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Abstract 

  Pathogenic bacteria are becoming increasingly antibiotic resistant.  For this 

reason, the development of novel antibiotics is extremely important.  A potential new 

target for antimicrobial drugs is the production of siderophores.  Pseudomonas 

aeruginosa produces two siderophores under iron-limiting conditions, pyoverdin and 

pyochelin.  Pyoverdin contains ornithine derivatives as part of the peptide backbone 

important for iron chelation.  PvdA, an ornithine hydroxylase, performs the first step 

in derivation of the ornithine followed with formylation by PvdF, a formyl 

transferase.   

Biochemical characterization of PvdA reveals that PvdA is specific for the 

coenzymes, FAD and NADPH, as well as for the substrate, L-ornithine.  The enzyme 

follows Michaelis-Menten kinetics measuring NADPH oxidation, but substrate 

inhibition is detected when measuring the formation of hydroxylated product.  Lysine 

is determined as a nonsubstrate effector and mixed inhibitor of PvdA with respect to 

ornithine.  Chloride is a competitive inhibitor of the enzyme in relation to NADPH 

while a mixed inhibitor with respect to substrate.  A mercurial compound, p-

chloromercuribenzoate, is also a mixed inhibitor in relation to substrate.  Steady state 

experiments reveal a ternary complex of PvdA:FAD with NADPH and ornithine 

during catalysis. 

 PvdA was further characterized with transient state kinetics to develop a 

catalytic mechanism.  The flavin in complex with PvdA can be reduced in the 

absence of substrate.  Oxidation of the reduced flavin in the presence of substrate 
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indicates the formation of two transient intermediates, hydroperoxyflavin and 

hydroxyflavin.  However, in the absence of substrate, only the hydroxyflavin 

intermediate is detected and oxidation of the flavin is not through the production of 

hydrogen peroxide.  A biochemical comparison of PvdA to two homologues, para-

hydroxybenzoate hydroxylase (PHBH from Pseudomonas fluorescens) and flavin-

containing monooxygenases (FMOs from Schizosaccharomyces pombe and hog liver 

microsomes) indicates that PvdA proceeds by a novel reaction mechanism. 

 Structural characterization of PvdA and PvdF by x-ray crystallography is 

underway.  Crystallization studies of the NADPH reductases involved in the synthesis 

of pyochelin from P. aeruginosa (PchG) and yersiniabactin from Yersinia 

enterocolitica (Irp3) are also being performed.   The structures of these enzymes are a 

first step towards the rational design of new inhibitors for use as new antimicrobial 

agents. 
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Chapter 1 

 

 Introduction 

  

Bacterial pathogens 

Bacteria with the ability to cause infections in host organisms such as humans, 

other animals, or plants are considered bacterial pathogens.  This thesis will 

concentrate on three pathogens, Pseudomonas aeruginosa, Yersinia pestis, and 

Yersinia enterocolitica, which cause a variety of diseases in humans. 

P. aeruginosa is an opportunistic pathogen, which does not normally infect 

healthy individuals but can cause serious infections in immunocompromised 

individuals.  P. aeruginosa can cause a variety of infections from bacteremia or sepsis 

to cardiovascular infections, respiratory infections and meningitis (1).  Less severe 

infections include bone, joint, eye, ear, gastrointestinal, and urinary infections.  

Secondary infections by P. aeruginosa have been reported in AIDS patient, burn 

victims, and individuals with cystic fibrosis.  Cystic fibrosis is an inheritable genetic 

disorder of the mucosal membranes causing thick mucus, which affects 30,000 

children and adults in the United States and 70,000 individuals worldwide (2).  The 

median life expectancy for cystic fibrosis patients as of 2006 is 37 years.  The leading 

cause of death of patients with cystic fibrosis is secondary bacterial infections in the 

lungs primarily by P. aeruginosa and Burkholderia cenocepacia.   
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According to the Center for Disease Control, in 2002 there were a reported 1.7 

million nosocomial-acquired infections with 99,000 associated deaths (3).  Many of 

these infections were caused by P. aeruginosa.  Infections by P. aeruginosa are 

associated with high mortality.  Death from pneumonia typically occurs 3 – 4 days 

after the onset of initial symptoms and bacteremia has a greater than 50% mortality 

rate, higher than bacteremia infections by other gram-negative bacteria (1).  P. 

aeruginosa is notoriously antibiotic resistant, making treatment of reoccurring 

infections difficult.  

 Y. enterocolitica causes intestinal symptoms usually in young children 

including fever, abdominal pain, and diarrhea (3).   Symptoms normally begin 4 – 7 

days after infection and can last more than 1 – 3 weeks.  Infection occurs from 

contaminated food, usually meat or milk, and treatment is not required for 

uncomplicated cases.  If severe or complicated infections exist, antibiotic treatment is 

administered.  Y. enterocolitica infections in the United States occur in one out of 

every 10,000 individuals each year (4).   

Y. pestis is the causative agent of plague of which there are three types; 

bubonic, septicemic, and pneumonic (3).  Y. pestis is transmitted by fleas from 

infected rodents to humans or from the respiratory droplets from pneumonic plague 

patients.  The mortality rate for plague is 50 – 90% if left untreated and is lowered to 

15% with antibiotic treatment.  The last United States urban epidemic of the plague 

was in Los Angeles, CA in 1924-1925.  Currently, there have been 1 – 40 cases of 
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plague reported annually from 1971 – 1995 and 2,861 cases reported from 10 

countries in 1995. 

  

Current antimicrobials 

 Antimicrobial treatments for bacterial infections consist of five main classes 

according to the pathways inhibited (5).  The first class of antibiotics inhibits cell wall 

synthesis.  Penicillins, cephalosporin, vancomycin, and bacitracin are members of this 

class on antibiotic.  A second class of antibiotics inhibits protein synthesis usually by 

inhibiting bacterial ribosomes.  Aminoglycosides such as kanamycin, neomycin, and 

streptomycin, as well as tetracyclines, macrolides, lincosamides, and 

chloramphenicols are good examples of protein synthesis inhibitors.  A third class of 

antimicrobials inhibits nucleic acid synthesis with members of this class including 

quinilones and rifampicin.  Disruption of the bacterial membrane or structure is the 

fourth class of antibiotics.  Polymyxin B is a member of this class.  Finally, 

antibiotics can inhibit enzymes involved in essential metabolic pathways such as 

sulfonamides, which inhibit folic acid synthesis.  

 While the current antibiotics inhibit a wide range of bacterial targets, many 

bacteria have developed methods of acquiring drug resistance.  P. aeruginosa in 

particular, has multiple systems used for antibiotic resistance (6).  The bacteria 

contain multiple efflux pumps, which export antibiotics very quickly.  These pumps 

keep the levels of antibiotic inside the bacterium at a low concentration.  Therefore, 

the antibiotics cannot effectively inhibit their target enzymes.  P. aeruginosa and 
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other bacteria contain enzymes that are β-lactamases, which open the β-lactam ring of 

antibiotics such as penicillins.  Bacteria can also obtain antibiotic resistance by 

horizontal gene transfer of the resistance genes developed by related bacteria.  This is 

a very effective way for bacteria to become resistant to antibiotics very quickly. 

 Bacterial drug resistance has been documented for almost all of the current 

antibiotics of the market.  Therefore, finding new, potent antibiotics is a constant 

struggle and inhibiting enzymes in pathways distinct from those already inhibited by 

current antibiotics is needed.  An essential process not inhibited by current antibiotics 

is the acquisition of iron by the bacterium. 

 

Iron utilization  

Iron is a vital nutrient for most organisms.  Ferrous iron (Fe(II)) is highly 

soluble up to a concentration of 100 mM at pH 7. However, the ferric form of iron 

(Fe(III)), which is needed for growth by organisms, is soluble at biological pH only to 

a concentration of 10-9 M making the bioavailability of iron very low (7).  Animals 

obtain iron through the food that they eat.  Most of the iron ingested is used in heme-

containing proteins such as hemoglobin, myoglobin, or in nonheme-containing 

enzymes.  The remainder of the iron is bound to storage and transport proteins such as 

lactoferrin, ferritin, and transferrin (8-11).  The concentration of unbound iron in 

eukaryotes is very low at 10-18 – 10-24 M (7, 10, 12).  This level is decreased further in 

response to infection by a process known as hypoferremia, which stimulates an 

increase in ferritin synthesis and the release of lactoferrin from neutrophils (10, 11, 
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13).  Lactoferrin has a higher affinity for iron than transferrin and will bind iron 

normally bound by transferrin.  The lactoferrin is removed from circulation by 

macrophages, thus decreasing the amount of iron in the plasma.   

Most microorganisms, such as bacteria and fungi, require at least 10-6 M iron 

for growth and development (11).  One of the few exceptions are lactobacilli, which 

do not contain heme compounds and replace iron with cobalt in metal-binding 

enzymes (14).  In order to obtain the iron needed for survival, iron-dependent 

microorganisms scavenge the metal from their environment.  Pathogenic bacteria use 

a variety of methods to obtain iron when invading a host organism including: ferrous 

iron uptake, heme utilization, transferrin and lactoferrin uptake, and siderophore 

production (Figure 1-1).   

 

Ferrous iron uptake 

The uptake of ferrous iron has been observed in many species of bacteria (8, 

14, 15).  Ferrous iron diffuses easily through porins and does not require specific 

outer membrane receptors for iron uptake.  The iron is transported across the 

cytoplasmic membrane by conserved ABC transporters (Figure 1-1A).  However, the 

amount of iron needed to support bacterial growth is not attainable solely through the 

uptake of ferrous iron.  Therefore, most bacteria use other iron uptake methods for 

obtaining this valuable nutrient. 
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Figure 1-1:  Model for iron acquisition in gram-negative bacteria.  A. Ferrous 
iron import system through cytoplasmic membrane receptor.  B. Heme binding 
and incorporation.  C. Hemophore production for iron removal from heme.  D. 
Transferrin and/or lactoferrin binding and iron removal.  E. Siderophore 
production, secretion, and ferric-siderophore uptake.  All ferric iron uptake 
methods are TonB-dependent and require specific outer membrane receptors. 
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Heme utilization 

In a host organism, heme is released from cells by the sloughing of epithelial 

cells or by hemolysis (10).  Several bacterial organisms have been observed to utilize 

heme obtained from the environment as free heme or hemoglobin.  P. aeruginosa 

contains two distinct systems for heme usage (7).  The first system is encoded by the 

phu locus containing genes for heme translocation, including an outer membrane 

receptor for heme and an ABC transporter (Figure 1-1B).  The second system for 

heme utilization by P. aeruginosa is encoded by the has locus, which contains genes 

for a heme receptor and a specialized extracellular protein, a hemophore, for binding 

heme to selectively import the iron (Figure 1-1C) (7, 15).  Vibrio cholerae, the 

causative agent of cholera, synthesizes hemolysins to lyse erythrocytes and release 

heme (16).  The production and secretion of hemolysins are regulated by the iron 

concentration in the environment.  Hemophilus influenzae has a strict requirement for 

heme during infections under aerobic conditions (10).  Staphylococcus aureus, Y. 

entrocolitica, Y. pestis, Shigella dysenteriae, Serratia marcescens, Neisseria 

gonorrhoeae, Neisseria meningitidis, and Escherichia coli O157 have also been 

shown to utilize heme (9, 10, 17-19). 

 

Uptake of iron from iron-binding proteins 

 Another direct method of obtaining iron from the environment is from iron-

binding proteins such as transferrin and lactoferrin.  Transferrin binds to iron in serum 

and lymph, whereas lactoferrin is found in phagocytic cells and mucosal secretions.  
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Specific iron uptake systems consisting of one or both of these iron-binding proteins 

have been observed in a variety of pathogenic bacteria.  N. gonorrhoeae and N. 

meningitidis contain both transferrin and lactoferrin iron uptake systems, and 

translocate only the iron but not the proteins (9, 10, 15).  However, the receptor used 

for iron uptake and the mechanism of the translocation are unknown.  Bordetella 

pertussis has been shown to utilize both transferrin and lactoferrin as iron sources 

with both binding to the same receptor (Figure 1-1D) (10).  Some bacteria utilize only 

transferrin (S. aureus and H. influenzae), whereas others (Mycoplasma pneumoniae 

and Tichomonas vaginalis) have receptors only for lactoferrin and do not uptake iron 

bound to transferrin (9, 10, 15, 18).  Listeria monocytogenes produces a soluble, 

extracellular reductase to reduce the iron bound to transferrin from Fe(III) to Fe(II) 

and stimulate dissociation of the iron-transferrin complex for iron uptake (10).  No 

matter the method, iron uptake from iron-binding proteins, the utilization of heme, 

transferrin, and lactoferrin by bacteria limits the tissues that the pathogen can invade 

and colonize (12).        

 

Production of siderophores 

Many bacteria do not contain iron transport systems to take up iron from iron-

binding proteins.  Therefore, to infect a wider range of host environments, bacteria 

use an indirect method of obtaining iron by producing siderophores.  The production, 

secretion, and selective uptake of siderophores, low molecular weight, high-affinity, 

iron chelators, allow bacteria a wider range of colonization territory (Figure 1-1E) 
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(12).  A variety of aerobic and facultative anaerobic bacteria, fungi, and plants 

produce siderophores as their dominant iron acquisition system (12, 20, 21).  The 

production of siderophores has been shown to be a virulence factor in many 

pathogenic bacteria including E. coli, Salmonella typhimurium, Vibrio anguillarum, 

N. gonorrhoeae, and P. aeruginosa (22-29).  Siderophores have a very high affinity 

for ferric iron with a dissociation constant of 10-30 M or lower (14).  For example, 

enterobactin has a dissociation constant of 10-52 M (10).  The basic scaffold for 

siderophore molecules is 500 – 1000 Da and contains six coordination sites to the iron 

(14, 20).  This dissertation is concerned with siderophore biosynthetic proteins in P. 

aeruginosa.  Therefore, I will describe siderophore production as it pertains to this 

organism. 

 

Siderophore regulation 

Siderophore production is iron-regulated by a repressor which is termed the 

Fur repressor in E. coli (10, 30-36).  Most bacterial species that produce siderophores 

contain a Fur homologue for the regulation of siderophore biosynthesis genes.  In 

high iron environments, the Fur protein binds to its cofactor, Fe(II), and will bind 

DNA in the promoter region of genes containing a Fur box.  Fur bound at the Fur box 

represses expression of genes such as siderophore biosynthetic and ferric-siderophore 

uptake genes (Figure 1-2A).  In contrast, in low iron environments the concentration 

of iron will drop in the cell and Fur will not bind Fe(II).  Apo-Fur, the iron-free form  
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Figure 1-2: Mechanism of Fur repression in P. 

aeruginosa.  A. In high iron environments, Fur (blue oval) 
binds Fe(II) (pink circle), dimerizes, and binds to the 
promoter regions of genes containing a Fur box to repress 
transcription.  B. In low iron environments, Fur cannot 
bind Fe(II) and does not bind to the DNA.  Siderophore 
related genes are transcribed including pvdS and pchR.  C. 
After activation by the pyoverdin outer membrane 
receptor, PvdS (green oval) recruits RNA polymerase 
(purple oval) to the promoter regions of pyoverdin related 
genes for transcription.  D. PchR (orange oval) acts as a 
coactivator   of pyochelin related genes after binding to Fe-

pyochelin ( ) and dimerizing in the bacteria. 
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of Fur, cannot bind DNA and is unable to repress genes allowing gene expression 

(Figure 1-2B).  In bacteria with multiple siderophore systems, additional regulation 

methods are employed to control the expression of genes for each system 

independently.  Many bacteria use alternative sigma factors or activators for 

additional regulation.   

P. aeruginosa produces two siderophores, pyoverdin and pyochelin, and 

regulates the expression of both systems using a combination of alternative sigma 

factors and activators.  Fur repression occurs only for a subset of the siderophore 

genes, including pvdS and pchR, but not for siderophore synthesis and uptake genes 

directly (37-39).  Instead, PvdS and PchR, once produced, assist in the upregulation 

of siderophore genes.  During iron starvation, the repression by Fur is released 

allowing transcription of pvdS and pchR (Figure 1-2B).  Newly translated PvdS is in 

an inactive form and requires the binding of Fe-pyoverdin to its outer membrane 

receptor for activation (40).  PvdS has been shown to be an alternative sigma factor 

that recruits RNA polymerase to the pyoverdin synthesis and uptake genes (Figure 1-

2C) (34, 41-44).  PchR is a coactivator, which mediates the regulation of the 

pyochelin pathway.  PchR, a member of the AraC family of regulators, is activated by 

Fe-pyochelin in the cell, activates pyochelin synthesis and uptake genes and has been 

shown to repress its own expression (Figure 1-2D).  Once the genes for siderophore 

synthesis and uptake are transcribed and the message translated, the siderophore is 

assembled in a multi-step process that will be discussed in detail later. 
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Siderophore secretion 

The completed siderophore is secreted from the bacterium using a system of 

efflux pumps that are separated into three superfamilies: the major facilitator 

superfamily (MFS), the resistance, nodulation, and cell division (RND) superfamily, 

and the ATP-binding cassette (ABC) superfamily (12, 45).  An RND superfamily 

efflux pump has been reported to secrete pyoverdin in P. aeruginosa (46-48).  The 

efflux system consists of three proteins, MexA, MexB, and OprK, which form a 

complex and secrete pyoverdin into the periplasm using energy from a 

transmembrane proton gradient.  All the members from the RND superfamily work as 

substrate:proton antiporters to import a proton as the siderophore is secreted into the 

environment (45).   

 

Ferric-siderophore uptake 

Once the secreted siderophore encounters and binds iron, the ferric-

siderophore must be selectively imported into the bacterium.  Due to the large size 

and low concentration of the ferric-siderophore in the environment, uptake of the 

iron-chelator complex through outer membrane porins is not feasible (49).  Therefore, 

import of the complex requires a specific, high-affinity, outer membrane receptor 

(Figure 1-1E) (50).   

The ferrichrome-iron receptor in E. coli, FhuA, was the first receptor to be 

structurally characterized and the work was completed independently by two groups 
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(51, 52).  FhuA contains two domains; a 22 stranded β-barrel and an N-terminal 

mixed four-stranded β-sheet domain, which forms an internal cork to the barrel.  

Upon ferric-siderophore binding to the receptor, the cork domain undergoes dramatic 

rearrangement on the periplasmic face of the receptor.  This conformational change 

allows the cork domain to interact with TonB, a cytoplasmic membrane-associated 

protein involved in transfer of energy from the cytoplasmic membrane to the outer 

membrane for selective import (51-53). The interaction of the outer membrane 

receptor with TonB only occurs when the receptor has bound the ferric-siderophore 

(50, 54, 55).  The bound TonB, in complex with ExoB and ExoD which are accessory 

proteins to TonB that aid in energy transfer, and which bind in a 1:7:2 ratio, 

transduces energy to the receptor causing further unfolding of the cork domain and 

subsequent translocation of the ferric-siderophore (53, 56-60).  The translocated 

ferric-siderophore binds to a periplasmic-binding protein and is shuttled through the 

cytoplasmic membrane by a TonB-dependent ABC transporter system (61-66).  

Crystal structures of the outer membrane receptors for pyochelin (FptA), and 

pyoverdin (FpvA) have been determined and they appear to be structural and 

functional homologues to FhuA (67-70).  Once the ferric-siderophore enters the 

bacterium, the iron is dissociated from the siderophore by reduction of the ferric iron 

to ferrous iron by a reductase, ester cleavage of the siderophore (seen with 

enterochelin in E. coli), or siderophore hydrolysis (seen with bacillibactin in Bacillus 

subtilis) (8, 12, 71).  Specific reductases for ferripyochelin and ferripyoverdin have 

been determined (72-74). 
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Classes of siderophores 

Siderophores are separated into classes based upon the chemical groups 

involved in iron chelation within the siderophore.  The two most common classes of 

siderophores are hydroxymates and phenolate-catecholates.  However, several 

siderophores use multiple functional groups to chelate the iron and are considered 

mixed siderophores (Figure 1-3) (12). 

 

Hydroxymate siderophores 

The hydroxymate siderophores are seen predominantly in fungi but are also 

produced by some bacteria.  The iron chelation is provided by a hydroxymate group 

(-CO-N(O-)-) formed from aceylated or formylated hydroxylamines usually derived 

from lysine or ornithine (Figure 1-3A) (12).  Lysine derivatives are used for the 

synthesis of aerobactin (E. coli) and mycobactin (Mycobacterium spp.) (12, 75).  

Ornithine derivatives are used in the synthesis of pyoverdin (P. aeruginosa), 

exochelin (Mycobacterium spp.), ornibactin (strains of pseudomonads), ferrichrome, 

fusarinine, and coprogens (variety of fungi) (12, 14, 75).  Histamine derivatives have 

also been found in anguibactin, the siderophore produced by Vibrio anguillarum, a 

fish pathogen (75). 

 The hydroxymate group is assembled in a two-step process, beginning with 

hydroxylation of the primary side-chain amine of ornithine or lysine by a flavin 
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Figure 1-3: Representative siderophores.  A. Pyoverdin, 
a hydroxymate siderophore, produced by PAO1 
Pseudomonas aeruginosa.  B. Pyochelin, a catecholate 
siderophore, produced by Pseudomonas aeruginosa.  C. 
Yersiniabactin, a catecholate siderophore, produced by 
pathogenic strains of Yersinia spp.  Iron chelating 
functional groups are labeled in red. 

A.

B. C.

N

N
H

HO

HO

NH

O

OH

NH

N
H

NH2

NH

O

H
N

O

OH

HN

N

HO

H

O

O

NH

O

NH

N
H

OH

HN

O

O

O

HN

H2
C

H2
C

CH2

CH2

HO

O

N

H

O

OH
NH+ O

NH2

O

OH

S

N

N
H

S

OH

CH3

N

S

CH3

COOH

H3C

OH

N

S

S

N

CH3

COO-



  16 

adenosine dinucleotide-dependent monooxygenase (76).  The second step involves 

formylation by a methyl transferase, for pyoverdin and ornibactin, or acetylation by 

an acetylase, for all other hydroxymate siderophores (12). 

Pyoverdin in P. aeruginosa is an example of a hydroxymate siderophore.  

Pyoverdin is water soluble and consists of 6 – 12 amino acids, depending on the 

strain, with a dihydroxyquinoline fluorescent chromophore and a small dicarboxylic 

acid (Figure 1-3A) (7, 77-79).  Pyoverdin has a very high affinity for ferric iron with 

a dissociation constant of 10-30.8 M and has been shown to chelate iron from 

transferrin (25, 28, 80, 81).  The virulence of P. aeruginosa is enhanced by the 

production of pyoverdin (82).  The pyoverdin locus in the Pseudomonas genome is 

the most divergent region, resulting in highly variable pyoverdin molecules that differ 

in almost every strain of Pseudomonas (83).  The pyoverdin molecules are separated 

into three main classes: type I, containing two formyl-hydroxyornithines; type II, 

which contains one formyl-hydroxyornithine and a terminal cyclized 

hydroxyornithine; and type III, also containing two formyl-hydroxyornithines in a 

different arrangement from type I (Figure 1-4) (7, 84).  The laboratory strain PAO1 P. 

aeruginosa produces a type I pyoverdin.  

The outer membrane receptor for pyoverdin is FpvA.  Originally, there was 

thought to be two distinct receptors for pyoverdin, one was 80 kDa (85) and the other 

was 90 kDa (86).  Later, the two receptors were determined to be the same protein 

(87).  FpvA is an unusual receptor, in that it can bind the iron-free form of pyoverdin 
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Figure 1-4: Pyoverdin Classes.  A. Type I, contains two 
formyl-hydroxyornithine groups and a cyclized peptide 
structure.  B. Type II, contains one formyl-
hydroxyornithine and a cyclized hydroxyornithine.  C. 
Type III, contains two formyl-hydroxyornithines similar 
to Type I but lacks the cyclized peptide.  The ornithine 
derivatives are labeled in red. 
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(69).  FpvA is normally bound to iron-free pyoverdin.  When iron-pyoverdin 

encounters the receptor, it will displace the iron-free pyoverdin.  Only the iron-

pyoverdin enters the cell indicating that the FpvA binding site is conformer specific 

(7, 88-90).  The imported ferric-pyoverdin is reduced to ferrous-pyoverdin.  The 

binding affinity for ferrous iron is lowered, the iron is released, and the pyoverdin is 

re-secreted into the environment (7, 90, 91).  Recycling saves cellular energy by not 

continuously synthesizing new pyoverdin molecules.  This makes pyoverdin a highly 

effective siderophore. 

 

Phenol-catecholate siderophores   

The second most common siderophore class is the phenol-catecholates, which 

contain a mono- or dihydroxybenzoic acid group to chelate the iron (Figure 1-3 B and 

C) (14).  This class of siderophores has only been observed in bacteria.  The 

catecholate group is derived from salicylate or dihydroxybenzoic acid and the 

siderophores have iron binding affinities that range from very tight binding for 

enterobactin from E. coli (Kd = 10-52 M) to fairly weak binding seen in pyochelin 

from P. aeruginosa (Kd = 5 x 10-5 M) (14, 92). 

Pyochelin, one of the two siderophores produced by P. aeruginosa, is a 324 

Da peptide composed of salicylate and two cysteines forming a thiazoline and a 

thiozolidine heterocyclic ring (Figure 1-3B) (92-94).  Pyochelin has been shown to 

bind several other metals besides iron including Zn(II), Mo(IV), Ni(II), and Co(II) (7, 
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95).  Unlike pyoverdin that is highly divergent among strains of P. aeruginosa, the 

same pyochelin molecule is produced by a wide variety of Pseudomonas species and 

in some Burkholderia cenocepacia strains (7).  The production of pyochelin by P. 

aeruginosa increases the lethality of virulent strains but not in nonvirulent strains, 

indicating that although involved in the acquisition of iron, pyochelin is not a required 

virulence factor (26).   

The mechanism for secretion of pyochelin into the environment has been 

suggested to be similar to that for pyoverdin, using the RND efflux pump system.  

However, the cytoplasmic components required for secretion are not known (96).  

Once secreted, pyochelin binds iron in an asymmetric manner with one pyochelin 

molecule binding to four of the six iron coordination sites.  Depending on the 

siderophore concentration, either a second molecule of pyochelin or two water 

molecules coordinate the remaining two sites (97).  This asymmetric binding is a 

change from the original notion of a strict 2:1 ratio of pyochelin binding (93).  Once 

bound to iron, the ferric-pyochelin is imported into the bacterium.  Two outer 

membrane receptors involved in ferric-pyochelin uptake have been identified; a 14 

kDa ferripyochelin-binding protein (FBP), and the 75 kDa outer membrane receptor 

(FptA) (27, 67, 98, 99).  The structure of FptA has been solved with ferric-pyochelin 

bound in a 1:1 ratio of siderophore to iron (68).  However, the method of FBP 

involvement in siderophore uptake is not known. 
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Another phenolate-catecholate siderophore that has been intensely studied is 

yersiniabactin produced by pathogenic strains of Yersinia pestis, Yersinia 

enterocolitica, and Yersinia pseudotuberculosis (100-103).  Yersiniabactin has a 

similar structure to pyochelin with a salicylate and two cysteines forming a thiazoline 

and a thiozolidine heterocyclic ring (Figure 1-3C).  However, yersiniabactin contains 

an additional malonyl and cyclized cysteine residue increasing the molecular mass to 

482 Da.  This additional thiazoline ring decreases the dissociation constant of 

yersiniabactin to 4 x 10-36 M, which is much higher than that for pyochelin (102).  

The outer membrane receptor for yersiniabactin is FyuA, and the cytoplasmic 

transporters required for siderophore import are Irp6 and Irp7 in Y. enterocolitica 

(YbtP and YbtQ in Y. pestis) (104, 105). 

 

Other Classes of Siderophores 

Several other classes of siderophores are recognized.  Citrate-hydroxymate 

siderophores are a mixed class of bacterial siderophores (14).  The siderophores 

contain derivatives of citric acid in which the distal carboxyl group has been 

substituted with hydroxymate groups.  Another unusual class of siderophores is the 

mycobactins produced by Mycobacterium spp. of bacteria (14).   Mycobactins are a 

hybrid of hydroxymate and phenol-catecholate classes and are highly lipid soluble.  

This class of siderophores is believed to reside in the outer membrane of 

Mycobacerium spp. and work in conjunction with water-soluble chelating agents 
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(exochelins) for iron acquisition.  A variety of other classes of siderophores are 

known that contain various hydroxymate, catecholate, and phenolate groups and are 

too numerous to describe here (14). 

 

Siderophore Biosynthesis 

Siderophores are assembled using two different pathways.  One pathway 

involves assembling amino acids into peptides by forming peptide bonds and does not 

require an RNA template.  This process uses large, multi-domain, multi-functional 

proteins known as nonribosomal peptide synthetases (NRPSs) for assembly (75).  The 

other pathway, the NRPS-independent pathway, involves linking dicarboxylic acid 

and diamine or amino alcohol building blocks that are linked together by amide or 

ester bonds (76).  The NRPS-independent pathway is used for the assembly of 

hydroxymate and carboxylate siderophores such as aerobactin, alcaligin, 

stephlobactin, and petrobactin (12, 76). 

The NRPS-dependent pathway is used for the biosynthesis of enterobactin, 

yersiniabactin, pyochelin, pyoverdin, vibriobactin, and mycobactin (75, 106-108).  

Because the pathway does not use RNA as a template for assembly, the sequence is 

determined by the order of the domains (75).  Three functional domains are required 

for the incorporation of one amino acid into the growing peptide chain and form a 

single module, consisting of condensation (C), adenylation (A), and peptidyl-carrier 

(P) domains (Figure 1-5A) (75, 109).   
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Figure 1-5: Pyoverdin Biosynthesis.  A. NRPS module structure containing 
condensation (green), adenylation (blue), and peptidyl carrier (pink) domains.  B. 
PvdI is hypothesized to incorporate two D-Serines, one L-Arg, and one L-
formyl-hydroxyornithine (L-fOHOrn) molecule into the growing pyoverdin 
peptide due to the inclusion of two epimerase (orange) domains.  The epimerase 
domain converts L amino acids into D amino acids.  C. PvdJ is hypothesized to 
incorporate the next two amino acids into the growing peptide, L-lys and the 
second L-fOHOrn.  D. PvdD incorporates the final two amino acids into 
pyoverdin, two molecules of L-Thr.  The completed pyoverdin molecule is 
released from the NRPS by the thioesterase (red) domain.  
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The 50 kDa condensation domain catalyzes the peptide bond formation for 

chain elongation (75).  The first structure of a condensation domain determined was 

VibH, which is involved in vibriobactin biosynthesis in Vibrio cholera (110).  The C 

functional domain is composed of two structural domains each containing an α-β-α 

sandwich.  A functional modification of the condensation domain is the cyclization 

(Cy) domain (75).  The cyclization domain catalyzes the peptide bond formation 

similar to condensation domains but additionally cyclizes cysteine, serine, or 

threonine to form a five-membered ring.  The ring structure is then dehydrated to 

yield a thiazoline (Cys) or oxazoline (Ser, Thr) ring.   

The next functional domain in the module is the 50 kDa adenylation domain, 

which selects and activates the amino or aryl acid to be incorporated into the peptide 

in an ATP-dependent manner (75).  This activation forms an aminoacyl-AMP that is 

transferred to the peptidyl-carrier domain.  The structures of PheA, which activates 

phenylalanine for incorporation into the antibiotic gramicidin, and DhbE, which 

activates 2,3-dihydroxybenzoate (DHB), an aryl acid found in bacillibactin from 

Bacillis subtilis, have been determined (111, 112).  The adenylation domains have a 

similar structure to firefly luciferase and contain two compact structural domains.   

The last functional domain in the NRPS module is the peptidyl-carrier domain 

or the aryl-carrier domain when using aryl acids (75).  This small domain of 8 – 10 

kDa contains a conserved serine residue that must be post-transcriptionally modified 

by the addition of a phosphopantethionyl (pPant) tail.  The phosphopantethionyl tail 

covalently binds the activated aminoacyl-AMP and acts as a tether for the elongating 
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chain.  The tail is attached to the peptidyl-carrier domain by phophopantetheinyl 

transferase (PPTase) enzymes.  PPTases are involved in primary and secondary 

metabolism and usually there are distinct PPTases for each pathway.  The PPTase for 

siderophore production has been determined in several bacteria such as Sfp in B. 

subtilis, YbtD in Y. pestis (113, 114).  However, P. aeruginosa contains only one 

PPTase (PcpS), which is involved in both primary and secondary metabolism (115).   

In addition to the three required functional domains in the NRPS module, 

there are a number of additional domains that modify the elongating peptide, 

including epimerase (E), methyl transferase (MT), and thioesterase (TE) domains 

(75).  Epimerization domains convert L-amino acids into the D-amino acid 

configuration.  Methyltransferase domains methylate the amino acids using s-

adenosyl methionine (SAM) as the methyl donor.  The thioesterase domains terminate 

the chain elongation and release the completed siderophore.  Some bacteria contain 

additional accessory proteins to modify the siderophore.  P. aeruginosa and Yersinia 

spp. use an NADPH-dependent reductase, which converts the second thiazoline ring 

of pyochelin and yersiniabactin into a thiazolidine ring (116-118).  

The biosynthesis of pyoverdin and pyochelin in P. aeruginosa are NRPS-

dependent and illustrate how two very different siderophores are assembled.  The 

formation of yersiniabactin, although very similar to pyochelin, uses a hybrid system 

of NRPS-dependent and NRPS-independent pathways.  These three siderophores 

encompass most siderophore production and are good examples of siderophore 

biosynthesis. 
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Pyoverdin biosynthesis 

Pyoverdin is assembled using an NRPS system, which is unusual for 

hydroxymate siderophores (12).  The first step in assembly is the formation of the 

fluorescent chromophore.  The proteins PvcA, PvcB, PvcC, and PvcD have been 

implicated in chromophore production (119).  However, pvc
- mutants can make and 

secrete pyoverdin in some growth media indicating the expression of these four genes 

is not required for pyoverdin synthesis (120).  The NRPS protein, PvdL, has also been 

implicated in production of the chromophore.  PvdL is the only NRPS in the 

pyoverdin locus that begins with an adenylation domain indicative of the initial step 

of the reaction (Figure1-5) (107, 120).  All of the other NRPS proteins begin with a 

condensation domain.  PvdL also does not include a thioesterase domain indicating it 

is not involved in the final steps for pyoverdin production.   

After the formation of the chromophore, a series of NRPSs work to add the 

additional 6 – 12 amino acids required to make the completed siderophore.  Most of 

the experimental work for the elucidation of pyoverdin biosynthesis has been carried 

out on the PAO1 strain of P. aeruginosa that contains 6 amino acids (D-Ser-L-Arg-D-

Ser-L-fOHOrn-L-Lys-L-fOHOrn-L-Thr-L-Thr) where fOHOrn is formyl-

hydroxyornithine.  Three NRPS proteins have been determined to be involved in 

peptide elongation in type I pyoverdins; PvdI, PvdJ, and PvdD (Figure 1-5).  These 

proteins are not involved in production of type II or type III pyoverdins (120).  PvdI 

is hypothesized to incorporate the initial amino acids; D-Ser, L-Arg, D-Ser, and L-
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fOHOrn (Figure 1-5B) (120-122).  PvdJ was initially reported as two proteins (PvdJ 

and PvdK), but the corresponding DNA sequence was later determined to encode 

only one protein upon resequencing (120, 121).  PvdJ is hypothesized to encode the 

next two amino acids in the sequence; L-Lys and L-fOHOrn (Figure 1-5C) (122).  The 

specificity of the PvdA adenylation domains have been biochemically determined and 

this NRPS selectively incorporates the last two amino acids (L-Thr-L-Thr) into the 

peptide chain (Figure 1-5D) (108, 121, 123). 

In hydroxymate siderophores, the iron is chelated by modified amino acids.  

In the case of pyoverdin, the iron is chelated by formyl-hydroxyornithine.  This 

modified amino acid is formed in a two-step process using two proteins, PvdA and 

PvdF.  PvdA is an ornithine hydroxylase that converts ornithine to hydroxyornithine.  

PvdA was first identified by a mutation screen and was later cloned and sequenced 

(38, 124).  The gene encoding PvdA does not show increased expression when 

pyoverdin is added to the bacterium indicating the gene is not regulated by iron (125).  

The PvdA protein or its homologue, PsbA, is produced in a wide variety of 

pseudomonas species (126, 127).   

Once the hydroxyornithine is produced it is converted to formyl-

hydroxyornithine by PvdF, a hydroxyornithine transformylase (128).  PvdF has only 

been detected in P. aeruginosa strains that produce type I pyoverdins and has slight 

homology to glycinamide ribonucleotide transformylase (GART) proteins (120, 128).  

The mechanism of formylation and the cofactor required for activity has not yet been 

determined.  In type II pyoverdins, there is one formyl-hydroxyornithine and a 
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cyclized hydroxyornithine.  The cyclized hydroxyornithine is formed by acetylation 

of hydroxyornithine by PvdY and subsequent cyclization (84).   

 

Pyochelin Biosynthesis 

The pyochelin biosynthesis genes are contained on two operons in the P. 

aeruginosa genome, pchDCBA and pchEFGHI.  To produce pyochelin, one molecule 

of salicylate, two cysteines, three ATPs, one molecule of SAM, and one NADPH are 

required (Figure 1-6).  Salicylate is formed by two enzymes in P. aeruginosa, PchA 

and PchB (Figure 1-6A) (129, 130).  PchA is an isochorismate synthase that converts 

chorismate into isochorismate.  PchA is a monomer in solution and is dependent on 

Mg2+ for activity (130).  PchB, an isochorismate pyruvate lyase (IPL), converts the 

isochorismate into salicylate and pyruvate (129).  However, PchB has a secondary 

activity as a chorismate mutase (CM) that converts chorismate into prephenate only 

very inefficiently.  PchB is not homologous to other IPL enzymes but shows 

homology to chorismate mutase enzymes.  The structure of PchB has been 

determined and shows PchB as an intertwined dimer of three α-helices each, very 

similar to the chorismate mutase from E. coli (131).  PchC is a thioesterase and 

contains an editing function to remove incorrect products from the assembly line 

(132).   

The assembly-line production of pyochelin begins with PchD, a stand-alone 

adenylation domain, which activates salicylate (Figure 1-6B) (133).  The activated 
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Figure 1-6: Pychelin Biosynthesis.  A. Conversion of chorismate to 
isochormismate and final production of salicylate using PchA and PchB proteins.  
B. Activation and tethering of salicylate and two cysteines to the peptidyl-carrier 
domains of PchE and PchF by the adenylation domains of PchD, PchE, and 
PchF.  C. Chain elongation with reduction and subsequent methylation of the 
second cysteine residue in the tethered pyochelin.  The completed pyochelin 
molecule is hydrolyzed for release from PchF.  Figure modified from Quadri et 
al., 1999. 
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salicylate is transferred to the aryl-carrier domain of PchE.  PchE is a 156 kDa, NRPS 

protein containing one each of aryl-carrier, cyclization, adenylation, epimerization, 

and peptidyl-carrier domains (134, 135).  The cyclization domain in PchE condenses 

the salicylate with the first cysteine and forms the first thiazoline ring, while the 

epimerase domain converts the L-cysteine to D-cysteine,  (Figure 1-6C) (134).  This 

peptidyl product is then transferred to the third protein in the assembly line, PchF.  

PchF is a 197 kDa NRPS protein composed of cyclization, adenylation, 

methyltransferase, peptidyl-carrier, and thioesterase domains (134).  The cyclization 

domain of PchF condenses the product formed by PchE with the second cysteine and 

subsequently cyclizes the second cysteine.  The accessory protein PchG performs the 

next step in pyochelin formation.  PchG is a NADPH-dependent reductase, which 

reduces the second thiazoline ring into a thiazolidine ring (116, 117).  The reduction 

creates a more nucleophilic substrate that facilitates the methylation of the ring by the 

methyl transferase domain of PchF.  PchG has no known homologues except other 

siderophore-related reductases and no structural information is known.  The 

completed pyochelin molecule is released from PchF through the thioesterase domain 

and is secreted from the bacterium. 

 

Yersiniabactin Biosynthesis 

The genes for the synthesis and uptake of yersiniabactin are contained on a 

high-pathogenicity island (HPI).  This island is seen only in virulent strains of 

Yersinia spp. and contains a higher G+C content than the remainder of the genome 
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(60% versus 46-50%) (75, 136).  The island is located beside a gene that encodes 

asparagine tRNA and contains an integrase gene, both hallmarks of a pathogenicity 

island (137).  In Y. pestis, the HPI is part of a larger pigmentation (pgm) locus 

encompassing 102 kb of the chromosome (136-140).  The pgm locus is highly 

unstable, making the loss of the HPI in Y. pestis very common.  However, the HPI in 

Y. enterocolitica is very stable (136). 

The yersiniabactin biosynthesis genes are encoded on two operons, irp21345, 

irp6789 in Y. enterocolitica and irp2 irp1 ybtUTE, ybtPQXS in Y. pestis (137).  The 

homology between the yersiniabactin biosynthetic proteins from Y. pestis and Y. 

enterocolitica is very high (~90%) and the proteins can be used interchangeably.  

Yersiniabactin production was reconstituted in vitro using four proteins; Irp5/YbtE, 

HMWP2 (high molecular weight protein 2, the gene product of irp2), HMWP1 (high 

molecular weight protein 1, the gene product of irp1), and Irp3/YbtU with one 

molecule of salicylate, three cysteines, one malonate, five ATPs, three SAMs, and 

one NADPH per molecule (Figure 1-7) (141).  The first step in yersiniabactin 

synthesis is salicylate formation similar to pyochelin formation (Figure 1-7A).  

However, unlike the two-enzyme system (PchA and PchB) in P. aeruginosa, the 

Yersinia spp. requires only one protein, Irp9/YbtS, for salicylate formation.  

Irp9/YbtS converts chorismate into salicylate with an isochorismate intermediate 

(103, 142-144).  The structure of Irp9 has been solved and appears to function as a 

homodimer (145).   Irp4/YbtT is thought to have thioesterase activity similar to PchC 

for removing incorrect molecules from the assembly line (114, 118).  
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Figure 1-7: Yersiniabactin Biosynthesis.  A.  Conversion of chorismate to 
salicylate using Irp9.  B. Activation and tethering of salicylate, three cysteines, 
and a malonyl group to the peptidyl-carrier domains of HMWP2 and by the 
adenylation domains in Irp5, HMWP2, and HMWP1.  C. Chain elongation 
including reduction, double methylation of the malonyl group at the switch site 
(encompassed by blue square), and incorporation of the third cysteine residue 
into the tethered yersiniabactin.  Lastly, the yersiniabactin intermediate is 
methylated and the completed Yersiniabactin is hydrolysed for release from 
HMWP1.  Figure modified from Miller et al., 2002. 
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The first NRPS-mediated steps in yersiniabactin production are similar to pyochelin 

formation (Figure 1-7B).  Salicylate is activated by Irp5/YbtE and transferred to the 

aryl-carrier domain of HMWP2.  The HMWP2 domain sequence is aryl-carrier, 

cyclization, adenylation, methyltransferase, peptidyl-carrier, cyclization, and 

peptidyl-carrier (103, 146-149).  HMWP2 catalyzes the condensation and cyclization 

of two cysteines with the salicylate (Figure 1-7C).   

At this point, the product is transferred to HMWP1.  HMWP1 is a hybrid 

enzyme incorporating NRPS function at the C-terminal half of the protein with 

polyketide synthesis (PKS) function, an NRPS-independent pathway, at the N-

terminal portion (141).  The PKS module of HMWP1 modifies and loads malonyl 

onto a carrier domain.  A switch point is located between the PKS and NRPS modules 

in HMWP1, which catalyzes the formation of a C-C bond instead of the normal 

NRPS C-N bond as the malonyl group in the PKS module is condensed with the 

product formed by HMWP2 (146, 150).  At the switch point, reduction of the second 

thiazoline ring occurs using Irp3/YbtU, a PchG homologue (118).  Two methyl 

groups are added to the malonyl group by a methyltransferase domain located in the 

PKS module.  The final NRPS module at the C-terminal of HMWP1 adds and 

cyclizes the final cysteine into the growing molecule (141).  The final steps are the 

methylation of the last thiazoline ring and the release of the yersiniabactin from the 

protein through the thioesterase domain.  The completed yersiniabactin is secreted 

from the bacterium for iron acquisition.  
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Siderophore Biosynthesis Implications for Drug Discovery 

Most of the enzymes involved in the biosynthesis of siderophores have very 

little homology to mammalian enzymes.  This makes the enzymes very attractive 

drug targets for the design of new antimicrobials.  Inhibitors of the adenylation 

domains of P. aeruginosa (PchD), Y. pestis (YbtE), and M. tuberculosis (MbtA) have 

shown growth inhibition of Y. pestis and M. tuberculosis (151).  Growth inhibition 

studies have not been conducted on P. aeruginosa due to the dual siderophore 

pathways.  Studies conducted on salicylate synthase enzymes show tight binding of 

some inhibitors with KIs ranging from 19 – 43 µM (152).  Additional accessory 

proteins such as the enzymes involved in formyl-hydroxyornithine synthesis and the 

stand-alone reductase also make attractive drug targets. 

  This dissertation includes biochemical characterization of the pyoverdin 

accessory protein PvdA, an ornithine hydroxylase from P. aeruginosa.  Steady-state 

and transient-state kinetic studies indicate that PvdA proceeds through a novel 

reaction mechanism.  X-ray crystallization studies of PvdA and PvdF, the second 

enzyme in the ornithine derivitization pathway, as well as the NADPH reductases 

PchG from P. aeruginosa and Irp3 from Y. enterocolitica were also conducted.  Initial 

PvdA crystals and plate crystals of PvdF have been obtained.  PchG exhibits low 

solubility although its homologue, Irp3, is soluble and x-ray diffraction data has been 

collected.  This work is a first step towards rational drug design of new inhibitors of 

the siderophore biosynthetic pathways in these organisms.   
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Chapter 2 

 

Biochemical Characterization of PvdA, the Ornithine Hydroxylase of 

Pseudomonas aeruginosa 
 

 

Hydroxymate siderophores chelate iron using formyl-hydroxyl amines, 

derivatives primarily of ornithine or lysine.  Pseudomonas aeruginosa incorporates an 

ornithine derivative in pyoverdin (1).  Ornithine hydroxylase (PvdA) is the first 

enzyme required for this derivatization.  PvdA hydroxylates the side-chain primary 

amine and is an important initial step for the siderophore synthesis (Figure 2-1A).  

PvdA is most closely related functionally to the lysine hydroxylase (IucD) of E. coli 

required for aerobactin production (Figure 2-1B).  However, PvdA is also 

functionally related to two other well-studied enzymes, p-hydroxybenzoate 

hydroxylase (PHBH) of P. fluorescens important for the degradation of wood (Figure 

2-1C) and flavin-containing monooxygenases (FMOs) from a variety of organisms 

involved in xenobiotic detoxification (Figure 2-1D).    

Although the sequence similarity (~40%) and identity (~20%) among IucD, 

PHBH, and FMO are low, these enzymes share some biochemical properties such as 

a requirement for FAD and NADPH (2-4).  Recently, PvdA has been shown to also 

require FAD and NADPH for activity (5).  During the reaction, NADPH reduces the 

FAD, which then covalently binds molecular oxygen (Figure 2-1).  One oxygen atom  
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Figure 2-1: Reaction schemes for (A) the ornithine hydroxylase (PvdA) 
from P. aeruginosa, (B) the lysine hydroxylase (IucD) from E. coli, (C) p-
hydroxybenzoate hydroxylase (PHBH) from P. fluorescens, and (D) flavin-
containing monooxygenase (FMO) from hog liver microsomes.  The 
hydroxlated amines of PvdA and IucD are labeled in green and the oxygen 
atoms added to the substrate are labeled in red.  The substrate for PHBH 
(p-hydroxybenzoate) and FMO (nucleophilic and some electrophilic 
compounds) are labeled as Sub and the flavin states are labeled as oxidized 
(Flox), reduced (Flred), hydroperoxyflavin intermediate (FlHOOH), and 
hydroxyflavin intermediate (FlHOH). 
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is used for hydroxylation of the primary side-chain of ornithine (PvdA), lysine 

(IucD), the aromatic ring of p-hydroxybenzoate (PHBH), or a variety of nucleophilic 

and electrophilic substrates (FMO), while the second oxygen atom is released as H2O 

(3, 5-7).   

The reaction mechanism for PvdA and IucD has not been elucidated.  In 

contrast, the reaction mechanisms for PHBH and FMO have been well documented.  

PHBH and FMO both form a ternary complex between the FAD-loaded enzyme, 

NADPH, and the substrate during catalysis, although the reaction mechanism differs 

significantly between the enzymes.  PHBH requires substrate to be bound before 

FAD reduction by NADPH (Figure 2-1C).  The NADP+ is released and the enzyme 

binds molecular oxygen.  The reduced flavin passes through two transient 

intermediate steps before becoming reoxidized and forming the product (3,4-

dihydroxybenzoate) and H2O (3, 8-10).  In contrast, FMO does not require substrate 

binding for flavin reduction (Figure 2-1D).  The FAD is reduced in the presence of 

NADPH and upon binding molecular oxygen, forms a stable hydroperoxyflavin 

intermediate.  Once the activated FMO binds substrate, the flavin transitions through 

an additional intermediate (hydroxyflavin) before becoming reoxidized (3, 11-13).  

Here we describe the preliminary characterization of PvdA, including the 

oligomerization state in solution, kinetics of NADPH oxidation and product 

formation, inhibition by substrate, lysine, chloride, and mercurial compounds, and 

preliminary rapid order steady-state kinetics.  We put these new data together with 

what is known about IucD, PHBH, and FMO to provide insights into the reaction 
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mechanism for PvdA.  This work is the first step toward designing inhibitors for use 

as novel antimicrobials to reduce the virulence of P. aeruginosa and potentially 

bacteria with related siderophore pathways.   

 

Materials and Methods 

 

Cloning of PvdA. PAO1 P. aeruginosa genomic DNA was isolated from a culture 

kindly provided by Dr. Jeffrey Urbauer.  Primers to the pvdA gene were designed to 

include an NdeI site (underlined) in the forward primer (5’-GAA TTC CAT ATG 

ACT CAG GCA ACT GCA ACC-3’) and a HindIII site (underlined) in the reverse 

primer (5’-CCC AAG CTT TCA GCT GGC CAG GGC GTG-3’).  The pvdA gene 

was amplified by polymerase chain reaction with Herculase polymerase (Stratagene), 

used for amplification of GC rich sequences.  Addition of 10% dimethyl sulfoxide 

(DMSO) to the reaction mix acted as an adjuvant. The amplified fragment (1329 base 

pairs) was digested with NdeI and HindIII enzymes and ligated into the pET28b 

plasmid (Novagen).  The resultant plasmid encodes PvdA with an N-terminal His6 

tag.  This plasmid was transformed into BL21(DE3) E. coli cells (Stratagene) for 

protein overproduction. 

 

PvdA Protein Overproduction and Purification.  The PvdA protein was overproduced 

in BL21(DE3) E. coli containing the transformed pvdA expression plasmid.  Optimal 

overproduction used LB medium containing 50 µg/ml kanamycin.  The cells were 
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grown at 37 °C with shaking (225 rpm) until an OD600 of ~0.8 was reached.  PvdA 

protein production was induced with 0.2 mM isopropyl-β-D-thiogalactopyranoside 

and the cells were harvested after 3 – 4 hours by centrifugation (6,000 x g, 10 min, 4 

°C).  The pelleted cells were resuspended in 25 mM potassium phosphate, pH 8.0, 

500 mM NaCl, 50 mM sodium citrate, and 5 mM imidazole (buffer A) and lysed by 

passage through a French pressure cell (35,000 psi).  The cellular debris was removed 

by centrifugation (12,000 x g, 30 min, 4 °C) and the supernatant was applied to a 

chelating Sepharose fast flow column (Amersham Biosciences) charged with nickel 

chloride and pre-equilibrated in buffer A for nickel affinity chromatography.  A linear 

gradient of 5 – 500 mM imidazole in buffer A was applied to the column and PvdA 

protein eluted at approximately 300 mM imidazole.  The fractions containing PvdA 

were pooled and applied to a Superdex 200 size exclusion column (Amersham 

Biosciences) equilibrated with 100 mM potassium phosphate, pH 8.0, and 100 mM 

sodium citrate.  The fractions containing PvdA were combined and concentrated with 

an Amicon stirred cell containing a YM-30 membrane to 9 - 13 mg/ml as determined 

by the Bradford assay.  The purified, concentrated protein was stored at -80 °C for 

use in activity assays. 

 
Oligomerization Studies.  The hydrodynamic radius and oligomerization state of 

PvdA were measured in two buffering conditions with a PD2000DLSPlus Dynamic 

Light Scattering detector (Precision Detectors).  The buffers used for determination 

were (1) 25 mM Tris-HCl, pH 8.0, 500 mM NaCl, and 300 mM imidazole or (2) 100 
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mM potassium phosphate, pH 8.0, and 100 mM sodium citrate at a PvdA 

concentration of 5 - 8 mg/ml.  The hydrodynamic radii were also determined in the 

presence of excess FAD or excess FAD and ornithine to determine if substrate and 

coenzyme binding affected the oligomerization state.  All experiments were repeated 

five times. 

 

NADPH Oxidation Assay.  The standard activity assay buffer contained 100 mM 

potassium phosphate, pH 8.0, 0.03 mM FAD, and 0.15 mM NADPH.  PvdA (5 µM) 

was pre-incubated for 2 min at 24 °C in 1 ml assay buffer and the reaction was 

initiated with 5 mM L-ornithine.  The oxidation of NADPH to NADP+ was monitored 

by a decrease in absorbance at 366 nm (ε = 2850 M-1 cm-1) over time with a BioMate 

3 spectrometer (Thermo Spectronics) at 24 °C according to the protocol described for 

IucD (4).  All experiments were conducted in triplicate. 

 

Hydroxylation Assay.  Hydroxylated product formation by PvdA was determined 

using a variation of the Csaky iodine oxidation reaction (14-17).  The standard assay 

buffer was the same as described for the NADPH oxidation assay.  The reaction was 

initiated by the addition of 5 mM L-ornithine to 5 µM enzyme in 1 ml assay buffer at 

24 °C.  At each time point, 83 µl of the assay mixture was added to 42 µl 0.2 N 

perchloric acid to terminate the reaction and 50 µl of the reaction mixture was 

transferred into a well of a glass 96 well plate.  The acidic reaction mixture was 

neutralized with 50 µl 5% (w/v) sodium acetate solution.  To each well, 50 µl 1% 
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(w/v) sulfanilic acid in 25% (v/v) acetic acid and 20 µl 1.3 % (w/v) potassium iodide 

in glacial acetic acid was added.  The reaction was allowed to incubate for 5 min at 25 

°C for conversion of the hydroxylamine into nitrite.  Excess iodide was removed from 

the mixture with 20 µl 0.1 N sodium thiosulfate and 20 µl 0.6% (w/v) α-

naphthylamine in 30% (v/v) acetic acid was added to react with the nitrite and 

develop a colorimetric change.  After 15 minutes of incubation, the absorbance was 

read at 562 nm on an Elx800 plate reader (Bio-Tek).  A standard curve of known 

quantities of hydroxylamine hydrochloride was used to calculate the amount of 

hydroxylated product formed.  All experiments were conducted in triplicate.   

 

Determination of Enzyme Specificity and Kinetic Parameters.  The standard assay 

conditions were varied to fully characterize PvdA.  The pH optimum for PvdA 

activity was determined by measuring NADPH oxidation in 0.5 pH unit steps ranging 

from pH 6.0 – 10.0 in the presence and absence of ornithine.  The buffers tested were 

(1) 100 mM potassium phosphate at pH 6.0 – 8.0, (2) 100 mM Tris-HCl at pH 7.0 – 

9.0, (3) 100 mM glycine at pH 9.0 – 10.0, or (4) 33 mM potassium phosphate, 33 mM 

Tris-SO4, and 33 mM glycine at pH 6.0 – 10.0.  An ionic strength of at least 100 mM 

promoted protein solubility and stability, and was used consistently for all 

experiments.   

PvdA specificity was determined with the NADPH oxidation and 

hydroxylation assays.  PvdA was assayed for activity after coenzyme and substrate 

deletion or substitution.  For the coenzyme substitution reactions, FAD was replaced 
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with FMN and NADPH with NADH at comparable concentrations.  For the substrate 

substitution reactions, 5 mM L-ornithine was exchanged with 5 mM of a substrate 

analog: DL-2,3-diaminopropionic acid, DL-2,4-diaminobutyric acid, L-lysine, 5-

aminopentanoic acid, 1,4-diaminobutane, D-ornithine, or L-norleucine.   

The PvdA Michaelis-Menten kinetics were assayed with L-ornithine 

concentrations of 0 – 15 mM.  All reactions were carried out in triplicate.  Data 

analysis and curve fitting was done with SigmaPlot 8.0®.  All curves were fit with the 

Michaelis-Menten equation, except for substrate inhibition which was fit to the 

equation: Vo = Vmax[Substrate] / [Km + [Substrate] + ([Substrate]2/KI)] (17).      

 

Determination of FAD Dissociation Constant.  FAD binding to PvdA was monitored 

as an increase in protein fluorescence upon excitation at 280 nm.  The fluorescence 

emission was detected at 330 nm on a Cary Eclipse Fluorescence Spectrophotometer 

(Varian) at 24 °C.  The PvdA concentration was 2.5 µM in 100 mM potassium 

phosphate pH 8.0.  FAD was titrated into the mixture in concentrations of 0 to 60 µM.  

The experiment was carried out in triplicate. 

 

Steady-State Kinetics.  To determine initial steady state kinetics of PvdA, NADPH 

oxidation was measured with 5 µM PvdA in 1 ml of the standard assay buffer 

containing 0.03 mM FAD.  The NADPH concentration (0.05 – 0.125 mM) was varied 

relative to the ornithine concentration (0.5 – 10 mM) and a double reciprocal plot was 

used to determine whether PvdA used a random, ordered, or ping-pong mechanism. 
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Inhibition Assays.  Lysine inhibition was determined with the hydroxylation assay.  

The substrate, coenzymes and enzyme were increased in concentration as follows: 25 

µM PvdA, 0.15 mM FAD, and 0.75 mM NADPH to increase the signal.  L-ornithine 

concentrations ranged from 0.15 – 2 mM in 1 ml assay buffer containing 100 mM 

potassium phosphate, pH 8.0.  L-lysine concentrations ranged from 0 – 10 mM.  

Inhibition by chloride was measured with the NADPH oxidation under standard assay 

conditions with sodium chloride concentrations ranging from 0 to 250 mM.  Chloride 

inhibition was measured with respect to L-ornithine concentration (0.5 – 10 mM) or 

NADPH concentration (0.05 – 0.125 mM).  Mercurial inhibition by p-

chloromercuribenzoate (PCMB) was characterized by NADPH oxidation under 

standard assay conditions.  The PCMB concentration ranged from 0 to 10 µM with L-

ornithine concentrations from 0.075 – 5 mM.  All experiments were conducted in 

triplicate. 

 

PvdA Flavin Reduction and Reoxidation.  The rate constants of flavin reduction and 

reoxidation were measured with a Cary 50 Bio Spectrophotometer (Varian) at 24 °C.   

PvdA (40 µM) was incubated in 100 mM potassium phosphate pH 8.0 with 20 µM 

FAD.  Upon the addition of 40 µM NADPH, the absorbance from 300 – 800 nm was 

measured.  The change in absorbance measured at 451 nm was used to determine the 

rate constants.  The curves were fit to a sum of exponentials equation. 
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Results 

 

PvdA Protein Production and Purification.  The pvdA gene was cloned from PAO1 

P. aeruginosa genomic DNA to generate an overproduction plasmid.  The plasmid 

was expressed in BL21(DE3) E. coli cells to obtain PvdA protein with an N-terminal 

His6 tag.  PvdA protein was purified by nickel chelating and size exclusion 

chromatography to yield 20 – 45 mg of protein with ~95% purity per liter of cell 

culture. 

 

Oligomerization Studies.  To determine the hydrodynamic radius of PvdA in solution, 

the protein was subjected to Dynamic Light Scattering (Figure 2-2).  PvdA was 

initially purified in 25 mM Tris-HCl, pH 8.0, 500 mM NaCl, and 300 mM imidazole.  

The average hydrodynamic radius for apo-PvdA in the high salt buffer was 4.67 nm 

with a small percentage of PvdA as larger species suggesting tetramers and large 

aggregates (Figure 2-2A).  The addition of excess FAD yielded a hydrodynamic 

radius comparable to apo-protein, whereas the addition of excess FAD and excess 

ornithine to PvdA in the high salt buffer caused the protein to become principally 

tetrameric, with a hydrodynamic radius of 13.9 nm.  However, in this buffer PvdA 

was not stable and would easily precipitate.  In contrast, PvdA purified into 100 mM 

potassium phosphate, pH 8.0 and 100 mM sodium citrate was very stable and had an 

average hydrodynamic radius of 4.77 nm that did not vary upon the addition of excess 

FAD and ornithine (Figure 2-2B).  
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Figure 2-2:  Hydrodynamic radii for PvdA in (A) 25 
mM Tris-HCl, pH 8.0, 500 mM NaCl, 300 mM 
imidazole or (B) 100 mM potassium phosphate, pH 8.0, 
and 100 mM sodium citrate as determined by dynamic 
light scattering.  The fraction of species with a 
particular hydrodynamic radius is plotted for apo-PvdA 
(red), for PvdA with excess FAD (blue), and for PvdA 
with excess FAD and ornithine (green).  
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pH Optimum for Catalytic Activity.  The initial velocities of NADPH oxidation by 

PvdA were measured at a pH range of 6.0 to 10.0 (Figure 2-3).  The pH with maximal 

turnover was pH 8.0 – 8.5.  Therefore, the 0.1 M potassium phosphate, pH 8.0 buffer 

system was adopted for all remaining assays.  The NADPH oxidation rate in the 

absence of substrate did not vary over the entire pH range indicating that enzymatic 

turnover in the absence of substrate, or uncoupling, is not a function of pH.     

 

Coenzyme Specificity.  With the NADPH oxidation and the hydroxylation assay, the 

coenzymes required for PvdA activity were determined.  PvdA catalytic activity is 

very specific for two coenzymes, FAD and NADPH (Table 2-1, Figure 2-4).  PvdA 

was not able to use FMN in place of FAD.  NADH was not oxidized when substituted 

for NADPH but hydroxylated ornithine was produced at 14% of full activity. 

Substrate independent NADPH oxidation was detected at 2% of full activity.   

 

FAD Dissociation Constant.  No absorption peak at 450 nm was observed in the 

purified PvdA solution indicating that FAD does not copurify with the enzyme, 

suggesting that the FAD dissociation constant in PvdA is large.  A Kd of 26 ± 5 µM 

was determined by monitoring protein fluorescence.  This represents a 2.5-fold 

decrease from that previously reported (5).  This difference may be due to the 

inclusion of chloride in the buffer systems of the previous experiments.  We will 

show that chloride is an inhibitor of PvdA later in this chapter. 
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Figure 2-3:  Effect of pH on PvdA activity. The rate of 
NADPH oxidation was measured in the presence of ornithine 
as a decrease in absorbance at 366 nm in 100 mM potassium 
phosphate at pH 6.0 – 8.0 (pink circles); 33 mM potassium 
phosphate, 33 mM Tris-SO4, and 33 mM glycine at pH 6.0 – 
10.0 (red squares); 100 mM Tris-HCl at pH 7.0-9.0 (orange 
diamonds); and 100 mM glycine at pH 9.0 – 10.0 (green 
triangles).  The rate of NADPH oxidation was measured in the 
absence of ornithine in 100 mM potassium phosphate at pH 
6.0 – 8.0 (cyan triangles), 100 mM Tris-HCl at pH 7.0 – 9.0 
(blue circles), and 100 mM glycine at pH 9.0 – 10.0 (purple 
circles). 
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Table 2-1: Summary of the PvdA Coenzymes and Substrate Specificities 
  
Test conditions 

NADPH oxidation 
(nmol/min/mg) 

Hydroxylated product 
formation (nmol/min/mg) 

Omission Test     
 Control 534 ± 14 321 ± 3 
 - FAD * 22 ± 12 
 - NADPH * * 
 - L-ornithine 11 ± 1 * 

Specificity   
 -FAD   

  + FMN * * 

 - NADPH   

  + NADH * 46 ± 1 

 - L-ornithine   
  + DL-2,3-diaminopropionic acid 8 ± 4# * 
  + DL-2,4-diaminobutyric acid * * 
  + L-lysine 428 ± 4 * 
  + 5-aminopentanoic acid * * 
  + 1,4-diaminobutane 21 ± 2 * 
  + D-ornithine 5 ± 3# * 
    + L-norleucine * * 
* = below the limits of detection (5 nmol for the hydroxylation assay, and <1 nmol for the NADPH 
oxidation assay) 
# = less than substrate independent NADPH oxidation.  
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Figure 2-4: PvdA coenzyme specificity. The rate of 
NADPH oxidation (red bars) and product formation (blue 
bars) was measured in the absence of coenzyme and 
substrate and in the presence of coenzyme analogs.     
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Flavin Re-oxidation.  The aerobic reduction of flavin by NADPH in PvdA was 

monitored as a decrease in absorbance at 451 nm (the peak of oxidized flavin 

absorbance) with sub-stoichiometric amounts of FAD and stoichiometric amounts of 

NADPH.  The rate constant for flavin reduction was determined to be 0.036 ± 0.007 

s-1.  No semiquinone intermediates were detected since absorbance peaks were not 

observed above 600 nm.  The aerobic oxidation of the reduced flavin was observed as 

a reappearance of a peak at 451 nm with a rate constant determined to be 0.019 ± 

0.002 s-1 (Figure 2-5). 

 

Substrate Specificity.  The PvdA active site is very specific for substrate.  Shortening 

of the side chain by one or two methylene groups (DL-2,4-diaminobutyric acid or 

DL-2,3-diaminopropionic acid, respectively) resulted in no significant activity in 

either assay (Table 2-1 and Figure 2-6).  However, PvdA demonstrated NADPH 

oxidation at 80% of the full activity using L-lysine as a substrate (extending the side 

chain by one methylene group) but no hydroxylated product was formed suggesting 

enzyme uncoupling.  D-ornithine showed no activity in either assay (Table 2-1, 

Figure 2-6 and ref 5).  No NADPH oxidation or hydroxylated product was detected 

with an ornithine substrate analogue missing the α-carboxyl group (5-aminopentanoic 

acid).  Removal of the α-amino group (1,4-diaminobutane) resulted in little NADPH 

oxidation (4%) and no hydroxylated product.  Therefore, the amino acid backbone 
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Figure 2-5:  Flavin reoxidation as a function of time.  
Absorbance spectra of PvdA:FAD complex were measured at 
300-800 nm.   Representative absorbance spectra from three 
independent experiments of the oxidized flavin (red), the reduced 
flavin (blue), and at 60 seconds (green) and 120 seconds (purple) 
after reduction are plotted.  The rate constants for flavin 
reduction and reoxidation were determined by the change in 
absorbance at 451 nm to be 0.036 ± 0.007 s-1 and 0.019 ± 0.002 s-

1 respectively.  The PvdA concentration was 40 µM with an FAD 
concentration of 20 µM. 
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Figure 2-6: PvdA substrate specificity.   The rate of 
NADPH oxidation (red bars) and product formation (blue 
bars) was measured in the presence of substrate analogs.   
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groups are required for activity and may be involved in substrate binding.  No activity 

was detected in either assay with the substrate analogue L-norleucine.  In this 

compound, the side chain primary amine is substituted with a methyl group thus 

removing the amine to be hydroxylated. 

 

Determination of Kinetic Constants.  The NADPH oxidation assay followed classic 

Michaelis-Menten kinetics (Figure 2-7).  However, substrate inhibition was observed 

with the hydroxylation assay as the initial velocities decreased with increasing 

substrate above 5 mM ornithine.  The Vmax, Km, and kcat values for both assays are 

comparable (Table 2-2) indicating uncoupling of PvdA at high substrate 

concentrations to allow electrons from NADPH to be transferred to FAD without 

hydroxylated substrate formation.    

 

Ternary Complex Formation.  Initial velocities were measured for PvdA with excess 

FAD varying both NADPH and ornithine concentrations monitored with the NADPH 

oxidation assay.  Double reciprocal plots of the resulting velocities intersect in the 

upper left quadrant indicating formation of a tertiary complex (Figure 2-8) (18). 

 

Lysine Inhibition.  When L-lysine was used as a substrate analogue, NADPH 

oxidation was detected with no hydroxylated product formed suggesting enzyme 

uncoupling and potential inhibition (Table 2-1 and Figure 2-6).  Therefore, the  
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Figure 2-7: Kinetic analysis of PvdA as determined by 
NADPH oxidation and hydroxyornithine production.  Initial 
velocities were measured as a function of NADPH oxidation 
versus L-ornithine concentration (red circles) and as the 
amount of hydroxyornithine produced versus L-ornithine 
concentration (blue circles).  The curve for the NADPH 
oxidation assay was fit to the standard equation for Michaelis-
Menten reactions and the curve for the hydroxylation assay 
was fit to Vo = Vmax [Substrate] / [Km + [Substrate] + 
([Substrate]2/KI)] for substrate inhibition due to the decrease in 
activity at substrate concentrations above 5 mM. 
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Table 2-2: Summary of the PvdA Kinetic Parameters 

      
NADPH oxidation 

assay 
Hydroxylated product 

formation assay 

Vmax (nmol/min/mg) 528 ± 8  479 ± 54 
Km (µM) 593 ± 12 600 ± 70 
kcat (min-1) 26.4 ± 0.4 24 ± 3 
kcat/Km (M-1s-1) 742 670 
KI* (mM) n.a. 31 ± 5 
* = inhibition constant determined for substrate inhibition 
n.a. = not applicable 
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Figure 2-8:  Ternary complex formation of FAD loaded 
PvdA with NADPH and ornithine.  NADPH oxidation is 
plotted as a function of L-ornithine concentration.  
NADPH concentrations were 0.05 mM (red circles), 
0.075 mM (blue circles), and 0.125 mM (green circles). 

0

1

2

3

4

5

-2 -1 0 1 2 3

1/[L-ornithine] (mM
-1

)



  67 

inhibition of PvdA activity by L-lysine was investigated with the hydroxylation assay.  

Adding L-lysine to the PvdA activity assay resulted in mixed inhibition with a KI 

determined as 5.4 ± 1.4 mM and a KI’ of 4.3 ± 1.5 mM (Figure 2-9). 

  

Chloride Inhibition.  Initial studies to determine PvdA catalytic activity as a function 

of ionic strength showed decreased activity with increasing ionic strength (Figure 2-

10).  Later, this decrease in activity was shown to be due to chloride inhibition, not 

ionic strength.  The inhibition by chloride was determined as mixed inhibition with 

respect to L-ornithine (KI of 134 ± 31 µM and KI’ of 213 ± 36 µM), whereas the 

inhibition was competitive with respect to NADPH (KI of 67 ± 6 µM) as monitored 

by the NADPH oxidation assay (Figure 2-11).   

 

Mercurial Inhibition.  p-Chloromercuribenzoate (PCMB) is a mercury compound that 

binds cysteines not involved in disulfide bonding.  PvdA inhibition by PCMB was 

tested with the NADPH oxidation assay.  Mixed inhibition was detected with a KI of 

4.1 ± 0.6 µM and a KI’ of 2.9 ± 0.4 µM (Figure 2-12).  Addition of 10 µM PCMB to 

the reaction mixture caused complete inhibition of PvdA activity (data not shown).   
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Figure 2-9: Mixed inhibition of PvdA by L-lysine as 
determined by the hydroxylation assay.  L-lysine 
concentrations used were 0 mM (red circles), 2.5 
mM (blue circles), and 10 mM (green circles).  The 
KI was determined as 5.4 ± 1.4 mM and the KI’ as 
4.3 ± 1.5 mM.  
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Figure 2-10:  Effect of NaCl on PvdA activity.  The rate of 
NADPH oxidation was measured as a decrease in absorbance 
at 366 nm measured as a function of NaCl concentration.  The 
activity assay buffer contained 100 mM Tris-HCl pH 8.0. 
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B [NaCl] vs [NADPH]A [NaCl] vs [L-orn]

Figure 2-11: Inhibition of PvdA by chloride as determined by the NADPH 
oxidation assay.  Double reciprocal plots of hydroxyornithine production as a 
function of (A) L-ornithine and (B) NADPH concentration.  Chloride 
concentrations used were 0 mM (red circles), 50 mM (blue circles), and 250 mM 
(green circles).  Chloride inhibition was mixed in respect of L-ornithine with a KI 
of 134 ± 31 µM and a KI’ of 213 ± 36 µM and competitive in respect to NADPH 
with a KI of 67 ± 6 µM. 
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Figure 2-12: Mixed inhibition of PvdA by p-
chloromercuibenzoate (PCMB) as determined by the 
NADPH oxidation assay.  PCMB concentrations used 
were 0 µM (red circles), 1 µM (blue circles), and 5 µM 
(green circles).  The KI was determined as 4.1 ± 0.6 
µM and the KI’ as 2.9 ± 0.4 µM.  
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Discussion 

 

The ornithine hydroxylase from P. aeruginosa, PvdA, is functionally related 

to the lysine hydroxylase, IucD, from E. coli.  Both of the enzymes hydroxylate the 

side chain primary amine of amino acids and are involved in siderophore biosynthesis  

(Figure 2-1).  The sequence similarity between the enzymes is 46% and the structure 

of IucD is not known.  There has been some debate in the literature about the cellular 

localization and solubility of IucD (19-22).  IucD was initially described as a 

membrane-bound protein due to two hydrophobic segments believed to be 

transmembrane helices (21).  Later, the hydrophobic stretches were described as 

coenzyme binding sites, FAD binding at the N-terminus of the protein and NADPH in 

the middle of the protein (19).  Production of the IucD protein with an N-terminal 

His6 tag yielded soluble protein with an active oligomerization state of tetramers (4, 

22, 23).  PvdA is soluble when produced with an N-terminal histidine tag, and is a 

monomer in solution (Figure 2-2).  In a buffer containing chloride, an inhibitor, along 

with FAD and ornithine, PvdA shifts to predominantly tetramers.  This indicates that 

in contrast to IucD, tetrameric PvdA could be an inactive state of the enzyme.  

However, neither PvdA nor IucD is copurified with the flavin coenzyme and both 

proteins bind FAD with a dissociation constant in the micromolar range (5, 24). 

Flavin-containing monooxygenases (FMOs), which are well characterized 

enzymes involved in drug detoxication are also functionally related to PvdA.  FMOs 

are substrate promiscuous individually and hydroxylate a variety of nucleophilic and 
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electrophilic substrates including primary, secondary, and tertiary amines, as well as 

iodine-, sulfur-, and selenium-containing groups (3).  FMOs in mammalian systems 

(the hog liver microsomal FMO, mFMO) have been studied biochemically in depth 

and act as membrane-bound tetramers or octamers (3).  However, in bacterial and 

unicellular eukaryotes, FMOs are cytoplasmic dimers (25, 26).  The structure of the 

FMO of Schizosaccharomyces pombe (yFMO) is composed of two domains: a large 

FAD-binding domain containing the FMO identifying sequence (residues 1 – 175, 

292 – 457) and a smaller, insertion domain involved in stabilizing NADPH (residues 

176 – 291) (27).   

A third enzyme related functionally to PvdA is the well-studied p-

hydroxybenzoate hydroxylase (PHBH).  PHBH is a dimer with high substrate 

specificity, hydroxylating the activated aromatic ring of p-hydroxybenzoate (2).  The 

structure of PHBH consists of three domains: an N-terminal FAD binding domain 

with a Rossman-fold (residues 1 – 174), a central substrate-binding domain of 

primarily β-structure (residues 175 – 295), and a C-terminal helical dimerization 

domain (residues 296 – 394) (28).  Both PHBH and the FMOs are copurified with 

FAD and the Kd for FAD binding to PHBH is in the nanomolar range (2, 27, 29). 

PvdA is dependent upon FAD and NADPH for activity (Table 2-1, Figure 2-4, 

and ref (5)).  In PHBH and mFMO, flavin reduction occurs as a two-electron transfer 

from NADPH.  The flavin re-oxidizes by hydroxylating the substrate with molecular 

oxygen (Figure 2-1) (10, 29).  The oxidized flavin bound to PvdA is similar to other 

flavin-containing enzymes (3), which have a distinctive absorbance spectrum with 
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peaks at 380 and 450 nm.  Once the flavin becomes reduced, the 450 nm peak 

disappears leaving only the 380 nm peak (Figure 2-5).  Flavin reduction in PHBH in 

the presence of substrate is very rapid with a rate constant or 256 s-1.  However, 

without substrate the flavin reduction slows considerably to 0.41 min-1 (8).  The re-

oxidation of the reduced flavin without substrate occurs on the millisecond timescale 

(30).  In contrast, in mFMO flavin reduction is substrate-independent and the reduced 

enzyme binds molecular oxygen to form a stable flavin-hydroperoxy intermediate (2 

h half-life at pH 7.2) until substrate binds (3).  In this initial characterization of the 

flavin reduction and reoxidation, PvdA does not require substrate for flavin reduction, 

and is similar in this respect to mFMO (Figure 2-5).  The reoxidation of the flavin in 

PvdA is four orders of magnitude slower than PHBH but two orders of magnitude 

faster than seen in mFMO. 

Kinetic studies of PHBH report the turnover number as 1370 min-1 at 25 °C 

(8, 11, 12).  PvdA shows a slower kcat (26.4 min-1 with the NADPH oxidation and 24 

min-1 by the hydroxylation assay at 25 °C) (Table 2-2) comparable to that seen for 

IucD (17).  Kinetic parameters for mFMO are an order of magnitude slower than 

PvdA but are reported at 4 °C (16, 17) and no turnover numbers have been reported 

for yFMO.  Substrate inhibition has been seen in PHBH and IucD (2, 24).  Similarly, 

PvdA activity is inhibited at high substrate concentrations using the hydroxylation 

assay measuring the amount of product formation with a KI determined as 31 ± 5 mM 

(Figure 2-7 and Table 2-2).  However, when measuring the amount of NADPH 

oxidation, no substrate inhibition is observed (Figure 2-7).  Therefore, at high 
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substrate concentrations, only the hydroxylated product formation in inhibited not 

NADPH oxidation indicating uncoupling of the reaction.    

When measuring steady-state kinetics, PHBH loaded with FAD forms a 

ternary complex with NADPH and a nonsubstrate effector, 6-hydroxynicotinate (8).  

From this work, it was shown that the PHBH reaction mechanism is a rapid 

equilibrium random order mechanism and not a compulsory order mechanism.  The 

FAD loaded mFMO also forms a ternary complex with NADPH and substrate, but 

operates by a compulsory order mechanism (3, 12).  Similarly, FAD loaded PvdA 

forms a ternary complex with NADPH and ornithine (Figure 2-8).  However, whether 

the mechanism is random order or compulsory order can not be determined from the 

data obtained (18).  Furthermore, the weak interaction between PvdA and FAD (Kd = 

26 µM) compared to the stable PHBH:FAD complex  (Kd = 45 nM, (31)) could cause 

a change in the steady state mechanism. 

The substrate required for PvdA activity is very specific.  Changing the 

chirality of the substrate to D-ornithine resulted in no enzymatic activity by PvdA 

using either assay (Table 2-1, Figure 2-6, and ref (5)).  The peptide amine and 

carboxyl groups are required for activity and may be important in substrate-binding 

and positioning into the active site, similar to that seen for IucD (Table 2-1 and Figure 

2-6).  The side-chain amine is also required for catalysis and substitution with a 

methyl group eliminates activity.  Collectively, these data indicate that the peptide 

groups and the side chain amine are important for substrate positioning and binding.  

Shortening the side-chain resulted in no significant activity.  However, extending the 
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side-chain by one methylene group to L-lysine resulted in NAPDH oxidation at 80% 

of full activity without hydroxylated product formation, indicating uncoupling of the 

reaction.  The result of this uncoupling is hydrogen peroxide production (5).  

Therefore, we hypothesize that L-lysine binding leads to closure of the active site 

allowing the transfer of electrons from NADPH to FAD.  However, the primary 

amine of the L-lysine side-chain is positioned too far from the active site for effective 

hydroxyl transfer from FAD to the substrate resulting in uncoupling of the reaction 

similar to that seen in nonsubstrate effectors of PHBH and IucD (8, 24, 32, 33). 

Lysine has been shown to be a mixed inhibitor of PvdA (Figure 2-9) 

indicating that lysine can compete for binding with ornithine at the active site.  

Ornithine and lysine bind to the active site (as substrate and competitive inhibitor), as 

well as to a secondary binding site that leads to substrate inhibition (ornithine) and 

uncompetitive inhibition (lysine).  Most likely this occurs by two molecules of 

substrate (substrate inhibition) or one molecule of substrate and one molecule of 

inhibitor similar to that seen for invertase (34).  In contrast, competitive inhibition has 

been observed for nonsubstrate effectors of PHBH (32) and with L-2,4-

diaminobutyric acid, 5-aminopentanoic acid, and L-homoserine for PvdA (5). 

Initially, the biochemical characterization of PvdA was carried out in Tris-

HCl buffer.  PvdA was kept stable in solution only by the addition of 500 mM NaCl.  

In a test of the PvdA activity as a function of ionic strength, PvdA showed decreased 

activity with increasing sodium chloride concentration (Figure 2-10).  This was 

initially believed to be the result of the ionic strength.  IucD has been reported to have 
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increased activity with increased chloride concentrations, presumably by the 

formation of the active tetramer (23).  In contrast, inhibition by halides, including 

chloride, has been described for PHBH (35) and three chloride binding sites were 

observed in the crystal structure (3, 36).  One of the chloride binding sites has been 

shown to interfere with flavin intermediate formation and subsequent substrate 

hydroxylation.  Chloride inhibition studies of PvdA showed mixed inhibition with 

respect to ornithine (Figure 2-11A).  This inhibition indicates that the decrease in the 

activity observed with increased salt concentration was not a result of ionic strength 

but of chloride concentration.  Competitive inhibition was observed in respect to 

NADPH (Figure 2-11B), suggesting a specific chloride-binding site in or near the 

coenzyme-binding site and not merely a disruption of ionic interactions.  Therefore, 

PvdA activity was re-assayed in the absence of monovalent anions. 

IucD and PHBH show inhibition by bulky mercurial compounds (~60%) with 

the activity completely restored with the addition of reducing agents (2, 4, 37, 38).  

With the mercurial compound PCMB, mixed inhibition was observed in PvdA with 

respect to ornithine (Figure 2-12).  Mercurial compounds are not site-specific.  

However, when they bind to a cysteine possibly in or near the active site or coenzyme 

binding sites, the activity is disrupted in all three enzymes.     

Conclusions.  PvdA shares many similarities to PHBH: coenzyme and 

substrate specificities, nonsubstrate effectors, substrate inhibition, and inhibition by 

halides and bulky mercury compounds (Figure 2-13).  In contrast, several 
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Figure 2-13:  PvdA biochemical characterization in comparison to the functional 
homologues; PHBH from P. fluorescens (red), IucD from E. coli (blue), and 
FMO from hog liver microsomes (green). PvdA characteristics are labeled 
according to the homologue with similarities and characteristics shared with 
multiple homologues are labeled in purple.  
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characteristics seen in PvdA are similar to mFMO: hydroxylation of primary amines 

and flavin reduction in the absence of substrate (Figure 2-13).  Several PvdA 

characteristics are distinct from either PHBH or mFMO, including the monomeric 

oligomerization state and the rate of flavin reoxidation in the absence of substrate 

(Figure 2-13).  The sequence similarity between PvdA and PHBH (18% identity, 34% 

similarity) and between PvdA and yFMO (19% identity, 37% similarity) are of the 

same magnitude as that seen between PHBH and yFMO (18% identity, 38% 

similarity).  However, the structural similarity between PHBH and yFMO lies 

primarily in the FAD-binding domains (DALI Z-score of 10.5 for ~180 amino acids, 

RMSD of 4.0 Å, ref (39)).  Our data suggest that PvdA is likely to have a novel 

reaction mechanism.  Further elucidation of the mechanism has been examined using 

transient-state kinetics as described in the following chapter. 
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Chapter 3 

 

Determination of the PvdA Reaction Mechanism by Stopped-Flow 

Techniques  
 

 

In Chapter 2, PvdA was shown to have some characteristics similar to p-

hydroxybenzoate hydroxylase (PHBH) and flavin monooxygenase (FMO) yet also 

contain characteristics distinct from these two biochemically well-characterized 

proteins.  Therefore, it was suggested that PvdA would have a novel reaction 

mechanism.  To determine the reaction mechanism for flavo-enzyme catalysis, 

transient kinetics may be examined using stopped-flow techniques.  By monitoring 

the absorbance changes over time, the flavin redox state may be determined and 

therefore, a model for how the enzyme proceeds through the catalytic cycle can be 

developed (Figure 3-1).  The flavin redox states determined for PHBH and FMO are 

similar and proceed from the oxidized flavin (Figure 3-1A) to the reduced flavin 

(Figure 3-1B) and then back to the oxidized flavin by way of two transient 

intermediates, hydroperoxyflavin (Figure 3-1C) and hydroxyflavin (Figure 3-1D) (1).  

However, the catalytic mechanisms are different for PHBH and FMO.   

PHBH requires substrate to be bound prior to reduction (Figure 3-2A).  Once 

substrate binds, the flavin is quickly reduced (256 s-1) and is converted through the 

intermediates to reform the oxidized flavin (1-6).  In the absence of substrate, flavin  
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Figure 3-1: Common flavin oxidation states of hydroxylase 
enzymes including PHBH and FMO.  A. Oxidized flavin.  B. 
Reduced flavin.  C. Hydroperoxyflavin.  D. Hydroxyflavin.  Each 
state has different absorbance and fluorescence properties that are 
exploited for determining the reaction mechanism.  R = ribityl 
chain attached to adenine dinucleotide. 
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reduction is much slower (0.41 min-1) and the reduced flavin binds oxygen to form 

hydroperoxyflavin.  The hydroperoxyflavin is converted directly to the oxidized 

flavin by release of hydrogen peroxide (7).  In contrast, FMO reduces the flavin in the 

absence of substrate (Figure 3-2B) (1, 8-10).  The reduced flavin binds oxygen to 

form hydroperoxyflavin as a very long-lived intermediate (2 hr half-life) until 

substrate binds.  Once substrate binds to FMO, the reaction quickly proceeds through 

the hydroxyflavin intermediate to the oxidized flavin.  If substrate is not bound, FMO 

will release hydrogen peroxide and return to the oxidized flavin state (10).   

In Chapter 2, we determined that in PvdA, the FAD cycles from the oxidized 

to the reduced forms similar to PHBH and FMO.  As expected, the absorbance traces 

for FAD differ depending on the redox state of the flavin: oxidized flavin has two 

peaks, one at 390 nm and another at 450 nm, whereas reduced flavin has only one 

peak at 390 nm.  The flavin is reduced by NADPH oxidation.  The reduced flavin 

binds molecular oxygen, reacts with substrate and returns to the oxidized flavin state.  

Here we continue the biochemical characterization of PvdA to determine the reaction 

mechanism using stopped-flow techniques.  This mechanism is novel in that the 

reduction of the flavin is independent of substrate binding, passes through two 

transient intermediate steps upon reoxidation in the presence of substrate, while only 

forming the hydroxyflavin intermediate in the absence of substrate.    
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Figure 3-2: The reaction mechanisms for p-hydroxybenzoate 
hydroxylase (PHBH) and flavin monooxygenase (FMO).  A. PHBH 
requires substrate (Sub) for flavin reduction (Flred) from the oxidized 
redox state (Flox).  Upon binding of molecular oxygen, the flavin 
progresses through two transient intermediate redox states, 
hydroperoxyflavin (FlHOOH) and hydroxyflavin (FlHOH) before 
returning to the oxidized state by the release of hydroxylated 
substrate and water.  B. FMO does not require substrate for flavin 
reduction but reacts with molecular oxygen to form a stable 
hydroperoxyflavin intermediate (boxed in red).  Reaction of this 
intermediate with substrate, forms the hydroxyflavin and 
hydroxylated substrate, which is released, and the flavin returns to the 
oxidized state.   
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Materials and Methods 

 

PvdA Purification.  PvdA was purified as described in Chapter 2 with a final 

concentration of 258 - 292 µM in 100 mM potassium phosphate pH 8.0 and 100 mM 

sodium citrate. 

 

Stopped-Flow Experiments.  All stopped-flow data were collected in the lab of Dr. J. 

M. Bollinger at the Pennsylvania State University.  PvdA, coenzymes, substrate and 

buffers were deoxygenated with argon gas.  Stopped-flow experiments were 

performed at 22 °C with an Applied Photophysics SX.18MV (Surrey, U.K.) stopped-

flow apparatus housed in an anaerobic chamber.  Absorption traces were obtained 

with a photomultiplier tube or a photo-diode array detector with a 1 cm pathlength.  

Fluorescence was detected and integrated at wavelengths above 515 nm upon 

excitation at 370 or 390 nm with a 0.2 cm pathlength.  All experiments were repeated 

twice.   

 

PvdA Reduction Experiments.  For the FAD reduction traces, PvdA, FAD, and 

NADPH with and without ornithine were mixed into 100 mM potassium phosphate 

pH 8.0 in various combinations in the absense of oxygen.  Final concentrations of 

components were: 129 - 146 µM PvdA, 30 µM FAD, 180 µM NADPH, and 5 mM 

ornithine.   
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PvdA Oxidation Experiments.  Flavin oxidation studies consisted of a deoxygenated 

solution of 129 - 146 µM PvdA, 30 µM FAD, and 180 µM NADPH with and without 

5 mM ornithine mixed in the stopped-flow apparatus with an equal volume of 100 

mM potassium phosphate pH 8.0 equilibrated with oxygen concentrations ranging 

from 0 – 450 µM.  Absorbance (350 – 700 nm) and fluorescence (excitation at 250 – 

510 nm, emission >515 nm) were monitored over time. 

 

NADPH Oxidation Studies.  The NADPH oxidation assay was described in Chapter 2.  

These experiments were conducted in parallel with the hydrogen peroxide assay (next 

section) to correlate NADPH oxidation with hydrogen peroxide formation.  

Therefore, the assay buffer was modified to include the components required for 

hydrogen peroxide detection as follows:  100 mM potassium phosphate, pH 8.0, 0.03 

mM FAD, 0.1 mM NADPH, 5 µM PvdA, 0.01 mg horseradish peroxidase, and 0.4 

mM o-dianisidine in 0.2% Triton X-100.  The reaction was initiated by the addition of 

substrate (ornithine or lysine).  NADPH oxidation was monitored as a decrease in 

absorbance at 366 nm (ε = 2850 M-1 cm-1) with a BioMate 3 spectrophotometer 

(Thermo Spectronics) at 24 °C. 

 

Hydrogen Peroxide Formation Assay.   The amount of hydrogen peroxide formed by 

PvdA was measured according to the protocol described by Macheroux et al. (11).  

Briefly, the assay buffer is the same as for the NADPH oxidation assay above.  Upon 

initiation of the reaction by substrate (ornithine) or substrate analogue (lysine) 
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addition, any hydrogen peroxide formed by the uncoupling of PvdA was oxidized by 

the horseradish peroxidase, converting o-dianisidine to o-dianisidine radical.  The 

amount of radical formed was monitored by an increase in absorbance at 440 nm (ε = 

11,600 M-1 cm-1) at 24 °C and is directly proportional to the amount of hydrogen 

peroxide produced by PvdA. 

 

Data Analysis.  Curve fitting analysis was performed with KaleidaGraph 4 (Synergy 

Software) using a sum of exponentials equation. 

 

Results 

 

PvdA Flavin Reduction.  The change in the FAD oxidation state can be monitored as 

the disappearance of the peak at 450 nm upon reduction.  With the stopped-flow 

apparatus in the lab of Dr. J. M. Bollinger at Pennsylvania State University, the 

reduction of flavin in PvdA was monitored over time at 450 nm in an anaerobic 

chamber.  The exclusion of oxygen from the reaction allows only the reductive half-

reaction to be monitored as a single turnover event.  Initial optimization of the 

reduction mix determined that maximal reduction required four times more enzyme 

concentration than FAD concentration.  This ratio assured that 80% of the flavin is 

bound to enzyme due to the weak binding of FAD to PvdA (Figure 3-3A).  Therefore, 

all experiments contained PvdA at 129 – 146 µM and an FAD concentration of 30 

µM such that at least 80% of the FAD was bound to the protein.   
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Figure 3-3: Flavin reduction in PvdA.  A. Absorbance 
change over time at different wavelengths. PvdA was 
mixed anaerobically with FAD and NADPH in the 
absence of ornithine.  The largest change is a decrease 
at 450 nm and was used to monitor flavin reduction.  B. 
Different mixing schemes for flavin reduction.  The 
schemes have comparable rates (0.185 – 0.452 s-1) with 
or without the addition of ornithine indicating substrate 
is not required for flavin reduction.  Mixing schemes 
include: 146 µM PvdA (E), 30 µM FAD (F), 180 µM 
NADPH (N), and 5 mM ornithine (S). 
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 PvdA was mixed with FAD, NADPH, and ornithine in different reaction 

mixes (Table 3-1, Figure 3-3B) to determine if the reduction rate is affected by the 

order of addition of the components.  A solution of PvdA, FAD, and NADPH to be 

mixed with substrate was completely reduced prior to mixing, thus making the 

determination of the reduction rate impossible.  However, all other reaction mixes 

reduced the flavin at comparable rates from 0.185 – 0.452 s-1 (Table 3-1) indicating 

that the substrate is not required for flavin reduction and the binding of the 

coenzymes is not a rate-limiting step in flavin reduction. 

 

FAD Binding Rate.  The rate of FAD binding to PvdA was monitored by a 

fluorescence increase above 515 nm upon excitation at 450 nm (Figure 3-4).  The rate 

was determined as ~11 s-1 and was not affected by substrate addition before or during 

mixing (Table 3-2).  The FAD binding rate is faster than the overall reduction rate of 

0.19 – 0.45 s-1 and is not a rate-limiting step in reduction. 

 

PvdA Flavin Oxidation with Ornithine.  PvdA containing reduced flavin in the 

presence of ornithine and NADPH was mixed with oxygenated buffer to monitor the 

reoxidation of the flavin by stopped-flow.  As the flavin was converted from reduced 

to oxidized the peak at 450 nm reappeared (Figure 3-5A).  When the absorbance at 

390 nm is monitored over time, two peaks are detected (Figure 3-5B).  The first peak 

is designated as the formation of the hydroperoxyflavin intermediate and is oxygen  
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Table 3-1: PvdA flavin reduction rate constants 
Order of mixing Rate constant (s-1) 
EN vs. F 0.358 
EN vs. FS 0.278 
ENS vs. F 0.266 
EF vs. N 0.243 
EF vs. NS 0.200 
EFS vs. N 0.185 
EFN vs. S n.d. 
E vs. FN 0.452 
E vs. FNS 0.391 
ES vs. FN 0.431 
E = PvdA, F = FAD, N = NADPH, S = ornithine 
n.d. = not determinable 
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Figure 3-4: The binding of flavin to PvdA monitored as an 
increase in fluorescence.  The rate of flavin binding is independent 
of the presence of substrate. 
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Table 3-2: FAD binding rate to PvdA 
Order of substrate addition Binding rate (s-1) 
E vs. F 11.3 
E vs. FS 11.0 ± 2.0 
ES vs. F 9.7 ± 2.3 
E = PvdA, F = FAD, S = ornithine 
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Figure 3-5: Flavin oxidation in PvdA in the presence of substrate.  
A. Absorbance difference spectra of flavin over time at different 
wavelengths by mixing anaerobic PvdA, FAD, NADPH, and 
ornithine (to form reduced flavin) with 450 µM O2.  The largest 
absorbance change is the reappearance of a peak at 450 nm as the 
flavin becomes reoxidized.  A transient absorbance change is 
detected at 390 nm indicating the formation and decay of transient 
intermediates.  B. Absorbance changes were monitored over time 
at 390 nm (red line) and 450 nm (blue line).  Fluorescence changes 
above 515 nm were compiled and integrated upon excitation at 370 
nm (green line).  The fluorescence peak forms and decays on the 
same time scale as the second intermediate and was assigned as 
hydroxyflavin.    
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dependent (Figure 3-6A).  The formation rate can be plotted versus the oxygen 

concentration as an inverse plot (Figure 3-6B).  From this graph the rate of 

hydroperoxyflavin formation (the inverse of where the line crosses the y-axis) was 

determined as a first order rate constant of 142 s-1 with a Kd for O2 of 240 mM (the 

negative inverse where the line crosses the x-axis).  The second absorbance peak 

detected at 390 nm is oxygen independent with a formation rate constant of 2.8 s-1 

and is determined as the intermediate hydroxyflavin.    

When monitoring the absorbance at 450 nm, a shoulder is detected with a 

formation rate constant of 3.78 s-1, similar to the second absorbance peak at 390 nm 

assigned to hydroxyflavin.  A final absorbance change was detected with a formation 

rate constant of 0.16 s-1 and is the formation of the oxidized flavin (Figure 3-5B).  

Taken together these data suggest two intermediates are formed during flavin 

oxidation.  The first intermediate is hydroperoxyflavin formed with a rate constant of 

142 s-1 which decays as the second intermediate, hydroxyflavin, is formed at ~3 s-1.  

The hydroxyflavin decays to form the oxidized flavin at 0.16 s-1.   

Hydroxyflavin has been shown to emit fluorescence above 525 nm when 

excited at 390 nm in other flavoproteins (12).  To confirm that the second 

intermediate formed in the above experiment was indeed hydroxyflavin, the 

fluorescence of PvdA flavin oxidation was monitored over time.  A scan of 

fluorescence emission upon excitation by a variety of wavelengths shows two 

fluorescent species that appear over time (Figure 3-7A).  An initial fluorescence peak 
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Figure 3-6: Oxygen dependence for the formation of 
hydroperoxyflavin in PvdA.  A. Absorbance changes detected at 
390 nm correspond to hydroperoxy formation with 0 mM (red 
circles), 150 mM (green circles), 300 mM (blue circles), and 450 
mM (purple circles) O2.  Lines were fit with the sum of 
exponentials equation.  B. Rate constants obtained from the fitted 
lines in (A) were plotted versus the oxygen concentration as an 
inverse plot.  A first order rate constant for the formation of 
hydroperoxyflavin was determined as 142 s-1 and a Kd for O2 was 
determined as 240 mM.    
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Figure 3-7: PvdA excitation scan monitoring 
fluorescence above 515 nm.  A. Fluorescence 
emission was monitored upon excitation at 
different wavelengths over time.  An initial 
fluorescence peak at 350 nm disappears over 
time as a second fluorescence peak appears at 
470 nm.  Transient peaks can be detected at 
370 – 470 nm.  B. The flavin fluorescence was 
monitored over time at 350 nm (red line), 370 
nm (orange line), 390 nm (green line), 450 nm 
(blue line), and 470 nm (purple line).    
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when excited at 350 nm disappears over time as a second fluorescence peak appears 

with excitation at 470 nm.  Transient fluorescence changes can also be detected upon 

excitation at 370 – 450 nm (Figure 3-7B).  When exciting at 450 nm, transient 

fluorescence is detected at 2 s followed by a final fluorescence increase at 30 s with 

the two peaks overlapping.  When exciting at 390 nm, the fluorescence disappearance 

of the first species contains less overlap with the fluorescence increase of the second 

species.  However, when exciting at 370 nm, the two species form distinct peaks 

allowing accurate rate determination possible.  Upon addition of excess NADPH (0.9 

mM), the second fluorescence species disappears completely due to the re-reduction 

of the FAD.  Therefore, the fluorescence trace upon excitation at 370 nm with excess 

NADPH was overlaid on the absorbance traces in Figure 3-5B.  The formation rate 

constant of the fluorescence peak is 1.1 s-1 when excited at 370 nm and 1.7 s-1 when 

excited at 390 nm.  This fluorescence peak correlates with the absorbance 

intermediate determined as hydroxyflavin to give an average formation rate constant 

of 2.3 s-1.  The second fluorescence peak correlates with the accumulation of the 

oxidized flavin.   

   

PvdA Oxidation in the Absence of Ornithine.  The flavin oxidation in PvdA in the 

absence of ornithine is very different from when ornithine is present.  Transient 

absorbance changes over time at 390 nm and 450 nm are still detected (Figure 3-8).  

However, only one long-lived intermediate is detected at 2 s.  The formation of the 
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Figure 3-8: Flavin oxidation in PvdA in the absence of substrate. 
Absorbance changes were monitored over time at 390 nm (red line) 
and 450 nm (blue line).  Fluorescence changes above 515 nm were 
detected upon excitation at 370 nm (green line).  The fluorescence 
peak forms and decays on the same time scale as the first absorbance 
peak and was designated as hydroxyflavin.    
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.01 0.1 1 10 100

PvdA Oxidation without substrate

390 nm

450 nm

Fluorescence (ex 390 nm)

Time (s)

∆
A

b
s
o
rb

a
n
c
e

Time (s)

F
lu

o
re

s
c
e
n
c
e
 (e

x
. 3

7
0
 n

m
 / e

m
. >

5
1
5
 n

m
)



 
 

101 

intermediate is oxygen dependent with a rate constant determined as 1.7 s-1 (Figure 3-

9).  Fluorescence emission over time upon excitation at 390 nm indicated the 

presence of one intermediate that formed with a rate constant of 1.8 s-1 and decayed 

with a rate of 0.04 s-1.  The correlation between the absorbance and fluorescence 

traces indicates that the long-lived intermediate formed is hydroxyflavin. 

 

Hydrogen Peroxide Formation in PvdA.  PvdA has been shown to produce hydrogen 

peroxide in the presence of L-lysine, a nonsubstrate effector (13).  However, the 

production of hydrogen peroxide in the absence of substrate has not been tested.  

Therefore, the NADPH oxidation and hydrogen peroxide formation of PvdA was 

tested under several experimental conditions (Figure 3-10, Table 3-3).  With 2 mM L-

ornithine as the substrate, very little hydrogen peroxide (0.39 µM) was formed 

compared to the amount of NADPH oxidized (59.93 µM).  When 40 mM L-ornithine 

was used, the NADPH oxidation was comparable to that for 2 mM ornithine, but 

three times more hydrogen peroxide was formed (1.32 µM after 45 s) indicating 

enzyme uncoupling due to substrate inhibition.  Using L-lysine as the substrate 

resulted in less NADPH oxidation (similar to the results in Chapter 2) but a large 

increase in the hydrogen peroxide formation (7.79 µM) detected at 45 s.  Lastly, when 

no substrate was added, there was a steady amount of NADPH oxidation over time 

(2.65 µM after 45 s) and little hydrogen peroxide formed (0.14 µM).  Even with a 40-

fold increase in PvdA concentration, there was little production of hydrogen peroxide 

(data not shown).  



 
 

102 

1
 /

 R
a
te

 c
o
n
s
ta

n
t 

(s
)

Time (s)

1 / Oxygen concentration (µM-1)

B.

0

1

2

3

4

5

0 0.05 0.1 0.15 0.2

-0.05

0

0.05

0.1

0.15

0.1 1 10

0 uM
30 uM
450 uM

A
b
s
o
rb

a
n
c
e

 (
4
5

0
 n

m
)

A.

Figure 3-9: Oxygen dependence of the intermediate 
formation in PvdA in the absence of substrate.  A. 
Absorbance changes detected at 450 nm with 5 µM 
(red line), 30 µM (green line), and 450 µM (blue line) 
O2.  Lines were fit with the sum of exponentials 
equation.  B. Rate constants obtained from the fitted 
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µM.    
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Figure 3-10: PvdA NADPH oxidation and hydrogen 
peroxide formation in the presence and absence of 
substrates.  A. NADPH oxidation was monitored as an 
absorbance decrease at 366 nm with 2 mM L-ornithine (red 
line), 2 mM L-lysine (blue line), no substrate (green line), 
or 40 mM L-ornithine (purple line).  B. The formation of 
hydrogen peroxide by PvdA uncoupling as monitored by an 
increase in absorbance at 440 nm for 2 mM L-ornithine (red 
line), 2 mM L-lysine (blue line), no substrate (green line), 
or 40 mM L-ornithine (purple line).  
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Table 3-3: PvdA hydrogen peroxide formation after 45 seconds 

Substrate NADPH oxidized (µM) H2O2 formed (µM) Ratio* 
2 mM L-ornithine 59.93 0.39 0.01 
2 mM L-lysine 41.72 7.79 0.19 
No substrate 2.65 0.14 0.05 
40 mM L-ornithine 61.92 1.32 0.02 
* = the ratio of hydrogen peroxide formation to the amount of NADPH oxidized 
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Discussion 
 

 PvdA has steady-state characteristics distinct from p-hydroxybenzoate 

hydroxylase (PHBH) and flavin monooxygenase (FMO) thus indicating that the 

reaction mechanism employed by PvdA may differ from its two homologues.  

Therefore, stopped-flow techniques were employed to determine the different states 

of the flavin along the catalytic cycle to identify possible reaction mechanisms for 

PvdA and understand how the mechanisms compare to the homologues PHBH and 

FMO. 

 The flavin reduction in PvdA was monitored as a decrease in absorbance at 

450 nm in all possible mixing variations (Figure 3-3B).  All the different mixing 

schemes had similar rate constants (Table 3-1).  From these data it can be concluded 

that flavin reduction occurs in the absence of ornithine and that the order of addition 

of the coenzymes does not affect the reduction rate.  Therefore, the PvdA flavin 

reduction is more similar to the substrate-independent reduction of FAD in FMO.  In 

contrast, PHBH requires substrate for effective FAD reduction.  

 The oxidation of the reduced flavin in PvdA in the presence of ornithine 

shows two transient intermediates (Figure 3-5B).  The first intermediate, 

hydroperoxyflavin, forms rapidly (142 s-1), is oxygen-dependent (Figure 3-7), and is 

characterized by changes in the absorbance at 390 nm but not at 450 nm, and is not 

fluorescent.  The second intermediate formed during PvdA flavin oxidation, 

hydroxyflavin, is characterized by absorbance changes at 390 nm and 450 nm and is 
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highly fluorescent.  This second intermediate forms with an average rate constant of 

2.3 s-1 and decays as the oxidized flavin is formed with a rate constant of 0.16 s-1.  

The formation of the oxidized flavin is detected as an absorbance change only at 450 

nm not at 390 nm.  A similar oxidation pathway has been determined for PHBH and 

FMO (1, 3, 4, 7-10). 

 In the absence of substrate, only one intermediate is detected in PvdA with a 

rate constant for formation of 1.7 s-1 (Figure 3-8).  The intermediate shows an 

increase in absorbance at 390 nm and 450 nm was well as fluorescence emitting >515 

nm when excited at 390 nm.  Therefore, the intermediate detected is hydroxyflavin.  

In PHBH and FMO, only hydroperoxyflavin is detected in the absence of substrate, 

which is eliminated from the enzyme as hydrogen peroxide to yield the oxidized 

flavin (3, 7, 10).  Therefore, the mechanism of PvdA is distinct from those of the two 

homologues in the absence of substrate. 

 To determine if hydrogen peroxide is being formed in the absence of substrate 

in PvdA, the hydrogen peroxide formation over time was monitored with different 

substrates and in the absence of substrate (Figure 3-10, Table 3-3).  When ornithine is 

added as the substrate, NADPH oxidation occurs at a constant rate with the two 

saturating concentrations of ornithine tested.  However, the hydrogen peroxide 

produced increases with increasing ornithine concentration from 1% to 2% of the 

NADPH oxidation.  This increase in hydrogen peroxide formation is indicative of 

uncoupling of the enzyme most likely due to substrate inhibition, which was observed 

by steady-state kinetics as presented in Chapter 2.  When L-lysine was used as a non-
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substrate effector, a decrease in the amount of overall NADPH oxidation was 

observed as compared to ornithine as the substrate.  Under these conditions, a large 

increase in the production of hydrogen peroxide is detected with 19% of the NADPH 

oxidation being channeled into hydrogen peroxide formation.  This result is consistent 

with the substrate specificity studies in Chapter 2 and (13).  In contrast, when no 

substrate is added to PvdA, little NADPH is oxidized with very little hydrogen 

peroxide formed even at very high enzyme concentrations.  The ratio of hydrogen 

peroxide to NADPH oxidation is only 5% suggesting that the electrons donated by 

NADPH oxidation are not being channeled into hydrogen peroxide formation.  This 

agrees with the stopped-flow studies that the hydroperoxyflavin is not being 

generated and thus cannot decompose to form hydrogen peroxide in the absence of 

substrate.  However, enzyme inactivation was detected after ~45 s in this assay 

solution potentially by the Triton X-100 used to stabilize the chromophore.  The 

formation of hydrogen peroxide at longer time points will be retested in future 

experiments with Amplex Red (Molecular Probes), a chromophore that does not 

require Triton X-100 for stability, thus simplifying the assay solution. 

  The PvdA reaction mechanism has been determined using transient state 

kinetics (Figure 3-11).  PvdA begins the catalytic cycle by binding FAD with a 

binding rate constant of 11 s-1 and NADPH.  The FAD becomes reduced in the 

absence of substrate (0.452 s-1) indicating that the PvdA catalytic mechanism is 

distinct from that of PHBH.  Once PvdA has bound ornithine and molecular oxygen,  
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Figure 3-11: PvdA reaction mechanism.  PvdA (E) binds FAD (Flox) and 
NADPH, and the FAD becomes reduced (Flred).  Ornithine (Orn) and 
molecular oxygen (O2) bind to PvdA and the FAD is reoxidized passing 
through two transient intermediate steps, hydroperoxyflavin (FlHOOH) and 
hydroxyflavin (FlOH).  In the absence of ornithine, the FAD forms 
hydroxyflavin and becomes oxidized.  The rate constants for the formation 
of each step are labeled in red.   
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the reduced flavin is converted to hydroperoxyflavin, the first of two transient 

intermediates, with a rate constant of 142 s-1 followed by hydroxylation of the 

substrate into hydroxyornithine and conversion of the hydroperoxyflavin into 

hydroxyflavin, the second transient intermediate.  The flavin returns to the oxidized 

form by release of the hydroxylated product and water (0.16 s-1).  In contrast, in the 

absence of substrate, the reduced flavin is converted to hydroxyflavin (1.8 s-1) and is 

slowly reoxidized (0.04 s-1).  The substrate-independent reoxidation of PvdA is 

distinct from both PHBH and FMO.  While further work is needed to refine the 

reaction mechanism, in particular to determine the order of substrate and coenzyme 

addition and product release, this first transient mechanism suggests that PvdA has a 

novel reaction mechanism. 
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Chapter 4 

 
 

Siderophore Biosynthetic Protein Purification, Crystallization, and 

X-ray Diffraction Collection 
 

 
A good first step in rationally designing inhibitors of an enzyme is to 

determine the three-dimensional structure of the protein to be inhibited.  There are 

two main ways of protein structure determination, nuclear magnetic resonance 

(NMR) and x-ray crystallography.  For NMR studies, the protein typically needs to be 

less than ~30 kDa for good resolution of the chemical shift peaks.  Above 30 kDa, the 

protein contains many amino acids in similar environments so the chemical shift 

peaks overlap.  The finished NMR structure is representative of the protein’s various 

conformations in solution.  In contrast, determining a structure by x-ray 

crystallography can be performed on a protein of any size.  However, the determined 

structure is usually one protein conformation.  Therefore, x-ray crystallography gives 

snapshot views of the protein along the catalytic cycle. 

To determine a protein structure using x-ray crystallography, the protein must 

assemble in an ordered manner (in a crystal) so x-rays diffracting from the ordered 

protein can be strong enough to be measured.  Therefore, large three-dimensional 

crystals of the protein are required of at least 0.1 mm per side.  Protein purity 

promotes crystal formation, making protein purification a very important step.  

Packing of the protein into a crystalline state requires protein in the same 
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oligomerization state as monomer, dimers, etc.  Therefore, being monodispersed (or 

having only one oligomerization state) in solution is preferred.  Monitoring the 

oligomerization state in solution can occur using a variety of methods.  Two simple 

methods are gel filtration chromatography and dynamic light scattering (DLS).  Gel 

filtration chromatography separates particles based primarily on size; therefore, the 

molecular weight of proteins and protein complexes can be determined by 

comparison to proteins of known molecular mass.  DLS monitors the time-dependent 

fluctuations of scattered light arising from Brownian motion, the random thermal 

motion of the particles.  By analyzing the time-dependence of the motion, the 

hydrodynamic radius of the molecules in solution, or the effective radius of the 

hydrated molecule, can be determined.  

Once the protein is pure and monodispersed, crystallization can begin.  The 

protein needs to be at a sufficient concentration (initial trials begin at about 10 mg/ml) 

to promote crystallization.  Initial crystallization experiments use sparse matrix 

screening, a protocol that uses a variety of different buffer components to find a 

condition that promotes crystalline formation (1, 2).  A drop is prepared with a 1:1 

ratio of protein solution and precipitant solution.  The drop is placed or hung over a 

sealed well containing more precipitant solution to create a closed environment 

(Figure 4-1).  The drop slowly dehydrates as water is transferred from the less 

concentrated drop to the more concentrated well solution by vapor diffusion, causing 

the protein solution to become supersaturated.  A particular precipitant solution may 
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Figure 4-1: Crystallization vapor diffusion drop 
geometries in sealed wells using a 1:1 ratio of protein to 
precipitant solution (green) suspended above a well of 
precipitant solution.  A. Hanging drop with the 
crystallization drop inverted and suspended above the 
precipitant solution.  B. Sitting drop with the drop 
resting on a cover slip above the precipitant solution.  C. 
Bridging drop with the drop resting in a concave 
indention in a bridge (purple) above the precipitant 
solution.  D. Sandwich drop with the drop suspended 
between two cover slips above the precipitant solution. 

A. B. 

C. D. 

A. B. 

C. D. 
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promote crystal growth, may promote protein precipitation, or may leave the protein 

unchanged and soluble.  Initial crystallization trials often employ hanging drop vapor 

diffusion in which the drop is inverted above the crystallization solution (Figure 4-

1A).  Several other methods of vapor diffusion can be employed.  Sitting (Figure 4-

1B) and bridging (Figure 4-1C) techniques rest the drops on cover slips or bridges, 

while sandwich drops (Figure 4-1D) suspend the drop between two cover slips.  

These different geometries modify the surface tension of the drop and may change the 

morphology of forming crystals.  Hanging drops are first attempted because of the 

relative ease of setting up the drops.   

Formation of a regular crystal lattice is extremely important.  If the lattice is 

not a regular repeating unit, the data collected from x-ray diffraction is not 

interpretable.  Good quality diffraction is collected with sufficiently large, three-

dimensional crystals.  If crystals grow in only one direction, needles form.  When 

growth is in two dimensions, crystals form as plates.  Neither needle nor plate crystals 

are useful in diffraction analysis.  Crystals must also be single for diffraction data 

collection.  However, sometimes crystals nucleate in groups forming clusters.  Each 

crystal in a cluster diffracts independently, preventing regular diffraction required for 

structure determination.  Therefore, optimization of the crystal conditions to produce 

large, single crystals is necessary. 

For crystal optimization, the concentrations of the precipitant solution 

components are varied (3).  If the formed crystals are small or are grouped, seeding 

techniques can be used to obtain single crystals (2, 4).  Macroseeding places a single 
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small, nicely formed crystal into a fresh drop containing protein and crystallization 

solution to further the growth from a single crystal.  For groups of crystals, the 

crystals can be collected, crushed, and used as a seed stock for microseeding (adding 

crushed crystals into a fresh drop) or streak seeding (streaking crushed crystals 

through a fresh drop using a cat whisker).   

If crystals develop too fast, the lattice can be irregularly formed, making 

diffraction collection impossible.  Several methods can be used to slow down the rate 

of crystal development.  One method involves adding a layer of oil (silicone or 

paraffin) between the drop and the crystallization solution, which slows down the rate 

of vapor diffusion and thus the rate of protein concentration (Figure 4-2A).  Equilipro 

buttons (Hampton Research) only allow diffusion through small holes, producing 

results similar to an oil layer (Figure 4-2B).  A final method involves using dialysis 

buttons (Hampton Research), in which the protein solution is placed in a button inside 

a dialysis membrane (Figure 4-2C) (2).  The crystallization solution slowly diffuses 

into the protein solution and can slow down crystal growth. 

If the crystals cannot be optimized with any of the above techniques, less 

well-known techniques can be attempted.  Varying the ratio of protein to 

crystallization solution in the drops can change the dynamics of the vapor diffusion 

and may optimize crystal formation.  If the crystals nucleate and grow against the 

glass cover slip, switching to a plastic cover slip or using plates containing plastic lids 

(such as plates from Nextal) may optimize crystal formation.  Growing crystals inside 
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A. 

C. 

B. 

Figure 4-2: Optional crystal optimization techniques.  
A. Addition of a layer of oil (purple) between the 
crystallization solution (blue) and the crystallization 
drop (green) to slow the rate of vapor diffusion.  B. 
Equilipro buttons with small holes between the 
crystallization solution and the crystallization drop.  C. 
Dialysis buttons to allow the slow diffusion of the 
crystallization solution across a membrane to the protein 
solution (yellow).   
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silica or agarose gels may stimulate single crystal formation (2).  Finally, techniques 

such as feeding, adding fresh protein to a drop already containing crystals, or 

weeding, removing some of the crystals from a drop once crystals have formed can be 

used to optimize crystal formation (2, 4). 

Once single, large, three-dimensional crystals are formed, x-ray diffraction 

analysis is undertaken.  X-rays are used for structure determination because the 

wavelength of light must be on the order of the desired resolution (5, 6).  For protein 

structure determination, the resolution needed is 1.5 – 2.5 Å.  The crystal is oscillated 

in the x-ray beam and a full data set consists of a series of oscillated images generated 

by rotating the crystal 90 – 360o, depending on the symmetry of the crystal.  Crystals 

with high symmetry require fewer degrees of data collection than lower symmetry 

crystals.    From the collected x-ray data, two pieces of data can be obtained, the 

position (h, k, l) and intensity of the spots.  To determine the three-dimensional 

structure of a protein, one additional piece of data must be obtained, the phases for 

each spot.  The phases for each spots are the cumulative effect of all the diffracted 

waves from each atom in the crystal.  The phases cannot be directly measured from 

the x-ray diffraction data and must be mathematically approximated.  Three 

techniques used for phase approximation are molecular replacement (MR), multiple 

isomorphous replacement (MIR), and multi-wavelength anomalous dispersion 

(MAD).   

Molecular replacement uses a homologous protein that is hypothesized to be a 

very similar structure to the crystallized protein (5, 6).  With this assumption, the 
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phases of the two proteins should be very similar.  The model protein is placed into 

the unit cell of the crystallized protein by performing rotation and translation 

functions in Patterson space and initial phases are calculated.  These initial phases are 

used along with the measured reflection positions and intensities to generate a map of 

the protein’s electron density.  This technique works very well with proteins of high 

sequence similarity and with similar function.  However, if the model protein does 

not have a similar structure to the crystallized protein, molecular replacement will not 

work.  Furthermore, if there is no determined structure for the homologous proteins, 

there is no initial model to use in the calculations. 

A second technique, multiple isomorphous replacement, does not require a 

model protein to obtain phase information (5, 6).  Instead, this method requires 

soaking or co-crystallization of the protein with heavy metals.  One consideration is 

that the crystal lattice remains intact or isomorphous.  Perturbing the crystal lattice 

will change the unit cell lengths (thus make the crystals non-isomorphous) and cannot 

be used for MIR.  A second consideration is that the heavy metal must bind 

specifically (in a similar spot) for all or most of the protein molecules in the crystal or 

the diffraction contribution of the heavy metal cannot be measured.  A wide variety of 

heavy metals can be used for MIR and each metal has different amino acid binding 

preferences depending on the chemical nature of the metal.  Diffraction data of 

crystals containing heavy atom derivatives are collected in a similar manner to native 

crystals (crystals not containing heavy metals).  The native data is subtracted from the 

heavy metal data leaving intensities corresponding only to the heavy metal.  This 
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leaves only a few atoms that must be positioned in each unit cell.  Once the heavy 

atoms are placed and the phases obtained, these phases can be used to approximate 

the phases for the protein atoms.  However, with one heavy metal, two possible 

phases result for each atom.  Therefore, to remove the phase ambiguity, two or more 

heavy metals must be used that bind at different sites in the unit cell. 

A third method for obtaining phases is multi-wavelength anomalous 

dispersion (5, 6).  A heavy metal, which absorbs light at known wavelengths, is 

incorporated into the crystal lattice.  The heavy metal absorbs x-rays, creating an 

anomalous signal by disrupting the relationship of the reflection positions (h, k, l) to 

(-h, -k, -l).  With molecules that do not absorb x-rays, the (h, k, l) and (-h, -k, -l) 

positions have identical intensities and are called Friedel pairs.  When a heavy metal 

with an anomalous signal absorbs x-rays, the intensities are no longer the same 

between the Friedel pairs and the difference can be measured.  X-ray data is collected 

at three wavelengths near the edge of the heavy metal absorption; the inflection point, 

the peak of absorbance, and a remote position where absorbance from the heavy 

metal is not detected.  The collection of several wavelengths requires the use of 

tunable synchrotron radiation for data collection.  The data cannot be collected on a 

copper anode-rotating disc (a home source), which only provides x-rays at a 

wavelength of 1.54 Å.  By comparing the Friedel pairs from the data collected at the 

three different wavelengths, the phases for the heavy metals can be determined.  

These phases can help approximate the phases for the remainder of the molecules in 

the unit cell.  Most MAD data is collected on proteins with selenomethionine 
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incorporated into the sequence.  This places a heavy metal with anomalous scattering 

(selenium) at a known position within the protein sequence.  Once the position of the 

heavy atom is known, the phases can be approximated for the remainder of the atoms 

in the unit cell and an electron-density map can be generated. 

A fourth, hybrid phasing technique can be used if a single heavy metal 

derivative has an anomalous signal, termed single isomorphous replacement with 

anomalous scattering (SIRAS).  The position of the heavy metal can be determined in 

a similar manner to MIR.  However, by using the anomalous scattering of the heavy 

metal, the phases can be determined with only one heavy metal.  One heavy metal, 

iodine, can be used for SIRAS using a rotating copper anode because the anomalous 

absorption peak is near 1.54 Å (7).  Once the phases have been approximated and an 

electron density map has been generated, the protein’s sequence can be built into the 

density.  The completed structure can be generated after several rounds of refinement 

to place the atoms into the correct position into the electron density.   

My project includes the purification and crystallization of four proteins 

involved in siderophore biosynthesis, PvdA, PvdF, and PchG from Pseudomonas 

aeruginosa, and Irp3 from Yersinia enterocolitica.  The derivatization of ornithine 

into formyl-hydroxyornithine is one of the initial steps in pyoverdin production by P. 

aeruginosa.  Ornithine modification is a two-step process involving two enzymes, 

PvdA and PvdF (8-10).  Knockout mutations of pvdA or pvdF result in pyoverdin-

deficient bacteria (8-10), indicating that the modification of ornithine is required for 

siderophore biosynthesis.  PvdA is an FAD-dependent monooxygenase that converts 
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ornithine into hydroxyornithine.  The biochemical characterization and reaction 

mechanism have been elucidated and are detailed in Chapters 2 and 3.  PvdF is a 

formyl-transferase that produces formyl-hydroxyornithine from hydroxyornithine.  

PvdF studies have been done with P. aeruginosa cells containing overproduction 

plasmids and deletion mutants of pvdF (10).  The biochemical characterization of 

PvdF has not been accomplished and the cofactors for PvdF catalysis are not known. 

PchG and Irp3 are NADPH-dependent reductase homologues involved in the 

biosynthesis of pyochelin in P. aeruginosa and yersiniabactin in Y. enterocolitica, 

respectively (11-13).  Knockout mutations of pchG and irp3 are deficient in 

pyochelin and yersiniabactin production, respectively, indicating the proteins are 

required for completed siderophores.  These reductases are the only downstream, 

stand-alone proteins involved in the NRPS assembly line, while all other 

modifications to the siderophores (for example, epimerization and methylation) occur 

by domains incorporated into the NRPS proteins (14).  PchG and Irp3 homologues 

are all involved in siderophore biosynthesis.  No siderophore reductase structures are 

known.  

Here we report the initial steps to determining the three-dimensional structures 

of four accessory proteins involved in siderophore production: PvdA, PvdF, PchG, 

and Irp3.  These steps include cloning the genes, overproduction and purification of 

the proteins, buffer optimization, crystallization, data collection, and initial phasing.  

Obtaining the structures of these proteins is the first step towards rational design of 

inhibitors to siderophore biosynthesis. 
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Materials and Methods 

 

Standard Cloning Procedure.  The pyoverdin and pyochelin biosynthetic genes of 

interest delineated in the following sections were amplified from PAO1 P. aeruginosa 

genomic DNA using polymerase chain reaction (PCR) with Herculase polymerase 

(Stratagene).  The irp3 gene was amplified from Y. enterocolitica strain 33114 

genomic DNA by PCR with Eppendorf® MasterMix (Eppendorf) and 1.5 mM 

magnesium acetate. The primers for each clone are described in Table 1.  The 

amplified fragments were digested with restriction enzymes (Table 4-1), and ligated 

with T4 DNA ligase (New England Biolabs) into: pET28b (Novagen) for 

recombinant proteins designed to include an N-terminal His6 tag, pET29b (Novagen) 

for recombinant proteins with a C-terminal His6 tag, pET26b (Novagen) for 

periplasmic recombinant proteins, or pTYB1 (New England Biolabs) for Intein fusion 

recombinant proteins.  The resulting plasmids were transformed into BL21(DE3) E. 

coli strain (Stratagene) for overproduction of the proteins of interest.  B834(DE3) E. 

coli cells (Stratagene) were used for production of selenomethionine (Se-Met) protein 

for use in multi-wavelength anomalous dispersion (MAD) phasing experiments. 

 

Site-Directed Mutagenesis.  Specific mutations were incorporated into the gene of 

interest with the QuikChange® site-directed mutagenesis kit (Stratagene).  As per the 

manufacturer’s instructions, the plasmid containing the gene was PCR amplified 
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Table 4-1: Cloning primers  

Protein Primer Primer sequence 
Restriction 

Enzyme Plasmid 
Cloning 

procedure$ 
PvdA forward 5’-GAA TTC CAT ATG ACT CAG GCA 

ACT GCA ACC-3’ 
NdeI pET28b Standard * 

  reverse 5’-CCC AAG CTT TCA GCT GGC CAG 
GGC GTG-3’ 

HindIII  Standard * 

PvdF-throm-
His6  

forward 5’-AAT TAT ATA CAT ATG ACG AAA 
AGG AAA CTG GCC TA-3’ 

NdeI pET29b Standard 

  reverse 5’- AAT ATA ATA CAG ATC TGG 
GAG CTT CTC GGC GAG CAG C -3’ 

BglII  Standard 

PvdF forward 5’-CTG CTC GCC GAG AAG CTC TGA 
TGA CTG GGT ACC CTG GTG-3’ 

n.a. pET29b Mutagenesis 

 reverse 5’-CAC CAG GGT ACC CAG TCA TCA 
GAG CTT CTC GGC GAG CAG-3’ 

n.a.  Mutagenesis 

PchG-His6  forward 5’-ATG CCA GAG GAG GCG AGC 
ATA TGA GCG ACG TTC GTT CCG-3’ 

NdeI pET29b Standard # 

  reverse 5’-AGC AGG CGC CAC AGC ACC GCT 
CGA GCG AGG CTT GCT CC-3’ 

XhoI  Standard # 

PchG forward 5’-G GAA CAG GTG CTG GAG CAA 
GCC TCG TAA TAA CAC CAC CAC 
CAC CAC C-3’ 

n.a. pET29b Mutagenesis 

  reverse 5’-G GTG GTG GTG GTG GTG TTA 
TTA CGA GGC TTG CTC CAG CAC 
CTG TTC C-3’ 

n.a.  Mutagenesis 

PchG-throm-
His6  

forward 5’-AAT TAT ATA CAT ATG AGC GAC 
GTC CGT TCC GTG-3’ 

NdeI pET29b Standard 

  reverse 5’-ATA ATA CAG ATC TGG CGA GGC 
TTG CTC CAG CAC CTG-3’ 

BglII  Standard 

ss-PchG  forward 5’-A TTG GAT CCG ATG AGC GAC 
GTC CGT TCC GTG-3' 

BamHI pET26b Standard 

  reverse 5’-GA TTC AAG CTT TCA CGA GGC 
TTG CTC CAG CTC-3' 

HindIII  Standard 

PchG-Intein forward Same as PchG1 forward primer NdeI pTYB1 Standard 
 reverse 5’-ATA ATA GGA AGA GCC CGA 

GGC TTG CTC CAG CAC CTG-3' 
SapI  Standard 

 reverse 5’-TAA ATA CTC GAG CGA GGC TTG 
CTC CAG CAC CTG-3' 

XhoI  Standard 

Irp3 forward 5’-ATT CTT CAT ATG CCG TCC GCC 
TCC CCA AAA CA-3'  

NdeI pET29b Standard 

  reverse 5'-GGA TCC CTC GAG CGC CTC CTT 
ATC ATC ATC GTT G-3'  

XhoI  Standard 

n.a. = not applicable 

* = Primer sequence and cloning described in chapter 2. 
# = Primer sequence and cloning described in (11). 
$ Standard = amplification for incorporation of the gene of interest into the over-production plasmid. 
  Mutagenesis = procedure used to introduce a stop codon for elimination of the C-terminal tag from a 
            previous clone. 
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using mutagenic primers flanking the mutation site to incorporate the required 

nucleotide changes, and the non-mutated template plasmid was digested with DpnI, 

leaving only the amplified vector containing the desired mutation.  The plasmid was 

transformed into BL21(DE3) E. coli cells for the overproduction of the protein of 

interest.  

 

Cloning of the genes of interest.  The cloning of the pvdA gene was performed as 

described in Chapter 2 to yield the 443 amino acid PvdA protein with an N-terminal 

His6 tag.   

To produce the PvdF-throm-His6 protein, the pvdF gene was amplified from 

P. aeruginosa genomic DNA by PCR with 8% (v/v) DMSO as the adjuvant using the 

standard cloning procedure.  The amplified fragment of 825 base pairs was digested 

(NdeI / BglII) and ligated into the pET29b vector.  The resulting plasmid (pvdF-

throm-His6) was transformed into BL21(DE3) E. coli cells for over-production of the 

PvdF-throm-His6 protein with a thrombin cleavage site and a C-terminal His6 tag, 

adding 36 amino acids to the end of the native 275 amino acid PvdF protein.  The 

pvdF-throm-His6 plasmid was modified by site-directed mutagenesis to incorporate 

two stop codons at the end of the native pvdF gene.  The resulting plasmid (pvdF) 

encodes the native PvdF protein with no purification tag. 

The pchG-His6 clone was kindly provided by Christopher Walsh at Harvard 

Medical School (11).  The plasmid encodes for the PchG-His6 protein with a C-

terminal His6 tag adding 7 amino acids to the end of the native 349 amino acid PchG 
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protein.  The pchG-His6 clone was modified with the QuikChange® kit to add two 

stop codons to the end of the native pchG gene by site-directed mutagenesis.  The 

resulting plasmid (pchG) encodes the native PchG protein containing no purification 

tag.  To produce the PchG protein with a cleavable histidine tag, the pchG gene was 

amplified from P. aeruginosa genomic DNA by PCR with 8% (v/v) DMSO as an 

adjuvant using the standard cloning procedure.  The amplified DNA of 1047 base 

pairs was digested (NdeI / BglII) and ligated into the pET29b vector.  The resulting 

plasmid (pchG-throm-His6) was transformed into BL21(DE3) E. coli cells for over-

production of the PchG-throm-His6 protein with a thrombin cleavage site and a C-

terminal His6 tag adding a total of 36 amino acids to the end of the native PchG 

protein.  To produce a periplasmic PchG protein, the pchG gene was PCR amplified 

from P. aeruginosa genomic DNA with 10% (v/v) DMSO and 3% (v/v) glycerol as 

adjuvants.  The amplified pchG gene was digested (BamHI / HindIII) and ligated into 

the pET26b vector.  The resulting plasmid (ss-PchG) was transformed into 

BL21(DE3) E. coli cells for over-production of the ss-PchG protein containing an N-

terminal periplasmic signal sequence for periplasmic purification.  Finally, to produce 

a PchG fusion protein, the pchG gene was amplified from P. aeruginosa genomic 

DNA similar to that of ss-PchG cloning.  The resulting amplified DNA was digested 

with NdeI and SapI for ligation into the pTYB1 vector.  The reverse primer was 

redesigned to exchange the 5’ SapI site for a XhoI site for more efficient digestion.   

To produce Irp3 protein, the irp3 gene was amplified from Y. enterocolitica 

genomic DNA.  The amplified DNA of 1095 base pairs was digested with restriction 
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enzymes (NdeI / XhoI) and ligated into pET29b with the addition of a phosphatase 

step.  The resulting plasmid (irp3) was transformed into BL21(DE3) E. coli cells for 

over-production of the 365 amino acid Irp3 protein with a 7 amino acid C-terminal 

His6 tag.  

 

Over-production of Cloned Proteins.  BL21(DE3) E. coli containing the expression 

plasmid for each protein was grown in LB broth or Terrific broth (Fisher) containing 

10% (v/v) glycerol and 50 µg/ml kanamycin while shaking at 225 rpm.  The 

expression protocol for each protein varied by the OD600 at induction, the amount of 

isopropyl-β-D-thiogalactopyranoside (IPTG) added for induction, the temperature 

before and after induction, and length of growth time before harvesting (Table 4-2).  

Although the ss-PchG protein over-production was not optimized, several induction 

conditions were tested as shown in Table 4-3.  For selenomethionine over-production 

of Irp3, the minimal medium contained 1 x M9 salts supplemented with 0.8% (v/v) 

glycerol, 2 mM MgSO4, 0.1 mM CaCl2, 10 µg/ml thiamine, and a mixture of amino 

acids (60 mg L-selenomethionine, 50 mg each of leucine, isoleucine and valine and 

100 mg each of lysine, threonine and phenylalanine per liter of culture).  The media 

was pre-warmed before inoculation with an overnight culture of BL21(DE3) E. coli 

cells.  All cells were harvested by centrifugation (6,000 x g, 10 min, 4 oC) and 

resuspended in the buffer required for the initial purification step. 



 
 

127 

 

Table 4-2: Protein over-production procedures 

Clone Broth 
Pre-induction 
temperature 

OD600 at 
induction 

IPTG 
concentration 

Post-induction 
temperature 

Incubation after 
induction 

PvdA LB 37 oC  0.8 0.2 mM  37 oC  3 – 4 hours 
PvdF-throm-His6 LB 37 oC  0.4 0.2 mM  30 oC  3 – 4 hours 

PvdF LB 37 oC  1.0 0.2 mM  30 oC  3 – 4 hours 
PchG-His6* LB 30 oC 0.4 0 mM 25 oC  24 hours 

PchG LB 30 oC 0.4 0 mM 25 oC  24 hours 
PchG-throm-His6 LB 30 oC 0.4 0 mM 25 oC  24 hours 

Irp3 LB 22 oC n.a. 0 mM n.a. 24 hours 
Irp3 Se-Met Minimal 

media 
37 oC  0.16 n.a. 30 oC  20 hours 

* = Over-production protocol described in (11). 
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Table 4-3: ss-PchG-His6 over-production procedures 

Broth 
Pre-induction 
temperature  

OD600 at 
induction 

IPTG 
concentration 

Post-induction 
temperature  

Incubation 
after induction Result 

LB* 37 oC 0.4 0, 0.2, 1.0 mM 24 oC 3 hours No protein produced 
LB* 37 oC 0.4 0, 0.2, 1.0 mM 30 oC 3 hours No protein produced 

LB* 37 oC 0.4 0, 0.2, 1.0 mM 37 oC 3 hours No protein produced 

LB* 37 oC  0.4 0, 0.2, 1.0 mM 18 oC 20 hours No protein produced 

LB* 37 oC 0.4 0, 0.2, 1.0 mM 24 oC 20 hours No protein produced 

LB* 37 oC 0.4 0, 0.2, 1.0 mM 18 oC 24 hours No protein produced 

LB* 37 oC 0.4 0, 0.2, 1.0 mM 24 oC 24 hours No protein produced 

LB* 37 oC 1.0 0, 0.2, 1.0 mM 37 oC 6 hours No protein produced 

LB* 37 oC 1.0 0, 0.2, 1.0 mM 37 oC 12 hours Some protein produced 

LB* 37 oC 1.0 0, 0.2, 1.0 mM 37 oC 17 hours Some protein produced 

TB# 37 oC 0.4 0, 0.2, 1.0 mM 18 oC 20 hours No protein produced 

TB# 37 oC 0.4 0, 0.2, 1.0 mM 24 oC 20 hours No protein produced 

TB# 37 oC 0.4 0, 0.2, 1.0 mM 18 oC 24 hours No protein produced 

TB# 37 oC 0.4 0, 0.2, 1.0 mM 24 oC 24 hours No protein produced 

TB# 37 oC 1.0 0, 0.2, 1.0 mM 37 oC 6 hours No protein produced 

TB# 37 oC 1.0 0, 0.2, 1.0 mM 37 oC 12 hours Most protein produced 
TB# 37 oC 1.0 0, 0.2, 1.0 mM 37 oC 17 hours Some protein produced 

* LB = Luria-Bertani 
# TB = Terrific broth 
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General Purification Procedures.  Cells resuspended in purification buffer were 

disrupted by passage through a French pressure cell (35,000 psi) and the cellular 

debris was removed by centrifugation (12,000 x g, 30 min, 4 °C).   The proteins were 

purified from the lysate using multiple serial chromatographic steps (Table 4-4 A-C).  

For proteins containing His6 tags, the first step was affinity chromatography with a 

nickel chelating Sepharose fast flow column (Amersham Biosciences).  The 

purification buffer was pH 8.0 (Tris-HCl, HEPES, or potassium phosphate) 

containing 500 mM NaCl.  The proteins were eluted with an imidizole gradient.  

Further purification utilized ion exchange chromatography (Source 30Q or Source 

30S column) and/or gel filtration (Superdex 75 or Superdex 200 column) (all resins 

and columns were purchased from Amersham Biosciences).  The basic buffer for 

anion exchange was 50 mM glycine, pH 9.0 and the proteins were eluted with a 

sodium chloride gradient from 0 – 500 mM.  The buffer for cation exchange was 50 

mM MES, pH 6.0 with a salt gradient similar to anion exchange.  The buffer for gel 

filtration varied according to the protein and was the final buffer used for optimal 

protein stability and solubility.  For proteins lacking a His6 tag, purification began 

with anion exchange with Tris-HCl, pH 8.5 or glycine, pH 9.5 as the buffer and the 

proteins were eluted with a sodium chloride gradient.  Further purification was 

obtained using a variety of chromatography steps as listed in Table 4-4.   
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Table 4-4A: PvdA, PvdF, PchG-His6, and PchG-throm-His6 protein purification 
procedures 

Protein First Purification Step Second Purification Step Third Purification Step Protein produced 
  Buffer Buffer Buffer (mg/L culture) 

PvdA Affinity – nickel Gel filtration - Superdex 200 n.r. 20 - 45 

  20 mM potassium 
phosphate, pH 8, 500 mM 

NaCl, 50 mM sodium 
citrate, and 5 - 500 mM 

imidazole 

100 mM potassium 
phosphate, pH 8.0 and 100 

mM sodium citrate 

  

PvdF-throm-
His6 

Affinity - nickel Gel filtration - Superdex 75 n.r. 186 

  25 mM HEPES, pH 8.0, 
500 mM NaCl, and 5 - 

300 mM imidazole 

50 mM HEPES, pH 8, 150 
mM NaCl, 1 mM EDTA, 

and 10 % glycerol 

  

PvdF-throm Affinity - nickel Benzamidine Gel filtration - Superdex 75 78 

  (Following thrombin 
cleavage) 

25 mM HEPES, pH 8.0, 
500 mM NaCl, and 5 - 

300 mM imidazole 

25 mM HEPES, pH 8.0 and 
500 mM NaCl 

50 mM HEPES, pH 8, 150 
mM NaCl, 1 mM EDTA, 

and 10 % glycerol 

 

PvdF Anion exchange - 30Q Gel filtration - Superdex 75 n.r. 237 

  25 mM Tris-HCl, pH 8.5 
and 0 – 500 mM NaCl 

50 mM Tris-HCl, pH 7, 150 
mM NaCl, and 1 mM EDTA 

  

PchG-His6 Affinity - nickel Dialysis n.r. 46 

  25 mM Tris-HCl, pH 8.0, 
500 mM NaCl, and 5 - 

300 mM imidazole 

75 mM HEPES, pH 7.5, 5% 
glycerol, and 10 mM MgCl2 

  

PchG-throm-
His6 

Affinity - nickel Dialysis n.r. 22 

 25 mM Tris-HCl, pH 8.0, 
500 mM NaCl, and 5 – 

300 mM imidazole 

50 mM Tris-HCl, pH 8 and 
100 mM NaCl 

  

PchG-throm-
His6 

Affinity - nickel Dialysis n.r. n.d. 

  25 mM Tris-HCl, pH 8.0, 
500 mM NaCl, and 5 – 

300 mM imidazole 

50 mM HEPES, pH 8 and 
300 mM NaCl 

  

PchG-throm-
His6 

Affinity - nickel Hydrophobic - phenyl Hydrophobic - phenyl n.d. 

  25 mM Tris-HCl, pH 8.0, 
500 mM NaCl, and 5 – 

300 mM imidazole 

25 mM Tris-HCl, pH 8.0, 
500 mM NaCl, and 150 - 0 

mM imidazole 

25 mM Tris-HCl pH 8.0, 
500 - 0 mM NaCl 

 

n.r. = not required 
n.d. = not detected 
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Table 4-4B: PchG protein purification procedures 

First Purification Step Second Purification Step Third Purification Step Protein produced 
Buffer Buffer Buffer (mg/L culture) 

Anion exchange - 30Q n.r. n.r. n.d. 
100 mM glycine, pH 9.5, 5% 
glycerol, and 0 – 1 M NaCl 

   

Cation exchange - 30 S n.r. n.r. n.d. 

50 mM MES, pH 6, 5% glycerol, 
and 0 – 1 M NaCl 

   

AS precipitation n.r. n.r. n.d. 
0, 20, 40, 60, 80, and 100% 

ammonium sulfate 
   

AS precipitation Anion exchange - 30Q Cation exchange - 30 S n.d. 
80% ammonium sulfate 100 mM glycine, pH 9.5, 5% glycerol, 

and 0 – 1 M NaCl 
50 mM MES, pH 6, 5% 

glycerol, and 0 – 1 M NaCl 
 

Anion exchange - 30Q Hydrophobic - phenyl n.r. n.d. 
100 mM glycine, pH 9.5, 5% 
glycerol, and 0 – 1 M NaCl 

50 mM HEPES, pH 7.5, 5% glycerol, 
and 1 – 0 M AS 

  

Anion exchange - 30Q Hydrophobic - butyl n.r. n.d. 
100 mM glycine, pH 9.5, 5% 
glycerol, and 0 – 1 M NaCl 

50 mM HEPES, pH 7.5, 5% glycerol, 
and 1 – 0 M AS 

  

Anion exchange - 30Q Hydrophobic - octyl n.r. n.d. 
100 mM glycine, pH 9.5, 5% 
glycerol, and 0 – 1 M NaCl 

50 mM HEPES, pH 7.5, 5% glycerol, 
and 1 – 0 M AS 

  

Anion exchange - 30Q Red Sepharose  n.r. n.d. 
100 mM glycine, pH 9.5, 5% 
glycerol, and 0 – 1 M NaCl 

50 mM HEPES, pH 7.5, 5% glycerol, 
and 0 – 3 M NaCl 

  

Anion exchange - 30Q Hydrophobic - butyl n.r. n.d. 
100 mM glycine, pH 9.5, 5% 
glycerol, and 0 – 1 M NaCl 

50 mM Tris-HCl, pH 8.5, 5% glycerol, 
and 500 – 0 mM AS 

  

Anion exchange - 30Q Hydrophobic - butyl n.a. n.d. 
100 mM glycine, pH 9.5, 5% 
glycerol, and 0 – 1 M NaCl 

50 mM Tris-HCl, pH 8.5, 5% glycerol, 
and 1 – 0 M AS 

  

Anion exchange - 30Q Blue Sepharose  n.r. n.d. 
100 mM glycine, pH 9.5, 5% 
glycerol, and 0 – 1 M NaCl 

50 mM HEPES, pH 7, and 0 – 2 M 
NaCl 

  

Anion exchange - 30Q Hydrophobic – phenyl n.r. n.d. 
100 mM glycine, pH 9.5, 5% 
glycerol, and 0 – 1 M NaCl 

50 mM HEPES, pH 7.5, 5% glycerol, 
and 1 – 0 M AS 

  

Anion exchange - 30Q Hydrophobic - phenyl n.r. n.d. 
100 mM glycine, pH 9.5, 5% 
glycerol, and 0 – 1 M NaCl 

50 mM Tris-HCl, pH 8.5, 5% glycerol, 
and 1 – 0 M AS 

  

Anion exchange - 30Q Hydrophobic - phenyl n.r. n.d. 
100 mM glycine, pH 9.5, 5% 
glycerol, and 0 – 1 M NaCl 

50 mM glycine, pH 9.5, 5% glycerol, 
and 1 – 0 M AS 

  

Anion exchange - 30Q Hydrophobic – phenyl n.r. n.d. 
100 mM glycine, pH 9.5, 5% 
glycerol, and 0 – 1 M NaCl 

50 mM MES, pH 6.5, 5% glycerol, and 
1 – 0 M AS 

  

Anion exchange - 30Q Hydroxyapetite n.r. n.d. 
100 mM glycine, pH 9.5, 5% 
glycerol, and 0 – 1 M NaCl 

50 mM HEPES, pH 7, step gradient 
with 0, 0.2, 0.4, 0.6, 0.8, and 1 M NaCl 

  

Anion exchange - 30Q Hydroxyapetite n.r. n.d. 
100 mM glycine, pH 9.5, 5% 
glycerol, and 0 – 1 M NaCl 

50 mM HEPES, pH 7, step gradient 
with HEPES, pH 8, glycine, pH 9, and 

glycine, pH 10 

    

n.r. = not required 
n.d. = not detected 
AS = ammonium sulfate 
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Table 4-4C: PchG-throm and Irp3 protein purification procedures 
Protein First Purification Step Second Purification Step Third Purification Step Protein produced 

  Buffer Buffer Buffer (mg/L culture) 

PchG-throm Affinity - nickel Benzamidine Gel filtration - Superdex 75 n.d. 
 (Followed thrombin 

cleavage) 
25 mM Tris-HCl, pH 8.0, 

500 mM NaCl, and 5 – 300 
mM imidazole 

25 mM Tris-HCl, pH 8, 500 mM 
NaCl, and 1 mM MgCl2 

25 mM Tris-HCl, pH 8, 500 
mM NaCl, 150 mM imidazole, 

and 1 mM MgCl2 

 

PchG-throm affinity - nickel, thrombin 
cleave on column 

Benzamidine Gel filtration - Superdex 75 n.d. 

  25 mM Tris-HCl, pH 8.0, 
500 mM NaCl, 1 mM BOG, 
5 – 300 mM imidazole with 

10 mM MgCl2 and 2 µM 
NADPH added to eluted 

fractions 

25 mM Tris-HCl, pH 8, 500 mM 
NaCl, and 1 mM MgCl2 

25 mM Tris-HCl, pH 8, 500 
mM NaCl, and 1 mM MgCl2  

  

PchG-throm affinity - nickel, thrombin 
cleave on column 

Benzamidine Gel filtration - Superdex 200 n.d. 

 25 mM Tris-HCl, pH 8.0, 
500 mM NaCl, 1 mM BOG, 
and 5 – 300 mM imidazole 
with 10 mM MgCl2 and 2 
µM NADPH added to eluted 

fractions 

25 mM Tris-HCl, pH 8, 1 M 
NaCl, 1 mM MgCl2, and 1 mM 

BOG 

25 mM Tris-HCl, pH 8, 150 
mM NaCl, 1 mM MgCl2, and 1 

mM BOG 

 

PchG-throm affinity - nickel, thrombin 
cleave on column 

Anion exchange - 30Q n.r. n.d. 

  25 mM Tris-HCl, pH 8.0, 
500 mM NaCl, 1 mM BOG, 

5 – 300 mM imidazole 

50 mM Tris-HCl, pH 9, 15% 
glycerol, 1 mM MgCl2, 1 mM 

BOG, and 0 – 1 M NaCl 

    

PchG-throm affinity - nickel, thrombin 
cleave on column 

Cation exchange - 30 S n.r. n.d. 

 25 mM Tris-HCl, pH 8.0, 
500 mM NaCl, 1 mM BOG, 
and 5 – 300 mM imidazole 

50 mM Tris-HCl, pH 7, 15% 
glycerol, 1 mM MgCl2, 1 mM 
BOG, and 0 – 500 mM NaCl 

  

PchG-throm affinity - nickel, thrombin 
cleave on column 

Ammonium Sulfate precipitation n.r. n.d. 

  25 mM Tris-HCl pH 8.0, 
500 mM NaCl, 1 mM BOG, 
and 5 – 300 mM imidazole 

0, 20, 40, 60, 80, and 100% 
ammonium sulfate 

    

PchG-throm affinity - nickel, thrombin 
cleave on column 

Benzamidine Anion exchange - 30Q n.d. 

 25 mM Tris-HCl, pH 8.0, 
500 mM NaCl, 1 mM BOG, 
and 5 – 300 mM imidazole 

25 mM Tris-HCl, pH 8, 500 mM 
NaCl, and 1 mM MgCl2  

50 mM Tris-HCl, pH 9, 15% 
glycerol, 1 mM MgCl2, 1 mM 
BOG, and 0 – 500 mM NaCl 

 

Irp3 Affinity - nickel Gel filtration - Superdex 200 n.r. 24 
  25 mM Tris-HCl, pH 8.0, 

500 mM NaCl, and 5 – 300 
mM imidazole 

25 mM Tris-HCl, pH 8.0, 200 
mM NaCl, and 2 mM DTT 

    

Irp3-semet Affinity - nickel Gel filtration - Superdex 200 n.r. 3.6 
  25 mM Tris-HCl, pH 8.0, 

500 mM NaCl, 1 mM βME, 
and 5 - 500 mM imidazole 

25 mM Tris-HCl, pH 8, 200 mM 
NaCl, and 1 mM βME 

    

n.r. = not required 
n.d. = not detected    
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PvdA purification has been described in detail in chapter 2 and basic 

procedures are described in Table 4-4A. 

The PvdF-throm-His6 cell pellet was resuspended in 25 mM HEPES, pH 8.0, 

500 mM NaCl, and 5 mM imidazole.  Purification involved nickel affinity 

chromatography followed by gel filtration with the Superdex 75 column (Table 4-

4A).  The histidine tag of PvdF-throm-His6 was cleaved with 1U thrombin/mg protein 

(25 oC, 30 min) before further purification to produce PvdF-throm, leaving a 7 amino 

acid tail on the C-terminus of the protein.  PvdF-throm was separated from uncleaved 

PvdF-throm-His6 with a nickel affinity column and from the thrombin on a 

Benzamidine column (Amersham Biosciences) (Table 4-4A).  Further purification of 

PvdF-throm was accomplished by gel filtration using a Superdex 75 column.  The 

pelleted BL21(DE3) E. coli cells containing over-produced PvdF were resuspended in 

25 mM Tris-HCl, pH 8.5.  After disruption and centrifugation, PvdF was purified on 

an anion exchange column followed by a gel filtration on a Superdex 75 column 

(Table 4-4A). 

The PchG-His6 protein was purified in one-step manner on the nickel affinity 

column (Table 4-4A).  The collected fractions were dialyzed into 75 mM HEPES, pH 

7.5, 5% glycerol, and 10 mM MgCl2.  Purification of the PchG protein from the 

cellular lysate included a wide variety of column combinations (Table 4-4B) 

including anion exchange, cation exchange, hydrophobic chromatography, red 

sepharose (binds NADPH-binding proteins), blue sepharose (binds NADH-binding 

proteins), and hydroxyapetite as well as ammonium sulfate precipitation.  The PchG-
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throm-His6 was purified from the cell lysate on a nickel affinity column.  The 

collected fractions containing PchG-throm-His6 were exchanged into crystallization 

buffer with a phenyl sepharose hydrophobic interaction column to slowly remove the 

imidazole and sodium chloride from the buffer or by dialysis (Table 4-4A).  PchG-

throm-His6 cell lysate was loaded onto the nickel affinity column and washed 

thoroughly to remove any unbound proteins.  Thrombin (10 U/mg protein) was 

injected onto the column followed by incubation for 24 hours at 4 oC.  The cleaved 

PchG-throm protein was eluted from the column along with the thrombin and further 

purification included a variety of columns including Benzamidine, anion exchange, 

and cation exchange as well as with ammonium sulfate precipitation (Table 4-4C). 

The Irp3 protein was purified from the cellular lysate in a two-step process of 

nickel affinity and gel filtration chromatography (Table 4-4C).  Irp3-semet protein 

was purified in a similar matter with beta-mercaptoethanol (βME) added in every step 

of the purification process to prevent oxidation of the selenomethionine. 

 

Buffer Optimization for Proteins.  The buffer conditions for all of the purified 

proteins were optimized to increase stability, solubility, and monodispersity.  The 

buffer components tested varied by pH, salt, and glycerol concentration, and a variety 

of additives including EDTA, DTT, BOG, cofactors, and substrates (Table 4-5 A-G).  

The effect of the buffer on the protein solubility was measured by gel filtration 

chromatography, dynamic light scattering (DLS) with a PD2000DLSPlus Dynamic 
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Table 4-5A: PvdA initial buffer screen for solubility 
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Detection 
Method Results 

25 500                 DLS - 
25 500 10        DLS - 
25 500  300       DLS - 
25 500  300    2   DLS -- 
25 500  300     2  DLS - 
25 500  300      2 DLS -- 
25 500  300    2  2 DLS -- 
25 500  300    2 2  DLS - 
25 500  300     2 2 DLS -- 
25 500   2      DLS - 
25 500   2   2   DLS -- 
25 500   2    2  DLS -- 
25 500   2     2 DLS - 
25 500   2   2  2 DLS -- 
25 500   2   2 2  DLS -- 
25 500   2    2 2 DLS --- 
25 500    2     DLS - 
25 500     1    DLS - 
25 500     1 2   DLS -- 
25 500     1  2  DLS -- 
25 500     1   2 DLS - 
25 500     1 2  2 DLS -- 
25 500     1 2 2  DLS -- 
25 500     1  2 2 DLS --- 
25 500      2   DLS -- 
25 500       2  DLS -- 
25 500        2 DLS - 
25 500      2  2 DLS -- 
25 500      2 2  DLS -- 
25 500             2 2 DLS -- 
+ = Some monodispersity, ++ = Better monodispersity, +++ = Best monodispersity 

- = Little monodispersity, -- = Less monodispersity, --- = Worst monodispersity 
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Table 4-5B: PvdA final buffer screen for solubility 
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Detection 
Method Results 

100                 DLS + 
50  50       DLS + 
50  50  2     DLS + 
50  50   1    DLS + 
50  50    2 2  DLS + 
50  50  2  2 2  DLS + 
50  50   1 2 2  DLS + 

 100        DLS -- 
 100  20      DLS -- 
 100 100       DLS +++ 
 100 100    2   DLS +++ 
 100 100    2  2 DLS +++ 
 100 100 5      DLS ++ 
 100 100 5   2   DLS +++ 
 100 100 5   2  2 DLS ++ 
 100 100 10      DLS ++ 
 100 100 10   2   DLS ++ 
 100 100 10   2  2 DLS ++ 
 100 100 20      DLS + 
 100 100 20   2   DLS + 
  100 100 20     2   2 DLS + 

+ = Some monodispersity, ++ = Better monodispersity, +++ = Best monodispersity 

- = Little monodispersity, -- = Less monodispersity, --- = Worst monodispersity 
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Table 4-5C: PvdF-throm-His6 Protein buffer screen for solubility 
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Detection 
Method Results 

50                           DLS --- 
 50             DLS --- 
  50    150    1    DLS +++ 
  50    150    1 2x   DLS ++ 
  50    150    1  2x  DLS ++ 
  50    150    1   2x DLS ++ 
  50    150    1 2x  2x DLS ++ 
  50    150    1  2x 2x DLS ++ 
  50    150 10   1    DLS -- 
   20   100        DLS + 
    50          DLS --- 
    50  100        DLS + 
    50  100 5       DLS -- 
    50  100 10       DLS -- 
    50  100  2      DLS --- 
    50  100   2     DLS - 
    50  100    1    DLS + 
    50  150        DLS + 
    50  150    1 2x   DLS - 
    50  150    1  2x  DLS --- 
     50         DLS --- 
     50 100        DLS --- 
     50 200        DLS --- 
          50 300               DLS --- 

+ = Some monodispersity, ++ = Better monodispersity, +++ = Best monodispersity 

- = Little monodispersity, -- = Less monodispersity, --- = Worst monodispersity 
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Table 4-5D: PvdF-throm and PvdF buffer screen for solubility 
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Detection 
Method Results 

PvdF-throm 50                      DLS + 
PvdF-throm  50                 1    DLS ++ 
PvdF-throm   50                1    DLS ++ 
PvdF-throm    50               1    DLS ++ 
PvdF-throm     50              1    DLS + 
PvdF-throm      50             1    DLS ++ 
PvdF-throm       50            1    DLS ++ 
PvdF-throm        50           1    DLS ++ 
PvdF-throm         50              DLS -- 
PvdF-throm          50         1    DLS +++ 
PvdF-throm          50     100    1    DLS +++ 
PvdF-throm          50     100    1 2x   DLS +++ 
PvdF-throm          50     100    1  2x  DLS +++ 
PvdF-throm          50     150 10   1    DLS + 
PvdF-throm          50     150    1 2x   DLS +++ 
PvdF-throm          50     150    1  2x  DLS +++ 
PvdF-throm          50     150    1   2x DLS +++ 
PvdF-throm          50     150    1 2x  2x DLS +++ 
PvdF-throm          50     150    1  2x 2x DLS +++ 
PvdF-throm           50        1    DLS ++ 
PvdF-throm            50       1    DLS -- 
PvdF-throm            50   100        DLS ++ 
PvdF-throm             50          DLS + 
PvdF-throm             50  100        DLS -- 
PvdF-throm             50  100 5       DLS --- 
PvdF-throm             50  100 10       DLS --- 
PvdF-throm             50  100  2      DLS - 
PvdF-throm             50  100   2     DLS - 
PvdF-throm             50  100    1    DLS + 
PvdF-throm             50  100    1 2x   DLS ++ 
PvdF-throm             50  100    1  2x  DLS + 
PvdF-throm             50  200        DLS --- 
PvdF-throm             50  300        DLS --- 
PvdF-throm                           50                 DLS - 
PvdF               50             150       1       DLS +++ 

+ = Some monodispersity, ++ = Better monodispersity, +++ = Best monodispersity 

- = Little monodispersity, -- = Less monodispersity, --- = Worst monodispersity 
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Table 4-5E: PchG-His6 buffer screen for solubility 
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Detection Method Results 
50         150                     gel filtration --- 
50     200           DLS --- 

 50    150           gel filtration --- 
 50    200           DLS -- 
 50    150  5 10   10     gel filtration -- 
 50    150  5 10   10    2.5 gel filtration -- 
 50    150  5 10   10    25 gel filtration -- 
 50    150  5 10   10    0.25 gel filtration -- 
 50    150  5 10   10    0.025 gel filtration -- 
 75      5    10     gel filtration, DLS --- 
  25   200           gel filtration --- 
  25   150  10 2        gel filtration --- 
   50             DLS - 
   50    5         DLS -- 
   50    10         DLS -- 
   50     2        DLS --- 
   50      2       DLS --- 
   50       1      DLS -- 
   50       1  2x    DLS -- 
   50         2x    DLS --- 
   50        2x     DLS --- 
   50        10x     DLS -- 
   50        10x 2x    DLS -- 
   50        5     DLS -- 
   50        5 2x    DLS -- 
   50  100           DLS -- 
   50  150           gel filtration -- 
   50  150  10         gel filtration --- 
   50  150   2        gel filtration -- 
   50  200           DLS -- 
   50  200      5     DLS --- 
   50  200      5 2x    DLS --- 
   50  200      5  2x   DLS --- 
   50  300           gel filtration, DLS --- 
   50   200     5     DLS --- 
   50   200     5 2x    DLS --- 
   50   200     5  2x   DLS -- 
    50 150           gel filtration -- 
        50 200                     DLS --- 

+ = Some monodispersity, ++ = Better monodispersity, +++ = Best monodispersity 

- = Little monodispersity, -- = Less monodispersity, --- = Worst monodispersity 
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Table 4-5F: PchG-throm-His6 and PchG-throm buffer screen for solubility 
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Detection 
Method Results 

PchG-throm-His6 50                                   DLS --- 
PchG-throm-His6   50                DLS --- 
PchG-throm-His6      25    500 150        gel filtration -- 
PchG-throm-His6      25    500 150     1 50  gel filtration -- 
PchG-throm-His6      25    500 150     10 50  DLS -- 
PchG-throm-His6      25    500 150     1 5  DLS -- 
PchG-throm-His6      50    100         DLS - 
PchG-throm-His6       50            DLS -- 
PchG-throm-His6       50   100         DLS -- 
PchG-throm-His6       50   200         DLS -- 
PchG-throm-His6       50   300         DLS -- 
PchG-throm-His6       50   300  5       DLS -- 
PchG-throm-His6       50   300  10       DLS -- 
PchG-throm-His6       50   300      2x   DLS --- 
PchG-throm-His6       50   300       2x  DLS - 
PchG-throm-His6       50   300        2x DLS -- 
PchG-throm-His6       50   300      2x 2x  DLS --- 
PchG-throm-His6       50   300       2x 2x DLS -- 
PchG-throm-His6       50   300      2x  2x DLS --- 
PchG-throm-His6       50   300      2x 2x 2x DLS --- 
PchG-throm-His6       50   500  20       gel filtration -- 
PchG-throm-His6         50          DLS -- 
PchG-throm-His6                 50 500 150               gel filtration --- 
PchG-throm    50                                 DLS -- 

PchG-throm   50          5       DLS -- 

PchG-throm   50        150         DLS -- 

PchG-throm   50        150   2      DLS -- 

PchG-throm   50        150    1     DLS -- 

PchG-throm   50        150     1    DLS -- 

PchG-throm   50        150   2 1     DLS -- 

PchG-throm   50        150    1 1    DLS -- 

PchG-throm   50        150      1 2x  DLS -- 

PchG-throm   50        300         DLS -- 

PchG-throm   100                 DLS -- 

PchG-throm     100               DLS -- 

PchG-throm      100              DLS -- 

PchG-throm       25    150    1  1   gel filtration, DLS -- 

PchG-throm       25    500    1  1 2x  DLS -- 

PchG-throm       25    500 20     10 2x  DLS -- 

PchG-throm       25    500 150     1 2x  DLS - 

PchG-throm       25    500      1   gel filtration -- 

PchG-throm       100             DLS -- 

PchG-throm         25    15  1  1   DLS - 

PchG-throm                50   200   15   1   1     DLS - 
+ = Some monodispersity, ++ = Better monodispersity, +++ = Best monodispersity 
- = Little monodispersity, -- = Less monodispersity, --- = Worst monodispersity 
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Table 4-5G: Irp3 buffer screen for solubility 
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Detection 
Method Results 

25                       DLS -- 

 25           DLS - 

  25          DLS - 

   25         DLS + 

   25     5    DLS + 

   25     10    DLS + 

   25   100      DLS + 

   25   100  10 2   DLS -- 

   25   200      DLS ++ 

   25   200   2   DLS ++ 

   25   200    2  DLS +++ 

   25   200     1 DLS ++ 

   25   300      DLS + 

   25   500 300     DLS + 

    25        DLS - 

          25             DLS -- 
+ = Some monodispersity, ++ = Better monodispersity, +++ = Best monodispersity 
- = Little monodispersity, -- = Less monodispersity, --- = Worst monodispersity 
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Light Scattering detector (Precision Detectors), or with a solubility protocol using 

polyethylene glycol (PEG) 8,000 to precipitate the protein (15).  The precipitated 

protein was incubated for 20 min with the various buffer components, centrifuged to 

remove all the aggregated protein (20,000 x g, 4 min, 4 oC), and the relative 

absorbance of the supernatant was determined at 595 nm using the Bradford assay. 

 

Limited Proteolysis of PchG-His6.  PchG-His6 was incubated with proteases to 

determine if areas of the protein were highly susceptible to proteolysis.  A variety of 

proteases were tested including; 0.1 µg of trypsin, subtilisin, chymotrypsin, papain, 

proteinase K, and thrombin.  PchG-His6 was incubated with each protease at 4, 25, 

and 37 oC and samples were collected at 5, 10, 30, and 60 min.  Each sample was 

subjected to SDS-PAGE to determine the extent of cleavage.  Trypsin and thrombin 

were tested at higher concentrations (0.1, 1, and 10 µg) and for longer times (1, 2, 4, 

6, and 24 hrs) at 24 oC to optimize cleavage. 

 

Standard Crystallization Procedure.  Crystal trials were initiated using the hanging 

drop vapor diffusion method and sparse matrix screening to determine conditions that 

allowed for crystal formation with a variety of commercially available screening kits 

from Hampton Research and Emerald BioSystems (Table 4-6 A-D).  
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Table 4-6A: PvdA crystallization screens 

Protein Buffer Concentration Additive T
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25 mM Tris-HCl, pH 8, 500 mM NaCl, and 300 
mM imidazole 

9.7 mg/ml none 25 X X X X X X X 

25 mM Tris-HCl, pH 8, 500 mM NaCl, and 300 
mM imidazole 

15 mg/ml none 25 X       

25 mM Tris-HCl, pH 8, 500 mM NaCl, and 300 
mM imidazole - water in the well 

8.6 mg/ml FAD, orn* 25 X X X     

25 mM Tris-HCl, pH 8, 500 mM NaCl, and 300 
mM imidazole 

8.6 mg/ml FAD, orn 25 X X X X X X X 

25 mM Tris-HCl, pH 8, 500 mM NaCl, and 300 
mM imidazole 

8.6 mg/ml FAD, NADPH, 
norleucine 

25 X X X X X X X 

100 mM potassium phosphate, pH 8 and 100 mM 
sodium citrate 

11 mg/ml none 25 X X X X X   

100 mM potassium phosphate, pH 8 and 100 mM 
sodium citrate 

11 mg/ml FAD, ornithine 25 X X X X X   

100 mM potassium phosphate, pH 8 and 100 mM 
sodium citrate 

5.5 mg/ml none 25 X X X     

100 mM potassium phosphate, pH 8 and 100 mM 
sodium citrate 

5.5 mg/ml FAD, ornithine 25 X X X     

50 mM potassium phosphate, pH 8 and 50 mM 
sodium citrate 

5.5 mg/ml none 25 X X X     

50 mM potassium phosphate, pH 8 and 50 mM 
sodium citrate 

5.5 mg/ml FAD, ornithine 25 X X X     

50 mM potassium phosphate, pH 8 and 50 mM 
sodium citrate 

5.5 mg/ml none 11 X X X     

50 mM potassium phosphate, pH 8 and 50 mM 
sodium citrate 

5.5 mg/ml FAD, ornithine 11 X X X     

50 mM ADA, pH 7 and 50 mM sodium citrate 5.5 mg/ml none 11 X X X     

50 mM ADA, pH 7 and 50 mM sodium citrate 5.5 mg/ml FAD, ornithine 11 X X X     

50 mM ADA, pH 7 and 50 mM sodium citrate 5.5 mg/ml none 25 X X X     

50 mM ADA, pH 7 and 50 mM sodium citrate 5.5 mg/ml FAD, ornithine 25 X X X     

100 mM potassium phosphate, pH 8 5.1 mg/ml FAD, NADPH 25 X X X     

100 mM potassium phosphate, pH 8 and 0.2 µM 
PCMB  

5.1 mg/ml FAD, NADPH 25 X X X         

X = Experimental screens conducted on protein in each buffer condition. 
* orn = L-ornithine 
Crystal Screen 1and 2, Index Screen, Salt Rx Screen, and PEG/Ion Screen were purchased from Hampton 

Research.  Wizard Screen 1 and 2 were purchased from Emerald BioSystems. 
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Table 4-6B: PvdF-throm-His6 crystallization screens  

Protein Buffer Concentration Additive T
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50 mM Tris-HCl, pH 8 and 100 mM NaCl 16 mg/ml none 25 X X X X       

50 mM HEPES, pH 8, 150 mM NaCl, and 1 mM 
EDTA 

16 mg/ml none 25 X X X   X X 

50 mM HEPES, pH 8, 150 mM NaCl, and 1 mM 
EDTA 

16 mg/ml SAM* 25 X X X   X X 

50 mM HEPES, pH 8, 150 mM NaCl, and 1 mM 
EDTA 

16 mg/ml Folinic acid 25 X X X   X X 

50 mM HEPES, pH 8, 150 mM NaCl, and 1 mM 
EDTA 

19 mg/ml none 25 X X X X  X X 

50 mM HEPES, pH 8, 150 mM NaCl, and 1 mM 
EDTA 

19 mg/ml SAM 25 X X X X  X X 

50 mM HEPES, pH 8, 150 mM NaCl, and 1 mM 
EDTA 

19 mg/ml Folinic acid 25 X X X X  X X 

50 mM HEPES, pH 8, 150 mM NaCl, and 1 mM 
EDTA 

19 mg/ml orn* 25 X X      

50 mM HEPES, pH 8, 150 mM NaCl, and 1 mM 
EDTA 

19 mg/ml orn, SAM 25 X X      

50 mM HEPES, pH 8, 150 mM NaCl, and 1 mM 
EDTA 

19 mg/ml orn, Folinic 
acid 

25 X X      

50 mM HEPES, pH 7 and 1 mM EDTA 31 mg/ml none 4, 11, 25 X X X X X X X 

50 mM Tris-HCl, pH 8 and 1 mM EDTA 34 mg/ml none 4, 11, 25 X X X X X X X 

50 mM Bis-Tris, pH 7 and 1 mM EDTA 34 mg/ml none 4, 11, 25 X X X X X X X 

X = Experimental screens conducted on protein in each buffer condition. 
* SAM = s-adenosyl methionine, orn = L-ornithine 
Crystal Screen 1and 2, Index Screen, Salt Rx Screen, and PEG/Ion Screen were purchased from Hampton 

Research.  Wizard Screen 1 and 2 were purchased from Emerald BioSystems. 

 

 



 
 

145 

 

  

Table 4-6C: PvdF-throm crystallization screens 

Protein Buffer Concentration Additive T
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50 mM Tris-HCl, pH 8 and 100 mM NaCl 13 mg/ml none 25 X X X X       

50 mM HEPES, pH 8, 150 mM NaCl, and 1 mM 
EDTA 

10 mg/ml none 25 X X X   X  

50 mM HEPES, pH 8, 150 mM NaCl, and 1 mM 
EDTA 

10 mg/ml SAM* 25 X X X   X  

50 mM HEPES, pH 8, 150 mM NaCl, and 1 mM 
EDTA 

10 mg/ml Folinic acid 25 X X X   X  

50 mM HEPES, pH 8, 150 mM NaCl, 1 mM EDTA, 
and 10% glycerol 

20 mg/ml none 25 X X X X  X X 

50 mM HEPES, pH 8, 150 mM NaCl, 1 mM EDTA, 
and 10% glycerol 

20 mg/ml SAM 25 X X X X  X X 

50 mM HEPES, pH 8, 150 mM NaCl, 1 mM EDTA, 
and 10% glycerol 

20 mg/ml Folinic acid 25 X X X X  X X 

50 mM HEPES, pH 8, 150 mM NaCl, 1 mM EDTA, 
and 10% glycerol 

14 mg/ml orn* 25 X X X   X X 

50 mM HEPES, pH 8, 150 mM NaCl, 1 mM EDTA, 
and 10% glycerol 

14 mg/ml orn, SAM 25 X X X   X X 

50 mM HEPES, pH 8, 150 mM NaCl, 1 mM EDTA, 
and 10% glycerol 

14 mg/ml orn, Folinic 
acid 

25 X X X   X X 

50 mM HEPES, pH 7 and 1 mM EDTA 33 mg/ml none 4 X X X X X X X 

50 mM Tris-HCl, pH 8 and 1 mM EDTA 24 mg/ml none 4 X X X X X X X 

50 mM Bis-Tris, pH 7 and 1 mM EDTA 35 mg/ml none 4 X X X X X X X 

X = Experimental screens conducted on protein in each buffer condition. 
* SAM = s-adenosyl methionine, orn = L-ornithine 
Crystal Screen 1and 2, Index Screen, Salt Rx Screen, and PEG/Ion Screen were purchased from Hampton 

Research.  Wizard Screen 1 and 2 were purchased from Emerald BioSystems. 
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Table 4-6D: PvdF, PchG, and Irp3 crystallization screens 

Protein Protein Buffer Concentration Additive T
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PvdF 50 mM Tris-HCl, pH 7, 150 mM 
NaCl, and 1 mM EDTA 

18 mg/ml none 25 X X X X       

PvdF 50 mM Tris-HCl, pH 7, 150 mM 
NaCl, and 1 mM EDTA 

18 mg/ml none 11 X X X X X X X 

PvdF 50 mM HEPES, pH 7, 150 mM 
NaCl, and 1 mM EDTA 

18 mg/ml Folinic acid 25 X X X X X X X 

PchG-His6 75 mM HEPES, pH 7.5, 5% 
glycerol, and 10 mM MgCl2 

6.7 mg/ml none 25 X X X X       

PchG-His6 25 mM Tris-HCl, pH 8 and 200 
mM NaCl 

5 mg/ml none 25 X X X X    

PchG-His6 25 mM Tris-HCl, pH 8 and 200 
mM NaCl 

5 mg/ml NADPH 25 X X X X    

PchG-His6 50 mM Tris-HCl, pH 8.5 and 0.5 
mM MgCl2 

6 mg/ml NADPH 25 X X X     

PchG-His6 50 mM Tris-HCl, pH 8.5 and 0.5 
mM MgCl2 

4.3 mg/ml NADPH 25 X X  X    

PchG-His6 50 mM Tris-HCl, pH 8.5 and 0.5 
mM MgCl2 

4.3 mg/ml NADPH, 
luciferin 

25 X X  X    

PchG-His6 50 mM Tris-HCl, pH 8.5, 200 mM 
KCl, and 5 mM MgCl2 

6 mg/ml NADPH 25 X X      

PchG-His6 50 mM Tris-HCl, pH 8.5, 200 mM 
KCl, and 5 mM MgCl2 

6 mg/ml NADPH, 
luciferin 

25 X X      

PchG-throm-
His6  

50 mM Tris-HCl, pH 8 and 100 
mM NaCl 

28 mg/ml none 25 X X      

PchG-throm 25 mM Tris-HCl, pH 8, 150 mM 
NaCl, 1 mM MgCl2, and 1 mM 
BOG* 

8.5 mg/ml none 25 X  X     

PchG-throm 50 mM Tris-HCl, pH 9, 200 mM 
NaCl, 15% glycerol, 1 mM MgCl2, 
and 1 mM BOG 

12 mg/ml none 25 X X X X  X X 

PchG-throm 50 mM Tris-HCl, pH 9, 200 mM 
NaCl, 15% glycerol, 1 mM MgCl2, 
and 1 mM BOG 

30 mg/ml none 25 X X X      

Irp3 25 mM Tris-HCl, pH 8, 200 mM 
NaCl, and 2 mM DTT 

19 mg/ml none 25 X X X         

X = Experimental screens conducted on protein in each buffer condition 
* BOG = octyl-β-D-glucopyranoside 
Crystal Screen 1and 2, Index Screen, Salt Rx Screen, and PEG/Ion Screen were purchased from Hampton 

Research.  Wizard Screen 1 and 2 were purchased from Emerald BioSystems. 
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Standard Crystal Optimization.  Conditions that led to crystal formation were 

optimized to produce diffraction quality crystals (Table 4-7).  Initial optimization 

involved varying the concentration of the buffer components, the temperature, and 

adding components that may enhance crystallization (Table 4-8).  For further 

optimization, the geometry of the crystallization drop was altered from the standard 

hanging drop method to sitting, bridging, or sandwich drops.  Seeding techniques 

were also employed to optimize the crystal growth (macroseeding, microseeding, and 

streak seeding).  The use of dialysis buttons (Hampton Research), adding a layer of 

oil (silicone, parrafin) on top of the well solution, or using Equilipro buttons 

(Hampton Research) were also attempted to slow the diffusion rate between the drop 

and the well solution.  The protein to crystallization solution ratio in the drops was 

altered from the standard 1:1 to 2:1.  Changing the standard siliconized glass 

coverslips to plastic coverslips or using plates that have plastic lids (Nextal) to alter 

the crystal nucleation or growth on the glass, and using feeding, weeding, and 

growing crystals in gels were also attempted.   

 

Data Collection of Irp3 Crystals.  Diffraction quality crystals of Irp3 were flash 

cooled in the cryostream with 20% ethylene glycol in the crystallization solution as 

the cryoprotectant.  Native data were collected at the Protein Structure Laboratory at 

the University of Kansas (www.psl.ku.edu) with an RaxisIV image plate detector 

mounted on a Rigaku RUH3R rotating anode.  The exposure time per frame was 10
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Table 4-7: Crystal Optimization   
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PvdA X                     

PvdF-throm-His6 X X X  X X X  X X X X X  X X X X X   

PvdF-throm X  X                   
PvdF X  X X    X  X    X      X X 
Irp3 X                     
* = the additives used are described in Table 4-8 
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Table 4-8: Crystallization Additives 
Additive Name Class of Compound 
0.01 M Ammonium chloride Salt 
0.01 M Cadmium chloride Salt 
0.01 M Calcium chloride Salt 
0.05 M Cesium chloride Salt 
0.01 M Cobalt chloride Salt 
0.01 M Ferric chloride Salt 
0.01 M Lanthanum chloride Salt 
0.1 M Lithium chloride Salt 
0.01 M Magnesium chloride Salt 
0.01 M Nickel chloride Salt 
0.1 M Potassium chloride Salt 
0.2 M Sodium chloride Salt 
0.01 M Strontium chloride Salt 
0.1 M Ammonium sulfate Salt 
3% (v/v) Ethylene glycol Organic, non-volatile 
3% (v/v) Glycerol Organic, non-volatile 
2.5% (w/v) 1,6 Hexanediol Organic, non-volatile 
3% (v/v) MPD Organic, non-volatile 
5% (w/v) PEG 400 Organic, non-volatile 
1.5% (v/v) Jeffamine M-600 Organic, non-volatile 
3% (v/v) Dioxane Organic, volatile 
3% (v/v) Ethanol Organic, volatile 
3% (v/v) Iso-propanol Organic, volatile 
3% (v/v) Methanol Organic, volatile 
0.5% (v/v) Ethyl acetate Organic, volatile 
4% (v/v) Acetone Organic, volatile 
0.7% (v/v) n-Butanol Organic, volatile 
0.1 M Guanadine HCl Chaotrope 
0.01 M Urea Chaotrope 
3% (v/v) DMSO Chaotrope 
0.01 M L-cysteine Reducing Agent 
0.01 M DTT Reducing Agent 
0.01 M EDTA Chelator 
0.1 M Glycine Linker 
0.03 M Gly-Gly Linker 
0.01 M Taurine Linker 
0.01 M Betaine Linker 
3% (w/v) L-(-)-Fucose Carbohydrate 
3% (w/v) D-(+)-Glucose Carbohydrate 
3% (w/v) Sorbitol Carbohydrate 
3% (w/v) L-(-)-Sorbose Carbohydrate 
3% (w/v) D-Sucrose Carbohydrate 
3% (w/v) D-(+)-Xylose Carbohydrate 
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min with 0.5o oscillations for 180o at a 150 mm detector distance.  Irp3 crystals 

diffracted to 2.25 Å and were assigned to the space group P222 (a = 83.45, b = 92.54, 

c=180.24) (Table 4-9).  Diffraction data were processed with DENZO and 

SCALEPACK (16). 

 

Phasing of Irp3.  Phasing for Irp3 was attempted by molecular replacement with 

AutoMolRep in CCP4 (17) and Phaser (18) programs.  The models for molecular 

replacement were human neutrophil gelatinase-associated lipocalin (NGAL) (Protein 

Data Bank accession code 1L6M, 16.1% identity) and a Gfo/Idh/Moca family 

oxidoreductase from Vibrio cholerae (Protein Data Bank accession code 1XEA, 

19.8% identity).  Multiwavelength anomalous dispersion (MAD) with Irp3 Se-Met 

crystals was attempted.  The crystals were flash cooled in liquid nitrogen and sent to 

Louisiana State University to the Center for Advanced Microstructures and Devices 

(CAMD).  X-ray diffraction data were collected on the Gulf Coast Protein 

Crystallography Consortium (GCPCC) beamline.  Crystals were soaked with a 

variety of heavy metals for MIR (Table 4-10).  Irp3 was also co-crystallized with 

PCMB, dichloroethylenediamino platinate, and gold potassium cyanide for MIR 

phasing.  Short soaks (30 s – 1 min) of crystals into cryoprotectant containing 

potassium iodide were also used to obtain heavy metal adducts for MIR (19).  All 

MIR diffraction data were collected on the home source. 
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Table 4-9: Irp3 Data Collection Statistics 
Space Group P222 
Unit Cell (Å) a = 83.45, b = 92.54, c = 180.24 
Resolution Range (Å) 100-2.25 
Unique Observations 67,331 
Total Observations 391,913 
Completeness (%) 98.6 (95.3) 
Rsym 0.081 (0.384) 
% > 3σ (I) 74.0 (45.3) 
Values in parentheses are for the highest resolution shell: 2.25-2.33 Å. 
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Table 4-10: Heavy metals used for Irp3 MIR studies  
Reagent Name Heavy Metal 
Potassium Tetrachloroplatinate (II) Platinum 
Ammonium Tetrachloroplatinate (II) Platinum 
Potassium Tetranitroplatinate (II) Platinum 
Potassium Tetracyanoplatinate (II) Platinum 
Dichloroethylenediamine Platinum (II) Platinum 
Platinum Potassium Iodide Platinum 
Gold (I) Potassium Cyanide Gold 
Potassium Tetrachloroaurate (III) Gold 
Sodium Tetrachloroaurate (III) Gold 
Gold Potassium Bromide Gold 
Mersalyl Acid Mercury 
Ethyl Mercuric Phosphate Mercury 
Mercury (II) Chloride Mercury 
Ethylmercurithiosalycylic Acid, sodium salt Mercury 
Mercury (II) Potassium Iodide Mercury 
para-Chloromercuribenzoic Acid, sodium salt Mercury 
Thallium (III) Chloride hydrate Thallium 
Thalium (I) Chloride Thallium 
Thalium (III) Acetate hyrdate  Thallium 
lead (II) acetate trihydrate Lead 
lead (II) Nitrate Lead 
lead (II) Chloride Lead 
Silver Nitrate Silver 
Cadmium Chloride hydrate Cadmium 
Cadmium lodide Cadmium 
Potassium Hexachlororidate (IV) Iridium 
Iridium (III) Chloride hydrate Iridium 
Sodium Hexachlororidate (III) hydrate Iridium 
Ammonium Hexachloroiridate (III) hydrate  Iridium 
Potassium Hexanitroiridium (III) Iridium 
Potassium Osmate (VI) dihydrate Osmium 
Ammonium Hexabromoosmate (IV) Osmium 
Potassium Hexchloroosmate (IV) Osmium 
Sodium Tungstate dihydrate Tungsten 
Ammonium Tetrathiotungstate (VI) Tungsten 
Samarium (III) Chloride hexahydrate Samarium 
Samarium (III) Acetate hydrate Samarium 
Samarium (III) Nitrate hexahydrate Samarium 
Lanthanum (III) Nitrate hexahydrate Lanthanum 
Europium (III)  Nitrate hexahydrate Europium 
Europium (III) Chloride hexahydrate Europium 
Gadolinium (III) Chloride hydrate Gadolinium 
Lutetium (III) Chloride hexhydrate Lutetium 
Lutetium (III) Acetate hexhydrate Lutetium 
Ytterbium (III) Chloride hydrate Ytterbium 
Dysprosium (III) Chloride hexahydrate Dysprosium 
Praseodymium (III) Chloride heptahydrate Praseodymium 
Neodymium Chloride hydrate Neodymium 
Holmium (III) Chloride hexahydrate Holmium 
Potassium Hexachlororhenate (IV) Holmium 
Potassium Perrhenate Holmium 
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Results and Discussion 

PvdA 

The cloning, production, and purification of PvdA are described in detail in 

chapter 2 and summarized in Tables 4-1, 4-2, and 4-4A.  PvdA was produced as a 

monomeric, 51.6 kDa protein. 

The original buffer components for PvdA included Tris-HCl, pH 8.0, a high 

concentration of sodium chloride (500 mM), and imidazole (300 mM) as the protein 

was eluted from the nickel affinity column.   PvdA in this buffer quickly aggregated 

in solution making the protein unstable and would precipitate upon freezing for 

storage.  Initial buffer optimization, monitored by dynamic light scattering, was used 

to test the solubility of PvdA in buffers containing a wide variety of additives 

including glycerol, DTT (to reduce disulfide bonds), EDTA (to chelate any trace 

metals), and β-octylglucoside (BOG) (a detergent used to solubilize hydrophobic 

patches on the protein) (Table 4-5A).  The further addition of coenzymes (FAD and 

NADPH) and substrate (ornithine) was tested for their ability to promote the stability 

of PvdA in solution by decreasing aggregation.  However, the protein remained 

unstable and buffer exchange by dialysis or de-salting columns such as a PD-10 

column (Amersham Biosciences) resulted in protein precipitation.  Therefore, a wide 

screen of buffer conditions was undertaken using the buffer screen protocol described 

by Izaac et al. (15).  Briefly, PEG 8,000 was used to precipitate the protein.  A buffer 

screen was added to the precipitated protein and the amount of protein in solution was 
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monitored with the Bradford Assay (Figure 4-3).  PvdA was most soluble in ADA, 

pH 7.0, and sodium citrate (Figure 4-3A).  Further screening resulted in a large 

increase in PvdA stability in potassium phosphate, pH 8.0 (Figure 4-3B).  Therefore, 

all purification steps were conducted using potassium phosphate, pH 8.0 and sodium 

citrate.  A second gel filtration step was added to the PvdA purification to remove the 

sodium chloride and imidazole after nickel affinity chromatography and to remove 

any remaining contaminating proteins.  Further buffer optimization in potassium 

phosphate, pH 8.0 or ADA, pH 7 was monitored by dynamic light scattering to 

determine if further stability could be achieved with the addition of glycerol, 

cofactors, or substrate (Table 4-5B).  The protein was monomeric in either potassium 

phosphate or ADA when sodium citrate was present.  PvdA lost stability and began to 

precipitate without sodium citrate.  To remain in solution, PvdA requires a minimum 

of 50 mM potassium phosphate, pH 8.0 and 50 mM sodium citrate.  Freezing PvdA in 

this buffer does not affect the solubility or activity of the protein. 

Initial crystallization trials for PvdA using protein in Tris-HCl, pH 8.0 with 

500 mM sodium chloride and 300 mM imidazole yielded only salt crystals (Table 4-

6A).  However, crystallization experiments with PvdA in 50 mM potassium 

phosphate, pH 8.0 and 50 mM sodium citrate with a two-fold excess of FAD and 

NADPH, yielded small crystallites grown in 0.01 M cobalt chloride and 20% (w/v) 

polyvinylpyrrolindone K15.  Further optimization of this condition has not yet 

yielded diffraction quality crystals (Table 4-7).  
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Figure 4-3: PvdA Buffer Optimization Screen.  Protein precipitated by PEG 
8000 was resolubilized by the addition of a variety of salts (100 mM), buffers 
(100 mM), and additives (10% glycerol, 2 mM DTT and EDTA).  Buffer 
additions that have a positive effect on the protein solubility have a larger relative 
absorbance.  A. An initial buffer screen indicated ADA, pH 7.0 and sodium 
citrate to have a positive effect on protein solubility denoted by *.  B. Further 
buffer screening implicated potassium phosphate, pH 8.0 and bicarbonate, pH 8.1 
as having the greatest effect of PvdA solubility denoted by *. 
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PvdF 

 The PvdF protein was produced with two plasmids to obtain three variations 

of the protein.  The pvdF-throm-His6 plasmid produces PvdF-throm-His6 protein, 

which contains a cleavable C-terminal histidine tag that can be processed to produce 

PvdF-throm, a variation of the PvdF protein.  A second plasmid, pvdF, produces the 

native PvdF protein with no purification tag. 

 

PvdF-throm-His6  

The pvdF gene was cloned into the pET29b vector for over-production of a 

34.8 kDa PvdF protein containing a thrombin-cleavable His6 tag named PvdF-throm-

His6 (Table 4-1).  Over-production of this gene in BL21(DE3) E. coli cells was 

induced by 0.2 mM IPTG (Table 4-2).  After further growth of 3 – 4 hours, the cells 

were harvested by centrifugation and the pellet was resuspended in nickel affinity 

column buffer.  A two-step purification using nickel affinity and gel filtration 

chromatography yielded pure PvdF-throm-His6 at 186 mg/L culture (Table 4-4A). 

The best buffering conditions for the purified PvdF-throm-His6 were screened 

by DLS (Table 4-5C).  The buffer conditions that provided the most monodisperse 

protein were 50 mM HEPES, pH 8, 150 mM NaCl, and 1 mM EDTA with and 

without the addition of substrates.  Therefore, all purification steps were conducted 

using HEPES, pH 8 and 1 mM EDTA. 

 Initial crystallization trials of PvdF-throm-His6 yielded several conditions that 

formed needle-shaped crystals: 1.3 M sodium malonate, pH 7, 0.1 M HEPES, pH 7, 
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and 0.7% (v/v) Jeffamine ED-2001; 5% (v/v) Tacsimate, 0.1 M HEPES, pH 7, and 

10% (w/v) PEG MME 5000; and 1.2 M sodium potassium tartrate (Table 4-6B and 

Figure 4-4A,B).  Further optimization (Table 4-7) of the crystal conditions did not 

change the geometry of the needles into three-dimensional crystals. Therefore, the 

His6 tag was cleaved with thrombin to determine if the morphology of the crystals 

could be improved with protein missing the long C-terminal tail. 

 

PvdF-throm 

PvdF-throm-His6 was cleaved with thrombin to produce PvdF-throm.  The 

cleaved PvdF-throm was separated from the uncleaved PvdF-throm-His6 by nickel 

affinity chromatography (Table 4-4A).  Further purification of the PvdF-throm from 

the thrombin was performed using a Benzamidine column that specifically binds 

thrombin.  The purified PvdF-throm protein was 31.9 kDa. 

PvdF-throm solubility was optimized by varying the buffer components and 

monitoring by DLS (Table 4-5D).  PvdF-His6 was least heterodispersed in 50 mM 

HEPES, pH 8, 150 mM NaCl, 1 mM EDTA, and 10% (v/v) glycerol.  Therefore, a 

final gel filtration step was added to the purification procedure to exchange PvdF-His6 

into the optimized buffer. 

Initial crystallization trials of PvdF-His6 yielded needle-shaped crystals under 

the same conditions as PvdF-throm-His6 (Table 4-6C).  A variety of additives were 

included in the crystallization trials to determine if any would change the morphology 
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F.E.D.

C.A. B.

Figure 4-4: PvdF crystal images.  PvdF-throm-His6 needle crystals grown with 
(A) sodium malonate with Jeffamine ED-2001 and (B) sodium potassium 
tartrate as the precipitant.  PvdF plate crystals grown with (C) Tacsimate, (D,E) 
sodium malonate, and (F) sodium citrate as the precipitant. 
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of the crystals (Table 4-7 and 4-8).  However, as with PvdF-throm-His6, the crystals 

would not grow in a second or third dimension.  Therefore, the protein was 

redesigned to remove the C-terminal tail and the thrombin cleavage site to produce 

the native PvdF protein. 

 

PvdF 

 The native PvdF protein containing no purification tag was produced by 

introducing two stop codons into the pvdF-throm-His6 vector in the position of the 

native stop codon using site-directed mutagenesis (Table 4-1).  The 31.0 kDa protein 

was overproduced in a similar manner to PvdF-throm-His6 except the cells were 

induced at mid log phase (A600 = 1.0) instead of early log phase A600 = 0.4) (Table 4-

2).  The cells were harvested by centrifugation and resuspended in anion exchange 

loading buffer.  PvdF was purified in two steps using anion exchange and gel 

filtration chromatography yielding 237 mg protein/L cells (Table 4-4A).  The final 

buffer for PvdF was the same as for PvdF-throm-His6 and PvdF-throm and the protein 

was monodispersed in solution as determined by DLS (Table 4-5D). 

Initial crystallization trials yielded needle crystals under similar conditions to 

PvdF-throm-His6 and PvdF-throm (Table 4-6D).  By screening a variety of additives, 

several of the conditions altered the morphology of the crystals from needles to plates 

(Table 4-11 and Figure 4-4 C-F).  However, with a double additive screen, the plate 

crystals did not further change morphology to obtain three-dimensional character  
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Table 4-11: Crystal conditions which formed PvdF needles and plates  

Condition 
Crystal 

morphology 

1.7 M lithium sulfate and 0.1 M Tris-HCl, pH 8.5 needles 

1.4 M sodium potassium phosphate needles 

1.3 M sodium potassium tartrate and 0.1 M Tris-HCl, pH 9.5 needles 

1.1 M sodium potassium tartrate, 0.1 M Tris-HCl, pH 9, and 0.2 M lithium sulfate needles 

53% (v/v) Tacsimate and 0.1 M HEPES, pH 7.5  plates 

1.7 M sodium malonate and 0.1 M ADA, pH 6.7 needles 

1.5 M sodium malonate and 0.1 M Tris-HCl, pH 8.3  plates 

0.8 M sodium citrate, 0.2 M NaCl, and 0.1 M Tris-HCl, pH 8  plates 
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(Table 4-7).  The largest and most well formed plate crystals were obtained in wells 

with: 53% (v/v) Tacsimate, 0.1 M HEPES, pH 7, ethyl acetate, and EDTA; 1.5 M 

sodium malonate, 0.1 M Tris-HCl, pH 8.3, ethyl acetate, and EDTA; and 0.8 M 

sodium citrate, 0.2 M NaCl, 0.1 M Tris-HCl, pH 8, EDTA, and urea.  With these 

three conditions, the drop geometry was changed to sitting, bridging, or sandwich 

drops but this still did not alter the morphology.  Macroseeding and streak seeding 

were also tried, as well as Equilipro buttons (Hampton Research) to slow the rate of 

vapor diffusion.  Setting up crystallization drops in silica or agarose gels was 

attempted to provide a different environment for crystal formation.   None of the 

conditions tried changed the morphology and achieved the three dimensional crystals 

needed for diffraction collection.   

Addition of the substrate, hydroxyornithine, to the crystallization drop may 

change the protein conformation and allow growth of diffraction quality crystals.  

However, the synthesis of hydroxyornithine is very difficult.  The Chemical 

Methodologies & Library Development (CMLD) Center at the University of Kansas 

has been working to produce hydroxyornithine.  A method for obtaining 

hydroxylysine has been described (20).  However, hydroxylation of ornithine using 

the same synthesis method was not achieved due to unwanted cyclization of the side 

chain.  A variety of alternative synthesis methods have been attempted with no 

success.  Generation of hydroxyornithine by PvdA is not efficient enough to get high 

quantities of hydroxyornithine for use in PvdF crystallization trials.  Further PvdF 

crystallization experiments will be conducted once hydroxyornithine can be obtained.  
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PchG 

 The PchG protein was produced from five plasmids.  The pchG-His6 plasmid 

produced PchG containing a histidine tag.  The pchG plasmid produced the native 

PchG with no purification tag.  A third plasmid, pchG-throm-His6, produced PchG 

with a cleavable histidine tag, which was cleaved to produce PchG-throm.  The fourth 

plasmid, ss-pchG, produced a periplasmic PchG protein.  The final PchG plasmid, 

pchG-Intein, was cloned to produce a fusion protein for purification.   

  

PchG-His6 

The clone for PchG-His6 was generously provided by the Walsh lab at 

Harvard Medical School (Table 4-1).  The plasmid, pchG-His6 encodes for a 38.7 

kDa PchG-His6 protein with a C-terminal His6 tag.  Protein over-production occurs 

without promoter induction according to the protocol from Reimann et al (11) (Table 

4-2).  PchG-His6 was purified by nickel affinity chromatography with a yield of 46 

mg/L E. coli (Table 4-4A). 

A variety of buffering conditions ranging from pH 6.5 – 9.5 and a range of 

additives were monitored by DLS and gel filtration to determine the conditions that 

decreased PchG-His6 aggregation in solution (Table 4-5E).  None of the conditions 

resulted in monodispersed protein and the protein precipitated out of solution when 

concentrated above 1-2 mg/ml in all of the solutions tested.  PchG-His6 eluted from 
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the nickel column and remained soluble at 6.7 mg/ml.  Crystallization trials of protein 

in the nickel elution buffer were undertaken. 

A variety of crystallization screens were performed in different protein buffers 

with the addition of NADPH and luciferin, a substrate analog (Table 4-6D).  No 

protein crystals were obtained, suggesting either that the protein has flexible regions 

interfering with the crystal packing, the protein concentration was not high enough, or 

the protein was not in a single oligomeric state, thus interfering with crystallization.  

Many proteins will not crystallize if small regions of the protein are flexible 

(2).  To determine if the reason that no PchG-His6 crystals formed was because of 

flexible regions, limited proteolysis experiments were conducted.  If small regions of 

the protein could be removed by proteolysis, then PchG would be re-cloned to 

remove the regions and crystallization experiments would be conducted.  Six 

proteases were tested to determine if PchG-His6 could be consistently cleaved into 

smaller pieces without complete degradation (data not shown).  Thrombin, trypsin, 

and papain did not show any cleavage at low concentrations of protease detected by 

SDS-PAGE.  With larger concentrations of protease, trypsin completely degraded 

PchG-His6, while no cleavage was seen with thrombin.  Chymotrypsin cleavage was 

not specific and many degradation products were detected in a range of sizes.  

Subtilisin and proteinase K cleaved PchG-His6 into one detectable band of around 25 

kDa indicating 15 kDa of the protein was cleaved off.  The cleaved fragment is large 

and therefore not suitable for the removal of small flexible regions.   



 
 

164 

To determine if the protein solubility, stability, and crystallization problems 

were due to the His6 tag, the protein was redesigned to remove the tag and leave only 

the native PchG protein. 

 

PchG 

The pchG plasmid was produced by introduction of two stop codons into the 

pchG-His6 plasmid at the end of the native pchG gene (Table 4-1).  Over-production 

of PchG in BL21(DE3) E. coli cells was identical to that for PchG-His6 (Table 4-2).  

The PchG protein was 37.7 kDa.    

PchG purification included a wide variety of chromatographic steps as well as 

ammonium sulfate precipitation. Purification steps included; ammonium sulfate 

precipitation, anion exchange, cation exchange, hydrophobic (phenyl, butyl, and 

octyl), Red Sepharose to bind NADPH-binding proteins, Blue Sepharose to bind 

NADH-binding proteins, and hydroxyapetite (Table 4-4B).  However, purified PchG 

was never obtained.  With some purification strategies, the protein did not adhere to 

the column resin and eluted in the flowthrough, or eluted throughout the gradient seen 

in ammonium sulfate precipitation and cation exchange.  With anion exchange and 

hydrophobic resins, PchG eluted with many other proteins, such that these columns 

did not increase purity.  PchG adhered too strongly and never eluted from the Red and 

Blue Sepharose and the hydroxyapetite columns.  Therefore, PchG was recloned to 

form a protein with a cleavable His6 tag similar to the PvdF-throm-His6 protein.  This 
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new clone would take advantage of the histidine tag for purification but the tag could 

be cleaved for increases solubility. 

 

PchG-throm-His6 

The pchG gene was amplified from P. aeruginosa genomic DNA and ligated 

into the pET29b vector such that the PchG protein contained a thrombin-cleavable 

His6 tag named PchG-throm-His6 (Table 4-1).  PchG-throm-His6 was overproduced in 

E. coli cells in an identical manner to PchG-His6 and PchG proteins (Table 4-2).  The 

41.4 kDa PchG-throm-His6 protein was purified with one step on a nickel affinity 

column to yield 22 mg/L of culture and could be concentrated above 10 mg/ml (Table 

4-4A). 

Buffer components for PchG-throm-His6 were varied to obtain monodispersed 

protein as monitored by DLS and gel filtration (Table 4-5F).  No condition provided 

monodispersed protein, even with the addition of NADPH, a coenzyme.  However, 

crystallization experiments were conducted on PchG-throm-His6 in 50 mM Tris-HCl, 

pH 8 and 100 mM NaCl. 

Initial crystallization experiments of PchG-throm-His6 were unsuccessful and 

no crystals formed in any of the crystallization conditions (Table 4-6D).  Therefore, 

the histidine tag was cleaved off of the PchG-throm-His6 protein to produce PchG-

throm to try to optimize protein solubility. 
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PchG-throm 

Thrombin cleavage in solution resulted in aggregated protein.  Thrombin was 

added to PchG-throm-His6 bound to the nickel affinity column and allowed to 

incubate for 24 hours.  The cleaved PchG-throm (38.5 kDa) and the thrombin were 

eluted from the column (Table 4-4C).  Further purification of PchG-throm from 

thrombin was complicated since both proteins are ~38 kDa (Table 4-4A).  However, 

PchG-throm further purified by a benzamidine column to selectively bind thrombin 

was subjected to buffer optimization. 

PchG-throm solubility and monodispersity were monitored by DLS and gel 

filtration using a wide variety of buffer conditions (Table 4-5F).  None of the buffer 

systems produced monodispersed protein similar as was the case with PchG-throm-

His6.  

Crystallization experiments were conducted on protein in the buffer that 

produced the least heterogeneity or polydispersity (50 mM Tris-HCl, pH 9, 200 mM 

NaCl, 15% glycerol, 1 mM MgCl2, and 1 mM BOG) (Table 4-6D).  However, no 

crystals were produced.  Therefore, PchG was recloned to add an N-terminal signal 

sequence for periplasmic delivery for easier purification of the non-histidine tagged 

protein. 

 

ss-PchG 

The pchG gene was cloned from P. aeruginosa genomic DNA and ligated into 

the pET26b vector for periplasmic expression of the 42.4 kDa ss-PchG (Table 4-1).  
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However, over-production of the ss-PchG protein in LB or Terrific broth with a range 

of temperatures and induction concentrations had limited success (Table 4-3).  The 

condition that yielded the best over-production was growth in Terrific broth at 37 oC 

for 12 hours after 1 mM IPTG induction.  However, a large-scale preparation with 

purification by anion exchange did not yield any ss-PchG.  Therefore, PchG was re-

cloned again to create a fusion protein with inducible self-cleaving activity. 

 

PchG-Intein 

The Impact (Intein Mediated Purification with an Affinity Chitin-binding Tag) 

System (New England Biolabs) fuses the protein of interest to a protein containing 

self-cleaving activity.  The fusion protein is purified on a chitin affinity column 

followed by subsequent auto-cleavage and purification of the two halves of the fusion 

protein.  Because PchG has shown low solubility and problems with purity when in 

the native form without an affinity tag, the Impact system was a good option.  The 

pchG gene was amplified from P. aeruginosa genomic DNA and ligation into the 

pTYB1 plasmid was attempted (Table 4-1).  However, one of the restriction enzymes 

used for digestion (SapI) was not effective at cleaving the DNA.  Therefore, the PCR 

primer was redesigned with a XhoI site.  This new restriction site did improve 

cleavage of the DNA but no pchG-Intein plasmid was created.  After the many 

attempts to produce sufficient quantity of PchG with the necessary quality required 

for structural biology experiments, we decided to work on a functional homologue 
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from a different species.  Therefore, the production of the homologue Irp3, an 

NADPH-dependent reductase, in Y. enterocolitica, was next undertaken.  

 

Irp3 

The irp3 gene was amplified from Y. enterocolitica genomic DNA and ligated 

into the pET29b vector to yield Irp3 with a C-terminal His6 tag (Table 4-1).  Over-

production of Irp3 was similar to PchG and yielded a 41.8 kDa protein (Table 4-2).  

Irp3 was purified in two steps with nickel affinity and gel filtration chromatography 

yielding 24 mg of Irp3 per liter of culture (Table 4-4C).  Irp3 eluted from the gel 

filtration column primarily as a ~70 kDa protein suggesting Irp3 exists as a dimer.  

The protein was concentrated to 19 mg/ml.   

Variation of the buffering components yielded monodispersed Irp3 in 25 mM 

Tris-HCl, pH 8, 200 mM NaCl, and 2 mM DTT (Table 4-5G).  Therefore, 

crystallization experiments were conducted in this buffer. 

Initial crystallization trials yielded nicely formed, single crystals in several 

conditions (Table 4-6D).  Optimization of crystal growth was achieved by varying the 

crystallization conditions (Table 4-7).  The conditions that provided diffraction 

quality crystals were: PEG 8K, 10K, or 20K and MES, pH 6.5; 14 – 37% (w/v) PEG 

3350, pH 7.3 – 8.5, and 0.11 – 0.25 M of a variety of organic salts (magnesium 

formate, ammonium citrate, sodium tartrate, ammonium phosphate, and lithium 

sulfate) (Table 4-12 and Figure 4-5 A-H). 
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Table 4-12: Irp3 Optimal Crystallization Conditions  
Precipitate Salt Buffer (0.1 M) 
9 – 12% (w/v) PEG 8,000 None MES, pH 6.5 
7 – 10% (w/v) PEG 10,000 None MES, pH 6.5 
7 – 10% (w/v) PEG 20,000 None MES, pH 6.5 
14 – 15 % (w/v) PEG 3350 0.11 – 0.12 M magnesium formate Tris-HCl, pH 8 
30 – 33 % (w/v) PEG 3350 0.25 M ammonium citrate HEPES, pH 7.3 
32 – 35 % (w/v) PEG 3350 0.125 M sodium tartrate Tris-HCl, pH 8.5 
34 – 37 % (w/v) PEG 3350 0.125 M ammonium phosphate HEPES, pH 7 
28 – 31 % (w/v) PEG 3350 0.2 M lithium sulfate HEPES, pH 7.5 
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A. B. C. D.

E. F. G. H.

I. J. K. L.

Figure 4-5: Irp3 protein crystals grown with (A) PEG 8000, (B) PEG 10,000, 
and (C) PEG 20,000 as the precipitant. Irp3 protein crystals grown with PEG 
3350 and (D) magnesium formate, (E) ammonium citrate, (F) sodium tartrate, 
(G) ammonium phosphate, and (H) lithium sulfate as the precipitant.  Irp3 Se-
Met crystals grown in PEG 3350 with (I) magnesium formate, (J, K) 
ammonium citrate, and (L) sodium tartrate as the salt.  Native diffraction data 
were collected on crystals grown in conditions identical to (H) while Irp3 Se-
Met diffraction data was collected on crystals grown in conditions identical to 
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Crystals grown in high molecular weight PEG (PEG 8,000, PEG 10,000, or PEG 

20,000) did not diffract well with the highest resolution at ~6 Å.  However, Irp3 

crystals grown in PEG 3350 with a variety of organic salts diffracted to ~2 – 2.5 Å.  

Therefore, x-ray diffraction data were collected on an Irp3 crystal grown with the salt 

lithium sulfate, which diffracted to 2.25 Å (Figure 4-6).  The space group was P222 

with unit lengths of a = 83.45 Å, b = 92.54 Å, and c = 180.24 Å (Table 4-9).  This 

diffraction data set was used as the native data set for phasing. 

Irp3 phasing was initially attempted using molecular replacement with three 

potential model proteins obtained from a Blast search; biliverdin reductase (Protein 

Data Bank accession number 1LC0, 20.5% identity), human neutrophil gelatinase-

associated lipocalin (NGAL) (Protein Data Bank accession number 1L6M, 16.1 % 

identity), and an oxidoreductase from Vibrio cholerae (Protein Data Bank accession 

number 1XEA, 19.8 % identity).  Biliverdin reductase is a heme protein (Irp3 is not a 

heme protein) and therefore, was eliminated as a model protein.  MR was performed 

using AutoMolRep and Phaser programs with NGAL and the oxidoreductase as 

model proteins.  No clear rotation or translation peaks were detected indicating that 

the two proteins are not good model proteins for Irp3.  The two model proteins are 

not structural homologues of each other and are likely not structural homologues to 

Irp3.   

Irp3 phasing using multi-wavelength anomalous dispersion (MAD) was 

attempted next.  To use MAD for protein phasing, the crystal needs to incorporate a 
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Figure 4-6: Irp3 crystal diffraction image.  Irp3 crystals were grown 
with PEG 3350 and lithium sulfate as the precipitant and the image was 
collected at the Protein Structure Laboratory at the University of 
Kansas (www.psl.ku.edu) using an RaxisIV image plate detector 
mounted on a Rigaku RUH3R rotating anode.  The native data was 
limited to > 2.25 Å during processing.  
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heavy metal with an anomalous signal.  The most common way of performing MAD 

phasing is with protein that has incorporated a selenomethionine in the place of 

methionine.  To do this, Irp3 protein was overproduced in minimal media containing 

selenomethionine and no methionine to produce Irp3 Se-Met (Table 4-2).  Irp3 Se-

Met was purified in a manner similar to that for native Irp3 with the addition of βME 

to all of the purification buffers (Table 4-4C).  Irp3 Se-Met protein was sent to the 

Mass Spectrometry Lab for mass spectrometry analysis.  The results showed a 180 – 

348 Da difference between the native Irp3 and Irp3 Se-Met depending on the batch of 

Se-Met Irp3 overproduced.  This difference indicates 4 – 7 selenium atoms were 

incorporated into the protein.  Irp3 contains 5-6 methionine residues depending on 

whether the initial methionine is included in the protein.   Irp3 Se-Met protein 

crystallized under similar conditions as the native Irp3 (Figure 4-5 I-L) and the 

crystals were sent to the Center for Advanced Microstructures and Devices (CAMD) 

synchrotron at Louisiana State University for data collection.  Irp3 Se-Met crystals 

belong to the space group P222.  However, the a unit cell length was 41.246 Å 

instead of the 83.45 Å seen in the native Irp3.  Phases from the Irp3 Se-Met 

diffraction data could not be extracted because no anomalous signal was detected in 

the data.  Therefore, phasing of Irp3 must be done with MIR.  

Irp3 crystals were soaked with heavy metals for MIR phasing studies.  A wide 

variety of heavy metals were tested to determine if the crystal lattice of the Irp3 

crystals changed making the crystals non-isomorphous and thus not suitable for MIR. 

All of the heavy metals listed in Table 4-10 did not crack or perturb the Irp3 crystals 
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as viewed through the microscope.  Diffraction data collected from soaked Irp3 

crystals could not be processed and scaled.  We hypothesize this is due to 

cryoprotectant soaking for preparing the crystals for data collection (Table 4-13).  Co-

crystallization of Irp3 protein with heavy metals before crystallization and diffraction 

collection resulted in similar problems.  The cryoprotectant has now been optimized 

and heavy metal diffraction data will be collected. 

 

Conclusions 

 

Great strides have been made towards the structure determination of four 

siderophore biosynthetic enzymes (Table 4-14).  PvdA has been purified and initial 

crystals have been formed.  However, more work is needed to optimize the crystal 

conditions to produce diffraction quality crystals.  PvdF protein without a histidine 

tag has been purified and forms plate crystals that are very close to diffraction quality.  

The synthesis of hydroxyornithine, the substrate for PvdF, may change the 

morphology of the crystals to three-dimensional crystals suitable for diffraction.  Co-

crystallization of PvdF with hydroxyornithine is the next step in crystallization 

experiments and will be undertaken after hydroxyornithine can be produced in 

sufficient quantities. 

Kinetic analyses of PvdF will also be undertaken.  However, the PvdF activity 

assay is a very complicated, coupled assay with PvdA.  Detection of PvdF activity 

 



 
 

175 

Table 4-13: Irp3 heavy metal diffraction collection for MIR phasing 

Heavy Metal Reagent Metal 
Method of 

incorporation 
Resolution 

(Å) 
Rsym* 

(5 - 100 Å) Problem   
Platinum Potassium Iodide Platinum soak 3 0.146 Rsym was too high 

PCMB, sodium salt Mercury co-
crystallization 

3.2 0.178 Rsym was too high 

Potassium 
Hexchloroosmate (IV) 

Osmium soak 2.9 0.6 Rsym was too high 

Potassium 
Hexanitroiridium (III) 

Iridium soak 3.5 n.a. problems with cryostream 

Dysprosium (III) Chloride 
hexahydrate 

Dysprosium soak 3 - 4 n.a. problems with cryostream 

potassium iodide Iodide soaked in 
cryoprotectant 

3 - 4 0.6 Rsym was too high 

PCMB, sodium salt Mercury co-
crystallization 

3 0.15 - 0.2 Rsym was still high, problems 
with the cryostream 

potassium iodide Iodide soaked in cryo 3 0.17 - 0.4 Rsym was high, problems 
with the cryostream 

* = useable data has Rsym < 0.10. 
PCMB = p-Chloromercuribenzoic Acid 
n.a. = not applicable 
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Table 4-14:  Current progress made on siderophore biosynthetic proteins 

Protein Clone name C
lo

ne
d 

O
ve

rp
ro

du
ce

d 

Pu
ri

fi
ed

 

B
uf

fe
r 

O
pt

im
iz

ed
 

C
ry

st
al

liz
ed

 

D
if

fr
ac

tio
n 

qu
al

ity
 c

ry
st

al
s 

D
at

a 
co

lle
ct

io
n 

Ph
as

in
g 

St
ru

ct
ur

e 

K
in

et
ic

s 

PvdA                       
 His6-PvdA X X X X /     X 
PvdF            
 PvdF-throm-His6 X X X X X      
 PvdF-throm X X X X X      
 PvdF X X X X X /    / 
PchG            
 PchG-His6 X X X        
 PchG  X X         
 PchG-throm-His6 X X X        
 PchG-throm  X X X        
 ss-PchG X          
 PchG-Intein           
Irp3            
  Irp3-His6   X X X X X X X /     
X = completed           

/ = in progress           
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involves the conversion of the formyl-hydroxyornthine, produced by PvdF, to 

hydroxyornithine with an acid hydrolysis step that requires autoclaving.  The assay 

protocol is not conducive to in-depth kinetic analysis.  Production of large quantities 

of the PvdF substrate, hydroxyornithine, would simplify the assay by not requiring 

PvdA.  The assay could be further simplified by monitoring the decrease in the 

amount of substrate, thus making acid hydrolysis unnecessary.  However, the 

synthesis of hydroxyornithine, while still underway, is proving more difficult than 

anticipated. 

PchG involved in pyochelin biosynthesis in P. aeruginosa was not obtained 

with sufficient purity and/or at a concentration high enough for protein crystallization 

in any of the clones.  Therefore, we switched to the homologue, Irp3, in Y. 

enterocolitica.  Irp3 was purified and crystallized very easily.  A full, native x-ray 

diffraction data set has been collected and phasing experiments are underway.  Heavy 

metal soaks for multiple isomorphous replacement (MIR) and single isomorphous 

replacement with anomalous scattering (SIRAS) are planned. 

 The three-dimensional structures of enzymes involved in the biosynthesis of 

siderophores are important for the rational design of inhibitors.  The work provided in 

this chapter is a first step towards structure determination and ultimately the design of 

novel antibiotics targeting this very important pathway.  
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Chapter 5 

 

Conclusion 

  

Pathogenic bacteria require iron uptake systems for infection and colonization 

of the host organism.  One of the most effective iron acquisition systems is the 

production of siderophores.  Therefore, inhibition of the production, secretion, or 

import of siderophores is an attractive antimicrobial target for rational drug design.  

Several inhibitors of siderophore biosynthesis targets have been described including 

enzymes for the production of salicylate and dihyroxybenzoate, required for aryl-

capped siderophores such as pyochelin and yersiniabactin, and enzymes containing 

aryl adenylation domains (1-6).  However, many siderophores do not use salicylate 

and dihydroxybenzoate and thus are not inhibited by these compounds.  The work 

described in this study is concerned with enzymes involved in pyoverdin and 

pyochelin production in Pseudomonas aeruginosa and Yersiniabactin production in 

Yersinia enterocolitica.  However, the work does not relate to the production or 

adenylation of aryl compounds making these enzymes attractive targets for new 

antimicrobials.  

Pyoverdin contains two derivitized ornithine groups that are required for 

effective chelation of the iron.  The ornithine amino acid is derivitized by two 

enzymes, PvdA and PvdF.  A detailed biochemical characterization of PvdA has led 

to insight into a new reaction mechanism for flavoproteins.  The hydroxylated 
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product formation assay has been miniaturized for use with 96 well plates and will be 

ideal for high throughput screening of potential inhibitors.  For the rational design of 

new inhibitors, the structure of PvdA is needed.  Crystallization studies are underway 

to determine the high-resolution structure of the enzyme for the rational design of 

inhibitors but no diffraction quality crystals have yet been obtained.  However, using 

some initial bioinformatics data, some structural inferences can be made for PvdA. 

Several putative functional homologues of PvdA have been identified, but 

only three have been characterized in detail and two homologues have had their 

structure determined (Figure 5-1).  IucD, a lysine hydroxylase from E. coli, has 28% 

sequence identity (47% similarity) to PvdA, p-hydroxybenzoate hydroxylase (PHBH) 

from P. fluorescens has 21% sequence identity (34% similarity), and flavin-

containing monooxygenase (FMO) has 19% sequence identity (37% similarity) to 

PvdA as aligned with the ALIGN algorithm (Genestream Search; CRBM 

Montepellier, France).  The sequence similarities are scattered throughout the proteins 

and are not concentrated to areas of ligand binding.  The sequence similarity of 

PHBH to FMO is 38% and the x-ray crystal structures of the two enzymes (Protein 

Data Bank accession numbers 1PBE and 1VQW respectively) differ such that 

multiple sequence alignments with PvdA are not informative.  Therefore, a multiple 

sequence alignment of PvdA and IucD with PHBH, which shares the greatest 

biochemical characteristics to PvdA, was generated by ClustalW (7).   
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Figure 5-1: Proteins containing sequence homology to PvdA, (A) p-
hydroxybenzoate hydroxylase (PHBH) from Pseudomonas fluorescens 
(PDB number 1PBE) and (B) flavin monooxygenase (FMO) from 
Schizosaccharomyces pombe (PDB number 1VQW).  The domains are 
colored according to the PHBH structure with the N-terminal FAD 
binding domain (residues 1 – 174) in blue, the central substrate-binding 
domain (residues 175 – 295) in purple, and the C-terminal oligomerization 
domain (residues 296 – 394) in red with the corresponding domains in 
FMO labeled similarly.  FAD in each structure is yellow with the 
substrates as green.  An active site overlay of PHBH and FMO (C) shows 
the similarity between the two structures.  The major divergence in the 
proteins is the position of the substrate and the surrounding loops.  PHBH 
is labeled with light blue with a light yellow FAD molecule and the 
substrate, p-hydroxybenzoate, in light green.  FMO is dark purple with 
FAD in dark yellow and the substrate, 1-methyl-1,3-dihydro-2h-
imidazole-2-thione (methimazole), in dark green. 
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A significant decrease in the apparent sequence identity was observed 

compared to the pair-wise method calculated by Genestream.  Therefore, starting with 

a multiple sequence alignment produced with the ALIGN algorithm, the previously 

determined substrate and cofactor binding information for PHBH and the hypothetical 

binding motifs for IucD, we further optimized the alignment by hand.  This 

information included six binding motifs.  The first binding motif was the flavin-

binding motif, GXGXXG at the N-terminus of PHBH (8).  The second motif 

incorporated was the flavin-binding motif at the N-terminus of IucD.  This motif was 

initially hypothesized with the last conserved glycine as a proline (GXGXXP) (9), but 

was later modified to shift two amino acids toward the C-terminus to become 

GXGXXN (res. 11 – 16) (10).  Third, in PHBH, the amino acids involved in NADPH 

binding have been defined by mutagenesis experiments (Arg33, Tyr38, Arg42, 

Arg44, Phe161, His162, Arg166, and Arg269) and are incorporated into the sequence 

alignment (11-16).  A generic hydroxylase NADPH binding motif called the DG 

motif (residues 159-166) has been suggested (15, 17), and a model of interdomain 

NADPH binding has been developed (13).  The fourth incorporated motif was a 

nucleotide-binding motif (GXGXXG) hypothesized for NADPH in IucD (residues 

188 – 193) (18).  The fifth binding motif incorporated into the sequence alignment 

was the amino acids involved in substrate-binding from the structure of PHBH (19).  

Finally, the sixth motif incorporated was the substrate-binding motif hypothesized for 

IucD (DXXXFATGYXXXXP, residues 224 – 237) (18).  We reasoned these binding 
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motifs would be areas of high conservation.  This new alignment returned the 

sequence similarity to percentages similar to the Genestream calculation for the pair-

wise alignments (26% identity, 46% similarity for PvdA/IucD and 18% identity, 34% 

similarity for PvdA/PHBH) (Figure 5-2). 

An inspection of the alignment for PvdA shows the FAD binding motif at the 

N-terminus, with the GXGXXG of PHBH aligned with the GXGXXN in IucD and 

PvdA (Figure 5-2).  This sequence (residues 17 – 22 in PvdA) corresponds to the N-

terminus of an α-helix in the Rossman fold of PHBH as would be canonically 

expected for FAD binding, and is indeed involved in FAD binding in PHBH (19).  

The putative NADPH binding motif for IucD and PvdA, GXGXXA (PvdA residues 

215-219) aligns with a modified sequence in PHBH, PXGXXG.  While this 

alignment is initially promising, this putative binding motif is part of a β-strand in the 

predominantly β-conformation substrate-binding domain of PHBH, and is only 

solvent exposed at the extreme N-terminus (Pro182).  No structures of PHBH have 

been determined with NADPH bound, but an interdomain model for binding has been 

proposed (13) based on extensive mutagenesis experiments (11-17).  These amino 

acids are on the exterior of the protein, and NADPH binding in this region would be 

in close proximity to FAD for electron transfer.  In this new alignment, many of these 

amino acids are conserved, indicating that a similar external interdomain binding is a 

more likely binding mode for NADPH in PvdA (and IucD).  Finally, a substrate-

binding motif (DXXXFATGYXXXXP, residues 224 – 237) for IucD with a  
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     ||||→→→→ FAD binding 

PvdA   MTQATATAVVHDLIGVGFGPSNIALAIALQERAQAQGALEVLFLDKQ-GDYRWHGNTLVSQ-SEL  63 

IucD         MKKSVDFIGVGTGPFNLSIA-ALSHQIE---ELDCLFFDEHPHFSWHPGM-LVPD-CHM  53 

PHBH           MKTQVAIIGAGPSGLLLGQLLHKAGI-----DNVILERQTPDYVL-GR--I-RAGVL  48  

                   eeee  hhhhhhhhhhhhhhhh      eeeee  hhhhhhhhh       ee 

 

PvdA   QISFLKDLVSLRNPTSPYSFVNYLHKHDRLVDFINLGTFYPCRMEFNDYLRWVASHFQEQSRYGE 128 

IucD   QTVFLKDLVSAVAPTNPYSFVNYLVKHKKFYRFLTSRLRTVSREEFSDYLRWAAEDMNNL-YFSH 117 

PHBH   E-QGMVDLLREAG-------VDRRMARDGLVHE-------GVEIAFAGQRRRIDLKRLSGGKT-V  97 

       e hhhhhhhhhhh         hhhhhhheee        eeeeee  eeeeeehhhh      e 

 

PvdA   EVLRIEPMLSAGQVEALRVISRNADGE--ELVRTT------RALVVSPGGTPRIPQVFRALKG-D 184  

IucD   TV---ENID-FDKKRRLFLVQ-TSQGQ--YFARNI------CLGTGKQ---PYLPPCVKHMTQ-S 165 

PHBH   TVY-GQTEVTRDLMEAREASGATTVYQAAEVRLHDLQGERPYVTFERDGERLRLDCDYIA--GCD 159  

       ee   hhhhhhhhhhhhhhhh eeeee  eeeeee      eeeeeeeeeeeee  eeee       

  

                 FAD binding ←←←←||||→→→→ substrate binding  

PvdA   GRVFHH-S-QYLEHMAKQPCSSGKPMKIAIIGGGQSAAEAFID-LNDSY-PSVQADMILRASALK 245 

IucD   C--FHA-S-E---SNLRRPDLSG--LRITVVGGGQSGADLFLNALRGEWGEAAEINWVSRRNNFN 221 

PHBH   G--FHGISRQSIP-AERL------KVFERVYPFGWLGLLAD------TP-P-V--------S--H 197 

                               eeeeeeeeeeeeeeeee 

  

PvdA   PADDSPFVNEVFAP-KFTDLIYSREHAERERLLREYHNTN----YS--VVDTDLIERIYG-VFYR 302 

IucD   ALDEAAFADDYFTP-EYISGFSGLEEDIRHQLLDEQKMTS----DG--ITADSLLTIYRE-LYHR 278 

PHBH   ---ELIYAN---HPRGF--ALCSQRSATRSRYYVQVPLTEKVEDWSDERFWTELKARLPAEVAEK 254 

            eeee          eeeeeeee eeeeeeee          hhhhhhhhhhh  hhhhhh 

                   

                                      substrate binding ←←←←||||→→→→ oligomerization 

PvdA   QKV----S-GIPRHAFRCMTTVERATATAQ-GIELALRDA-GSGELSVETYDAVILATGYERQLH 360 

IucD   FEVLRKPR-NIRLLPSRSVTTLES---SGP-GWKLLMEHHLDQGRESLES-DVVIFATGYRSALP 337 

PHBH   L-VTG-PSLEKSIAPLRSFVVEPMQHGR----LFLAG-DA-AHIVPPTGA-KGLNLAASDVSTLY 310 

       h       eeeeeeeeeeeeeee         eeee      eeee      hhhhhhhhhhhhh      

 

PvdA   RQLLEPLAEYLGDHE-----IGRDYRLQTDER-CKVAIYAQGFSQASHGLSD-TLLSVLPVRAEE 418 

IucD   -QILPSLMPLITMHDKNTFKVRDDFTLEWSGP-KENNIFVVNASMQTHGIAEPQLSLMAWRSARI 400 

PHBH   RLLLKAYRE--GRGE-----LLEYRSAICLRRIWKAERFSWWMTSVLHRFPD-TD--AFSQRIQQ 365 

       hhhhhhhhh               hhhhhhhhhhhhhhhhhhhhhhhh         hhhhhhhh                     

                     

PvdA   ISGSLYQHLKPGTAARALHEHALAS      443 

IucD   LNRVMGRDLFDLSMPPALIQWRSGT      425 

PHBH   TELEYYLGSEAGLATIAENYVGLPYEEIE  394 

       hhhhhhhhhhhhhhhhhhhhhh 

Figure 5-2: Structure and binding motif based sequence alignment of PvdA with 
IucD (E. coli) and PHBH (P. fluorescens, PDB accession code: 1PBE).  The domain 
structure of PHBH is noted above the sequence.  The secondary structure elements of 
PHBH are indicated below the sequence: β-strand (e) or α-helix (h).  The coenzyme 
and substrate binding motifs are labeled: FAD (highlighted in cyan, PHBH and IucD), 
canonical NADPH (highlighted in grey, IucD), and substrate (highlighted in red, 
IucD).  Amino acids in PHBH involved in NADPH binding as determined by 
mutational analysis are highlighted in pink.  The bold lettering highlighted in pink 
represents the DG sequence of the hydroxylase NADPH binding motif.  Amino acids 
involved in substrate binding in the PHBH structure are highlighted in green.  The 
cysteines implicated in PCMB inhibition are highlighted in yellow. 
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corresponding sequence in PvdA (DXXXLATGYXXXXH) has been hypothesized 

(18).  This sequence has little correlation in PHBH with the hand-generated alignment 

(KXXXLAASDXXXXY) and is part of a long α-helix.  Nevertheless, the loop just 

N-terminal to this helix in involved in substrate binding in PHBH (19). 

PHBH has a cysteine near the putative NADPH binding site (Cys158) and 

spectral studies performed on IucD with FAD analogs indicate a cysteine in the FAD 

binding cavity which should be proximal to the NADPH binding site (20).  This 

cysteine residue may be involved in the inhibition observed with mercurial 

compounds.  With our alignment, both PvdA and IucD have cysteine residues that are 

near in sequence to Cys158 in PHBH and could be involved in mercury binding in an 

analogous manner.  The IucD cysteine (Cys160) resides in a very similar position as 

the cysteine in PHBH, which could explain the similarities in inhibition by mercurial 

compounds and restoration by reducing agents.  However, in PvdA, cysteine 202 is 

more distant from the proposed coenzyme binding sites but is still in a putative loop 

region involved in NADPH binding (Figure 5-2).  This loop may be more solvent 

exposed, which could explain the strong inhibition seen upon addition of high 

concentrations of p-chloromercuribenzoate.   

Based on this evidence, we predict PvdA and IucD will be distant structural 

homologues of PHBH, with an N-terminal Rossmann fold FAD binding domain, a 

central substrate-binding domain comprised of β-strands, and a C-terminal 

oligomerization domain. We propose that NADPH binding will be akin to the 

interdomain binding model proposed for PHBH, in contrast to the previously 
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proposed GXGXX(G/A) motif in the substrate binding domain of PvdA and IucD.  

The substrate-binding site is predicted to reside in a cleft between the FAD and 

substrate binding domains, N-terminal to the previously hypothesized consensus 

motif for PvdA and IucD.  However, the differences noted for the catalytic cycle 

argue for structural changes between PvdA and PHBH that may be more structurally 

characteristic of FMO. 

  The second enzyme involved in ornithine derivatization, PvdF shows 

sequence similarity to glycinamide ribonucleotide transformylase (GART) enzymes 

involved in the synthesis of purine residues (21).  The GART protein from 

Escherichia coli shares 57% identity and 72% similarity to PvdF and an alignment 

between the two protein shows conservation of the three residues important in 

catalytic activity as well as the hydrophobic pocket important in cofactor binding 

(21).  The structure of the E. coli GART protein has been solved (PDB accession 

number 1CDE) and contains a central core with a seven-stranded β-sheet surrounded 

by α-helices (Figure 5-3) (22).  Protein crystals of PvdF are close to diffraction 

quality and the structure of PvdF is hypothesized to be very similar to the E. coli 

GART protein.  Generation of the substrate for PvdF, hydroxyornithine, will be an 

essential next step for determining the biochemical characteristics of PvdF, crystal 

optimization for structure determination, and for the design of a high throughput 

assay for inhibitor screening.   
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Figure 5-3: The structure of the PvdF homologue 
glycinamide ribonucleotide transformylase (GART) from 
Escherichia coli (PDB number 1CDE).  (A) The E. coli 
GART protein shares 57% identity and 72% similarity to 
PvdF and consists of one domain (green) and is shown 
with the substrate, glycinamide ribonucleotide, in purple 
and an inhibitor, 5-deaza-5,6,7,8-tetrahydrofolate, in blue. 
(B) The E. coli GART protein rotated 90º around the x-
axis. 
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A second siderophore in P. aeruginosa, pyochelin, is an aryl-capped 

siderophore.  Inhibitors have been designed to the aryl adenylation domain, PchD, 

and the enzymes that convert chorismate into salicylate, PchA and PchB (2-6).  

However, work in this thesis has focused on PchG, an NADPH reductase required for 

the final steps in pyochelin production.  No structures have been determined for 

functional homologues of PchG.  The proteins with the most sequence similarity to 

PchG for which the structures have been determined have very low sequence 

similarity to PchG (< 45% similarity).  These homologues are not structurally or 

functionally related to each other (or to PchG) and are most likely not structurally 

related to PchG either making none of them a good model for PchG.  Solubility issues 

with a variety of different clones have complicated the determination of the PchG 

structure.  Therefore, a functional homologue in Yersinia enterocolitica, Irp3, was 

pursued for structure determination.  Diffraction data for the native Irp3 crystals has 

been collected and solving the phase problem is the last step for structure 

determination.  An enzymatic assay for the NADPH reductase activity has not been 

optimized due to the complex, protein-bound substrate, which is attached to the 

previous protein in the pathway, PchF, thus making high throughput screening 

impossible.  Therefore, designing new microbials to these targets might be more 

successful if based on the structure.  However, an in vitro siderophore reconstitution 

assay using all of the biosynthetic enzymes in the pathway, the substrates, and 
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cofactors has been optimized (23).  Therefore, new inhibitors can be tested for 

effectiveness in blocking the siderophore pathway. 

 Because P. aeruginosa produces two unrelated siderophores, pyochelin and 

pyoverdin, an effective antimicrobial must inhibit both siderophore systems.  The 

work described in this thesis has biochemically characterized the first step in 

ornithine derivitization and devised a high-throughput assay for determining new lead 

compounds for inhibition.  This body of work has also described the reaction 

mechanism of this first step in ornithine modification to provide a broader 

understanding of how flavoproteins catalytically function.  Until now, only two 

hydroxylase enzymes had been mechanistically understood, PHBH and FMO.  PvdA 

has been described as having a third reaction mechanism and adds to our knowledge 

of how enzymes function.  This thesis has also shown preliminary crystallization and 

structure determination of four enzymes involved in the synthesis of three 

siderophores.  These enzymes have high sequence homology to enzymes in similar 

siderophore synthetic pathways.  Therefore, the structures obtained from any of the 

four enzymes will aid in the understanding of siderophore biosynthesis and in the 

development of antimicrobials with a wide range of applications.  Taken together, the 

work discussed in this thesis is a first step toward rationally designing new inhibitors 

to generate a cocktail antimicrobial for use in preventing Pseudomonas and other 

pathogenic bacterial infections.   
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