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Abstract

SYSTEM SYNTHESIS FROM A MONADIC

FUNCTIONAL LANGUAGE

Garrin Kimmell

The University of Kansas.

Advisor: Perry Alexander

December 2008.

Embedded systems typically combine a mixture of heterogeneous components, some

that are software executing on general purpose CPUs, some that are off-the-shelf hard-

ware components, and some that are application specific circuitry. A major challenge

when designing and implementing such systems is the dissimilar models of computa-

tion exhibited by hardware and software targets. To successfully navigate this chal-

lenge, components must be implemented in a way that does not unnecessarily bias the

implementation towards either computational model, allowing the components to be

retargeted as application requirements change.

This dissertation presents an approach to this problem using a functional program-

ming language extended with monadic imperative and concurrency effects. We argue

that these language features allow components to be implemented and compiled to ei-

ther hardware or software targets. To demonstrate this claim, we detail the design of

such a language, Oread. Moreover, we describe the compilation of Oread to both hard-

ware, via VHDL, and software, via C. Using these compilation techniques, we describe

the development of a digital processing component in Oread and the integration of that

component into a larger system.
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Chapter 1

Introduction

Embedded systems typically combine a mixture of heterogeneous components, some

that are software executing on general-purpose CPUs, some that are off-the-self hard-

ware components, and some that are application-specific circuitry. The decomposition

of the system into individual components and the mapping of those components into

an implementation target, or fabric, is motivated by a variety of both functional re-

quirements and performance requirements. The challenge of systems engineering is to

integrate the multitude of different requirements into a complete system that respects

those requirements and to preserve those requirements as they are refined into exe-

cutable implementations. As with most tasks, the role of abstraction is central to suc-

cessfully navigating this challenge: choose a requirements model that is too abstract,

and the model loses its predictive power; choose a model that is too concrete and lose

the ability to adapt the model to changing requirements or new problems.

This dissertation focuses on the aspect of system engineering related to the refine-

ment of high-level functional requirements to executable implementations. This prob-

lem goes beyond simply compiling a program to software or alternatively, synthesize to

hardware. When considered individually, both software compilation and hardware syn-

thesis represent amazing successes in the computer science research literature. When
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taken together – in single-source systems which can be refined to both hardware or

software systems – the record is positive, but certainly more mixed. The challenges of

mixed-target compilation1 is rooted in the fundamentally different models of computa-

tion exhibited by different targets. Attempts to take an implementation designed with

one model in mind and map it into another model tend to introduce inefficiencies and

unnecessary implementation rigidity. To be successful, it is crucial to design from the

beginning with the intention of targeting differing fabrics.

1.1 Hardware and Software Computational Models

The root challenge in designing and integrating heterogeneous – mixed hardware and

software – systems is the the fundamental difference in the computational models used

to construct those systems. Distilled to its core, this difference is that software systems

are implemented as a series of sequential steps over a relatively small fixed set of high-

level computational blocks, while hardware systems are implemented by arranging an

adaptable set of concurrently-operating, low-level components.

A CPU generally contains a single ALU and control unit.2 The ALU provides a

variety of high-level arithmetic and logic data processing functions, such as adders,

multipliers. There may be dedicated units for different data representations, so that

integer and floating-point arithmetic operations are handled by different components.

Nevertheless, these components operate on fixed-size data representations, usually the

native word size of the processor for integral data and the IEEE standard data size for

floating point operations. The control unit provides the mechanism for coordinating
1We use the terms compilation and synthesis interchangeably throughout the thesis. In situations

where we wish to distinguish between the two, we will make the distinction explicit.
2This characterization is less apt for modern super-scalar architectures which may have multiple

functional units. These architectures came about as an attempt to avoid some of the limitations inherent
in the von Neumann computational model. However, the discussion below remains valid.
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the operation of data processing units as a series of state transformations on data stored

locally in registers (for fast access) and in global memory (for longer-term storage).

The intent of the von Neumann architecture exhibited by general purpose CPUs

is to provide a common abstraction for implementing systems. In many ways, this

intent has been realized to great success, as evidenced by the relative ease in which

software can be ported between different instruction set architectures which subscribe

to this computational model. This is especially true when the software is written in a

imperative language such as C that abstracts many details of the processor and obviates

the need for the programmer to operate at the level of the ISA.

The architecture of a standard CPU simplifies the construction of software systems

and eases the migration of systems between different CPU families, yet this architecture

has significant drawbacks in embedded applications. The ISA presents a one-size-

fits-all model for constructing systems. Consider an application consisting of a large

number of independent addition operations. Because of the limited number of adders

in the CPU, these operations must be serialized. Whether the application ever uses

(for example) an integer multiplication operation or any floating-point arithmetic is

irrelevant; the transistors needed to implement those unused operations in the CPU are

dedicated to that task and cannot be re-purposed. If the application manipulates data

of a non-standard size, the data must be adapted to the CPU, resulting in inefficiencies

both in the computation needed to perform the data transformation as well in the silicon

overhead for the component being larger than necessary.

The above inefficiencies are present when performing the same operations on col-

lections of data (SIMD) the limitations of a general-purpose CPU become even more

pronounced when performing different operations upon data (MIMD). The most com-

mon way to implement this sort of computation on a CPU uses threads. Each thread has

its own control and data state, and different threads may be executing logically differ-
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ent programs. The CPU time-multiplexes the various threads by executing each thread

for a small amount of time, then saving the thread’s state at a safe point and restore a

different thread’s saved state.

Communication between the threads is performed via manipulations on a shared

global store. Manipulating the global state is tricky, as it requires every externally-

visible manipulation to be atomic. Common thread libraries, such as POSIX threads (IEE

2004) offer a variety of concurrency-control primitives for insuring that inter-thread

communication is safe. However, proper use of those primitives is notoriously error-

prone.

In many ways, the computational model used for constructing hardware implemen-

tations of components is the inverse of the software model. Rather than a fixed set of

high-level functional components, a hardware fabric provides many orders of magni-

tude (perhaps millions) more low-level gates, each of which are capable of performing a

single 2-input boolean operation. Modern technology has eclipsed this characterization

to a degree. For example, gates in modern FPGA technology are implemented using

look-up tables (LUTs) which generally implement 4- or 6-input boolean circuits. Nev-

ertheless, these advances do not nullify the following analysis of the hardware model

of computation.

In the software model, control is expressed either implicitly in the sequencing of

instructions, or explicitly as branching and jump instructions that direct the operation

of the CPU control unit. In the hardware computational model, the distinction between

control is less well separated. Registers are sequential elements of state that store val-

ues at regular intervals dictated by a global clock. As with the components of a CPU,

the circuitry used to implement operations is present in the fabric whether the instanta-

neous control requires the output of those operations or not. Control is manipulated by

selecting, using a multiplexer circuit, the outputs of various combinational circuits for
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input to a sequential register. Modern synthesis tools can minimize the number of idle

combinational circuits by automatically introducing additional control logic, allowing

the same circuit to be reused for mutually exclusive control paths.

This gate-level computational model precludes several of the drawbacks of the soft-

ware model. For example, there is no need to artificially sequentialize data-independent

operations due to a limited fixed number of computational resources – if an application

demands n adders, then the circuit can include exactly n adders.3 Equally important,

the fine control provided by the low-level of abstraction of the hardware model allows

unneeded resources to be omitted in the implementation. The circuit implementing an

application requiring no floating point operations will include no floating point compo-

nents.

The gate-level computational model provides maximum design control for imple-

menting components, yet the level of abstraction is so low as that the design task be-

comes intractable as the application scales in size. For this reason, hardware designers

will often use a register transfer level (RTL) computational model for constructing

components. In RTL, a component is defined as a series of state elements (mapped to

registers in the fabric) and a series of combinational transfer equations. A register’s

value in the next state is defined as the result of a transfer equation applied to the value

of the register(s) in the the current state.

The distinction between current and next state is dictated by the register, which

is in turn driven by a system clock. The clocked nature of RTL design introduces a

complicating factor into the construction of hardware components using this model.

For the value at the input for a register to be valid at a clock edge, the transfer equation

implemented as a combinational circuit from the register’s output, must meet timing
3This is an idealized view of hardware fabrics. In practice, the actual number of gates is finite, and

it may be necessary to limit the number of duplicated resources to fit space constraints by introducing
additional control logic.
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constraints, in that the propagation delay through the combinational circuit must be less

than the clock period. In other words, the propagation delay for the transfer equations

dictates the clock period.

The clock period is determined by the longest combinational path for a register

whose input is dictated by a collection of transfer equations. It makes little sense to

optimize the timing for one combinational circuit if there is another circuit with worse

timing; consequently, the designer must take into account timing as a global perfor-

mance property. There are local approaches to reducing circuit propagation delay (e.g.

splitting a combinational circuit by introducing pipeline registers) but these approaches

have global ramifications (e.g. the need to insert additional delay registers in sibling

circuits).

The concurrency abstractions of a hardware computational model is nearly the in-

verse of that in software. Whereas in software, concurrency is achieved by multiplex-

ing several threads of control on a single CPU, in hardware concurrency permeates the

model. In software, the main programmer effort is in simulating concurrency on an

essentially non-concurrent fabric in hardware concurrency is primitive (all elements in

the fabric are always executing concurrently) and the challenge is imposing sequential-

ization of control.

The standard way to impose sequential control within a hardware circuit is using

clocked registers. However, introducing a register to buffer data transfer between con-

currently operating circuits has the unfortunate consequence that the timing behavior

for each component is externalized, and every component must satisfy the same timing

requirements. This is analogous to the “leaking” of timing behavior of individual com-

binational circuits within a component into the other combinational circuits where the

performance of every circuit is bounded by the timing of the worst performing circuit.
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The culprit for the globalization of timing requirements is the clocked nature of

the registers used for inter-component communication. One solution to this problem

is to introduce multiple clock domains, so that each component is operating at its own

clock frequency. While this solution simplifies the implementation of circuits within a

component, it complicates the interactions between components. Instead of a simple

global clock, it is necessary to include a more sophisticated control protocol at the

junction between clock domains.

1.2 Design Process Ramifications

The differences between hardware and software implementations of components is

rooted in the disparity between the abstractions used to implement those components.

Software presents an exceptionally regular architecture, with the downside that there

are inefficiencies introduced due to the fixed set of computational resources and the

impedance mismatch that results from exploiting concurrency on a fundamentally se-

quential abstraction. On the other hand, while hardware offers much more design flex-

ibility by giving the implementer control over the number and size of computational

resources and concurrency “for free”, the model of computation is at such a low level

that it requires the implementer to repeatedly construct many abstractions offered by

the software model of computation. At the same time, the hardware level of abstrac-

tion emphasizes non-functional performance requirements, such as timing, which are

hidden in the software computational model.

Given these differences it is instructive to examine the consequences of the prop-

erties of the different models of computation within the larger scope of the system

engineering process. This includes the secondary influences of the abstractions upon

the various phases of the engineering life cycle, including design, deployment, and
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maintenance. Moreover, while there may be engineering practices that are naturally

induced by the model of computation of the underlying target fabric, these practices

are often at odds when employed when constructing a heterogeneous system composed

of components in mixed target fabrics.

Design impacts The system design process begins with the collection of functional

and performance requirements. The functional requirements define the correct compu-

tational behavior of the system, while the performance requirements define constraints

– cost, size, security, etc – that must be satisfied while performing the computation.

The functional requirements are fabric-agnostic, while the performance requirements

are abstractions of the fabrics the function will be implemented in.

The next task in the system design process is a decomposition of the functional

requirements into a architecture that that places various portions of the functionality

of the system into different components, maps each of those components into a tar-

get fabric, and defines the communication interfaces between the components. The

decomposition task is advised by the performance requirements, as the non-functional

behavior exhibited by a component mapped to a particular technology must satisfy the

constraints not only of that component, but of the system as a whole.

A system architect will use gross estimates and heuristics when performing the de-

composition. This is because the actual performance of the system may vary widely

depending on the exact implementation of a component, and the number of implemen-

tations satisfying a particular set of functional requirements may also vary widely. Con-

sequently, it is the task of the system architect to constantly re-evaluate the suitability

of the system decomposition towards the performance requirements as the functional

requirements are refined to implementations. If during this refinement it is discovered

that the system decomposition will result in a system that violates performance con-
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straints, it is necessary to re-architect the system to a different configuration which can

satisfy the performance constraints. This process may repeat several times.

Ideally, changing a system decomposition by moving a component from one target

fabric to another should be possible without abandoning the implementation effort ex-

pended to arrive at the decision to reconfigure the system architecture. Sadly, this is

rarely the case, due to the contrasting models of computation used in the refinement of

the components. Once a target fabric has be identified for a component, it is likely that

the abstraction used in the implementation of that component will make it difficult to

transfer that implementation to a different fabric.

This difficulty is especially pronounced in the case of component mapped to hard-

ware components. Because of the tight coupling of functional behavior and non-

functional behavior (such as timing) it is often difficult to migrate a component from

one target fabric to another even if the computational model is the same. Consider, for

example, the gate-level model of a circuit mapped to FPGA. As FPGA manufacturing

technology advances, the basic building blocks of the FPGA fabric continues to sup-

port increasingly-complex boolean circuits. A gate-level design mapped to an older

technology may not be easily adapted to utilize new FPGA features, simply because

the design is too closely coupled to the implementation technology. This yields serious

difficulties in the maintenance life-cycle of the system as existing designs are adapted

to new technology.

The initial system decomposition is performed with only gross estimates of the

performance properties of the functional requirements mapped to an implementation

fabrics. These estimates are honed as the functional requirements are refined to im-

plementations. Because engineering effort (or conversely, the cost to correct errors)

increases dramatically – often by orders of magnitude – as the system moves from the

design to implementation and then to the validation stages, it is important to detect
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and correct errors as early as possible in the process. Not only is desirable to be able

to re-target implementation artifacts, it is also of major advantage to move validation

as early as possible in the engineering process. However, in heterogeneous system

design, this is complicated by the often informal nature of the computational models

utilized, the informal understanding of the interactions between the different computa-

tional models, and the interactions between non-functional performance properties of

the computational models.

Deployment and maintenance considerations Software components can be updated

“in the field”. Replacing a software component with an augmented version may be as

simple as restarting a program or rebooting the system. Components implemented

in hardware are rarely so easy to update, as the substrate is the component. To up-

date such a component may require removing and replacing the physical circuit, an

undertaking that will often require removing the component from the deployment envi-

ronment. Consequently, bug fixes and feature enhancements for software components

entail considerable less expense than the same modifications for hardware components.

The ease with which software can be modified at run-time forces the system de-

signer consider the implications of this malleability and adjust the system design ac-

cordingly to adapt. For example, because software can be modified at run time, it

may be necessary to make additional security assurances. Not only is it sufficient to

guarantee that the system that is deployed satisfies security requirements, but it is also

necessary to ensure that the system that is executing continues to be the system that was

deployed, and not some altered version that may violate those security requirements.

This typically requires some degree of run-time monitoring or measurement, adding

additional complexity and execution overhead to the system. Moreover, it remains nec-

essary to ensure that the component providing run-time integrity assurance is itself not
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compromised. On the other hand, the rigidity of hardware components make them less

susceptible to attacks where the deployed component is replaced with a compromised

component.

Long after the design and deployment of a system, the relative adaptability of the

software vs. hardware models of computation continues to influence the maintenance

of the system, even after the components have stabilized and are no longer actively

being updated with bug fixes. As the system ages, it becomes necessary to replace

components simply because of the physical wear-and-tear on the physical hardware

(regardless of whether the hardware is a CPU or custom circuitry).

Historically, technology has increased in speed and storage at an exponential rate.

As embedded systems are often deployed in applications where reliability and stability

are of high importance, it may be years or decades between the initial deployment of

system and the need to replace a physical element of the system. Due to the long

delay between the design and servicing, the technology used for the components in the

initial design may not be available for purchase, or may be so expensive that it is more

economical to redesign the system for new technology. For example, a system which

when designed required a number of CPUs (for executing software components) and

ASIC (hardware components) may be possible to implement using a single modern

CPU with a single hardware interface to legacy elements of the system.

The challenges when attempting to use newer technology to implement legacy com-

ponents are similar to the challenges used in the initial design process, except that

working implementation are already available. Because the existing implementation

has been tested and deployed, it is of great benefit to reuse those components. For

software components, this involves adapting the existing programs to the ISA of the

new technology and executing multiple components on the same CPU. This is more

complicated when adapting hardware components. To migrate a hardware implemen-
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tation to software requires a change of model of computation. Moreover, the hardware

implementation may rely on a variety of non-functional performance properties of the

original target fabric to insure correct functional behavior. It is likely that these perfor-

mance assumptions in the original implementation may not be documented, and even

less likely that the new technology will exhibit the same properties. Therefore, it is

necessary to perform a great deal of post-implementation validation to insure that the

new system design respects the performance constraints of the original design and im-

plementation.

1.3 Improving the Design Process

Building hardware and software systems requires modeling, implementing, and inte-

grating components in disparate models of computation. The gap between the hard-

ware and software models of computation makes it difficult to move components be-

tween models of computation. Software implementations introduce run-time ineffi-

ciencies and constrain concurrency, yet increase the design and maintenance flexibility.

Hardware implementations allow a implementer maximum control of computational

resources and concurrency, at the cost of increased prominence of non-functional per-

formance properties in the component design and reduced maintenance flexibility.

Improving the process of developing heterogeneous systems requires the identifica-

tion of a mediating model of computation which satisfies the following desiderata:

• The ability to quickly re-target implementations to fabrics with different models

of computation.

• The ability to take advantage of the computational resources of the fabric.
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• The ability to define concurrent communication independently of the medium

and irrespective of low-level performance considerations.

• The ability to predict performance properties of a computational artifact.

The thesis of this work is that a functional language, extended with monadic ef-

fects for imperative and message-passing based concurrency, is a suitable basis

for constructing systems that will be synthesized to efficient hardware or software

fabrics.

This thesis focuses on the synthesis of mixed-fabric systems in the context of embedded

applications. While this is the motivating use case, it should not be seen to be a limited

case. Many of the complications that embedded applications emphasize remain relevant

in typical desktop applications. This is increasingly so as modern CPUs address the

abundance of transistors not by making high-clocked processors, but by adding more

CPUs on a single die. This is a response to the decreasing returns, at the CPU design

level, yielded by addressing performance with faster and faster processors. This change

is fundamental, as it shifts the computational model from the sequential von Neumann

architecture with a central store for data and control (as a program) to a concurrent

model where data and control are distributed throughout the system. From a historical

perspective, this shift was first foretold by Backus over 30 years ago in his lecture

about the ’von Neumann’ bottleneck. Backus’ response to the bottleneck was to use

functional programming languages to escape the inherent difficulties in exploiting the

new computational model.

The approach outlined in this thesis is tightly related to that advocated by Backus

(1978), where a functional programming language was identified as an escape from

the “von Neumann bottleneck”. However, it goes beyond by highlighting the role of
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concurrency in systems. Backus’ FP was primarily concerned with the parallelization

of common sub-elements in a data processing language – SIMD style processing.

In contrast, constructing MIMD – and concurrent applications in general – the pri-

mary challenge is in the coordination of the various processing elements. To address

this problem, the thesis once again looks back over 30 years to the foundations of

concurrent models of computation, Hoare’s CSP (Hoare 1978) and Milner’s CCS and

π-calculus (Milner 1999). These models of computation for concurrency use message-

passing as the primitive notion of concurrent computation. Processes are isolated com-

putational units that operate independently until a interaction with the external world

is needed. This interaction is accomplished by either sending or receiving a message

along a channel. Because all actors in a concurrent system are modeled as processes,

every send must have a matching receive from another process, and vice versa. If a

process attempts to send (resp. receive) a message and there is not a matching receive

(resp. send), the process will “block” until there is a match. Within this model, com-

munication is coordination, with control being converted to data.

Backus’ FP forms the “functional” core of the model advanced by the thesis, and

Hoare and Milner’s models of message-passing concurrency form the foundation of

the concurrency model. The final piece of the thesis involves the use of monads to

encapsulate computational effects, such as imperative (stateful) computation and reac-

tive (message-passing) concurrency. Moggi identified monads (Moggi 1990, 1991) as

a useful mathematical principle for structuring computational effects that allowed for

higher levels of abstraction than operational models, while offering more composabil-

ity than traditional denotational models (Stoy 1981). From a mathematical viewpoint,

monads are algebraic structures and can be manipulated as such, much as Backus ad-

vocated an “algebra of programming” for reasoning about and manipulating functional

programs.
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In addition to offering formal reasoning capabilities, monadic specifications can

be interpreted in a pure functional language, giving rise to executable specifications.

Wadler(Wadler 1992, 1993) identified the suitability of monads for structuring pro-

grams – not just specifications – an observation that has been leveraged to great success

in structuring computational effects in pure functional languages such as Haskell.

1.4 Motivation: Software defined radio

The motivating application for this work is the software defined radio (SDR) domain.

Software defined radios are an approach to constructing radio systems so that they

can be reconfigured and adapted, perhaps on-the-fly, for new applications. Despite the

name, a software defined radio isn’t exclusively constructed of software components:

often a SDR is built upon an existing platform that includes dedicated hardware for

specific radio tasks, because the performance of a pure-software system cannot meet

the processing demands of a radio application.

The design of a radio may vary depending on the characteristics of the deployment

environment. For example an individual operating in the field, communicating with

a handheld radio to a fixed central tower, will have vastly different performance con-

straints for power and size than the tower it is communicating with. The mobile device

may need to sacrifice cost for power and speed, placing much of the functionality of

the radio in custom hardware, while the central tower, with a dedicated power source,

can use a software implementation of much of the radio. However, the two radios are

using the same functionality to communicate, and it is desirable to be able to develop a

single implementation that can be used both in the software and hardware components.

A second intended benefit of software defined radios is that a radio platform can be

reconfigured for a variety of different waveforms as the environment demands. In this
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usage model, the software defined radio platform provides a computational basis for

implementing a given waveform, and may include a variety of different computational

elements, including general purpose CPUs, DSPs, and FPGAs (Minden et al. 2007). A

component may be used in multiple different waveforms. However, the computational

demands of the application may vary, and in one configuration a component may need

to be implemented in hardware to satisfy performance requirements, while in a second

waveform configuration the same component may be implemented in software, freeing

hardware resources for a different component.

The SDR domain requires digital components to interface, at some point, with ana-

log RF components. Analog hardware will have fixed performance requirements, such

as power consumption and timing. The computational elements must respect those re-

quirements. Moreover, an SDR is a discrete approximation of an analog waveform;

the waveform may include continuous elements that are digitized and processed by the

SDR components. It is critical that those elements respect the analog model of the

waveform as well.

The final property of the SDR domain that exemplifies the challenges of developing

heterogeneous systems is that the lifespan of a deployed SDR platform may be mea-

sured in decades, making it necessary to be able to adapt portions of the platform to

new computational technology. However, this cost of deploying the platform based on

new technology can be high, since the correct implementation of a waveform compo-

nent can rely on low-level performance constraints, which are often not reflected in the

implementation. The cost of not deploying new technology, however, may be greater as

legacy parts may cost too much or may simply not be available. To successfully man-

age the lifespan of an SDR platform, it is necessary to model not only the component

behavior but also the performance characteristics of the platform elements, easing the

transition to new technology.
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1.5 Overview of related work

There is a large body of existing literature describing the use of functional programming

languages and notations for describing hardware circuitry. Lava (Bjesse et al. 1998)

and Hawk (Matthews et al. 1998) are two such examples. While these languages use

a functional programming language to construct circuits, they maintain a distinction

between the host language (Haskell, in the case of Lava and Hawk) and the object

language, implemented as a library of data structures and combinators.

Embedding the hardware description language within a lazy functional language

such as Haskell allows the developer of the language to leverage a great deal of the

host language capabilities. Lava circuits are Haskell data that can be manipulated with

Haskell functions. Moreover, Lava circuits can be given a variety of interpretations.

This includes Haskell stream transformation functions, enabling a basic simulation ca-

pability. Other representations include a VHDL back-end, which allows Lava circuits

to generate structural VHDL netlists, and as boolean forms to be used as input to SAT

solvers for verification purposes.

The distinction between Haskell programs generating Lava circuits is similar to the

static/dynamic stage distinction found in the partial evaluation (Jones 1996) and multi-

stage programming languagesTaha (1999). However, Lava differs significantly with

these systems in that the host language and the object language are different, while

most work on multi-stage languages uses the same language for each stage.

A disadvantage of changing from Haskell to Lava between stages is that the Haskell

abstractions cannot necessarily be mapped directly onto Lava abstractions. While

Haskell is a full-fledged programming language, a Lava circuit is basically a struc-

tural representation of a circuit as a graph. Haskell idioms must be replicated as Lava

library components, such as a multiplexer instead of a case expression for control flow.
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Moreover, Haskell data abstractions are replaced with lower-level data structures, as

Lava operates primarily on streams of boolean values representing bits. Composite data

structures must be manually constructed as collections of individual bitstreams. Finally,

some host-language idioms, such as function abstractions, are simply not present in

Lava. As we demonstrate in chapter 3, functions in Oread provide a simply structuring

mechanism for controlling resource usage.

VHDL (IEEE) and Verilog (IEE 1995) are the two dominant hardware descrip-

tion languages. Both languages offer similar capabilities for defining hardware, al-

though VHDL traditionally has offered more extensive data abstraction capabilities, as

it was originally designed as a specification language, rather than an implementation

language. The languages use a discrete-event model of computation, where hardware

signals are modeled as a ordered stream of events. Each event contains a specific times-

tamp, enabling the ordering. The close connection between the discrete event model of

computation and the clocked nature of most hardware implementation fabrics has led to

an emphasis on strict control of timing within a design. This thesis, in contrast argues

that it is necessary to de-emphasize the role of timing in the construction of system,

relying instead on an asynchronous control protocol for handling circuit coordination.

Decoupling a component’s functional behavior from its associated non-function prop-

erties (such as timing) allows a functional implementation to be more easily adapted to

new implementation fabrics as demanded by design requirements.

VHDL and Verilog both support two major forms of system definition: structural

and behavioral. A structural description of a system describes the constituent compo-

nents and the connections between those components. Structural description is roughly

analogous to a textual form of the traditional graphical schematic design. Components,

selected from a library of predefined parts, are instantiated the ports of components

connected via external signals. Circuit descriptions are necessarily low-level, and there
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is minimal support for capturing circuit patterns, in the style of Lava, as meta-programs,

although VHDL does provide a generate construct for performing some restricted

structural meta-programming.

Because a structural system description is defined at a low level, with components

drawn from a predetermined library, they are often easy to synthesize to target fabrics.

On the other hand, both VHDL and Verilog offer behavioral modeling capabilities that

allow a system to be described at a higher-level of abstraction, but with a trade-off that

some systems that can be expressed in the behavioral subset of the language cannot

be synthesized. Consequently, users of the behavioral subset of the languages, and the

vendors of synthesis tools, often resort to idiomatic programming styles that result in

synthesizable designs.

Currently the most dominant of these idioms is that of Register-Transfer Level

(RTL) modeling, where circuits are expressed as state, implemented as registers, con-

nected by combinational circuitry that defines a transfer equation between the current

values of each register to the next value. Control in such systems are implemented as

state machines, with the registers determining the state of the system and the transfer

equations determining the next state. A significant disadvantage of RTL modeling is

that it implicitly includes the notion of a global clock coordinating the register/transfer

equations. The global clock becomes burdensome when connecting two independently-

developed components, as it necessitates globally satisfying the timing constraints of all

components, or else defining custom coordination circuitry between those components

to localize timing considerations.

In contrast, the thesis of this dissertation claims that inter-component communica-

tion should be structured asynchronously, and the communication protocol divorced

from the internal workings of the component. Using a message-passing model of con-

currency, we argue that the need for a global coordination signal based on a single clock
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is obviated. More importantly, the interaction between components can be described as

an asynchronous exchange of a sequence of messages according to a specific protocol.

The thesis expressed in this dissertation, and the implementation strategy employed

in its execution, is largely based of that of the Statically-Allocated Functional Language

(SAFL) (Sharp and Mycroft 2000; Mycroft and Sharp 2000, 2001b,a; Sharp 2004). In

this work, a functional language is as the basis for resource-aware hardware system

construction. An extension to SAFL, called SAFL+, includes imperative state and first-

class channels, much in the same way that we use imperative effects and message-based

concurrency.

The fundamental distinction between SAFL and the work described in this thesis

is that we have chosen to use monads, and monadic computations, as the basis for our

language, while the SAFL work uses an operational model for the semantics of the

language. We believe that using monads as a semantic basis provides an advantage

when validating program manipulations, as described in chapter 4, as they provide an

algebraic basis (Harrison 2006a) for relating the transformation of the programs to the

underlying semantics, eliminating the need to jump to an external semantic formalism.

1.6 Dissertation contributions and organization

The thesis of this work is that a functional language, extended with monadic ef-

fects for imperative and message-passing based concurrency, is a suitable basis

for constructing systems that will be synthesized to efficient hardware or software

fabrics.

32



To support this thesis, this dissertation makes the following contributions:

• Oread, a functional language extended with monadic imperative and message-

based concurrency effects.

• A framework for defining concurrency and communication protocols from within

Oread.

• A compilation scheme for a subset of Oread that maps to hardware using an

explicit control protocol.

• A series of source-to-source transformations that convert non-synthesizable Oread

programs to those that satisfy the synthesizable subset of the language.

• A mapping of Oread to C, an imperative language, and Pthreads, a standard li-

brary for preemptive concurrency.

The remainder of this dissertation is organized as follows:

Chapter 2 gives an overview of Oread, with an emphasis on its monadic features. In

addition to a description of the core language, we detail a general architecture for the

combination of monadic Oread components. Later chapters demonstrate the flexibility

of this architecture in two separate realizations, one in hardware and one in software.

Chapter 3 describes the compilation of a subset of Oread to hardware via the hard-

ware description language. The compilation scheme uses a small set of simple VHDL

components, described behaviorally, and generates a structural VHDL model of a Oread

program as an instantiation of those components. The resulting implementation can be

both simulated and synthesized. Chapter 4 describes the use of source-to-source pro-

gram transformations to map general Oread programs that do not adhere to the hard-

ware synthesis restriction required in chapter 3 into programs which are capable of

being synthesized.
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Chapter 5 details the compilation from Oread to C. The compilation results uti-

lize none of the more sophisticated features of C, relying on the target language more

as a high-level assembly, but with run-time support for dynamic memory allocation.

The component combination architecture, described in 2, is implemented using a small

collection of POSIX threads primitives.

Chapter 6 presents a case study using Oread in two example problems. The first

example details the design of a single component, described in Oread and mapped to

both hardware and software implementations according to the compilation schemes in

chapters 3 and 5. The second example describes the integration of multiple components,

both described in Oread, but targeting different implementation fabrics. This example

explores the suitability of Oread for system-level heterogeneous design.

The dissertation concludes in chapter 7, where we revisit the motivation for the

thesis and the suitability of the solution presented in the intervening chapters to support

the dissertation’s thesis. Finally, we identify important directions of future work that

extend the development in this dissertation.
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Chapter 2

Oread: A language for mixed-target synthesis

To exercise the thesis of this dissertation, we have defined a language, Oread, a higher-

order functional language reminiscent of ML or Haskell. Oread has a static type system,

with polymorphic types and user-defined algebraic data types. This core language is

extended with constructs for imperative state and reactive concurrency. Effects in Oread

are modeled monadically, allowing a clear delineation between the pure aspects of the

language and those aspects that use imperative or concurrency constructs. Oread has

been designed as a minimal language, with just the core features needed to demonstrate

the thesis.

This chapter introduces Oread. We discuss the motivations that drove the design

of the language and analyze how the language features present in Oread relate to the

language features highlighted in the thesis. To this end, we provide an overview of the

major structuring feature of Oread: the use of monads to encapsulate effects. Mon-

ads permeate Oread and the accompanying compilation tool-set, serving both as the

computational model for programs written in the language, as well as the structur-

ing mechanism for constructing the tool-set for processing Oread programs, including

type-checking, interpretation, and compilation to both an imperative language to target

software and VHDL to target hardware fabrics.
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In many respects, Oread can be treated as a core intermediate language that is used

in the compilation of a more full featured – or programmer-accessible – language. Nev-

ertheless, to simplify the description of the language, we define a concrete syntax that

allows programmers to write Oread programs directly. This concrete syntax is neces-

sarily spare, and does not have much of the syntactic sugar that programmers would

expect in a typical programming language. The constructs of the concrete syntax are

introduced here as they are used, with a complete specification of the grammar in ap-

pendix 7.1.

A major contribution of this dissertation is the use of a reactive monadic computa-

tion to structure concurrency within a system. Because Oread is designed as a source

language for both software and hardware targets, we have defined this concurrency ab-

straction so that it is not unnecessarily biased towards either target. The following two

chapters demonstrate the suitability of this abstraction, as we demonstrate that the same

concurrency model can be easily mapped to existing abstractions in both software, us-

ing operating system threads, and hardware, using a simple communication protocol.

However, we note that in designing system with concurrent components, it is not

feasible to assume that all components will communicate using the same protocol. To

this end, we have defined an architecture for defining interaction protocols between

components within Oread itself. This architecture allows components to be defined

using successively higher-levels of abstraction for constructing the communication and

coordination protocols between components. At the simplest level, Oread provides a

universal primitive for performing concurrent operations. At a slightly higher level,

a programmer can define specific protocols by having components generate encoded

messages and by assigning an interpretation to those messages. Finally, at an even

higher level, a programmer can define functionality which to adapt protocols, allowing

a component which behaves according to one protocol to be adapted for use in a context
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requiring a different protocol. The two higher levels of abstraction are facilitated by the

ability to define the concurrency protocols within Oread itself, using the concurrency

architecture we have developed.

The remainder of this chapter is structured as follows. First, we discuss the mo-

tivation for the design of Oread and the relationship between the Oread features and

those outlined in the thesis. This includes a description of the Oread concurrency ar-

chitecture, which details how interaction protocols are defined in the system and the

mechanism for assembling Oread components into a complete system. Next, we pro-

vide define the static and dynamic semantics of Oread. The language semantics are

presented in monadic style. In the interest of making this dissertation self-contained,

we provide a brief overview of monads.

2.1 Oread Design Motivation

2.1.1 A Functional Language

The functional subset of Oread is a strict higher-order functional language extended

with algebraic data types, similar to the second-order lambda calculus (Reynolds 1974).

Oread resembles modern functional programming languages such as Standard ML (Mil-

ner et al. 1997) and Haskell(Peyton Jones 2003). However, unlike Standard ML, Oread

is pure, without effectful operations such references and call/cc. Similarly, Oread dif-

fers from Haskell in that it has strict evaluation semantics, as opposed to Haskell’s

normal-order evaluation semantics.

Oread departs from Standard ML by disallowing effectful computation within the

functional subset. On the other hand, Oread does allow effectful computation, but

the extent of the effects are encapsulated as monadic computations. The reliance on
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monads resembles Haskell, which has used monads to great success to model effects in

a pure language (Wadler 1993; Peyton Jones 2002; Swierstra and Altenkirch 2007).

Haskell has a normal-order evaluation semantics, which arguably leads to a more

declarative style of programming (Hughes 1989). The decision to sacrifice more declar-

ative normal-order semantics for strict evaluation semantics is pragmatic. Normal-order

evaluation requires the dynamic allocation of space for function arguments that may

(or may not) eventually be evaluated. While this strategy works well on a CPU with

a significant amount of memory, it is impractical in hardware targets that require pre-

cise control over the allocation of resources, including memory allocation, and may

(as does the Oread VHDL compilation) disallow dynamic allocation. Strictness anal-

ysis (Mycroft 1980) can identify safe transformations of normal-order programs into

strict programs, yet it remains possible that some programs may not be transformable,

which would retain the need to dynamically allocate space.

This core functional language is pure, in that it does not allow side effects within

the functional subset of the language. The purity is important because it allows the safe

application of fold/unfold transformations. An unfold transformation replaces call to a

function with its definition, and conversely a fold transformation abstracts an expression

into a new function and then replaces the original occurrence of the expression with a

call to the new function.

Unfold transformations allow Oread to take advantage of the inherent parallelism

of functional languages. Rather than perform data-independent (SIMD) operations in

sequence, as may be the case on a CPU, the common portion of the computation shared

among the independent portions of the overall computation can be folded into a top-

level function. Applying that operation across a list of elements can be defined using

a higher-order function that captures the recursion behavior. Finally, the higher-order

function can be unfolded, and then the individual calls to the top-level function.
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Example: Consider a program that maps defines an inc function across a list of

elements. The List data declaration defines a polymorphic List data type, with two

constructors, Cons and Null. The map function takes a function, f, and a list, l, and

generates a new list formed by applying f to each element of the input list.

(data List [a] (Cons a (List a)) (Null))

(define (map (f (-> a b)) (l (List a)) (List b))
(case l
((Null) (Null))
((Cons x xs) (Cons (f x) (map f xs)))))

(define (inc (x Int) Int)
(+ x 1))

If both the map and the inc functions are unfolded onto a list with elements a,b,c:

(map inc (Cons a (Cons b (Cons c Null))))

The unfolded operation inlines all of the calls to map and to inc:

(Cons (+ a 1) (Cons (+ b 1) (Cons (+ c 1) Null)))

This unfolding – when performed on a program targeting hardware – will result in

a duplication of circuitry. However, each copy of the circuit can be active concurrently,

yielding a net performance gain at the expense of circuit area. If the functions be-

ing manipulated using fold/unfold transformations were not pure, then the transforms

would not be safe, because they may result in a duplication of, or reduction in, the

computational effects of the original program.

Being able to perform program manipulations is critical to target Oread specifica-

tion to both hardware and software implementations from a single source. In chapter 1

we argued that a major difference between hardware and software design is in the abil-

ity for the designer to precisely control the number of computational resources that are
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available. In software, the compiler has no choice but to use the resources offered by

the CPU, thus it will time-multiplexing data parallelism across those limited resources,

generally using a loop. On the other hand, hardware allows the designer to dictate ex-

actly how many of a given computational resource you wish to use, and incorporate

that into your circuit.

It is possible to take a pure Oread program and inline it into its primitive compo-

nents, resulting in a large combinational circuit in hardware or a large program text in

software. This is unwise from a design perspective because there is no accounting for

space or time limitations in the target model. Consequently, Oread includes two con-

structs for controlling the time and space behavior exhibited by a pure program: shared

function blocks and a parallel let expression.

An Oread program consists of a set of top-level function definitions, along with a

“main” expression that can call the defined functions. A top-level function delimits a

shared resource. In hardware, the body of the function will be implemented as a single

circuit, regardless of the number of calls to the function. If there are, in fact, multi-

ple calls to the function, the function block contains arbitration logic that will process

those calls in some undetermined sequential order. This sharing of circuitry is a space

vs. time trade-off. The extremes between complete unfolding of all calls to a function

(resulting in increased area usage) and multiplexing all calls onto a single shared block

(resulting in increased contention) can be explored using fold/unfold program trans-

formations. A designer can take a single shared function block and duplicate it, and

distribute the calls to the original function amongst the various duplicated blocks.

Example: Returning to the unfolding example from above, rather than unfold the inc

function, we can duplicate it to define two increment functions, and then map different
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calls to the various top-level definitions. The two calls to inc1 will occur sequentially

with each other, but in parallel with the call to inc2.

(define (inc1 (x Int) Int) (+ x 1))
(define (inc2 (x Int) Int) (+ x 1))

(Cons (inc1 a) (Cons (inc2 b) (Cons (inc1 c) Null)))

Second, Oread includes a let construct that introduces sequentiality and sharing

into a program. Suppose that a particular Oread expression will, when compiled to a

hardware target, result in a very long critical path. Inserting a pipeline register into the

circuit, and thus reducing that critical path, is as simple as selecting a sub-expression

and adding a named binding via a let expression. Likewise, a common sub-expression

can be factored into a single let binding. Rather than a circuit for each instance of the

sub-expression, the synthesis scheme will generate a single circuit that can be shared

among all references to that sub-expression.

The functional subset of Oread is extended with a small collection of primitive types

(integers and floating-point numbers) and operations on those primitives. This collec-

tion was selected largely because they are commonly used in implementing standard

embedded systems. The range of data types representable in Oread is not limited to

this set because the algebraic data type facilities of Oread allow a programmer to define

new types of data as well as operations upon that data.

The set of primitive types and operations in Oread can be easily extended, as long as

those operations remain pure. The design of the tool-set developed for Oread provides

additional support for extending (or contracting) the language with new primitive types

and operations by be constructed using modular monadic semantic techniques (Es-

pinosa 1995; Liang et al. 1995; Liang and Hudak 1996). The choice of primitive types

is skewed neither towards hardware or software compilation targets. For example, the
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language includes support for floating-point arithmetic, an operation that is typically

quite space-expensive to implement in hardware. On the other hand, tuple selection

and construction operations are trivial to implement in hardware yet are considerably

more complex on a CPU with a fixed word size.

2.1.2 Monadic encapsulation of effects

The ability to perform program transformations gives justification to the pure functional

subset of Oread. However, the pure functional subset of the language is simply too

restrictive to be practical for building embedded applications. This is because the pure

functional model is heavily skewed towards data-flow computation, which is a poor

abstraction when constructing control-intensive or reactive systems, both of which are

common traits of embedded systems.

We take the viewpoint that control implies a notion of state. This, taken with the in-

teraction with external entities implied by reactive components, forces Oread to include

a way to perform both stateful and reactive effects. However, we wish to add constructs

for building these sorts of computations without breaking the purity that we rely on to

justify transformations that allow us to target both hardware and software. Therefore,

we use monads to structure effectful computations.

By structuring computational effects using monads, we get a static delineation be-

tween pure operations and effectful computations that is expressed at the type level.

An effectful computation can include pure computations, but the converse is not true.

This means that the extent that transformations are valid are clearly delimited by the

monadic encapsulation of effects. The synthesis tool-set is free to transform programs

within a monadic computation, but the transformations may never escape those monad

boundaries.
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Data transformation components, such as those typically found in the example soft-

ware defined radio domain, have a standard structure. A component is a loop that

receives data from some external entity via the reactive concurrency construct, per-

forms some processing on that data, sends the data onto another component via the

reactive concurrency construct, and repeats. The component may perform several loop

iterations between receives/sends. Also, the component may carry some state across

iterations. The primary purpose of this state is to simplify the specification of control

logic.

The Oread monadic constructs are segmented into two categories. The first category

contains two constructs for performing imperative effects, and the second category has

one construct for reactive concurrency. The imperative, or state, constructs include a

get function for accessing state, and a put function for mutating the state. Both of

these functions use addressable state.

Example The stateFun function below reads a value from address 0 and uses that

value as an address to which the input parameter val is written.

(define (stateFun (val Int)
(monad [(@st (State Int Int))] Int))

(do (addr <- (get @st 0))
(put @st addr val)))

2.1.3 A monadic concurrency architecture

Oread includes a signal construct for performing reactive concurrency. This construct

takes a message and routes that message to an external entity. From the viewpoint of

a component, the outside world is accessible only via the signal construct, and can

only be affected by signaling a request. Once a computation signals a request, the
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computation will block until a response is returned from an external entity. Signaling

a request and then interpreting the response is the only way to observe the outside

world from a reactive computation, and so comprises the complete Oread concurrency

semantics within the language. These semantics leave much undefined: the content of

the request/response messages, how are the messages are interpreted, and how are they

routed between components.

Oread does not include special semantics for different types of reactive communi-

cation simply because the possible range of different inter-component communication

is boundless. As examples, the inspiration for this work used the reactive monad con-

struct to model an operating systems kernel (Harrison 2006b), while in contrast we

have defined a series of point-to-point communication behaviors that include a mail-

box, bounded FIFO, and unbounded FIFO. The basic concurrency constructs allow us

to model each of these, but the specific behavior for each communication is defined

within Oread as a collection of functions, rather than as special language constructs.

These functions are arranged according to a regular pattern, thus we have developed a

nomenclature to refer to the various elements.

First, a thread is a processing component. A thread may consist of a combination

of pure functional, imperative, and reactive expressions. The single point of interac-

tion with outside entities for a thread is via the reactive constructs. However, a thread

may interact with several different external entities, with each interaction accomplished

with a different protocol. A named interaction point for a thread is called a port. Fi-

nally, each ports is connected to a service, which is a collection of Oread functions that

implements the protocol the connected threads use.

For example, consider a component that operates in a stream processing manner:

consuming data from an input source, manipulating the data, than sending the data on

to an output sink. Figure 2.1 has two examples of this architecture. The boxes labeled
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source, transform, and sink are Oread threads. Each thread has ports, indicated

by the grayed semicircles where arrows enter and exit the thread. The rectangles la-

beled F in the top figure and Bus in the bottom are services. In the top figure, the

transform component has two ports, each of which is connected to a separate ser-

vice. In the bottom figure, the transform component has a single port, connected to

the Bus service.

source transform sinkF F

1

2

3

4

5

6

7

8

source transform sink

Bus

1

2

3

4

5

6

7

8

Figure 2.1: Example system architecture

The transmission of messages between threads and services is indicated in the figure

by the dotted arrows. The arrows are numbered to indicate the ordering of messages.

For example, in the top figure, the source will (1) issue a Send request to the F

service that includes the data it wishes to send to the transform thread. The thread

then blocks until the service (2) responds with an Ack response. The transform

component (3) issues a Receive request to the service F, and then block until F (4)
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sends a response that includes the data originally transmitted by source. The series of

messages 5,6,7,8 uses the same protocol to transfer data from transform to sink.

It is critical to note that the ordering of messages is only for expository purposes.

Because the threads source, transform, and sink are operating concurrently,

each may issue request at any time, subject the protocol restriction. Temporally, there

will be an ordering between request/response pairs: 1 comes before 2, 3 before 4, and

so on. In the Oread concurrency architecture, a request/response message pair is called

a service transaction. The logic of a thread will also dictate the ordering of service

transactions – for example, the transaction (3,4) necessarily comes before (5,6), since

it is necessary for the transform service to receive data to process before processing

it and sending it on to the sink thread.

The lower figure has all three threads connected via a single Bus service. Con-

sequently, the transform thread has a single port for communicating with the Bus

service, in contrast to the two ports in the point-to-point model with FIFO services.

Moreover, the reorganization of the system architecture requires each thread to add ad-

ditional information to the requests issued to the Bus service indicating the intended

destination for the message. In contrast, the architecture in the top diagram allows

communication addressing to be implied by the port.

The F and Bus services in the diagrams implement a given protocol. This is accom-

plished with a pair of Oread functions: a handler function that takes a request issued

by a thread and generates the appropriate response, and a scheduler function that de-

termines when a response generated by the handler can be returned to the appropriate

blocked thread. These functions can include imperative effects, which allow the service

to implement the control portion of its protocol. This can be illustrated using the top

example architecture from above. The service that handles communication between the

source and transform thread will initially be in a state waiting for a request from
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either thread. Upon receiving a request, the service invokes the handler function on the

request. If the request is from source and is a Send request, the service will store the

value included in the request and generate an Ack response. The scheduler function will

then be invoked, which will return that Ack response to the source thread. Alternatively,

if the request is a Receive request from the transform thread, the handler will note

that a receive is pending, but cannot generate a response immediately, because there is

no previous send request from the source thread. In this case, the scheduler function

will indicate that there are no pending responses to transmit to threads, and the sched-

uler will wait for the next request, which can only come from the source thread, as

the transform thread will remain blocked until the service returns a response to its

receive request.

Hence, the service implements a very simple mailbox protocol: a receive request

will cause the issuing thread to block until there has been a matching send request.

Moreover, if a thread issues two consecutive send requests, and the service does not

receive an intervening receive request, the sending thread will block on the second send

until a receive is issued. This is a degenerate case of a bounded FIFO, which would

allow an arbitrary (but fixed for a particular instance) number of sends without an in-

tervening receive, simply by using a larger imperative state for buffering sent data. The

bounded FIFO is, in turn, a specialization of an unbounded FIFO. However, the un-

bounded FIFO requires that the service be able to dynamically allocate storage, which

is typically not possible in a direct hardware implementation. This suggests a Oread

design process: first, a system is modeled as a collection of threads communicating

with each other via a given protocol. The system developer generates a service def-

inition which provides the loosest bounds on implementation, such as the unbounded

FIFO implementation of point-to-point communication, and uses that model for simu-

lation and early design testing. Then, as threads are mapped to various implementation
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targets, technology specific knowledge is used to drive the transformations of Oread

thread definitions to get implementations which can match the capabilities of the target

platform.

2.2 Oread semantics

Oread is a statically typed functional language, extended with monadic features for

imperative and concurrent effects. We define the semantics of Oread below, giving

both the static semantics and the dynamic semantics for the language. These seman-

tics are written in monadic style, with the resulting semantics, when realized in a pure

functional host language such as Haskell, being both definitional and executable speci-

fications.

2.2.1 Monads

Monads are used extensively in Oread, both in the programming model as well as in the

implementation of the tools used to process Oread programs. Viewed in another way,

Oread is simply a thin veneer used to construct monadic computations. The tool-set

we have defined then is just an interpretation of these monadic computations in either

hardware or software.

A monad is a mathematical structure which encapsulates effects. When modeled in

a functional language, a monad is a type constructor, T, paired with two monad mor-

phisms, unit :: a →T a and bind :: T a →(a →T b) →T b 1. A monadic

computation m :: T a will yield a value of type a.
1In Haskell, the language that the Oread tool-set is implemented in, unit and bind are written as

return and >>=, respectively
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Informally, the type constructor T encapsulates the effects of a given monad. The

unit morphism lifts a value into a monadic computation, without causing any effects.

The bind morphism allows computations to be sequenced, with effects from the first

computation to be propagated to the second computation. These informal properties of

unit and bind morphisms formalized in three monad laws, with the unit serving as

left- and right-identity of bind, and bind is associative.

In Oread, monadic functions are distinguished by their types. For example, the top-

level binding below defines a monadic function, f, which takes an Int parameter and

returns a computation which yields a value of type Int.

(define (f (x Int) (monad Int))
...
)

The unit monad morphism is written as return in Oread.

(define (g (x Int) (monad Int))
...
(return 1)
)

The bind morphism is written using a special do syntax. The Oread statement be-

low is interpreted, using the bind notation directly, as (bind e1 (lambda (x) e2)).

(do (v <- e1)
e2)

Oread computations are sequenced by the do notation. The following function g

calls the monadic computation f, waits for the result, binds it to the variable y, then

again calls the function f, but with the result of the first call, y.
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(define (g (x Int) (monad Int))
(do (y <- (f x))

(f y)
(return 1)))

The function g returns a constant value 1. However, the effects of the two calls to f

are propagated through an invocation of g, making it unsafe to optimize calls to g away

at compilation time.

Taken alone, the monad morphisms are largely uninteresting because they offer no

mechanism for performing effects in the computation; all bind and unit can do is lift

values into the computation or sequence existing effects. However, the monad signature

can be extended with additional non-proper morphisms, which model a particular com-

putational effect. In Oread there are special constructs for two such extensions. The

first captures the state monad, which models imperative state, and the second captures

the reactive monad, which models message-passing concurrency.

State Monad A computation that has imperative effects can be viewed a pure func-

tion that takes a state parameter s as an input and yields a pair (a,s’) as an output.

The side effects of the computation are captured in the difference between the input

state s and the output state s’. Written in Haskell, this type can be made into a monad,

State s 2.

type State s a = s → (a,s)
unit :: a → State s a
unit x = λs → (x,s)
bind :: (State s a) → (a → State s b) → State s b
bind m f = λs → let (v,s’) = m s in f v s’

The State s monad can be extended with two non-proper morphisms, get for

accessing the state, and put altering the state. The get function simply returns the
2The State monad is parametrized over the state type.
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state as the result of the computation, and the put function yields a computation which

ignores the input state and replaces it with the new state, passed as a parameter to put.

get :: State s s
get = λs → (s,s)
put :: s → State s ()
put s = λ_ → ((),s)

In Oread, these functions are primitive constructs. There are two further differences

from the get and put morphisms above. First, the Oread constructs are addressable

state. The get and put functions take an address parameter and only return (resp.

modify) the stored value at that address. Both the address and the value stored as data

in each address can be specified. In the degenerate case, the singleton Unit type can be

used for the address type, yielding equivalent behavior to the get and put morphisms

defined above.

The second difference between Oread’s treatment of the state monad and the simple

formulation defined above is that a single monadic computation can refer to multiple

independent state instances. This capability is useful for compilation targets with a non-

uniform memory architecture, such as hardware fabrics, as it allows each state element

to be mapped to a different element of the memory architecture. This model of multiple

memories can be reduced to a single memory by constructing, for a set of memories,

a single memory element with an address type that is the disjoint union of the address

types of each component memory, and likewise a data type is the disjoint union of the

data types of the constituent memories.

Example: The function f below defines a state-monadic computation which has two

memories. It takes two Int parameters, x and y and adds the value y to an accumulator

memory @count. It then stores the value y in address x of the state instance @mem.

Finally, f returns the previous value stored in @count.
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(define (f (x Int) (y Int) (monad [(@count (state Unit Int))
(@mem (state Int Int))] Int))

(do (c <- (get @count Unit))
(put @count Unit (+ c y))
(put @mem x y)
(return c)))

The parameters @count and @mem are called instances in Oread. They must be

passed to a monadic computation, such as f, when that computation is invoked. In the

Oread concrete syntax, instances are passed in square brackets.

(define (g (monad [(@count (state Unit Int))
(@mem (state Int Int))] Int))

(f 0 0 [@count @mem]))

Calling a monadic function in Oread necessitates adding that monad instance pa-

rameter to the calling function. These feature parameters are percolated up the call

graph until a top-level function is reached. At the top level, Oread monad instances

are defined and passed to the top level function in a configuration declaration, as

shown below. This configuration defines two memories @c and @m, as well as a top-level

invocation of the function g.

(configuration example
(memory @c Unit Int)
(memory @m Int Int)
(thread (g [@c @m])))

Reactive Monad The state monad models imperative effects, but within Oread all

state is local to a component, defined as a top-level thread in a configuration decla-

ration above. Inter-thread communication is modeled as a different computational ef-

fect, using the reactive monad. The model of concurrency employed is synchronous
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message-passing. When interacting with an external entity, a Oread thread will issue a

request and then block awaiting a response.

This monad is considerably more complex than the state monad, as it includes a

state monad within it. Figure 2.2 shows a definition of a React r s monad. The

React type constructor has two data constructors: the first, D, signifies a terminated

computation. The second, P, represents a suspended computation. It has two fields:

the first contains a request issued by the suspended thread, and the second represents

a continuation. That is, the remaining computation that an externally-generated entity

will pass a response on to.

A computation that is suspended may, after receiving a response, issue another re-

quest. Consequently, the co-domain of the continuation argument to the P constructor

yields another React computation. Moreover, a reactive computation may also in-

clude imperative effects. Accordingly, the co-domain of the continuation is a State

computation that generates the eventual React computation.

data React r s a = D a
| P r (r → State s (React r s a))

unit :: React r s a
unit_r x = D x
bind :: React r s a → (a → React r s b) → React r s b
bind_r (D x) f = f x
bind_r (P req k) f = P req (λrsp → bind_s (k rsp) (λv →
unit_s (bind_r v f)))

Figure 2.2: React monad

The definitions for the monad morphism bind for the React monad includes a use

of the State monad’s bind and return morphism. In the definition for the React

monad, the different morphisms are distinguished lexically by appending an _s and _r

suffix to the morphism name for the State and React monads, respectively.
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Note that bind_r occurs co-recursively in the definition of bind_r. This allows

the React monad to model co-recursive, stream-like of non-terminating computations,

of the like that are commonly found in the embedded applications that motivate the

design of Oread. The React monad has a single morphism, signal, which constructs

a monadic computation that issues a request and returns the externally-generated re-

sponse.

signal :: r → React r s r
signal req = P req (λrsp → unit_s (unit_r rsp))

The React monad also allows stateful effects, by “lifting” the get and put mor-

phisms into the React monad. This is accomplished in the style of Harrison (2006b),

using a higher-order step function. This function uses a default Step request, which

we assume is a constructor of the r message type. Furthermore, step assumes a Ack

response as part of the message type.

In practice, the compilation routines for the reactive monad in Oread do not utilize

the nested monadic structure of the React type define above. We can assume that

either there exists a constraint on the message type r that it contains Step and Ack

constructors, or adjoin these two constructors post hoc. As with the definition of the

monad morphisms, the get and putmorphisms have a suffix to identify which monad’s

get or put is being referenced.

step m = P Step (λAck → bind_s m (λv → unit_s (unit v)))
get_r = step get_s
put_r s = step (put_s s)

Example: A Oread program can intermingle state monad get and put constructs as

well as reactive monad signal invocations within a function. For example, the follow-

ing function represents a data processing element in a system. It has two ports – named
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reactive monad features parameters – as well as a memory element that accumulates

the values it has seen. It reads from one input port, by issuing a Recv request, adds the

value it receives to the accumulator element, and then sends the previously accumulated

value to a second port by issuing a Send request. Finally, the function loops.

(data Msg (Recv) (Send Int) (Val Int))
(define (process

(monad [(@acc (state Unit Int)) (@in (react Msg))
(@out (reactMsg))] Unit))

(do (cur <- (get @acc Unit))
(val <- (signal Recv))
(case val
((Val x) (do (put @acc Unit x)

(signal @out (Send cur))
(process))))))

The react features are instantiated in a configuration in the same way that a state

feature is instantiated. All requests between threads are proxied through a service el-

ement. It is this service that defines the message handling protocol for the messages

generated by associated threads.

The following processExample instantiates process as a thread. The input ports

@in and @out are associated with named services, respectively @src and @sink. A

service instantiation includes functions for handling messages by processing requests

and generating responses. The service declaration also includes a scheduler func-

tion, which allow a service attached to multiple threads to decide which threads should

receive responses for any given invocation. Although both service instantiations use

the same handler and scheduler function, the services will operate concurrently. In the

case where this system configuration is synthesized to a hardware target, the logic for

both the handler and the scheduler functions would be duplicated, one time for each

associated service.
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(configuration processExample
(memory @st Unit Int)
(service @src handler scheduler)
(service @sink handler scheduler)
(thread (process [@st @src @sink])))

Environment Monad The state and reactive monads form the core monadic features

that are exposed to a Oread programmer. However, to model the semantics of Oread a

third monad environment monad is needed. The environment monad is used to model

the computational effect of lexical state. This monad is used to define both the static

and the dynamic semantics of Oread. However, the environment monad is statically

eliminated in the compilation of Oread programs to both software and hardware, as a

metacomputation (Harrison and Kamin 2000). In a Oread program, the environment

monad is implicit in the definition and use of Oread functions.

The environment monad, parametrized over an environment type r, is simply the

type of functions r → a. Two non-proper morphisms, getEnv and withEnv, manip-

ulate the effects of the monad. The getEnv morphism accesses the environment, and

the withEnv morphism takes an environment value of type r and an computation, m,

and executes m in the given environment.

type Env r a = r → a
unit a = λ_ → a
bind m f = λr → f (m r) r

getEnv :: Env r r
getEnv = λr → r
withEnv :: r → Env r a → Env r a
withEnv e m = λr → m e
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2.2.2 Oread Semantics

Having defined the basic elements of the Oread language and three State, React, and

Environment monads, the semantics of the language can be defined. To simplify the

presentation, we use a basic grammar for the language, as shown in figure 2.3. The full

concrete syntax for Oreadcan be found in appendix 7.1.

v := x,y,z . . .
t := T User-defined types

| Int
| Real
| monad i∗t Monadic computation type
| t . . . t → t Function type
| (∗ t+) Tuple type

i := State t t State monad instance
| React t Reactive monad instance

e := n Integer literal
| f Real literal
| v Variable reference
| e op e Arithmetic operation
| e e+ Function application
| λ (v : t)+.e Function abstraction
| prj e e Tuple projection
| tuple e e+ Tuple construction
| C e∗ Constructor application
| case e of (C v∗ → e|)+ Case expression
| let (v : t)+ in e Let expression
| signal i e Reactive monad signal
| get ı e State monad get
| put i e e State monad put

op := +|− | ∗ |/| = Arithmetic operators

Figure 2.3: Oread core syntax

Figure 2.4 shows the static semantics for Oread, in judgement form. Each rule can

be read as an inference, where the conclusion on the bottom is implied the antecedents

on the top. A judgement of the form Γ : e $ t is read as “in the environment Γ, the ex-
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pression e has the type t”. The environment, Γ, maps names to types. In the type rules,

the letters s,t are meta-variables representing types, f represents monadic instances, C

represents data constructors, and T represents user-defined algebraic types.

An Oread program consists of a set of data type declarations, which introduce data

constructors, and a set of top-level function declarations. When type-checking an Oread

program, the type for each top-level declaration, whether it be a function or data con-

structor, is assumed to be in the initial environment.

Figures 2.5 and 2.6 show the dynamic semantics of Oread . The semantics are writ-

ten in monadic form, where the Oread constructs are mapped to monad – Environment,

State, and Reactive – morphisms. As these definitions make clear, Oread maps directly

to the underlying monadic forms. The constructs in figure 2.5 capture the semantics

of the pure functional subset of the language, and only utilize the Environment monad.

The semantic definitions include representations for basic arithmetic values (n for inte-

gers, f for reals), products (represented by the Prod value), values of constructed data

types (represented by the Cons value), and closures (represented by the Clos value).

Oread is lexically scoped, so the Clos value produced by the denotation of a λ expres-

sion captures the lexical environment, supplied by the Environment monad, the binding

variables, and a monadic computation representing the body of the λ expression.

2.3 Summary

Oread is a pure functional language extended with monadic constructs for imperative

state and message-passing concurrency. The pure subset of the language allows pro-

grams to be manipulated, using fold/unfold transformations, allowing a simple program

to be adapted to better utilize the computational features of the target fabric.
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VAR

Γ,x : t $ x : t

APP
Γ $ e : t0 . . . tn → s Γ $ ei : ti

Γ $ e e0 . . .en : s

ABS
Γ,v0 : t0, . . . ,vn : tn $ e : s

Γ $ λv0 : t0 . . .vn : tn.e : t0 . . . tn → s

INTOP
Γ $ e0 : Int Γ $ e1 : Int

Γ $ e0 op e1 : Int

REALOP
Γ $ e0 : Real Γ $ e1 : Real

Γ $ e0 op e1 : Real

INT

Γ $ n : Int

REAL

Γ $ f : Real

EQUALS

Γ $ e0 : t Γ $ e1 : t
Γ $ e0 = e1 : Bool

PROJECTION
Γ $ e0 : (∗ t0 . . . ti . . . tn) 0≤ i < n

Γ $prj i eo : ti

TUPLING
Γ $ e0 : t0 . . . Γ $ en : tn

Γ $tuple e0 . . .en : (∗ t0 . . . tn)

CONSTRUCTOR
Γ $C : to . . . tn → T Γ $ ei : ti

Γ $C e0 . . .en : T

CASE
Γ $ ed : td Γ $Ci : si0 . . .sin → td Γ,vi0 : si0, . . .vin : sin $ ei : tc

Γ $ case ed of {C0 v00 . . .v0n → e0| . . . |Cj v j0 . . .v jn → e j} : tc
RETURN

Γ $ e : t
Γ $ return e : monad () t

BIND
Γ $ eo : monad ( f0) t Γ,x : t $ e1 : monad ( f1)s

Γ $ bind e0 x e1 : monad ( f0, f1)s

GET
Γ $ i : State ta td Γ $ e : ta

Γ $ get i e : monad (State ta td)td

PUT
Γ $ i : State ta td Γ $ ea : ta Γ $ ed : td

Γ $ put i ea ed : monad (State ta td)td
SIGNAL

Γ $ i : React tm Γ $ e : tm
Γ $ signal i e : monad (React tm)tm

LET
Γ $ ei : ti Γ,v0 : t0, . . . ,vn : tn $ eb : tb
Γ $ let v0 : t0 = e0 . . .vn : tn = en in eb : tb

Figure 2.4: Oread static semantics
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[|v|] = getEnv >>=λρ → return ( lookup v ρ)

[|e e0 . . .en|] =

[|e|]>>=λ (Clos x0 . . .xn ρ m)→
[|e0|]>>=λv0 →
. . .
[|en|]>>=λvn → withEnv ([xi &→ vi]ρ)m

[|λx0 : tn . . .xn : tn → e|] = getEnv >>=λρ → return ( Clos x0 . . .xn ρ [|e|] )

[|e0 op e1|] = [|e0|]>>= v0 → [|e1|]>>=λv1 → return (v0 op v1)

[|n|] = return n

[| f |] = return f

[|prj i e|] = [|e|]>>=λ ( Prod v0 . . .vn)→ return vi

[|tuple e0 . . .en|] =
[|e0|]>>=λv0 →
. . .
[|en|]>>=λvn → return ( Prod v0 . . .vn)

[|C e0 . . .en|] =
[|e0|]>>=λv0 →
. . .
[|en|]>>=λvn → return( Cons C v0 . . .vn)

[|case ed of {C0 x00 . . .x0n → e0 |
. . . |
Cj x j0 . . .x jn → e j|]

=
[|dd|]>>=λ ( Cons Civ0 . . .vn)→
getEnv >>=λρ →
withEnv ([xi &→ vi]ρ)[|ei|]

[|let x0 : t0 = e0 . . .xn : tn = en in eb|] =

[|e0|]>>=λv0 →
. . .
[|en|]>>=λvn →
getEnv >>=λρ →
withEnv ([xi &→ vi]ρ)[|eb|]

Figure 2.5: Evaluation semantics of Oread
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[|return e|] = [|e|]

[|bind e0 x e1|] =
[|e0|]>>=λv→
getEnv >>=λρ →
withEnv ([x &→ v]ρ)[|e1|]

[|get i e|] =
[|i|]>>=λ inst →
[|e|]>>=λaddr→
get (inst,addr)

[|put i ea ed|] =

[|i|]>>=λ inst →
[|ea|]>>=λaddr→
[|ed|]>>=λdat →
put (inst,addr)dat

[|signal i em|] =
[|i|]>>=λ inst →
[|em|]>>=λmsg→
signal (inst,msg)

Figure 2.6: Evaluation semantics of monadic constructs

Computational effects in Oread are modeled as monads. The semantics of Oread use

three such monads: the State monad, for imperative effects; the Environment monad,

modeling lexical scope in the pure subset of the language; and the Reactive monad, used

to capture the side-effects of message-passing concurrency. To allow these effects to be

localized when implemented in specialized fabrics, monadic functions are parametrized

over monadic instances parameters.

Oread provides a concurrency framework that allows independent components,

threads, to interact via message-passing concurrency. All thread communication is

proxied through Oread services, which define the protocol through which the threads

communicate. Rather than define a fixed set of service protocols, the Oread concur-

rency architecture allows a programmer to define the service logic, as a pair of func-

tions. The handler function defines the interpretation of thread requests and gener-
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ates responses, while the scheduler function simply determines which threads have

responses pending and are ready to resume execution.
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Chapter 3

Compiling Oread to Hardware

Oread is designed to be compiled to both hardware and software targets. This chapter

details the compilation of a Oread system to VHDL, for input to downstream synthesis

tools for the chosen hardware fabric. In an unrestricted form, Oread has properties that

make it inappropriate (or impossible) to compile directly to hardware targets. Some

language features – unrestricted recursion, recursive data types, closures, and higher-

order functions – are unsuitable for hardware targets where resource usage and control

flow must be statically determined.

Rather than sacrifice language expressiveness by restricting Oread to eliminate

these features, we capitalize on an existing body of program transformations to convert

Oread programs that do not satisfy the limitations of the VHDL synthesis into programs

defined in a synthesizable subset of Oread. The synthesis subset of the language is a

first-order functional language extended with monadic constructs for imperative and

concurrency effects.

The compilation of Oread to VHDL requires a small collection of predefined VHDL

components. These components, described in detail in section 3.2, are “wired” together

by the synthesis scheme to implement Oread functionality in hardware. Although the

components are implemented as behavioral VHDL, they are fully synthesizable, as is
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the Oread synthesis output. Moreover, the choice of VHDL as a target is not crucial;

the synthesis routines can easily be adapted to generate Verilog or EDIF output.

3.1 Hardware Control Protocol

The fundamental design decision for VHDL compilation is the use of an explicit “ready”

control protocol. A Oread program compiled to VHDL consists of a collection of data

signals that hold values calculated by the program, and control signals that coordinate

the flow of values through data-transforming blocks.

Each data signal has an associated 1-bit control signal that is persistently low, except

in the situation when control exits the data-producing component. When this is the case,

the control signal associated with a data signal will be high. In the Oread compilation

schemes as implemented and described in this chapter, the control signal will pulse

high for one clock cycle, indicating that the value on the associated data signal is valid.

When a control signal is not high, the synthesis routine makes no guarantee regarding

the validity of the associated data signal. A disadvantage of this protocol is that it

may introduce redundant control signals and circuit inefficiencies. However, due to the

simplicity of the protocol, many of the inefficiencies can be safely eliminated from the

generated circuit in a separate optimization pass.

Example: Consider the following Oread fragment.

(define (f (x Int) Int) (+ x 1))
(define (g (x Int) Int)
(+ (f x) (f (+ x 1))))

The compilation scheme will generate two shared function blocks, one for each

function definition. The two calls to f within the body of g will happen simultaneously,
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yet will be serviced consecutively as they reference the same shared block function

block.

Figure 3.1 shows a graphical depiction of the resulting control and data flow graph

for the generated VHDL netlist. In the graph, control signals are shown as dashed edges

and data signals are shown as solid edges. The shared f function block is delimited by

the large rectangular block located in the middle of the graph.

Figure 3.2 shows the simulation result from executing a call (g 1). The call begins

with the sigstart signal pulsing high, indicating a call request to g. Moreover, the

sigargs signal carries the argument value 1. As the waveform shows, the value of

the data signal associated with the call, sigresult, varies across the call to g. It is

initially 0, then 3 after the (f (+ x 1)) call in the body of g has completed1, and

finally 5, the correct value of (g 1). The control signal, sigdone, associated with

the data signal sigresult, pulses high at the instant that both calls have completed,

indicating that sigresult carries valid data.

The above example demonstrates two assumptions of the control protocol. First, the

scheme requires that a call to a shared function block, indicated by the control signal

associated with the call’s data signal, will maintain the validity of the argument signal

until the function block completes the call, which could take an indefinite amount of

time. Second, it assumes that the result of a call to a shared function block will be valid

only when the call’s associated done signal, emanating from the shared function block,

is high.

For this reason, the synthesis routine inserts a register at the receiving end of a

function call that latches the function block’s result signal that is shared by all call

sites. Inserting this register has the secondary effect of ensuring that the first invariant
1The synthesis scheme makes no guarantees regarding the order that concurrent requests to the same

function block are served. Because each call is pure, the order is irrelevant both in the circuit result and
overall timing.
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f

fEnd

g

gEnd

1

ADD

NNull

CallLatchNode

1

ADD

NNull

CallLatchNode

ADD barrier

port g (in)

port g (out)

end
end

call

call

call call

returnreturn

returnreturn

end end

callcall

returnreturn

Figure 3.1: Control and data flow graph
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Figure 3.2: Ready protocol example

is maintained, as apart from calls to shared function blocks and monadic operations 2

all data signals are the result of combinational circuits. Therefore, they will not change

unless an input signal has changed. This will only occur when control flows through an

upstream sequential component. The protocol ignores combinational circuit propaga-

tion, assuming that the synthesis result is a clocked circuit which meets timing require-

ments. A programmer can perform transformations at the Oread source level to control

the timing behavior of the system.

Figure 3.3 shows the control protocol with an expanded version of the same example

in figure 3.2. For the interface to the f shared block, the signals f/args, f/cin,

f/cout, and f/dout are the call arguments (a concatenation of the arguments from

each call), call requests (a concatenation of the requests from each call), call complete

(a bitvector with control bit per call site) and call result. Moreover, for each call site

the display lists the request control signal, arguments data signal, done control signal,

and finally the result data signal.

Figure 3.3 shows a simulation of evaluating (g 1). After some preliminary test-

bench setup time, the body of the g function begins at 80ns, indicated by sigstart
2Monadic operations are equivalent to calls to shared function blocks from the point of view of the

protocol.
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Figure 3.3: Call latching example
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pulsing high. As the calls to f do not depend on any sequential components, both call

sites request a service at the 80ns time, as indicated by c1 request and c2 request

signals at the call site and the f/cin signal at the shared function block. At 120ns, the

first call has been completed, indicated by the 1 bit in the f/cout signal, and the value

of 3 on the f/dout signal. One cycle later, at 140ns, the f/dout signal is latched

the register with the output signal c1 result, and the control signal associated with

the latch, c1 done pulses high.

Throughout the time span between 80 ns, when both calls were requested simulta-

neously, and 140 ns, when the f block finishes servicing the first call, the second call

maintains the value of its arguments on signal c2 args. Following the completion of

the first call, at time 140 ns, the function block begins servicing the second call. At 160

ns, the second call is completed indicated by the other bit in the f/cout signal being

1. Moreover, the data output signal f/dout for the f function block now contains

the result of the second call; however, the output of the first call c1 result is not af-

fected as it had previously been latched. The result of the second call is latched at 180

ns and the ready signal c2 done is pulsed. Finally, the evaluation of (g 1) completes

at 200ns, with sigdone pulsing high.

A further consequence of combinational circuits only changing when upstream se-

quential components change is that the control signal associated with a combinational

circuit’s data output is equivalent to the control signal for the upstream component.

For combinational circuits with multiple inputs, the control signal is associated with

the collection of upstream components. The library of primitive VHDL components

that the Oread compilation scheme relies upon contains a Barrier component which

takes any number of these control inputs and only propagates control – by pulsing its

control output high – when every control input has pulsed high, each of which may

occur in different clock cycles.
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As an optimization, the synthesis scheme only inserts a barrier component for a

combinational component output when the combinational component’s input is con-

sumed by a sequential component. Without this optimization, a chain of combinational

components, such as would be generated by the expression (+ (+ (+ w x) y) z),

would introduce a barrier for each addition operation. As each barrier component in-

duces a 1 clock-cycle delay in its control output, this would compound to a 3-cycle

delay across the expression.

The barrier-insertion optimization diminishes the number of cycles taken to com-

plete a chained combinational circuit, but it has a degenerative effect on the clock speed

of the circuit, as it compounds combinational propagation delays. An alternative is to

balance clock speed vs. latency with a combination of barrier insertion strategies or

program transformations that induce the same effect with a single insertion strategy.

Performing the space/time trade off exploration at design time is a principal motivation

of the functional-language approach to hardware synthesis advocated by this thesis.

3.2 Primitive VHDL components

Compiling the synthesizable subset of Oread to VHDL proceeds by first generating a

control and data flow graph for the program, then generating VHDL entities and ar-

chitectures corresponding to that graph. These generated VHDL modules are structural

VHDL, which simply instantiate a series of hand-written primitive VHDL components.

The primitive components that the Oread synthesis scheme instantiates can be di-

vided along two axes, as shown in table 3.1. The horizontal axis determines if the

component is primarily used for managing the control protocol or if it used for calcu-

lating data. The vertical axis determines whether the component is combinational or

sequential, which has a significant impact on the associated control infrastructure.
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Within this taxonomy, the first group the combinational data components, such as

the arithmetic operations, tuple projection and creation, and constructor application.

The second are the combinational control components, including the split and join

components that guard control though a case expression. The barrier component, is

the only sequential control component. The remaining components are classified as

sequential data. The CallLatch component saves the value of a call to a shared function

block. The FunBlock, JumpBlock, MemBlock, and Service components that mediate

access to shared blocks.

Primitive Oread Construct Primitive Oread Construct

C
om

b +,−,∗,/ Arithmetic Join case
sig (h downto l) prj Split case
sig1&sig2&sig3 tuple,Constructor

Se
q

CallLatch Function application Barrier N/A
FunBlock Functions
JumpBlock Recursive Functions
MemBlock State instances/get, put
ServiceBlock Reactive instance/signal

Table 3.1: Oread primitive VHDL components

3.2.1 Combinational Data Components

The Oread VHDL compilation schemes utilize a variety of combinational data compo-

nents that support operations such as arithmetic, tupling and projection, and bit-vector

operations. These operations are directly implemented in VHDL without special sup-

port for the Oread control protocol.

The synthesis scheme assumes that the combinational data components can yield

valid data in a single clock cycle. For this reason, the components do not have specific

control logic – in the form of a control signal – associated with their data outputs. In-

stead, all control signals that would otherwise be used for these components are aggre-
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gated at the sequential components which utilize the data output of the combinational

components, in the form of an instantiation of a barrier sequential control component.

For many of these components, the instantiation of the data operations comes in the

form of a concurrent signal assignment:

sigDest <= sigArg0 op sigArg1;

Instead of an explicit instantiation of a data precessing component:

opInst: entity op
port map(din0 => sigArg0, din1 => sigArg1, dout => sigDest)

The advantage of this scheme is that it reduces the number of primitive VHDL com-

ponents needed to generate VHDL from a Oread program. Rather than force the Oread

synthesis tool to manually instantiate components for combinational data flow – sim-

ple wrapper entities around the same concurrent signal assignments – the compilation

scheme pushes the synthesis of the combinational circuit down the tool chain to the

VHDL synthesis tools that convert the Oread VHDL output into an FPGA net list.

The most significant drawback of this scheme is that there is no explicit connection

between the Oread synthesis properties, most importantly that all combinational data

flow components must be able to calculate output in one clock cycle, and the resulting

VHDL. An example of where this becomes a issue is in the multiplication of large

bit-width integers.

The FPGA used for the demonstration of Oread synthesis contains a limited number

of 18-bit multipliers. These components are specialized multiplier circuits that are

available in the FPGA fabric in addition to the standard collection of LUTs and flip-

flops. When mapping VHDL components to FPGA technology, the Xilinx-supplied

synthesis tools will utilize one of these 18-bit multiplier blocks when it encounters a

multiplication operation with arguments that are less than 18 bits wide.
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This scheme is sufficient as long as the inputs to the multiplication satisfy bit width

requirements, and there are a sufficient number of multiplier blocks available. The

Oread synthesis scheme does not presuppose a specific bit width for integers, and can

be updated to support arbitrary widths. However, the current tool set defaults to 16-

bit wide integers, allowing the synthesis tools to use those special purpose multiplier

blocks.

If the size of integer representations is changed to one that is greater than 18 bits, it

is no longer possible to map a Oread multiplication operation into a single 18-bit mul-

tiplier block. When the Xilinx synthesis tools discover a multiplier which exceeds the

18-bit limit in a VHDL specification, they generate a pipelined version of the multiplier,

using multiple 18-bit multiplier blocks. The pipelined multiplier, in an attempt to min-

imize the number of multiplier blocks required, inserts registers on the data path. As

a consequence, the resulting circuit will not adhere to the restriction the multiply data

component will complete in a single clock cycle. Unfortunately, because the restriction

is not explicit in the VHDL specification or otherwise communicated to the low-level

synthesis tool, the resulting circuit is incorrect with respect to the Oread ready protocol.

One mechanism for dealing with this problem is to eliminate the control indepen-

dence of the combinational data components by including cycle counts of all combina-

tional components, and inserting the proper number of delay components on the control

signal associated with the combinational data output. Each cycle delay introduced by

the VHDL to FPGA synthesis tools requires an extra 1-bit flip-flop on the control sig-

nal. Given the abundance of flip-flops available on modern FPGA technologies, this

seems a reasonable choice. However, tracking cycle delays due to technology mapping

of low-level synthesis tools requires the Oread synthesis scheme to have an intimate

understanding of how the high-level Oread constructs are mapped to low-level FPGA

components.
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The control-delay insertion scheme can be extended to account for sub-cycle timing

information. For example, the Oread synthesis routines assume that not only will a

single combinational operation be completed in a single clock cycle, but any chain of

combinational operations can also be completed in a single cycle. While this scheme is

straightforward and sound, it suffers in that it may generate an extremely long sequence

of combinational circuits, with the associated lengthy propagation delay through the

circuit. The resulting circuit may be perform poorly, since the global clock frequency

of a component is bounded by the longest combinational path through the circuit, and

possibly not even realizable. If a lengthy combinational path occurs on a control branch

that is seldom active, then it is likely that inserting a pipeline register on that path and

suffering a cycle delay will result in a net speedup as the clock speed increases for the

entire circuit.

The ability of the Oread VHDL compilation scheme to account for combinational

delay forces the schemes to become even more aware of the properties of the target

fabric. As the tools become more precise regarding timing behavior, they must take

into account not only the FPGA technology mapping generated by the downstream

synthesis tools, but also the spatial properties of the resulting circuit. Integrating this

increasingly complex timing analysis has diminishing returns, as the synthesis tools

become more technology-dependent and less able to target new fabrics. Rather than

going to extremely low-level detail, the Oread schemes currently endeavour to simply

limit the construction of obviously bad circuits by performing gross timing analysis

and inserting pipeline registers on poor paths. As long as the logic mapping adheres

to the constraint that all combinational circuits are mapped to circuits which can be

completed in a single cycle – or sequential circuits with a known number of delays, the

Oread VHDL compilation scheme will continue to yield correct functionality.
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A second issue involved in mapping components to FPGA technology arises when

resources are limited, as is the case with the number of multiplier blocks on the demon-

stration CPU, or for arithmetic operations on floating-point values. In these cases, the

design of Oread allows those components to be encapsulated as shared function blocks.

When the number of combinational components required by a Oread program exceeds

the availability of the FPGA resources, multiple instantiations of a combinational cir-

cuit can be wrapped within a single function block, and the uses of that combinational

circuits shared amongst the various occurrences of the combinational expression, which

are then converted into calls to the shared function block.

Example: Consider the multiplication of complex numbers3. A complex number

x = a+bi is represented as a tuple (tuple a b).

;; x = a + i b
;; y = c + i d
;; x*y = (a*c - b*d) + i (a*d + b*c)
(define (cmult (x (* Int Int)) (y (* Int Int)) (* Int Int))
(tuple (- (* (prj 0 x) (prj 0 y)) (* (prj 1 x) (prj 1 y)))

(+ (* (prj 0 x) (prj 1 y)) (* (prj 1 x) (prj 0 y)))))

An implementation of complex multiplication uses four multipliers. The corre-

sponding netlist, as a control and data flow graph, for this implementation can be found

in figure 3.4. As the figure shows, four independent multiplier components are gen-

erated. Moreover, because all of the multiplications are combinational and performed

in parallel, control flows immediately from the cmult function block beginning to the

end.

Alternatively, a single top-level function wrapping the multiplication operation can

be defined, and all of the previous multiplication operations replaced with a call to the
3This example only considers complex numbers with integer components. When this is relaxed to

include real-valued components, the transformation is even more crucial, since floating-point multipliers
require much greater hardware resources
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port cmult (in)

port cmult (out)

end

end

callcall

returnreturn

Figure 3.4: Complex Multiplication (Simple)

top-level function, as shown in the cmultSingle definition below. Figure 3.5 shows

the associated control and data flow graph. The rectangle in the middle represents the

shared mult function block. Because all four calls to the mult block conflict, this

circuit will take four times as long to produce data.

(define (cmultSingle (x (* Int Int)) (y (* Int Int)) (* Int Int))
(tuple (- (mult (prj 0 x) (prj 0 y)) (mult (prj 1 x) (prj 1 y)))

(+ (mult (prj 0 x) (prj 1 y)) (mult (prj 1 x) (prj 0 y)))))

(define (mult (x Int) (y Int) Int)
(* x y))

The timing cost of resource coalescing will introduce delays due to the sequential

nature of the shared function block. Moreover, the resource cost of performing this

folding of combinational circuits into sequential shared blocks includes that of a sin-

gle combinational circuit for the function body, the arbitration and multiplexing logic
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Figure 3.5: Complex Multiplication (Collapsed)
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associated with a shared function block, as well as a result register at each call site.

The resources necessary to implement this logic are plentiful on the target fabric, so

the folding transformation will sacrifice smaller, faster circuits constructed of scarce

resources for larger and slower circuits implemented using more plentiful blocks.

The minimum penalty is 2 clock cycles, the lower bound for a call to a shared

function block. However, calls may incur an additional penalty when there are other

calls that conflict – when a request for a shared function block at one call site occurs at

the same time as, or during, a different call to the same shared block.

Example: To balance the extremes of the previous two implementations of complex

multiplication, the mult function is duplicated into two separate multiplier function

blocks. The calls to mult are then distributed between the two shared function blocks.

(define (cmultDouble (x (* Int Int)) (y (* Int Int)) (* Int Int))
(tuple (- (mult1 (prj 0 x) (prj 0 y)) (mult2 (prj 1 x) (prj 1 y)))

(+ (mult1 (prj 0 x) (prj 1 y)) (mult2 (prj 1 x) (prj 0 y)))))
(define (mult1 (x Int) (y Int) Int)

(* x y))
(define (mult2 (x Int) (y Int) Int)

(* x y))

Figure 3.6 shows the corresponding graph. The two rectangles in the middle of the

graph represent the two copies of the mult function block. Assuming that the space

cost of the multiplication logic dominates the overhead of the wrapper logic, the two

function blocks service calls independently, allowing the circuit to complete in roughly

half the space and twice the time of the simple circuit, and twice the space and half the

time as the collapsed version.

The combinational data operations in Oread map to the VHDL operations shown

in table 3.1. The VHDL output of the Oread compiler uses the std_logic_arith

package, which includes a std_logic_vector type and a wide collection of synthe-
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Figure 3.6: Complex Multiplication (Balanced)
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sizable arithmetic operations. A std_logic_vector signal of the appropriate with is

declared for each expression and is used as the output for that expression.

Example: Consider the following Oread expression.

(+ (- x 1) (* y 3))

This generates a series of VHDL declarations.

signal sig0 : std_logic_vector(15 downto 0);
signal sig1 : std_logic_vector(15 downto 0);
signal sig2 : std_logic_vector(15 downto 0);

The logic of the expression is implemented as a collection of concurrent signal assign-

ments.

sig0 <= sig1 + sig2;
sig1 <= sigX - conv_std_logic_vector(1,16);
sig2 <= sigY * conv_std_logic_vector(3,16);

The sigX and sigY signals are implicitly declared in this code sample. Variables

are introduced by functions, let bindings, monadic binding, and case statements, and

the appropriate declarations and signal assignments will be generated at the point where

those constructs are compiled, rather than where they are used.

Each data output has an associated collection of control output signals. The control

output signal associated with sig0 is the union of the control signals associated with

sig1 and sig2. The control output associated with sig1 is sigX, and likewise with

sig2 associated with sigY.

The control outputs for a combinational operation are noted, although not used until

the data output for the operation is used by a sequential circuit. When a sequential node

utilize the data output from a combinational circuit, the control outputs for the combi-

nation circuit are calculated, and the set of outputs is refined by adding ancestor nodes.
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For example, in the expression (+ x (f x)), the control output associated with the

expression x is used both as a control input to the call to f, as well as to the top-level

addition. However, when searching the control output ancestry for a combinational cir-

cuit, the search ends when a sequential node, such as that generated by the call (f x),

is generated. Consequently, the control output for (+ x (f x)) will depend both on

the control output for x and the control output for (f x). If this expression were to

be used by a sequential call, e.g. (g (+ x (f x))), then the generated VHDL will

include a barrier component with inputs for both sigCtlX and sigCtlFX.

A barrier component with n inputs requires n 1-bit registers and an n-bit comparator,

so this barrier would use 2 registers. However, one of the control inputs to the barrier,

sigCtlFX, depends on the other, sigCtlx. The sigCtlFX signal is simply some

indefinite (due to f being a shared function block) delay of sigCtlx. In this case,

the control dependency of the expression (+ x (f x)) on the control output sigX

is extraneous and can be eliminated. Moreover, since the barrier component will then

only have one control input, it is no longer necessary, and can be eliminated, with the

control output dependency set for (+ x (f x)) reduced to sigCtlFX.

Much as the arithmetic and operations map to VHDL primitive operations, the tu-

pling and projection operations map to VHDL signal concatenation and slicing prim-

itives. Unlike the arithmetic primitives which operate on fixed-sized data signals, the

concatenation and slicing VHDL operations are indexed-based. Consequently the com-

pilation scheme requires Oread type information to calculate the proper indices.

The tuple-construction operation used bitvector concatenation to construct the tu-

ple. The size of the resulting bitvector is the sum of the sizes of the input arguments

to the tupling operation. Bitvector concatenation in VHDL uses no logic resources (al-

though it may utilize wiring resources), so it is generally an inexpensive operation. As

with all of the other combinational operations, the tupling operation may result in extra
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resource usage if the operation is being used by a sequential component, as it may be

necessary to generate a barrier component to handle the control output.

The inverse of a tupling operation is projection. The projection component may

require the instantiation of no data logic if the projection index is constant as in the ex-

pression (prj 2 (f x)). On the other hand, if the projection index is not constant,

e.g. (prj i (f x)), then it becomes necessary to instantiate a multiplexer for the

projection operation. Using a tuple projection when the index is not constant is com-

mon in recursive functions over n-ary products, where the tuple index is the induction

variable. A key restriction on these tuples is that the elements have homogeneous type.

Contrast this with the usage where the index is statically known: the element types can

vary, and the projection operations behave as record selection.

For the simpler (constant-index) case, consider the following example. The expres-

sion e is of type (* Int Char), and ord maps characters to their ASCII encodings.

Ints are 16 bits wide, and Chars 8 bits.

0(+ 1(prj 0 e) 2(ord 3(prj 1 e)))

The resulting VHDL includes the following declarations. The numerical suffixes

for the signal names correspond to the left-to-right ordering of the operations.

signal sig0 : std_logic_vector(15 downto 0);
signal sig1 : std_logic_vector(15 downto 0);
signal sig2 : std_logic_vector(15 downto 0);
signal sig3 : std_logic_vector(7 downto 0);

The resulting signal assignments is:

sig0 <= sig1 + sig2;
sig1 <= sig_e(15 downto 0); -- prj 0 e
sig3 <- sig_e(23 downto 16); -- prj 1 e
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In general, for a projection (prj i e) from a tuple e of type (∗T0T1. . . Tn) and

constant i will result in a VHDL signal declaration and a signal assignment. The

indices are calculated using a size function mapping Oread types to bitvector widths.

The offset index is calculated as offset = ∑i−1
n=0 size(Tn).

signal sig_p : std_logic_vector(size(T0) - 1 downto 0);
sig_p <= sig_e(size(ti) + offset - 1 downto offset);

The Oread type system requires that products with a dynamic projection index have

elements of homogeneous type. If this were not the case, it would not be possible to

generate a single type for the result of the projection.

The Oread hardware compilation scheme will instantiate a VHDL multiplier com-

ponent when a dynamic index is found in a projection. For an n-ary projection of

elements, where each element is d bits wide, d n-to-1 multiplexers will be instantiated.

The Oread synthesis library of primitive components contains a generic (n x d) multi-

plexer component that instantiates packages the individual n-to-1 multiplexer instantia-

tions into a single component. This same multiplexer circuit is used in the function and

case expression compilation schemes for multiplexing arguments from multiple call

sites and case alternatives, respectively.

A dynamic projection can be converted into a static projection by lifting the projec-

tion into a case statement. The expression (proj i e), where i is dynamic, can be

converted into the equivalent form.

(case i of
((0) (prj 0 e))
((1) (prj 1 e))
...
((k) (prj k e))) ; e is a k-ary product.

83



The final construct family compiled to combinational data logic is constructor ap-

plications. The two constructs in the sums family, case expressions and constructor

applications, are handled separately, as case expressions modify the control flow, in

terms of which alternative is activated by pulsing the alternative’s ready signal. Con-

structor applications are simply combinational circuits that concatenate the data signals

of sub-expressions in addition to adding a constructor tag.

3.2.2 Combinational Control Components

The Split and Join primitive VHDL components are used for compiling Oread case

expressions. The Split component is used at the beginning of a group of guarded case

alternatives to determine which alternative will have its control input activated. Con-

versely, the Join component is instantiated at the end of a case statement to collect the

control and data output from each alternative and propagate control from the appropri-

ate branch.

In principle, the Split component is simply a decoder. The selection input for the

Split component is the tag for the constructor appearing in the case discriminant. The

Oread synthesis routines generate a unique numerical tag for each constructor in an

algebraic data type. This tag input is used to demultiplex the discriminant’s control

output onto a collection of control signals, one for each case alternative. Because the

data signal emanating from the discriminant is valid at the same instant that the control

signal is high, this component can be implemented purely in combinational logic.

The corresponding Join component for a case expression multiplexes data and con-

trol from the various case alternatives onto a single data and control signal for the entire

case expression. As with the Split component, the selection input for the Join compo-

nent is the integer tag associated with the case discriminant. Because of the control
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protocol invariants, it is not necessary to latch the value of the discriminant’s data out-

put across the control invocation of a case alternative. The Join component consists of

a pair of multiplexers, one for the data signal and one for the control signal.

Example: Consider the following Oread program, using a case expression to guard

two function calls. This function utilizes the = operation, which generates a value of

the type Bool, also defined below.

(data Bool (True) (False))
(define (h (x Int) Int)
(case (= x 0)
((True) (inc x))
((False) (dec x))))

(define (inc (x Int) Int)
(+ x 1))

(define (dec (x Int) Int)
(- x 1))

Figure 3.7 shows the associated control and data flow graph. Control flows from the

beginning of the h function block to a Split node. Moreover, there is a data edge from

the EQUAL operation (generating a Bool) to the split node, to be used as the decoder’s

selector signal. Control then flows from the Split node to one of two Alt nodes, labeled

with the tag associated with that case alternative. In the generated VHDL, the Alt

nodes require no logic resources, but simply correspond to different elements of the

Split node’s control output port.

Control flows from each Alt node to calls to the respective f and g shared function

blocks, enclosed individually in rectangles in the diagram. Each call involves a corre-

sponding CallLatch sequential data node which latches the output of the function block.

From there, control and data flow to the Join node. The Join component multiplexes

the correct data and control signal, based on the selection value from the discriminant.
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Figure 3.7: Combinational Control
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For functions which include a recursive call guarded by a case expression, the con-

trol and data output for the recursive call are not routed to the Join node for the case

expression. Rather, those signals are routed as jump request to the enclosing shared

block. Consequently, the Join node will only contain control and data inputs for alter-

natives that are not recursive calls. In functions where there is a single alternative where

this is the case, the VHDL compilation scheme will omit the extraneous Join node, and

instead associate that alternative’s control and data output signals as the outputs for the

entire case expression.

3.2.3 Sequential Components

The set of Oread VHDL sequential primitives includes the Barrier control primitive and

a collection of sequential data primitives. Despite the name, the data primitives utilize

both the control and data signals generated by the VHDL compilation schemes.

The barrier component takes as input a collection of 1-bit control signals, and gener-

ates a 1-bit control output. The purpose of this component is to insure that a collection

of data signals – each associated with a control input – all contain valid data before

control propagates to a following sequential component.

Example: A call to a two-argument function should only be requested, by pulsing

the control input on the associated FunBlock component, when both of the argument

signals are valid. Consider the following fragment:

(define (f (x Int) (y Int) Int)
(+ x y))

(define (inc (x Int) Int) (+ x 1))

(define (g (x Int) Int)
(f (inc x) x))
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In the body of the function g, there is a call to f. The second argument to y is

immediately valid upon a call to g, yet the first argument will necessarily be delayed

because it first must pass through a call to inc, which will produce an arbitrary delay.

Consequently, the request for the call to f within the body of g will be guarded by a

barrier component.

f

inc

g

gEnd

NTuple barrier

port g (in)

port g (out)

call call

callcall

callcall

returnreturn

Figure 3.8: Barrier insertion example

Figure 3.8 shows the associated control and data flow graph. Note that the input to

the function block f has data input from a NTuple node, which simply combines the

two data input signals into a single data signal, and control input that that originates

from a barrier node.
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The barrier component is implemented as a collection of 1-bit registers, each con-

nected to a control input signal. On reset, the registers output low. When the associated

control input for a register goes high, the register outputs high. The output for each

register is connected to an n-to-1 bit gate that calculates the logical and of all of its

inputs. The 1-bit output of this gate is the control output for the barrier. Moreover, this

output is attached to the register reset of each control register, resulting in a 1-cycle

pulse when all of the registers have been latched high.

The CallLatch VHDL primitive simply stores the result of a function call. Because

function blocks are shared resources, it is necessary to save the result of a call, as it may

be invalidated by the function block servicing a subsequent call. The CallLatch prim-

itive is implemented as an n-bit register, where n is the size of the result of the called

function. Because the result register will introduce a 1-cycle delay on the function’s

result data output, the CallLatch component also contains a 1-bit register which delays

the function block’s control output associated with the call for one cycle.

Shared Blocks

The FunBlock, JumpBlock, MemBlock, and Service components all mediate access to

a shared resource. The general structure of each of these components is the same – they

all contain an arbiter which chooses one request, of possibly several active, to perform.

The block then multiplexes the data input for the chosen request onto the shared cir-

cuitry. Once this circuitry has completed, indicated by its control output pulsing high,

the block will propagate control indicating that the request has been serviced.

Figure 3.9 shows this behavior as a state machine. The block is initially in the

Wait state, awaiting requests. Upon receiving a request, the block transitions to the

Execute state, where control moves to the body of the block. Finally, in the Finish
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state, the block generates a control response for the scheduled request and transitions

back to the Wait state.

Wait Execute Finish

Figure 3.9: Shared Block State Machine

Figure 3.10 shows the shared block structure graphically. At the top is the arbiter

component. In the top-left of the arbiter is a series of 1-bit registers, one for each

incoming invocation. When an external entity issues a request to the block via a 1-bit

control signal pulse, the appropriate register will latch the request. The output of these

latches is taken collectively as a data input to a scheduler component.

The scheduler is complicated by the fact that call requests can arrive at any time,

including that period of time when the block is executing the body of the shared re-

source. Consequently, the value produced by the request latch bank may be constantly

changing. It is important that the data input to the body of the block to only change

when a new service has been scheduled.

To implement this behavior, the scheduler combines three smaller elements. The

first is an n-bit or, which produces a high output when any of the request registers are

high. The output of the or is connected to a the second sub-component which indicates

whether the body of the function is active. Initially low, the active component pulses

high for one cycle upon seeing a high output from the or; it will then remain low,

regardless of the or input, until the block’s body control output is high, resetting the
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active component. The output of the active component is used both to drive the

block body’s control input, as well as the third enc priority encoder sub-component.

It is the enc that determines which pending request is to be serviced. The output of

this enc sub-component is used as input both to an argument multiplexer, mux, in the

arbiter, as well as a control demultiplexer, found in the the block epilogue.

The argument multiplexer selects, based on the scheduler’s data output, the correct

argument data input to the block’s body. This multiplexer component is implemented

as n r-to-1 multiplexers, where n is the width of the data input for the body and r is the

static number of request inputs to the block.

The control and data outputs for the arbiter are connected to the body’s control

and data inputs, respectively. The control output for the body is connected both to the

reset input to the act component, indicating that the body invocation has completed,

as well as to a control demultiplexer, or decoder. This demux component routes the

control output to the site of the scheduled request, based upon the stored encoder output.

Moreover, the demux control output is used as an input to the request register bank,

clearing the request register.

Note that the data output of the body is not similarly demultiplexed or saved in

a register in the block’s epilogue. Rather, block assumes that this data output will

be saved at the origin of the request. Because a shared block may service several

requests consecutively, the data output for the block will only be guaranteed valid for the

clock cycle the block’s control output associated with the request is high. Compare this

with the argument input for the block, which the shared block shared block primitives

assume will remain valid for the indefinite time a request is issued until the request is

completed, even though the request control input may only be high for a single clock

cycle.
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This general architecture is used by all of the shared block structures, and mirrors

that of the FunBlock component precisely. The other components, are variations on the

theme, adding additional logic that implements the specific behavior exhibited by that

component.

JumpBlock Oread functions that contain no recursive calls instantiate FunBlock com-

ponents. However, if a function does include recursive calls, or jumps, the shared block

structure must be modified to include logic to handle those recursive calls. This com-

ponent insures that external calls are completed sequentially, implying that all recur-

sive calls that result from an external call must complete before another external call

is serviced. Consequently, the shared block structure for recursive functions, called a

JumpBlock, includes an additional component that adds extra logic for handling those

recursive calls.

This logic is similar to the arbiter logic of described in the general shared block

architecture. However, this arbiter is slightly less complicated, as it is not necessary

to handle re-entrant recursive calls. The Oread hardware compilation scheme requires

that all recursive calls are tail calls, so only one can be active at a given time.

Figure 3.11 shows the additional components to support recursive calls in hardware

functions. The main addition is on the right-hand side, where there is an additional

scheduler component and argument multiplexer. These components are connected to

control and data signals at call sites located in the body of the function. The sched-

uler component is simpler, because language restrictions disallow simultaneous jump

requests. Therefore, the active register is unnecessary. However, the control proto-

col for Oread hardware compilation requires that the function body’s arguments remain

valid across an entire call. Because the multiplexer output in the jump-handled compo-
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nent can change as control passes through the body of the function, it is necessary to

introduce a register, called JumpReg in the figure.

The JumpReg register latches the multiplexer output when a jump is requested. It

produces three outputs. The first is a jump start signal, which holds 1-cycle pulse

that is connected to the body’s control input. The other two outputs are connected

to a multiplexer, jump mux that selects between external call arguments and jump

arguments to be used in the body. The jump sel output of JumpReg is held high

(selecting the jump arguments) until it is reset, which is indicated by the body output

pulsing high.

MemBlock The Oread hardware compilation scheme represents a state monad in-

stance with a MemBlock component. As with the JumpBlock component, it is a small

modification of the general shared block structure. Figure 3.12 depicts the MemBlock

component structurally.

At the top of the diagram is an arbiter. Because of monadic sequencing, only one

request to a MemBlock component can be active at a time. Consequently, it is not

necessary to latch requests. Moreover, the arbiter has two sets of data inputs. The first

is for addresses, supplied by both get and put, and the second is for data, supplied only

by put requests. Moreover, the type of a request, whether it is get or put, is encoded

by the numbering of the request control input. Therefore, the scheduler component for

the MemBlock contains a comparator, which determines if whether the re (for get) or

we (for put) outputs are driven high.

Rather than logic generated by compiling an Oread expression, the body of the

MemBlock component has an instantiated BRAM. Because the BRAM does not com-

ply with the Oread control protocol, the MemBlock component uses the we and re

control signals to provide the control output for the MemBlock body. However, as
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reads from the BRAM require two clock cycles, it is necessary to introduce a delay to

insure that a read has completed before control is propagated from the MemBlock.

The MemBlock component is, along with the use of 18-bit multipliers, the closest

connection between the Oread hardware compilation scheme and the specific FPGA

target used in its development. However, because of the limited reliance on low-level

hardware properties in the compilation, instead relying on generic primitive blocks and

the target-independent control protocol, it is possible to adapt these schemes to new

target fabrics by modifying the primitive blocks to account for fabric-specific timing

properties, with no change to the compilation schemes.

ServiceBlock The final shared block primitive implements the service element of the

Oread concurrency structure, as described in section 2.1.3. Recall that an Oread service

utilizes both a handler for processing request messages from connected threads and gen-

erating responses, and a scheduler that routes responses back to the appropriate thread.

Both the handler and the scheduler that are used in a service are written in Oread, and

therefore are compiled using the standard Oread hardware compilation scheme. Most

importantly, these functions implement the Oread control protocol. The primary role of

the ServiceBlock is to sequence the execution of the handler and scheduler functions.

Figure 3.13 shows the ServiceBlock component, expressed as a state machine.

Much as the generic shared block, the ServiceBlock starts in the Wait state, await-

ing external requests. When a request arrives, it then transitions into the Handle state,

in which control is passed to the service’s handler function. Following the completion

of the handler, the ServiceBlock then transitions to the Sched state, where the sched-

uler function is invoked. In the diagram, this state has a transition both back to both a

Resp state and back to the Wait state.
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Wait Handle Sched Finish

Figure 3.13: ServiceBlock State Machine

The transition the ServiceBlock takes is determined by the output of the scheduler,

that indicates if there is a response ready for a blocked thread, and if so, the thread

identifier and the response message. If there is no response ready, the ServiceBlock

transitions back to the Wait state. However, if the scheduler indicates that there is a

pending response, the ServiceBlock transitions into the Resp state, where the response

is sent to the indicated thread. Note that this may be a different thread than the one

that issued the request that forced the transition from the Wait state. After routing

this response to the appropriate thread, the ServiceBlock transitions back to the Sched

state, to determine if more threads are ready.

Figure 3.14 shows the ServiceBlock component structurally. As with the other

shared blocks, it contains an arbiter that selects between active requests. There are

two major differences in this arbiter, however. The first is that a request register is reset

as soon as it is scheduled, as it is the role of the handler to ensure that the request is

eventually satisfied. Second is that the encoder output is routed connected to both the

argument mux and the handler.
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After control has passed through the handler, which produces no data output, it then

enters the scheduler, which consumes no data input. The scheduler has three data out-

puts: an act signal that indicates whether a valid response was generated, a RSP that

holds a response message, and a TID that identifies the thread the response is intended

for. The response data signal is exposed as the data output for the ServiceBlock. The

thread identity is used as a selection input to the control demultiplexer at the bottom of

the diagram. The control output of the scheduler is combined with the act signal to

determine whether the Service should begin handling another request (indicated by the

path from the scheduler to the arbiter) or invoke the scheduler again (indicated by the

path back to the control input of the scheduler).

3.3 Summary

Oread is compiled to VHDL that can in turn be synthesized to a hardware implementa-

tion fabric. The compilation scheme relies on a simple control protocol that associates

each data signal with a 1-bit control signal. The control signal is used to indicate that

the associated data signal contains a valid value. Conceptually, this protocol is asyn-

chronous, as it does not rely on precise timing to insure that the generated circuit func-

tions correctly. In practice, the compilation scheme relies on a collection of primitive

VHDL components that use synchronous logic to implement the control protocol.

This is not, however, a fundamental limitation of the protocol. The sequential prim-

itive components, consisting of the sequential control barrier and sequential data shared

block components described in this chapter can be adapted (Zhuang et al. 2002) to sup-

port multiple clock-domain implementations, which in turn enable globally-asynchronous

locally-synchronous (GALS) systems (Chapiro 1985).

100



The VHDL primitive blocks that the Oread hardware compilation scheme utilize

can be categorized in two dimensions: combinational vs. sequential, and data vs. con-

trol. The combinational data primitives, used by all of the functional subset of the lan-

guage with the exception of function calls and case expressions, are directly supported

in VHDL. Likewise, the combinational control components consist of wrappers around

basic multiplexer and demultiplexer circuits. The sequential control barrier component,

used to enforce the Oread control protocol, is implemented as a collection of 1-bit reg-

isters and an n-bit and gate. Finally, the sequential data primitives include the CallLatch

component, implemented as a pair of registers, and the shared block primitives. Each

shared block primitive consists of an arbiter circuit that mediates access to the shared

resource, a body, and a small amount of control logic.
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Chapter 4

Program Transformation and System Generation

A restricted subset of Oread can be effectively compiled into synthesizable VHDL.

The ability to compile the complete Oread language into hardware requires extensions

in two directions. First, source-to-source transformations are used to turn an otherwise

unsynthesizable Oread program into the restricted language subset. Second, the Oread

configuration construct is used to synthesize a complete system consisting of a

number of threads and services.

4.1 Oread program Transformation

When generating a hardware implementation of an Oread program, a key limitation

of the target fabric is that the program structure and resource usage must be stati-

cally determinable. It is necessary to reconcile the expressiveness of Oread with the

fabric limitations. These issues can be addressed at the program level – rather than

in tool-specific logic – by performing source-to-source transformations that transform

one Oread program into a second program which defines the same functionality but is

more amenable to a specific compilation target. Higher-order functions and dynamic
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allocation of memory resources present two challenges in compiling Oread programs

to hardware that can be addressed using program transformations.

4.1.1 Defunctionalization

In a netlist generated from a Oread program, each top-level function is compiled into

a separate shared function block. Calls are performed by placing argument values on

a data signal and pulsing a control signal indicating a call request. However, it is un-

clear how a call would pass a function as an argument. Conversely, from within a

higher-order function, the application of a function argument should make a request to

the appropriate shared function block. A difficulty arises when the higher-order func-

tion is called with different values for the function argument, because the compilation

scheme cannot statically determine to which function the request and arguments should

be routed.

Example: The following program has an increment and decrement function and an

apply* wrapper function around each. Figure 4.1 shows the resulting netlists for applyinc

and applydec.

(define (inc (x Int) Int)
(+ x 1))

(define (dec (x Int) Int)
(- x 1))

(define (applyinc (x Int) Int)
(inc x))

(define (applydec (x Int) Int)
(dec x))

The apply* functions can be captured as a single higher-order function apply func-

tion. The parameter f to apply determines which function is called.
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Figure 4.1: applyinc and applydec
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(define (apply (f (-> Int Int)) (x Int) Int)
(f x))

Figure 4.2 shows a hypothetical control and data flow graph for the apply function,

assuming that it is used in the definitions of applyinc and applydec. The impor-

tant components are encircled and labeled Split and Join, respectively. Within the

Split portion, the calls to inc and dec are performed in either-or fashion: which of

the calls is performed depends upon the function parameter f of apply. Similarly, in

the Join portion, one or the other call returns is latched, as dictated by the f parameter.

This graph resembles that generated when an Oread case expression is compiled.

In this context, rather than passing a function parameter as a first-class value, we use

a first-order tag to label each function value in the program. At each application of a

higher-order function, a case expression is generated that selects one of the possible

targets, performs the call, and returns the result. This process of converting a higher-

order program into a first-order program is well known in the programming language

community as defunctionalization (Reynolds 1998; Danvy and Nielsen 2001; Hutton

and Wright 2006). It is a whole-program transformation, as it requires knowledge of

every possible instantiation of a higher-order parameter.

Example: The apply function described above can be converted into a first-order

function using defunctionalization. Given the following higher-order program:

(define (apply (f (-> Int Int)) (x Int) Int)
(f x))

(define (applyinc (x Int) Int)
(apply inc x))

(define (applydec (x Int) Int)
(apply dec x))
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Figure 4.2: Hypothetical apply graph
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Defunctionalization produces the following first-order program.

(data FOTY_Int2_Int (FOTY_Int2_Int_C1)
(FOTY_Int2_Int_C0))

(define (dispatchFOTY_Int2_Int (var0 FOTY_Int2_Int) (var1 Int) Int)
(case var0
((FOTY_Int2_Int_C1) (dec var1))
((FOTY_Int2_Int_C0) (inc var1))))

(define (apply (f FOTY_Int2_Int) (x Int) Int)
(dispatchFOTY_Int2_Int f x))

(define (applyinc (x Int) Int)
(apply FOTY_Int2_Int_C0 x))
(define (applydec (x Int) Int)
(apply FOTY_Int2_Int_C1 x))

The defunctionalized program includes a data type FOTY_Int2_Int, represent-

ing the First Order TYpe (-> Int Int), which is the type of the parameter f in

the original apply function. Each call to apply function results in a new construc-

tor. FOTY_Int2_Int_C0 and FOTY_Int2_Int_C1 respectively correspond to calls to

apply with inc and dec. The connection between the FOTY_Int2_Int constructors

and the original functions can be found in the dispatchFOTY_Int2_Int function.

This dispatch function includes a case expression that dispatches a call to the original

function, based on the FOTY_Int2_Int encoded parameter.

Within the body of the defunctionalized apply function, the original call to the

functional parameter f has been replaced with a call to the dispatchFOTY_Int2_Int

function associated with the defunctionalized FOTY_Int2_Int type. Finally, for each

call to the defunctionalized apply, the functional argument is replaced with its first-

order FOTY_Int2_Int encoding, as found in the defunctionalized applyinc and

applydec. Figure 4.3 shows the resulting netlist.
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Figure 4.3: Defunctionalized apply
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The defunctionalization transformation is performed in a series of steps by trans-

forming the entire program. First, for each type (-> T1 ... Tn R) that occurs as

the type of a parameter in a higher-order function, create a data type for the first-

order representation of the functional type. Assume a mapping type_encode that

for each Oread type, ty, produces a name TyEnc. Second, create a top-level function

dispatch_TyEnc. Given a function type (-> T1 ... Tn R), the corresponding

dispatch function dispatch_TyEnc will have the type (-> TyEnc T1 ... Tn R).

The body of this function is a case expression, discriminated on the first parameter.

Third, for each call to a higher-order function (f e1 e2 e3), replace each func-

tional parameter to the call with a new constructor for the associated data type. Assume

a mapping fun_encode that for each functional Oread type, ty, and expression e,

produces a name EFunEnc. Using the fun_encode, add the constructor EFunEnc to

the type TyEnc and add a case alternative ((EFunEnc) e) to the dispatch_TyEnc

function. For example, if in the expression (f e1 e2 e3) the arguments e1 and e3

have functional type, then the defunctionalized form of the expression is

(f E1FunEnc e2 E3FunEnc). Within a higher-order function, the function-argument

transformation should not be performed on arguments to function applications which

themselves are higher-order parameters to the calling function.

Finally, within a higher-order function, replace each application of a higher-order

function parameterf of the form (f e1 e2 e3), with a call to the dispatch_TyEnc

function, resulting in the defunctionalized expression (dispatch_FTyEnc e1 e2 e3).

The defunctionalization transformation allows a higher-order program to be trans-

formed into a first-order program, a transformation that is critical to getting an Oread

program to compile to hardware implementations. However, the transformation as de-

scribed suffers in that it cannot correctly eliminate closures: functions which capture a

portion of their lexical environment.
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Example: Consider the addList function below that adds a value v to each element

in a list. The function constructs an anonymous function which captures the value v

that it then passes to the map function.

(define (map (f (-> Int Int)) (x (List Int)) (List Int))
(case x
((Null) (Null))
((Cons a b) (Cons (f a) (map f b)))))

(define (addList (v Int) (l (List Int)) (List Int))
(map (lambda ((k Int)) Int (+ k v)) l))

In the defunctionalization transform defined above, the captured variable v is lost.

The call to map will result in a constructor definition representing the anonymous func-

tion, but within the generated dispatch function, v appears free. Using the approach

outlined above, the incorrect defunctionalized program is shown below.

(data FOTY_Int2_Int (FOTY_Int2_Int_C0))

(define (dispatchFOTY_Int2_Int (var0 FOTY_Int2_Int) (var1 Int) Int)
(case var0
((FOTY_Int2_Int_C0) (+ var1 v)))) ;; error -- v is free

(define (map (f FOTY_Int2_Int) (x (List Int)) (List Int))
(case x
((Null) Null)
((Cons a b) (Cons (dispatchFOTY_Int2_Int f a) (map f b)))))

(define (addList (v Int) (l (List Int)) (List Int))
(map FOTY_Int2_Int_C0 l)) ;; error -- v is lost

The traditional approach to dealing with closures is to perform lambda-lifting (Johns-

son 1985), which transforms a closure into a top-level function which contains extra

arguments, one for each free variable. A similar technique, closure conversion, pack-

ages up the free variables captured by a closure into a record structure, and then adds
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that closure structure as an extra argument to the function. A small modification to the

defunctionalization algorithm subsumes both of these techniques.

In the extended defunctionalization algorithm, the method of generating construc-

tors encoding is changed so that it accounts for closure creation. First, this transforma-

tion requires a previous analysis pass that calculates, at each program point, the names

and types of free variables. Then, when defining a data constructor corresponding with

a functional parameter, these free variables are added as constructor arguments. Sec-

ond, the pattern match in the dispatch function case expression introduces bindings

for the new constructor argument.

Example: Returning to the addList function above, the previous method does not

capture the variable v. To accomplish this, the FOTY_Int2_Int_C0 constructor has an

Int parameter. Similarly, the deconstruction of the FOTY_Int2_Int_C0 introduces a

pattern variable, v.

(data FOTY_Int2_Int (FOTY_Int2_Int_C0 Int))

(define (dispatchFOTY_Int2_Int (var0 FOTY_Int2_Int) (var1 Int) Int)
(case var0
((FOTY_Int2_Int_C0 v) (+ var1 v))))

The final step of the defunctionalization transform is to replace functional parame-

ters to higher-order functions with the first-order encoding. Because the data construc-

tor encoding now account for free variables, it is necessary to supply those values when

building the first-order value. This extension is trivial, as the free variables for that

functional parameter have already been calculated – they simply need to be passed to

the constructor.
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Example: Continuing the previous example, the anonymous function parameter to

the call to map in addList function has been replaced with the data constructor

FOTY_Int2_Int_C0, which is applied to the free variable v.

(define (addList (v Int) (l (List Int)) (List Int))
(map (FOTY_Int2_Int_C0 v) l))

The augmented defunctionalization transformation allows a programmer to utilize

standard functional programming techniques, including using higher-order functions

to capture common computation patterns, to define programs and then automatically

transform those programs into a form capable of being synthesized. This ability is cru-

cial in the design of multi-target programs, as it allows a system implementer to suc-

cinctly capture the basic functional structure of a system component, then use source-

to-source transformations to allow the compiled representation of the program to take

advantage of the computational resources of the target fabric, a primary motivation of

this thesis.

4.1.2 Static Data Allocation

The defunctionalization transform handles one of the restrictions of the synthesizable

subset of Oread by converting control and data flow of a program into a statically struc-

ture. However, the transform does not eliminate the second restriction, that all resource

usage be statically determined. The approach to deal with this restriction is to perform

transformations on general – unbounded – programs to convert them into bounded ver-

sions.

Unlike the defunctionalization transformation, a total transform over whole pro-

grams guaranteed to result in first-order program, the data representation transforma-

tions are ad hoc and not guaranteed to result in programs that satisfy resource-bounds.
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Nevertheless, data transformations allow an Oread programmer to define programs that

capitalize on common functional programming idioms and then manually transform

them into synthesizable programs.

Example: Recall the map function that applies a function (supplied as a parameter)

on every element of a list and returns the resulting list. The map function uses the

recursive List data type; the recursive of this type form allows (finite) lists of any size

to be represented.

(data List [a] (Cons a (List a))
(Null))

(define (map (f (-> Int Int)) (x (List Int)) (List Int))
(case x
((Null) Null)
((Cons a b) (Cons (f a) (map f b)))))

It is not possible to statically determine the size of a given value of type List,

since for any given size, a list one element bigger can be constructed by Consing on

an additional element. However, for a fixed size list, an equivalent program can be

constructed which uses a homogeneous product representation of lists. For example, a

three-element list is represented by the type (* a a a). Given the length restriction,

the recursively defined list (Cons 1 (Cons 2 (Cons 3 Null))) is equivalent to

the fixed-size product (tuple 1 2 3).

Unfortunately, it is not possible to statically type recursive functions n-ary prod-

ucts without a type system that is considerably more sophisticated than the Oread static

semantics, such as dependent type systems (Barendregt 1992; Augustsson 1999). A de-

pendent type system allows the types to depend on values. This eliminates the typical

stratification between types – which are an static abstraction of dynamic values – and

the values that types represent. While a dependent type system is strictly more expres-
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sive than the Oread type system, that expressiveness comes at a cost. Since statically

calculated types can depend on values, and those values can be produced by any well-

typed program, then in the presence of general recursion the type checker may fail to

terminate. More restricted dependent type systems, such as Dependent ML (Xi 1998)

allow for computation at the type level, but restrict the computation to insure that type

checking terminates.

An alternative approach to dependently typed languages is to use a staged lan-

guage, such as MetaOCaml (Taha 1999) and Template Haskell (Sheard and Peyton

Jones 2002). These languages have constructs for meta-programming – programs that

generate programs. In a staged programming language, the stages of a program are

clearly delineated. A two-staged language separates a static stage, which when exe-

cuted yields a new program which is then executed as the dynamic stage. Moreover,

the static stage cannot depend on values produced by the dynamic stage. To insure

that only well-typed programs are ever executed, a generated program is type checked

following each stage.

In MetaOCaml and Template Haskell, stages are explicitly delineated via brack-

ets for constructing later stage programs and escape for moving values from an earlier

stage into a later stage. In contrast, partial evaluation (Jones et al. 1993) systems at-

tempt to automatically discriminate between static and dynamic values and to perform

all possible static reductions, generating a purely dynamic residual program. A vari-

ant of partial evaluation, type-directed partial evaluation (TDPE) uses type informa-

tion (Danvy 1996) to improve the inference of static and dynamic data, reducing the

need for explicit binding time improvements to improve residualized program (Danvy

et al. 1996).

The Oread tool set contains an implementation of TDPE, based on the work of

Sheard (1997). The data transformations shown below use this work to perform trans-
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formations. Moreover, although the Oread language does not include support for ex-

plicit staging, the design of the Oread tool set using modular monadic semantics allows

the language to be extended with staging annotations relatively easily (Weaver et al.

2007). Using this partial evaluation capability, a programmer can manually transform

data representations in Oread programs.

Example: Consider the previous example of converting a function that performs

list manipulation functions into a synthesizable function that uses fixed-size products.

Given the incMap function defined below:

(define (inc (x Int) Int)
(+ x 1))

(define (map (f (-> Int Int)) (x (List Int)) (List Int))
(case x
((Null) (Null))
((Cons a b) (Cons (f a) (map f b)))))

(define (incMap (x (List Int)) (List Int))
(map inc x)

An equivalent program can be constructed using partial evaluation by manually

constructing a list value that has elements that are the projection from a product repre-

sentation. For example, using the equivalence between the list

Cons a (Cons b (Cons c Null)) and the product (tuple a b c), specializa-

tion of the application (map inc (Cons (prj 0 p) (Cons (prj 1 p)

(Cons (prj 2 p) Null)))) – where p is a synonym for (tuple a b c) – yields

the following residual value. The applications of inc are reduced, but the additions re-

main, as they depend on the dynamic free variable p.

(Cons (+ (prj 0 p) 1) (Cons (+ (prj 1 p) 1) (Cons (+ (prj 2 p) 1) Null)))
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The variable p appears free both in the input to the specializer and the residual

program. If the components of p were defined, then the specializer would statically

reduce the the additions.

(let ((p (tuple 1 2 3)))
(map inc (Cons (prj 0 p) (Cons (prj 1 p) (Cons (prj 2 p) Null)))))

yields the residual expression:

(Cons 2 (Cons 3 (Cons 4 Null)))

Finally, the partial evaluation capability can be used to write functions that automat-

ically convert between data representations. The lstToPrd3 function, defined below,

takes a function that transforms lists and yields a function that transforms 3-ary homo-

geneous products. This function requires that the input list transformation function f

preserve the list length.

(define (lstToPrd3 (f (-> (List a) (List b))) (p (* a a a)) (* b b b))
(let ((a (prj 0 p))

(b (prj 1 p))
(c (prj 2 p)))

(case (f (Cons a (Cons b (Cons c Null))))
((Cons x xs) (case xs
((Cons y ys) (case ys
((Cons z zs) (tuple x y z)))))))))

The prodMap function uses lstToPrd3 to define a 3-ary product map.

(define (prodMap (f (-> Int Int)) (p (* Int Int Int)) (* Int Int Int))
(lstToPrd3 (lambda ((l (List Int))) (List Int) (map f l)) p))

Specializing this function yields the following residual definition, with the extrane-

ous list functions statically eliminated:

(define (prodMap (f (-> Int Int)) (p (* Int Int Int)) (* Int Int Int))
(tuple (f (prj 0 p)) (f (prj 1 p)) (f (prj 2 p))))
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The lstToPrd3 function defined above only works for lists of length 3. A simi-

lar transformation supporting lists of length 4, requires writing a lstToPrd4 function.

Staged meta-programming languages, such as MetaOCaml and Template Haskell, al-

low the definition of a general lstToPrdN function that subsumes the specific func-

tions lstToPrd1,lstToPrd2, etc.

Currently, the support for data representation transformations in Oread is limited

by tool set support. Recent work Gill and Hutton (2008) places the ad hoc transforma-

tions described informally above into a formal framework that supports provable sound

transformation of general data transformations.

4.1.3 Static Monadic Instance Resolution

The program transformations in the previous subsections focus on transforming the

pure subset of Oread to a synthesizable form. However, the presence of monad in-

stance parameters as Oread function parameters presents similar synthesis challenges.

In an invocation of a monadic morphism – get, put, and signal – the monad in-

stance reference appears to the control and data flow graph generation scheme to be the

invocation of a higher-order function with a functional parameter.

Example: Consider the following state-monadic function, which zeros the value at a

given address in a memory, which is identified as a parameter @st to zero.

(define (zero (x Int) (monad ((@st (State Int Int))) Unit))
(put @st x 0))

If zero is used with two different state monad instances, then the body of the zero

function must route the invocation of the put request to the correct instantiation of @st.
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If zero is compiled into a single shared function block, then the @st parameter is not

statically determined.

(define (t (x Int)
(monad (@st1 (State Int Int)) (@st2 (State Int Int)) Unit))

(do (zero [@st1])
(zero [@st2])))

One potential solution to this problem is to duplicate the zero function block for

each possible monad parameter instantiation, and the original calls replaced with a call

to the duplicated block. There is only one possible monad instance target for any given

monad morphism, so the data and control flow graph can be statically generated.

(define (zero1 (x Int) (monad ((@st (State Int Int))) Unit))
(put @st x 0))

(define (zero2 (x Int) (monad ((@st (State Int Int))) Unit))
(put @st x 0))

(define (t (x Int)
(monad (@st1 (State Int Int)) (@st2 (State Int Int)) Unit))

(do (zero1 [@st1])
(zero2 [@st2])))

Example: The following top-level configuration makes t into a thread. The @ all-

caps convention is used signify that @STATE1 and @STATE2 are specific named in-

stances. In the resulting program, the monad instance parameters appearing as targets

in monadic constructs are replaced with named instances.
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(configuration example
(memory @STATE2 Int Int)
(memory @STATE1 Int Int)
(thread (t 9 [@STATE1 @STATE2])))

(define (zero1 (x Int) (monad ((@st (State Int Int))) Unit))
(put @STATE1 x 0))

(define (zero2 (x Int) (monad ((@st (State Int Int))) Unit))
(put @STATE2 x 0))

(define (t (x Int) (monad (@st1 (State Int Int)) (@st2 (State Int Int)) Unit))
(do (zero1 [@STATE1])

(zero2 [@STATE2])))

Performing this expansion can lead to an explosion in generated circuit size. A

copy of a function block must be generated for each combination of monad parameters.

Moreover, the expansion is recursive, so all called functions from a duplicated call must

also be duplicated. Finally, because any invocation of a monadic operation is within a

sequential monadic thread of control, there is no parallelism gain from duplicating code,

because only one of the two invocations are ever active at the same time.

If the t function defined above were called with two different combinations of

monadic instances, then two copies of t will be generated and, in turn, four copies

of zero will be generated.

This approach runs counter to the philosophy of Oread, which uses shared function

blocks to control the number of computational resources. This limitation becomes an

issue when a function that uses a large amount of computational resources is called

with multiple instances. In this case, it may not be possible to duplicate the function

definition without exceeding the area constraints of the hardware. Instead, we want to

use the same surrounding logic, and route the get/put invocations to different instances.
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An alternative approach is to utilize the observation that monad instance parameters

are similar to function parameters, and reuse the defunctionalization technique to make

the targets of all monadic operations statically identifiable. Much as defunctionaliza-

tion is a whole-program transformation that relies on knowledge of all call sites for

a higher-order function, the monad instance transformation requires static knowledge

of all possible monad instances. The Oread configuration construct provides this

information, including a list of all memories, services, and threads that utilize those

monadic instances.

The transformation inserts the appropriate logic in monadic constructs to route re-

quests to the correct logic. As with defunctionalization, an advantage of adding this

logic via a source-to-source transformation is that it keeps more of the synthesis pro-

cess internal to Oread, rather than relying on fabric-specific support. This makes re-

targeting a new HDL or netlist format simpler, as the routing logic is implemented in

Oread, rather than for each netlist target.

The steps in the static monad instance transformation are similar to defunctional-

ization. First, for each monad instance type that that occurs as a function parameter,

generate a new data type to represent encodings of instances of that type.

Example: The following program has monadic instance parameters at two types –

(state Int Int) and (state Int Bool).
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(define (zero (addr Int) (monad [(@st (state Int Int))] Int))
(put @st addr 0))

(define (negateState (addr Int) (monad [(@st (state Int Bool))] Bool))
(do (v <- (get @st addr))
(put @st addr (not v))))

(define (xorState (a1 Int) (a2 Int) (a3 Int)
(monad [(@st (state Int Bool))] Bool))

(do (v1 <- (get @st a1))
(v2 <- (get @st a2))
(put @st a3 (xor v1 v2))))

This generates two data types representing the two types.

(data StateIntInt (...))
(data StateIntBool (...))

The second step uses a configuration declaration to populate the generated data

types with nullary constructors, one for each memory in the configuration declaration.

Example: The configuration bools defines three memories. The resulting data dec-

larations are shown below the configuration.

(configuration bools
(memory @intmem Int Int)
(memory @bmem1 Int Bool)
(memory @bmem2 Int Bool)
(thread (zero 1 [@intmem]))
(thread (negateState 0 [@bmem1]))
(thread (andState 0 1 2 [@bmem2])))

(data StateIntInt (IntMem))
(data StateIntBool (BMem1) (BMem2))

The third step is to generate dispatch functions for each instance encoding data type.

For those representing state instances, there are two functions generated - one for get

and one for put. On the other hand, the reactive instance encodings require a single
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dispatch function. Each dispatch function will perform a case analysis on the input

instance encoding, then invoke the appropriate monad morphism on that function. The

dispatch functions are named after the monad morphism that they invoke.

Example: Continuing the bools example from above, the following dispatch func-

tions are generated:

(define (getStateIntInt (enc StateIntInt) (addr Int) (monad Int))
(case enc
((IntMem) (get @intmem addr))))

(define (putStateIntInt (enc StateIntInt) (addr Int) (val Int) (monad Int))
(case enc
((IntMem) (put @intmem addr val))))

(define (getStateIntInt (enc StateIntBool) (addr Bool) (monad Int))
(case enc
((BMEM1) (get @bmem1 addr))
((BMEM2) (get @bmem2 addr))))

(define (putStateIntInt (enc StateIntBool) (addr Int) (val Bool)
(monad Int))

(case enc
((BMEM1) (put @bmem1 addr val))
((BMEM2) (put @bmem2 addr val))))

The fourth and final step is to replace occurrences of monad constructs with calls to

the appropriate dispatch function.
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Example: The dispatch functions for the bools configuration are shown below.

(define (zero (addr Int) (monad [(@st (state Int Int))] Int))
(putStateIntInt @st addr 0))

(define (negateState (addr Int) (monad [(@st (state Int Bool))] Bool))
(do (v <- (getStateIntBool @st addr))

(putStateIntBool @st addr (not v))))

(define (xorState (a1 Int) (a2 Int) (a3 Int)
(monad [(@st (state Int Bool))] Bool))

(do (v1 <- (getStateIntBool @st a1))
(v2 <- (getStateIntBool @st a2))
(putStateIntBool @st a3 (xor v1 v2))))

Creating the instance dispatch functions serializes control, since each dispatch func-

tion is a shared function block. This is not a limitation, however, because the transfor-

mation is only performed on monadic constructs, which are already serialized within

the monadic encapsulation.

This transformation requires a modification of the static type rules for Oread. This

is due to the monadic instance parameters having type (state atype dtype) or

(react msgtype). On the other hand, the dispatch functions expect a value of the

data type encoding monadic instances. This is handled in the static semantics by adding

a mapping from monadic instance type to encoding type. Moreover, the generated dis-

patch functions reference static instance names supplied by the configuration declara-

tion, which must be added to the environment.

The Oread monadic constructs are parametrized over the target monad instance,

which offers flexibility when generating hardware implementations of programs. In-

stances – whether state or reactive – can be localized, rather than requiring a single,

global instance. This allows, for example, memory resources to be instantiated indepen-

dently. However, this parametrization complicates the hardware compilation scheme,

as it makes the program control flow statically indeterminate. The adapted defunction-
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alization algorithm allows the reuse of a standard program transformation to satisfy a

critical constraint of the Oread hardware compilation schemes.

4.2 System Generation

The program transformations defined above, combined with the hardware compilation

schemes described in chapter 3, establish the foundation for compiling complete Oread

systems for hardware targets. The last remaining challenge is to define a system from a

configuration. The Oread tool set does this by constructing a collection of VHDL enti-

ties, each corresponding to an Oread thread or service, then instantiating the collection

together to form a complete system.

Figure 4.4 shows an example configuration, and figure 4.5 contains a graphical

depiction of the associated system. In the diagram, threads correspond to squares and

services correspond to diamonds. Memories are shown as circles within threads and

services. Connections between threads and services correspond to channels.

The procedure for compiling a configuration, with an associated set of top-level

bindings, to a VHDL system involves a variety of steps.

• Each thread is compiled into a VHDL block through the following steps:

1. Calculate the set of live functions – those that are referenced, directly or

indirectly, by the top-level thread function. All functions that are not live

can be discarded.

2. Perform the defunctionalization and static monad instance resolution trans-

formations, as described in section 4.1.

3. Instantiate a MemBlock component for each memory instance referenced

in the top-level thread.
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(configuration system
(memory @m1 Int Int initM1)
(memory @m2 Int Int initM2)
(memory @m3 Int Int initM3)
(memory @m4 Int Int initM4)
(memory @m5 Int Int initM5)

(service @s1 MType
; service handler

handler1
; service scheduler

sched1
initSvc1 contSvc1)

(service @s2 mType
; service handler

handler2
; service scheduler

sched2
initSvc1 contSvc1)

(thread (t1 [@m1 @s1]))
(thread (t2 [@m2 @s1 @s2]))
(thread (t3 [@m3 @s1 @s2])))

Figure 4.4: System Configuration
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Figure 4.5: System Structure

4. Generate a top-level VHDL entity representing the thread by applying the

Oread hardware compilation scheme, described in chapter 3, to the trans-

formed functions.

5. Add VHDL ports to the generated entity for each service that is referenced

by the thread. For each referenced service this will include an output request

data port, an input response data port, and 1-bit control ports associated with

each signal.

• Each Oread service is compiled to a VHDL block through the following steps.

1. Calculate the set of live functions referenced by the handler and scheduler

functions.
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2. Perform defunctionalization and static monad instance resolution transfor-

mations on the set of live functions.

3. Apply the Oread hardware compilation scheme from chapter 3 to the trans-

formed definitions, creating a top-level VHDL entity representing the ser-

vice.

4. Add VHDL ports to the generated entity for each thread. For each attached

thread this will include an input request data port, an output response data

port, and 1-bit control ports associated with each signal.

The system generation procedure defined above is complete with exception that it

does not account for memory initialization. The system compilation scheme handles

this for memories referenced by threads by generating an auxiliary top-level monadic

function definition the simply calls each initialization function in turn, then completes

with a tail-call to the function definition. The procedure is similar for service defini-

tions, except that it generates a single top-level function which calls the initialization

functions for each memory. This top-level initialization function is called for each ser-

vice at system reset.

Example: Consider the following Oread configuration fragment.

(configuration init
(memory @m1 Int Int init1)
(memory @m2 Int Bool init2)
(thread (t1 2 True [@m1 @m2]))
...)

The auxiliary function t1_top will be generated that performs memory initializa-

tion before invoking the main body of the thread.
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(define (t1_top (x Int) (y Bool)
(monad [(@mem1 (State Int Int)) (@mem2 (State Int Bool))] Unit))
(do (init1 [@mem1])

(init2 [@mem2])
(t1 2 True [@mem1 @mem2])))

4.3 Summary

The Oread compilation scheme defined in chapter 3 only operates on a restricted sub-

set of the language. One restriction is that only first-order programs can be compiled.

Using defunctionalization, a higher-order Oread program can be automatically trans-

formed into a first-order program. Moreover, by assuming the perspective that invoca-

tions of monadic constructs on parametrized instances, a slightly adapted defunctional-

ization transform can be used to eliminate dynamic instances.

Oread programs that are compiled to hardware must use static resources. This elimi-

nates the possibility of using common functional programming idioms such as recursive

types. The static semantics of Oread are too restrictive to allow automatic conversion

between functions written over recursive types to functions over fixed-sized representa-

tions of those types. Specific higher-order functions can be defined in Oread that when

partially applied, yield residualized programs that can be compiled to hardware. In con-

trast to staged programming languages like MetaOCaml and Template Haskell, there is

no support directly in the language for performing these staging transformations, so the

tool set develop relies on manual staging using tools not defined within the language.
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Chapter 5

Compiling Oread to Software

The thesis of this dissertation is that a functional language, extended with monadic con-

structs for imperative state and reactive concurrency, is a suitable basis for developing

systems that can be compiled to both hardware and software targets. In the previous

two chapters, we described the compilation of Oread to VHDL netlists.

In this chapter, we describe the process of compiling Oread to a software compu-

tational model. In many respects, this compilation task is simpler than the hardware

compilation scheme, as the language restrictions are not in place. Compiling functional

languages to stock microprocessors is a well-studied topic (Appel 1992; Jones 1992),

and a great deal of background work has focused on making the resulting programs

compile to efficient executables.

The hardware computational model presents a greater challenge for compilation, as

it places restrictions on Oread programs that allow those programs to be synthesizable.

This dissertation does not claim any new contributions with respect to compiling a

functional language to a software computational model. Rather, we seek to demonstrate

simply that a language with the features of Oread is a reasonable basis for compilation

to varied target fabrics. To this end, the compilation schemes described below may

use naive approaches that result in less efficient implementations. Nevertheless, the
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software compilation scheme serves as a foundation upon which to apply the vast body

of research on efficient compilation of functional languages.

The development in this chapter is not without novel contributions, the most impor-

tant of which is the method for compiling the Oread concurrency model, which uses

message-passing concurrency based on the reactive monad, to existing concurrency

primitives. In section 5.3, we describe a method for mapping the Oread concurrency

model to the Pthreads (IEE 2004) library, based on shared-state concurrency.

The Oread software compilation scheme has three primary components. The first is

the data model, which describes how Oread values are represented in memory. The sec-

ond component describes the mapping of Oread constructs to an imperative language.

We have chosen to target the C (ISO 1999) language for this mapping, as C is often

used as a universal assembly language. The compilation scheme doesn’t generate im-

plementations that utilize any esoteric features of C, so it is entirely reasonable that the

compilation target a different imperative language or a processor-specific instruction

set. The final component is the implementation of an Oread system as a collection of

POSIX threads. Again, this mapping utilizes Pthreads for convenience, and the map-

ping can be re-targeted towards other preemptive shared-state concurrency models.

5.1 Oread Software Data Model

Recall from section 2.2.2 that Oread programs operate over a limited set of types: inte-

gers, reals, algebraic types, products, closures (functions), and monadic instances (both

state and reactive). The data model for Oread software compilation requires a map-

ping of these types to standard software types. In fact, the data model utilizes a more

restricted set of software types.
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Integers map to the native word size of the target architecture – for example, 32 or

64-bits. Because the software compilation scheme generates C, rather than assembly,

the results are architecture agnostic in the particular bit widths. Similarly, Oread reals

are mapped to the native floating point representation. Because the compilation scheme

assumes that all floating point values are unboxed, they must also fit within the target-

specific word size. Both values of algebraic data types and products map to heap-

allocated arrays of words. A constructor for a data type with n fields will map to an

array of n + 1 pointers. The array element at position 0 in this array will contain the

integer tag associated with that constructor. An n-ary product will map to an n-element

array of pointers.

The software data model does not provide a representation for closure data struc-

tures, as the defunctionalization transformation 4.1.1 can be used to eliminate closures

from the input program. The data model represents of closures using the combina-

tion of algebraic data types and dispatch functions generated by the defunctionalization

transformation.

The final two Oread data types that must be modeled using software constructs are

state and reactive monad instances. Both of these are statically allocated structures.

For a state instance, this is simply an array of pointers. The Oread language allows

a state monad instance to have any address or data type. In the software compilation

scheme, we assume that the values of the address type can be enumerated, allowing the

compilation scheme to use native pointer arithmetic for accessing and mutating data

within a state instance. The details of the reactive instance representation is deferred to

section 5.3, as it is closely tied to the underlying concurrency implementation.

Table 5.1 summarizes the Oread to C data mapping. The mapping between Oread

type and C type is specified as T[|ty|] in the compilation scheme for the Oread expression

language shown below. It is important to note that the Oread assumes no particular au-
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Oread term Oread type C type Size
n Int int Native word width
f Real float Native word width
C i0 .. in T void** n+1
tuple i0 .. in (* t0 .. tn) void** n
@st state a b b** size(a)

Table 5.1: Oread to C data mapping

tomatic memory system. This is not because there is no need, as the resulting software

implementations will allocate liberally, a problem especially in often resource-limited

embedded environments. On the other hand, it is unlikely that any single collection

scheme will be suitable in all environments. Consequently, the current work focuses

on generating executable software – we propose that efficient use of memory resources

requires an additional research effort.

5.2 Oread Compilation Schemes

When compiling an Oread expression to C, each expression results in (i) a list of C

declarations, (ii) a list of C statements, and (iii) a value, which can either be a C iden-

tifier, an integer literal, or a floating point literal. The Oread tool set uses a Haskell

data type to represent C AST elements for declarations and statements. To simplify the

presentation of the compilation scheme, we use the C syntax directly, rather than the

intermediate AST data structure.

The compiler targets a small collection of C templates that define the structure of the

resulting C code. These templates contain variables, identifiers proceeded by a $, which

correspond to compiler-supplied syntax. For example, figure 5.2 show the template

used for an Oread top-level function declaration. Within the template contains template

variables for the function name $FUNAME, an arbitrary number of function parameters
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$xi with types $ti. Within the body of the function is a template variable $DECLS for

local declarations, whichare temporaries created by the expression, a template variable

$STMTS representing the C statements that define the logic of the function, and finally

a $VAR template variable representing the value, generally a variable name, where the

result of the function is stored by the function’s statements.

Compilation schema are written in the same monadic style as the evaluation seman-

tics from section 2.2.2. When generating the resulting declarations, statements, and

value for an Oread expression or declaration, the compilation scheme may instantiate

a template. Template instantiation is performed by macro-expanding the template vari-

ables in the template with the arguments (declarations, statements, value) supplied by

the compilation scheme.

When compiling an Oread expression with nested sub-expressions, the compilation

scheme will generate a unique temporary value for each computed expression. Each

temporary is only assigned a value one time. This behavior corresponds to the common

practice in compiler construction of initially compiling to an idealized instruction set

with an infinite number of registers, then using a separate register allocation pass to

map temporary registers to physical registers or stack locations. The Oread software

mapping defers to the C compilation scheme to perform this register allocation. To

insure names of temporaries are unique, a monadic gensym function yields a fresh

name each time it is called. The gensym function is implemented using the state monad

in the meta-language.

The C arithmetic operations are overloaded, thus it is necessary to use type informa-

tion to generate the appropriate declarations so that these operations resolve correctly.

The compilation schemes assume that the Oread type information is available for every

construct. In the compiler implementation this type information is implicitly provided

from a monadic type checker (Weaver et al. 2007).
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5.2.1 Compiling Algebraic Data Types

When compiling algebraic type declarations, the compilation scheme generates tem-

plate code for each constructor that performs the appropriate memory allocation and

copies any constructor arguments to the allocated memory. Each value carries a tag

representing the constructor in the first element of the allocated array.

Example: Consider the following data type declaration.

(data Instr (Add Int Int) (Negate Instr))

Constructor templates for Add and Negate are shown below. The Instr type is

simply a typedef for void**, and PTR a typedef for void*. Note that the template

for Foo stores the tag 0 at element 0, and the template for Negate store the tag 1.

// Template for (Foo x y)
Instr var0 = (Instr)(malloc (12)) ;

((var0) [0]) = ((PTR)(0));
((var0) [1]) = ((PTR)(x));
((var0) [2]) = ((PTR)(y));

// Template for (Negate x)
Instr var1 = (Instr)(malloc (8)) ;

((var1) [0]) = ((PTR)(1));
((var1) [1]) = ((PTR)(x));

Compiling an algebraic data type declaration simply generates a series of top-level

C function declaration. Two compilation schemes are used: the D[||] scheme compiles a

data type consisting of a collection of defined constructors, and the C[||] scheme compiles

a constructor. Although each constructor yields a new function declaration, the uses of

the function declaration can be safely inlined.
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D[| data DT = C0 t0 . . . tn| . . . |Ci t0 . . . tm|] =

C[|C0t0 . . . tn|]0DT >>=λdecls0 →
. . .
C[|Cit0 . . . tm|]iDT >>=λdeclsi →
let type =typedef void** DT in
return (type,decls0, . . . ,declsi)

C[|Cons t0 . . . tn|]tagty =

gensym>>=λ → arg0
. . .
gensym>>=λ → argn
return

( ConstructorTemplate DT= ty,N= n,
ti= T[|ti|],TAG= tag)

$DT c($t0 $v0, $t1 $v1, .. $tn $vn) {
$DT t = malloc($N+1 * sizeof(PTR));
t[0] = (PTR) $TAG;
t[1] = (PTR) $v1;
...
t[n+1] = (PTR)$vn;
return t;

}

Figure 5.1: Constructor Application Template

5.2.2 Compiling Function Declarations

Compiling a top-level Oread function declaration uses the D[||] compilation scheme to

yield a C function declaration. This declaration in turn calls an E[||] scheme, which

generates the declarations, statements, and return value for the function body. The E[||]

scheme for λ expressions takes an extra f parameter, which is the name of the function

to generate a template for. After generating unique parameter names and setting up an

environment using withEnv, the E[||] scheme recursively invokes E[||] on the body of the

lambda.
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D[|λ x0 : t0 . . .xn : tn tr → e|] f = gensym >>=λv0 →
. . .
gensym >>=λvn →
withEnv ([x0 &→ v0 . . . ,xn &→ vn))E[|e|]>>=λ (d,s,rval)→
return

FunctionTemplate(
RET= T[|tr|],FUNNAME= f ,
ti= T[|ti|],xi= vi,
DECLS= d,STMTS= s,VAL= rval),

$RET $FUNNAME($t0 $x0, ..., $tn $xn) {
$DECLS
$STMTS
return $VAL

}%$

Figure 5.2: Function Declaration Template

5.2.3 Compiling Expressions

The D[||] compilation scheme generates top-level declarations, while the E[||] scheme,

described below, defines the compilation scheme for each Oread expression. In each

case, the compilation scheme maps an Oread expression to a triple of declarations,

statements, and a value. The value can be an integer or real literal, or else a Var repre-

senting a declared temporary.

Function Applications The function application compilation scheme has three steps.

First, it invokes the compilation scheme on each function parameter. Next, it declares

a destination for a result value then constructs a C call for the declared function. Fi-

nally, it collects the declarations and statements for all parameters with the generated

136



statement. The Oread compilation procedure assumes that the input program has been

defunctionalized, all calls will be to a named top-level function. Consequently, the

result of the E[||] scheme for the called function will always be a Var.

E[|e e0 . . . en|] = E[|e0|]>>=λ (d0,s0,v0)→
. . .
E[|en|]>>=λ (dn,sn,vn)→
E[|e|]>>=λ ([], [],Var f )→
gensym >>=λ res→
let call =

(FunctionCallTemplate
DEST= res,Ai= vi
FUNNAME= f )

in return
(d0 . . .dn res,
s0 . . .sn, call ,
res)

$DEST = $FUNNAME($A0, ... , $AN);

Figure 5.3: Function Application Template

Variables Compiling an Oread variable reference simply looks up the (previously

declared) variable in the environment and returns it, generating no new declarations or

statements.

E[|v|] = getEnv >>=λρ( return ( lookup vρ))

Arithmetic Compiling Oread arithmetic operations linearizes nested operations, re-

sulting in C code that resembles three-address code, by declaring a separate temporary
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variable for each operation. Compiling integer and real literals simply returns the lit-

eral.

E[|e0 op e1|] = gensym >>=λ (Var res)→
E[|e0|]>>=λ (d0,s0,r0)→
E[|e1|]>>=λ (d1,s1,r1)→
let stmt = res = r_0 op r_1;
in return

(res,d0,d1;
s0,s1, stmt
res)

E[|n|] = return (I n)
E[| f |] = return (F f)

Tupling The tuple operation constructs a tuple by allocating memory and storing

the generated value for each tuple element. The prj operation simply performs an

array index on a previously-allocated tuple.

E[| tuple e0 . . . en|] = E[|e0|]>>=λ (d0,s0,v0)→
. . .
E[|en|]>>=λ (dn,sn,vn)→
gensym >>=λ res→
let tup =

(TupleTemplate
DEST= res,vi= vi)

in return
(d0 . . .dnres,
s0 . . .sn, tup ,
res)
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$DEST = malloc($n * sizeof(PTR));
t[0] = (PTR) $v0
t[1] = (PTR) $v1;
...
t[n] = (PTR) $vn;

Figure 5.4: Tuple Template

$DEST = $SRC[$IDX];

Figure 5.5: Projection Template

E[|pr j i e|] = E[|e|]>>=λ (d,c, Var r)→
gensym >>=λ res→
let project =

Pro jectTemplate
(SRC= r,DEST= res,IDX= i)

in return (d res,c project ,res)

Case expressions A case expression deconstructs a constructed value. In the software

data model, a constructed value is heap-allocated, with the tag for the value stored in

the first word. A case expression is compiled to a C switch statement. Each case

alternative is compiled separately using an A[||] compilation scheme, which generates

the declarations for the pattern variables, augments the environment, and compiles the

associated expression using the E[||] compilation scheme.

Within each case alternative, the bindings introduced by the pattern are mapped

to a set of local declarations. Each pattern variable within the entire case expression

corresponds to a different local variable declaration.
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E[| case ed of {A0| . . . |An}|] = E[|ed|]>>=λ (d,s,Vardis)→
gensym >>=λ res→
A[|A0|]dis>>=λ (d0,s0,Varr0)→
. . .
A[|An|]dis>>=λ (dn,sn,Varrn)→
let stmt =

CASET EMPLAT E
(DIS= dis,DECLS= d,res,d0 . . .dn
DISSTMTS= d,RET= res
SA0= s0 . . .SAN= sn
V0= r0 . . .VN= rn)

in return
(d,d0 . . .dn,
s, stmt ,
res)

A[|C x0 . . . ;xn|]dis =

gensym >>=λv0 →
. . .
gensym >>=λvn →
getEnv >>=λρ →
withEnv [x0 &→ v0, . . . ,xn &→ vn]ρ

E[|e|]0 >>=λ (decls,stmts, Var res)→
let pvars = v0= dis[1];. . . ;vn= dis[n+1];
in return

(v0 . . .vn,decls,
pvars ,stmts,
res)

Let Expressions An Oread let expression introduces local bindings in parallel. How-

ever, the let expression is not recursive, simplifying the compilation of the construct. In

the compilation scheme, each of the bindings is evaluated, the environment is extended

to include the new bindings, and the body evaluated in the extended environment.
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$DISSTMTS
switch *($DIS) {
case 0:

// Statements for the case alternatives
$SA0;
// Save the result
$RET = $V0
break;

...
case n:
// Statements for the case alternatives
$SAN;
//
$RET = $VN
break;

}

Figure 5.6: Case Template

E[|let x0 : t0 = e0 . . . xn : tn = en in eb|] = E[|e0|]>>=λ (d0,s0,v0)→

. . .

E[|en|]>>=λ (dn,sn,vn)→

getEnv >>=λρ →

withEnv [x0 &→ v0, . . . ,xn &→ vn]ρ

E[|eb|]>>=λ (d,s,v)→

return (d0, . . . ,dn,d;s0, . . . ,sn;v)

5.2.4 Compiling Monadic Forms

The Oread C software target already includes sequencing of statements and impera-

tive features, considerably simplifying the compilation of the monadic forms return,
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bind, get, and put. A return compiles the return argument, while bind compiles

the monadic actions, allocating a temporary to store the result of the first action.

E[| return x|] = E[|x|]

E[| bind e0 x e1|] =

gensym >>=λ temp→
E[|e0|]>>=λ (d0,s0,r0)→
getEnv >>=ρ
withEnv [x &→ temp]ρE[|e1|]>>=λ (d1,s1,r1)→
return (d0,d1, temp;

s0,temp =r0,s1;r1)

In the Oread software compilation scheme, a memory instance is a statically allo-

cated array of values. The software compilation scheme assumes that the address type

can be converted into the native pointer type of the target architecture. Under this as-

sumption, get and put map directly to array loads and stores. In the E[||] scheme, the

compilation of a monadic instance yields a list of declaration, statements, and a value

that is the pointer to the statically-allocated memory. Because the memory is stati-

cally allocated at system start time, the declarations and statements corresponding to

the memory instance are ignored.

E[| get i e|] = E[|i|]>>=λ (di,si,Vararr)→
E[|e|]>>=λ (d,s,addr)→
gensym >>=λ temp→
return (d;s,temp = arr[addr];;temp)

E[| put i ea ed|] = E[|i|]>>=λ (di,si,Vararr)→
E[|e|]>>=λ (da,sa,addr)→
E[|e|]>>=λ (dd,sd,dat)→
return (da,dd;sa,sd,arr[addr]=dat;; temp)
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5.3 Oread Concurrency Model Compilation

The E[||] compilation scheme generates a series of C declarations from an Oread pro-

gram. It does not provide for combining those functions into an executable system,

based on an Oread configuration. In this section, we describe a method for mapping the

Oread concurrency architecture to the POSIX constructs, a shared memory threading

library.

In the Oread to POSIX threads mapping, Oread threads are mapped to Pthreads

threads. The Oread service definitions are mapped to a C data structure that contains

the functions for the Oread service handler and scheduler in addition to a Pthreads mu-

tex and a series of condition variables for controlling atomic access to the service. In the

Oread Pthreads mapping, services are not spawned to Pthreads threads. Rather, when

an Oread user thread (each mapped to a separate Pthreads thread) it obtains exclusive

access, by locking a Pthreads mutex, to the service state until the request handler and

scheduler have been invoked. Because a service may not immediately produce a re-

sponse for the requesting thread, the mapping uses a condition variable to signal to the

requesting thread a response is pending.

Figure 5.7 shows the C representation of an Oread service. The mutex is a single

pthread_mutex_t used to control serialize access to the service user threads. Fol-

lowing this is a threadResponse array containing Oread values for thread responses,

one per thread attached to the service. When a service schedules a request, it will place

the response in the appropriate position of the threadResponse array. Moreover, the

service will also signal to the thread that the response is available using the respective

element of the threadResponseActive array, which contains a Pthreads condition

variable for each attached thread.
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The threadResponse and threadResponseActive arrays are integer indexed.

A Pthreads thread has a unique thread identifier assigned to it by the library, but there

is no guarantee that the Pthreads identifier will correspond to an appropriate index into

the threadResponse and threadResponseActive arrays. Therefore, the Service

data structure maintains the index4Pthread array, which provides the mapping from

Pthreads identifier to Oread identifier. To simplify the initialization of a Pthreads-

based Oread system, the thread identifier mapping is constructed dynamically, using

the bounds established by the numThreads and allocatedIndices fields of the

Service struct.

The ServiceInterface data structure contains a serviceMemory field, which

is an Oread state monad instance representation local to the service. Finally, the service

structure contains function pointers for the associated initialization function handlerFn

for the local memory, the service handler (handlerFn), and the scheduler (schedulerFn).

The ServiceInterface is passed as a monadic instance parameter to threads.

The Oread run-time system contains a signal function that takes a ServiceInterface

instance and a message and executes the handler and scheduler in turn, using the mutex

and the condition variables of the ServiceInterface parameter.

The control flow of this signal function is the same as that of the ServiceBlock

state machine in figure 3.13. While the ServiceBlock VHDL component that imple-

mented that state machine used the Oread control protocol to ensure exclusive access to

the ServiceBlock, the signalC function uses Pthreads. Figure 5.8 shows the definition

of the run-time signal function.

The signal function first performs the Pthreads thread id to Oread thread id map-

ping using the serviceIndexForThread function. It then locks the mutex for the

service and calls the handler function. After the handler has returned, the signal

function enters a loop, where it repeatedly invokes the scheduler function there is no
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typedef struct {
// mutex makes service access atomic
pthread_mutex_t* mutex;
DLANG_PTR threadResponse;

pthread_cond_t** threadResponseActive;

// Pthreads thread id to Oread thread id
int numThreads;
pthread_t* index4Pthread;
int allocatedIndexes;

// Service specific data.
DLANG_PTR serviceMemory;

// Unit initFn(int numThreads, DLANG_PTR serviceState)
DLANG_Unit (*initFn)(int, DLANG_PTR);

// Unit handlerFn(int threadId, int chan,
// DLANG_PTR msg, DLANG_PTR serviceState)
DLANG_Unit (*handlerFn)(int, int, DLANG_PTR, DLANG_PTR);

// schedulerFn(int dummy, DLANG_PTR serviceState)
returns Maybe (AThread(threadId, msg))
DLANG_PTR (*schedulerFn)(int, DLANG_PTR);

} ServiceInterface;

Figure 5.7: Service Structure

145



responses are generated. The result of the scheduler function is an Oread Maybe type –

indicating if there is (Just (tuple tid msg) or is not (Nothing) pending.1 When-

ever a response is ready, the condition variable associated with the indicated thread is

signaled, and the loop repeats.

After the scheduler indicates that no responses are ready, the loop terminates. At

this point, the requesting thread then blocks on its condition variable. Due to the se-

mantics of Pthreads condition variables, it is necessary to check to see if the value is not

NULL, indicating that the scheduler loop has already signaled the condition variable

for that thread.

The call to pthread_cond_wait will unlock the service mutex, thus allowing

other threads to issue requests. This call will not return until another thread’s invocation

of the signal function results in the current thread’s condition variable being called

with pthread_cond_signal. However, after the call to pthread_cond_wait re-

turns, the signal function copies the generated response for the current thread, resets

the response field, 2 unlocks the mutex 3, and returns the generated response.

5.4 Summary

Oread can be compiled to C by utilizing a small collection of C templates, each cor-

responding to an Oread construct. The compilation of an expression yields a series of

declarations, statements, and a value. The compilation scheme allocates a new tempo-
1The code within this loop depends closely on the data representation of the Maybe type. Although

simple to change, it presents a brittle connection between the run-time and the compiler.
2The Oread concurrency semantics prevent a race condition between the invocations of signal,

because it is not possible for a thread to have two pending requests at any given time, and there is still
one request outstanding until signal returns.

3This unlock is necessary if the thread reached this point without calling pthread_cond_wait,
which automatically unlocks the mutex. If another thread has already obtained the mutex, the call to
unlock will fail safely but silently.
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DLANG_PTR signal(DLANG_PTR serviceInterface, DLANG_PTR msg) {
int isActive;
ServiceInterface *si = (ServiceInterface *)serviceInterface;

// Capture the threadId of the calling thread, as a unique identifier.
int threadId = serviceIndexForThread(si);

// Lock the mutex to serialize access to the handler and scheduler
pthread_mutex_lock (si->mutex);
si->handlerFn(threadId, msg, si->serviceMemory);

// Repeatedly invoke the scheduler until no new responses are ready
do {
DLANG_PTR nextThread = si->schedulerFn(dummy, si->serviceMemory);
switch ((int)((nextThread) [0]))

{case 0 : // Nothing ready to run
{isActive = 0; break;}

case 1 : // A response is ready
{DLANG_PTR var3 = (DLANG_PTR)((nextThread) [1]) ;
{switch ((int)((var3) [0]))

{case 0 :
{int tid = (int)((var3) [1]) ;
DLANG_PTR x = (DLANG_PTR)((var3) [2]) ;
si->threadResponse[tid] = x;
pthread_cond_signal(si->threadResponseActive[tid]);
isActive=1; break;}}}

break;}}
} while (isActive);
// Block waiting on a response. pthread_cond_wait unlocks the mutex.
while (si->threadResponse[threadId] == NULL) {

pthread_cond_wait (si->threadResponseActive[threadId], si->mutex);
}

DLANG_PTR response = si->threadResponse[threadId];
si->threadResponse[threadId] = NULL;
// Unlock the mutex, in case pthread_cond_wait was not called.
pthread_mutex_unlock (si->mutex);
return response;

}

Figure 5.8: Run-time signal function
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rary to hold intermediate values, relying on the downstream C compiler to map those

temporaries to registers or stack locations.

The state monadic features of Oread map directly to the imperative features of C.

The concurrency features, on the other hand, require additional compilation and run-

time effort, as the C does not provide a native threading capability. We defined a

mapping from the Oread signal construct to the standard POSIX Pthreads library,

which uses a shared-state model of concurrency. The mapping uses standard concur-

rency control constructs such as mutexes and condition variables, but does not use any

Pthreads-specific features, allowing the Oread compilation scheme to be mapped to

similar shared-state concurrency models.
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Chapter 6

Case Study: Software Defined Radio

The target application domain for Oread is software defined radio (SDR) synthesis.

Software defined radio is an approach to constructing radios that allows a common radio

platform, with a variety of computational resources, to be quickly re-targeted to meet

changing application demands. Because the radio signal processing is implemented in

software, or alternatively, in a digital hardware substrate like FPGA, the radio process-

ing components is implemented using digital signal processing techniques, rather than

analog hardware components.

A typical SDR platform, such as GNURadio (Blossom 2004) will contain an ana-

log radio frequency (RF) front-end that handles receive and transmit of modulated data.

The operating frequency of the RF front-end is very high, often in the gigahertz band.

Consequently, it is necessary to perform a frequency conversion via digital sampling

and down-conversion to shift the signal to a lower intermediate frequency (IF). The

bandwidth of the digital IF signal is typically low enough to allow digital processing

using specialized hardware, but is still generally too high to be processed in software.

Thus, the IF signal is digitally down-sampled to yield a base band signal, which is capa-

ble of being processed using software. Figure 6.1 shows this configuration graphically.
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The flow described above, from RF to IF to base band, is performed on the receive side

of the radio; the inverse flow is used in transmission.

RF IF Baseband

Analog

Hardware

Digital

Hardware

Software

Rx

Tx

Figure 6.1: SDR configuration

The capability of Oread to compile a design to both hardware and software is impor-

tant in the SDR domain because potential platforms include both hardware and software

targets. A given radio waveform may include analog requirements, such as operating

frequency and modulation scheme; signal integrity requirements, implemented using

error detection and correction; confidentiality requirements, implemented using cryp-

tographic techniques; and application-level protocol requirements. These requirements

may be altered due to changing application demands or due to changing platform capa-

bilities.

To satisfy the changing application requirements, it may be necessary to re-target

a given component from hardware to software, or vice versa. Oread is designed to

minimize the engineering effort needed when performing implementation re-targeting.

Components are encapsulated as Oread threads which can be compiled to either a soft-

ware target or a hardware target. Inter-component communication is performed using

the Oread message-passing concurrency model, divorcing the component implementa-

tion from low-level fabric details, such as timing.
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To demonstrate this ability, we use Oread to define a common error correction com-

ponent based on Hamming codes (Hamming 1950). A Hamming coding scheme is a

linear error correction scheme that allows the detection of transmission errors with two

erroneous bits, and correction of transmission errors with a single erroneous bit.

An error-correction component such as a Hamming encoder or decoder is often

included as part of a pipeline of digital signal processing components that may include

other components like compression and encryption. We define an Oread service to

allow two such components to communicate using a FIFO communication scheme. The

FIFO scheme allows the system components to abstract away from waveform-specific

details, such as the data bit-rates consumed and produced by each component, further

simplifying development of re-targetable radio components.

6.1 Hamming Encoding

The Hamming encoding scheme allows for the detection and correction of transmission

errors that result in inverted bits in the received signal. The encoding scheme calculates

a number of parity bits from the word to transmit, then transmits those parity bits in-

terleaved with the original word. When received, the parity bits are separated from the

data bits, the parity calculation is performed, and the parity bits calculated by the re-

ceiver are compared with the received parity bits. This comparison will reveal one-bit

errors and allow those errors to be corrected. Moreover, the comparison will be able to

detect two-bit errors, although it will be unable to correct the error.

Figure 6.2 shows the Hamming coding scheme graphically. At the top of the figure

is a representation of the data word to transmit. Each box corresponds to a single bit;

the bits are numbered starting at index 1. The bottom figure shows the transmitted

word with parity bits, shaded gray, included. The arrows from the data bits to parity
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bits indicate the data bits that contribute to each parity bit. The bit index scheme for a

parity bit n is to drop the first n− 1 data bits, take the next n bits, drop n bits, and so

on. Rather than treat the entire data input as a single stream of bits, a hamming encoder

will generally break the input stream into a fixed word size of w bits, and restart the

encoding after processing every w bits. This eliminates the need to receive the entire

stream before beginning the parity calculation.
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Figure 6.2: Hamming encoding scheme

As the graphical representation of the coding scheme exhibits, there is a great deal

of data parallelism in the parity bit calculations. For example, each parity bit can be

calculated using a separate circuit, offering a maximal amount of parallelism, but also

consuming the most computational resources as the parity of n bits requires n−1 XOR

operations. Alternatively, the parity calculations can be cascaded. Every group of 2n

bits in a parity bit n block consists of 2n−1 bits not factored into the previous parity

bit block, and then 2n−1 bits that are calculated by the previous parity bit. Using this

structure in hardware would allow for a significant reduction in circuit resources, while
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adding a small amount of timing overhead, as the calculation of parity bits are cascaded.

Finally, a purely software implementation of the coding scheme on a CPU with a single

XOR ALU operation may calculate each parity bit individually, without sharing the

results of prior parity bits, sacrificing the maximal amount of time for reduced resource

usage.

To allow a system designer to target each of these different configurations, we use

a generic Hamming encoder component. Encoder input data is defined as a list of bits

and the encoding is performed in three parts. First, generate the input bit indices for

each parity bit. Second, calculate the parity bits by folding an xor function over each

collection of bits. Finally, combine the data bits and the parity bits into a transmittable

bitvector.

The big function defines the index generation function. Given an input bitvector

numbits wide and a parity bit index i, the resulting list contains the indices for that

parity bit. The big function uses a library of functions such as map and enumFromTo.

The map function will apply a function to each element in a list, while enumFromTo

will generate the sequence of integers between its two arguments as a list.

(define (big (numbits Int) (i Int) (List Int))
(let ((stepsize (exp 2 i)))
(let ((numtake (/ stepsize 2))

(maxindex (+ numbits (+ (ceilingLog2 numbits) 1))))
(let ((numsteps (+ 1 (/ (+ maxindex numtake) stepsize))))

(tail
(flatten
(map (lambda ((step Int)) (List Int)

(map (lambda ((offset Int)) Int
(+ (- (* step stepsize) numtake) offset))

(enumFromTo 0 (- numtake 1))))
(enumFromTo 1 numsteps))))))))
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Example: Calling (big 32 2) generates the bit indices for the second parity bit.

(Cons 3 (Cons 6 (Cons 7 (Cons 10 (Cons 11 (Cons 14 (Cons 15 (Cons 18
(Cons 19 (Cons 22 (Cons 23 (Cons 26 (Cons 27 (Cons 30 (Cons 31 (Cons 34
(Cons 35 (Cons 38 (Cons 39 (Cons 42 (Cons 43 Null)))))))))))))))))))))

The big function yields the bit indices for a single parity bit. However, these indices

are into the resulting encoded word, which includes parity bits. Thus, the indices are

adjusted by subtracting out the number of parity bits prior to each index, yielding an

index of a data bit into the original bitvector. Moreover, indices that are outside the

range of the word size are eliminated using the filter function.

; adjust x = x - (log2int x)
(define (adjust (x Int) Int) (- x (ceilingLog2 x)))

(define (inputBIG (numbits Int) (i Int) (List Int))
(filter (lambda ((x Int)) Bool (lessthaneq x numbits))

(map adjust (big numbits i))))

The inputBig generates indices into the original data vector that each parity bit

will be calculated from. The parity function itself is calculated by performing an accu-

mulating fold (foldl) over the bits at those indices.

(data Bit (Low) (High))

(define (parity (l (List Bit)) Bit)
(foldl xorb Low l))

(define (xorb (a Bit) (b Bit) Bit)
(case a
((High) (notb b))
((Low) b)))

(define (notb (a Bit) Bit)
(case a
((High) Low)
((Low) High)))
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Finally, the Hamming encoding operation for an entire bitvector is defined by map-

ping the parity function over each set of indices generated by the inputBIG function.

To simplify the presentation, the encode function simply appends the parity bits to the

original bitvector, rather than interleaving those parity bits as shown in the graphical

representation of the Hamming encoder in figure 6.2.

(define (encode (bv (List Bit)) (List Bit))
(let ((len (length bv)))
(let ((indices (map (lambda ((i Int)) (List Int) (inputBIG len i))

(enumFromTo 1 (+ 1 (ceilingLog2 len))))))
(append bv
(map (lambda ((idxs (List Int))) Bit (parity (sel idxs bv)))

indices)))))

Using the encode function, we can specialize the function for a bit vector represented

as a product of bits. To shorten the length of the residual program, shown in figure 6.3,

we do not specialize the xorb function.

(define (encode16
(p (* Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit))
(List Bit))
(encode (prod16ToList p)))

Thus defined, the generic encoder component yields a Hamming encoder for ar-

bitrary width data words. Because the encoder component is defined using strictly the

functional subset of Oread, it can be transformed to fit the computational resources

of the target architecture. In the residualized version in figure 6.3, the xorb function

has not been unfolded, so it would result in a single shared function block. However,

the xorb block can be duplicated, and calls to those duplicated instances distributed,

trading circuit space for improved performance.

Figure 6.4 shows a portion of the generated C output from the software compilation

scheme, and figure 6.5 shows a portion of the generated VHDL. These examples are
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(define (encode16
(p (* Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit))
(List Bit))

(Cons (prj 0 p) (Cons (prj 1 p) (Cons (prj 2 p) (Cons (prj 3 p)
(Cons (prj 4 p) (Cons (prj 5 p) (Cons (prj 6 p) (Cons (prj 7 p)
(Cons (prj 8 p) (Cons (prj 9 p) (Cons (prj 10 p) (Cons (prj 11 p)
(Cons (prj 12 p) (Cons (prj 13 p) (Cons (prj 14 p) (Cons (prj 15 p)
; Begin parity bits
(Cons (xorb (prj 15 p) (xorb (prj 13 p) (xorb (prj 11 p) (xorb (prj 10 p)

(xorb (prj 8 p) (xorb (prj 6 p) (xorb (prj 4 p) (xorb (prj 3 p)
(xorb (prj 1 p) (xorb (prj 0 p) Low))))))))))

(Cons (xorb (prj 13 p) (xorb (prj 12 p) (xorb (prj 10 p)
(xorb (prj 9 p) (xorb (prj 6 p) (xorb (prj 5 p) (xorb (prj 3 p)
(xorb (prj 2 p) (xorb (prj 0 p) Low)))))))))

(Cons (xorb (prj 15 p) (xorb (prj 14 p) (xorb (prj 10 p) (xorb (prj 9 p)
(xorb (prj 8 p) (xorb (prj 7 p) (xorb (prj 3 p) (xorb (prj 2 p)
(xorb (prj 1 p) Low)))))))))

(Cons (xorb (prj 10 p) (xorb (prj 9 p) (xorb (prj 8 p) (xorb (prj 7 p)
(xorb (prj 6 p) (xorb (prj 5 p) (xorb (prj 4 p) Low)))))))

(Cons (xorb (prj 15 p) (xorb (prj 14 p) (xorb (prj 13 p)
(xorb (prj 12 p) (xorb (prj 11 p) Low)))))

Null))))))))))))))))))))))

Figure 6.3: Residualized Hamming encoder for 16-bit words
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included to provide a sample of the generated output. The complete output for even a

simple function is often too lengthy for human consumption.

6.2 FIFO-style Message Service

The encoder function defines a data transformation that takes an input bitvector, ex-

pressed as a list of bits, and generates an output bitvector that includes the Hamming

encoding of the input. The encoder function achieves a great deal of data parallelism

because it can perform the various parity bit computations concurrently. One way to

utilize the encoder function within a system is to simply use function composition. For

example, if the waveform requirements included Hamming encoding followed by data

compression, then assuming a generic compress function exists, the combined form

could be defined by composing compress with encoder.

(define (encodeAndCompress (bv (List Bit)) (List Bit))
(compress (encoder bv)))

Because the compress and encoder functions operate sequentially, there is no

concurrency across the function blocks. Recall that the Hamming encoding operation

is typically performed on fixed-width blocks of a data stream, rather than the entire data

stream. Segmenting the input data stream allows the compress and encoder pipeline

to regain parallelism by pipelining the two functions. When the encoder is calculating

the n+1 data segment, the compression function can be processing the encoder output

for segment n.

Arranging these two functions in a pipeline requires lifting each into its own inde-

pendent thread, then using a first-in-first-out (FIFO) Oread service to handle the co-

ordination of data between the two components. To lift the encoder function into a

stream-processing thread, we simply wrap it with a pair of signal calls, one invoked
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Bit xorb (Bit a,Bit b)
{Bit var0 = a ;
switch ((int)((var0) [0]))
{case 1 :

{return (notb ((Bit)(b)));}
case 0 :
{return (b);}}}

Bit notb (Bit a)
{Bit var0 = a ;
switch ((int)((var0) [0]))
{case 1 :

{return (&tag_Low);}
case 0 :
{return (&tag_High);}}}

void** hamming (void** p)
{void** var0 = (void**)(malloc (88)) ;
((var0) [0]) = ((PTR)(0));
// Similar assignments removed
((var0) [16]) = ((PTR)((p) [16]));

// Calculation of the parity bits
((var0) [18]) = ((PTR)(xorb ((Bit)((p) [14]),(Bit)(xorb ((Bit)((p)

[13]),(Bit)(xorb ((Bit)((p) [11]),(Bit)(xorb ((Bit)((p) [10]),(Bit)
(xorb((Bit)((p) [7]),(Bit)(xorb ((Bit)((p) [6]),(Bi t)(xorb ((Bit)((p)
[4]),(Bit)(xorb ((Bit)((p) [3]),(Bit)(xorb ((Bit)((p)
[1]),(Bit)(&tag_Low))))))))))))))))))));

((var0) [19]) = ((PTR)(xorb ((Bit)((p) [16]),(Bit)(xorb ((Bit)((p)
[15]),(Bit)(xorb ((Bit)((p) [11]),(Bit)(xorb ((Bit)((p) [10]),(Bit)
(xorb ((Bit)((p) [9]),(Bit)(xorb ((Bit)((p) [8]),(Bit)
(xorb ((Bit)((p) [4]),(Bit)(xorb ((Bit)((p) [3]),(Bit)
(xorb ((Bit)((p) [2]),(Bit)(&tag_Low))))))))))))))))))));

return (var0);}

Figure 6.4: 16-bit Hamming encoder C compilation output
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entity hamming is
port (hamming_din : in std_logic_vector(15 downto 0);

hamming_cin : in std_logic; hamming_cout : out std_logic;
hamming_dout : out std_logic_vector(19 downto 0);
clk : in std_logic; rst : in std_logic);

end entity hamming;
architecture str of hamming is
signal sigResult0 : std_logic_vector(0 downto 0);
signal sigDone0 : std_logic_vector(39 downto 0);
signal sigCtl0 : std_logic;
-- signal declarations removed
begin
-- shared XOR function block. Majority of port mappings removed for clarity.
xorb : entity funblock
generic map(C_NUMBER_CALLS => 40,C_ARG_WIDTH => 2,

C_SCHED_WIDTH => 6,C_RESULT_WIDTH => 1)
port map(args(1 downto 0) => sig160,args(3 downto 2) => sig158,...

cin(0) => sigCtl163,cin(1) => sigCtl164,cin(2) => sigCtl165,...
cout(0) => sigCtlIn161,cout(1) => sigCtlIn159,cout(2) =>
sigCtlIn157,dout => sigResult0,body_start => sigCtl0,
body_done => sigCtl12, body_args => sig0,body_result => sig12,
clk => clk,rst => rst);

hamming : entity funblock
generic map(C_NUMBER_CALLS => 1,C_ARG_WIDTH => 16,

C_SCHED_WIDTH => 1,C_RESULT_WIDTH => 20)
port map(args(15 downto 0) => sig200,cin(0) => sigCtl200,

cout(0) => sigCtlIn201,dout => sigResult2,
body_start => sigCtl2,body_done => sigCtl198,
body_args => sig2,body_result => sig162,clk => clk,rst => rst);

sig56 <= sig42&sig55;
inst57 : entity callLatch
generic map(C_RESULT_WIDTH => 1)
port map(din => sigResult0,cin => sigCtlIn57,dout => sig57,

cout => sigCtl57,clk => clk,rst => rst);
inst163 : entity barrier
generic map(C_CIN_WIDTH => 2)
port map(cin(0) => sigCtl2,cin(1) => sigCtl159,cout => sigCtl163,

clk => clk,rst => rst);
sig200 <= hamming_din;
sigCtl200 <= hamming_cin;
hamming_dout <= sigResult2;
hamming_cout <= sigCtlIn201;

end architecture;

Figure 6.5: 16-bit Hamming encoder VHDL compilation output
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on the input stream, and one invoked on the encoder output, which will be subsequently

used as the input for the compression thread.

The Msg data type encodes the protocol for the FIFO service. When a thread de-

queues data from the service, it issues a ReqRecv request and blocks until it gets a

RspRecv response containing the head of the FIFO . Similarly, when the thread wishes

to enqueue data, it issues a ReqSend request containing the data to enqueue, and gets

a RspAck in response.

(data Msg [a] (ReqRecv)
(ReqSend a)
(RspAck)
(RspRecv a)

The encodeThread function issues a ReqRecv request on @instream, calls encoder

on the resulting value, and issues a ReqSend request with the encoded value on @outstrm.

(define (encodeThread
(monad [(@instrm (React (Msg (List Bit))))

(@outstrm (React (Msg (List Bit) )))] Unit))
(do (i <- (signal @instrm ReqRecv))

(case i
((RspRecv x)
(do (signal @outstrm (encoder x))

(encodeThread [@instrm @outstrm]))))))

Likewise, the compressThread reads from an input stream, modeled as an Oread

reactive monad instance, and writes to an output stream.

(define (compressThread
(monad [(@instrm (React (Msg (List Bit))))

(@outstrm (React (Msg (List Bit) )))] Unit))
(do (i <- (signal @instrm ReqRecv))

(case i
((RspRecv x)
(do (signal @outstrm (compress x))

(encodeThread [@instrm @outstrm]))))))
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Having lifted the encoder and compress functions into the Oread concurrency

model, all that remains is to define the FIFO service and then connect the encoder and

compression threads in an Oread configuration. An Oread service requires both a han-

dler, for interpreting requests and generating responses, and a scheduler for indicating

that a response is pending.

The FIFO service uses a state monad instance to manage the protocol. This state has

two elements: the first is a Maybe that indicates whether there is a pending request that

could not be satisfied because there is not a matching request from the other thread.

The second element of the state is a ready-to-run queue containing a list of pending

responses. For both elements of the KernelState type, the service uses a AThread

type that holds a thread id, as an Int, and a message that is the request.

(data AThread [a] (AThread Int (Msg a)))
(data KernelState [a] (KS (Maybe (AThread a)) (List (AThread a))))

The dequeue function serves as the scheduler for the FIFO service. It simply drains

the ready-to-run queue.

(define (dequeue (monad [(@kstate (state Int (KernelState a)))]
(Maybe (AThread a))))

(do (ks <- (get @kstate 0))
(case ks
((KS wait rtr)

(case rtr
((Null) (return Nothing))
((Cons r rest) (do (put @kstate 0 (KS wait rest))

(return (Just r)))))))))

The msgHandler function dispatches requests to one of two handler functions.

Each of these functions checks to see if there is a pending request from the matching

thread. If so, then it calls scheduleSendRecv which will enqueue both responses into

161



the ready-to-run queue. Figure 6.6 shows the definition for the handler functions and

scheduleSendRecv.

Finally, a configuration connects the compression and encoder threads using

the FIFO service. The configuration assumes that there are two additional threads, src

that produces raw input, and sink that consumes encoded and compressed output.

(configuration waveform

(service @src2encoder (Msg (List Bit)) msgHandler dequeue)
(service @encoder2compress (Msg (List Bit)) msgHandler dequeue)
(service @compress2sink (Msg (List Bit)) msgHandler dequeue)

(thread (src [@src2encoder]))
(thread (sink [@compress2sink]))
(thread (encoder [@src2encoder @encoder2compress]))
(thread (compress [@encoder2compress @compress2sink]))
)

6.3 Summary

Using Oread, we implemented an archetypal data processing component that calculates

the Hamming encoding of an input bit stream. The implementation is constructed using

the pure functional subset of Oread, allowing program transformations which exploit

the parallelism inherent in the Hamming coding algorithm. These transformations al-

low a system implementer to explore various space and time trade-offs possible in an

implementation fabric.

The Hamming encoder component can be included as part of a larger system that

allows for pipelined concurrency by lifting the pure functional implementation to use

the Oread reactive concurrency model. Input and output data streams are modeled as

reactive monad instances, and reading from or writing to these streams is performed by
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(define (msgHandler (tid Int) (msg (Msg a))
(monad [(@kstate (state Int (KernelState a)))] Unit))
(case msg
((ReqSend value) (handleSend tid msg [@kstate]))
((ReqRecv) (handleRecv tid msg [@kstate]))
))

(define (handleSend (sendTid Int) (msg (Msg a))
(monad [(@kstate (state Int (KernelState a)))] Unit))

(do (ks <- (get @kstate 0))
(case ks
((KS wait rtr)
(case wait
((Nothing)
(do (put @kstate 0 (KS (Just (AThread sendTid msg)) rtr))

(return Unit)))
((Just thd)

(case thd
((AThread tid m)
(scheduleSendRecv sendTid msg tid [@kstate])))))))

(return Unit)))
(define (handleRecv (recvTid Int) (msg (Msg a))

(monad [(@kstate (state Int (KernelState a)))] Unit))
(do (ks <- (get @kstate 0))

(case ks
((KS wait rtr)
(case wait
((Nothing)
(do (put @kstate 0 (KS (Just (AThread recvTid msg)) rtr))

(return Unit)))
((Just thd)
(case thd
((AThread tid m)
(scheduleSendRecv tid m recvTid [@kstate])))))))

(return Unit)))
(define (scheduleSendRecv (sendTid Int) (sendMsg (Msg a)) (recvTid Int)

(monad [(@kstate (state Int (KernelState a)))] Unit))
(case sendMsg
((ReqSend value) (do (put @kstate 0

(KS Nothing
(Cons (AThread sendTid RspAck)
(Cons (AThread recvTid (RspRecv value))
Null))))

(return Unit)))))

Figure 6.6: FIFO handler functions
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invoking the Oread signal construct on the instance. Inter-thread communication is

accomplished using a FIFO service, implemented with a simple handler and scheduler

function.
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Chapter 7

Conclusions and Future Work

Designing systems that can be targeted towards either software or hardware is necessary

to adapt to changing system requirements as well as new implementation technology.

Doing this sort of design is complicated by two major factors. The first challenge is

that hardware and software exhibit vastly different computational models. The second

challenge is that hardware implementations are often defined at a much lower level of

abstraction than their associated software counterparts, often incorporating low-level

non-functional system constraints such as timing into the functional system models.

The software model of computation is, in modern commercial processors, sequen-

tial. The processor supplies a fixed number of computational resources (e.g. ALU and

branch units), which the programmer controls via a sequential stream of instructions.

Data-independent operations, which could possibly be performed in any order or poten-

tially in parallel, are instead performed in the sequence of the program order. Although

a particular program may not need a specific computational resource, the CPU provides

a common instruction set and dedicated logic to support that instruction set, regardless

of the demands of any given executing program.

In contrast, the hardware model of computation is inherently concurrent. Rather

than a limited set of macro-level resources, such as an ALU, the hardware fabric pro-
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vides a “sea” of lower-level resources such as boolean gates and registers that will, by

default, execute concurrently. The system implementer is free to utilize these resources

as a specific application demands, but often will have to define intermediate compu-

tational resources from primitive components. Moreover, the hardware designer must

provide a capability for coordinating the various computational resources.

The most common method for performing coordination on modern hardware fabrics

is to use a global system clock. Within this model, all combinational circuitry must have

a propagation delay that is less than the clock period. However, as the clock signal is

global, so are the timing constraints for all of the components in a system. To localize

constraints, additional clocks can be added, at the expense of complicating the interface

between components defined over separate clock domains.

This dissertation proposed a functional language, extended with monadic effects

for imperative state and concurrency, as an mechanism for reconciling the different

models of computation and eliminating the dependency on low-level fabric behavior in

the implementation of hardware components. By simplifying the distinction between

hardware and software implementations of components for both of these challenges, we

can advanced toward a goal of efficiently targeting either hardware or software fabrics.

Oread is the language we have designed to demonstrate this thesis. Because Oread

is based on a functional language, it allows a wide range of program transformations

that a designer can employ to maximize utilization of a particular target fabric. As

chapter 2 describes, most important of these is the fold/unfold transformation which

allows a function abstraction to be replaced with its definition, and vice versa. When

developing a component, Oread functions can be used to logically structure the function

of the component. However, when targeting a specific implementation fabric, functions

also serve as a resource structuring mechanism. A function can be duplicated, and calls

to that function replaced with calls to the duplicated instances if there are sufficient
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computational resources available. Conversely, a primitive operation such as floating

point multiplication can be encapsulated into a function, allowing the computational

resources of that operation to be shared, trading longer execution time for reduced area.

Oread includes a model of concurrency based on message-passing, structured using

a reactive monad. Within the concurrency framework provided by Oread, individual

components are modeled as threads that communicate with external services using a

specific protocol. A thread completely encapsulates the state of the associated top-level

function; there is no way for one thread to affect another thread except through a service

proxy. The service defines a handler that interprets requests from connected threads,

and a scheduler that determines if a response is pending for a prior handled request.

The handler and scheduler are written within Oread, allowing complex communication

and coordination protocols to be defined within the framework.

Chapter 3 described the compilation of Oread to VHDL. The hardware compila-

tion scheme yields a VHDL netlist, a graph with nodes representing instantiated prim-

itive VHDL blocks and edges representing signals connecting those components. The

hardware compilation protocol uses an asynchronous “ready” protocol to coordinate

sequential components. A barrier insures that all inputs to a component are ready be-

fore control propagates to that component. Shared resources, such as function blocks

and monadic instances, exhibit a common structure that includes an arbiter that insures

that requests to the component are handled in the proper order.

The hardware compilation routines can only handle a subset of Oread. To minimize

the impact of this limitation, we use a series of program-to-program transformations to

convert a non-conforming program into a synthesizable program. Most importantly is

defunctionalization, that allows us to convert a higher-order program into a first-order

program. Moreover, a slightly adapted version of defunctionalization allows the Oread
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compilation scheme to handle functions which reference multiple different monad in-

stances using the same monad instance parameter.

Oread can also be compiled into software, by generating a C program that can then

be used as input to a standard C compiler. The C compilation scheme uses a collection

of C templates, which are parametrized statements that, when given specific values

from the software compilation scheme, yield legal C syntax. C itself does not include a

concurrency model, but the Pthreads threading library provides capabilities that support

the compilation of the Oread message-based concurrency model. The mapping uses

only common shared-state concurrency constructs, and could potentially be adapted to

support other threading libraries or to execute on bare metal.

Oread can be used to construct components in our designated target domain, soft-

ware defined radio. We demonstrated the ability to define a generic Hamming encoding

component to perform error detection and correction. Then, using the Oread concur-

rency model, we define a point-to-point communication protocol within Oread to con-

struct a data pipeline between the Hamming encoder component and a hypothetical

compression component.

7.1 Future Work

The work outlined in this dissertation has laid the foundation for a variety of future

work directions.

The control protocol described in chapter 3 should be extended to integrate fabric-

specific timing information, allowing the compilation scheme to eliminate extraneous

control circuitry. Moreover, the implementation currently assumes that there is a global

clock; this should be modified to allow clock domain changes at the interface between

shared blocks.
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The program transformations described in chapter 4 describes briefly the transfor-

mation of recursive data structures into equivalent forms that are synthesizable, using

specialization techniques. This transformation capability should be extended and for-

malized, perhaps using the worker/wrapper (Gill and Hutton 2008) transformation.

The software compilation schemes of chapter 5 are admittedly naive. These should

be modified to incorporate modern techniques for functional language compilation Ap-

pel, as well as to provide standard run-time services. Moreover, the data model for the

software scheme utilizes dynamic allocation extensively. Static analyses, such as linear

types (Wadler 1990), may allow dynamic allocations to be eliminated.

Oread, as described in this dissertation, attempts to address the challenge of tar-

geting varied implementation targets from a single program source. In an embedded

system, it is more likely that a final implementation will include both hardware and

software components. Oread can be extended to address the problem of co-design:

mapping a system into disparate fabrics and synthesizing the interfaces between com-

ponents in those different fabrics. With this capability, Oread would become a powerful

tool for architecture exploration, allowing a system designer to quickly determine the

various trade-offs of a given system architecture early in the design cycle, reducing

re-engineering costs.
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The Oread external representation

Oread is primarily intended to be an intermediate representation for compiling to mul-
tiple targets. However, to simplify the use of the Oread synthesis toolset, as well as to
make the toolset independent of any particular concrete representation, we have devel-
oped a simple concrete syntax similar to that of Scheme or Lisp.

Table 1 lists the lexical elements of the Oread concrete representation.

<typeid> := <ucase> <identifier>
<typevar> := <lcase> <identifier>
<consid> := <ucase> <ident>?

<ucase> := A | .. | Z
<lcase> := a | .. | z
<digit> := 0 | .. | 9
<letter> := <ucase> | <lcase>
<idchar> := <letter> | <digit> | < >
<number> := -? <integer> .<integer>?

<integer> := <digit> <digit>*
<identifier> := <lcase> <idchar>∗

<bvlit> := 0b<bit>+

<bit> := 0 | 1
<monadinstance> := @<identifier>

Table 1: Oread external representation lexical elements

Table 2 lists the BNF describing the Oread expression language, as well as the
productions for defining algebraic data types and top-level functions.

Table 3 lists the grammar for defining Oread configuration directives, used for de-
scribing as system as a collection of components and the interconnections between
those components.
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<def> := <datadef> | <typedef> |
<fundef> | <configdef>

<datadef> := ( data <typeid> <typevarlist>?

( <constructordef>+ ) )
<typevarlist> := [ <typevar>+ ]
<constructordef> := ( <consid> <type>∗ )
<typedef> := ( type <typeid> <type> )
<type> := <typeid> | <typevar> | int |

( * <type>+ ) | (→ <type> <type>+ ) |
(<typeid> <type>+) | ( bits <integer> ) |
( monad <monadcstlist> <type> )

<fundef> := ( define ( <ident> <arglist>? <range> )
<expr> )

<arglist> := ( <arg>+ )
<arg> := ( <ident> <type> )
<range> := <type> | <monadrange>
<monadrange> := ( monad <monadparamlist>? <type> )
<monadparamlist> := [ <monadparam>+ ]
<monadparam> := ( <monadinst> <monadcst> )
<monadcstlist> := ( <monadcst>+ )
<monadcst> := ( state <type> <type> ) | ( react <type> )
<monadinstlist> := [ <monadinst>+ ]
<expr> := <number> | <bvlit> | <ident> |

<consid> | <app> | <caseexpr> |
<dostmt> | <monadexpr>

<app> := ( <op> <expr>∗ ) |
( <expr>+ <monadinstlist>? )

<op> := tuple | prj | shl | shr | rotl | rotl
selectbit | setbit | and | or | xor | not

<caseexpr> := ( case <expr> ( <alt>+ )
<alt> := ( <pattern> <expr> )
<pattern> := ( <consid> <ident>∗ )
<monadexpr> := ( put <monadinst> <expr> <expr> ) |

( get <monadinst> <expr> ) |
( signal <monadinst> <expr> )

<dostmt> := ( do <stmt>+ )
<stmt> := ( return <expr> ) | ( <ident>← <expr> ) |

<expr>

Table 2: Oread external representation grammar
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<configdef> := ( configuration <ident>
<mem>∗

<serv>∗

<thd>∗ )
<mem> := ( memory <monadinst> <type> <type>

<expr>? )
<serv> := ( service <monadinst> <type>

<expr> <expr> <expr> )
<thd> := ( thread <expr> )

Table 3: Configuration grammar
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