊂ cl(Wi)⊂ cl(Sn)

for some i. In either case x ∈ cl(Sn) . So, cl(
⋃
{Wi : i ∈ ω}) = cl(

⋃
{Sn : n ∈ ω}) ⊃

(X \ cl(Ukm+1)) for each m ∈ ω . But, X \K =
⋃

X \ cl(Ukm+1). Hence
⋃
{Wi : i ∈ ω} is

dense in X \K.
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Linking the Wi’s

Suppose that if n, i, j ∈ ω are such that in ≤ i < in+1 ≤ j < in+2 and B∗j ⊂ B∗i . Then,

Wi⊂Bi∩Un−1⊂ Li∩Un−1 and Wj ⊂B j∩Un⊂ L j∩Un⊂ Li∩Un−1. Hence by Claim (2),

x ∈Wi and y ∈Wj implies µ(x,y)≤ εi. For each j ∈ ω choose x j ∈Wj \Ci arbitrarily.

For in ≤ i < in+1, let Ji = { j : in+1 ≤ j < in+2,B∗j ⊂ B∗i }and let Xi = {x j : j ∈ Ji}.

Notice that diam(Wi∪Xi)≤ εi Ci ⊂Wi ⊂ int(Wi∪Xi) and that by the definition of B∗,⋃
i∈ω Ji = ω \{0}.

Defining the connected topology on X

We define a sequence of metrics µn on X such that ν = lim µn is a well defined metric

that generates a coarser connected topology on X . We define µn by induction. Apply

Lemma 2.3.1 with Y = W0∪X0, C = C0, ε = 3/2 and µ = µ∗ to get τ0 and µ0 such that

i) τ0
∣∣
clW0∪X0

is connected

ii) µ∗
∣∣
(X\(W0∪X0))2 = µ0

∣∣
(X\(W0∪X0))2 ,

iii) diamµ0(clW0∪X0)≤ 9/2 and

iv) µ0 ≤ µ∗+6/2.

Fix n and suppose we have for each 1≤ m < n, µm defined on X such that µm is a

metric that generates a coarser topology τm ⊂ τm−1 in which Sm is a connected subset of

X .

Set σ0 = τn−1 and ρ0 = µn−1. For in ≤ i < in+1, let j = i− in and apply Lemma 2.3.1

with X = X , C = Ci, τ = σ j, µ = ρ j, Y = Wi∪Xi and ε = εito get σ j+1 and ρ j+1 such

that

i) σ j+1
∣∣
clWi∪Xi

is connected
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ii) ρ j
∣∣
(X\(Wi∪Xi))2 = ρ j+1

∣∣
(X\(Wi∪Xi))2

iii) diamρ j+1(clWi∪Xi)≤ 3εi ≤ 9
2n and

iv) ρ j+1 ≤ ρ j +2εi ≤ ρ j + 6
2n

Let µn = ρmn and τn = σmn . As a consequence of ii) and iv), µn ≤ µ∗+ 6
2n on⋃

in≤i<in+1
Wi, µn = µn−1 on X \

⋃
in≤i<in+1

Wi and τn
∣∣
clWi∪Xi

is connected for each

in ≤ i < in+1.

Define ν(x,y) = lim µn(x,y). This map is a well defined metric since for any x,y∈ X ,

ν(x,y) = µm(x,y) for all m≥max{n : in≤ i < in+1and x∈Wi or y∈Wi}∪{0}. Let τ ′ be

the topology generated by ν . To show that τ ′ ⊂ τ we show that ν preserves convergent

µ sequences. Suppose that {xn : n ∈ω} and x are such that limi→∞ µ(x,xi) = 0. If x /∈ K

there is n,m∈ω such that x,xi ∈X \cl(Ukn+1) for all i≥m. Then, ν(x,xi) = µn(x,xi) for

all i≥m, hence limi→∞ ν(x,xi) = limi→∞ µn(x,xi) = 0, since µn preserves µ convergent

sequences. Now suppose that x ∈ K. For each n ∈ ω , there is mn such that xn ∈Umn

and since µ∗(x,xn)→ 0, mn→ ∞. If there is i ∈ ω such that xn ∈Wi then it must be that

i≥ mn since xn ∈Umn . In this case, by the consequence of ii) and iv),

ν(x,xn)≤ µ∗(x,xn)+ 6
2i ≤ µ∗(x,xn)+ 6

2mn . If x /∈Wi for all i ∈ ω then

ν(x,xn) = µ∗(x,xn). In either case ν(x,xn)≤ µ∗(x,xn)+ 6
2mn and therefore ν(x,xn)→ 0.

Notice ν

∣∣∣
Wi∪Xi

= τn

∣∣∣
Wi∪Xi

for in ≤ i < in+1. Hence Wi∪Xi is connected in τ ′. Notice

that Xi∩Wj 6= /0 for each j ∈ Ji so that Wi∪
⋃

j∈Xi
Wj is connected as well. This means

that Wi is ’linked’ to W0 for every 1 = i1 ≤ i < i2 and since
⋃

i∈ω Ji = ω \{0}, any later

Wi is ’linked’ to W0. Therefore any τ ′-clopen subset, Z, of X would have to be empty, or

contain Wi for all i. Since
⋃

i∈ω Wi is dense in X , Z is trivial. Hence τ ′ is connected.
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Chapter 3

Non-normality points

3.1 Introduction

Definition 3.1.1. 1. A point y in a space X is called a non-normality point of X if

X \{y} is not normal.

2. A point y in a space X is called a butterfly point of X if there are closed subsets

H,K of X such that {y}= cl(H \{y})∩ cl(K \{y}).

If a point y is a non-normality point of a normal space X , then a pair of disjoint

closed sets H,K that cannot be separated in X \ {y} actually demonstrate that y is a

butterfly point of X . It is not always the case, however, that a butterfly point in a normal

space is a non-normality point. For example, any point x in R, the real line, is a butterfly

point via the sets [x,x+1] and [x−1,x]. However, x is not a non-normality point of R

since R is hereditarily normal.

One may ask the following questions for a topological space X .

Question 3.1.2. Which points y∈ βX \X are non-normality (butterfly) points of βX \X .

Question 3.1.3. Under what set-theoretic conditions are all points y ∈ βX \X non-

normality (butterfly) points of βX \X .
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Lemma 3.1.4. Let y be an element of a normal space X and suppose X \ {y} is C∗-

embedded in X. If y is a butterfly point of X then y is a non-normality point of X.

Proof. Let y be a butterfly point of X such that X \{y} is C∗-embedded in X . Suppose

that X \ {y} is normal. Since y is a butterfly point, there are closed sets H and K

in X such that {y} = cl(H \ {y})∩ cl(K \ {y}). Let H ′ = H \ {y} and K′ = K \ {y}.

Since X \ {y} is normal and H ′ and K′ are closed in X \ {y}, there is a continuous

function f : X \{y}→ [0,1] such that H ′ = f←[{1}] and K′ = f←[{0}]. Since X \{y}

is C∗-embedded in X , there is a continuous extension, g, of f to X . However, since

y∈ cl(H \{y})∩cl(K \{y}) it must be that 0 = g(y) = 1, a contradiction. Hence X \{y}

is not normal and therefore y is a non-normality point of X .

As the next example shows, a butterfly point of βX \X is not necessarily a non-

normality point of βX \X .

Example 3.1.5. Let X = (ω + 1)×ω1. Then βX = (ω + 1)× (ω1 + 1). Notice that

βX \X is a convergent sequence {(n,ω1) : n ∈ ω}∪{(ω,ω1)}. Each (n,ω1) is neither

a buttterfly point nor a non-normality point of βX \X . However, the point (ω,ω1) is a

butterfly point of βX \X via the sets H = {(2n,ω1) : n ∈ ω} and

K = {(2n+1,ω1) : n ∈ ω}. Even though the point (ω,ω1) is a non-normality point of

βX , it is not a non-normality point of βX \X ; the subspace {(n,ω1) : n ∈ ω} is normal.

Because of the previous example, when aiming for non-normality points in βX \X ,

we may restrict our attention to a special class of spaces. In particular, we focus not on

arbitrary Tychonoff spaces X , but for discrete, or more generally, metrizable spaces.

We will use p and q for set-ultrafilters or ultrafilters on a discrete space and y for a

z-ultrafilter on a metric space. When considering the Stone Cech compactification, βX ,

we view the points y ∈ βX as z-ultrafilters on X . In a Tychonoff space X , a z-ultrafilter
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can have at most one point of convergence. Associating each point x of X to the fixed

z-ultrafilter of all z-sets containing x gives an embedding of X into βX .

For an infinite cardinal κ we write D(κ) for the discrete space of cardinality κ .

All subsets of D(κ) are clopen z-sets. Therefore, any ultrafilter on D(κ) is also an

open ultrafilter and a z-ultrafilter. We would like to extend some notions defined for

set-ultrafilters to z-ultrafilters.

Definition 3.1.6. 1. An ultrafilter p on D(κ) is called uniform if |A|= κ for each

A ∈ p.

2. A point y ∈ βX \X is uniform if w(Z) = w(X) for all Z ∈ y.

For an infinite cardinal κ , we denote the set of uniform ultrafilters on the discrete

space of size κ by U(κ) and the set of non-uniform ultrafilters by NU(κ).

Definition 3.1.7. 1. A uniform ultrafilter, p, on a D(κ) is (ℵ0,κ)-regular (or just

regular) if there exists {Sα : α ∈ κ} ⊂ p such that for all A ∈ [κ]ℵ0 ,⋂
{Sα : α ∈ A}= /0.

2. A uniform z-filter, y, on a metric space with weight κ is regular if there exists

Z ⊂ y such that |Z |= κ and Z is a locally finite collection in X .

3.2 Discrete Spaces

A direct way of showing that a point y in a space Y is a non-normality point of Y , is to

exhibit two closed subsets of Y \{y} that cannot be separated.

Blaszczyk and Szymanski [2] showed that if κ is regular and p ∈ βD(κ)\D(κ) is in

the closure of a strongly discrete subset of βD(κ)\D(κ) then p is a non-normality point

of βD(κ)\D(κ). They used the closure of the strongly discrete set as one of the two
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closed sets that cannot be separated in βD(κ)\D(κ)\{p}. Blaszczyk and Szymanski’s

result addresses a question of the form 3.1.2, which points are non-normality points?

Notice that they did not assume extra axioms of set theory.

When the conclusion is strengthened to: all points are non-normality points, as in

3.1.3, the hypotheses usually include a set-theoretic assumption. For example, assuming

CH, any point p ∈ βω \ω is a non-normality point of βω \ω . This theorem was proven

in two parts. Gillman, [9], showed that under CH, a certain class of points p ∈ βω \ω

are non-normality points of βω \ω . Then, Rajagopalan [18] and Warren [22] showed

all other points p ∈ βω \ω are non-normality points. Since every free ultrafilter on ω

is uniform, this result can be phrased: CH implies every p ∈U(ω) is a non-normality

point of U(ω).

Note that closed subspaces of normal spaces are normal. So, an indirect way of

showing that a point y in a space Y is a non-normality point, is to embed a non-normal

space Z as a closed subspace of Y \{y}. Warren [22] showed that NU(ω1) is not normal.

Then she showed, assuming CH, that NU(ω1)' (βω \ω)\{y}, completing the proof

that y is a non-normality point.

Malyhin [17] showed the following.

Lemma 3.2.1. 1. If θ is singular then NU(θ) is not normal.

2. If θ is regular and not a strong limit cardinal, then NU(θ) is not normal.

Kunen and Parsons [[14], Theorem 1.11] then showed.

Lemma 3.2.2. The space NU(θ) is not normal if and only if θ is regular and not weakly

compact.

Beslagic and van Douwen [[1], Theorem 1.1] generalized the results for ω with the

following theorem.
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Theorem 3.2.3. (2κ = κ+) Every point p ∈U(κ) is a non-normality point of U(κ).

The set-theoretic assumptions of their theorem are, in fact, weaker than 2κ = κ+; the

reaping number of κ is equal to 2κ and sup{2λ : λ < cf(2κ)}= 2κ . They showed that

NU(cf(2κ)) embeds as a closed subspace of U(κ)\{p} for any p ∈U(κ). Note that

since U(κ) is a closed subset of βD(κ)\D(κ), if p is a non-normality point of U(κ), it

is a non-normality point of βD(κ)\D(κ).

Corollary 3.2.4. (GCH) Every point p ∈ βD(κ) \D(κ) is a non-normality point of

βD(κ)\D(κ).

Proof. Let p ∈ βD(κ)\D(κ) and let A ∈ p be such that |A|= min{|A′| : A′ ∈ p}. Since

D(κ) is discrete, A is C∗-embedded in βD(κ), and so clβD(κ) A = βA. Moreover, βA

is a clopen subset of βD(κ) \D(κ). Since |A| is minimum, p|A is a uniform on A.

Therefore, by Theorem 3.2.3, p is a non-normality point of βA \A. Since βA \A is

closed in βD(κ)\D(κ), p is a non-normality point of βD(κ)\D(κ).

3.3 Metric Spaces

Since 2000, the study of non-normality points in βX \X has expanded to non-discrete

spaces X (see [16] and [20]). We start with a result proved by Logunov [15] and

Terasawa [19] independently.

Theorem 3.3.1. If X is metrizable, non-compact and has no isolated points, then every

point y in βX \X is a non-normality point of βX.

They showed that any y ∈ βX \X is a butterfly point of βX . Because

X ⊂ βX \{y} ⊂ βX , we have that βX \{y} is C*-embedded in βX . Then by Lemma

3.1.4, if y is a butterfly point of βX , it is also a non-normalilty point. Since βX \(X∪{y})
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is not necessarily C∗-embedded in βX , to be a non-normality point of the remainder,

βX \X , it does not suffice that p is a butterfly point. Our goal is to strengthen the

conclusion of Theorem 3.3.1 to y in βX \X is a non-normality point of βX \X . To do

this we will add set-theoretic hypotheses.

Before proving the main theorem we develop two tools; a special π-base and an

ultrapower. Terasawa [19] constructs a special π-base for a metric space without isolated

points by modifying Arhangelski’s regular base [[5], pg. 411]. The following π-base is

the same, but we assume the metric space to be locally compact and get more structure

(specifically, each B is split into four pieces).

Lemma 3.3.2. Let X be a locally compact metric space without isolated points. There

exists a collection B =
⋃

n∈ω Bn of open subsets of X such that

1. clX B is compact for each B ∈ B, Bn is pairwise disjoint, locally finite and

cl(B∗n) = X.

2. Bn+1 refines Bn and |{B′ ∈Bn+1 : B′ ⊂ B}|= 4 for all B ∈Bn.

3. For B∈Bn there are B0,B1 ∈Bn+1 such that clB0∩clB1 = /0 and clB0,clB1⊂ B.

4. If U = {U,V} is an open cover of X, there is a pairwise disjoint locally finite

collection V ⊂B densely refining U .

5. For each n ∈ ω , |Bn|= w(X).

Proof. Let O be an open cover of X consisting of sets U such that clU is compact.

Let B′0 be a locally finite open refinement of size ≤ w(X). In fact, it must be that

|B′0| = w(X). Otherwise, since clB is compact metric for each B ∈ B′0, there is a

countable collection of open subsets of X that is a base for points in clB. Since B′0

covers, if |B′0| < w(X) the union of each of these bases would be a basis for X of
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size < w(X), a contradiction. Let κ = w(X). Well order B′0 as {B′α : α ∈ κ}. Define

Bα = B′α \
⋃

γ<α clBγ and set B0 = {Bα : α ∈ κ}. Notice that since B′0 is locally finite,

B0 is locally finite as well and each Bα is open. Furthermore, since clBα ⊂ clB′α , clBα

is compact.

Fix α ∈ κ . Since clBα is compact and metric, there is a countable base for clBα .

Let Aα = {Ai ⊂ clBα : i ∈ ω} be such a base such that A0 = clBα and Ai is open with

respect to clBα . Notice that int(Ai) 6= /0 for all i ∈ ω . Let W 0
α = {Bα}. Assume we have

defined for each i≤ n a collection W i
α of open (w.r.t. X) subsets of Bα such that:

i) W i
α is a pairwise disjoint finite collection such that cl(

⋃
W n

α ) = clBα .

ii) W i+1
α refines W i

α and |{B′ ∈W i+1
α : B′ ⊂ B}|= 4 for all B ∈W i

α .

iii) For B ∈W i
α there are B0,B1 ∈W n+1

α such that clB0∩ clB1 = /0 and

clB0,clB1 ⊂ B.

iv) For each B ∈W i
α , either B⊂ Ai or B⊂ Bα \ clAi.

Fix W ∈W n
α .

Case (1). W ∩An+1 = /0 or W \An+1 = /0.

Because X has no isolated points, we can find B0 and B1, non-empty open subsets of

W , such that clB0∩ clB1 = /0 and clB0∪ clB1 ( W . Then let B2 and B3 be non-empty

open subsets of W such that B2∪B3 is dense in W \ (clB0∪ clB1).

Case (2). W ∩An+1 6= /0 and W \An+1 6= /0.

Let B0 be a non-empty open subset of W such that clB0 ( W ∩An+1 and let

B2 = (W ∩ int(An+1))\ clB0. Then let B1 be a non-empty open subset of W such that

clB1 ( W \An+1 and let B3 = W \ (clAn+1 ∪ clB1). Again, since X has no isolated

points, this can be done.
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Set W n+1
α = {Bi : i = 0,1,2,3}. By construction, W n+1

α has properties (i) - (iv). Let

Bn =
⋃

α∈κ W n
α . Properties (i)-(iii) for W n

α imply properties (1)-(3) for Bn. It remains to

show that (4) holds. Let {U,V} be an open cover of X . Fix α ∈ κ . If Bα ⊂U or Bα ⊂V

then let Vα = W 0
α = {Bα}. Consider U = {Ai ∈ Aα : Ai ⊂ V}. Since clBα \U ⊂ V ,

U is an open (w.r.t. Bα ) cover of the compact set clBα \U , it has a finite subcover

{Aik : k = 1, . . . ,m}. Let n = max{ik : k = 1, . . . ,m}. Then, W n
α has the property that

for all W ∈ W n
α , W ⊂ Ai or W ⊂ Bα \ clAi for all i ≤ n. So, either there exists ik for

some k = 1, . . . ,m such that W ⊂ Aik ⊂ V , or W ⊂
⋂
{Bα \ clAik : k = 1, . . . ,m} ⊂U .

Let Vα = W n
α .

Now, let V =
⋃

α∈κ Vα . Since Vα = W n
α , it is finite. Moreover, since

⋃
Vα ⊂ Bα

and B0 is locally finite, V is locally finite. Since cl(
⋃

W n
α ) = Bα and cl(

⋃
B0) = X ,

cl(
⋃

V ) = X . Finally, V refines {U,V} by construction.

In the main theorem we will embed a non-normal space NU(θ) into βX \X . The

cardinal, θ , will be the cofinality order of an ultrapower that we will construct now.

Let κ be an infinite cardinal and let κω be the collection of functions from κ to ω .

Given a filter p on D(κ), we define an equivalence relation ∼p as follows. For f ,g ∈κω ,

f ∼p g if {α ∈ κ : f (α) = g(α)} ∈ p. We define a partial order, <p, on κω as follows.

For f ,g ∈κω , f <p g if {α ∈ κ : f (α) < g(α)} ∈ p. We write κω/p for κω/∼p and

[ f ] for the equivalence class of f in κω/p. For [ f ], [g] ∈κω/p such that f <p g, if

f ′ ∈ [ f ] and g′ ∈ [g] then it is easy to see that f ′ <p g′. So, <p induces a partial order, <

on κω/p.

If p is an ultrafilter, for any f ,g ∈κω one of {α ∈ κ : f (α) < g(α)},

{α ∈ κ : f (α) = g(α)} or {α ∈ κ : f (α) > g(α)} is in p. Hence < is a linear order on

κω/p.

Lemma 3.3.3. If p is a regular ultrafilter on D(κ) then cf(κω/p) > κ
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Proof. Let p be a regular ultrafilter on D(κ). Let {Sα : α ∈ κ} ⊂ p be such that for all

A∈ [κ]ℵ0 ,
⋂
{Sα : α ∈ A}= /0. In other words, for each γ ∈ κ , Iγ = {α : γ ∈ Sα} is finite.

Let { fα : α ∈ κ} be representatives from an increasing sequence in κω/p. For γ ∈ κ

define f (γ) = max{ fα(γ) : α ∈ Iγ}+1. We wish to show that fα <p f for all α ∈ κ . Let

α ∈ κ and δ ∈ Sα . Since α ∈ Iδ , f (δ ) > fα(δ ) and therefore Sα ⊂ {δ : f (δ ) > fα(δ )}.

Since Sα ∈ p, fα <p f . Hence, {[ fα ] : α ∈ κ} cannot be cofinal in κω/p.

From now on, X is a locally compact metric space without isolated points, κ = w(X)

and B =
⋃
{Bi : i ∈ ω} is a π-base as in 3.3.2. For a uniform y ∈ βX \X we will define

a uniform ultrafilter py on κ . Let Z ∈ y, let U0(Z) = {B ∈B0 : clX B∩Z 6= /0} and let

ˆN0 = {U0(Z) : Z ∈ y}. Extend ˆN0 to an ultrafilter, N0, on B0. Notice that clX U ∗ ∈ y

for all U ∈N0. If not, there would be Z ∈ y such that Z∩clX U ∗ = /0. But U0(Z) ∈N0,

hence U0(Z)∩U 6= /0 and so U ∗∩Z 6= /0, a contradiction.

List B0 = {Bα /0 : α ∈ κ} and Bi = {Bασ : α ∈ κ,σ ∈i4} such that Bασ ⊂ Bαν if σ

extends ν . We may assume that for α ∈ κ and σ ∈i4, clX Bασa0∩ clX Bασa1 = /0 and

clX Bασa0,clX Bασa1 ⊂ Bασ . For any V ⊂B, let

S(V ) = {α ∈ κ :there is σ such that Bασ ∈ V }. Since N0 is an ultrafilter,

py = {S(V ) : V ∈N0} is an ultrafilter on κ . Moreover, since y is uniform, for any Z ∈ y,

w(Z) = κ . Hence |U0(Z)|= κ and therefore py is uniform.

For a uniform y ∈ βX \X , let θy = cf(κω/py).

Theorem 3.3.4. (GCH) Let X be a locally compact metric space with no isolated points.

Then for each uniform y ∈ βX \X there is a closed copy of NU(θy) embedded into

βX \X \{y}.

Proof. Let y ∈ βX \X be uniform and let θ = θy and p = py. Let {[ fα ] : α ∈ θ} be an

unbounded sequence in κω/p. Denote fα(γ) by n(α,γ).
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Following Terasawa [19], we defines a sequence of locally finite collections in B,

{ξα : α ∈ θ}, and sequence of closed sets intersecting to y, {Hα : α ∈ θ}.

For i∈ω \{0}, let ξi = Bi and for ω ≤α < θ let ξα = {Bγσ : γ ∈ κ, σ ∈n(α,γ)4}. We

inductively define Nα , an ultrafilter on ξα . Suppose that Nη has been defined and that

clX U ∈ y for all η < α and U ∈Nη . Let Z ∈ y and Uα(Z) = {B ∈ ξα : clX B∩Z 6= /0}.

Define N ]
α = {U ⊂ ξα : clX U ∗ = clX V ∗ for some η < α and V ∈ Nη} and let

ˆNα = {Uα(Z) : Z ∈ y}∪N ]
α . The collection ˆNα has the finite intersection property by

the induction hypothesis. Extend N̂α to an ultrafilter, Nα , on ξα . As with N0, since

Uα(Z) ∈Nα for each Z ∈ y, we have that U ∗ ∈ y for each U ∈Nα .

For S ∈ p and α ∈ θ , let ξα(S) =
⋃

γ∈S{Bγσ : σ ∈n(α,γ)4}. Note that for any

α,δ ∈ θ , clX(ξα(S))∗= clX(ξδ (S))∗. From the definition of p, if S∈ p then ξ0(S)∈N0.

Therefore, ξα(S) ∈N ]
α ⊂Nα .

Claim. For α < β < θ and U ∈Nα , there is U ′ ∈Nβ such that clX U ′∗ ⊂ clX U ∗.

Proof. For α < β ∈ θ , fα <p fβ and hence there is S ∈ p such that fα(γ) < fβ (γ) for

all γ ∈ S. If U ∈Nα , then ξβ refines V = U ∩ξα(S). Let Z = clXV ∗. Since V ∈Nα ,

Z ∈ y. Moreover, Uβ (Z) ∈Nβ . Now, since ξβ refines V , clX(Uβ (Z))∗ ⊂ clX V ∗. Let

U ′ = Uβ (Z).

Defining Hα .

Let Hα =
⋂
{clβX(U ∗) : U ∈Nα}.

Claim. If α < β then Hβ ⊂ Hα .

Proof. Suppose α < β . Let U ∈Nα be arbitrary. To prove the claim, we show that

Hβ ⊂ clβX(U ∗). From the previous claim, there is U ′ ∈Nβ such that

clX(U ′∗)⊂ clX(U ∗). Therefore, clβX(U ′∗)⊂ clβX(U ∗). Since Hβ is the intersection
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over all such U ′, we have that Hβ ⊂ clβX(U ∗). So, Hβ ⊂ Hα and the claim is proven.

Since {Hα : α ∈ θ} is a nested sequence of closed subsets of the compact space βX ,

we have that
⋂
{Hα : α ∈ θ} 6= /0.

Claim.
⋂
{Hα : α ∈ θ}= {y}.

Proof. Let W ′ ∈ τy. We will find α ∈ θ such that Hα ⊂W ′. Let V ′,U ′ ∈ τy be such

that clβX V ′ ⊂U ′ ⊂ clβX U ′ ⊂W ′. Let U = X ∩U ′ and V = X \ clβX V ′. Then, {U,V}

is an open cover of X . Let ξ ⊂B be a refinement as guaranteed in Lemma 0.3 (4).

For each α ∈ κ , since ξ is locally finite and clX(Bα) is compact, {B ∈ ξ : B ⊂ Bα}

is finite. So, Aα = {n ∈ ω : there is σ ∈n4 such that Bασ ∈ ξ} is also finite. Define

g(α) = max(Aα ∪{0}) and let ξ ′ =
⋃
{Bγσ : σ ∈g(γ)4,γ ∈ κ}. Note, ξ ′ refines ξ and

in turn refines {U,V}. Also, g ∈κω and hence there is α ∈ θ such that fα >p g. So,

there is S ∈ p such that fα(γ) > g(γ) for all γ ∈ S. In other words, ξα(S) refines⋃
{Bγσ : σ ∈g(γ)4,γ ∈ S} ⊂ ξ ′. Now, Z = clβX V ′∩X = X \V ∈ y, hence Uα(Z) ∈Nα .

Since S ∈ p, as noted before, ξα(S) ∈Nα , so, V = Uα(Z)∩ξα(S) ∈Nα . Let B ∈ V .

Then, since B ∈Uα(Z), B∩Z = B∩ (X \V ) 6= /0. But since B ∈ ξα(S), there is B′ ∈ ξ ′

such that B⊂ B′. Therefore B′∩ (X \V ) 6= /0 and since ξ ′ refines {U,V}, it must be the

case that B′ ⊂U . Hence B⊂U ⊂U ′ and therefore V ∗ ⊂U ′ ⊂ clβX U ′. Finally, since

V ∈Nα , Hα ⊂ clβX V ∗ ⊂ clβX U ′ ⊂W ′.

Defining the L i
α ’s

For α ∈ θ and i = 0,1 define L i
α = {Bγσai : γ ∈ κ,σ ∈n(α,γ)4}.

Claim. For all α ∈ κ+, clβX(
⋃

L 0
α )∩ clβX(

⋃
L 1

α ) = /0.

Proof. For each γ ∈ κ and σ ∈i4, clX Bγσa0∩ clX Bγσa1 = /0. Also, Bγσ ∩Bγβ = /0 for

σ 6= β ∈n(α,γ)4, and for i = 0,1 we have clX Bγσai⊂Bγσ and clX Bγβai⊂Bγβ . Therefore
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clX Bγσai∩ clX Bγβa j = /0 for i, j = 0,1. So,⋃
{clX Bγσa0 : σ ∈n(α,γ)4}∩

⋃
{clX Bγσa0 : σ ∈n(α,γ)4} = /0. Now, since {Bγ /0 : γ ∈ κ}

is a locally finite family and since clX Bγσai ⊂ Bγ /0 for each σ ∈
⋃

n∈ω
n4 and i = 0,1, we

have that clX(
⋃

L 0
α )∩ clX(

⋃
L 1

α ) =⋃
{clX Bγσa0 : σ ∈n(α,γ)4,γ ∈ κ}∩

⋃
{clX Bγσa0 : σ ∈n(α,γ)4,γ ∈ κ}= /0. Finally, since

clX(
⋃

L 0
α )∩ clX(

⋃
L 1

α ) = /0, clβX(
⋃

L 0
α )∩ clβX(

⋃
L 1

α ) = /0.

Since clβX(
⋃

L 0
α )∩ clβX(

⋃
L 1

α ) = /0, y can be in at most one of clβX(
⋃

L 0
α ) or

clβX(
⋃

L 1
α ). Without loss of generality, assume y /∈ clβX(

⋃
L 0

α ) for each α ∈ θ .

A special case of the following claim, in particular when Φ is constant, is proven in

[[19], Lemma 3].

Claim. For any α < θ and Φ : D⊂ [α,θ)→ 2, the collection

{Hα}∪{clβX(
⋃

L
Φ(γ)

γ ) : γ ∈ D} has nonempty intersection.

Proof. Let α < θ and Φ : D→ 2 for some D⊂ [α,θ). To prove the claim we show that

{clβX U ∗ : U ∈Nα}∪{clβX(
⋃

L
Φ(γ)

γ ) : γ ≥ α} has the finite intersection property.

Let U1, . . . ,Un ∈Nα and let γ1, . . . ,γm ∈ D be such that γm ≥ ·· · ≥ γ1 ≥ α . Since Nα

is an ultrafilter, there is U ∈Nα such that U ⊂
⋂
{Ui : 1≤ i≤ n}. Since

fα <p fγ1 <p · · · <p fγm , there is S ∈ p such that fα(µ) < fγ1(µ) < · · · < fγm(µ) for

all µ ∈ S, in other words n(α,µ) < n(γ1,µ) < · · · < n(γm,µ). Since ξα(S) ∈ Nα ,

ξα(S)∩U 6= /0. Hence there is µ ∈ S and σ ∈n(α,µ)4 such that Bµσ ∈ ξα(S)∩U . De-

fine σ ′ ∈n(γm,µ)+14 as follows: σ ′|n(α,µ) = σ , σ ′(n(γi,µ)+1) = Φ(γi) for each 1≤ i≤m

and σ ′(k) = 0 otherwise. Then, Bµσ ′ ⊂ Bµσ , since σ ′ extends σ hence

Bµσ ′ ⊂U ∗. Furthermore, Bµσ ⊂
⋃

L
Φ(γi)

γi since σ ′ extends σ ′|n(γi,µ)+1 = σ ′|n(γi,µ)
aΦ(γi)

and Bµ,σ ′|n(γi,µ)aΦ(γi) ∈L
Φ(γi)

γi .
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We follow the argument found in [1] to embed NU(θ) into βX \ (X ∪{y}), using the

Lα ’s to play the role of the reaping sets.

The induction

Denote by θ the discrete space of size θ . We define an embedding, g, of θ into

βX \X such that

1. y ∈ clβX g[A] if and only if |A|= θ .

2. If A,B ∈ [θ ]<θ and A∩B = /0 then clβX g[A]∩ clβX g[B] = /0.

Then, we extend g to βg : βθ → βX \X and prove that U(θ) = g←[{y}]. Therefore

βX \ (X ∪{y}) contains a closed copy of NU(θ).

Since we assume GCH we have that θ<θ = θ . List θ ∪{(A,B) : A,B ∈ [θ ]<θ and

A∩B = /0} as {Tη : η ∈ θ} in such a way that if Tη = (A,B), then η ≥ sup(A∪B) and

if Tη ∈ θ , then η ≥ Tη .

For α ∈ θ let Dα = {η : Tη = (A,B) and α ∈ A∪B}∪ {η : α ∈ Tη}. Note that

Dα ⊂ [α,θ).

For each α ∈ θ we define Φα : Dα → 2 and choose g(α) to be any element of⋂
({Hα}∪{clβX(

⋃
L

Φα (γ)
γ ) : γ ∈ D}). We define Φα by induction.

Let η ∈ θ and assume we have defined Φα |η∩Dα
. If Tη ∈ θ , let Φβ (η) = 0 for all

β < Tη . If Tη = (A,B), let Φβ (η) = 0 for all β ∈ A and let Φβ (η) = 1 for all β ∈ B.

Let Kα =
⋂

({Hα}∪{clβX(
⋃

L
Φα (γ)

γ ) : γ ∈ Dα}) = /0. By the claim, Kα 6= /0 for

each α ∈ θ , so we may choose g(α) ∈ Kα .

To show 1., let A⊂ θ be such that |A|< θ . There is γ ∈ θ such that A⊂ [0,γ). Let

η be such that Tη = γ . Note, η ≥ γ . For any α < γ = Tη , Φα(η) = 0. So, for α ∈ A,

Kα ⊂L 0
η . But, y /∈ clβX(

⋃
L 0

η ). Hence, y /∈ clβX g[A]. For the other direction, let A⊂ θ

be such that |A| = θ . Since θ is regular, A is unbounded in θ . Let U ∈N . There is
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γ ∈ θ such that Hγ ⊂U . For α ∈ A such that α ≥ γ , g(α) ∈ Hα ⊂ Hγ ⊂U . Hence

y ∈ clβX g[A].

To show 2., let A,B ∈ [θ ]<θ be such that A∩B = /0. Let η be such that

Tη = (A,B). Then, for each α ∈ A, Φα(η) = 0 and for each α ∈ B, Φα(η) = 1. Hence

g(α) ∈ Kα ⊂ clβX(
⋃

L 0
η ) for α ∈ A and g(α) ∈ Kα ⊂ clβX(

⋃
L 1

η ) for α ∈ B. But,

clβX(
⋃

L 0
η )∩ clβX(

⋃
L 1

η ) = /0. Hence clβX g[A]∩ clβX g[B] = /0. Note, 2. implies g is

one-to-one.

Since θ is discrete, g is continuous. Extend g to βg : βθ → βX \X .

Since βθ is compact, βg is a closed map. In order to show that βg maps NU(θ)

homeomorphically to a closed subset of βX \ (X ∪{y}), we must verify the following:

1. βg[βθ ]\{y}= βg[NU(θ)]

2. βg[U(θ)]⊂ {y}

3. βg|NU(θ) is one-to-one

If 1. holds, NU(θ) is mapped onto a closed subset of βX \ (X ∪{y}). If 1. and 2. hold,

then NU(θ) is a full preimage. Since βg is a closed continuous map by 1.2.6, βg|NU(θ)

is a closed continuous map. Therefore if 3. holds, βg|NU(θ) is a homeomorphism.

1. Let q ∈ NU(θ). There is A ⊂ θ such that |A| < θ and A ∈ q. Since βg is

continuous, g(q) ∈ clβX g[A]. Hence, g(q) 6= y. Let z ∈ βg[βθ ]\{y}. Let U be an open

neighborhood of z such that y /∈ clβX U . Since βg is continuous, A′ = U ∩βg[θ ] 6= /0.

Let A = g←[A′]. Since y /∈ clβX U , |A|< θ , otherwise y ∈ clβX A′ ⊂ clβX U . If q ∈ g←(z)

then q ∈ clβθ A. Hence q ∈ NU(θ) and therefore z ∈ βg[NU(θ)].

2. The preceding argument also shows that for any q ∈ βθ , if βg(q) 6= y, then

q ∈ NU(θ). Hence βg[U(θ)]⊂ {y}.
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3. Let q 6= q′ ∈ NU(θ). There are A,B ∈ [θ ]<θ such that A∩B = /0 and q ∈ clβθ A

and q′ ∈ clβθ B. By continuity, g(q) ∈ clβX g[A] and g(q′) ∈ clβX g[B]. But, by 2.

clβX g[A]∩ clβX g[B] = /0. Hence g(q) 6= g(q′).

Corollary 3.3.5. (GCH) Let X be a locally compact metric space with no isolated points.

If py is regular, then each uniform y ∈ βX \X is a non-normality point of βX \X.

Proof. If py is regular, by lemma 3.3.3 θy = cf(κω/py) > κ . Certainly, cf(κω/py)≤ 2κ ,

so by GCH, θy = κ+ = 2κ and hence θy is regular and not a strong limit. By 3.2.1,

NU(θy) is not normal. Hence, by the theorem, y is a non-normality point of βX \X .

Corollary 3.3.6. (GCH) Suppose all ultrafilters are regular. Let X be a locally compact

metric space with no isolated points. Then each y ∈ βX \X is a non-normality point of

βX \X.

Proof. Suppose all ultrafilters are regular. Then py is regular for all y∈ βX \X . We have

seen that if y ∈ βX \X is uniform then it is a non-normality point of βX \X . Suppose

that y ∈ βX \X is not uniform. That is, there exists Z ∈ y such that w(Z) < w(X). Let

Z ∈ y be such that w(Z) is minimum. Then, there is a cover of Z consisting of sets clB

from a subcollection, Z , of B0 of size w(Z). Let Y =
⋃
{clB : B ∈Z }. Since B0 is

locally finite, Y is closed. Each B∈Z has no isolated points, so Y has no isolated points.

Also, y ∈ clβX Y . Since X is normal and Y is closed, Y is C∗-embedded in X . Therefore,

βY = clβX Y and y|Y is uniform on Y . So, by the theorem, y is a non-normality point of

the set clβX Y \Y and hence is a non-normality point of βX \X .
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Chapter 4

Open questions

4.1 Coarser connected topologies

We know that a metric space has a coarser connected Hausdorff topology if and only if

it is not compact [11]. We also know that if a metric space has weight ≥ c then it has a

coarser connected metric topology if and only if it is not compact 2.3.8. There are still

open questions about coarser connected metrizable topologies of spaces with smaller

weight.

Question 4.1.1. Which non-compact metric spaces have coarser connected metrizable

topologies?

Druzhinina [4] asks the following question.

Question 4.1.2. Let X be a dense Gδ -subset of a connected metrizable space. Does X

have a coarser connected metrizable topology?

Fleissner, Porter and Roitman, in [7] and [8], investigated coarser connected topolo-

gies on ordinal spaces. They characterized all ordinal spaces that have a coarser con-

nected Hausdorff topology. An ordinal δ has a ‘minimal decomposition’ of the form

α +β where α ≤ 2|β | if and only if δ has a coarser connected Hausdorff topology.
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From [21], no ordinal has a coarser connected regular topology. Urysohn is a

separation property stronger than Hausdorff and weaker than regular. If an ordinal has a

coarser connected Urysohn topology, then it has cofinality ℵ0 [8]. The following is an

open problem:

Question 4.1.3. Which ordinals of countable cofinality have coarser connected Urysohn

topologies?

4.2 Non-normality points

The special π-base for the metric space X was important in the proof of Theorem 3.3.4.

In particular, since X was locally compact, every member, B, of the π-base had weight

ℵ0. It seems similar techniques can be applied to a metric space that is not necessarily

locally compact, but has a homogeneous π-base. We mean by homogeneous that each

member of the π-base has the same weight or even if every pair of comparable members

of the π-base have the same weight. More generally, we would like to know if the

following is true.

Question 4.2.1. Under GCH, is every y ∈ βX \X a non-normality point of βX \X , for

a metric space X without isolated points?

The following are technical questions which would help to answer the above general

question.

Question 4.2.2. Can there be a cardinal κ and an ultrafilter p on D(κ) such that

cf(ωκ/p) is uncountable and weakly compact?

For more information about the above questions see the following paper by Jin and

Shelah [13].
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Question 4.2.3. Let X be a metric space, or more generally, any completely regular

space. Let y be a z-ultrafilter on X . Is there Z0 ∈ y such that y relative to Z0 is a remote

point? In other words, is there Z0 ∈ y such that for all Z ∈ y, intZ0(Z∩Z0) 6= /0?
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