
DESIGN AND IMPLEMENTATION OF A HIGHLY MODIFIABLE
RETAIL E-COMMERCE WEBSITE

BY

Mark Soenen

Submitted to the graduate degree program in Electrical Engineering and Computer
Science and the Graduate Faculty of the University of Kansas in partial fulfillment of

the requirements for the degree of Master of Science.

Arvin Agah, Ph.D.
Associate Professor
Chairperson

Committee Members* James Miller, Ph.D. *
Associate Professor

Prasad Kulkarni, Ph.D. *
Assistant Professor

Date defended: July 18, 2008

The Thesis Committee for Mark Soenen certifies that this is the approved version of the
following thesis:

DESIGN AND IMPLEMENTATION OF A HIGHLY MODIFIABLE
RETAIL E-COMMERCE WEBSITE

Committee:
Arvin Agah, Ph.D.
Associate Professor
Chairperson*

Jim Miller, Ph.D.
Associate Professor

Prasad Kulkarni, Ph.D.
Assistant Professor

Date Approved:

ii

Abstract

The availability, modifiability, and performance of retail e-commerce websites (RECWEB)
is greatly impacted by seasonal constraints. For many RECWEB, half of the calendar
year is comprised of holidays and seasons. Spikes in website traffic and transactions
can lower availability, modifiability, and performance of a RECWEB. This can result in
downtime, customer abandonment, and ultimately lost revenue.

This research focuses the modifiability aspects of the problem. During holiday and
seasonal periods, enhancements to a RECWEB are generally not feasible. Enhancements
put availability and performance at risk. In addition, most human resources are dedicated
managing content changes. RECWEB are less modifiable then other systems because
enhancements are only feasible for half of the calendar year. Furthermore, the scope of
an enhancement must fit within a six month time box.

This research provides pilot project for testing, designing, and implementing a highly
modifiable RECWEB. The approach is to automate seasonal content changes. The cost
savings on human resources can be reallocated to enhancements work. In addition,
enhancements can simulate holiday seasons further in advance. The result is enhancement
deployment is more feasible throughout the calendar year.

iii

iv

Contents

1 Introduction 1
1.1 Justification . 2
1.2 Significance and Expected Contributions 4
1.3 Research Methodology . 5
1.4 Evaluation Criteria . 7
1.5 Thesis Organization . 8

2 Previous Work 11
2.1 Software Architecture (SA) . 11

2.1.1 Definition . 11
2.1.2 Functionality . 12
2.1.3 Qualities . 14
2.1.4 Trade Offs . 22

2.2 Typical RECWEB Modifiability . 25
2.3 Intelligent Agents . 34
2.4 Semantic Web . 36

2.4.1 Example #1: Buying a House . 39
2.4.2 Example #2: Buying a Digital Camera 39
2.4.3 Resource Description Framework (RDF) 40
2.4.4 Ontology Web Language (OWL) 44
2.4.5 SPARQL Query Language for RDF 46
2.4.6 Justification . 47

3 A Highly Modifiable RECWEB 49
3.1 Test Cases . 49
3.2 Design . 55

3.2.1 Model . 56
3.2.2 View . 59
3.2.3 Controller . 60

3.3 Implementation . 61
3.3.1 Model . 61
3.3.2 View . 65

v

3.3.3 Controller . 65

4 Evaluation 67
4.1 People . 68
4.2 COTS Integration . 77
4.3 Quality Tradeoffs . 77

5 Conclusion 79

Bibliography 83

vi

List of Figures

1.1 Yearly :: Seasonal System . 2
1.2 Retail E-Commerce Website :: Seasonal System 2
1.3 RECWEB Traffic [50] . 3
1.4 Changing content during P . 5
1.5 Deploying enhancements during P . 6

2.1 Functionality Example: Sorting Algorithms 13
2.2 Tactics . 24
2.3 GoogleTM Holiday Transition . 25
2.4 RECWEB Holiday Transition . 26
2.5 Valentine’s Day Scenario . 27
2.6 MVC Structure [1] . 28
2.7 Model Updates . 30
2.8 View Updates . 31
2.9 RECWEB Model . 32
2.10 Semantic Web Layercake [23] . 38
2.11 RDF Triple . 41
2.12 Reasoning Example . 42
2.13 Continous Merging . 44
2.14 Expressiveness of Ontology Description Languages 45

3.1 RECWEB Intelligence Dataflow . 55
3.2 RECWEB Seasonal Model . 56

vii

viii

List of Tables

1.1 Quality Scenario Parts . 5

2.1 RECWEB Sample Tuples . 33
2.2 Modifiability Tactics in RECWEB . 35

3.1 Selecting a Greeting . 50
3.2 Selecting an Image . 51
3.3 Selecting Holiday Products . 52
3.4 Selecting Products and Categories . 53
3.5 Selecting a Seasonal Products . 54

4.1 Roles . 70
4.2 Cost Estimate - Current Seasonal Transition 71
4.3 Cost Estimate - Seasonal Transition in Highly Modifiable RECWEB . . . 71
4.4 Cost Estimate - New Enhancement Project 73
4.5 Cost Estimate - New Enhancement Project with Shorter Cycles 74
4.6 Cost Estimate - New Enhancement Project with Higher Skills 75
4.7 Cost Estimate - Initial Highly Modifiable RECWEB 76

ix

x

Chapter 1

Introduction

Enhancements are changes made to a software system during the software maintenance

phase. The goal is to add functionality or improve some quality of a system (i.e. perfor-

mance, availability). Enhancements are vital to a software system [59,60]. In addition, a

majority of the cost of software maintenance is planning, designing, implementing, and

deploying enhancements [18].

Modifiability is about cost of changing a software system [10]. Since an enhancement

is a change to a software system, it’s cost depends on a system’s modifiability. Therefore,

low modifiability increases maintenance costs and cripples a system’s existence.

This research aims to create a pilot project for highly modifiable retail E-commerce

websites (RECWEB). A RECWEB can be described as a seasonal system(SS). SS consist

of two composite states: off season(O) and peak season(P). Cycle time t begins with O,

transitions to P, and ends with transition back to O. Figure 1.1 shows a SS with t = 365

days and t/2 days between O and P. In other words, half of a year is O and the other

half P. For example, a RECWEB shown in Figure 1.2 has a small standard deviation

of transition time from one cultural holiday to another. Therefore, P is considered the

period between Halloween and Mother’s Day. Modifiability of RECWEB is low because

1

Figure 1.1: Yearly :: Seasonal System

Figure 1.2: Retail E-Commerce Website :: Seasonal System

enhancements are generally not feasible during P.

1.1 Justification

E-Commerce is emerging as a key part of the global economy. It continues to grow at a

very fast pace. There is lots of competition to deploy highly functional RECWEB that

perform well. Also, consumers are only a click away from visiting a competitor site. This

puts pressure on organizations to ensure customers find what they are looking for fast.

Products and services must be in the right place at the right time. Seasonal patterns

previously described just add additional pressure. Depending on time of year, a delicate

balance of availability, performance, and modifiability must be addressed.

During P, traffic and transactions are high (see Figure 1.3. Consumers are just a

2

Figure 1.3: RECWEB Traffic [50]

mouse click away from visiting a competitor. Consequently, a RECWEB must be 100%

available and perform as well as possible. Top retailers experience major problems (i.e.

server crashes) [16, 29], despite over a decade of P experience coupled with significant

research efforts [17, 19, 25, 26, 55, 56, 79, 96] to address performance and availability.

Furthermore, modifiability is low during P due to risk of decreasing performance or

availability.

Marketing requirements drive changes during P [20]. For example, products such as

Christmas ornaments and red roses are more in demand on specific holidays; Christ-

mas and Valentine’s Day respectively. This requires website content to change within

the short intervals between holidays. In the author’s ten years experience working on

several large RECWEB, content changes are usually done manually (i.e. data entry or

file manipulation). The changes are error prone. Content becomes inaccurate or stale

resulting in a plethora of customer service problems and lost sales. There is simply

3

not enough time between holidays to handle what can be many thousands of content

changes. In addition, content changes consume resources normally dedicated to working

on enhancements [36,70].

During O, enhancements are more feasible, but still challenging. First, staff burnout

can occur from finishing up work for P. Second, concurrent development (base-lining,

testing, integrating, etc.) has it’s own set of challenges [22, 31–33, 38, 42, 89]. Finally,

there is a risk of no return on investment(ROI) if an enhancement project fails to deploy

in the six month period before P. In fact, one project the author worked on failed to

launch in two consecutive years costing over ten times the original budget. Furthermore,

the enhancements were built on a platform that was several versions obsolete.

1.2 Significance and Expected Contributions

The author has extensive experience working on high profile RECWEB projects. Organi-

zations sponsoring such projects all have the same issues caused by seasonal constraints.

The problem has costs organizations millions of dollars in both lost revenue and inability

to deploy enhancements that can give them a competitive edge. Solving the seasonal

problem for these organizations could save millions of dollars.

In addition, organizations with similar seasonal constraints but in different domains

can also benefit. There is no real body of research surrounding the concept of seasonal

systems as presented here. This research supports further investigation into the concept.

Finally, emerging technologies such as Semantic Web are used in this work. A foun-

dation for a use case in Semantic Web technology can result. Such a use case does not

yet exist.

4

Table 1.1: Quality Scenario Parts

Part Description

Source Entity (human, computer system, actuator)
Stimulus Condition arriving to system
Environment Context in which stimulus occurs
Artifact Part of the system stimulated
Response Activity undertaken
Response Measure Metric for testing level of quality

Figure 1.4: Changing content during P

1.3 Research Methodology

Quality attribute scenarios [10] to characterize the modifiability requirements for a RECWEB.

Table 1.1 shows the basic parts of a quality scenario. The purpose of using this technique

is to define a set of changes and a context in which certain changes will take place.

The first scenario (Figure 1.4) covers content changes during P. In practice, this

scenario is usually only partially satisfied. A large number of content changes must be

made in a short period of time. This overloads content personnel with work during P.

The second scenario (Figure 1.5) covers deployment of enhancements during P. This

5

Figure 1.5: Deploying enhancements during P

scenario is very seldom an option unless a high ranking executive demands it. Most re-

sources are dedicated to making content changes and preserving performance and avail-

ability.

In order to achieve these modifiability requirements, design decisions or tactics must

be made that ‘influence the control of a quality attribute response’ [10]. For example,

localizing changes, preventing ripple effect, and deferring binding time are three categories

containing several modifiability tactics. However, these tactics are either already applied

to a RECWEB or just do not satisfy the requirements.

The solution is to automate content changes. This will reduce the human touch points

required during P. Freed resources can be used for enhancements work. The automation is

not just deploying content changes, but the system actually making the content change.

Intelligence can be built into the system to determine, for example, what navigation,

products, and promotions should be deployed in a given seasonal context.

The seasonal calendar is fairly predictable. In other words, Thanksgiving is always the

last Thursday in November and Christmas on December 25. A system can deduce this

knowledge by comparing system time to a seasonal calendar. With this information, the

system can intelligently find content to match the particular season or holiday. In order

6

to accomplish the content match, the system must be able to reason with or understand

the data representing the content.

Removing human involvement from the process is not an overnight endeavor. As

previously mentioned, most RECWEB are constructed by customizing a COTS package.

Automating content changes must be achieved within the bounds of the COTS pack-

age. Again, customization of COTS can be challenging. In the previous section, major

patterns and tactics a typical COTS-based RECWEB implements are presented. This

work references those modifiability points and presents a solution within those bounds.

Realistically, any solution would require a phased approach.

1.4 Evaluation Criteria

The first scenario (see Figure 1.4) is essentially in the critical path of the second sce-

nario(see Figure 1.5). Content changes are a necessary task for doing business during

P. Adding enhancements to the mix would require taking resources away from content

changes and vice versa. Again, content changes are already constrained. Therefore, any

solution should address the content change scenario first. Accomplishing this goal alone

will increase modifiability because enhancements will be open for deployment all the

time.

The goal is to show an increase in modifiability without drastically increasing costs.

People, COTS integration, and quality tradeoffs are all factors that constrain costs. The

following sections outline specific criteria for each of these constraints.

People The assumption is adding more people is not a desirable solution. First, the

author’s experience has been RECWEB organizations are already short on people. Sec-

ond, research shows that adding more people can make a situation worse. [15] In fact,

7

reducing resources required would be a welcome result.

COTS Integration The leading commercial off the shelf (COTS) packages over 1000

production deployments [49, 83]. Section 2.2 describes how this particular package and

many like it are unable to overcome the lack of modifiability. Unfortunately, too much

time, money, and resources have been invested in developing and deploying these pack-

ages. Enough that replacing them with new packages that would accommodate seasonal

constraints is far too costly. Therefore, any solution to the problem has to lay within the

extensibility offered by the packages.

Inevitably, any new tactics to increase modifiability should be phased in. Most

RECWEB have also been running in production for several years. It is unrealistic to

develop a complete solution that will be deployed all at once.

Quality Tradeoff Finally, performance or availability can only be minimally affected.

Ideally, the required downtime for rolling content changes can be eliminated actually

increasing availability. Any effects on performance should not be directly observable by

users. For example, page load times should remain close to the same as they are today.

1.5 Thesis Organization

The thesis is organized into the following sections:

Chapter 1: Introduction – The background and justification for the work contained

in this thesis.

Chapter 2: Previous Work – A detailed account of previous work in Software Archi-

tecture, Typical RECWEB Modifiability, Intelligent Agents, and Semantic Web.

8

Chapter 3: A Highly Modifiable RECWEB – Test cases, design, and implemen-

tation of a highly modifiable RECWEB.

Chapter 4: Evaluation – Evaluation and analysis.

Chapter 5: Conclusion – A conclusion regarding the results of this work.

9

10

Chapter 2

Previous Work

2.1 Software Architecture (SA)

The previous section captures some high level functions, qualities, and characteristics of

a large class of systems – RECWEB. The problems identified with RECWEB involve

managing the complexity of relationships between functionality and qualities such as

availability, modifiability, and performance. Section 2.1.1 provides a basic description

of SA and its role in the life cycle of a software system. Section 2.1.2 describes how

functionality and qualities are orthogonal. Section 2.1.3 describes tactics used to achieve

individual qualities. Section 2.1.4 describes trade offs that must be made to achieve

different sets of qualities.

2.1.1 Definition

[10] provides the following definition for SA:

The software architecture of a program or computing system is the structure

or structures of the system, which comprise software elements, the externally

11

visible properties of those elements, and the relationships among them.

The role SA plays in the life cycle of a software system changes over time. At the

outset, SA consists of design decisions made to achieve a set of functional and quality

requirements driven by business stakeholders. Decisions are documented and serve as

a vehicle of communication among all stakeholders. For example, implementers of the

system can refer to quality requirements to understand rationale behind design decisions.

The same is true for maintainers who also face requirements change over time. The SA

serves as a transferable abstraction of the system which can be used to facilitate any

changes.

2.1.2 Functionality

Functionality is the initial driver for building a system. A business problem exists that

must be solved by functionality provided by a software system. Increased revenue and/or

cost savings are the goal.

There are many ways to achieve any particular function. For example, three snip-

pets of code in Figure 2.1 all perform sorting functions. Each program uses a different

algorithm, but all are functionally equivalent. So which is ’better’? Well that depends

on the criteria for ’better’. It depends on the metrics that are provided by a business

stakeholder.

A quality such as performance might be the criteria. One system might use algorithm

that computes the same function faster. Another algorithm might do more to handle

faults making it more available. Yet another system might not compile code until runtime

allowing the code to be changed without rebuilding the entire system. Qualities are used

to determine what is ’better’.

12

Figure 2.1: Functionality Example: Sorting Algorithms

procedure bubbleSort (A : l i s t of s o r t ab l e items) de f ined as :
do

swapped := fa l se
for each i in 0 to l ength (A) − 2 do :

i f A[i] > A[i + 1] then
swap (A[i] , A[i + 1])
swapped := true

end i f
end for

while swapped
end procedure

(a) Bubble

f unc t i on qu i ck so r t (array)
var l i s t l e s s , equal , g r e a t e r
i f l ength (array) = 1

return array
s e l e c t a p ivot va lue p ivot from array
for each x in array

i f x < p ivot then append x to l e s s
i f x = pivot then append x to equal
i f x > p ivot then append x to g r e a t e r

re turn concatenate (qu i ck so r t (l e s s) , equal , qu i ck so r t (g r e a t e r))

(b) Quick

procedure c o c k t a i l S o r t (A : l i s t of s o r t ab l e i tems) de f i ned as :
do

swapped := fa l se
for each i in 0 to l ength (A) − 2 do :

i f A[i] > A[i + 1] then // t e s t whether the two elements are in the wrong order
swap (A[i] , A[i + 1]) // l e t the two elements change p l a c e s
swapped := true

end i f
end for
i f swapped = fa l se then

// we can exit the outer loop here i f no swaps occurred .
break do−while loop

end i f
swapped := fa l se
for each i in l ength (A) − 2 to 0 do :

i f A[i] > A[i + 1] then
swap (A[i] , A[i + 1])
swapped := true

end i f
end for

while swapped // i f no elements have been swapped , then the l i s t i s so r t ed
end procedure

(c) Cocktail

13

2.1.3 Qualities

Quality attribute driven design involves defining all of the quality attribute scenarios then

applying well known tactics that achieve specific qualities [93,94]. Table 1.1 describes how

quality requirements can be captured in scenarios. The technique was used to capture

the core problem for this thesis in Figures 1.4 and 1.5. Like functionality, there are many

options available to achieve the same quality. The purpose of this section is to describe

the most common qualities and tactics for achieving them.

Availability

Consider a BBQ grill that runs on a propane tank. The propane provides the energy to

make a flame that will cook food. Once the propane runs out, the grill is unusable. The

best case scenario is the propane runs out after all the food for one meal is cooked. The

worst case scenario is the propane runs out just minutes into cooking a meal. At this

point, the propane tank must be refilled to cook food on the grill. Otherwise, the meal

must be cooked using alternative means such as the oven or microwave.

If the grill is seen analogous to a software system, then propane tank is a component

that has ’failed’. The consequence is the grill is unavailable for cooking. At some point,

the amount of propane in the tank became too small for cooking another meal. This point

would be considered a ’fault’ in a software system. If not corrected, a failure ultimately

results.

Some newer grills now have a detection system that identifies when the ’fault’ occurs.

An indication is given when the weight of the propane tank reaches a certain threshold.

This allows the user to know when the propane tank needs to be refilled. A grill without

such a detection mechanism might require the user to keep a second propane tank filled

and ready when the first one runs out.

14

The grill being unavailable due to a failure is an example of downtime. An example of

the former is when a DNS server goes down resulting in web browsers unable to find a web-

site. The DNS server is responsible for resolving a domain name (i.e. www.recweb.com)

into an IP address. Without this resolution, the web browser cannot download content

from the website. To prevent this problem, DNS servers are redundant so when one is

unavailable, another can provide the resolution service.

In the author’s experience, failures also occur inside of a website’s core software

system. For example, all content might be generated dynamically from a database.

Problems connecting with the database result in no content retrieved. Typically, the site

displays a ”We’re sorry..site unavailable” message to the user. As with the grill and DNS,

a spare database or redundancy is used.

Scheduled downtime is often required to perform maintenance or deploy new enhance-

ments to a software system. A failure isn’t the cause of the downtime, but the system is

still unavailable. Our experience is scheduled downtime occurs every couple of weeks and

during off peak hours (i.e. 3AM). In other instances where a RECWEB was deployed to

an international audience, there was less of a window of off peak because of global time

zone differences. This created an even greater challenge for availability.

In some cases, a user observes a failure long after it occurs. In other words, a system

never is never really seen ’down’, but it does not operate as expected. For example,

an online shopper observes a large RECWEB offering television $400. It is unusual in

that similar televisions with the same specs were over twice as expensive in other places.

Seeing a great deal, the online shopper notifies several friends and colleagues who also

order the television. However, weeks later the online shoppers are notified that the offered

price was a content error on the website. The individual responsible for entering prices on

the website mistyped ”$400” instead of ”$1400”. Prior to checkout, the website should

verify with the order management system that all prices are correct. However, at the

15

particular moment the televisions are ordered the connection to the order management

system could be down. The system is programmed to log the fault but proceed to take

the order. This is based on optimism that the prices are usually correct. By the time

the log is detected, many people might take advantage of the great deal. The point is

the system is never really ’down’ per se. It just does not handle a fault, thus causing

a failure to deliver specified functions. This example is actually based on a real world

experience of the author.

Formally, availability is the probability a system will be operational when needed [10].

Operational means it performs functions to specifications masking faults before they

become failures. The aforementioned examples note tactics such as keeping a spare and

using redundancy as viable for achieving higher availability. Following is a description of

some other tactics.

Keeping a system available starts with detecting all faults that could lead to failure.

One tactic is exception handling. Most modern programming languages provide a facility

to identify blocks of code that might cause a fault. When a fault in that block of code

occurs, the programmer specifies an alternative path in code to hopefully recover and

prevent the fault from becoming a failure.

Other tactics are designed for when one component is critically dependent on another.

The previous example describes the dynamic content generation component being depen-

dent on a database connection. In this situation, the content component could issue a

’ping’ to the database and wait for an ’echo’ or response from the database indicating

it is up and ready for service. If no echo is received the content component can send

out alerts so any problems with database can be identified and fixed immediately. The

actual ’ping’ might even trigger a test transaction on a the database to assure not only

is the database up, but it is functioning to a certain degree.

Similar to ping/echo is the heartbeat tactic. This would mean the database server

16

sends a message out on a given interval to all components interested in the database being

’alive’. When a component fails to receive the message, it can assume that something

might be wrong with the database server and act accordingly.

Redundancy is used to recover from faults. Basically it is when there is more then

one instance of a component available should a fault occur. In BBQ grill example, a

spare propane tank was used. The spare tank merely needs to be plugged in to restart

cooking. However, software systems often require some synchronization to put the spare

component in the last working state of the failed component. Synchronization is also

required in cases where the extra instances of the component are online and might even be

taking turns servicing requests–a concept called load balancing. Ultimately, redundancy

is about keeping all parallel instances of a component in a consistent and working state.

This requires rolling back and synchronizing all components as needed.

In some cases where greater availability might be required, the same request for service

might be sent to several instances of the same components. The requester might just use

the first response it gets, or it might compare the responses to ensure they are the same.

This tactic of redundancy is called voting.

Preventing faults from occurring in the first place is another goal of availability.

Any component that generates one or many faults might have to be taken out of service.

Similar to exceptions, transactions are another option. A transaction is a set of processing

steps that are treated as one atomic operation. This means every step must succeed or

the state of the system should be rolled back to what it was before the transaction started.

Many modern programming languages also support this feature.

Process monitoring can also be used to increase availability. For example, if a certain

component appears to contain a memory leak a monitor can alert engineers when the

memory reaches a certain threshold. The engineer can then restart the process to clear

some memory. Obviously, fixing the memory leak in the code would be ideal. However,

17

if resources are not available to do so immediately, a process monitor can insure the leak

never occurs in operation.

Performance

Consider a trip to the grocery store. For most, it is a necessary task in life that consumes

free time. A task that one might try to minimize the amount of time spent. The amount

of time spent depends on a variety of aspects of the the store.

The experience starts upon pulling into parking lot. Some stores might have better

parking access. Upon arriving to one store with a full lot, one might decide it is faster

to drive to another store down the street.

Inside the store, several places might add or subtract time to the task. For example,

getting meat from the butcher might take a while if only one butcher is working the

counter. Or perhaps, the store offers other time saving functions like a pharmacy or

dry cleaners. However, these functions might also add time. For example, multiple

pharmacists concurrently filling prescriptions should lead to faster service. Similarly,

more cashiers concurrently checking people out leads to faster service.

The grocery store is an example of concurrency that leads to better performance.

Performance is about time and efficiency of allowing people to complete the task of

grocery shopping. The same methods of concurrency are used on a RECWEB. During

peak shopping season, extra web servers are added to concurrently handle more requests

from users for service.

Formally, performance is how much time a system takes to respond to events. Ul-

timately, event can arrive at different rates and require different resource usage. For

example, some people visit a grocery store just to pick a prescription and not buy any

groceries. By the same token, some people log on to a website just to update their account

information, but do not actually add products to their cart and checkout. Controlling

18

performance comes down to how all resources are managed as a whole to provide the

fastest service to every user.

The moment an event arrives at a system there is a demand for some resource in

the system. In fact, over the course of processing the request several resources might

come into play; each with a specific task to perform. This leads to some resources being

blocked as multiple other resources might depend on it. Again, the database server a

resource highly contended for by components.

Section 2.1.2 provides an example of how choice of algorithm can increase the speed

of computing a given function. Thus, changing the algorithm is one tactic for increasing

performance. In fact, refactoring code is one of the most popular and effective ways to

increase performance.

The rate at which events are allowed to be directed to other resources can also be

controlled. For example, a RECWEB might collect all the information from a user to

process an order and provide the end user with an ’Order successful!” message. However,

the order might still be waiting in a queue to be submitted to the back end fulfillment

system. Performance is increased on the back end fulfillment system because orders can

be fed in for processing at the most optimal rate. The front end application also performs

better because it can respond with a success message faster.

Concurrency is a very widely used method for increasing performance. The phar-

macist and cashier in the grocery store example provide a basic understanding. In a

software system, each additional cashier or pharmacist would be accomplished as an ad-

ditional thread. The thread processes events in parallel, thus handling multiple requests

simultaneously. HTTP servers are a great example of how concurrency works.

Caching data is another common tactic used on RECWEB to increase performance.

Multiple copies of content can be distributed across several servers. Demands for the

resource can then be satisfied by one of copies. Furthermore, access to the copies can

19

be optimized. The assumption is when the content becomes stale or out of date, it

must be updated by some mechanism. The tactic is well researched and implemented for

several RECWEB.

Of course, one rudimentary tactic for increasing performance is adding hardware

resources such as additional servers or memory. In some cases, the situation demands it

where a system just out grows the initial hardware allocated. In other cases, the tactic

is really just a band aid on poorly designed software. In either case, hardware resources

come cost money so another tactic might be preferable.

Modifiability

Consider when it comes time to spend money on entertainment. For example, a person

would like to go see a baseball game but do not have a ticket. You show up at the ticket

booth to find that all 40,000 seats are sold. However, some concourses throughout the

stadium can be sectioned off to accommodate and additional 2000 people. Individuals

can pay to stand in this space and watch the game.

The stadium is analogous to a software system. At the moment the last of the 40K

tickets were sold the stadium was modified to accommodate more people. It is an example

of late binding. The concourse is available to function as either a walkway or a standing

place for viewing the game. But the time it is bound to that function isn’t until game

time when the number of tickets sold is determined.

Formally, modifiability is about cost of changing a software system [10]. Tactics fall

into 3 categories: localize changes, prevent ripple effect, and defer binding time. Because

the focus of this thesis is on modifiability, Section 2.2 discusses many modifiability tactics

already applied to RECWEB. Figure 2.2 provides specific examples.

20

Other

Availability, performance, and modifiability are most relevant to this work. However,

many other quality attributes exist. We briefly describe a few here, but make no further

mention unless a specific part of the solution significantly decreases one of these qualities.

In this case, it is noted as a necessary trade off. The idea of trading off one quality for

another is covered in the next section.

Security has always been a big concern for RECWEB because lots of private personal

information is exchanged (i.e. address, credit card numbers, etc.). There have been

attacks that compromised this information for many users. However, most of the attacks

come through a hole in the corporate firewall network. Even when careless password

policies are in place, we’ve seen high traffic sites remain fairly secure. For example,

one RECWEB the author worked on kept the same root password for the database and

all application servers for over 2 years! Furthermore, many developers even had access

to this password. Even so, there was never an attack. In general, the front end web

application architectures handle security well.

Testability is somewhat an issue but low priority. Testing web applications can be

hard with hyperlinks constantly changing. But in the author’s experience, most RECWEB

organizations have access to the latest testing tools and built in monitors often come with

the off the shelf packages they are built upon. There are always a certain amount of code

defects to address, but this is the case with any software system. Lack of time for testing

is an issue especially during P. Any increase in testability would be welcome, but status

quo is accepted by most organizations the author has dealt with.

Usability is a moving target on most of the projects the author has worked on. Or-

ganizations are constantly trying to figure out a better user interface. Some of this is

driven by web user interfaces being limited by web browser technology as compared to

21

traditional desktop applications which have a richer set of components to build upon.

But there is a whole movement of research trying to solve the problem of making web

applications richer user interfaces. In addition, dozens if no hundreds of web application

frameworks have been produced to streamline the most common parts of web user in-

terfaces. For example, form validation used to be rewritten for every new project. Web

frameworks now provide this in a reusable component that is easily configurable.

2.1.4 Trade Offs

If only one quality were desired, then the previous sections provide ample examples of

tactics to achieve that quality. However, multiple qualities are often desired. It is im-

possible to have them all because they impact each other. For example, one might use

the tactic insert and intermediary to increase modifiability. The intermediary is a new

resource that might require other resources. This can affect both availability and perfor-

mance. The core problem addressed by this research is another example. The RECWEB

scenarios described Section 1.2 show a trade off of modifiability for performance and

availability. The extent that one quality affects another must be measured against an

acceptable criteria. Perhaps the performance hit is hardly noticeable and the value of

increased modifiability far outweighs the cost. The key point is trade offs are required.

Following are a couple more examples from the author’s experience.

One organization experienced very high traffic on their website during a holiday sea-

son. Performance of the site was very slow such that most site visitors were struggling to

navigate products, add them to their cart, and checkout. The cause was expected traffic

for the holiday was underestimated by a factor of 4. The amount of network bandwidth

available from their Internet Service Provider(ISP) was not enough. Unable to increase

the bandwidth in the short term, an executive decision was made to ’throttle’ access to

22

the site; an example of the manage event rate tactic for performance. The result was a

trade off of availability for performance. Users that did gain access to the site, experi-

enced high performance while other users were blocked from the site. The rationale was

a smaller set of users able to shop with ease would lead to more sales, as opposed to a

large number of users struggling to move from page to page.

In another example, an organization traded modifiability for performance. A mod-

ule responsible for sending out email marketing materials to millions of users was not

performing well. The decision was made to rewrite the module in C++ because of the

performance advantage over existing Java-based code. A highly experienced and skilled

programmer was brought in to complete the work. The resulting module has exceeded

performance requirements and been in production for several years. But the complexity

of C++ and the algorithms used in the module make it difficult for any average pro-

grammers on staff to make changes. Several changes have been rejected because of the

cost of bringing in a higher skilled programmer to change the module.

In a preceding availability example, televisions were priced wrong leading to several

invalid purchases. A business trade off was made for an increase in availability. Pricing

on the website is right a high percentage of the time. A business decided the loss of sales

by denying orders is more costly then correcting the pricing mistake once in a while.

The main point is qualities can be judged only in the context of where they are needed.

In the previous example, the highly skilled programmer was only directed to solve the

performance problem. He or she was not concerned with modifiability. Therefore, in or-

der to select the right tactics for achieving quality attributes, all quality scenarios must

be captured in context. In any case, trade offs will have to be made and qualities priori-

tized. Figure 2.2 shows how rapidly complex this decision can become. The multitude of

options across both functionality and quality makes designing, implementing, and main-

taining software systems a complex task. Figure 2.2 illustrates how fast complexity can

23

Figure 2.2: Tactics

Qualities 1 2 3 4 5 6 7 8 9 10 11 ….. 64
Availability Y N N N N N Y N N Y Y ….. N
Modifiability N Y N N N N Y N N N Y ….. Y
Performance N N Y N N N N Y Y N Y ….. Y
Security N N N Y N N N Y N N N ….. Y
Testability N N N N Y N N N N Y N ….. N
Usability N N N N N Y N N Y Y N ….. N

Tactics
Ping / Echo / Heartbeat
Exception Handling
Voting
Active / Passive Redundancy
Spare
Shadow
State Resynch
Rollback
Removal from Service
Transactions
Process Monitor
Semantic Coherence
Generalize Module
Limit Possible Options
Abstract Common Services
Hide Information
Maintain Existing Interface
Restrict Communication Paths
Use an Intermediary
Runtime Registration
Configuration Files
Polymorphism
Component Replacement
Adherence to Defined Protocols
Increase Computation Efficiency
Manage Event Rate
Control Frequency Sampling
Introduce Concurrency
Maintain Multiple Copies
Increase Available Resources
Scheduling Policy
Authenticate Users
Authorize Users
Maintain Data Confidentiality
Maintain Integrity
Limit Access and Exposure
Intrusion Detection
Audit Trail
Record / Playback
Separate Interface from Implementation
Specialized Access Routines/Interfaces
Built-in Monitors
Cancel / Undo / Aggregate

Rules

24

(a) Everyday Logo (b) Thanksgiving Logo

Figure 2.3: GoogleTM Holiday Transition

grow when just considering qualities let alone functionality. It shows six possible qualities

which can either be important or not. This yields 2n or 64 possibilities. Realistically, a

quality should be assigned a level of importance rather then just an all or nothing propo-

sition. Even so, that would make the decision table even more complex. Furthermore,

the decision table doesn’t even reflect that the adverse effect that one quality has on

another.

2.2 Typical RECWEB Modifiability

Consider the GoogleTM home page. Figure 2.3a shows the everyday logo, whereas Figure

2.3b shows a holiday logo. When a holiday occurs, making this change simply involves

creating and moving a new logo file.

A RECWEB home page, on the other hand, involves many changes (See Figure 2.4).

The content for logos, navigation, products, and promotions have to be changed. These

changes can involve updating and moving many files and databases. Figure 2.5 captures

this in a modifiability scenario.

This section describes parts of a typical RECWEB architecture that relate to mod-

ifiability. The focus is on the Valentine’s Day Scenario. The RECWEB architecture

applies well known modifiability tactics. The existing tactics do not provide sufficient

25

(a) Christmas Day Homepage

(b) Valentine’s Day Homepage

Figure 2.4: RECWEB Holiday Transition

26

Figure 2.5: Valentine’s Day Scenario

modifiability because they fail to scale during a RECWEB holiday transition.

Most RECWEB are implemented by modifying a commercial off the shelf (COTS)

software package [84]. Modifying COTS systems can be challenging [9, 14, 34, 90]. De-

viating too far from the original package makes upgrades to the COTS package near

impossible [66]. In one project the author participated, the COTS package was four

versions obsolete. In fact, the COTS vendor had discontinued support for the version

running in production. The client was forced to replace the entire system with a new

COTS package and a different architecture. Using a COTS package limits modifiabil-

ity from the beginning and continues to deteriorate over time [57, 62]. Although, most

RECWEB organizations still opt for COTS because most of the required functionality is

available out of the box [8, 37,65].

RECWEB COTS packages typically implement some flavor of the model-view-controller

(MVC) architectural pattern (See Figure 2.6) [3]. The goal is a ‘separation of concerns’

so that changes do not cause ripple effects [30]. Essentially, MVC is the strategy that

RECWEB use to achieve modifiability. The following are the three main ”concerns” in

MVC [1,43,80]:

27

Figure 2.6: MVC Structure [1]

Model The primary responsibility is to handle state changes from controllers and com-

municate state changes to views. The application state is a large set of data rep-

resented in a way that makes sense in the real-world. The model is the the means

to manipulate this data.

View The primary responsibility is to render the state from the model and report to

controllers any significant user interaction with the state. The view has the option

of either explicitly requesting state changes from the model or being notified by the

model when state has changed. The view is the means to providing a user interface

to the model.

Controller The primary responsibility is to process user gestures from views, report

any state changes to the model, and select the appropriate view in response. User

gestures might be requests for navigating to a different part of the model or updating

the model. Reporting state changes to the model is accomplished through the

interface the model provides. Selecting the appropriate view for response is based

28

on the result of the model interaction or the initial user gesture.

The first issue for Valentine’s Day is model data must be updated by some entity.

Update controllers and views (Figure 2.8a) are one option. External entities, for example,

data migration tools could also be used to update the data (Figure 2.8b). Most of the

time a combination of the two options are made available depending on the scale of the

updates. If large amounts of data are being updated, content personnel make updates to

a staging database in advance. The updates are propagated to the production database

when the holiday transition occurs. There are two major issues with this technique. First,

the propagation often relies on proprietary features of relational database management

systems. Second, referential integrity of the data is at risk when imported into the

production system.

The second issue for Valentine’s Day is updating views (i.e. home page) with new

model data. Figure 2.9b shows how the views can pull the data. In this case, the

controller selects a Valentine’s Day specific home page view. The view is programmed to

pull the right data from the model. The downside is multiple home page views have to be

maintained. The other option shown in Figure 2.9a is to have one generic home page view

that assumes data push to it from the model is correct. This view is only concerned with

the rendering of the data. The downside is the model might require some knowledge of

the view, for example, a ”Home Page” category. This violates the separation of concerns

of MVC. In addition, duplicate data such as products in multiple categories can make

larger sets of data harder to manage. Both options be reasonably effective, but only with

a lot of manual human interaction.

Updating model data is the common trigger for the aforementioned issues. Figure 2.9

shows typical entities in a RECWEB model. For a large RECWEB there could be

thousands of products and hundreds of categories. In Figure 2.1 shows even a small

29

Figure 2.7: Model Updates

(a) MVC Update

(b) External Update

30

Figure 2.8: View Updates

(a) Push

(b) Pull

31

Figure 2.9: RECWEB Model

(a) Product Catalog (b) Member

(c) Order

subset of data can require many changes. On the flip side, promotions require less data

changes, but across more parts of the model. For example, Figure 2.2e shows ’ornament

club’ as a role. Catalog or product entities can be filtered based on role. This functionality

is often referred to as ”personalization” [7,81]. Order data is also affected by membership

roles. In the author’s experience, catalog changes have been very difficult to manage,

whereas promotions are fairly easy to deploy. However, promotions have also failed to

expire because someone forgets to remove them from the model.

The model is fairly generic to accommodate the greatest flexibility across different

retail domains. After working in several different domains, this abstraction is fine for parts

like order management and membership. However, parts like product catalog always

seem to require extending or stretching the generic model. For example, ’Greeting Cards’,

’Product Type’, and ’Wife’ are all different, but nonetheless are treated as categories. Any

special treatment of a category either requires extending the model or special handling

in the business logic of the model. One might argue this is a reason NOT to use COTS.

32

Table 2.1: RECWEB Sample Tuples

ID Name Parent ID Roles
1 Recipient null standard
2 Product Type null standard
3 Mom 1 standard
4 Brother 1 standard
5 Co-worker 1 standard
6 Wife 1 standard
7 Boyfriend 1 standard
8 Daughter 1 standard
9 Grandpa 1 standard
10 Greeting Cards 2 standard
11 Ornaments 2 ornament club
12 Electronics 2 standard
13 Flowers 2 standard
14 Sporting Goods 2 standard
15 Tools 2 standard

(a) Categories

ID Name Roles
1 Christmas Tree Ornament ornament club
2 iPod standard
3 Ski Equipment standard
4 Sweater standard
5 Red Roses standard
6 Flower Bouquet standard
7 Stuffed Animal standard
8 Massage standard
9 Trip standard
10 Power drill standard
11 Dinner standard
12 Golf Clubs standard

(b) Products

Category ID Product ID
13 5
13 6
5 8
5 11
6 4
6 5
6 6
6 8
7 2
7 12
7 3
9 12
14 12
11 1
3 1

(c) Category Products

Username Password
kathyjohns *******
marksoenen *******
anneblanco *******

(d) Members

Username Role
kathyjohns standard
kathyjohns ornament club
marksoenen standard
annblanco standard

(e) Roles

33

However, this work is not intended to contribute a ‘build versus buy’ [28, 51] debate.

Rather, this work strives to find ways to increase modifiability in the presence of a generic

model.

Table 2.2 shows many common modifiability tactics [10] are present in the RECWEB

architecture. The problem with the existing tactics is the assumption there is enough

time to make changes. Effort to make a single change might be small. But a change

must also be tested and deployed. In the case of RECWEB there could be hundreds or

thousands of the small changes. The modifiability tactics simply do not scale.

2.3 Intelligent Agents

Using software to perform activities in place of humans is not new [11, 24, 27, 39, 48, 54,

58, 61, 63, 67, 86, 97]. For example, many software configuration management activities

such as building and deploying software are automated [22,31,32,38,42,68,69,95]. Soft-

ware quality assurance activities such as testing and performance monitoring are also

automated [33, 53]. The result can be lower costs and reduction of human labor. In the

aforementioned examples, the software is acting as and agent.

Using software to make RECWEB holiday content changes in place of humans is more

difficult. First, changes are not as well defined. The changes might be based on objective

or subjective data provided by a human. Second, there is not enough time to make the

changes. The amount of changes multiplied by the time to make each change exceeds

the amount of time available between holidays. In order to automate RECWEB holiday

content changes, an intelligent agent (IA) must be used.

An IA is a “software tool that carries out a task on behalf of a user or computer,

typically relatively autonomously” [40]. A simple IA perceives conditions in the current

environment and reacts with an action. For example, a RECWEB IA has to sense

34

Table 2.2: Modifiability Tactics in RECWEB

Localize Changes
Semantic Coherence The model, view, and controller are each responsi-

ble for a unique concern. Each concern functions
without excessive reliance on the other. For exam-
ple, should the model become unavailable, the view
can still present data and support user interaction.

Anticipate Expected Changes Selecting MVC as the architectural pattern for
RECWEB is anticipating changes. We showed how
changes to the model are often made to a staging
database in advance.

Generalize the Module We showed how a generic model can allow multiple
domains to use the model. We also showed how a
generic home page can capture the common user in-
terface elements that do not change, while allowing
other entities such as the controller to ensure the
model is updated.

Prevent Ripple Effects
Hide Information The controller need not worry about the exact details

of updating data in the model. On the flip side, the
model has little knowledge of how the view goes about
presenting data.

Restrict Communication Paths The view can only communicate with the model in a
read-only fashion. Any logic for updating the model
must go through the controller. Furthermore, the
controller must use the interface the model provides.

Use an Intermediary The controller is an intermediary. It decouples access
to the model and data from presentation.

Defer Binding Time
Configuration Files The intelligence in a Valentine’s Day specific view can

be controlled by a configuration file. For example,
the exact state queries made to the model could be
changed in a configuration file as opposed to source
code.

35

what holiday season is active and locate content that is relevant. More complex agents

are able to reason using outside knowledge or act according to desired goals. Finally,

highly complex agents learn and adapt to changing environments becoming increasingly

more intelligent over time. Although, the complexity of agents increases the difficulty of

implementing them. RECWEB can start with a simple to moderately complex IA.

The study of intelligent agents is also known as Artificial Intelligence(AI). AI is a field

with a vast amount of research results. However, AI has been slow to emerge in main-

stream application development. A full discussion of AI would be out of scope because not

all parts are relevant to the RECWEB modifiability problem. For example, motion and

manipulation of objects is a type of intelligence required for robotics. Whereas, knowl-

edge representation, model theory, and logic are more relevant to RECWEB. These parts

of AI contributed heavily to the Semantic Web which is discussed in the next section.

To avoid redundancy, this section only includes key aspects of AI.

2.4 Semantic Web

The Semantic Web, a project of the World Wide Web Consortium (W3C), makes data

on the World Wide Web(WWW) available for automated processing by machines, for

example intelligent agents [76, 85]. Therefore, if RECWEB holiday content can adapted

to use the Semantic Web, intelligent agents can handle content changes during holiday

seasons. The previous section introduced intelligent agents as a part of AI. Semantic

Web is often referred to as a ’playground’ for AI. This section provides a background on

the Semantic Web specifications.

Figure 2.10 shows a layered view of the Semantic Web. For the most part, Semantic

Web is built on stable Internet technology. For example, Uniform Resource Indicators

(URI) became standard during the birth of the World Wide Web(WWW) in the early

36

1990’s. A URI is defined as “a compact sequence of characters that identifies and abstract

or physical resource” [12]. URI are used to uniquely identify resources ; a key concept of

the Semantic Web. Access to resources also uses standard Internet technology such as

Hypertext Transfer Protocol (HTTP) as well as Secure Sockets Layer (SSL) for encrypted

communications.

Resource Description Framework(RDF) is key additional layer and the core of the

Semantic Web. Any application of Semantic Web involves using RDF. RDF is about

making statements about the aforementioned concept of resources. As an overview,

Semantic Web technology involves an iterative process of:

• Mapping existing data to RDF

• Merging multiple sets of RDF data

• Querying RDF data

These are the most basic steps for any application of Semantic Web. Section 2.4.3

describes more details of RDF.

SPARQL Query Language for RDF(SPARQL) and Web Ontology Language(OWL)

are the other key layers shown in Figure 2.10. Sections 2.4.5 and 2.4.4 show how these

enhance parts of the map, merge, query sequence. The key enhancements are expres-

siveness, inference, and reasoning about RDF data. These elements are not required for

using the Semantic Web. However, the benefits of usage are high especially with respect

to RECWEB.

This section begins with two example scenarios. The scenarios are used to describe

processes that are typically done manually by humans. Alongside is a discussion on how

Semantic Web helps automate these processes. Sections 2.4.3, 2.4.4, and 2.4.5 follow with

descriptions of RDF, OWL, and SPARQL. Finally, Section 2.4.6 offers further justification

for Semantic Web as an emerging technology with a stable specification.

37

Figure 2.10: Semantic Web Layercake [23]

38

2.4.1 Example #1: Buying a House

1. Buyer determines how much they can afford.

2. Buyer finds houses in the price range.

3. Buyer uses different information sources to compare neighborhood development,

school districts, property tax, etc.

4. Buyer combines all the information to determine which house is the best fit.

Today, information and functionality is available for every aspect of the home buying

process. For example, online applications are available for loan pre-approval. Websites

can immediately generate a comprehensive report on the loan. The buyer uses the infor-

mation to assess the financial burden of the purchase.

Finding houses is also facilitated by the Internet. Search engines can locate houses

based on numerous criteria such as geographic location, number of bedrooms, year built,

and lake view. The buyer can refine criteria to match their price range. The Internet

saves the buyer the time of physically viewing properties that do not meet their criteria.

During the process, a buyer bookmarks websites, creates spreadsheets, downloads

pictures, and saves electronic copies of government documents (tax information, urban

development, etc.). Organizing the information is done on the computer but still a manual

process. Files can be lost. Information can be out of date. The task of organizing the

information can add stress to an already stressful process.

2.4.2 Example #2: Buying a Digital Camera

1. Select important features.

2. Find cameras with the features.

39

3. Read reviews on selected cameras.

4. Pick a camera.

5. Shop for best price and purchase camera.

Like shopping for a house, relevant information is accumulated from multiple sources.

Each source contributes to the buying decision. For example, a particular camera model

might be well advertised and look attractive visually. However, several customer reviews

might convey dissatisfaction of the camera performance. Perhaps a particular model

lens has better technical specification such as mega pixels. A typical buyer might not

understand those terms so they consult an online encyclopedia, for example, Wikipedia.

Finally, other online sources tell the shopper the best prices, shipping costs, and service

reputations of costs of online stores.

The preceding examples illustrate how Internet users manually build relationships

between a set of resources. Relationships are linked together by a unique piece of infor-

mation common across resources. For example, a camera has a manufacturer and model

number. A house for sale has a unique listing number and physical address. A user

connects the resources by inputting the information into another web application to get

more information. For example, the model number can be used to download the user’s

manual from the manufacturer website. The physical address can be input into an online

map application to show schools and restaurants near a house for sale.

2.4.3 Resource Description Framework (RDF)

The preceding examples show relationships between resources on the WWW exist. Hy-

perlinks only explicitly capture a relationship between two documents. Humans are able

to perceive and process implicit relationships manually. Semantic Web uses RDF to cap-

ture knowledge of these relationships explicitly. A concrete representation of RDF can

40

Figure 2.11: RDF Triple

be read by intelligent agents. This enables the automation of the processes described in

the examples in Section 2.4.2 and 2.4.1.

For example, the a web browser could automatically detect a physical address inside

a section of text on the web page. The browser could render the text as a hyperlink to

a geographical map on another website. Humans normally cut an paste the text into

the map website. The website author could recognize the value of making the address a

hyperlink to a map website. In both instances, time is saved because the link appears

automatically.

The smallest part of RDF is a triple or a labeled connection between two resources [64].

Figure 2.11 illustrates the anatomy of a RDF triple: a subject, predicate, and object.

The identity or name of a resource is captured in a string of characters called an Uniform

Resource Identifier (URI). A URI must be the value for a subjects and predicates. The

object in a triple can be either a URI or a literal string. Figure 2.13a shows an RDF triple

capturing the statement ’Mark lives in Austin’. These examples illustrate the abstract

data model for RDF.

There are several ways to concretely represent RDF triples. Included are:

• RDF/XML

• Turtle

• n3

• RXR

41

Figure 2.12: Reasoning Example

(a) Statement 1: Mark lives in Austin.

(b) Statement 2: Austin is capital city of Texas.

(c) Inferred Statement: Mark lives in Texas.

42

Each is just a syntax for a notation. All of these conform to the abstract RDF data model.

Machines can read and convert from one format to another. This work uses RDF/XML.

For example, Figure 2.1 shows the statement ’Mark lives in Austin’ in RDF/XML format.

This example shows a simple mapping of data to RDF.

Listing 2.1: RDF/XML Example

<rdf:RDF

xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”

xmlns:recw=” ht tp : //www. marksoenen . com/ Onto log i e s / recweb . owl”>

<r d f :D e s c r i p t i o n rd f : abou t=” ht tp : //www. marksoenen . com”>

<r e cw : l i v e s I n>Austin , TX</ r e cw : l i v e s I n>

</ r d f :D e s c r i p t i o n>

</rdf:RDF>

A set of triples form a directed graph. Figure 2.13c shows a set of two triples and

the corresponding directed graph. This example also illustrates the merging of RDF

data. Figure 2.13 shows how additional data sets can continuously be merged to form a

larger more meaningful directed graph. Again, the graph is something humans often do

mentally. RDF enables the graphs to be built automatically by a machine [88].

The preceding examples also illustrate the RDF model allows meta data and data to

be mixed together. For example, the statement ’a person must have a last name’ is more

of a restriction on any resource that is an instance of a person. The instance of a person

in the example is ’Mark’. Other statements are used to describe relationships of instance

data, for example, ’Mark lives in Austin’. This statement is valid and useful but wasn’t

explicitly required by another RDF statement. The statement ’a person must have a last

name’ indicates that another RDF triple is required that says ’Mark has the last name

Soenen’.

The level of expressiveness also varies among RDF statements. The statement of a

person’s name doesn’t serve much but as an identifying attribute of the instance of the

43

Figure 2.13: Continous Merging

person. However, a property like ’lives in’ has deeper meaning. Saying a person lives in

a specific place ties that person to many of the attributes of that place. For example,

Figure 2.13 shows that because ’Mark lives in Austin’, and ’Austin is famous for daily

live music’, then ’Mark can enjoy live music daily’. The next section discusses how levels

of expressiveness are captured in vocabularies.

2.4.4 Ontology Web Language (OWL)

Vocabularies play a key role in more expressive description of data relationships. A

vocabulary can provide “extra knowledge for defining terms, restrictions, and extra rela-

tionships” [45]. For example, a vocabulary can make ’lives in’ and ’famous for’ properties

44

Figure 2.14: Expressiveness of Ontology Description Languages

available for use as predicates in RDF triples. The expressiveness and restrictions offered

by a vocabulary can vary.

Ontologies, taxonomies, and thesauri some are ways to capture a vocabulary [92].

An ontology describes the concepts of a domain and the relationships between those

concepts [71]. A taxonomy is the practice of classification. A thesaurus is a list of

semantically orthogonal topic search keys. Web Ontology Language (OWL) is OWL is

recommended by W3C for capturing more expressive vocabularies in schemas [87].

Concretely, vocabularies are represented in schemas. Schemas contain RDF triples

that can be merged with other RDF data to conform to the vocabulary. Vocabular-

ies are intended to be reused across several domains. Figure 2.14, shows the range of

expressiveness of the common schemas.

45

OWL has many levels of expressiveness as shown in Figure 2.14. OWL Lite, OWL

DL, and OWL Full each extend each other. In other words, OWL Lite is valid OWL DL

which is valid OWL Full. But OWL Full is not valid in OWL DL which is not valid in

OWL Lite. Each extension adds more expressiveness and restriction [47].

Automated reasoning is the biggest advantage to using OWL DL over the others. A

reasoner is a piece of software that can read and analyze RDF data to infer new rela-

tionships. The new relationships are added as additional RDF triples to a graph. More

meaningful queries can result. OWL DL provides the maximum amount of expressiveness

still allowing automated reasoning [47]. This could be a very big time saver for RECWEB

because it saves time for entering in all possible combinations of data. For example, if a

certain product is a valid gift for a daughter, then a reasoner might also assume the gift

could come from a mother. Since automation is important to the RECWEB problem,

OWL DL is the best option.

2.4.5 SPARQL Query Language for RDF

Once RDF data is available, applications and intelligent agents need a way to access

it. There are several query languages [73–75]. However, W3C has recommended the

SPARQL Query Language for RDF as the standard. [78].

Similar to SQL, SPARQL is query language with syntax and semantics. A query can

be made several different sources of RDF data. The query contains a set of patterns to

match against the set of RDF graphs. Like SQL, filters and constraints can be specified

to limit results.

The result of a SPARQL query is either a traditional set of tuples (i.e. rows of data)

or RDF graphs. The graph is just a set of RDF triples drawn from multiple data sources.

The results can express significant relationships that are not present when viewing just

46

one of the data sets individually.

2.4.6 Justification

W3C has developed many widely used Internet technologies. This includes several spec-

ifications, guidelines, software, and tools such as:

• Cascading Style Sheets (CSS)

• Hypertext Markup Language (HTML)

• Hypertext Transfer Protocol (HTTP)

• Portable Network Graphics (PNG)

• Simple Object Access Protocol (SOAP)

• Scalable Vector Graphics (SVG)

• Uniform Resource Identifier (URI)

• Uniform Resource Locator (URL)

• Web Services

• Extensible Markup Language (XML)

• Extensible Stylesheet Language (XSL)

• Extensible Stylesheet Transformations (XSLT)

The proven track record of W3C is putting the Semantic Web on a success path [35]. W3C

has released stable specifications for most of key components of Semantic Web (RDF,

SPARQL, and OWL). Like most application domains, a variety of tools are available [6,13,

47

52]. Many software vendors have added Semantic Web features into product lines [52,72].

Reference and learning material are abundant [46]. The aforementioned examples show

the learning curve is small for basic entry into Semantic Web technology. Finally, large

RDF datasets are beginning to accumulate [2, 4, 5]. The Semantic Web is emerging at

the corporate and commercial levels [44].

W3C and others are calling for new applications to be developed in order to advance

the adoption of Semantic Web [46, 77]. Several industries such as Health Care have

already made large commitments to Semantic Web technology. A few case studies show

the potential of Semantic Web in automating content management [21]. In addition, there

are some use cases involving e-commerce [41]. However, there are no known published case

studies or use cases related to increasing modifiability of seasonal systems like RECWEB.

48

Chapter 3

A Highly Modifiable RECWEB

Section 2.2 described the typical modifiability offered by a RECWEB. This section shows

test cases, design, and implementation of a highly modifiable RECWEB.

3.1 Test Cases

49

Table 3.1: Selecting a Greeting

Description
”Happy New Year is a greeting for New Years”...”Today is January 1, therefore greet
users with ’Happy New Year’”

Steps

1. Open web browser to http://localhost/home?month=1&day=1&year=2008

2. Verify that greeting is ”Happy New Year!”

Results

50

http://localhost/home?month=1&day=1&year=2008

Table 3.2: Selecting an Image

Description
”Santa Claus comes on Christmas Eve”...”Today is December 24, therefore an image
of Santa Claus should appear on home page”

Steps

1. Open web browser to http://localhost/index.html?month=12&day=

24&year=2007

2. Verify that image of Santa Claus is displayed.

Results

51

http://localhost/index.html?month=12&day=24&year=2007
http://localhost/index.html?month=12&day=24&year=2007

Table 3.3: Selecting Holiday Products

Description
Product A is an ornament. Ornaments are Christmas gifts”....”Today is Dec. 15,
therefore Product A should be highly relevant”

Steps

1. Open web browser to http://localhost/index.html?month=1&day=15&year=

2008

2. Verify that Christmas products are showing.

Results

52

http://localhost/index.html?month=1&day=15&year=2008
http://localhost/index.html?month=1&day=15&year=2008

Table 3.4: Selecting Products and Categories

Description
Product B is red roses. Red roses are popular gifts for wives and girlfriends on Valen-
tine’s Day. Today is Feb. 1, therefore red roses should be placed in wife and girlfriend
categories, and added to home page.”

Steps

1. Open web browser to http://localhost/index.html?month=2&day=1&year=

2008

2. Verify that red roses show on the home page.

3. Verify that wife and girlfriend categories are on the home page.

Results

53

http://localhost/index.html?month=2&day=1&year=2008
http://localhost/index.html?month=2&day=1&year=2008

Table 3.5: Selecting a Seasonal Products

Description
Product C is patio furniture. People sit on patios during the summer.”....”Today is
Sept. 1, therefore patio furniture should go on sale”

Steps

1. Open web browser to http://localhost/index.html?month=9&day=1&year=

2008

2. Verify that patio furniture is on sale.

Results

54

http://localhost/index.html?month=9&day=1&year=2008
http://localhost/index.html?month=9&day=1&year=2008

Figure 3.1: RECWEB Intelligence Dataflow

3.2 Design

Figure 3.1 shows a simple model for implementing the basic intelligence. The model is

abstracted to a higher level and intentionally made informal. The purpose is to leave

flexibility for implementation. For example, the following sections describe some details

for each element in the model. However, an implementation is free to add additional

details so long as the main output is conceptually seasonal content. Of course, the arrival

at the output must be achieved with minimal human involvement and in an automated

fashion.

Automating content changes must integrate with existing MVC-based RECWEB

COTS packages, therefore Section 2.2 provides the baseline for this solution. For ex-

ample, the responsibility of a controller is to process user gestures, report state changes

to the model, and select views. In the new solution, none of these responsibilities are

changed structurally. The main changes are adding seasonal automation functionality

55

Figure 3.2: RECWEB Seasonal Model

to the internals of controller and model elements. Sections 3.2.1 and 3.2.3 detail these

changes.

3.2.1 Model

Seasonal Context An astonishing observation from the author’s experience with RECWEB

organizations, is that very few make an effort to capture a seasonal context explicitly in

systems. In fact, one organization’s entire business is based on seasonal products and

they did little to model seasonal context. This section provides the foundation for cap-

turing a seasonal context. Figure 3.2 shows an initial attempt at a seasonal context

model.

A season is a time interval on a calendar. For example, Christmas season is the last

Friday of November until December 25. Summer in North America is June 21 through

Sept 20. Two seasons can overlap such as Christmas and Winter. One season is based

on religious meaning and the other on climate.

Active season(s) can be determined by comparing the current date and time with

56

a seasonal calendar. An implementation can define the data structure to represent a

seasonal calendar. In addition, the seasonal calendar data must be accessible to content

agent(s). Typically, the seasonal calendar would remain static once created. For example,

seasons based on climate nor holidays rarely change. However, different organizations are

likely have different calendars. For example, a sporting goods retailer is more concerned

with climate driven calendar. Whereas, a greeting card company is concerned with

holiday calendars.

Each season has a set relevant attributes. For example, winter can involve dressing

warm, drinking hot chocolate, and snow skiing. Christmas is a time for social gathering,

shopping, and gift giving. Certain symbols or concepts are also attached to Christmas

such as Santa Claus and Christmas trees. An implementation should be able to correlate

the attributes for a season to relevant content.

The default seasonal context should be based on current system time. The frequency

that the system time is checked and seasonal content regenerated is determined by the

units of the time intervals for the seasons. In the case of RECWEB it could be daily.

For example, 12:00 AM on December 26 would trigger the system to regenerate seasonal

content. The content could switch the seasonal context from Christmas to Valentine’s

Day.

Ideally, the system should allow the seasonal context to be manually configured at

runtime. A system administrator should be able to pick a date and time in order to

simulate a season. For example, December 15 is Christmas season, but setting the date

and time to January 1 allows for simulation of Valentine’s Day. The benefits are twofold.

First, an assessment of how well Valentine’s Day content is prepared can be done real

time. Second, enhancements depending on Valentine’s Day seasonal context can be

viewed with production data. Essentially, this greatly reduces guess work of determining

the state of RECWEB content at future dates. On the flip side, previous dates could

57

also be examined.

Content In the Section 2.2, RECWEB content is defined as logos, navigation, products,

and promotions. The bulk of seasonal changes are navigation and products. Therefore,

this section focuses on the requirements for preparing navigation and products to be

seasonally processed. However, nothing should prevent other implementations to use

any type of content.

Product catalog data must contain enough information either explicitly or implicitly

indicate seasonal relevance. For example, ’Christmas’ could appear in a keywords at-

tribute. This would be an explicit seasonal indicator because it matches the exact name

of a holiday. However, ’Santa Claus’ in a product title is an implicit indicator. This is

because ’Santa Claus’ is only a symbolic indicator of the Christmas holiday.

If explicit seasonal indicators are absent, it is harder for an agent to determine the

seasonal relevance of a product. This is a legitimate concern because organizations do

very little to explicitly model seasonal contexts. Therefore, most product catalog data

only contains implicit seasonal indicators. Addressing this problem is not required by

the evaluation criteria set forth in Section 1.4. Although, Section 5 describes potential

future work on the problem.

Seasonal Content Seasonal content is the output of processing a seasonal context

with content or in this case product catalog data. How the seasonal content is used is

up to the implementor. The only requirement is that the seasonal content is generated

by the machine and not a human being. Again, the point is to free up human resources

for enhancements activity.

There is also some subjectivity to determining what is and is not seasonal content.

For example, ’Santa Claus Tree Ornament’ is obviously relevant to Christmas. But in

58

another case, a marketing person might decide that ’iPods’ should be marketed as a gift

for mom on Christmas. This could be based on the opinion of the marketing person or on

something else like sales data. Again, all of the decision making is up to the implementor,

so long as the seasonal content generation is automated.

3.2.2 View

Structurally, there is little change to the views. The responsibility remains to capture/re-

port user gestures and reflect the current state of the model. The previous section shows

the major change is how current state of the model is computed. The views are already

set up to reflect it.

Recall Figure 2.8 shows two patterns for view updates: pull and push. In the pull

pattern, the view has knowledge of what season should be queried on the model. In the

push pattern, except the controller queries the model and passes the seasonal results to

the view. In both cases, the knowledge of season is manually set by a site maintainer

in, for example, a configuration file. In the new model, the knowledge of season is

automatically determined by system time. This determination could be made in either

the view or the controller depending on which push/pull pattern is desired. However, the

push pattern has the advantage of less parts to maintain. For example, only one home

page need to be maintained. For this reason, the new tactic diminishes the value or need

for the pull pattern.

The internals of the views might provide greater usability because more accurate

seasonal content is projected. For example, customers don’t have to look at Christmas

categories when Valentine’s Day is more relevant. This leads them to products faster.

It also shows the current modifiability tactics applied by MVC work correctly. In this

case, the model and controllers have changed. By applying tactics to localize changes as

59

shown in Figure 2.2, the view isn’t required to change.

The role of model update views shown in Figure 2.7 is also diminished. The model

will still need to be updated manually because the new tactic is being phased in. In

addition, the model update views provide an override should content personnel not be

satisfied with the automated results. Recall simulation is also a desired feature. Content

personnel can set the time forward to see how well content is prepared for a future holiday

or season. The model update view comes in handy for filling in gaps for future content.

However, model update view would not be the main means of changing content as in the

past.

3.2.3 Controller

Structurally, there is little change to the controller. The responsibility remains to process

user gestures from views, report state changes to the model, and select appropriate view.

The previous section shows the major change is functionality must be added to the

controller to compute a seasonal context. The seasonal context is then used to query the

model.

The controller inevitably must maintain reference to a calendar that contains infor-

mation about holidays and seasons. The data format and how the calendar gets updated

is up to the implementation. However, the calendar must be accessible to the controller.

The controller also controls how often the calendar is read and the seasonal context is

updated.

Once a seasonal context is determined, the controller must format and inject to the

seasonal context into all queries to the model. This insures that the model data returned

contains seasonally relevant content. The controller is responsible for pushing the right

seasonal content to views.

60

3.3 Implementation

A complete COTS package is not feasible for implementation because of the expense of

licensing such packages. A single license can cost thousands of dollars. In addition, orga-

nizations that license a COTS packages to run a RECWEB were unwilling to participate

in this academic research. Lack of resources to dedicate and lack of COTS vendor support

were cited as the two major concerns. However, several organizations were intrigued by

the potential of increasing modifiability of their RECWEB. All recognized the problem

of maintaining the site in the seasonal context.

Section 2.2 provides an abstraction of the basic MVC components inside of a typical

RECWEB COTS package. The abstraction is based of the author’s extensive use of such

packages as well as publicly available COTS package documentation. The abstraction

formed the baseline for the design in Section 3.2. The same abstraction is used in this

chapter for implementing the design.

The design is implemented by building a simple MVC-based prototype web appli-

cation. The web application dynamically generates a RECWEB home page based on

Figures 2.4a and 2.4b. The home page shows RECWEB seasonal content. The sea-

sonal content is automatically generated based on system time, but can be overridden by

passing parameters in the URL. This simple prototype web application shows that the

preceding design described in Section 3 is feasible. The following sections give the details

of the prototype.

3.3.1 Model

The first step in establishing a seasonal context is determining what the current season

is. The implementation created a function that receives two parameters: current date

and calendar location. If no current time is specified then the current system date is

61

used.

The calender format accepted is iCalendar (iCal). iCal is a standard format supported

by numerous applications for calendar data exchange. iCal files can be created, exported,

and imported very easily. The result is users of the new highly modifiable RECWEB

have many choices on how to create seasonal calendars.

The implementation treats all events on a calendar as seasonal. Therefore, the iCal

file passed as input should be exclusively used to denote the seasonal calendar for the

particular user of the application. The season name should be stored in the ’Summary’

field of the iCal event record. The ’dtstart’ and ’dtend’ fields are used to specify the

beginning and end of the season. For example, Figure 3.1 shows iCal entries for Mother’s

Day and Summer.

Listing 3.1: Seasonal Calendar in iCal

1 BEGIN:VCALENDAR

2 PRODID:−//Google Inc //Google Calendar 70.9054//EN

3 VERSION: 2 . 0

4 CALSCALE:GREGORIAN

5 METHOD:PUBLISH

6 X−WR−CALNAME: Seasona l

7 X−WR−TIMEZONE: America/Chicago

8 X−WR−CALDESC:

9 BEGIN:VTIMEZONE

10 TZID : America/Chicago

11 X−LIC−LOCATION: America/Chicago

12 BEGIN:DAYLIGHT

13 TZOFFSETFROM:−0600

14 TZOFFSETTO:−0500

15 TZNAME:CDT

16 DTSTART:19700308 T020000

17 RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=2SU

18 END:DAYLIGHT

19 BEGIN:STANDARD

20 TZOFFSETFROM:−0500

62

21 TZOFFSETTO:−0600

22 TZNAME:CST

23 DTSTART:19701101 T020000

24 RRULE:FREQ=YEARLY;BYMONTH=11;BYDAY=1SU

25 END:STANDARD

26 END:VTIMEZONE

27 BEGIN:VEVENT

28 DTSTART;VALUE=DATE:20080421

29 DTEND;VALUE=DATE:20080526

30 DTSTAMP:20080306T224713Z

31 CLASS:PRIVATE

32 CREATED:20080306T223820Z

33 DESCRIPTION: Mother ’ s Day

34 LAST−MODIFIED:20080306T223820Z

35 LOCATION:

36 SEQUENCE:0

37 STATUS:CONFIRMED

38 SUMMARY: Mother ’ s Day

39 TRANSP:TRANSPARENT

40 END:VEVENT

41 BEGIN:VEVENT

42 DTSTART;VALUE=DATE:20080621

43 DTEND;VALUE=DATE:20080921

44 DTSTAMP:20080306T225129Z

45 CLASS:PRIVATE

46 CREATED:20080306T224144Z

47 DESCRIPTION:

48 LAST−MODIFIED:20080306T224144Z

49 LOCATION:

50 SEQUENCE:0

51 STATUS:CONFIRMED

52 SUMMARY:Summer

53 TRANSP:TRANSPARENT

54 END:VEVENT

55 END:VCALENDAR

The summary of an event can contain a plain text description of the season or a URI.

The difference is the URI is more specific and easier to match to an ontology. If plain

63

text is used, the seasonal context function is restricted to keyword matching of seasonal

content. A URI is easier when using a reasoner to match seasonal content. However,

both options are there until a fully baked seasonal ontology exists.

The implementation took an initial stab at creating an ontology for seasonal content.

The newly designed model in Figure 3.2 heavily influenced the ontology creation. Protege

OWL is the tool used to create and manipulate the ontology. OWL DL is used to

maximize the ability for automated reasoning.

To control scope only one top level ontology is created. However, careful attention is

made to avoid any naming conflicts with other ontologies. Namespaces would prevent any

collisions. However, the goal would be to reuse as many concepts from other ontologies.

For example, the MILO ontology contains the concept of holidays and fixed holidays.

Instead of creating the duplicate concept in a new ontology, SUMO could be used. But

this is simply out of scope for this work.

After developing the ontology, the basic steps were followed for implementing a Se-

mantic Web application: map, merge, and query RDF data. Mapping data to the new

ontology is done in 3 ways:

• manual data entry

• simple string pattern matching

• using a simple natural language processor

• tagging images with embedded RDF

Enough data is mapped to the seasonal ontology to implement the merge and query from

inside the prototype web application.

The reasoner also played a role in generating more RDF data. Several properties

specified in the ontology were set up with inverse properties. This means using one of

64

these properties in an RDF statement automatically generated the counter statement.

For example, husband is specified to give gifts to a wife. The reasoner automatically gen-

erates the inverse statement which specifies that a wife can receive gifts from a husband.

The result is a lot of additional RDF data generated automatically saving time.

Images were also tagged with RDF data. When the data is all merged together,

it enabled image content to be returned in the same queries for products and content.

This represents a change from traditional RECWEB COTS applications which might

only store a physical location of an image. In this new solution, the seasonal aspects of

images are also made available in the same ways of regular content. This simplifies the

application code that must query these sources.

3.3.2 View

The views created for the prototype are very typical of any dynamic web application.

Each view focused on reading, formatting, and rendering HTML to be consumed by a

web browser. No business logic is included per the MVC based design.

The push pattern is used to get data to the views. Controllers query the model and

expose the returned data for use by views. Views do not query the model directly. This

is directly reflective of the new design outlined in Section 3.2.

3.3.3 Controller

The controllers essentially function like most COTS package controllers. However, sea-

sonal content is retrieved by performing SPARQL queries against the new ontology. The

results of the query are made available for consumption by views. The controller is im-

plemented as a middleware component so the output could be simply ignored by the

view. This would be useful to run traditional relational database queries side by side.

65

Standard performance management techniques are enabled. Caching of the output

of views and controllers are applied. For example, the seasonal context only changes at

the stroke of midnight. Therefore, the seasonal context just needs to be computed once

and the output stored in a cache. For all subsequent requests by views and controllers,

the cached data is used. This is a very common feature of most COTS packages and can

drastically increase performance.

66

Chapter 4

Evaluation

In Section 1.4, several assumptions and constraints are presented. These are a basis for

evaluating the solution to the RECWEB modifiability problem. This section evaluates

the new highly modifiable RECWEB against these criteria. The purpose is to show that

the new design and implementation increases modifiability without drastically increasing

costs.

The first goal is to get the seasonal content change scenario out of the critical path

of the enhancements scenario. This work shows this is feasible by automating seasonal

content changes. This accomplishment alone makes a RECWEB more modifiable. With

content changes out of the critical path it becomes feasible to develop and deploy en-

hancements at any time. Furthermore, people and resources required for modifying and

maintaining a RECWEB during peak seasons can conceivably be reallocated toward

enhancement development.

The second goal is to not increase costs at the expense of modifiability. In the first

step, the risk of enhancement development is reduced. This means less occurrences of

high investment in an enhancement project only to see it delayed because of not making

a holiday season deployment. The result is more quantity and successful enhancements

67

into the system. This should translate into increase revenue because enhancements bring

a competitive edge. Such revenue would offset some of the costs of automating seasonal

content changes.

So what are the costs of automating content changes? People, COTS integration,

and quality tradeoffs all present cost constraints. The following sections address each

of these constraints with respect to cost. The purpose is to show the new design and

implementation of a highly modifiable RECWEB does not increase costs.

4.1 People

A common suggestion to any problem is to add more people. In some cases in retail,

it certainly makes sense. For example, temporary help is very common in brick and

mortar retail stores. A store will hire additional staff to help accommodate the increase

in shoppers during the holiday seasons. The temporary staff helps with tasks such as

keeping the shelves organized and stocked with the correct products. Holiday transition

can certainly benefit from additional staff. For example, two aisles might be dedicated

to seasonal products. On December 24th, these aisles would have all Christmas items.

However, on December 26th the aisles need to be replaced with Valentine’s Day items.

This would involve temporary staff physically moving the items.

A minimum wage employee can be instructed to physically move items around a

store. The movement of those items also do not affect the inventory of another store.

On a RECWEB, technical skills are required to move items around the online store. The

changes are seen by a much wider audience of the store. Aside from physically making the

changes to the RECWEB, another skill is required to decide what changes to make. This

can be subjective and require a marketing skill, or it can be merely driven by business

rules. The point is this skill is far beyond hiring just temporary staff during the holidays.

68

Cost is the main reason temporary staff is not feasible. The hourly rate for a tempo-

rary employee in a brick and mortar store is exponentially lower than a resource required

for a RECWEB. Figure 4.1 shows the types of human resources required for a RECWEB.

The hourly rates are driven by the skill level required to make holiday specific changes

or enhancements.

The rates are reflective of consulting based employees as opposed to lower cost full

time salaried employees. However, if the full time salaried employee is not 100% utilized

the cost becomes comparable to using consultants. A full discussion of this tradeoff is

out of scope. The full time or salaried is still exponentially greater than a minimum wage

temporary employee.

Table 4.2 shows staff cost estimates for just one holiday transition. The estimates are

based off a waterfall development model. The holiday transitions are in fixed time box.

Therefore, all development tasks (requirement, design, implementation, etc.) have to be

fit into to a time box. The estimates show staff allocated appropriately.

Holiday transition staff can either be new hire or borrowed from enhancement projects.

In the former, the additional resource costs money. In the latter, the borrowed resource

jeopardizes the enhancement project time line.

Table 4.3 shows the amount of resources that can be removed from a highly modifiable

RECWEB. This represents a cost savings of over 50%. In fact, the cost savings for just

one holiday transition is $177,200. In the typical case of seven holiday transitions, this

adds up to just over $1.2 million dollars. Therefore, the new highly modifiable RECWEB

does not require temporary or borrowed resources. In fact, it frees up resources for other

use. The freed up resources could be used to increase monitoring of availability and

performance during high traffic. For example, additional testers and network engineers

could be added to holiday transition teams.

69

Table 4.1: Roles

Role Description Hourly Rate

Project Manager Responsible for delivering the solution on time
and within budget.

$175

Architect Responsible for vigoursly understanding re-
quirements. Makes high level design decisions
that help achieve all functionality and qualities
such as avaliablity, performance, and modifia-
bility.

$175

Developer Responsible for implementing architect’s de-
sign. Writes and maintains source code in mul-
tiple programming languages.

$125

Tester Responsible for verifying and validating all de-
livered artifacts. Writes and executes test cases
reporting any defects.

$100

Business Analyst Analyzes impacts of changes on cost and rev-
enue.

$75

UI Designer Responsible for designing user interface
changes. Might build prototypes using HTML
editors.

$100

Graphics Artist Responsible for designing media artifact for a
site. Designs and develops images, videos, and
styles for a site.

$100

Marketing Manager Responsible for making decisions regarding
pricing, products, promotions, and placement.

$100

Content Manager Responsible for implementing business analyst
and marketing manager’s decisions.

$75

Network Engineer Responsible for the network, hardware, and
software infrastructure in production, staging,
and development environments.

$125

70

T
ab

le
4.

2:
C

os
t

E
st

im
at

e
-

C
u
rr

en
t

S
ea

so
n
al

T
ra

n
si

ti
on

T
ab

le
4.

3:
C

os
t

E
st

im
at

e
-

S
ea

so
n
al

T
ra

n
si

ti
on

in
H

ig
h
ly

M
o
d
ifi

ab
le

R
E

C
W

E
B

71

Table 4.4 shows the costs of a typical enhancement project. Enhancement projects

have about a six month time box to complete. Waterfall development is not always

required because some projects might not require the full six months. Agile approaches

such as Scrum are much more common. These approaches are iterative and involve

several cycles of incrementally delivering a working software product. Each cycle, or

sprint, encompasses a full set of activities: requirements, design, implement, test, deploy.

At the end of each sprint a working set of functionality is delivered and demonstrated.

All the estimates for enhancement projects are based on this approach.

Resources could also be made available for enhancements work. Project managers,

architects, and developers can all contribute to enhancement projects. The savings from

seasonal transition work is more than enough to fund and entire additional enhancement

project. The other options is to augment an existing enhancement project to either

shorten the project’s sprint cycles (See Table 4.5) or utilize higher skilled team members

(See Table 4.6) The RECWEB is more modifiable because it allows more enhancements

and faster projects.

There is a cost for the initial development and maintenance of the highly modifiable

RECWEB. The design and implementation in Sections 3.2 and 3.3 are fairly complex.

Therefore, an architect and an above average developer might be required. Table 4.7

shows an initial estimate for this project.

72

T
ab

le
4.

4:
C

os
t

E
st

im
at

e
-

N
ew

E
n
h
an

ce
m

en
t

P
ro

je
ct

73

T
ab

le
4.

5:
C

os
t

E
st

im
at

e
-

N
ew

E
n
h
an

ce
m

en
t

P
ro

je
ct

w
it

h
S
h
or

te
r

C
y
cl

es

74

T
ab

le
4.

6:
C

os
t

E
st

im
at

e
-

N
ew

E
n
h
an

ce
m

en
t

P
ro

je
ct

w
it

h
H

ig
h
er

S
k
il
ls

75

T
ab

le
4.

7:
C

os
t

E
st

im
at

e
-

In
it

ia
l
H

ig
h
ly

M
o
d
ifi

ab
le

R
E

C
W

E
B

76

4.2 COTS Integration

Another key constraint is integrating with typical COTS RECWEB packages. The de-

sign and prototype fit well into the base MVC design pattern adopted by most RECWEB

COTS packages. However, most of the additions to the system were functional compo-

nents deployed directly inside existing pieces of the typical RECWEB COTS package.

There is no reason to believe deploying this MVC-based design into a real RECWEB

COTS package would not work.

Integration could even occur in a phased in approach. The implementation shows

that the normal queries for content can be made in parallel with seasonal content queries.

The only cost is to performance, but the implementation utilized well known performance

improvement techniques. These are discussed further in the next section.

One downside is the inability to test the design and implementation inside of an actual

COTS package. The cost of licensing a COTS product and staff to support is just too

high for a pilot project. However, the implementation used the normal extension points

offered by COTS packages. The author has extensive experience designing and developing

such extensions. The integration of the new tactic could be easily accomplished. The

upside is the common abstraction can apply to multiple different COTS vendors.

4.3 Quality Tradeoffs

Availability of a RECWEB is improved just by the fact content changes are constantly

being made by the system and not humans. One of the main reasons availability suffers

is a RECWEB has to be taken down to deploy new content. The new tactic reduces the

amount of times this must occur. Additional monitoring resources are also available as

mentioned in Section 4.1.

77

Performance should not be affected. Existing COTS performance management tech-

niques are utilized, for example, caching. Any performance benchmarks will translate.

Simulation is possible because a current time can be passed into the new system. The

system should behave as if the time passed in is the current time. This greatly improves

the ability to analyze availability, performance, and modifiability for the future. For

example, content personnel have the ability to peek into the future and view content

state. This reduces the amount of surprises and guess work that occur during peak

season.

78

Chapter 5

Conclusion

The goal of this research is to create a highly modifiable RECWEB that is able to

overcome seasonal constraints plaguing current RECWEB. All evaluation criteria set

forth in Section 1.4 were achieved. In addition, the improvements show no cost increases.

Several additional benefits were realized during design and implementation. While

the goal is to automate content changes, it has been discovered that the automation

could enable more than just one change at at time. For example, if a product is tagged

as a good gift for a mother, then content can also generated that a daughter might give

that gift to a mother. This could save a lot of time for content personnel during any

manual entry effort. Of course, once the content is in the system it can be automatically

reasoned about to generate seasonal content.

One other efficiency gained is being able to query different kinds of content types at

the same time and from the same data store. This is made possible because RDF data

can be embedded inside images as well as just attached to raw data. For example, the

seasonal agent can find both images and products relevant to a specific holiday from the

same data store.

The final contribution of this work is a seed use case for an application of Semantic

79

Web involving a RECWEB. There is a call for such use cases and no use case exists

specific to seasonal constraints on a RECWEB. The organization of this work provides

a framework for refining such a use case into a more production ready system that can

be validated.

This work can spawn off in several research directions. The most feasible being the

aforementioned Semantic Web use case. This work shows the Semantic Web can be used

as a tactic to increase modifiability of RECWEB. However, much more work needs to

be done to make it production ready. Continuing several iterations of map, merge, and

query should get the solution in a position to be submitted as a valid use case to W3C.

Mapping RECWEB data to RDF might be challenging. Most organizations do not

explicitly capture seasonal context or even attributes. This means that someone or some-

thing needs to extract the information from the current RECWEB data. This is not an

uncommon problem in any Semantic Web application. At the time of writing, W3C has

just finalized the Gleaning Resource Descriptions from Dialects of Languages (GRDDL)

standard. Future research could involve utilizing some of the emerging GRDDL tools

and technologies to extract RDF from RECWEB data.

Natural language processing (NLP) is another method for extracting RDF from

RECWEB data. In fact, Semantic Web case studies have shown NLP to be effective

in creating machine readable data [82, 91]. Future research could focus on NLP as the

method for extraction. This work is very rudimentary at exploiting NLP.

Merging other vocabularies with the OWL of this work would be highly beneficial.

This work is just a first step at fully understanding explicit relationships involved with

RECWEB. But OWL are meant to be shared and reused to reduce the amount of work

to maintain them. Furthermore, more meaningful relationships can be inferred by using

more common vocabularies with RECWEB OWL.

Querying RDF data is the final but very important step in the Semantic Web devel-

80

opment process. At the time of writing, SPARQL is also a new standard. As new tools

and technologies to support SPARQL emerge, queries can be reevaluated and optimized.

Finally, one cannot discount the role of AI in this solution. The seasonal agent de-

signed here should continue to be studied in both the context of Semantic Web and

traditional AI. This work only implements basic intelligence in the seasonal agent. How-

ever, future research could really focus on more complex intelligence inside the seasonal

agent.

Regardless of the direction taken, a highly modifiable RECWEB is needed. This work

shows modifiability can be increased through automation of seasonal content changes

while containing costs. Future research can use this pilot project as a framework for

applying new techniques and technologies.

81

82

Bibliography

[1] Java blueprints: Model-view-controller. http://java.sun.com/blueprints/

patterns/MVC-detailed.html, 2002.

[2] Swoogle: Semantic web search. http://swoogle.umbc.edu/, 2007.

[3] Websphere commerce version 6 information center. http://publib.boulder.ibm.
com/infocenter/wchelp/v6r0m0/index.jsp, 2007.

[4] Freebase: An open shared database of the world’s knowledge. http://www.

freebase.com/, 2008.

[5] Schemaweb. http://www.schemaweb.info/, 2008.

[6] Sw tools and systems. http://www.semanticweb.gr/index.php/Tools_and_

Systems, 2008.

[7] Gediminas Adomavicius and Alexander Tuzhilin. Personalization technologies: a
process-oriented perspective. Commun. ACM, 48(10):83–90, 2005.

[8] L. David Balk and Ann Kedia. Ppt: a cots integration case study. In ICSE ’00:
Proceedings of the 22nd international conference on Software engineering, pages 42–
49, New York, NY, USA, 2000. ACM Press.

[9] Robert Balzer, Alexander Egyed, Neil Goldman, Tim Hollebeek, Marcelo Tallis,
and David Wile. Adapting cots applications: an experience report. In IWICSS ’07:
Proceedings of the Second International Workshop on Incorporating COTS Software
into Software Systems: Tools and Techniques, page 7, Washington, DC, USA, 2007.
IEEE Computer Society.

[10] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice,
pages 3–17. Addison Wesley, 2nd edition, 2003.

[11] Steven M. Beitzel, Eric C. Jensen, David D. Lewis, Abdur Chowdhury, and Ophir
Frieder. Automatic classification of web queries using very large unlabeled query
logs. ACM Trans. Inf. Syst., 25(2):9, 2007.

83

http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://swoogle.umbc.edu/
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wchelp/v6r0m0/index.jsp
http://www.freebase.com/
http://www.freebase.com/
http://www.schemaweb.info/
http://www.semanticweb.gr/index.php/Tools_and_Systems
http://www.semanticweb.gr/index.php/Tools_and_Systems

[12] Tim Berners-Lee, R. Fielding, and L. Masinter. RFC 3986, Uniform Resource Iden-
tifier (URI): Generic syntax. http://tools.ietf.org/html/rfc3986, 2005.

[13] Chris Bizer and Daniel Westphal. Developers guide to semantic web toolkits
for different programming languages. http://www4.wiwiss.fu-berlin.de/bizer/
toolkits/index.htm, 2007.

[14] Barry Boehm and Chris Abts. Cots integration: Plug and pray? Computer,
32(1):135–138, 1999.

[15] Frederick Brooks. Mythical Man Month, pages 3–17. Addison Wesley, 2nd edition,
2003.

[16] Katy Byron. Wal-mart site knocked offline by traffic. http://money.cnn.com/2006/
11/24/technology/walmart_website/index.htm?postversion=2006112414,
2006.

[17] K. Selçuk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin Hsiung, and Divyakant
Agrawal. Enabling dynamic content caching for database-driven web sites. In ACM
SIGMOD 2001, pages 532–543. ACM, 2001.

[18] Gerardo Canfora and Aniello Cimitile. Software maintenance, 2000.

[19] James R. Challenger, Paul Dantzig, Arun Iyengar, Mark S. Squillante, and Li Zhang.
Efficiently serving dynamic data at highly accessed web sites. IEEE/ACM Transac-
tions on Networking, 12(2):233–246, 2004.

[20] Karen Clay, Ramayya Krishnan, and Eric Wolff. Pricing strategies on the web:
evidence from the online book industry. In EC ’00: Proceedings of the 2nd ACM
conference on Electronic commerce, pages 44–55, New York, NY, USA, 2000. ACM
Press.

[21] Susie Cone and Kathy MacDougall. Case study: The swordfish metadata initiative:
Better, faster, smarter web content. http://www.w3.org//2001/sw/sweo/public/
UseCases/Sun/, 2007.

[22] Reidar Conradi and Bernhard Westfechtel. Version models for software configuration
management. ACM Comput. Surv., 30(2):232–282, 1998.

[23] World Wide Web Consortium. Semantic web layercake. http://www.w3.org/2007/
03/layerCake.svg.

[24] Robert Cooley. The use of web structure and content to identify subjectively inter-
esting web usage patterns. ACM Trans. Inter. Tech., 3(2):93–116, 2003.

84

http://tools.ietf.org/html/rfc3986
http://www4.wiwiss.fu-berlin.de/bizer/toolkits/index.htm
http://www4.wiwiss.fu-berlin.de/bizer/toolkits/index.htm
http://money.cnn.com/2006/11/24/technology/walmart_website/index.htm?postversion=2006112414
http://money.cnn.com/2006/11/24/technology/walmart_website/index.htm?postversion=2006112414
http://www.w3.org//2001/sw/sweo/public/UseCases/Sun/
http://www.w3.org//2001/sw/sweo/public/UseCases/Sun/
http://www.w3.org/2007/03/layerCake.svg
http://www.w3.org/2007/03/layerCake.svg

[25] Paul Dantzig. Architecture and design of high volume web sites. In The Fourteenth
International Conference of Software Engineering and Knowledge Engineering, pages
17–24. ACM, 2002.

[26] Anindya Datta, Kaushik Dutta, Helen Thomas, Debra Vandermeer, and Krithi Ra-
mamritham. Proxy-based acceleration of dynamically generated content on the world
wide web: An approach and implementation. ACM Transactions on Database Sys-
tems, 29(2):406–443, 2004.

[27] Marie desJardins, Eric Eaton, and Kiri L. Wagstaff. Learning user preferences for
sets of objects. In ICML ’06: Proceedings of the 23rd international conference on
Machine learning, pages 273–280, New York, NY, USA, 2006. ACM Press.

[28] Jens Dibbern, Tim Goles, Rudy Hirschheim, and Bandula Jayatilaka. Information
systems outsourcing: a survey and analysis of the literature. SIGMIS Database,
35(4):6–102, 2004.

[29] E. Dibella. Hacked for the holidays: how an anonymous network attack almost
brought one small business to its knees. netWorker, 6(1):26–31, 2002.

[30] E.W. Dijkstra. On the role of scientific thought. http://www.cs.utexas.edu/

users/EWD/ewd04xx/EWD447.PDF, 1974.

[31] Jacky Estublier. Software configuration management: a roadmap. In ICSE ’00:
Proceedings of the Conference on The Future of Software Engineering, pages 279–
289, New York, NY, USA, 2000. ACM Press.

[32] Jacky Estublier and Sergio Garcia. Process model and awareness in scm. In SCM
’05: Proceedings of the 12th international workshop on Software configuration man-
agement, pages 59–74, New York, NY, USA, 2005. ACM Press.

[33] Jacky Estublier, David Leblang, André van der Hoek, Reidar Conradi, Geof-
frey Clemm, Walter Tichy, and Darcy Wiborg-Weber. Impact of software engineering
research on the practice of software configuration management. ACM Trans. Softw.
Eng. Methodol., 14(4):383–430, 2005.

[34] John Favaro. On the scalability problem in cots-based programming environments.
SIGSOFT Softw. Eng. Notes, 21(5):43–46, 1996.

[35] Lee Feigenbaum, Ivan Herman, Tonya Hongsermeier, Eric Neumann, and Susie
Stephens. The semantic web in action. Scientific American, pages 90–97, December
2007.

[36] Simon Fong and Chan Se-Leng. Modeling personnel and roles for electronic com-
merce retail. In SIGCPR ’00: Proceedings of the 2000 ACM SIGCPR conference on
Computer personnel research, pages 45–53, New York, NY, USA, 2000. ACM Press.

85

http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF

[37] Xavier Franch and Marco Torchiano. Towards a reference framework for cots-based
development: a proposal. In MPEC ’05: Proceedings of the second international
workshop on Models and processes for the evaluation of off-the-shelf components,
pages 1–4, New York, NY, USA, 2005. ACM Press.

[38] Piero Fraternali. Tools and approaches for developing data-intensive web applica-
tions: A survey. ACM Computing Surveys, 31(3):228–263, 1999.

[39] Vassil Gedov, Carsten Stolz, Ralph Neuneier, Michal Skubacz, and Dietmar Seipel.
Matching web site structure and content. In WWW2004, pages 228–263, 2004.

[40] Vladimir Geroimenko. Dictionary of XML Technologies and the SemanticWeb, pages
3–17. Springer, 1st edition, 2004.

[41] Rayid Ghani. Mining the web to add semantics to retail data mining. https://

www.accenture.com/NR/rdonlyres/42AA8DB9-F430-4DB5-A424-64050FAC9F80/

0/ewmfghani.pdf.

[42] Jörg M. Haake. Facilitating orientation in shared hypermedia workspaces.
In GROUP ’99: Proceedings of the international ACM SIGGROUP conference on
Supporting group work, pages 365–374, New York, NY, USA, 1999. ACM Press.

[43] Stuart Hansen and Timothy V. Fossum. Refactoring model-view-controller. J. Com-
put. Small Coll., 21(1):120–129, 2005.

[44] Jim Hendler. Web 3.0: Chicken farms on the semantic web. Computer, 41(1):106–
108, Jan. 2008.

[45] Ivan Herman. Introduction to the semantic web. In International Conference
on Dublin Core and Metadata Applications, http://www.w3.org/2007/Talks/

0831-Singapore-IH/, 2007. W3C.

[46] Ivan Herman. State of the semantic web. In INTAP Semantic Web Conference,
http://www.w3.org/2008/Talks/0307-Tokyo-IH/, 2007. W3C.

[47] Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens, and Chris
Wroe. A practical guide to building owl ontologies using the protégé-owl plugin
and co-ode tools edition 1.0, August 2004.

[48] Nora Houari and Behrouz Homayoun Far. Application of intelligent agent tech-
nology for knowledge management integration. In Proceedings of the Third IEEE
International Conference on Cognitive Informatics (ICCI’04), 2004.

[49] IBM. Websphere commerce family. http://www-306.ibm.com/software/

genservers/commerce/analyst.html?S_TACT=103BHW06&S_CMP=campaign, 2008.

86

https://www.accenture.com/NR/rdonlyres/42AA8DB9-F430-4DB5-A424-64050FAC9F80/0/ewmfghani.pdf
https://www.accenture.com/NR/rdonlyres/42AA8DB9-F430-4DB5-A424-64050FAC9F80/0/ewmfghani.pdf
https://www.accenture.com/NR/rdonlyres/42AA8DB9-F430-4DB5-A424-64050FAC9F80/0/ewmfghani.pdf
http://www.w3.org/2007/Talks/0831-Singapore-IH/
http://www.w3.org/2007/Talks/0831-Singapore-IH/
http://www.w3.org/2008/Talks/0307-Tokyo-IH/
http://www-306.ibm.com/software/genservers/commerce/analyst.html?S_TACT=103BHW06&S_CMP=campaign
http://www-306.ibm.com/software/genservers/commerce/analyst.html?S_TACT=103BHW06&S_CMP=campaign

[50] Alexa Internet Inc. Alexa: The web information company. http://http://www.

alexa.com/, 2008.

[51] Jeremy Jaech, Stephen North, Mike Peery, Will Schroeder, and Jim Thomas. The
visualization market: Open source vs. commercial approaches. In VIS ’03: Pro-
ceedings of the 14th IEEE Visualization 2003 (VIS’03), page 113, Washington, DC,
USA, 2003. IEEE Computer Society.

[52] Elisa Kendall. Semantic web tools. http://esw.w3.org/topic/SemanticWebTools,
2008.

[53] Shobhana Kirtane and Jim Martin. Application performance prediction in auto-
nomic systems. In ACM-SE 44: Proceedings of the 44th annual Southeast regional
conference, pages 566–572, New York, NY, USA, 2006. ACM Press.

[54] In-Young Ko, Ke-Thia Yao, and Robert Neches. Dynamic coordination of informa-
tion management services for processing dynamic web content. In World Wide Web
(WWW) Conference, pages 355–365. ACM, 2002.

[55] Ravindra Krovi, Akhilesh Chandra, and Balaji Rajagopalan. Information flow pa-
rameters for managing organizational processes. Commun. ACM, 46(2):77–82, 2003.

[56] Mahesh Kumar, Nitin R. Patel, and Jonathan Woo. Clustering seasonality patterns
in the presence of errors. In KDD ’02: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 557–563,
New York, NY, USA, 2002. ACM Press.

[57] John J. Kyaruzi and Jan van Katwijk. Concerns on architecture-centered software
development: A survey. J. Integr. Des. Process Sci., 4(3):13–35, 2000.

[58] Alexei Lapouchnian, Yijun Yu, Sotirios Liaskos, and John Mylopoulos.
Requirements-driven design of autonomic application software. In CASCON ’06:
Proceedings of the 2006 conference of the Center for Advanced Studies on Collabo-
rative research, page 7, New York, NY, USA, 2006. ACM Press.

[59] M. M. Lehman. Lifecycles and the laws of software evolution. In Proceedings of
IEEE, Special Issue on Software Engineering, pages 1060–1076. IEEE, 1980.

[60] M. M. Lehman. Program evolution. Journal of Information Processing Management,
19(1):19–36, 1984.

[61] Baoli Li, Wenjie Li, and Qin Lu. Topic tracking with time granularity reasoning.
ACM Transactions on Asian Language Information Processing (TALIP), 5(4):388–
412, 2006.

87

http://http://www.alexa.com/
http://http://www.alexa.com/
http://esw.w3.org/topic/SemanticWebTools

[62] Sharon Lymer, WenQian Liu, and Steve Easterbrook. Experience in using business
scenarios to assess cots components in integrated solutions. In CASCON ’05: Pro-
ceedings of the 2005 conference of the Centre for Advanced Studies on Collaborative
research, pages 126–140. IBM Press, 2005.

[63] Zhongming Ma, Gautam Pant, and Olivia R. Liu Sheng. Interest-based personalized
search. ACM Trans. Inf. Syst., 25(1):5, 2007.

[64] Frank Manola and Eric Miller. Rdf primer. http://www.w3.org/TR/rdf-primer/,
2004.

[65] Abdallah Mohamed, Guenther Ruhe, and Armin Eberlein. Decision support for
customization of the cots selection process. In MPEC ’05: Proceedings of the second
international workshop on Models and processes for the evaluation of off-the-shelf
components, pages 1–4, New York, NY, USA, 2005. ACM Press.

[66] M. Morisio, C. B. Seaman, A. T. Parra, V. R. Basili, S. E. Kraft, and S. E. Condon.
Investigating and improving a cots-based software development. In ICSE ’00: Pro-
ceedings of the 22nd international conference on Software engineering, pages 32–41,
New York, NY, USA, 2000. ACM Press.

[67] Priya Nagpurkar, Hussam Mousa, Chandra Krintz, and Timothy Sherwood. Efficient
remote profiling for resource-constrained devices. ACM Trans. Archit. Code Optim.,
3(1):35–66, 2006.

[68] Tien N. Nguyen, Ethan V. Munson, John T. Boyland, and Cheng Thao. An infras-
tructure for development of object-oriented, multi-level configuration management
services. In ICSE ’05: Proceedings of the 27th international conference on Software
engineering, pages 215–224, New York, NY, USA, 2005. ACM Press.

[69] Tien N. Nguyen, Ethan V. Munson, and Cheng Thao. Fine-grained, structured con-
figuration management for web projects. In World Wide Web (WWW) Conference,
pages 433–442. ACM, 2004.

[70] Fred Niederman. Staffing and management of e-commerce programs and projects.
In SIGMIS CPR ’05: Proceedings of the 2005 ACM SIGMIS CPR conference on
Computer personnel research, pages 128–138, New York, NY, USA, 2005. ACM
Press.

[71] Natalya F. Noy and Deborah L. McGuinness. Ontology development 101: A guide
to creating your first ontology, 2004.

[72] Zeljko Obrenovic, Tobias Burger, Pasquale Popolizio, and Raphaël Troncy. Multi-
media semantics: Overview of relevant tools and resources. http://www.w3.org/

2005/Incubator/mmsem/wiki/Tools_and_Resources, 2008.

88

http://www.w3.org/TR/rdf-primer/
http://www.w3.org/2005/Incubator/mmsem/wiki/Tools_and_Resources
http://www.w3.org/2005/Incubator/mmsem/wiki/Tools_and_Resources

[73] Chimezie Ogbuji. Versa: Path-based rdf query language. http://www.xml.com/

pub/a/2005/07/20/versa.html, July 20, 2005.

[74] Uche Ogbuji. Versa, the rdf query language. http://uche.ogbuji.net/tech/rdf/
versa/, 2007.

[75] openRDF.org. User guide for sesame 2.0. http://www.openrdf.org/doc/sesame2/
users/ch09.html, 2007.

[76] Thomas B. Passin. Explorer’s Guide to the Semantic, pages 236–268. Manning
Publications, 2004.

[77] David Provost. Hurdles in the business case for the semantic web. Master’s the-
sis, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, June
2004.

[78] Eric Prud’hommeaux and Andy Seaborne. Sparql query language for rdf. http:

//www.w3.org/TR/rdf-sparql-query/, 2008.

[79] K. Psounis. Class-based delta-encoding: a scalable scheme for caching dynamic web
content. In Proceedings of 22nd International Conference on Distributed Computing
Systems Workshops, pages 799–805, 2002.

[80] Trygve Reenskaug. The model-view-controller(mvc) its past and present. http:

//heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf, 2003.

[81] Gustavo Rossi, Daniel Schwabe, and aes Robson Guimar˙ Designing personalized
web applications. In WWW ’01: Proceedings of the 10th international conference
on World Wide Web, pages 275–284, New York, NY, USA, 2001. ACM Press.

[82] Jesús Fernández Rúız. Case study: An intelligent search engine for online services for
public administrations. http://www.w3.org//2001/sw/sweo/public/UseCases/

Zaragoza/, June 2007.

[83] Adam Sarner and Eugenio M. Alvarez. E-commerce magic quadrant, 4q2006. Re-
search, 2006.

[84] Adam Sarner and Eugenio M. Alvarez. E-commerce magic quadrant, 4q2006. http:
//http://www.atg.com/eCommerce/gartnerQ406/, 2007.

[85] Rahul Singh, Lakshmi S. Iyer, and A. F. Salam. The semantic e-business vision.
Communications of the ACM, 48(12), 2005.

[86] Yogesh Singh and Bindu Goel. A step towards software preventive maintenance.
SIGSOFT Softw. Eng. Notes, 32(4):10, 2007.

89

http://www.xml.com/pub/a/2005/07/20/versa.html
http://www.xml.com/pub/a/2005/07/20/versa.html
http://uche.ogbuji.net/tech/rdf/versa/
http://uche.ogbuji.net/tech/rdf/versa/
http://www.openrdf.org/doc/sesame2/users/ch09.html
http://www.openrdf.org/doc/sesame2/users/ch09.html
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf
http://heim.ifi.uio.no/~trygver/2003/javazone-jaoo/MVC_pattern.pdf
http://www.w3.org//2001/sw/sweo/public/UseCases/Zaragoza/
http://www.w3.org//2001/sw/sweo/public/UseCases/Zaragoza/
http://http://www.atg.com/eCommerce/gartnerQ406/
http://http://www.atg.com/eCommerce/gartnerQ406/

[87] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. Owl web ontology
language guide. http://www.w3.org/TR/owl-guide/, 2004.

[88] Felix Sockwell. The web within the web. IEEE Spectrum, pages 42–46, February
2004.

[89] David Thames and Andrew Hunt. Pragmatic Version Control Using CVS, page 23.
Pragmatic Programmer LLC, 2004.

[90] Marco Torchiano, Letizia Jaccheri, Carl-Fredrik Sørensen, and Alf Inge Wang. Cots
products characterization. In SEKE ’02: Proceedings of the 14th international con-
ference on Software engineering and knowledge engineering, pages 335–338, New
York, NY, USA, 2002. ACM Press.

[91] José Lúıs Bas Uribe. Case study: Real time suggestion of related ideas in
the financial industry. http://www.w3.org//2001/sw/sweo/public/UseCases/

Bankinter/, May 2007.

[92] Christopher Walton. Agency and the Semantic Web, pages 19–54. Oxford, 1st
edition, 2007.

[93] Rob Wojcik, Felix Bachmann, Len Bass, Paul Clements, Paulo Merson, Robert
Nord, and Bill Wood. Attribute-driven design(add). Technical Report CMU/SEI-
2006-TR-023, Software Engineering Institute, November 2006.

[94] William G. Wood. A practical example of applying attribute-driven design (add),
version 2.0). Technical Report CMU/SEI-2007-TR-005, Software Engineering Insti-
tute, February 2007.

[95] Paris A. Zafiris, Nektarios P. Georgantis, George E. Kalamaras, Sotiris P.
Christodoulou, and Theodore S. Papatheodorou. A practitioner’s approach to evolv-
ing and remodeling large-scale www sites. In Proceedings of the 34th Hawaii Inter-
national Conference on System Sciences. IEEE, 2001.

[96] Uwe Zdun. Dynamically generating web application fragments from page templates.
In SAC 2002, pages 1113–1120. ACM, 2002.

[97] Qiankun Zhao, Steven C. H. Hoi, Tie-Yan Liu, Sourav S. Bhowmick, Michael R. Lyu,
and Wei-Ying Ma. Time-dependent semantic similarity measure of queries using
historical click-through data. In WWW ’06: Proceedings of the 15th international
conference on World Wide Web, pages 543–552, New York, NY, USA, 2006. ACM
Press.

90

http://www.w3.org/TR/owl-guide/
http://www.w3.org//2001/sw/sweo/public/UseCases/Bankinter/
http://www.w3.org//2001/sw/sweo/public/UseCases/Bankinter/

	Introduction
	Justification
	Significance and Expected Contributions
	Research Methodology
	Evaluation Criteria
	Thesis Organization

	Previous Work
	Software Architecture (SA)
	Definition
	Functionality
	Qualities
	Trade Offs

	Typical RECWEB Modifiability
	Intelligent Agents
	Semantic Web
	Example #1: Buying a House
	Example #2: Buying a Digital Camera
	Resource Description Framework (RDF)
	Ontology Web Language (OWL)
	SPARQL Query Language for RDF
	Justification

	A Highly Modifiable RECWEB
	Test Cases
	Design
	Model
	View
	Controller

	Implementation
	Model
	View
	Controller

	Evaluation
	People
	COTS Integration
	Quality Tradeoffs

	Conclusion
	Bibliography

