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Abstract

A fractional Brownian queueing model, that is, a fluid model with an input of a

fractional Brownian motion, was proposed in the 1990s to capture the self-similarity

and long-range dependence observed in Internet traffic. Since then, a Gaussian

queueing model, which is a queueing model with an input of a continuous Gaussian

process, has received much attention.

In this dissertation, a Gaussian queueing model is discussed and the maximum

queue length over a time interval [0, t] is analyzed. Under some mild assumptions, it

is shown that a limit of the maximum queue length suitably normalized is determined

by a suitable function of the asymptotic variance of the Gaussian input. Some

Gaussian queueing models, such as a queue with an input of several independent

fractional Brownian motions and a queue with an input of an integrated Ornstein-

Uhlenbeck process, are discussed as examples. For a fractional Brownian queueing

model, the main results extend some related known results in the literature.

The results on the maximum queue length provide insights for the occurrence

of large excursions, which are also called congestion events, in a queueing process.

In the context of a fractional Brownian queueing model the temporal properties

of congestion events, such as the duration and the inter-congestion event time, are

analyzed. A new method based on a Poisson clumping approximation is proposed to

evaluate these properties. By comparing with simulation results, it is illustrated that

the proposed methodology produces satisfying results for estimating the temporal

properties of congestion events in a fractional Brownian queueing model.
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Chapter 1

Introduction

Traditionally Poisson processes are used to model network traffic. A Poisson queue-

ing model, which has an input of a Poisson process, has been extensively analyzed

in queueing theory and network modeling. Various queueing performance measures

have been studied. However, in the early 1990s researchers with Bellcore observed

the phenomena of self-similarity and long-range dependence in LAN traffic [44],

which roughly means that the traffic “looks” similar under different time scales and

the correlation between packets decays very slowly. The observation is inconsistent

with the assumption of independent increments in Poisson processes. Subsequent

studies [10], [20], [35], [57] showed that the traditional models seem inadequate for

some data networks. The complex features of network traffic, such as self-similarity

and long-range dependence, present challenges for performance analysis and network

modeling.

In this dissertation a first-in-first-out(FIFO) fluid queueing model with an in-

put of a continuous Gaussian process is analyzed. The main focus is on Gaussian

processes which have the properties of self-similarity and long-range dependence.

The objective is to gain a better understanding of the impacts of self-similarity and

long-range dependence on the queueing performance. The structure of this disser-

tation is as follows: In Chapter 1, some preliminaries on stochastic process limit,

Gaussian queueing model and fractional Brownian motions are briefly discussed.

In Chapter 2 and Chapter 3, a fractional Brownian queueing model and a general
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Gaussian queueing model are studied, respectively. The maximum queue length of

a Gaussian queueing model is analyzed and some related results in the literature

are extended. The main results of these two chapters will appear in [18]. In Chap-

ter 4, some temporal properties of congestion events, such as the duration and the

inter-congestion event time, in a fractional Brownian queueing model are analyzed.

Some results of this chapter has been published in [34].

Throughout the disseration the following notation is used. Let Φ(x) denote a

standard normal distribution, Φ̄(x) = 1−Φ(x) the complement of a standard normal

distribution and φ(x) = 1√
2π

e−
x2

2 the density of a standard normal distribution. For

x ≥ 0 the following inequalities hold, see [8, page 242],

1√
2π

x

1 + x2
e−

x2

2 ≤ Φ̄(x) ≤ 1√
2π

x−1e−
x2

2 . (1.1)

Let “
d
=” denote equality in distribution. For a ∈ R, let bac denote the integer part

of a. Suppose f(x) and g(x) are two functions, if limx→∞ f(x)/g(x) = 1, then write

f(x) ∼ g(x).

1.1 Stochastic Process Limit

Applying the terminology in [5], let (Ω,F , P ) be a probability space and (D, D)

be a measurable space, where D is a space of functions x : [0,∞) → R, which are

right-continuous and have left limits, D equipped with Skorokhod topology is the

σ algebra generated by open sets. If X is a measurable mapping from (Ω, F ) to

(D, D), then X is called a D valued random variable. For a real measurable function

f on D, let

E[f(X)] =

∫

Ω

f(X(ω))P (dω).
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Suppose that {Xn} is a sequence of random elements of D, then Xn weakly converges

to a random variable X of D, denoted by Xn ⇒ X, if and only if E[f(Xn)] →
E[f(X)] for all bounded, continuous f on D.

In network modeling a stochastic process limit, to which a sequence of stochastic

processes weakly converge, makes a good approximation for the complex network

traffic and provides insight into system performance [7], [27], [63]. For example, a

Poisson process, after properly normalized, weakly converges to a Brownian motion.

Let {N(t), t ≥ 0} be a Poisson process with parameter λ. For t ≥ 0, define Xn(t) as

Xn(t) =
N(bntc)− λbntc√

nλ
,

where bntc denotes the integer part of nt. It can be verified [5, p 146] that

Xn ⇒ B,

where {B(t), t ≥ 0} is a standard Brownian motion. Intuitively, N(t) can be ap-

proximated by a diffusion process. This diffusion approximation has been used as

a heavy traffic model, e.g., see [7], [49], [27]. Note that in this example the Pois-

son process, which has discontinuous sample path, weakly converges to a Brownian

motion with continuous sample path.

1.2 Fluid Queue with a Gaussian Input

Different from traditional queueing models, in a fluid queueing model, the network

traffic is viewed as a stream of fluid; in other words, the input process has continuous

sample path. The continuity assumption is a convenient and reasonable idealization

for a queueing system where the input and output are of high volumes in an interval

of moderate length, that is, a fluid model is appropriate when the individual items

are numerous in a network traffic flow for a chosen time scale.

9



Consider network modeling, a Gaussian process can be viewed as a stochastic

process limit of aggregated network traffic. Based on the central limit theorem, it is

natural to assume that at each time t the random variable of the input process has a

Gaussian distribution. The Gaussian assumption is reasonable when the backbone

Internet traffic with thousands of simultaneous traffic flows is considered. A diffusion

process, which is driven by a Brownian motion, has been used to model the inputs

to fluid queues for a long time. Many results, such as the overflow probability and

optimal control of resources, have been derived for diffusion models, see [27] and the

references therein.

In [49] Norros proposed a fractional Brownian queueing model, that is, a queueing

model with an input of a fractional Brownian motion, which is a generalization of

a Brownian motion. A fractional Brownian queueing model is a useful model for

analyzing the impact of self-similarity and long-range dependence on the queueing

performance. However there are some generic shortcomings in this model. Firstly,

since the input process is Gaussian, negative increments, which are not meaningful

for a queueing model, can be observed at small time scales. Secondly, the actual

Internet traffic is regulated by TCP/IP protocol, which is a closed-loop congestion

control mechanism. A fractional Brownian queueing model, which is open-loop as

are many queueing models, cannot capture the dynamics of Internet traffic over small

time scales, i.e., less than the typical round trip packet time. Although the model

has some shortcomings, it can be used to approximate other aspects of Internet

traffic under certain circumstances. It has been empirically demonstrated in [20]

that a fractional Brownian queueing model is appropriate for the backbone traffic,

in which millions of independent flows are highly aggregated, traffic control on a

single flow would not dominate the whole traffic and the time scale is larger than

the typical round trip time. In recent network measurements [32], it was observed

that for small time scales, less than a millisecond, the traffic in the Internet backbone

is memoryless or of short memory; while for larger time scales, in milliseconds, the
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long-range dependence characterizes the backbone traffic. From a practical point of

view, see [52], [58], a fractional Brownian queueing model is an approximation of

Internet traffic and can produce meaningful results for queueing performance, such

as inter-congestion event times and congestion durations, which are in a time scale

larger than the typical round trip time.

In practice it has been observed that the Hurst parameter estimated in network

does not remain constant. For this reason, besides a fractional Brownian motion,

other Gaussian processes have been proposed to model network traffic, such as an

aggregation of independent fractional Brownian motions, [15], [46] [55], [59, p 335]

and an integrated Ornstein-Uhlenbeck process [12], [13], [14], [15].

1.3 Fractional Brownian Motion

Some preliminaries on a fractional Brownian motion are discussed in this subsection.

Definition 1.3.1 (Self-similarity). A continuous stochastic process {X(t), t ≥ 0} is

called self-similar with self-similarity parameter H ∈ (0, 1), if the process {X(αt), t ≥
0} and {αHX(t), t ≥ 0} have the same probability law for each α > 0.

Definition 1.3.2 (Wide sense stationarity). A process {X(t), t ≥ 0} is called wide

sense stationary, if it has a constant mean and the autocorrelation function R(s, t) =

E[X(s)X(t)], for 0 ≤ s ≤ t, depends only on the difference t− s.

Definition 1.3.3 (Long-range dependence). Let {X(k), k = 1, 2, ...} be a wide sense

stationary process with mean m and autocorrelation function r. The process is long-

range dependent if as k →∞,

r(k) ∼ k2H−2L(k)
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where H ∈ (1/2, 1) and L is a slowly varying function, that is, for x > 0

lim
t→∞

L(tx)

L(t)
= 1.

The definition of a standard fractional Brownian motion is cited from [17].

Definition 1.3.4 (Fractional Brownian motion). A standard fractional Brownian

motion {BH(t), t ≥ 0} with a Hurst parameter H ∈ (0, 1) is a real-valued Gaussian

process such that for s, t ≥ 0,

E[BH(t)] = 0,

E
[
BH(s)BH(t)

]
=

1

2

(
s2H + t2H − |s− t|2H

)
. (1.2)

A fractional Brownian motion is a generalization of Brownian motions, since for

H = 1/2, {BH(t), t ≥ 0} reduces to a standard Brownian motion.

Definition 1.3.5 (Fractional Gaussian noise). A discrete time fractional Gaussian

noise, {Y (k), k = 1, 2, ...}, is the increment process of a fractional Brownian motion,

that is,

Y (k) = BH(k)−BH(k − 1), (1.3)

where {BH(t), t ≥ 0} is a standard fractional Brownian motion with H ∈ (0, 1).

A fractional Brownian motion is a self-similar Gaussian process with stationary

increments. For H ∈ (1/2, 1), the process has long-range dependence. Some prop-

erties of a fractional Brownian motion and a fractional Gaussian noise are given as

follows:

Proposition 1.3.1. Let {BH(t), t ∈ R} be a standard fractional Brownian motion,

then
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1. For each t ∈ R, BH(t) is a standard normal random variable with mean 0 and

variance |t|2H .

2. {BH(t), t ∈ R} has stationary increments, i.e., for ∀s, t > 0, BH(t + s) −
BH(t)

d
= BH(s).

3. {BH(t), t ∈ R} has continuous sample path, but nowhere differentiable. In

fact,

lim
s→t

∣∣BH(t)−BH(s)
∣∣

t− s
= ∞ a.s.

4. The sample paths of {BH(t), t ∈ R} are of unbounded variation, that is,

lim
n→∞

n−1∑
i=1

∣∣BH(tni+1)−BH(tni )
∣∣ = ∞ a.s.

where 0 ≤ tn1 ≤ tn2 ≤ ... ≤ tnn ≤ 1. If H ∈ (1/2, 1), the quadratic variation is

0, that is,

lim
n→∞

n−1∑
i=1

∣∣BH(tni+1)−BH(tni )
∣∣2 = 0 a.s.

For H ∈ (0, 1/2), the quadratic variation is infinite.

5. {BH(t), t ∈ R} is a self-similar process with parameter H, that is, the process

{BH(αt), t ≥ 0} and {αHBH(t), t ≥ 0} have the same probability law for all

α > 0.

6. The autocorrelation function r(k) = E[Y (1)Y (k)] of a fractional Gaussian

noise behaves as a power function for large k, that is, r(k) ∼ H(2H−1)k2H−2

as k →∞.

For H ∈ (1/2, 1), {BH(t), t ≥ 0} has the property of long-range dependence in

the sense that
∑∞

k=1 r(k) = ∞ where r(k) is the autocorrelation function of the
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corresponding fractional Gaussian noise {Y (k), k = 1, 2, ...}. Figure 1.1 shows sam-

ple paths of fractional Brownian motions and the corresponding fractional Gaussian

noises for different Hurst parameters. It can be observed that the sample paths

of a fractional Brownian motion with a large Hurst parameter, e.g, H = 0.8, are

smoothier than those with a small Hurst parameter H = 0.2. The sample pahts are

generated with the method proposed in [11], also see [4]. Many other methods for

simulating fractional Brownian motions can be found in the literature, for example,

a method based on fast Fourier transform [56], an approximation method based on

aggregation of independent ON/OFF sources with heavy tailed ON and OFF peri-

ods [64], and a method based on random midpoint displacement method [42], [53],

etc.

The distribution of the maximum of a fractional Brownian motion over an interval

[0, t], i.e., sup0≤s≤t B
H(s), is unknown in general, except for the case H = 1/2. An

upper and lower bounds of E[sup0≤s≤t B
H(s)] for H ∈ [1/2, 1) are derived in [54],

which is cited as Theorem 1.3.1. Let B(µ, η) denote a beta function, that is,

B(µ, η) =

∫ 1

0

xµ−1(1− x)η−1dx =
Γ(µ)Γ(η)

Γ(µ + η)
, (1.4)

where Γ(·) is a gamma function. Let c1 be a constant such that

c1 =

[
2H(2H − 1)(2− 2H)B

(
H − 1

2
, 2− 2H

)]− 1
2

. (1.5)

Theorem 1.3.1. For any p > 0 and H ∈ (1/2, 1),

γp,HtpH ≤ E

[(
sup

0≤s≤t
BH(s)

)p]
≤ (8H)pcp

1Cpt
pH , (1.6)

where γp,H is a constant depending on p and H, c1 is defined in (1.5) and Cp is the

constant in the Burkholder-Davis-Gundy inequality.

Proof. The proof can be found in [54].
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This section is concluded with a Girsanov formula for a fractional Brownian mo-

tion. The Girsanov formula for a Brownian motion is widely used in mathematical

finance, control theory and telecommunications. A similar Girsanov formula is also

obtained for a fractional Brownian motion. The following results are cited from [51].

Define a process {Mt, t ≥ 0} as

Mt = cM

∫ t

0

s
1
2
−H(t− s)

1
2
−HdBH(s),

where cM =
[
H(2H − 1)B

(
3
2
−H,H − 1

2

)]−1
, and B(·, ·) is a beta function defined

in (1.4). It can be verified that the process {Mt, t ≥ 0} is a centered Gaussian

process, a martingale, and has independent increments. Its variance function is

given by

E[M2
t ] = 2c2

1t
2−2H ,

where c1 is defined in (1.5). Let

Gt(M) = exp
(
Mt − c2

1t
2−2H

)
,

then Gt(M) is a martingale with expectation 1. For a ∈ R, let Pa be a probability

measure on (Ω,Ft, P ) defined as

dPa

dP
= Gt (aM) .

Theorem 1.3.2. With respect to the measure Pa, the process BH is a fractional

Brownian motion with drift a, i.e., the distribution of BH with respect to Pa is the

same as the distribution of BH(t) + at with respect to P = P0.

Proof. The proof can be found in [51].
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Chapter 2

Fractional Brownian Queueing Model

In this chapter a fractional Brownian queueing model is introduced, some results on

this model in the literature are reviewed, and some new results on the maximum

queue length are presented. The structure of this chapter is as follows: In Section 2.1

some preliminaries on a fractional Brownian queueing model are given. In Section

2.2 the maximum queue length over a time interval [0, t] is discussed, some results in

the literature on this maximum random variable are reviewed, and the main results

of this chapter are given. Section 2.3 is devoted to the proof of the main result,

Theorem 2.2.4.

2.1 Preliminary

A fluid queueing model with a fractional Brownian motion as input was proposed

by Norros [49], Figure 4.2. A fractional Brownian motion {BH(t), t ≥ 0}, which is a

self-similar Gaussian process with stationary increments, is used to capture the self-

similarity and the long-range dependence in the input traffic. The queueing model

is a FIFO queue with a fixed service rate. Let A(t) = mt+σBH(t) be the cumulated

arrivals up to time t, where m is the mean input rate, σ is a real coefficient, and

BH(t) is a standard fractional Brownian motion with a Hurst parameter H ∈ (0, 1).

Let µ denote the service rate and c = µ −m be the surplus rate. For the stability

of the queue, it is assumed that c > 0.

17



A(t) 

O 
µ 

Figure 2.1: A queue with a fractional Brownian input, A(t) = mt + σBH(t)

2.1.1 Queue Length Process

Let Q = {Q(t), t ≥ 0} denote the queue length process. In the literature, the process

Q is also called a workload process, a storage process or a buffer content process.

The next proposition gives an expression for Q(t).

Proposition 2.1.1. Let Q(0) ≥ 0 denote the initial queue length. Then for t ≥ 0,

the queue length Q(t) can be expressed as

Q(t) = σBH(t)− ct + max

{
sup

0≤s≤t

(−σBH(s) + cs
)
, Q(0)

}
. (2.1)

In general, Q(t) can be written in term of Q(s), 0 ≤ s ≤ t, as

Q(t) = σBH(t)− ct + max

{
sup

s≤r≤t

(−σBH(r) + cr
)
, Q(s)− (

σBH(s)− cs
)}

.

Proof. The first part can be verified by the Skorokhod representation, which can be

found in [36, page 210], see also [27, page 18-20], [38]. For the second part, since

sup
0≤r≤t

(−σBH(r) + cr
)

= max

{
sup

0≤r≤s

(−σBH(r) + cr
)
, sup
s≤r≤t

(−σBH(r) + cr
)}

,

it is obtained from (2.1) that

Q(t) = σBH(t)− ct− (
σBH(s)− cs

)
+

(
σBH(s)− cs

)
+

max

{
max

(
sup

0≤r≤s

(−σBH(r) + cr
)
, Q(0)

)
, sup
s≤r≤t

(−σBH(r) + cr
)}

.
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Following (2.2), Q(s) = σBH(s)− cs + max
{
sup0≤r≤s

(−σBH(r) + cr
)
, Q(0)

}
, so

Q(t) = σBH(t)− ct− (σBH(s)− cs)

+ max

{
Q(s), σBH(s)− cs + sup

s≤r≤t

(−σBH(r) + cr
)}

= σBH(t)− ct + max

{
Q(s)− (σBH(s)− cs), sup

s≤r≤t

(−σBH(r) + cr
)}

.

Remark 2.1.1. Proposition 2.1.1 illustrates that for s ≤ t, the value of Q(t) is

determined by Q(s) and {BH(r), r ∈ [s, t]}. From (2.1), it can be verified that if

Q(0) = 0, then the queue length Q(t) for t ≥ 0 can be expressed as,

Q(t) = σBH(t)− ct + sup
0≤s≤t

(−σBH(s) + cs
)
. (2.2)

Throughout this chapter, {Q(t), t ≥ 0} denotes a queue length process which is

initially empty, i.e., Q(0) = 0.

Figure 2.2 shows sample paths of {Q(t), t ≥ 0} for σ = 1, c = 1 and different

Hurst parameters.
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Figure 2.2: Sample paths of queue length processes

The following lemma shows that Q(t) equals sup0≤s≤t

(
σBH(s)− cs

)
in distribu-
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tion.

Lemma 2.1.1. Let Q(t) be given as in (2.2), then Q(t)
d
= sup0≤s≤t

(
σBH(s)− cs

)
.

Proof. From (2.2) and by substitution r = t− s, it follows that

Q(t) = σBH(t)− ct + sup
0≤s≤t

(−σBH(s) + cs
)

= sup
0≤s≤t

(
σBH(t)− σBH(s)− c(t− s)

)

= sup
0≤r≤t

(
σBH(t)− σBH(t− r)− cr

)
.

Since BH has stationary increments, Q(t)
d
= sup0≤s≤t

(
σBH(s)− cs

)
.

Remark 2.1.2. For each t, Q(t) and sup0≤s≤t(σBH(s)−cs) are called the transient

state queue length. Let Q(∞)
d
= limt→∞ sup0≤s≤t

(
σBH(s)− cs

)
. Since limt→∞

BH(t)
t

=

0 a.s.,

Q(∞)
d
= sup

s≥0

(
σBH(s)− cs

)
(2.3)

is a well-defined random variable and is called the steady state queue length.

2.1.2 Transient State Queue Length

Since the fractional Brownian model was proposed, most research has focused on the

properties of steady state queue length, i.e., Q(∞)
d
= sups≥0

(
σBH(s)− cs

)
. It has

been noted that the transient state queue length, Q(t)
d
= sup0≤s≤t(σBH(s)− cs) can

also be applied to model some situations in network systems [19], [67]. The exact

asymptotic distribution of the transient state queue length, i.e., limb→∞ P (Q(t) > b),

is discussed in [19]. Here an upper bound is derived for E[Q(t)] based on Theorem

1.3.1 and the Girsanov formula, i.e. Theorem 1.3.2.

Theorem 2.1.1. Let Q(t)
d
= sup0≤s≤t

(
σBH(s)− cs

)
be the transient state queue

length. Let E be the expectation w.r.t. the measure P and c1, C2 be defined in
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Theorem 1.3.1, then

E [Q(t)] ≤ 8Hc1

√
C2σtH exp

(
c2
1c

2t2−2H

2σ2

)
.

Proof. Since Q(t)
d
= sup0≤s≤t(σBH(s)− cs), it follows that

E[Q(t)] = σE
[
sup0≤s≤t

(
BH(s)− c

σ
s
)]

. Then from Theorem 1.3.2 and Theorem

1.3.1, it follows that

E

[
sup

0≤s≤t

(
B(s)− c

σ
s
)]

= EP c
σ

[
sup

0≤s≤t
BH(s)

]

= E

[
Gt

( c

σ
M

)
sup

0≤s≤t
BH(s)

]

≤
√

E
[
G2

t

( c

σ
M

)]
√√√√E

[(
sup

0≤s≤t
BH

s

)2
]

≤
√

exp

(
c2
1c

2t2−2H

σ2

)√
(8H)2c2

1C2t2H

= 8Hc1

√
C2t

H exp

(
c2
1c

2t2−2H

2σ2

)
.

2.2 Maximum Queue Length

Let {Q(t), t ≥ 0} denote the queue length process where the queue is fed with a

fractional Brownian motion and let M(t) be the maximum of the queue length in

[0, t], that is,

M(t) = max
0≤s≤t

Q(s). (2.4)

The maximum random variable M(t) has been analyzed for different queueing mod-

els [2], [9], [31], and is applied to estimate the overflow probability [25], [68]. In the

context of renewal processes, e.g., a Brownian queueing model, some asymptotic
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properties on the maximum queue length are analyzed in [25]. In [68] the authors

discussed the maximum queue length of a fractional Brownian model using the self-

similarity of a fractional Brownian motion and the properties of Gaussian processes.

In this chapter, this maximum random variable is revisited. Some results in [25]

and [68] are extended.

To study the maximum of the queue length process, it is convenient to introduce

a stationary version of the process {Q(t), t ≥ 0}. Let {WH(t), t ∈ R} be a fractional

Brownian motion defined on the real line, that is, for s, t ∈ R,

E[WH(t)] = 0,

E[WH(s)WH(t)] =
1

2

[
|s|2H + |t|2H − |s− t|2H

]
.

For a queue with an input mt + σWH(t) and a service rate µ, the queue length

process {Q̃(t), t ∈ R} can be expressed as, see [37], [38],

Q̃(t) = σWH(t)− ct + sup
u≤t

(−σWH(u) + cu
)
,

where c = µ−m. It can be verified that for all t ∈ R, Q̃(t)
d
= supr≥0

(
σWH(r)− cr

)
.

Given the value of Q̃(0), Q̃(t), t ≥ 0, can be written as

Q̃(t) = σWH(t)− ct + max

{
sup

0≤u≤t

(−σWH(u) + cu
)
, Q̃(0)

}
.

From the process {Q̃(t), t ∈ R}, a stationary version of the queue length process

Q(t) can be obtained, cf. [37] [68], which is Q∗ = {Q∗(t), t ≥ 0} such that

(i) Q∗(t) d
= Q(∞) for t ≥ 0,

(ii) For t ≥ 0,

Q∗(t) = σBH(t)− ct + max

{
Q∗(0), sup

0≤s≤t

(−σBH(s) + cs
)}

. (2.5)
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Remark 2.2.1. Recall that Q(t) = σBH(t) − ct + sup0≤s≤t

(−σBH(s) + cs
)
, it

follows from (2.5) that for all t ≥ 0, Q∗(t) ≥ Q(t).

Let M∗(t) be the maximum of the queue length process Q∗ over an interval [0, t],

that is,

M∗(t) = max
0≤s≤t

Q∗(s), (2.6)

The main result on the two random variables, M(t) and M∗(t), is given in Theorem

2.2.4. Before the main result is presented, some properties of the fractional Brownian

model and some results in the literature on these two maximum random variables

are reviewed.

2.2.1 Results in the Literature

Since the fractional Brownian model was proposed by Norros [49], this model have

been studied extensively. Many results can be found in the literature, such as,

methods on parameter estimations [4], [41], asymptotic properties of the overflow

probability [16], [29], [48], and limit results on the maximum queue length [30], [68].

Here some of these results, which will be used in the proofs, are reviewed.

For a fractional Brownian model, the overflow probability P (Q(∞) > b) is un-

known in general, except for the case H = 1/2. In this case, {BH(t), t ≥ 0} reduces

to a standard Brownian motion {B(t), t ≥ 0} and the overflow probability is given

by P (Q(∞) > b) = P (supt≥0 σB(t)− ct > b) = e−2bc/σ2
. For H 6= 1/2, some asymp-

totic results are available. The following logarithmic asymptotic result is cited from

[16].

Proposition 2.2.1. For H ∈ (0, 1), let Q(∞) be given in (2.3), then

lim
b→∞

log P (Q(∞) > b)

b2−2H
= −θ, (2.7)
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where

θ =
c2H

2σ2H2H(1−H)2−2H
. (2.8)

Remark 2.2.2. The above result is derived based on a large deviations approach.

Similar results can also be found in [50], [51]. The exact asymptotic overflow prob-

ability, i.e., limb→∞ P (Q(∞) > b), has been obtained with different methods in [29],

[48].

The maximum queue length of a Brownian model, i.e., H = 1/2, is discussed in

[25]. Since a Brownian motion has independent increments, there exists a renewal

structure in the queue length process. Based on renewal theory, the following result

is obtained in [25].

Theorem 2.2.1. For H = 1/2, let M∗(t) and M(t) be defined in (2.6) and (2.4),

respectively. Then

lim
t→∞

M∗(t)
log t

=
1

θ
a.s. (2.9)

lim
t→∞

M(t)

log t
=

1

θ
a.s., (2.10)

and in Lp for p ∈ [1,∞) where θ is given in (2.8).

It is shown in [25] that the limit result (2.9) and (2.10) not only holds for a

Brownian queueing model, but also holds for a general queueing model which has

a renewal structure in the queue length process. However for a queue with a long-

range dependent input, such as a fractional Brownian motion with H ∈ (1/2, 1),

it is unclear that there is any renewal structure in the queue length process. So

the results in [25] cannot be applied. The maximum queue length with a fractional

Brownian input is discussed in [68] and the following result is derived.

Theorem 2.2.2. For H ∈ (1/2, 1), let M∗(t) and M(t) be defined in (2.6) and
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(2.4), respectively. Then

lim
t→∞

M∗(t)
(log t)β

=

(
1

θ

)β

, (2.11)

lim
t→∞

M(t)

(log t)β
=

(
1

θ

)β

(2.12)

in Lp for p ∈ [1,∞) where θ is given in (2.8) and

β =
1

2− 2H
. (2.13)

Remark 2.2.3. The result implies that for an input {BH(t), t ≥ 0} with H ∈
(1/2, 1), the maximum queue length over [0, t] grows as (log t)β. With a proper

normalization, the maximum queue length M(t) converges to a constant in Lp for

p ∈ [1,∞).

Remark 2.2.4. Note that for H ∈ (0, 1), β > 1/2.

In this chapter, it is shown that the above limits (2.11) and (2.12) also hold almost

surely. To prove this main result, the following limit theorem from [30] is needed.

Theorem 2.2.3. Let M∗(t) be defined in (2.6). For H ∈ (0, 1),

lim
t→∞

P (M∗(t) ≤ b(t) + xa(t)) = exp
(−e−x

)
, (2.14)

where

b(t) =
1

θβ
(log t)β +

[(
1

2H
− β2

)
log

(
log t

θ

)

θβ
+

β log c2

θβ

]
(log t)−β(1−2H), (2.15)

a(t) =
β

θβ
(log t)−β(1−2H), (2.16)

and c2 is a positive constant in terms of c,H, cf. [30].

Remark 2.2.5. Theorem 2.2.3 shows that as t → ∞, M∗(t)−b(t)
a(t)

⇒ X in which X

is a random variable with a Gumbel distribution, that is, P (X ≤ x) = exp (−e−x).
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Note that this result holds for {BH(t), t ≥ 0} with H ∈ (0, 1). In particular, for

H = 1/2, b(t) = 1
θ
log t + log c2

θ
and a(t) = 1

θ
.

2.2.2 Main Results

The main result of this chapter is presented in the following theorem.

Theorem 2.2.4. For H ∈ (0, 1), let M∗(t) and M(t) be defined in (2.6) and (2.4),

respectively. Then

lim
t→∞

M∗(t)
(log t)β

=

(
1

θ

)β

a.s., (2.17)

lim
t→∞

M(t)

(log t)β
=

(
1

θ

)β

a.s (2.18)

and in Lp for p ∈ [1,∞) where θ and β are given in (2.8) and (2.13), respectively.

Proof. The proof is given in Section 2.3.

Remark 2.2.6. Theorem 2.2.4 extends the results in Theorem 2.2.1 and 2.2.2 in

two directions: (i) the Hurst parameter H can take any value in (0, 1); (ii) the limit

results of (2.11) and (2.12) hold almost surely.

Let τb be the first time that the queue length process Q reaches a level b, that is,

τb = inf{t : Q(t) ≥ b}. (2.19)

It follows from this definition that {τb ≤ t} = {M(t) ≥ b}.

Corollary 2.2.1. Let τb be defined in (2.19), then

lim
b→∞

log τb

b2−2H
= θ a.s. (2.20)

where θ is given in (2.8).
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Proof. From Theorem 2.2.4, it follows that for ε > 0, there exists t1 = t1(ε) such

that for t ≥ t1,

M(t) <

(
1 + ε

θ
log t

)β

a.s.

Since as b → ∞, τb → ∞ a.s., for τb > t1, b ≤ M(τb) <
(

1+ε
θ

log τb

)β
. So for

sufficiently large b,

log τb

b2−2H
>

θ

1 + ε
a.s.

Similarly there exists t2 = t2(ε) such that for t ≥ t2, M(t) >
(

1−ε
θ

log t
)β

a.s. Then

log τb

b2−2H < θ
1−ε

a.s. for sufficiently large b. Since ε > 0 is arbitrary, the corollary

follows.

Theorem 2.2.5. Let M∗(t) be defined in (2.6). Then for H 6= 1/2, as t →∞,

M∗(t)
(log t)β

=

(
1

θ

)β

+ O

(
log(log t)

log t

)
(2.21)

where θ is given in (2.8) and β is given in (2.13). For H = 1/2, as t →∞,

M∗(t)
log t

=
1

θ
+ O

(
1

log t

)
. (2.22)

Proof. From Theorem 2.2.3, it follows that as t →∞,

M∗(t)− b(t)

a(t)
⇒ X,

where X is a random variable with a Gumbel distribution, i.e. P (X ≤ x) =

exp (−e−x) for x ∈ R. Substituting a(t) and b(t), after simplification, it is obtained
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that as t →∞,

θβ

β
log t

(
M∗(t)
(log t)β

− 1

θβ
−

(
1

2H
− β2

)
log(log t)

θβ log t
− ξ

log t

)
⇒ X,

where ξ is a constant in terms of c, σ and H. The result (2.21) follows from Theorem

2.2.4. Similarly, (2.22) can be derived.

Remark 2.2.7. Theorem 2.2.5 gives the convergence rate at which M∗(t)/(log t)β

converges to 1/θβ. For H = 1/2, the result coincides with [25, Theorem 3.1].

As discussed in [25], [68], [69], the maximum queue length M(t) can be applied to

estimate the overflow probability P (Q(∞) > b), which is important for the admis-

sion control in network systems. Recall that by Proposition 2.2.1, the logarithmic

asymptotic overflow probability is essentially determined by H and θ. Assume that

the value of H is known (there are many methods for estimating this parameter),

following Theorem 2.2.4, θ can be consistently estimated by using the maximum

queue length M(t), that is, limt→∞
M(t)2−2H

log t
= 1

θ
a.s.

2.3 Proof of the Main Results

In this section, the almost sure convergence of Theorem 2.2.4 is proved. The Lp

convergence will be shown in the next chapter. It will be demonstrated that besides

a fractional Brownian input, the Lp convergence holds for a queue with a general

Gaussian input, see Theorem 3.2.1 and Section 3.3.

An upper bound and a lower bound are proved in Proposition 2.3.1 and 2.3.2,

respectively, from which the almost sure convergence is concluded. Similar to the

arguments in [68], the limit result is first shown for M∗(t), then the proof is extended

to M(t).

Proposition 2.3.1. Let M∗(t) be defined in (2.6). Let θ and β be given in (2.8)
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and (2.13), respectively. Then

lim sup
t→∞

M∗(t)
(log t)β

≤
(

1

θ

)β

a.s. (2.23)

Proof. Recall that M∗(t) = sup0≤s≤t Q
∗(s), then

M∗(t) ≤ max
0≤n≤btc

(
sup

n≤s≤n+1
Q∗(s),

)
. (2.24)

For s ∈ [n, n + 1],

Q∗(s) = max(σBH(s)− cs + sup
n≤r≤s

(−σBH(r) + cr
)
,

Q∗(n) + σBH(s)− cs− (
σBH(n)− cn

)
),

it is obtained that

sup
n≤s≤n+1

Q∗(s)

≤ Q∗(n) + sup
n≤s≤n+1

(σBH(s)− cs) + sup
n≤s≤n+1

(−σBH(s) + cs). (2.25)

Combining (2.24) and (2.25),

M∗(t)

≤ max
0≤n≤btc

(
Q∗(n) + sup

n≤s≤n+1

(
σBH(s)− cs

)
+ sup

n≤s≤n+1

(−σBH(s) + cs
))

≤ max
0≤n≤btc

Q∗(n) + max
0≤n≤btc

(
sup

n≤s≤n+1
σBH(s)− cn + sup

n≤s≤n+1

(−σBH(s)
)

+ c(n + 1)

)

≤ max
0≤n≤btc

Q∗(n) + max
0≤n≤btc

(
sup

n≤s≤n+1
σBH(s)− σBH(n)

)

+ max
0≤n≤btc

(
sup

n≤s≤n+1

(−σBH(s) + σBH(n)
))

+ c. (2.26)
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From (2.26), it follows that

M∗(t)
(log t)β

≤ max0≤n≤btc Q∗(n)

(logbtc)β
+

max0≤n≤btc
(
supn≤s≤n+1 σBH(s)− σBH(n)

)

(logbtc)β

+
max0≤n≤btc

(
supn≤s≤n+1

(−σBH(s) + σBH(n)
))

(logbtc)β
+

c

(logbtc)β
. (2.27)

It is claimed that

lim sup
t→∞

max0≤n≤btc Q∗(n)

(logbtc)β
≤

(
1

θ

)β

a.s., (2.28)

and as t →∞,

max0≤n≤btc
(
supn≤s≤n+1

(
σBH(s)− σBH(n)

))

(logbtc)β

a.s.→ 0. (2.29)

From (2.27) and the two claims (2.28), (2.29), the proposition (2.23) follows.

To verify the claims (2.28) and (2.29), two technical lemmas are needed.

Lemma 2.3.1. Let θ and β be given in (2.8) and (2.13), respectively. Let δ ∈ (0, 1)

be fixed, then for sufficiently large n,

Q∗(n)

(log n)β
≤

(
1 + δ

θ

)β

a.s. (2.30)

Proof. By the Borel-Cantelli lemma, it suffices to prove that
∑∞

n=1 P
(
Q∗(n) ≥ (

1+δ
θ

log n
)β

)
< ∞.

∞∑
n=1

P

(
Q∗(n) ≥

(
1 + δ

θ
log n

)β
)

=
∞∑

n=1

e
log P

�
Q∗(n)≥( 1+δ

θ
log n)

β
�

=
∞∑

n=1

e
1+δ

θ
log n

log P

�
Q∗(n)≥( 1+δ

θ
log n)

β
�

1+δ
θ

log n . (2.31)

Recall that Q∗(n)
d
= Q(∞) for all n. By Proposition 2.2.1,

log P (Q∗(n)≥( 1+δ
θ

log n)
β
)

1+δ
θ

log n
→
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−θ as n →∞. Choose ε ∈
(
0, δ

2(1+δ)
θ
)
, there exists N such that for n ≥ N ,

log P
(
Q∗(n) ≥ (

1+δ
θ

log n
)β

)

1+δ
θ

log n
< −θ + ε.

So from (2.31),

∞∑
n=1

P

(
Q∗(n) ≥

(
1 + δ

θ
log n

)β
)

≤
N∑

n=1

e
( 1+δ

θ
log n)

log P

�
Q∗(n)≥( 1+δ

θ
log n)

β
�

1+δ
θ

log n +
∞∑

N+1

e(
1+δ

θ
log n)(−θ+ε)

≤ N +
∞∑

N+1

e(
1+δ

θ
log n)(−θ+ δ

2(1+δ)
θ)

= N +
∞∑

N+1

e−(1+ δ
2) log n < ∞.

Fix an ω ∈ Ω for which (2.30) holds, then there exists K(ω) such that

max0≤n≤btc Q∗(n, ω)

(logbtc)β
≤ max0≤n≤K(ω) Q∗(n, ω)

(logbtc)β
+ max

K(ω)≤n≤btc
Q∗(n, ω)

(log n)β

≤ max0≤n≤K(ω) Q∗(n, ω)

(logbtc)β
+

(
1 + δ

θ

)β

.

Let t →∞ and δ be arbitrarily small, the claim (2.28) is proved. The claim (2.29)

is shown in the following lemma.

Lemma 2.3.2. Suppose that σ > 0 and {BH(t), t ≥ 0} is a standard fractional

Brownian motion with H ∈ (0, 1). Let β be defined in (2.13). Then

lim
t→∞

max0≤n≤btc
(
supn≤s≤n+1 σBH(s)− σBH(n)

)

(logbtc)β
= 0 a.s. (2.32)
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Proof. By [26, Theorem 3.1], it is sufficient to show that for any ε > 0,

∞∑

btc=0

P

(
max0≤n≤btc

(
supn≤s≤n+1 σBH(s)− σBH(n)

)

(logbtc)β
> ε

)
< ∞.

Since supn≤s≤n+1 σBH(s)− σBH(n)
d
= sup0≤s≤1 σBH(s), it follows that

∞∑

btc=0

P

(
max0≤n≤btc

(
supn≤s≤n+1 σBH(s)− σBH(n)

)

(logbtc)β
> ε

)

≤
∞∑

btc=0

(btc+ 1)P

(
sup0≤s≤1 σBH(s)

(logbtc)β
> ε

)

=
∞∑

btc=0

(btc+ 1)P

(
sup

0≤s≤1
σBH(s) > ε(logbtc)β

)
. (2.33)

From (3.5) and (2.33), it can be derived that

∞∑

btc=0

P

(
max0≤n≤btc

(
supn≤s≤n+1 σBH(s)− σBH(n)

)

(logbtc)β
> ε

)

≤
∞∑

btc=0

(btc+ 1) 4 exp

(
−CG,γε

2

σ2
(logbtc)2β

)

=
∞∑

btc=0

4 exp

(
−CG,γε

2

σ2
(logbtc)2β + log (btc+ 1)

)
. (2.34)

Since β > 1/2 by definition (2.13), there exists M such that for all btc > M ,

−CG,γε
2

σ2
(logbtc)2β + log (btc+ 1) ≤ −2β logbtc.
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From (2.34), it follows that

∞∑

btc=0

P

(
max0≤n≤btc

(
supn≤s≤n+1 σBH(s)− σBH(n)

)

(logbtc)β
> ε

)

≤
M∑

btc=0

4 exp

(
−CG,γε

2

σ2
(logbtc)2β + log (btc+ 1)

)
+

∞∑

btc=M

4 exp (−2β logbtc)

≤
M∑

btc=0

4 exp

(
−CG,γε

2

σ2
(logbtc)2β + log (btc+ 1)

)
+

∞∑

btc=M

4btc−2β

< ∞.

Proposition 2.3.2. Let M∗(t) be defined in (2.6) and θ, β be given in (2.8) and

(2.13), respectively. Then

lim inf
t→∞

M∗(t)
(log t)β

≥
(

1

θ

)β

a.s. (2.35)

Proof. From the definition of M∗(t), i.e. (2.6), it can be observed that

M∗(t)
(log t)β

≥ M∗(btc)
(log(btc+ 1))β

=
M∗(btc)
(logbtc)β

(logbtc)β

(log(btc+ 1))β
. (2.36)

It is claimed that for almost all ω ∈ Ω, there exists t0(ω) such that for t ≥ bt0(ω)c,

M∗(btc)
(logbtc)β

≥
(

1− δ

θ

)β

. (2.37)

Let t → ∞ and δ be arbitrarily small, from (2.36) and (2.37), the proposition

follows.

The claim (2.37) is shown in the following lemma.

Lemma 2.3.3. Let the conditions of Proposition 2.3.2 be satisfied. Let δ ∈ (0, 1) be
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fixed. Then for almost every ω ∈ Ω, there exists n0(ω) such that for n ≥ n0(ω),

M∗(n, ω)

(log n)β
≥

(
1− δ

θ

)β

.

Proof. It is sufficient to check that
∑∞

n=1 P
(
M∗(n) ≤ (

1−δ
θ

log n
)β

)
< ∞. For a

fractional Brownian queueing model, it is known from [30, Equation (23)]that there

exists t0 < ∞ such that for t ≥ t0,

P (M∗(t) ≤ u(t)) ≤ exp

(
−c2t (u(t))h

2
e−θ(u(t))2−2H

)
, (2.38)

where u(t) is a function in terms of t, h = 2(1−H)2

H
− 1 and c2 is a positive constant

in terms of c,H. Then from (2.38), for the fixed δ and a sufficiently large n, that is,

for all n ≥ bt0c+ 1,

P

(
M∗(n) ≤

(
1− δ

θ
log n

)β
)
≤ exp

(
−c2

2

(
1− δ

θ

)βh

nδ (log n)βh

)
. (2.39)

Thus it can be obtained that

∞∑
n=1

P

(
M∗(n) ≤

(
1− δ

θ
log n

)β
)

≤ (bt0c+ 1) +
∞∑

n=bt0c+1

P

(
M∗(n) ≤

(
1− δ

θ
log n

)β
)

≤ (bt0c+ 1) +
∞∑

n=bt0c+1

exp

(
−c2

2

(
1− δ

θ

)βh

nδ (log n)βh

)
< ∞.

Proof of Theorem 2.2.4. The result (2.17) follows from Proposition 2.3.1 and 2.3.2.

In the following, the proof is extended to M(t), i.e. (2.18). For the upper bound,

recall that for all t ≥ 0, Q(t) ≤ Q∗(t), which implies that M(t) ≤ M∗(t) for t ≥ 0,
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then

lim sup
t→∞

M(t)

(log t)β
≤

(
1

θ

)β

a.s. (2.40)

For the lower bound, rewrite M∗(t) as

M∗(t) = max
0≤s≤t

Q∗(s)

= max
0≤s≤t

{
max

(
Q∗(0) + σBH(s)− cs,Q(s)

)}

= max

(
max
0≤s≤t

(
Q∗(0) + σBH(s)− cs

)
,M(t)

)
.

It follows that

M(t) ≥ M∗(t)−Q∗(0)− max
0≤s≤t

(
σBH(s)− cs

)

≥ M∗(t)−Q∗(0)−max
s≥0

(
σBH(s)− cs

)
.

Since Q∗(0) < ∞ a.s and maxs≥0

(
σBH(s)− cs

)
< ∞ a.s, it follows from (2.35) that

lim inf
t→∞

M(t)

(log t)β
≥

(
1

θ

)β

a.s. (2.41)

Therefore from (2.40) and (2.41), (2.18) follows.
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Chapter 3

Maximum Queue Length for a Queue with a Gaussian Input

In this chapter, the properties of the maximum queue length for a general Gaussian

queueing model are discussed. The input of a Gaussian queueing model can be a

general Gaussian process, such as a heterogeneous fractional Brownian motion (an

aggregation of independent fractional Brownian motions), or a Gaussian integrated

process, which are popular Gaussian models for network traffic. A fractional Brown-

ian queueing model discussed in the previous chapter is a special case of a general

Gaussian queue. The assumptions for the input process are given in Section 3.1.

The main results of this chapter are as follows:

1. For a Gaussian process, which satisfies the assumptions A1-A4 given in Sec-

tion 3.1, the asymptotic property of the maximum queue length is determined

by the asymptotic variance of the Gaussian process, see Theorem 3.2.1;

2. The first hitting time that the queue length process reaches a high level b is also

determined by the asymptotic variance of the Gaussian input, see Corollary

3.2.2;

3. For a queue with a heterogeneous fractional Brownian input, the maximum

queue length is dominated asymptotically by the fractional Brownian motions

with the largest Hurst parameter.

The main results extend the findings in [68] in the following directions: (i) the results

cover a queue with an input of a heterogeneous fractional Brownian motion, of which
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a fractional Brownian motion is a special case; (ii) for a fractional Brownian queueing

model, the Hurst parameter of the input process can take any value in (0, 1); (iii)

the results can be applied to a queue with a Gaussian integrated process, cf. [12],

[15].

3.1 Preliminary

In this section, some preliminaries of a general Gaussian queueing model and the

assumptions on the input process are introduced.

3.1.1 Fluid Queueing Model

A general Gaussian queueing model is a FIFO queue which has a fixed service rate

and infinite buffer size. Let

A(t) = mt + Y (t) (3.1)

denote the accumulated input to the queueing model up to time t, where m > 0

is the mean input rate, Y = {Y (t), t ≥ 0} is a continuous stochastic process. The

service rate is denoted by µ, which is a constant. Let c = µ − m be the surplus

rate. For the stability of the queue, it is assumed that c > 0. Let Q = {Q(t), t ≥ 0}
denote the queue length process.

Proposition 3.1.1. Let Q(0) ≥ 0 denote the initial queue length. Then for t ≥ 0

the queue length Q(t) can be expressed as

Q(t) = Y (t)− ct + max

{
sup

0≤s≤t
(−Y (s) + cs) , Q(0)

}
. (3.2)

In general, Q(t) can be written in terms of Q(s), 0 ≤ s ≤ t, as

Q(t) = Y (t)− ct + max

{
sup

s≤r≤t
(−Y (r) + cr) , Q(s)− (Y (s)− cs)

}
.
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The proof is similar to Proposition 2.1.1 and is omitted. Proposition 3.1.1 illus-

trates that for s ≤ t, Q(t) is determined by Q(s) and {Y (r), r ∈ [s, t]}. From 3.2, it

can be verified that if the queue is empty at time 0, i.e., Q(0) = 0, then for t ≥ 0,

Q(t) can be expressed as,

Q(t) = Y (t)− ct + sup
0≤s≤t

(−Y (s) + cs) . (3.3)

Throughout this chapter, let {Q(t), t ≥ 0} denote the queue length process that the

queue is initially empty.

3.1.2 Queueing Model with a Gaussian Input

Consider a queue with an input A, given in (3.1), where the process Y is Gaussian.

Let v2(t) = V ar(Y (t)) denote the variance of Y (t). Suppose that Y satisfies the

following assumptions:

A1 The process {Y (t), t ≥ 0} is a centered Gaussian process with stationary in-

crements, that is, for t ≥ 0 and r ≥ 0, E[Y (t)] = 0 and Y (t + r) − Y (t)
d
=

Y (r)− Y (0).

A2 The variance function v2(t) satisfies that v2(0) = 0 and there exist constants

σ > 0, H ∈ (0, 1) such that as t →∞,

v2(t) ∼ σ2t2H , (3.4)

that is, v2(t) is regularly varying at infinity with index 2H. In other words,

σ2t2H is the asymptotic variance of Y (t). Note that since the Gaussian process

Y has stationary increments, its covariance is determined by its variance func-

tion v2(·), that is, for s, t ≥ 0,

E [Y (s)Y (t)] =
1

2

[
v2(s) + v2(t)− v2(|t− s|)] .
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A3 For t ∈ [0, 1], there exist constants G > 0 and γ ∈ (0, 2] such that

v2(t) ≤ Gtγ.

Based on [43, Lemma12.2.1], there exists a constant CG,γ > 0, which is only

dependent on G and γ, such that for all x,

P

(
sup

0≤s≤1
Y (s) > x

)
≤ 4 exp

(−CG,γx
2
)
. (3.5)

A4 For ∆ > 0 and k = 0, 1, ..., let ρ∆(k) be defined as

ρ∆(k) =
E [Y (∆) (Y (k∆ + ∆)− Y (k∆))]

v2(∆)
. (3.6)

There exists a positive definite function f(k) such that

(i) f(0) = 1

(ii) f(k) log(k) → 0 as k →∞
(iii) for sufficiently large ∆, ρ∆(k) ≤ f(k), that is, there exists ∆0 such that

for all ∆ ≥ ∆0, ρ∆(k) ≤ f(k).

Remark 3.1.1. In Section 3.3, it is shown that the assumptions A1-A4 are gen-

eral to cover most Gaussian processes applied to model network traffic, such as,

a heterogeneous fractional Brownian motion and an integrated Ornstein-Uhlenbeck

processes.

The following lemma shows that under the assumption A1, Q(t) has the same

distribution as sup0≤s≤t (Y (s)− cs).

Lemma 3.1.1. Let Q(t) be given as in (3.3). If the process Y satisfies A1, then

Q(t)
d
= sup

0≤s≤t
(Y (s)− cs) .
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Proof. Let r = t− s. From (3.3) it follows that

Q(t) = Y (t)− ct + sup
0≤s≤t

(−Y (s) + cs)

= sup
0≤s≤t

(Y (t)− Y (s)− c(t− s))

= sup
0≤r≤t

(Y (t)− Y (t− r)− cr) .

Since Y has stationary increments, Q(t)
d
= sup0≤s≤t (Y (s)− cs).

For each t, Q(t) and sup0≤s≤t(Y (s) − cs) are called the transient state queue

length. Let Q(∞)
d
= limt→∞ sup0≤s≤t(Y (s)− cs). It is verified in Lemma 3.5.1 that

for Y satisfying A1-A3, limt→∞
Y (t)

t
= 0 a.s. So Q(∞)

d
= sups≥0(Y (s) − cs) is a

well-defined random variable and is called the steady state queue length.

3.1.3 Stationary Version of {Q(t), t ≥ 0}

To study the maximum of the queue length process, it is convenient to introduce

a stationary version of the process {Q(t), t ≥ 0}. Let {Ỹ (t), t ∈ R} be a Gaussian

process with stationary increments, for s, t ∈ R,

E[Ỹ (t)] = 0,

E[Ỹ (s)Ỹ (t)] =
1

2

[
v2(|s|) + v2(|t|)− v2(|s− t|)] ,

where v2(t) is the variance function of Y (t) in A2. For a queue with an input

mt + Ỹ (t) and a service rate µ, the queue length process {Q̃(t), t ∈ R} can be

expressed as, see [37], [38],

Q̃(t) = Ỹ (t)− ct + sup
u≤t

(
−Ỹ (u) + cu

)
,
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where c = µ − m. It can be verified that for ∀t ∈ R, Q̃(t)
d
= supr≥0

(
Ỹ (r)− cr

)
.

Given the value of Q̃(0), Q̃(t), t ≥ 0, can be written as

Q̃(t) = Ỹ (t)− ct + max

{
sup

0≤u≤t

(
−Ỹ (u) + cu

)
, Q̃(0)

}
.

From the process {Q̃(t), t ∈ R}, a stationary version of the queue length process

Q(t), denoted by Q∗ = {Q∗(t), t ≥ 0}, can be obtained, see [37] [68],

(i) Q∗(t) d
= Q(∞) for t ≥ 0,

(ii) For t ≥ 0,

Q∗(t) = Y (t)− ct + max

{
sup

0≤s≤t
(−Y (s) + cs) , Q∗(0)

}
. (3.7)

3.2 Main Results

Let M∗(t) be the maximum of the queue length process Q∗ over the interval [0, t]

and M(t) the maximum of Q over [0, t], i.e.,

M∗(t) = max
0≤s≤t

Q∗(s), (3.8)

M(t) = max
0≤s≤t

Q(s). (3.9)

Let τb be the first passage time that the queue length process Q reaches a level b,

that is,

τb = inf{t ≥ 0 : Q(t) ≥ b}. (3.10)

Note that {τb ≤ t} = {M(t) ≥ b}. The main results are given in Theorem 3.2.1 and

Corollary 3.2.2.

It is known that the properties of the maximum queue length are closely related

to Q(∞), the asymptotic distribution of the steady state queue length, see [1], [25],
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[43], [68]. The following proposition gives a property of the asymptotic distribution

of Q(∞).

Proposition 3.2.1. Let Q(∞)
d
= sups≥0(Y (s)−cs) be the steady state queue length.

Suppose that the process Y satisfies the assumptions A1-A3, then

lim
b→∞

log P (Q(∞) > b)

b2−2H
= −θ,

where

θ =
c2H

2σ2H2H(1−H)2−2H
, (3.11)

σ and H are the constants in A2.

This proposition generalizes the result in Proposition 2.2.1 and shows that for

sufficiently large b, the logarithm of the overflow probability, log P (Q(∞) > b), is

essentially determined by θ and H.

Theorem 3.2.1. Let M∗(t), M(t) be defined in (3.8) and (3.9), respectively. Let

Q∗(t) and Q(t) be defined in (3.7) and (3.3), respectively. Assume that {Y (t), t ≥ 0}
satisfies the assumptions A1-A4. Then

lim
t→∞

M∗(t)
(log t)β

=

(
1

θ

)β

,

lim
t→∞

M(t)

(log t)β
=

(
1

θ

)β

,

in Lp for p ∈ [1,∞) where θ is given in (3.11) and

β =
1

2− 2H
, (3.12)

H is the constant in A2.

It can be verified that a fractional Brownian motion satisfies the assumption A1-
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A4, see Section 3.3. So Theorem 3.2.1 generalizes the similar result in [68], i.e.,

Theorem 2.2.2.

Corollary 3.2.1. Assume that the constant H in A2 is known, then

lim
t→∞

M(t)2−2H

log t
=

1

θ

in probability.

This corollary verifies that the parameter θ can be consistently estimated with the

maximum random variable M(t), provided the value of H is given.

Corollary 3.2.2. Assume that the process {Y (t), t ≥ 0} satisfies the assumptions

A1-A4. Let τb be the first passage time that given in (3.10). Then

lim
b→∞

log τb

b2−2H
= θ,

in probability where H is the constant in A2 and θ is given in (3.11).

The main result, Theorem 3.2.1, shows that for a queue with a Gaussian input, the

asymptotic variance of the Gaussian process determines the asymptotic properties

of the maximum random variables, M∗(t) and M(t). As an application, the result

can be used to estimate the steady state overflow probability, i.e., P (Q(∞) > b),

which is useful in admission control for high-speed network. From Proposition 3.2.1,

the overflow probability is essentially determined by the constant θ and H. Suppose

that the process Y is observable and the value of H can be estimated with methods

in [4] and [41], then Corollary 3.2.1 asserts that θ can be consistently estimated.

Therefore the overflow probability can be roughly estimated in logarithmic sense.

Comparing to the result in Chapter 2, it can be observed that for a fractional

Brownian model, the normalized maximum queue length M(t)/(log t)β converges

to a constant both almost surely and in Lp. For a queue with a general Gaussian

input, only Lp convergence is proved. It is reasonable to expect that for a general
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Gaussian queue the convergence should also hold almost surely. In fact, it can be

shown that for a queue with a general Gaussian input Y which satisfies A1-A4,

lim sup
t→∞

M∗(t)
(log t)β

≤
(

1

θ

)β

a.s.

This is a generalization of Proposition 2.3.1. To verify this result, simply change

σBH in the proof of Proposition 2.3.1 to Y , the other parts remain unchanged.

In order to show almost sure convergence, future research is needed to obtain a

generalization of Proposition 2.3.2.

3.3 Examples

3.3.1 A Queue with a Heterogeneous Fractional Brownian Input

Let {Y (t), t ≥ 0} be a heterogeneous fractional Brownian motion, that is,

Y (t) =
N∑

i=1

σiB
Hi(t) (3.13)

where σi, 1 ≤ i ≤ N , are variance coefficients and {BHi(t), t ≥ 0}, 1 ≤ i ≤
N , are independent standard fractional Brownian motions with Hurst parameters

Hi ∈ (0, 1), respectively. Let J ⊂ {1, ..., N} be the set of all indices j such that

Hj = max1≤i≤N {Hi} and

σ =

√∑
i∈J

σ2
i . (3.14)

Consider a queue with an input mt + Y (t), where m is the mean input rate, and

a constant service rate µ. From (3.3), the queue length process can be written as

Q(t) = Y (t) − cs + sup0≤s≤t (−Y (s) + cs), where c = µ − m is the surplus rate.

Applying Theorem 3.2.1, the following result is obtained.

Theorem 3.3.1. Let Y be a heterogeneous fractional Brownian motion given as
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in (3.13). Let Q(t) and M(t) be defined as in (3.3) and (3.9), respectively. Let

H = max1≤i≤N Hi and σ be as in (3.14). Then

lim
t→∞

M(t)

(log t)β
=

(
1

θ

)β

,

in Lp for p ∈ [1,∞) where β and θ are given by (3.12) and (3.11), respectively.

According to Theorem 3.3.1, for a queue with an aggregated fractional Brownian

input, the asymptotic behavior of M(t) only depends on the largest Hurst parameter.

For example, suppose that Y (t) = 0.99BH1(t) + 0.01BH2(t) where
{
BH1(t), t ≥ 0

}

and
{
BH2(t), t ≥ 0

}
are independent fractional Brownian motions with H1 = 0.55

and H2 = 0.95, respectively. Since the coefficient of BH1 is relatively large, when

the transient behavior is considered, the component of BH1 dominates the queueing

performance, that is, the component of BH2 can be ignored. However, when the

asymptotic behavior is discussed, by Theorem 3.3.1, the maximum queue length

will be dominated by the component of BH2 . Therefore, even though the coefficient

of BH2 is relatively small, when large time periods are considered, the component

of BH2 is not negligible. In this example, since the coefficient of BH2 is small, the

convergence of the maximum queue length is slow and may be difficult to observe

from simulations.

It can be observed that Theorem 2.2.2 is a special case of Theorem 3.3.1 with

N = 1. Thus the Lp convergence of Theorem 2.2.4 is proved. To prove Theorem

3.3.1, it is sufficient to verify that the process Y (t) satisfies the assumptions A1-

A4. Since fractional Brownian motions are Gaussian processes with stationary

increments, A1 is satisfied. For A2, the variance of Y (t) is v2(t) =
∑N

i=1 σ2
i t

2Hi .

Notice that v2(t) ∼ σ2t2H where H = max1≤i≤N Hi and σ is given in (3.14), so A2

is satisfied. Since for t ∈ [0, 1],

v2(t) =
N∑

i=1

σ2
i t

2Hi ≤ t2Hmin

N∑
i=1

σ2
i ,
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where Hmin = min1≤i≤N Hi, A3 is satisfied for G =
∑N

i=1 σ2
i and γ = 2Hmin. For

A4, if H ≥ 1/2, then for any ∆ > 0 and k = 1, 2, ...,

ρ∆(k) =

∑N
i=1 σ2

i ∆
2Hi

[
(k + 1)2Hi − 2k2Hi + (k − 1)2Hi

]

2
∑N

i=1 σ2
i ∆

2Hi

≤
∑N

i=1 σ2
i ∆

2Hi
[
(k + 1)2H − 2k2H + (k − 1)2H

]

2
∑N

i=1 σ2
i ∆

2Hi

=
1

2

[
(k + 1)2H − 2k2H + (k − 1)2H

]

:= f(k).

Let f(0) = 1. Notice that for H ≥ 1/2, the covariance of the stationary standard

normal sequence {Z̃n = BH(n + 1)−BH(n), k = 0, 1, ...} is f(k).

If H < 1/2, then by Lemma 3.5.3,

ρ∆(k) =

∑N
i=1 σ2

i ∆
2Hi

[
(k + 1)2Hi − 2k2Hi + (k − 1)2Hi

]

2
∑N

i=1 σ2
i ∆

2Hi

< 0 := f(k).

Let Z̃n = B(n + 1) − B(n) where {B(t), t ≥ 0} is a standard Brownian motion. It

can be observed that the covariance of {Z̃n, n = 0, 1, ...} is given by f(k). Thus for

H ∈ (0, 1), f(k) log k → 0 as k → ∞. Therefore A1-A4 are satisfied, following

Theorem 3.2.1, Theorem 3.3.1 is proved.

3.3.2 A Queue with a Gaussian Integrated Input

In this subsection, a queue with a Gaussian integrated input is discussed. Let

{Y (t), t ≥ 0} be a Gaussian integrated process, such that,

Y (t) =

∫ t

0

Z(s)ds (3.15)
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where {Z(t), t ≥ 0} is an Ornstein-Uhlenbeck process, that is, a centered stationary

Gaussian process with covariance function

R(t) = r2 exp(−α |t|) (3.16)

for r, α > 0. The process Y , defined in (3.15), has been used to model network

traffic in [13], [15], [40].

Theorem 3.3.2. Let Y be a Gaussian integrated process given in (3.15). Let Q be

the queue length process and M(t) be the maximum queue length in [0, t], as defined

in (3.2) and (3.9), respectively. Then

lim
t→∞

M(t)

log t
=

r2

cα

in Lp for p ∈ [1,∞).

To show this theorem, it suffices to check that the process Y , defined in (3.15),

satisfies the assumptions A1-A4. For A1, it is known that a Gaussian integrated

process Y is a centered Gaussian process with stationary increments [13], [15]. The

variance of Y (t) is

v2(t) =

∫ t

0

∫ t

0

E [ZsZu] dsdu = 2r2

∫ t

0

∫ t

u

e−α(s−u)dsdu

=
2r2

α

(
t +

1

α
e−αt − 1

α

)
. (3.17)

From (3.17), as t → ∞, it is obtained that v2(t) ∼ 2r2

α
t. So A2 is satisfied for

σ2 = 2r2

α
and H = 1/2. For t ∈ [0, 1], it can be verified that

t +
1

α
e−αt − 1

α
≤ α

2
t2.
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So v2(t) ≤ r2t2 and A3 holds. For A4, it is claimed that for sufficiently large ∆,

ρ∆(k) =
E [Y (∆) (Y (k∆ + ∆)− Y (k∆))]

v2(∆)
≤ e−k. (3.18)

Since e−k log k → 0 as k → ∞, A4 holds. Theorem 3.3.2 follows from Theorem

3.2.1.

In the following, the claim (3.18) is verified. From definition,

ρ∆(k) =
v2(k∆ + ∆)− 2v2(k∆) + v2(k∆−∆)

v2(∆)
. (3.19)

Combining (3.17) and (3.19), after simplification, it is obtained that

ρ∆(k) =
2

α

e−αk∆
(
eα∆ − 2 + e−α∆

)

∆ + 1
α
e−α∆ − 1

α

. (3.20)

Since for large ∆, −2 + e−α∆ ≤ 0. From (3.20), it is obtained that

ρ∆(k) ≤ 2

α

e−α∆(k−1)

∆ + 1
α
e−α∆ − 1

α

≤ 2

α

e−α∆(k−1)

∆− 1
α

=
2e

α

e−α(k−1)(∆− 1
α)

∆− 1
α

e−k.

So for k = 1, 2, ... and large ∆, ρ∆(k) ≤ e−k.

3.4 Proofs

Proposition 3.2.1 is proved by applying the result in [16], where the asymptotic

probability, i.e., limb→∞ b−α log P (Q(∞) > b) for some α > 0, is derived based on a

large deviations method. The proposition follows [16, Corollary 2.3] if the following

hypotheses are verified.

B1 There exist functions a, w : [0,∞) → [0,∞) which are increasing and have
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limits of infinity, such that for each ξ ∈ R, the function defined as a limit by

λ(ξ) = lim
t→∞

log E
[
exp

(
ξ w(t)

a(t)
(Y (t)− ct)

)]

w(t)

exists in [−∞,∞];

B2 There exists a ξ > 0 for which λ(ξ) < 0;

B3 There exists an increasing function h : [0,∞) → [0,∞) such that the limit

g(ξ) = lim
t→∞

w (a−1 (t/ξ))

h(t)

exists for each ξ > 0, where a−1(t) = sup{s ≥ 0 : a(s) ≤ t};

B4 Let Xt = Y (t)− ct. For n ∈ Z, let

X∗
n = sup

0≤r<1
Xn+r. (3.21)

Then

lim sup
n→∞

log E
[
eξw(n)(X∗

n−Xn)/a(n)
]

w(n)
= 0,

for all ξ > 0.

Define a function λ∗(x) by

λ∗(x) = sup
ξ∈R

(ξx− λ(ξ)) , (3.22)

which is called Fenchel-Legendre or Cramer transform of λ. It is known from [16,

Corollary 2.3] that if λ∗(x) is continuous, B1-4 are satisfied, and in particular, B1
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is satisfied for a(t) = tα, w(t) = tγ where α, γ > 0, then

lim
b→∞

b−γ/α log P (Q(∞) > b) = − inf
ξ>0

ξ−γ/αλ∗(ξ). (3.23)

Proof of Proposition 3.2.1. In the following, it is verified that for properly chosen

functions a(t) and w(t), the hypotheses B1-4 are satisfied. Consequently the result

(3.23) for a queue with a general Gaussian input can be derived. For B1, B2, let

w(t) = t2−2H and a(t) = t, then

λ(ξ) = lim
t→∞

log E
[
exp

(
ξ w(t)(Y (t)−ct)

a(t)

)]

w(t)

= lim
t→∞

log E
[
exp

(
ξt1−2H(Y (t)− ct)

)]

t2−2H

= lim
t→∞

log
(
exp

(−ξct2−2H + 1
2
ξ2t2−4Hv2(t)

))

t2−2H

= lim
t→∞

−ξct2−2H + 1
2
ξ2t2−4Hv2(t)

t2−2H

=
1

2
ξ2σ2 − cξ.

The last equality is obtained since v(t) ∼ σtH by assumption A2. Thus B1 and

B2 are satisfied. To verify B3, since a−1(t) = sup{s ∈ [0,∞); a(s) ≤ t} = t, let

h(t) = t2−2H , then

g(ξ) = lim
t→∞

w(t/ξ)

h(t)
= lim

t→∞
(t/ξ)2−2H

t2−2H
= ξ2H−2.

For B4, from the definition of X∗
n, i.e. (3.21), and the stationarity of the increments
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of Y , it follows that

lim sup
n→∞

log E
[
exp

(
ξn1−2H (X∗

n −Xn)
)]

n2−2H

= lim sup
n→∞

log E
[
exp

(
ξn1−2H sup0≤r≤1(Y (n + r)− c(n + r)− Y (n) + cn)

)]

n2−2H

= lim sup
n→∞

log E
[
exp

(
ξn1−2H sup0≤r≤1(Y (n + r)− Y (n)− cr)

)]

n2−2H

≤ lim sup
n→∞

log E
[
exp

(
ξn1−2H sup0≤r≤1(Y (n + r)− Y (n))

)]

n2−2H

= lim sup
n→∞

log E
[
exp

(
ξn1−2H sup0≤r≤1 Y (r)

)]

n2−2H

Based on Lemma 3.5.2, the hypothesis B4 is satisfied. Since

λ∗(x) = sup
ξ∈R

(ξx− λ(ξ)) = sup
ξ∈R

(
ξx− 1

2
ξ2σ2 + ξc

)
=

(x + c)2

2σ2
,

the proposition follows from [16, Corollary 2.3].

Proof of Theorem 3.2.1. Following the arguments in [68], the result is first proved

for M∗(t), then it is extended to M(t) naturally. The proof consists of three steps.

The following results, (3.24) and (3.25), are proved in Step I and II, respectively.

For a fixed δ ∈ (0, 1),

lim
t→∞

P

(
M∗(t) ≥

(
1− δ

θ
log t

)β
)

= 1, (3.24)

lim
t→∞

P

(
M∗(t) ≥

(
1 + δ

θ
log t

)β
)

= 0. (3.25)

Following (3.24) and (3.25), It can be concluded that limt→∞ M∗(t)/(log t)β =
(

1
θ

)β

in probability. In Step III, the uniform integrability of (M∗(t)/(log t)β)p is proved

for p ∈ [1,∞), which completes the proof of the theorem.
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Step I In this step, (3.24) is verified. Let δ ∈ (0, 1) be fixed. For brevity, let

α(t) =

(
1− δ

θ
log t

)β

. (3.26)

Fix ∆ ∈ (0, t), from the definition of Q∗, it follows that

Q∗(t) ≥ Y (t)− ct− inf
0≤s≤t

(Y (s)− cs) (3.27)

≥ Y (t)− ct− Y (t−∆) + c(t−∆)

= Y (t)− Y (t−∆)− c∆.

Consequently,

P (M∗(t) ≥ α(t))

= P

(
sup

0≤s≤t
Q∗(s) ≥ α(t)

)

≥ P

(
sup

1≤k≤bt/∆c
Q∗(k∆) ≥ α(t)

)

≥ P

(
sup

1≤k≤bt/∆c
Y (k∆)− Y (k∆−∆)− c∆ ≥ α(t)

)

= P

(
sup

1≤k≤bt/∆c
Y (k∆)− Y (k∆−∆) ≥ α(t) + c∆

)
. (3.28)

For k = 1, 2, ..., let

Z∆
k =

Y (k∆)− Y (k∆−∆)

v(∆)
. (3.29)

From (3.28), it can be obtained that

P (M∗(t) ≥ α(t)) ≥ P

(
sup

1≤k≤bt/∆c
Z∆

k ≥ α(t) + c∆

v(∆)

)
. (3.30)
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Choose ε ∈ (0, δ] and let ∆ be dependent on t such that

∆t =

(
2σ2(1− ε)

c2
H2 log t

)β

. (3.31)

Then (3.30) can be written as

P (M∗(t) ≥ α(t)) ≥ P

(
sup

1≤k≤bt/∆tc
Z∆t

k ≥ α(t) + c∆t

v(∆t)

)
. (3.32)

By A4 there exists a function f(k), k = 0, 1, ... such that for large ∆t (large

t), and j = 1, 2, ...

cov(Z∆t
j , Z∆t

j+k) = ρ∆t(k) ≤ f(k).

Let {Z̃k, k = 1, 2, ...} be a stationary standard normal sequence such that

the covariance of Z̃k is determined by f(k). By the Slepian inequality, for t

sufficiently large, it follows from (3.32) that

P

(
sup

1≤k≤bt/∆tc
Z∆t

k ≥ α(t) + c∆t

v(∆t)

)
≥ P

(
sup

1≤k≤bt/∆tc
Z̃k ≥ α(t) + c∆t

v(∆t)

)
.

(3.33)

Note that (3.33) holds for all sufficiently large ∆t (sufficiently large t), that is,

there exists a t0, (3.33) holds for all t ≥ t0.

Next it is claimed that for sufficiently large t,

α(t) + c∆t

v(∆t)
≤

√
2
(
1− ε

2

)
log t. (3.34)

Since v(∆t) ∼ σ∆H
t by A2, there exists 0 ≤ γ < H such that for sufficiently

53



large t,

v(∆t) ≥ σ∆H
t −∆γ

t .

So for all sufficiently large t, it can verified that

α(t) + c∆t

v(∆t)
≤ α(t) + c∆t

σ∆H
t −∆γ

t

≤ α(t) + c∆t

σ∆H
t

+
2
σ

(α(t) + c∆t) ∆γ−H
t

σ∆H
t

.

From Lemma 3.5.5, it can be obtained that α(t)+c∆t

σ∆H
t

≤
√

2(1− ε) log t. Simi-

larly the following can be verified.
2
σ

(α(t)+c∆t)∆
γ−H
t

σ∆H
t

≤ A(log t)(1/2+β(γ−H))+ for

some constant A which is dependent on c, ε, σ. Since γ < H, for sufficiently

large t,

α(t) + c∆t

σ∆H
t

+
2 ξ

σ
(α(t) + c∆t) ∆γ−H

t

σ∆H
t

≤
√

2(1− ε) log t + A(log t)(1/2+β(γ−H))+

≤
√

2
(
1− ε

2

)
log t.

So the claim (3.34) is proved.

Let n = b t
∆t
c and tn =

{
t : t

∆t
= n

}
. Note that from the definition of tn, it

can verified that b t
∆t
c = n if and only if tn ≤ t < tn+1. Then for sufficiently

large t ∈ [tn, tn+1), the following inequalities are obtained

α(t) + c∆t

v(∆t)
≤

√
2
(
1− ε

2

)
log t ≤

√
2
(
1− ε

2

)
log tn+1.

So from (3.33),

P

(
sup

1≤k≤bt/∆tc
Z̃k ≥ α(t) + c∆t

v(∆t)

)
≥ P

(
sup

1≤k≤n
Z̃k ≥

√
2
(
1− ε

2

)
log tn+1

)
.

(3.35)
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Theorem 3.5.1, i.e. [43, Theorem 4.3.3], is applied to show that the right hand

side of (3.35) approaches to 1. Let un be defined as

un =

√
2
(
1− ε

2

)
log tn+1. (3.36)

Following Theorem 3.5.1, to show (3.35) approaches 1, it is sufficient to show

that n(1−Φ(un)) →∞ as n →∞. Recall that for x ≥ 0, Φ̄(x) ≥ x√
2π(1+x2)

e−x2/2,

then

n(1− Φ(un)) ≥ n
un√

2π(1 + u2
n)

exp

(
−u2

n

2

)
.

Since un → ∞ as n → ∞, there exists n0 such that for all n > n0, un > 1.

For n > n0,

n(1− Φ(un)) ≥ n
1

2
√

2πun

exp

(
−u2

n

2

)
. (3.37)

From (3.36), it follows that e−u2
n/2 ≥ t

−1+ε/2
n+1 . Thus, from (3.37),

n(1− Φ(un)) ≥ n
1

2
√

2πun

t
−1+ε/2
n+1

= n
1

2
√

2πun

(
tn+1

∆tn+1

)−1

∆−1
tn+1

t
ε/2
n+1

=
n

n + 1

t
ε/2
n+1

2
√

2π∆tn+1un

.

From (3.31) and (3.36), it can be observed that ∆tn+1 = C1(log tn+1)
β and

un = C2(log tn+1)
1/2 for some positive constants C1 and C2, respectively. Then

as n →∞,

n

n + 1

t
ε/2
n+1

2
√

2π∆tn+1un

∼ t
ε/2
n+1

2
√

2πC1(log tn+1)βC2(log tn+1)1/2
→∞.

Thus the expression (3.24) is verified.
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Step II The expression (3.25) is verified in this step. Let Vi = supi−1≤s<i Q
∗(s),

then M∗(t) ≤ max1≤i≤t Vi, since M∗(t) = sup0≤s≤t Q
∗(s). By the stationarity

of Q∗, it follows that

P

(
M∗(t) ≥

(
1 + δ

θ
log t

)β
)
≤ tP

(
V1 ≥

(
1 + δ

θ
log t

)β
)

.

To verify (3.25), it is necessary to show that the right hand side of the above

inequality approaches to 0, that is, limt→∞ tP
(
V1 ≥

(
1+δ

θ
log t

)β
)

= 0. Since

V1 ≤ Q∗(0) + sup
0≤s≤1

(
(Y (s)− cs)− inf

0≤r≤s
(Y (r)− cr)

)

≤ Q∗(0) + sup
0≤s≤1

(Y (s)− cs)− inf
0≤s≤1

(Y (s)− cs),

then

P

(
V1 ≥

(
1 + δ

θ
log t

)β
)

≤P

(
Q∗(0) + sup

0≤s≤1
(Y (s)− cs)− inf

0≤s≤1
(Y (s)− cs) ≥

(
1 + δ

θ
log t

)β
)

.

(3.38)

Since (1 + δ)β ≥ (1 + δ/2)β + δ/10, Lemma 3.5.4, for β > 1/2 and 0 < δ < 1,

it is obtained from (3.38) that

P

(
V1 ≥

(
1 + δ

θ
log t

)β
)

≤ P

(
Q∗(0) ≥

(
1 + δ/2

θ
log t

)β
)

+ P

(
sup

0≤s≤1
(Y (s)− cs) ≥ δ

20

(
log t

θ

)β
)

+ P

(
− inf

0≤s≤1
(Y (s)− cs) ≥ δ

20

(
log t

θ

)β
)

≤ P

(
Q∗(0) ≥

(
1 + δ/2

θ
log t

)β
)

+ 2P

(
sup

0≤s≤1
Y (s) ≥ δ

20

(
log t

θ

)β

− c

)
.
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Let L1 and L2 represent the above two terms respectively, that is, L1 =

P

(
Q∗(0) ≥

(
1+δ/2

θ
log t

)β
)

and L2 = P
(
sup0≤s≤1 Y (s) ≥ δ

20

(
log t

θ

)β − c
)
. So

it is necessary to show that tLi → 0 as t →∞ for i = 1, 2. From Lemma 3.5.6,

it follows that tL2 → 0 as t →∞. To show tL1 → 0, it is equivalent to show

that log t + log P

(
Q∗(0) ≥

(
1+δ/2

θ
log t

)β
)
→ −∞. Following Proposition

3.2.1, it is obtained as t →∞,

log t + log P

(
Q∗(0) ≥

(
1 + δ/2

θ
log t

)β
)

= log t


1 +

log P

(
Q∗(0) ≥

(
1+δ/2

θ
log t

)β
)

log t




∼ log t

[
1 + (−1− δ

2
)

]

→ −∞.

Step III In this step, the uniform integrability of
(

M∗(t)
(log t)β

)p

is proved. It is sufficient

to show that for p ∈ (1,∞)

sup
t≥e

E

[
M∗(t)
(log t)β

]p

< ∞.

Let

K0 = inf

{
x :

log P (Q∗(0) > x)

x2−2H
≤ −θ

2

}
. (3.39)

Following Proposition 3.2.1, the constant K0 is finite, that is, K0 < ∞. Let
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y = x1/p, for t ≥ e,

E

[
M∗(t)
(log t)β

]p

=

∫ ∞

0

P

((
M∗(t)
(log t)β

)p

> x

)
dx

=

∫ ∞

0

P

(
M∗(t)
(log t)β

> y

)
pyp−1dy

=

∫ ∞

0

P
(
M∗(t) > y(log t)β

)
pyp−1dy.

Let K = max{K0, (4/θ)
β), 4σY , 2(c + aY )}, then K < ∞ and

E

[
M∗(t)
(log t)β

]p

=

∫ 3K

0

P
(
M∗(t) > y(log t)β

)
pyp−1dy

+

∫ ∞

3K

P
(
M∗(t) > y(log t)β

)
pyp−1dy

≤ (3K)p +

∫ ∞

3K

P
(
M∗(t) > y(log t)β

)
pyp−1dy.

Let L3 =
∫∞
3K

P
(
M∗(t) > y(log t)β

)
pyp−1dy. Recall that in Step II, for all x >

0, P (M∗(t) > x) ≤ tP (Q∗(0) + max0≤s≤1(Y (s)− cs)−min0≤s≤1(Y (s)− cs) > x).

Then

L3 ≤
∫ ∞

3K

tP

(
Q∗(0) + max

0≤s≤1
(Y (s)− cs)− min

0≤s≤1
(Y (s)− cs) > y(log t)β

)
pyp−1dy

≤
∫ ∞

3K

tP

(
Q∗(0) >

y(log t)β

3

)
pyp−1dy

+

∫ ∞

3K

tP

(
max
0≤s≤1

(Y (s)− cs) >
y(log t)β

3

)
pyp−1dy

+

∫ ∞

3K

tP

(
− min

0≤s≤1
(Y (s)− cs) >

y(log t)β

3

)
pyp−1dy

≤
∫ ∞

3K

tP

(
Q∗(0) >

y(log t)β

3

)
pyp−1dy

︸ ︷︷ ︸
L3,1

+ 2

∫ ∞

3K

tP

(
max
0≤s≤1

Y (s) >
y(log t)β

3
− c

)
pyp−1dy

︸ ︷︷ ︸
L3,2

.

It is shown in Lemma 3.5.7 and 3.5.8 that L3,1 < ∞ and L3,2 < ∞ with the
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choice of K, respectively. Therefore it is obtained that supt≥e E
[

M∗(t)
(log t)β

]p

< ∞.

Combining Step I, II and III, the proof for M∗(t) is complete.

In the following, the result is extended to M(t). Notice that from (3.7), it follows

that for all t ≥ 0, Q(t) ≤ Q∗(t). Consequently, M(t) ≤ M∗(t) for all t ≥ 0. In Step

I, replacing (3.27) with

Q(t) = Y (t)− ct− inf
0≤s≤t

(Y (s)− cs) ,

the rest remains unchanged. For Step II and III, since M(t) ≤ M∗(t) for all t ≥ 0,

it is obtained that

P

(
M(t) ≥

(
1 + δ

θ
log t

)β
)
→ 0,

sup
t≥e

E

[
M(t)

(log t)β

]p

< ∞.

Thus the proof is complete.

Proof of Corollary 3.2.2. It is sufficient to show that for ε > 0, as b →∞,

P

(
log τb

θb2−2H
> 1 + ε

)
→ 0, (3.40)

P

(
log τb

θb2−2H
< 1− ε

)
→ 0. (3.41)

The upper bound (3.41) can be verified as follows: let ε < 1/2 and δ = ε/(1−ε) < 1,

then

P

(
log τb

θb2−2H
< 1− ε

)
= P

(
log τb <

θb2−2H

1 + δ

)
= P

(
τb < e

θb2−2H

1+δ

)
. (3.42)

Let t = e
θb2−2H

1+δ , then b =
(

(1+δ) log t
θ

)β

. Since {M(t) ≥ b} = {τb ≤ t}, from (3.42)
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and Step I in the proof of Theorem 3.2.1,

P

(
log τb

θb2−2H
< 1− ε

)
= P

(
M(t) >

(
(1 + δ) log t

θ

)β
)
→ 0.

Let δ = ε
1+ε

, the lower bound (3.40) can be verified similarly.

3.5 Appendix

The following theorem is cited from [43, Theorem 4.3.3].

Theorem 3.5.1. Let {Zn} be a standardized stationary normal sequence with covari-

ance {ρn} satisfying the condition ρn log n → 0. Let {un} be a sequence of numbers.

Then for 0 ≤ τ ≤ ∞, P
(
sup1≤k≤n Zk ≤ un

) → e−τ if and only if n (1− Φ(un)) → τ .

Lemma 3.5.1. Suppose that a process {Y (t), t ≥ 0} satisfies the assumptions A1-3,

then

lim
t→∞

Y (t)

t
= 0 a.s.

Proof. First it is shown that limn→∞
Y (n)

n
= 0 a.s.. By [26, Theorem 3.1], it is

sufficient to show that for any ε > 0,
∑∞

n=1 P
(∣∣∣Y (n)

n

∣∣∣ > ε
)

< ∞.

∞∑
n=1

P

(∣∣∣∣
Y (n)

n

∣∣∣∣ > ε

)
=

∞∑
n=1

P (|Y (n)| > nε) =
∞∑

n=1

P

(∣∣∣∣
Y (n)

v(n)

∣∣∣∣ >
nε

v(n)

)
, (3.43)

where v2(n) is the variance of Y (n) by A2. Since v(n) ∼ σnH , there exists N < ∞,

such that n > N , v(n) ≤ 2σnH . From (3.43), it follows that

∞∑
n=1

P

(∣∣∣∣
Y (n)

v(n)

∣∣∣∣ >
nε

v(n)

)
≤

N∑
n=1

P

(∣∣∣∣
Y (n)

v(n)

∣∣∣∣ >
nε

v(n)

)
+

∞∑
n=N+1

P

(∣∣∣∣
Y (n)

v(n)

∣∣∣∣ >
nε

2σnH

)

≤
N∑

n=1

P

(∣∣∣∣
Y (n)

v(n)

∣∣∣∣ >
nε

v(n)

)
+

∞∑
n=N+1

2Φ̄

(
n1−Hε

2σ

)

< ∞.
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Thus limn→∞
Y (n)

n
= 0 a.s. Next step is to show that limt→∞

Y (t)
t

= 0 a.s. For t ≥ 1,

it can be obtained that

∣∣∣∣
Y (t)

t

∣∣∣∣ ≤
|Y (t)− Y (btc)|

btc +
|Y (btc)|
btc

≤ sup0≤r≤1 Y (btc+ r)− Y (btc)
btc − inf0≤r≤1 Y (btc+ r)− Y (btc)

btc +
Y (btc)
btc .

Let n = btc, then

∣∣∣∣
Y (t)

t

∣∣∣∣ ≤
sup0≤r≤1 Y (n + r)− Y (n)

n
− inf0≤r≤1 Y (n + r)− Y (n)

n
+

Y (n)

n
.

Since limn→∞
Y (n)

n
= 0 a.s., it suffices to show that

lim
n→∞

sup0≤r≤1 Y (n + r)− Y (n)

n
= 0 a.s., (3.44)

lim
n→∞

− inf0≤r≤1 Y (n + r)− Y (n)

n
= 0 a.s. (3.45)

For ε > 0, since Y has stationary increments by A1 and from (3.5), it follows that

∞∑
n=1

P

(
sup

0≤r≤1
Y (n + r)− Y (n) > nε

)
=

∞∑
n=1

P

(
sup

0≤r≤1
Y (r) > nε

)

≤
∞∑

n=1

4 exp
(−CG,γ(nε)2

)

< ∞.

So (3.44) is obtained. Similarly, (3.45) can be verified. Thus limt→∞
Y (t)

t
= 0 a.s.

Lemma 3.5.2. Suppose that a process {Y (t), t ≥ 0} satisfies the assumptions A1-3,

then for all ξ > 0,

E

[
exp

(
ξ sup

0≤s≤1
Y (s)

)]
≤ 1 +

4
√

πξ√
CG,γ

exp

(
ξ2

4CG,γ

)
.
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Proof. For all ξ > 0,

E

[
exp

(
ξ sup

0≤s≤1
Y (s)

)]
=

∫ ∞

0

P

(
exp

(
ξ sup

0≤s≤1
Y (s)

)
> x

)
dx

=

∫ ∞

0

P

(
sup

0≤s≤1
Y (s) >

log x

ξ

)
dx

≤ 1 +

∫ ∞

1

P

(
sup

0≤s≤1
Y (s) >

log x

ξ

)
dx.

From (3.5), it follows that

E

[
exp

(
ξ sup

0≤s≤1
Y (s)

)]
≤ 1 +

∫ ∞

1

4 exp

(
−CG,γ

(log x)2

ξ2

)
dx.

Let y =

√
CG,γ

ξ
log x. By substitution,

E

[
exp

(
ξ sup

0≤s≤1
Y (s)

)]
≤ 1 +

4ξ√
CG,γ

exp

(
ξ2

4CG,γ

) ∫ ∞

0

exp


−

(
y − ξ

2
√

CG,γ

)2

 dy.

Since

∫ ∞

0

exp


−

(
y − ξ

2
√

CG,γ

)2

 dy ≤

∫ ∞

−∞
e−y2

dy = 2

∫ ∞

0

e−y2

dy =
√

π,

the proof is complete.

Lemma 3.5.3. (i) Let H ∈ (0, 1/2), then for k ≥ 1,

(k + 1)2H − 2k2H + (k − 1)2H ≤ 0.

(ii) Let H1, H2 ∈ [1/2, 1). Suppose that H1 ≤ H2, then for k ≥ 1,

(k + 1)2H1 − 2k2H1 + (k − 1)2H1 ≤ (k + 1)2H2 − 2k2H2 + (k − 1)2H2 .

Proof. For (i), let f(k) = k2H . Observe that f(k) is concave for H ∈ (0, 1/2). The

62



first part follows from f(k + 1)− f(k) ≤ f(k)− f(k − 1).

For (ii), let g(H) = (k + 1)2H − 2k2H + (k− 1)2H and H ∈ [1/2, 1). It is sufficient

to show that for k ≥ 1, g(H) increases with respect to H.

g′(H) = 2(k + 1)2H log(k + 1)− 4k2H log(k) + 2(k − 1)2H log(k − 1)

= 2
[
(k + 1)2H log(k + 1)− k2H log(k)

]− 2
[
k2H log(k)− (k − 1)2H log(k − 1)

]
.

Let h(k) = k2H log(k). To show that g′(H) ≥ 0, i.e. g(H) increases, it is sufficient to

show that h(k) is a convex function. It can be obtained from the second derivative

of h(k).

h′(k) = 2Hk2H−1 log(k) + k2H−1,

h′′(k) = 2H(2H − 1)k2H−2 log(k) + 2Hk2H−2 + (2H − 1)k2H−2.

It can be seen that for H ≥ 1/2, h′′(k) ≥ 0. So the lemma follows.

Lemma 3.5.4. For β ≥ 1/2 and δ ∈ (0, 1),

(1 + δ)β ≥
(

1 +
δ

2

)β

+
δ

10
.

Proof. Let δ > 0 be fixed. Let fδ(β) = (1 + δ)β − (
1 + δ

2

)β − δ
10

. For β ≥ 1/2, it

can be derived that

f ′δ(β) = log(1 + δ)(1 + δ)β − log

(
1 +

δ

2

)(
1 +

δ

2

)β

> 0.

So fδ(β) increases with respect to β. It follows that fδ(β) ≥ (1 + δ)1/2−(
1 + δ

2

)1/2−
δ
10

for β ≥ 1/2. Let g(δ) = (1 + δ)1/2 − (
1 + δ

2

)1/2 − δ
10

. Need to show that g(δ)
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increases with respect to δ for δ ∈ (0, 1).

g′(δ) =
1

2
√

1 + δ
− 1

4
√

1 + δ
2

− 1

10
≥ 1

2
√

2
− 1

4
− 1

10
> 0.

Since g(0) = 0, then g(δ) ≥ 0 for δ ∈ (0, 1).

Lemma 3.5.5. Let ε ∈ (0, δ], then

α(t) + c∆t

σ∆H
t

≤
√

2(1− ε) log(t).

Proof. Substituting θ and ∆t, which are given in (3.11) and (3.31), respectively,

from (3.36) and (3.26), it follows that

α(t) + c∆t

σ∆H
t

=
(1−δ)β

θβ (log t)β + c∆t

σ∆H
t

=
(1− δ)β2βH2βH(1−H)(log t)β + 2β(1− ε)βH2β(log t)β

2βH(1− ε)βHH2βH(log t)βH
.

Since 1− δ ≤ 1− ε and the definition of β, (3.12),

α(t) + c∆t

σ∆H
t

≤ (1− ε)β2βH2βH(1−H)(log t)β + 2β(1− ε)βH2β(log t)β

2βH(1− ε)βHH2βH(log t)βH

=
√

2(1− ε) log t.

Lemma 3.5.6. Let α > 0, η ≥ 0 be constants. Let β be defined in (3.12). Suppose

that Y (t) satisfies A1-3, then limt→∞ tP
(
sup0≤s≤1 Y (s) ≥ α (log t)β − η

)
= 0.

Proof. There exists a t0 such that for t ≥ t0, α (log t)β−η ≥ α
2

(log t)β. So for t ≥ t0
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and from (3.5), it follows that

tP

(
sup

0≤s≤1
Y (s) ≥ α (log t)β − η

)
≤ tP

(
sup

0≤s≤1
Y (s) ≥ α

2
(log t)β

)

≤ 4t exp

(
−α2CG,γ

4
(log t)2β

)

= 4 exp

(
−α2CG,γ

4
(log t)2β + log t

)

= 4 exp

(
−(log t)

(
α2CG,γ

4
(log t)2β−1 − 1

))
.

Since β > 1/2, the lemma follows.

Lemma 3.5.7. Let β be the constant defined in (3.12). For ∀t ≥ e and K =

max{K0, (4/θ)
β} where K0 is defined in (3.39), then

∫ ∞

3K

typ−1P
(
Q∗(0) >

y

3
(log t)β

)
dy < ∞. (3.46)

Proof. Rewrite P
(
Q∗(0) > y

3
(log t)β

)
as

P
(
Q∗(0) >

y

3
(log t)β

)
= exp

((y

3

)1/β

log t
log P

(
Q∗(0) > (y/3)(log t)β

)

(y/3)1/β log t

)
.

Since y/3 ≥ K ≥ K0 and log t ≥ 1, from (3.39),
log P(Q∗(0)>(y/3)(log t)β)

(y/3)1/β log t
≤ −θ/2.

Then

∫ ∞

3K

typ−1P
(
Q∗(0) >

y

3
(log t)β

)
dy ≤

∫ ∞

3K

typ−1 exp

(
−θ

2

(y

3

)1/β

log t

)
dy

=

∫ ∞

3K

yp−1 exp

(
−θ

2

(y

3

)1/β

log t + log t

)
dy.

Since K ≥ (4/θ)β, for y ≥ 3K it is derived that − θ
2

(
y
3

)1/β
+ 1 ≤ − θ

4

(
y
3

)1/β
. So let
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z = y1/β,

∫ ∞

3K

typ−1P
(
Q∗(0) >

y

3
(log t)β

)
dy ≤

∫ ∞

3K

yp−1 exp

(
−θ

4

(y

3

)1/β

log t

)
dy

=

∫ ∞

(3K)1/β

βzβ−1zβ(p−1) exp

(
− θz

4 · 31/β
log t

)
dz

≤ 3p · 4βpβ

θβp(log t)βp
Γ(βp) < ∞.

Lemma 3.5.8. Let η ≥ 0 be constant. For t ≥ e, K = max{K0, 2η,
√

8/CG,γ, 1/3},

∫ ∞

3K

typ−1P

(
sup

0≤s≤1
Y (s) ≥ y

3
(log t)β − η

)
dy < ∞.

Proof. Since K ≥ 2η and log t ≥ 1, then for y ≥ 3K, y
3
(log t)β − η ≥ y

6
(log t)β.

Based on (3.5), it follows that

P

(
sup

0≤s≤1
Y (s) ≥ y

3
(log t)β − η

)
≤ P

(
sup

0≤s≤1
Y (s) ≥ y

6
(log t)β

)

≤ 4 exp

(
−CG,γ

y2

36
(log t)2β

)
. (3.47)

So from (3.47),

∫ ∞

3K

typ−1P

(
sup

0≤s≤1
Y (s) ≥ y

3
(log t)β − η

)
dy

≤
∫ ∞

3K

4yp−1t exp

(
−CG,γ

y2

36
(log t)2β

)
dy

=

∫ ∞

3K

4yp−1 exp

(
−CG,γ

y2

36
(log t)2β + log t

)
dy.
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Since β > 1/2 and t ≥ e, it follows that

∫ ∞

3K

typ−1P

(
sup

0≤s≤1
Y (s) ≥ y

3
(log t)β − η

)
dy

≤
∫ ∞

3K

4yp−1 exp

(
−CG,γ

y2

36
(log t) + log t

)
dy

=

∫ ∞

3K

4yp−1 exp

(
−(log t)

(
CG,γ

y2

36
− 1

))
dy.

Since y ≥ 3K ≥ 3
√

8/CG,γ, then CG,γ
y2

36
−1 ≥ CG,γ

y2

72
. So from the above expression,

∫ ∞

3K

typ−1P

(
sup

0≤s≤1
Y (s) ≥ y

3
(log t)β − η

)
dy ≤

∫ ∞

3K

4yp−1 exp

(
−CG,γ

y2

72
(log t)

)
dy.

Let z = y2, by substitution,

∫ ∞

3K

typ−1P

(
sup

0≤s≤1
Y (s) ≥ αy(log t)β − η

)
dy

≤ 2

∫ ∞

(3K)2
z

p−2
2 exp

(
−CG,γ(log t)

72
z

)
dz

≤ 2

(
CG,γ(log t)

72

)− p
2

Γ
(p

2

)
< ∞.
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Chapter 4

Congestion Events in a Fractional Brownian Model

4.1 Introduction

Congestion events in communication networks cause packet losses, and it is well

known that these losses occur in bursts [33] [70]. Furthermore the frequency and

the duration of these congestion events significantly influence the perceived network

performance [6] [65]. The Internet Engineering Task Force has defined measurement-

based QoS metrics [39] aimed at characterizing packet loss patterns. Measured

packet traces [33] [66] have been used to create models for the temporal dependence

of packet loss. These models assume a specific packet loss process, e.g., one that

transits between different states, such as a no-loss state and a loss state. However,

transforming network traffic parameters directly into predictions of the properties of

congestion events will aid network design and provide a useful indication of QoS. The

properties to be considered here include the rate, the duration, and the magnitude

of the delay induced by congestion events. An approach for determining the rate

of congestion events for some standard traffic models, such as M/M/1, M/D/1 is

presented in [24]. In this chapter the approach is extended in two directions: (1)

to a fluid queueing model with a self-similar input and (2) to include additional

properties of congestion events.

In the early 1990s, researchers with Bellcore observed the phenomena of self-

similarity and long-range dependence in LAN traffic [44], which roughly means that
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the traffic “looks” similar under different time scales and the correlation between

packets decays very slowly. This observation is inconsistent with the short range

dependence assumption in traditional traffic models, such as the Poisson process

and other Markov models. Subsequent studies [10], [57] showed that the traditional

models seem inadequate for data networks. Since then, many other traffic models

have been proposed, such as fractal point processes [60] and multifractal models [21].

In 1994, Norros [49] proposed a fluid queueing model with a fractional Brownian

motion as input, that is, a fractional Brownian queueing model. A fluid model

whose input is not packetized is suitable for modeling high speed networks. For

example, a fluid model is used to analyze high-precision router measurement in [28].

A fractional Brownian motion for suitable values of the Hurst parameter process

has the properties of self-similarity and long-range dependence. By analyzing the

origin of self-similarity and long-range dependence in network traffic, it was shown

in [61] that the superposition of a family of homogeneous ON/OFF traffic sources

with heavy tailed ON and OFF periods, with proper scaling, weakly converges to

a fractional Brownian motion plus a linear component. The superposition of traffic

sources is well-suited to the network core, which has thousands of simultaneous

traffic flows. It has been observed that long-range dependence is a property of the

backbone traffic [35]. Recent network measurements [62] also justify the applicability

of a fractional Brownian motion, which is a Gaussian process, as a traffic model

for aggregated network traffic. Thus the main focus is on the characteristics of

congestion events in a fractional Brownian model.

The primary contribution of this chapter is the development of methodologies for

evaluating the expectations of the properties of congestion events in a fractional

Brownian model. The structure of this chapter is as follows: In Section 4.2, a

congestion event is defined, some preliminaries on the fractional Brownian model

and the Poisson clumping approximation are given. In Section 4.3, the definition of

a conditioned fBm is introduced and some properties of the process are discussed.
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An approximation for a congestion event based on a conditioned fBm is proposed

in Section 4.4. The temporal properties of congestion events and approximation

methods are discussed in Section 4.5. Comparisons between the evaluations made

by the proposed methodologies and simulations are presented in Section 4.6. Finally,

some conclusions are drawn in Section 4.7.

4.2 Preliminaries

In this section, a congestion event is defined and some preliminaries on a fractional

Brownian model and the Poisson clumping approximation are given for future analy-

sis.

4.2.1 Congestion Events

Let {Q(t), t ∈ R} be a queue length process. A busy period from t1 to t2 is a period

such that Q(t1) = Q(t2) = 0 but Q(t) > 0 for all t ∈ (t1, t2). In a busy period from

t1 to t2, a congestion event with a level b is defined to occur at time tb if tb is the first

time that the process Q(t) reaches a fixed level b. The congestion event ends at time

t2, i.e. the first time the queue becomes empty after tb. Two congestion events are

shown in Figure 4.1. Given this definition of a congestion event, the process Q(t)

can reenter the level b multiple times during one congestion event. The premise of

this work is that, for a large b, a congestion event as defined here results in a burst

of packet losses.

Formally as in [3], let (Ω, F , P ) be a probability space and θt be a measurable

flow on (Ω,F ) which is invariant under P . Let t
(i)
b denote the beginning of the i-th

congestion event, such that, −∞ ≤ ... < t
(−1)
b < t

(0)
b ≤ 0 < t

(1)
b < t

(2)
b < ... ≤ ∞. Let

t
(i)
1 and t

(i)
2 be the corresponding beginning and end of the busy period in which the

i-th congestion event occurs. Let N = {t(i)b , i ∈ Z} denote the set of the beginning

times of congestion events, then {N, θt, P} forms a stationary marked point process,

where the paths of congestion events are viewed as marks. Let P 0
N be the associated
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Figure 4.1: Example of workload process and definitions of random variables of
interest

Palm probability defined as

P 0
N(A) =

1

E [N(C)]
E

[∫

C

(1A ◦ θs)N(ds)

]
,

where A ∈ F , N(C) denotes the number of points in a Borel set C and 1A is an

indicator function. Let E represent the expectation with respect to P , and let E0

represent the expectation with respect to P 0
N .

The inter-congestion event time between the i-th and the (i + 1)-th congestion

events is denoted by τ
(i+1)
b = t

(i+1)
b − t

(i)
b . For studying the properties of an arbitrary

congestion event, the superscripts are omitted to simplify the notation. Then the

mean inter-congestion event time is E0 [τb]. As shown in [24], E0 [τb] (or the rate

1/E0 [τb]) is a useful QoS metric. The other metrics of an arbitrary congestion

event are E0[CQ,b], the mean sojourn time that Q(t) spends above threshold b in a

congestion event; E0[Dcong,b], the mean duration of a congestion event, i.e., the time

from tb to t2; E0[DQ,b], the mean duration of a busy period containing a congestion

event, i.e., the time from t1 to t2; and E0[AQ,b] which is the mean peak queue length

of a congestion event. In a study of high precision router measurements [28], it is
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demonstrated that the (DQ,b, AQ,b) pairs can be used to describe a busy period in

which the queue length exceeds a congestion threshold b. The set of metrics, E0[τb],

E0[CQ,b], E0[Dcong,b], E0[DQ,b], E0[AQ,b] can be used to characterize the nature of

congestion events.

4.2.2 Fractional Brownian Queueing Model

As in [49], a fractional Brownian motion, which is a Gaussian process with stationary

increments, is used to model network traffic to capture the self-similarity and the

long-range dependence, Figure 4.2.

A(t) 

O 
µ 

Figure 4.2: A queueing model with Fractional Brownian input, A(t) = mt+σBH(t)

Let A(t) = mt + σBH(t) be the cumulated arrivals up to time t, where m is the

mean input rate (bps), σ stands for the variance coefficient (bit), and {BH(t), t ∈ R}
is a standard fractional Brownian motion with Hurst parameter H ∈ [1/2, 1). An

input traffic, modeled by A(t), is determined by the parameters (m, σ, H). At time

t, the queue length Qo(t) can be expressed as, see Section 2.1 of Chapter 2 and the

references therein, Qo(t) = A(t)− µt− infs≤t(A(s)− µs), where µ is a fixed service

rate in (bps). Then Qo(t) can be written as

Qo(t) = σBH(t)− (µ−m)t− inf
s≤t

(
σBH(s)− (µ−m)s

)
, (4.1)

where µ −m is the surplus rate. For the stability of the queue, it is assumed that

µ−m > 0.

Consider a scaled Qo(t), which is defined as Q(t) = Qo(t)/σ. It can be observed

that the temporal properties of the congestion events of Qo(t) with a level bo are

the same as those of the congestion events of Q(t) with a level b = bo/σ. Therefore
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to study the properties of congestion events of a queue with an input (m,σ,H) and

a service rate µ, it is equivalent to study the corresponding scaled queue length

process Q(t),

Q(t) = BH(t)− ct− inf
s≤t

(BH(s)− cs), (4.2)

where c = (µ−m)/σ stands for the scaled surplus rate.

4.2.3 Poisson Clumping Approximation

Following [24], the Poisson clumping approximation [1] is used to find the inter-

congestion event time. For a threshold b, the overflow probability, P (Q(0) ≥ b), and

the mean sojourn time of Q(t) above the threshold in a congestion event, E0[CQ,b],

are applied to evaluate the mean inter-congestion event time as

E0[τb] ≈ E0[CQ,b]

P (Q(0) ≥ b)
. (4.3)

Note that for a fractional Brownian traffic, the probability P (Q(0) ≥ b) can be ap-

proximated using the result in [29]. Thus the problem reduces to finding E0[CQ,b].

By applying the Poisson clumping approximation, it is assumed that the congestion

events are rare and the dependence among the events are small. These assumptions

are reasonable for the case studied here. When b is large, the congestion events are

rare and far apart. Although BH(t) has long range dependence, the dependence

among congestion events are small. The Poisson clumping approximation is vali-

dated with simulations, some of which are shown in Figure 4.8a, 4.8b, 4.8c. These

results indicate that the Poisson clumping approximation can be used to evaluate

the mean inter-congestion event time.

73



4.3 Conditioned Fractional Brownian Motion

To simplify the analysis of congestion events in a fractional Brownian model, a

concept of a conditioned fractional Brownian motion is introduced.

Proposition 4.3.1. For a fixed constant r and t, s ≥ 0, let

σr(s, t) =
1

2
[s2H + t2H − |t− s|2H ]− Mr(t)Mr(s)

4r2H
, (4.4)

where

Mr(t) = (t + r)2H − t2H − r2H , (4.5)

then σr(s, t) is positive definite.

Proof. Since σr(s, t) = σr(t, s) is a symmetric function, it is sufficient to show that

the for any t1, t2, ..., tn ≥ 0, the n× n symmetric matrix M , where

M =




σr(t1, t1) σr(t1, t2) · · · σr(t1, tn)

σr(t2, t1) σr(t2, t2) · · · σr(t2, tn)

...
...

. . .
...

σr(tn, t1) σr(tn, t2) · · · σr(tn, tn)




,

is positive definite. Let Σ11 be an n× n matrix such that

Σ11 =




t2H
1 · · · · · · 1

2
[t2H

1 + t2H
n − |t1 − tn|2H ]

...
. . .

...

...
. . .

...

1
2
[t2H

1 + t2H
n − |t1 − tn|2H ] · · · · · · t2H

n




,

Σ21 =
[

1
2
Mr(t1)

1
2
Mr(t2) · · · 1

2
Mr(tn)

]
, Σ12 be the transpose of Σ21 and Σ22 =

r2H . Let {BH(t), t ≥ 0} be a fractional Brownian motion with Hurst parameter H.
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It can be observed that

Σ =




Σ11 Σ12

Σ21 Σ22




is the covariance matrix of
{
BH(t1 + r)−BH(r), · · · , BH(tn + r)−BH(r), BH(r)

}
,

and M = Σ11−Σ12Σ
−1
22 Σ21 is the Schur complement of Σ22 in Σ. Since Σ is positive

definite, then M is also positive definite.

According to this proposition, there exists a Gaussian process such that the co-

variance is given by σr(s, t). This Gaussian process with certain mean function is

defined as a conditioned fractional Brownian motion.

Definition 4.3.1 (Conditioned fractional Brownian motion). A conditioned frac-

tional Brownian motion, denoted by {B̃H(t; r, d), t ≥ 0}, is a Gaussian process with

mean µr,d(t)

µr,d(t) =
Mr(t)

2r2H
d. (4.6)

and covariance σr(s, t) given in (4.4), where r and d are two constants.

The process {B̃H(t; r, d), t ≥ 0} is called a conditioned fractional Brownian mo-

tion, since µr,d(t) = E[BH(t + r) − BH(r)|BH(r) = d] and σr(s, t) = Cov(BH(s +

r) − BH(r), BH(t + r) − BH(r)|BH(r) = d). For H = 1/2, a conditioned frac-

tional Brownian motion {B̃H(t; r, d), t ≥ 0} reduces to a standard Brownian motion

{B(t), t ≥ 0}. The following two lemmas give some properties of the mean µr,d(·)
and the covariance function σr(·, ·) of a conditioned fractional Brownian motion.

For brevity, let

mr(t) = (t + r)2H−1 − t2H−1. (4.7)

Lemma 4.3.1. For H ∈ [1/2, 1), r > 0 and t ≥ 0, the following results hold.
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1. mr(t) ≤ r2H−1,

2. Mr(t) ≤ 2Htr2H−1, Mr(t) ≤ 2Hrt2H−1,

3. Mr(t) ≥ 2Htmr(t),

4. ct− µr,d(t) increases with respect to t.

Proof. 1. It can be shown that mr(t) is a decreasing function for H ∈ (1
2
, 1). The

lemma follows the observation that mr(0) = r2H−1.

2. Since Mr(t) = 2H(2H − 1)
∫ t

0

∫ r

0
(s + u)2H−2dsdu, then

Mr(t) = 2H

∫ t

0

[(r + u)2H−1 − u2H−1]du ≤ 2H

∫ t

0

r2H−1du = 2Htr2H−1

Similarly, it can be shown that Mr(t) ≤ 2Hrt2H−1.

3. Notice that M ′
r(t) = 2Hmr(t), with Taylor’s expansion,

Mr(t) = Mr(0) + 2Hmr(ξ)t = 2Hmr(ξ)t

where ξ ∈ [0, t]. Since mr(t) is decreasing with respect to t, the result follows.

4. With the above results, it can be verified that the first derivative of ct−µr,d(t)

is positive.

Lemma 4.3.2. 1. For a fixed t, σr(s, t) increases with respect to s,

2. σ2
r(t) increases with respect to t.

Proof. For the first part, it is sufficient to show that dσr(s,t)
ds

≥ 0 for fixed t.

dσr(s, t)

ds
= H

[
s2H−1 − (s− t)2H−1

]−H
Mr(t)mr(s)

2r2H
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Since Mr(t) ≤ 2Htr2H−1 by Lemma 4.3.1, it follows that

dσr(s, t)

ds
≥ H

{
s2H−1 − (s− t)2H−1 − 2Htr2H−1

2r2H
mr(s)

}

= H

{
s2H−1 − (s− t)2H−1 − Ht

r

[
(s + r)2H−1 − s2H−1

]}

= Hs2H−1

{
1−

(
1− t

s

)2H−1

− Ht

r

[(
1 +

r

s

)2H−1

− 1

]}

= Hs2H−1

{(
1− t

s
+

t

s

)2H−1

−
(

1− t

s

)2H−1

− Ht

r

[(
1 +

r

s

)2H−1

− 1

]}
.

Expand 1 = (1−t/s+t/s)2H−1 at 1−t/s, then 1 = (1−t/s)2H−1+(2H−1)ξ2H−2
1 t/s

where ξ1 ∈ (1 − t/s, 1), and expand (1 + r/s)2H−1 at 1, then (1 + r/s)2H−1 =

1 + (2H − 1)ξ2H−2
2 r/s, where ξ2 ∈ (1, 1 + r/s), thus,

dσr(s, t)

ds
= Hs2H−1

{
(2H − 1)ξ2H−2

1

t

s
− Ht

r
(2H − 1)ξ2H−2

2

r

s

}

= H(2H − 1)s2H−2t
(
ξ2H−2
1 −Hξ2H−2

2

)

≥ H(2H − 1)s2H−2t(ξ2H−2
1 −H), since ξ2H−2

2 ≤ 1

> 0, since ξ2H−2
1 ≥ 1.

Thus σr(s, t) is increasing with respect to s. Next it is shown that dσ2
r(t)
dt

≥ 0,

which implies that σ2
r(t) increases with respect to t. Since Mr(t) ≤ 2Hrt2H−1 and

mr(t) ≤ r2H−1,

dσ2
r(t)

dt
= 2Ht2H−1 −H

Mr(t)mr(t)

r2H

≥ 2Ht2H−1 −H
2Hrt2H−1r2H−1

r2H

= 2H(1−H)t2H−1 > 0.
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Define a process {X(t), t ≥ 0}, such that,

X(t) = B̃H(t; rb, db)− ct + b, (4.8)

which is a conditioned fractional Brownian motion with a negative drift, Figure 4.3,

where c > 0, b > 0 are constants and

rb =
bH

c(1−H)
, (4.9)

db = b + crb. (4.10)

Note that when t = 0, X(0) = b. The process {X(t), t ≥ 0} will be used to

Time t

X
(t

)

X(t) vs t

r
b
 

0 R
b
 

b 

Figure 4.3: Process X(t)

approximate a congestion event with a level b in Section 4.4.

Although the parameters r and d of a conditioned fractional Brownian motion can

take any values, here only a special case is considered, that is, r = rb and d = db

given in (4.9) and (4.10), respectively. The justification for choosing the values will

be given in Section 4.4. Note that rb and db are uniquely determined by b, c and

H. Rewriting µrb,db
(t) in terms of rb with (4.9), (4.10) and denoting µrb,db

(t) with

78



µrb
(t), it is obtained that

µrb
(t) =

Mrb
(t)

2r2H−1
b

c

H
. (4.11)

To simplify notation, write B̃H(t; rb, db) as B̃H(t; rb).

Let Rb be the first time that X(t) reaches 0, that is,

Rb = inf
t≥0
{t : X(t) ≤ 0}. (4.12)

Notice that the two events {Rb ≤ u} and {inf0≤s≤u X(s) ≤ 0} are equivalent. Let

CX,b be the time that X(t) spends above b in [0, Rb], see Figure 4.3. The properties

of CX,b and Rb are discussed in the following subsections.

4.3.1 An Upper Bound of E[CX,b]

The sojourn time CX,b, that is, the time X(t) spends above b in [0, Rb], can be

written as

CX,b =

∫ Rb

0

1[b,∞) (X(t; rb, db)) dt.

Let Φ̄(·) = 1− Φ(·) = 1√
2π

∫∞
· e−ξ2/2dξ and

UCb
=

∫ ∞

0

Φ̄


ct− µrb,db

(t)√
σ2

rb
(t)


 dt. (4.13)

Then UCb
is an upper bound of E[CX,b], since

E[CX,b] ≤ E

∫ ∞

0

1[b,∞)

(
b + B̃H(t; rb, db)− ct

)
dt

= UCb
.
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For H = 1/2, the process X(t) reduces to a standard Brownian motion with a

negative drift. By the dominated convergence theorem, it can be verified that

limb→∞ E[CX,b] = UCb
(for H = 1/2, it can be verified from (4.13) that UCb

is a

constant which is independent of b). Then for the Brownian case, as b is large,

E[CX,b] ≈ UCb
. Motivated by the case of H = 1/2, an ad-hoc approximation is

proposed for H ∈ (1/2, 1), that is,

E[CX,b] ≈ UCb
. (4.14)

Unfortunately, this approximation cannot be justified with limit argument. But

as it will be shown in Section 4.6, this approximation produces useful results on

evaluating properties of congestion events in a fractional Brownian model.

4.3.2 Properties of E[Rb]

In this subsection, the expectation of Rb, i.e., E[Rb], is discussed. The exact E[Rb]

is unknown except for the case H = 1/2, where E[Rb] = b/c. For H ∈ (1/2, 1),

both upper and lower bounds of E[Rb] are derived in Theorem 4.3.1 and 4.3.2,

respectively.

Theorem 4.3.1 (An upper bound of E[Rb]). Let Rb be defined in (4.12). For c > 0,

b > 0,

E[Rb] ≤
∫ ∞

0

Φ̄


ct− b− µrb

(t)√
σ2

rb
(t)


 dt, (4.15)

where Φ̄(x) = 1 − Φ(x) = 1√
2π

∫∞
x

e
−ξ2

2 dξ and µrb
(t), σ2

rb
(t) are as given in (4.11)

and (4.4), respectively.

Proof. By the definition of Rb, the two events {Rb ≥ t} = {inf0≤s≤t X(s) ≥ 0} are
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equivalent. Then

P (Rb ≥ t) = P

(
inf

0≤s≤t
X(s) ≥ 0

)

= P

(
inf

0≤s≤t

(
b + B̃H(s; rb)− cs

)
≥ 0

)

≤ P
(
b + B̃H(t; rb)− ct ≥ 0

)

= P
(
B̃H(t; rb) ≥ ct− b

)

= Φ̄


ct− b− µrb

(t)√
σ2

rb
(t)


 ,

Since E[Rb] =
∫∞

0
P (Rb ≥ t)dt, following the above inequality, the upper bound is

obtained.

Let URb
denote the upper bound of E[Rb], that is,

URb
=

∫ ∞

0

Φ̄


ct− b− µrb

(t)√
σ2

rb
(t)


 dt. (4.16)

Remark 4.3.1. For H = 1/2, it is known [27, page 14] that

P (Rb ≥ t) = Φ

(
b− ct√

t

)
− e2cbΦ

(−b− ct√
t

)
, (4.17)

and E[Rb] = b/c. For a large b, it is claimed that URb
≈ E[Rb] in the sense that the

relative error defined as err =
URb

−E[Rb]

E[Rb]
→ 0 as b →∞. From (4.16), it is obtained

that for H = 1/2, URb
=

∫∞
0

Φ̄
(

ct−b√
t

)
dt =

∫∞
0

Φ
(

b−ct√
t

)
dt. So from (4.17), it
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follows that

URb
− E[Rb] =

∫ ∞

0

e2cbΦ̄

(
b + ct√

t

)
dt

≤ 1√
2π

∫ ∞

0

e2cb

√
t

b + ct
e−

(b+ct)2

2t dt

=
1√
2π

∫ ∞

0

√
t

b + ct
e−

(b−ct)2

2t dt.

Since
√

t
b+ct

≤ 1
2
√

bc
and from Lemma 4.8.1, as b →∞,

URb
− E[Rb] ≤ 1√

2π

1

2
√

bc

∫ ∞

0

e−
(b−ct)2

2t dt ∼ 1

2c2
.

Therefore err =
URb

−E[Rb]

E[Rb]
→ 0 as b →∞, since E[Rb] = b/c.

Remark 4.3.2. For H > 1/2, the exact E[Rb] is unknown. But it will be illustrated

by deriving a lower bound of E[Rb] that for a large b, URb
≈ E[Rb] in the sense that

err =
URb

−E[Rb]

E[Rb]
→ 0 as b →∞.

Let α0 be a constant such that

α0 = 1−max
s≥0

(
(s + 1)2H − s2H − 1

)(
(s + 1)2H−1 − s2H−1

)

2s2H−1
. (4.18)

Theorem 4.3.2 (A lower bound of E[Rb]).

E [Rb] ≥
∫ ∞

0

w−1(v)p(v)dv, (4.19)

where w(v) = σ2
rb

(v) and w−1(v) is the inverse function of w(v), that is, w−1(w(v)) =

v. The function p(v) is defined as

p(v) =
b + µrb

(g(v))− cg(v)− v
[
µ′rb

(g(v))g′(v)− cg′(v)
]

v3/2
φ

(
b + µrb

(g(v))− cg(v)√
v

)
,

(4.20)
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where φ(x) is the standard normal density, that is, φ(x) = (2π)−1/2 exp(−x2/2),

g(v) = α
− 1

2H
0 v

1
2H , (4.21)

and α0 is given in (4.18).

Proof. Since Rb = inft≥0{t : X(t) ≤ 0}, it follows that

P (Rb ≥ u) = P

(
inf

t∈(0,u)
X(t) > 0

)

= P

(
− sup

t∈(0,u)

−X(t) > 0

)

= P

(
sup

t∈(0,u)

−B̃H(t; rb) + ct− b < 0

)

= P

(
sup

t∈(0,u)

−B̃H(t; rb) + ct < b

)
. (4.22)

Recall that for s, t ≥ 0, the mean of B̃H(t; rb) is µrb
(t) =

Mrb
(t)

2r2H−1
b

c
H

, and the covariance

is σrb
(s, t) = Cov(B̃H(t; rb), B̃

H(s; rb)) = 1
2
[s2H + t2H − |t− s|2H ]− Mrb

(t)Mrb
(s)

4r2H
b

. Let

{B(t), t ≥ 0} be a standard Brownian motion and let

w(t) = σ2
rb

(t) = t2H − [Mrb
(t)]2

4r2H
b

(4.23)

denote the variance of B̃H(t; rb). Define a random process {Y (t), t ≥ 0} which is a

scaled Brownian motion with a drift, that is, {Y (t) = B(w(t)) − µrb
(t), t ≥ 0}. So

{Y (t), t ≥ 0} is a Gaussian process, for ∀s, t ≥ 0, it has mean E[Y (t)] = −µrb
(t)

and covariance Cov(Y (s), Y (t)) = min(w(s), w(t)). Based on Lemma 4.3.2, for
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s ≥ t ≥ 0, it is obtained that

E[−B̃H(t; rb) + ct] = E[Y (t) + ct],

V ar(−B̃H(t; rb) + ct) = V ar(Y (t) + ct),

Cov(−B̃H(t; rb) + ct,−B̃H(s; rb) + cs) ≥ Cov(Y (t) + ct, Y (s) + cs).

By the Slepian inequality, it is obtained that

P

(
sup

t∈(0,u)

−B̃H(t; rb) + ct < b

)
≥ P

(
sup

t∈(0,u)

Y (t) + ct < b

)
. (4.24)

Let w−1(t) be the inverse function of w(t), that is, w−1(w(t)) = t. Combining (4.22)

and (4.24), it follows that

P (Rb ≥ u) ≥ P

(
sup

t∈(0,u)

B(w(t))− µrb
(t) + ct < b

)
, let v = w(t)

= P

(
sup

v∈(0,w(u))

B(v)− µrb
(w−1(v)) + cw−1(v) < b

)
. (4.25)

In Lemma 4.8.2, it is verified that w−1(v) ≤ g(v) for ∀v ≥ 0, and since −µrb
(t) +

ct is increasing with respect to t, it is obtained that −µrb
(w−1(v)) + cw−1(v) ≤

−µrb
(g(v)) + cg(v) for ∀v ≥ 0. From (4.25),

P (Rb ≥ u) ≥ P

(
sup

v∈(0,w(u))

B(v)− µrb
(g(v)) + cg(v) < b

)
. (4.26)

Let Tb = inf{v ≥ 0 : B(v) − µrb
(g(v)) + cg(v) ≥ b} be the first time that the

Brownian motion {B(v), v ≥ 0} reaches the boundary b + µrb
(g(v)) − cg(v), then

from (4.26),

P (Rb ≥ u) ≥ P (Tb ≥ w(u)) = P
(
w−1(Tb) ≥ u

)
.
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Thus

E [Rb] ≥ E
[
w−1(Tb)

]
. (4.27)

Based on the integral equation of the density of Tb, cf. [22], if the boundary b +

µrb
(g(v))− cg(v) is convex, then the function p(v) given in (4.20) is a lower bound

of the density of Tb.

In Lemma 4.8.3, it is shown that b + µrb
(g(v)) − cg(v) is convex. Thus following

(4.27), the theorem is proved.

Let LRb
denote the lower bound of E[Rb], that is,

LRb
=

∫ ∞

0

w−1(v)p(v)dv,

where w(v) and p(v) are defined in Theorem (4.3.2). Approximating E[Rb] with

URb
, let the relative error be defined as

err =
URb

− E[Rb]

E[Rb]
.

It is illustrated in Figure 4.4 that for H = 0.7 and c = 2.11, an upper bound of the

relative error, (URb
−LRb

)/LRb
, decays to 0 as b becomes large. Similar phenomena

are observed for different values of H and c. Thus for H ∈ (1/2, 1), the upper

bound, URb
, can be used as an approximation of E[Rb] for large b, i.e.,

E[Rb] ≈ URb
. (4.28)
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Figure 4.4: Bounds of E[Rb] and the bound of the relative error

4.4 Busy Periods Containing Congestion Events

The busy periods of a fractional Brownian model have been discussed in [51], and

recently in [45], where the busy periods are defined as the periods that the queue is

not empty. It is different from the busy periods discussed here. Note that a busy

period hereafter always means a busy period containing a congestion event defined

in Section 4.2. A busy period from t1 to t2 is shown in Figure 4.5a, where tb is the

first time that the queue reaches a level b in the busy period, and t2 is the first time

that the queue returns to 0 after tb. The time tb separates one busy period into

two parts, [t1, tb] and [tb, t2]. The objective is to evaluate the mean inter-congestion

event time E[τb] with the Poisson clumping approximation. So from (4.3), it is

necessary to find E0[CQ,b], which is the mean time that the queue spends above the

level b in a congestion event, Figure 4.5a. It will be demonstrated that the problem

can be simplified by approximating Q(t) in [tb, t2] with a process X(t), which is a

conditioned fBm with a negative drift, Figure 4.5b.

Proposition 4.4.1. Let t1 and t2 be the end points of a busy period. Let tb ∈ [t1, t2]

be the first time that Q(t) reaches a level b. Then for t ∈ [t1, t2], Q(t) can be rewritten
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Figure 4.5: A busy period of Q(t) from t1 to t2, and the approximation process X(t)

as

Q(t) = BH(t)−BH(t1)− c(t− t1), t ∈ [t1, tb] (4.29)

Q(t) = b + BH(t)−BH(tb)− c(t− tb), t ∈ [tb, t2]. (4.30)

Proof. From the given condition, Q(t1) = 0, Q(tb) = b and Q(s) > 0 for s ∈ (t1, t2).

From (4.2), it can be verified that for ∀t ∈ (t1, t2),

BH(t1)− ct1 = inf
s≤t

(
BH(s)− cs

)
.

Then based on (4.2), for t ∈ [t1, tb],

Q(t) = BH(t)− ct− inf
s≤t

(
BH(s)− cs

)

= BH(t)−BH(t1)− c(t− t1).

Similarly, Q(t) = b + [BH(t)−BH(tb)]− c(t− tb), for t ∈ [tb, t2].

Remark 4.4.1. In [t1, tb], Q(t) increases from 0 to the level b. Since Q(tb) = b,

from (4.29), the increment of the fractional Brownian motion in [t1, tb] is BH(tb)−
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BH(t1) = b + c(tb − t1). For the period of [tb, t2], recall that if tb is a constant,

{BH(t) − BH(tb), t ∈ [tb,∞)} is equivalent to {BH(t), t ∈ [0,∞)} in distribution.

This is the motivation for approximating the period [tb, t2] of Q(t) with a conditioned

fractional Brownian motion with a negative drift, that is, the process {X(t), t ≥ 0}
defined in (4.8).

For a large b, the congestion events are rare. Since “rare events occur in the

most likely way” and the most probable sample path of Q(t) found in [51] spends

time bH/c(1 − H) increasing from 0 to a large fixed level b, then the constants rb

defined in (4.9) and db defined in (4.10) are used to represent the time tb − t1 and

the increment of the fractional Brownian motion in [t1, tb], respectively.

The part [tb, t2] of a busy period of Q(t) is approximated by [0, Rb] of X(t), Figure

4.5. Let CX,b denote the sojourn time that X(t) spends above the level b in the

period of [0, Rb]. The idea is to approximate E0[CQ,b] with E[CX,b], that is,

E0[CQ,b] ≈ E[CX,b]. (4.31)

Since the process X(t) is not related to the point process N in Section 4.2.1, the

expectation of CX,b is denoted with E[CX,b], which is with respect to P .

Remark 4.4.2. The time interval [0, Rb] of X(t) is used to approximate the part

[tb, t2] of a busy period. This approximation has some inherent shortcomings. The

parameters rb and db of X(t) are used to represent tb − t1 and the corresponding

increment of the fractional Brownian motion, respectively. However, they cannot

capture the property that Q(t) is less than b and strictly positive in (t1, tb), i.e.,

0 < Q(t) < b, for all t ∈ (t1, tb). And for a fixed b, rb is a constant, but tb − t1

is obviously a random variable. Thus {Q(t), t ∈ (tb, t2)} is not equivalent to a

conditioned fractional Brownian motion. As an approximation, X(t) cannot exactly

capture all the characteristics of a congestion event. However its use simplifies the

analysis and produces useful results.
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4.5 Approximations for Temporal Properties of Congestion Events

4.5.1 Mean Sojourn Time and Inter-congestion Event Time

By (4.28), the mean sojourn time E0[CQ,b] is approximated with E[CX,b]. From

Section 4.3, UCb
defined in (4.13) is used to approximate E[CX,b]. Thus

E0[CQ,b] ≈ E[CX,b] ≈ UCb
. (4.32)

Combining (4.3) and (4.32), the mean inter-congestion event time E0[τb] can be

expressed as

E0[τb] ≈ UCb

P (Q(0) ≥ b)
. (4.33)

Even though several approximations were applied to obtain (4.33), the above analy-

sis successfully predicts trends observed from simulations. The method provides

better predictions for the inter-congestion event time than directly using the recip-

rocal of the tail probability, 1/P (Q(0) ≥ b), as will be discussed in Section 4.6.

4.5.2 Mean Duration of Congestion Events

As shown in Figure 4.1, a congestion event starts at time tb and ends at t2. Let

Dcong,b = t2 − tb denote the duration time of a congestion event. Since the period

[tb, t2] of Q(t) is approximated by [0, Rb] of X(t) and from (4.28), E0[Dcong,b] can be

expressed as

E0[Dcong,b] = E0[t2 − tb] ≈ E[Rb] ≈ URb
. (4.34)

4.5.3 Mean Duration of Busy Periods

Let DQ,b denote the duration of a busy period in which a congestion event occurs.

The mean duration is E0[DQ,b] = E0[t2 − t1]. From Figure 4.1, E0[DQ,b] can be

written as E0[DQ,b] = E0[Dcong,b] + E0[tb − t1]. Recall that tb − t1 is approximated
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with a constant rb, which can be evaluated with (4.9). Thus, combining (4.34),

E0[DQ,b] ≈ E0 [Dcong,b] + rb ≈ URb
+ rb. (4.35)

4.5.4 Mean Amplitude

The busy periods in a network router have been previously modeled by triangles in

[28], so a triangle is used to approximate a busy period in Figure 4.6. The triangle
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it)
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s
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B
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Figure 4.6: Triangle approximation of a busy period

has a base of Bb, crosses the level b at s1 and s2. The mean amplitude of a busy

period, E0[AQ,b], can be approximated with the height of the triangle Ab. Let Lb

denote s2 − s1. Note that Lb is the length that the triangle stays above the level

b, E0[CQ,b], the mean sojourn time of a congestion event, is applied to approximate

Lb, that is, Lb ≈ E0[CQ,b]. The base Bb is approximated with the mean duration

time of a busy period E0[DQ,b]. With simple geometry, it can be derived that

Ab = b Bb

Bb−Lb
≈ b

E0[DQ,b]

E0[DQ,b]−E0[CQ,b]
. Combining (4.32) and (4.35),

E0[AQ,b] ≈ Ab ≈ b
URb

+ rb

URb
+ rb − UCb

. (4.36)
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4.6 Numerical Comparison

So far the properties of congestion events of a scaled queue length process Q =

{Q(t), t ∈ R} has been discussed.

Here the properties of congestion events of the original queue length process, given

in (4.1), is briefly discussed. Recall that Qo = {Qo(t), t ∈ R} is the queue length

process which has an input (m, σ, H) and a service rate µ. To study the congestion

events in Qo, first transform the process Qo to the corresponding scaled queue length

process Q, as given in (4.2). Then the temporal properties of congestion events with

a level bo in Qo is equal to the corresponding temporal properties of congestion

events with a level b = bo/σ in the scaled process Q. For example, the mean sojourn

time of congestion events with a level bo in Qo is equal to E0[CQ,b] where b = bo/σ.

Similar results hold for the mean inter-congestion event time, the mean duration

of a congestion event and the mean duration of a busy period. But note that in

the process Qo, the mean amplitude of congestion events with a level bo is equal to

σE0[AQ,b].

In the following, the properties of congestion events and the corresponding busy

periods are evaluated. Evaluations based on the above analysis are compared with

simulation results. Fractional Brownian motions are generated with the algorithm

proposed in [11]. For H ∈ [0.5, 0.79], 20 traces of fractional Brownian motion are

generated, each trace has 224 samples; for H = 0.85, 80 traces are generated, each

has 222 samples 1. The parameters H and c are varied to modify the long-range

intensity and the scaled surplus rate. The relative error of the approximations

is reported, which is defined as ||x−x̂||
||x|| , where x is the simulation result, x̂ is the

corresponding approximation and || · || is the Euclidean norm.

Different values for ∆t, the time between consecutive samples, are used in simula-

tions. On one hand, the ∆t is necessary to be small so that the sojourn and duration

1The simulations were performed on a computer with two Intel Xeon Processors running at
2.8 GHz with 2GB RAM. The memory capacity combined with the numerical limitation of the
algorithm in [11] limited the sample size to 224 for H ∈ [0.5, 0.79], and 222 for H = 0.85.
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times can be measured accurately; on the other hand, to collect enough congestion

events, the whole trace (224 or 222 samples) needs to represent a time series which

is in the order of hours.

For a fixed simulation length when the threshold b increases, fewer and fewer

congestion events occur (the events become rare). For example, under the conditions

H = 0.85, c = 3.5, for b = 0.05, there are over 50000 congestion events, but for

b = 0.25, only about 600 events over 80 traces can be collected. Consequently,

fluctuations can be noticed for large b in the simulation results, see Figure 4.7a,

4.7b, 4.7c, 4.9a.

4.6.1 Mean Sojourn Time E0[CQ,b]

The comparisons between the predicted and simulated E0[CQ,b] are shown in Figure

4.7. The approximation results follow the trends as a function of the surplus rate c

and the Hurst parameter H, the relative errors range from 10% to 20%. The errors

are partly caused by rb. It is observed that rb overestimates E0[tb− t1], i.e., the time

that the queue builds up from 0 to b in a busy period. Fluctuations, which are caused

by small sample sizes, can be observed for large b, Figure 4.7a, 4.7b, 4.7c. Similar

phenomena have been observed in network router performance measurements, e.g.,

Figure 13 in [28].

4.6.2 Mean Inter-Congestion Event Time E0[τb]

The approximation given in (4.33) is compared with the simulation results and an-

other approximation method, 1/P (Q(0) ≥ b), the reciprocal of the overflow proba-

bility. As shown in Figure 4.8, the approximation (4.33) outperforms 1/P (Q(0) ≥ b)

in most cases. Notice that for different parameter sets, E0[τb] may increase or de-

crease with respect to H. For example, when b = 2.9, c = 1.5, E0[τb] decreases versus

H as shown in Figure 4.8e; but for b = 0.95, c = 3, E0[τb] increases in Figure 4.8f .

In both cases, the approximation results can follow the observed trends. In Figure
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4.8a, 4.8b and 4.8c, the Poisson clumping approximation, given in (4.3), is validated;

both E0[CQ,b] and P (Q(0) ≥ b) in (4.3) are measured from the simulations.

4.6.3 Mean Duration of Congestion Events E0[Dcong,b]

It is shown in Figure 4.9 that the approximation, given in (4.34), is close to the

simulation results of E0[Dcong,b], the relative errors are around 10%. In all situations,

as shown in Figure 4.9d, 4.9e, the approximations follow the trends of the simulation

results.

4.6.4 Mean Duration of Busy Periods E0[DQ,b]

In Figure 4.10, the mean durations of busy periods observed from simulations are

compared with the approximation (4.35). Noticed that rb, given in (4.9), over-

estimates the mean time that the queue increases from 0 to b. Thus E0[DQ,b] is

overestimated by the approximation. However, the approximation results follow the

observed trends, the relative errors are from 10% to 30%.

4.6.5 Mean Amplitude E0[AQ,b]

From the simulation results, it is observed that the mean amplitude follows a linear

trend as a function of the threshold b. As shown in Figure 4.11, the approximations

underestimate E0[AQ,b]. Based on (4.36), the underestimation is caused by the

overestimation of E0[DQ,b]. But again the approximations follow the simulation

trends, the relative errors are around 10%. The errors in the approximations are

partly from rb, which overestimates the time that Q(t) increases from 0 to b. If

better knowledge of rb is known, the approximation results can be improved.

To illustrate an application of the proposed methodology, suppose that a link

capacity is to be chosen for a conferencing teleservice. The requirement of an error

free interval for audio and video multimedia conferencing teleservices is given as 30

minutes [23], i.e., the average inter-congestion event time E0[τb] is 1800 seconds,
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Figure 4.10: Comparison of mean duration of busy periods
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Figure 4.11: Comparison of mean amplitude of congestion events
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log(E0[τb]) ≈ 7.5. Then for a fractional Brownian motion traffic characterized by

m = 100Mbps, σ = 107bit, H = 0.75, the proposed method indicates that for

a congestion level of b = 5.5Mb, a link capacity µ = 140Mbps (traffic load ρ =

m/µ ≈ 0.7) would be required to ensure the average congestion free interval of

30 minutes, and in this case, E0[CQ,b] ≈ 90ms, E0[Dcong,b] ≈ 395ms, E0[DQ,b] ≈
800ms, E0[AQ,b] ≈ 6.2Mb.

4.7 Conclusion

It has been recognized that the frequency and the duration of congestion events

significantly impact user-perceived performance. Previous efforts have focused on

measurement-based approaches to determine the frequency and duration of these

events. However, for network design, techniques are needed to predict the conges-

tion events given the nature of traffic. This chapter provides new techniques to

approximate several properties of congestion events, the rate, duration, and ampli-

tude given a fractional Brownian motion traffic. The technique to approximate the

rate outperforms the reciprocal of the overflow probability, i.e., 1/P (Q(0) ≥ b), and

follows the trends observed from simulations. As in [24], the approach for predicting

the rate of congestion events can be directly extended to determine the expected

rate of congestion events for an end-to-end flow that passes through several queues.

Congestion events at each queue along a path can be assumed to be independent and

rare, so an end-to-end flow will experience the sum of the congestion events along

the path. The inter-congestion event time E0[τb] (or its rate 1/E0[τb]), which can be

easily understood by network users, is a useful QoS metric for network design. The

other metrics of congestion events, such as the sojourn time above a threshold, the

duration, and the amplitude, give additional insights into the nature of congestion

events.

These results can be extended in several areas. The accuracy of the techniques

developed here can be improved. The properties of busy periods whose durations
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are larger than a fixed T , discussed in [45], [52], are interesting problems for further

study. Other self-similar traffic models need to be considered, such as the Levy

processes. To understand fully the impacts of self-similar traffic on networks, these

processes need to be analyzed and additional methodologies developed.

4.8 Appendix

Some results used in the chapter are proved in this section as lemmas.

For particular forms of S(x, u), the asymptotic of the integral as u →∞,

∫ ∞

0

exp (S(x, u)) dx

can be discussed through the saddle point method, cf. [12], [47] and the references

therein. Let x0(u) denotes the point at which the function S(x, u) of x achieves its

maximum over [0,∞). Denote for some suitable chosen function q(u)

U(x0(u)) =

{
x : |x− x0(u)| ≤ q(u)

∣∣∣S ′′
xx(x0(u), u)

∣∣∣
−1/2

}
.

The following result is cited from [12].

Theorem 4.8.1. Suppose that

(a) there exists a function q(u) →∞ as u →∞ such that

S
′′
xx(x, u) = S

′′
xx(x0(u), u)[1 + o(1)]

as u →∞ uniformly for x ∈ U(x0(u)),

(b) S
′′
xx(x, u) < 0 for all x, u,

(c) limu→∞ x0(u)
√
|S ′′

xx(x0(u), u)| = ∞.
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Then as u →∞,

∫
exp (S(x, u)) dx ∼

√
− 2π

S ′′
xx(x0(u), u)

exp (S (x0(u), u)) .

Lemma 4.8.1. For c > 0, as u →∞,

∫ ∞

0

exp

(
−(u− ct)2

2t

)
dt ∼

√
2πu

c3
.

Proof. Let S(x, u) = − (u−cx)2

2x
, then x0(u) = u

c
and

S
′
x(x, u) =

u2

2x2
− c2

2
,

S
′′
xx(x, u) = −u2

x3
,

S
′′
xx (x0(u), u) = −c3

u
.

Let q(u) = u
1
3 , then

U (x0(u)) = {x : |x− x0(u)| ≤ q(u)c−
3
2}

=
{

x :
u

c
− u

5
6 c−

3
2 ≤ x ≤ u

c
+ u

5
6 c−

3
2

}
.

It can be verified that

• S
′′
xx(x, u) = S

′′
xx(x0(u), u)[1 + o(1)] as u →∞ uniformly for x ∈ U(x0(u));

• S
′′
xx(x, u) < 0 for all x, u;

• limu→∞ x0(u)
√
|S ′′

xx(x0(u), u)| = ∞.

Since S(x0(u), u) = 0, by Theorem 4.8.1, as u →∞,

∫ ∞

0

exp (S(x, u)) dx ∼
√
− 2π

S ′′
xx(x0(u), u)

exp (S(x0(u), u)) =

√
2πu

c3
.
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Lemma 4.8.2. Let w(t) and g(t) be defined in Theorem 4.3.2. Then for all t ≥ 0,

w−1(t) ≤ g(t). (4.37)

Proof. To show w−1(t) ≤ g(t), it is sufficient to show that w(t) ≥ g−1(t), where

g−1(t) is the inverse function of g(t), that is, g−1(g(t)) = t. From the definition of

g(t), it is obtained that g−1(t) = α0t
2H , where α0 is defined in (4.18).

Since w(t) − α0t
2H = 0 for t = 0, it suffices to show that w(t) − α0t

2H increases

with respect to t, i.e., w′(t)− 2Hα0t
2H−1 ≥ 0.

w′(t)− 2Hα0t
2H−1

=2H(1− α0)t
2H−1 − H

[
(t + r)2H − t2H − r2H

] [
(t + r)2H−1 − t2H−1

]

r2H

=2H(1− α0)r
2H−1

(
t

r

)2H−1

−Hr2H−1

[(
t

r
+ 1

)2H

−
(

t

r

)2H

− 1

][(
t

r
+ 1

)2H−1

−
(

t

r

)2H−1
]

Let s = t/r, then w′(t)− 2Hα0t
2H−1 can be written as

Hr2H−1
{
2(1− α0)s

2H−1 − [
(s + 1)2H − s2H − 1

] [
(s + 1)2H−1 − s2H−1

]}
,

which implies the inequality (4.37) holds.

Lemma 4.8.3. Let µrb
(·) and g(v) be defined as in (4.11) and (4.21), respectively.

Suppose then b > 0 and c > 0, then b + µrb
(g(v))− cg(v) is a convex function.

Proof. Let h(v) = b + µrb
(g(v))− cg(v) and β = α

− 1
2H

0 , where α0 is given in (4.18),

then

h(v) = b +
c

2Hr2H−1
b

[(
βt

1
2H + rb

)2H

− r2H
b −

(
βt

1
2H

)2H
]
− cβt

1
2H .
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The first derivative of the function is

h′(v) =
c

2Hr2H−1
b

[(
βt

1
2H + rb

)2H−1

βt
1

2H
−1 − β2H

]
− cβ

2H
t

1
2H
−1.

The second derivative is given by

h′′(v) ==
cβ

2Hr2H−1
b

(
1

2H
− 1)t

1
2H
−2(βt

1
2H + rb)

2H−2
[
(βt

1
2H + rb)− βt

1
2H

]

− cβ

2H
(

1

2H
− 1)t

1
2H
−2

=
cβ

2Hr2H−1
b

(
1

2H
− 1)t

1
2H
−2(βt

1
2H + rb)

2H−2rb − cβ

2H
(

1

2H
− 1)t

1
2H
−2

=
cβ

2H
(

1

2H
− 1)t

1
2H
−2

(
(βt

1
2H + rb)

2H−2

r2H−2
b

− 1

)
≥ 0.
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