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Abstract 

The clustering coefficient refers to the proportion of phonological neighbors of a target 

word that are also neighbors of each other. The influence of the clustering coefficient on 

spoken word recognition was examined in the present study. In a same-different task, no 

significant effects of clustering coefficient were observed. In a perceptual identification 

task, words with a low clustering coefficient (i.e., few neighbors are interconnected) were 

more accurately identified than words with a high clustering coefficient (i.e., many 

neighbors are interconnected). In a lexical decision task, words with a low clustering 

coefficient were responded to more quickly than words with a high clustering coefficient. 

These findings suggest that the nature of relationships among the neighbors of the target 

word influences the lexical processing of the target word in the context of spoken word 

recognition. 

 



1 

Previous Research on the Role of Phonological Neighborhood Structure 

 

 Two fundamental questions in research on spoken word recognition and spoken 

word production relate to the organization of word forms in memory, and how this 

lexical structure might influence processing. It has been proposed that word forms in 

the mental lexicon are organized in terms of phonological similarity, with similar 

sounding words forming a phonological neighborhood (Landauer & Streeter, 1973; 

Luce & Pisoni, 1998). Phonological neighbors are defined as all those words that 

differ from the target word by a single phoneme—either substituted, added, or 

deleted—in any position (Greenberg & Jenkins, 1967; Landauer & Streeter, 1973; 

Luce & Pisoni, 1998). For example, the word cat has phonological neighbors such 

as _at, scat, mat, cut, cap. Note that cat has other neighbors, but only a few were 

listed for illustration. This metric is adopted in the present study as it is an easy way 

to operationally define phonological similarity and it was used in many previous 

studies (Luce & Pisoni, 1998; Storkel, 2004; Vitevitch, 1997, 2002; Vitevitch & 

Luce, 1999).  

Phonological neighborhood density refers to the number of words that are 

phonologically similar to a target word. Words that have many neighbors, like cat, 

are said to have a dense neighborhood (e.g., neighbors: at, bat, mat, rat, scat, pat, sat, 

vat, cab, cad, calf, cash, cap, can, cot, kit, cut, coat), whereas words that have few 

neighbors, like dog, are said to have a sparse neighborhood (e.g., neighbors: dig, 

dug, dot, fog). Note that each word has additional neighbors, but only a few were 
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listed for illustrative purposes. 

 Phonological neighborhood density has been shown to influence the processes 

of spoken word recognition and spoken word production. A variety of experimental 

paradigms—auditory perceptual identification of words in noise, auditory lexical 

decision making, auditory word naming, auditory priming, same-different matching 

tasks—were used to study spoken word recognition in English-speaking young 

adults with no history of speech, language or hearing impairment. The influence of 

neighborhood density is not restricted to young adults with normal hearing. The 

influences of neighborhood density on spoken word recognition have also been 

found in young children (Garlock, Walley, & Metsala, 2001), older adults with no 

history of speech, language or hearing impairment (Sommers, 1996) and adults with 

a cochlear implant (Kaiser, Kirk, Lachs, & Pisoni, 2003). Results consistently 

showed that words from dense neighborhoods were recognized more slowly and less 

accurately than words from sparse neighborhoods (e.g., Cluff & Luce, 1990; 

Goldinger, Luce, & Pisoni, 1989; Luce & Pisoni, 1998; Vitevitch, 2003; Vitevitch & 

Luce, 1999). These results support Luce and Pisoni’s assumption that words in 

dense neighborhoods compete with each other in the discrimination process of word 

recognition (Luce & Pisoni, 1998).  

 Apart from spoken word recognition, the phonological relationships among 

words also affect the speech production process of young healthy adults, but with an 

opposite effect. Whereas words with sparse neighborhoods are recognized more 

quickly and accurately than words with dense neighborhoods, words with dense 
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neighborhoods are produced more quickly and accurately than words with sparse 

neighborhoods. This result has been found in a number of studies using a variety of 

methodologies. In a series of research projects examining speech errors in a corpus 

of spontaneously occurring malapropisms (collected by Fay & Cutler (1977)) and in 

laboratory-induced phonological speech errors (e.g., tongue-twister task, SLIP), 

more errors were observed in words with sparse than with dense neighborhoods 

(Vitevitch, 1997, 2002). Words with sparse neighborhoods were also named more 

slowly than words with dense neighborhoods in picture-naming tasks (Vitevitch, 

2002).  

The influence of neighborhood density is not restricted to young adults with 

fluent speech. Influences of neighborhood density on speech production have also 

been found in children acquiring the production of sounds (Gierut, Morrisette, & 

Champion, 1999), children who stutter (Arnold, Conture, & Ohde, 2005), older 

adults with fluent speech (Vitevitch & Sommers, 2003) and individuals with aphasia 

(Gordon, 2002). It was hypothesized that the processing advantage for words with 

dense neighborhoods arises from an accumulation of activation spreading from 

phonologically-related neighbors to the target via shared phonological segments. 

Thus, words with dense neighborhoods have less susceptibility to error and faster 

lexical access than words with sparse neighborhoods (Vitevitch, 2002). The findings 

from both spoken word recognition and spoken word production research suggest 

that the phonological lexicon is organized according to the similarity among 

phonological word-forms, and that this structure influences several aspects of 
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spoken language processing 

 It is important to note, however, that these previous studies only examined how 

the number of neighbors that were phonologically related to a target word, or 

neighborhood density, influenced spoken language processing. For example, the 

neighborhood density of the word cat is 35, meaning it has 35 phonological 

neighbors such as bat, mat, pat, rat, sat, cut and can. To the best of my knowledge, 

no research has examined how the relationship among the phonological neighbors 

affects the processing of the target word. For example, among the phonological 

neighbors of cat, the words bat, mat, pat, rat, sat are also neighbors of each other, 

but can and bat are not neighbors of each other. Thus, the proportion of 

phonological neighbors that are also neighbors of each other could be calculated to 

represent the interconnectivity among phonological neighbors of a target word. This 

measure, derived from recent work in network science (Watts & Strogatz, 1998), is 

referred to as the clustering coefficient. In the case of spoken word recognition, is a 

word with most of its neighbors that are also related to each other recognized more 

quickly and accurately than a word with neighbors that are only related to the target 

word? The present set of studies examined the influence of interconnectivity among 

phonological neighbors on the recognition of the target word. By examining a 

different aspect of the lexical structure, namely the interconnectivity of the 

neighbors (i.e., the clustering coefficient), we can better understand how the 

structure of the lexicon influences spoken language processing. 
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Effects of Target Set Size and Interconnectivity on Cued Recall from Long 

Term Memory 

 Empirical studies examining the influence of semantic relationships among 

concepts in long-term memory on cued recall suggest that interconnectivity among 

phonological neighbors might exert some effects on the processing of the target 

word (Nelson, Bennett, Gee, Schreiber, & McKinney, 1993; Nelson & Zhang, 2000). 

Much of the relevant research on semantic relationships on cued recall of words 

showed a consistent effect of target set size in extra-list cueing tasks (Nelson & 

Schreiber, 1992; Nelson, Schreiber, & McEvoy, 1992). In an extra-list cueing task, 

participants study a target word (e.g., cork) without the presence of any related 

words and then are asked to recall the target word in the presence of a related word 

(e.g., bottle) from outside the list. Target set size refers to the number of 

semantically related associates directly linked to the target word in long term 

memory (Nelson et al., 1992). For example, the target word, dog, has a set size of 5 

because it has five semantically related associates, including animal, cat, puppy, 

friend and house. Targets words with smaller sets of semantically related associates 

are more likely to be recalled than those with larger sets of semantically related 

associates. The target set size effect resembles the neighborhood density effect on 

spoken word recognition in that the number of entities related to the target 

influences the processing of the target. Few similar items are processed more 

quickly and accurately. 

 In another study, Nelson, Bennett, Gee, Schreiber and McKinney (1993) 
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showed that not only the target set size, but also the connectivity among the 

associates of the target word affected the target word recall. Connectivity is defined 

as the mean number of connections among the associates of a target (Nelson & 

Zhang, 2000). For example, the word dinner has high connectivity among its 

associates (including food, meal, supper, eat and lunch) as all of its associates are 

semantically related to each other; whereas the word dog has low connectivity 

among its associates (including animal, cat, puppy, friend and house) as only some 

of its associates are semantically related to each other.  

In the study by Nelson, Bennett, Gee, Schreiber and McKinney (1993), target 

words included combinations of target set size (small or large) and target 

connectivity (high or low). In an extra-list cueing task, it was found that target words 

with smaller sets of associates and more highly interconnected associates are more 

likely to be recalled than those having larger sets and those having sparsely 

connected associates. Furthermore, the effects of target set size and target 

connectivity were additive, suggesting they represent functionally independent 

dimensions.  

The measure of target connectivity in the studies by Nelson and colleagues 

resembles the measure of clustering coefficient in the present study, in that they both 

measure the interconnectivity among the entities related to the target. These findings 

and the similarity between target connectivity and clustering coefficient motivated, 

in part, the present investigation of the effect of clustering coefficient on spoken 

word recognition.  
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Graph-theoretic analysis of the Human Lexicon 

 To better study the interconnectivity among the neighbors in the phonological 

lexicon, techniques from graph-theory can be used to model and visualize the 

phonological word-forms in the lexicon (Vitevitch, 2007). The mathematical 

formalisms of graph-theory have been used in social network research for decades 

(Milgram, 1967). Graph-theoretic modeling has started to permeate the field of 

psycholinguistics and has been widely used to model the human lexicon in a 

large-scale semantic network (Bales & Johnson, 2006; i Cancho & Sole, 2001; 

Motter, de Moura, Lai, & Dasgupta, 2002; Schweickert, 2007; Steyvers & 

Tenenbaum, 2005). Recently, Vitevitch (in press) used graph-theoretic techniques to 

model the phonological word-forms (lexemes) in the mental lexicon. By using the 

tools from graph-theory, we can estimate the extent to which the neighborhoods of a 

word are also neighbors of each other. 

 It is important to note the difference between the measures of phonological 

neighborhood density and clustering coefficient. The two words hive and wise are 

used as an example for low and high clustering coefficient words respectively and 

the network representations of their respective phonological neighborhoods are 

displayed in Figure 1. Note that the two target words have the same number of 

phonological neighbors (15) and thus the same neighborhood density. However, 

there are fewer interconnections among the neighbors in the network of hive than in 
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the network of wise. Thus, neighborhood density measures the number of neighbors 

a target has, whereas clustering coefficient measures the interconnectivity among the 

neighbors of the target. 

 As previously mentioned, there have been numerous studies on the relation 

between phonological neighborhood density and spoken word processing. However, 

phonological neighborhood density only addresses the relationship between each of 

the phonological neighbors and the target word. It does not take into account the 

relationship among the neighbors on the target word. The present set of studies, 

therefore, is aimed at studying the influence of inter-connective relationships among 

the phonological neighbors on the processing of the target word by examining the 

effect of the clustering coefficient on spoken word recognition. The clustering 

coefficients of the phonological word forms were calculated by a program called 

Pajek (Batagelj & Mrvar, 1988) that is often used in graph-theoretic analyses. Words 

that had high clustering coefficients and words that had low clustering coefficients 

were used as stimuli in the present study. If the clustering coefficient plays a 

prominent role in spoken word recognition processes, then listeners would respond 

to words with high and low clustering coefficients differently. Three experiments 

using the same set of stimuli with 3 different experimental paradigms, including an 

auditory same-different, an auditory perceptual identification, and an auditory 

lexical decision task, were conducted to obtain converging evidence for the 

psychological validity of the clustering coefficient on spoken word recognition. 
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Experiment 1 

 The effects of the clustering coefficient on spoken word recognition were first 

examined by an auditory same-different task. The participants heard pairs of words 

where the two words were either the same or different. Their task was to respond as 

quickly and as accurately as possible, indicating whether the word pair was the same 

or different. The target words in this experiment varied in their clustering coefficient 

values. The subjective familiarity, word frequency, neighborhood density, 

neighborhood frequency, and phonotactic probability for these words were 

equivalent between the two groups. If listeners are sensitive to the clustering 

coefficient of a word, then listeners should find it easier to make a decision about 

one group of words than the other (as reflected by shorter reaction times or higher 

accuracy rates).  

 

Method 

Participants: Thirty-seven native English speakers were recruited from the pool of 

Introductory Psychology students enrolled at the University of Kansas. The 

participants received partial credit towards the completion of the course for their 

participation. All participants were right-handed with no reported history of speech 

or hearing disorders. None of the participants in the present experiment took part in 

any of the other experiments that are reported. 

 

Materials: Seventy-six English monosyllabic words were used as stimuli to serve as 
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SAME pairs in this experiment. All stimuli consisted of three phonemes in a 

consonant-vowel-consonant structure. Half of the stimuli had high clustering 

coefficients and half had low clustering coefficients. These stimulus words and their 

lexical characteristic are listed in Appendix A.1 and A.2 and further described below. 

 

Clustering coefficient: The Clustering coefficient (CC) of a network measures the 

probability that the neighbors of a given node are also neighbors of each other. The 

clustering coefficient for each stimulus was obtained by using the Pajek computer 

program (Batagelj & Mrvar, 1988) to analyze the 19,340 lexical entries in Nusbaum, 

Pisoni, and Davis (1984). The clustering coefficient is calculated with the algorithm 

in Equation 1 (Batagelj & Mrvar, 1988):   

)1)(deg()deg(

|))((|2
)(

−•

=

vv

vGE
vCC       (1) 

where deg (v) stands for the degree of a given node (also called a vertex, v), and E 

(G(v)) is the number of nodes that are one connection away from the target node. CC 

has a range from 0 to 1; when CC = 0, none of the neighbors of a target node are 

neighbors of each other; when CC = 1, the network is fully inter-connected, meaning 

every neighbor is also a neighbor of all the other neighbors of a target word. Words 

with high clustering coefficients had a mean value of .170 (SEM = .003), and words 

with a low clustering coefficient had a mean value of .119 (SEM = .002). The 

difference between the two groups of stimuli was statistically significant, F (1, 74) = 

164.63, p < .0001). The items used in this experiment had a relatively narrow and 
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low range (.061-.136 for the low clustering coefficient group and .150 -.221 for the 

high clustering coefficient group) compared to the theoretically possible range from 

0 to 1. The low range for the clustering coefficient may be due to linguistic 

constraints, such as phonotactic rules and the phonemic inventory of the language, 

which limit the number of neighbors a word can have and the number of neighbors 

that cluster together. Although the two conditions differed significantly in clustering 

coefficient, the two conditions of words were equivalent in subjective familiarity, 

word frequency, neighborhood density, neighborhood frequency, and phonotactic 

probability. 

 

Subjective familiarity: Subjective familiarity was measured on a seven-point scale 

(Nusbaum, Pisoni, & Davis, 1984). Words with a high clustering coefficient had a 

mean familiarity value of 6.91 (SEM = .029) and word with a low clustering 

coefficient had a mean familiarity value of 6.96 (SEM = .015, F (1, 74) = 2.145, p 

> .05), indicating that all of the words were highly familiar. 

 

Word frequency: Word frequency refers to the average occurrence of a word in the 

language. Average log word frequency (log-base 10 of the raw values from Kučera 

& Francis, 1967) was 1.33 (SEM = .120) for the high clustering coefficient words 

and 1.43 (SEM = .100) for the low clustering coefficient words (F (1, 74) < 1).  

 

Neighborhood density: Neighborhood density was defined as the number of words 
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that were similar to a target on the basis of the substitution, deletion, or addition of a 

single phoneme in any position of the target item. The neighborhood density values 

for the high and low clustering coefficient words were 20.66 (SEM = .934) and 

21.55 (SEM = 1.19) respectively (F (1, 74) < 1).  

 

Neighborhood frequency: Neighborhood frequency is defined as the mean word 

frequency of the neighbors of the target word. Words with a high clustering 

coefficient had a mean log neighborhood frequency value of 2.02 (SEM = .208) and 

words with a low clustering coefficients had a mean log neighborhood frequency 

value of 2.02 (SEM = .203, F (1, 74) < 1).  

 

Phonotactic probability: The phonotactic probability was measured by how often a 

certain segment occurs in a certain position in a word (positional segment frequency) 

and the segment-to-segment co-occurrence probability (biphone frequency; 

Vitevitch and Luce, 1998). The mean positional segment frequency for high and low 

clustering coefficient words were .139 (SEM = .005) and .143 (SEM = .007, F (1, 74) 

< 1) respectively. The mean biphone frequency for high and low clustering 

coefficient words were .006 (SEM = .001) and .006 (SEM = .001, F (1, 74) < 1) 

respectively.  

 

Duration: The duration of the stimulus sound files was equivalent between 

conditions. The mean overall duration of the sound files for the high clustering 
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coefficient stimuli was 528 ms (SEM = 14.42) and for the low clustering coefficient 

stimuli was 523 ms (SEM = 16.7, F (1, 74) < 1). The mean onset duration, including 

the silence from the beginning of the sound file to the onset of the stimulus, was 11 

ms (SEM = 1.1) for the high clustering coefficient stimuli and 9 ms (SEM = .77) for 

the low clustering coefficient stimuli, F (1, 74) = 1.427, p > .05. The stimulus 

duration, measured from the onset to the offset of the stimulus excluding any silence 

before and after the stimulus in the sound files, had a mean value of 506 ms (SEM = 

14 ms) for the high clustering coefficient stimuli and had a mean value of 503 ms 

(SEM = 16) for the low clustering coefficient stimuli, F (1, 74) < 1.  

 

 In order to assure the participants are really discriminating the stimulus pairs 

rather than responding ‘SAME’ all the time, an equal number of filler items served 

as DIFFERENT pairs. One hundred-fifty-two words with the same phoneme length 

and the same initial phoneme as the word stimuli were chosen to be filler items. 

Among these 152 filler words, two words with the same initial phonemes were 

paired up to form the DIFFERENT pairs, resulting in 76 pairs of filler items with the 

same initial phoneme as the 76 SAME pairs. For example, a SAME pair, ‘bath bath’, 

has one corresponding DIFFERENT pair with the same initial phoneme, ‘bad bag’. 

The 76 filler word pairs are listed in Appendix A.3. 

 All the stimuli, including the filler items, were spoken in isolation by a male 

native speaker of American English at a normal speaking rate and loudness in an 

IAC sound attenuated booth using a high-quality microphone, and recorded to a 
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digital audiotape at a sampling rate of 44.1 kHz. The digital recordings were then 

transferred directly to a hard-drive via an AudioMedia III sound card and Pro Tools 

LE software (Digidesign). The pronunciation of each word was verified for 

correctness. Each word stimulus was edited using SoundEdit 16 (Macromedia, Inc.) 

into an individual sound file. The amplitude of the individual sound files was 

increased to their maximum without distorting the sound or changing the pitch of the 

words by using the Normalization function in SoundEdit 16.  

 

Procedure: Participants were tested individually. Each participant was seated in 

front of an iMac computer connected to a New Micros response box. PsyScope 1.2.2 

was used to control the randomization and presentation of stimuli. The response box 

contains a dedicated timing board to provide millisecond accuracy for response 

collection. 

 In each trial, the word “READY” appeared on the computer screen for 500 ms. 

The participants then heard one pair of the randomly selected word stimuli or fillers 

through a set of Beyerdynamic DT 100 headphones at a comfortable listening level. 

A 500 ms interstimulus interval was used to increase the likelihood that participants 

will access representations from the lexicon and retain them in memory to perform 

the discrimination task.  

The participants were instructed to respond as quickly and as accurately as 

possible whether the two items they heard were the SAME or DIFFERENT. If the 

items were the SAME, they were to press the button labeled ‘SAME’ with the right 
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(dominant) hand. If the items were DIFFERENT, they were to press the button 

labeled ‘DIFFERENT’ with their left hand. Reaction times were measured from the 

onset of the second stimulus in the pair to the button press response. After the 

participant pressed the response button, the next trial began. Every participant 

received a total of 152 trials. Half of the stimulus pairs were the SAME pairs of 

interest and half of the stimulus pairs were the DIFFERENT filler items. The 

experiment lasted about 15 minutes. Prior to the experimental trials, each participant 

received ten practice trials to become familiar with the task. These practice trials 

were not included in the data analyses. 

 

Results and Discussion 

 Reaction times and accuracy rates were the dependent variables of interest. 

Only accurate responses for the SAME pairs were included in the analysis. Reaction 

times that were too rapid or too slow (i.e. below 500 ms and above 2000 ms) were 

considered to be outliners and were excluded from the analysis. This accounted for 

less than 6% of the data.  

 In psycholinguistic research, the current convention is to perform analyses with 

participants as a random factor (subject analysis) and with items as a random factor 

(item analysis; however see Clark, 1973 for an alternative analysis). However, there 

is some debate about the proper use and interpretation of additional item analysis 

over subject analysis, especially when items are carefully matched or balanced 

across conditions on important variables correlated with the response measures 
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(Raaijmakers, 2003; Raaijmakers, Schrijnemakers, & Gremmen, 1999). Although 

the stimulus items are well-controlled in the present study, and additional item 

analysis does not seem appropriate or necessary (Raaijmakers, Schrijnemakers, & 

Gremmen, 1999), they are reported in all of the experiments in this study to be 

consistent with the conventions of the field.  

 Repeated measures analysis of variance (ANOVA) was used for the reaction 

time and accuracy rate measures treating participants as a random factor. There was 

no significant difference in reaction time between words with high clustering 

coefficient (mean = 751 ms, sd = 96.91) and words with low clustering coefficient 

(mean = 759 ms, sd = 84.54; F (1, 36) = 1.36, p > .05). No significant difference was 

obtained for accuracy rates either (F (1, 36) < 1). Words in each condition were 

responded to with 92% accuracy.  

 When collapsed across participants, the items in the high clustering coefficient 

condition had a mean reaction time of 750 ms (sd = 59), whereas items in the low 

clustering coefficient had a mean reaction time of 761 ms (sd = 56). An independent 

samples t-test using stimuli as a random factor was used. The statistical analysis of 

reaction times failed to show a statistically significant difference between the high 

and low clustering coefficient conditions (t (74) = .776, p = .44). No significant 

effects were obtained for accuracy rates (t (74) = .173, p = .863). 

 These results failed to show any significant effects of the clustering coefficient 

on either reaction time or accuracy rate in the same-different task. Although there 

might be many reasons for obtaining null results, the failure to observe a statistically 
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significant influence of clustering coefficient on processing might be due to the 

origin of the influence of the clustering coefficient on processing and to the inability 

of the same-different task to assess that influence.  

 It was hypothesized that lexical and sublexical representations may be used for 

spoken word processing (Vitevitch & Luce, 1998, 1999). Lexical representations 

correspond to whole word forms, whereas sublexical representations correspond to 

parts of words, such as phonemes or syllables. Like neighborhood density, the 

clustering coefficient measures the relationships among whole word forms instead of 

parts of words, and its effects may only be observed in processes involving lexical 

activation. It was hypothesized that the inter-stimulus interval of 500 ms in this task 

(Vitevitch, 2003; Vitevitch & Luce, 1999) would encourage the use of long-term 

(i.e., lexical) representations to perform the task. However, participants might still 

have performed the same-different discrimination by comparing two low-level (i.e., 

acoustic or sub-lexical) patterns of the stimuli in memory. Thus, lexical activation 

may not be necessary to accurately discriminate among pairs of words. Because 

lexical representations might not have been employed in the task, effects of 

clustering coefficient were not observed. To test this hypothesis, tasks that involve 

lexical activation will be used in the following experiments.  

 

Experiment 2 

 To test the hypothesis that the failure to observe an effect of clustering 

coefficient on processing in Experiment 1 was due to the failure to sufficiently 
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activate lexical representations of the stimulus words in the same-different task, the 

same stimuli were used in an auditory perceptual identification task. In the 

perceptual identification task, participants are presented with a stimulus word 

against a background of white noise, and are asked to identify it. It was hypothesized 

that the demands of the perceptual identification task would ensure that lexical 

representations of the word stimuli would be partially activated, thereby increasing 

the likelihood of observing effects of clustering coefficient on spoken word 

recognition. Specifically, if clustering coefficient influences spoken word 

recognition processes, one group of stimuli should be easier to identify than the 

other.  

 

Method 

Participants: Thirty native English speakers were recruited from the pool of 

Introductory Psychology students enrolled at the University of Kansas. The 

participants received partial credit towards the completion of the course for their 

participation. All participants were right-handed with no reported history of speech 

or hearing disorders. None of the participants in the present experiment took part in 

any of the other experiments that are reported. 

 

Materials: The same 76 words stimuli used in Experiment 1 were used in the present 

experiment. All the stimuli consisted of three phonemes in a 

consonant-vowel-consonant structure. The consonants in the onset position, 
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including /b, d, f, g, k, l, m, p, ɹ, s, w/, were balanced in each condition. For the 

vowels that appeared in the second position of each word, the word with a low 

clustering coefficient had the following vowels (with the number of occurrence in 

parentheses), æ (3), ɪ (4), ʊ (1), ʌ (2), ɑ (1), i (3), ɑu (1), e (2), ɔ (5), u (2), ɝ

(3), ɑɪ (5), ɛ (5), o (1) and the words with a high clustering coefficient had the 

following vowels (with the number of occurrence in parentheses), æ (5), ɪ (4), ʊ

(3), ʌ (5), ɑ (1), i (8), ɑu (2), e (2), ɔ (2), u (1), ɝ (2) , ɑɪ (3). A chi-square 

analysis shows that there was no statistically significant difference in the distribution 

of vowels in the second position of each word between the two conditions (X
2
 = 

13.71, df = 13, p = .395). As white noise differentially masks fricatives, it is 

important to carefully balance fricatives that appear in each condition. In the final 

consonant position, there were 10 fricatives found in the low clustering coefficient 

condition, and 12 fricatives found in the high clustering coefficient condition. A 

chi-square analysis shows that the difference was not statistically significant (X
2 

= .613, df = 1). Given the high similarities in the distribution of constituent 

phonemes in the two conditions, it is more likely that any difference observed in the 

perceptual identification task is due to the difference in the independent variable (i.e., 

clustering coefficient) than to any difference in the distribution of phonemes in the 

two conditions. 

 

 After the stimulus sound files used in Experiment 1 were digitalized and 
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normalized, they were degraded by adding white noise with a duration equal to the 

duration of the sound file using SoundEdit 16. The white noise was 24 dB less in 

amplitude than the mean amplitude of the sound files. Thus, the resulting stimuli 

were presented at a +24 dB signal to noise ratio (S/N). 

 

Procedure: Participants were tested individually. Each participant was seated in 

front of an iMac computer running PsyScope 1.2.2, which controlled the 

presentation of stimuli and the collection of responses.  

 In each trial, the word “READY” appeared on the computer screen for 500 ms. 

The participants then heard one of the randomly selected stimulus words imbedded 

in white noise through a set of Beyerdynamic DT 100 headphones at a comfortable 

listening level. Each stimulus was presented only once. The participants were 

instructed to use the computer keyboard to enter their response (or their best guess) 

for each word they heard over the headphones. They were instructed to type “?” if 

they were absolutely unable to identify the word. The participants could use as much 

time as they needed to respond until they finished by hitting the RETURN key, and 

then the next trial would begin. Participants were able to see their responses on the 

computer screen when they were typing and could make corrections to their 

responses before they hit the RETURN key. The experiment lasted about 15 minutes. 

Prior to the experiment, each participant received five practice trials to become 

familiar with the task. These practice trials were not included in the data analyses. 
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Results and Discussion 

 For the perceptual identification task, accuracy rates were the dependent 

variable of interest. A response was scored as correct if the phonological 

transcription of the response matched the phonological transcription of the stimulus. 

Misspelling, transpositions, and typographical errors that involve a single letter in 

the responses were scored as correct responses in certain conditions: (1) the 

omission of a letter in a word was scored as a correct response only if the response 

did not form another English word, (2) the transposition or addition of a single letter 

in the word was scored as a correct response if the letter was within one key of the 

target letter on the keyboard. Responses that did not meet the above criteria were 

scored as incorrect. 

 The mean accuracy rate for the high clustering coefficient condition was 58% 

(sd = .084) whereas the mean accuracy rate for the low clustering coefficient 

condition was 72% (sd = .082). Repeated-measures analysis of variance (ANOVA) 

was performed for accuracy rates between the clustering coefficient conditions. The 

words in the low clustering coefficient condition had a significantly higher accuracy 

rate than the words in the high clustering coefficient condition, F (1, 29) = 50.93, p 

< .0001. This observed difference is considered an effect of large size (d = 1.57) and 

has a high probability of being replicated (prep = .996; Killeen, 2005).   

 To maintain the conventions of the field items analyses are also reported. When 

collapsed across participants, items in the high clustering coefficient had a mean 

accuracy rate of 58% (sd = .29), whereas items in the low clustering coefficient had 
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a mean accuracy rate of 72% (sd = .28). An independent samples t-test using stimuli 

as a random factor was used. As in the analysis treating participants as a random 

factor, the difference between the high and low clustering coefficient conditions was 

statistically significant (t (74) = -2.135, p = .036). 

 Contrasted with the results of Experiment 1, the results of Experiment 2 

showed a robust effect of clustering coefficient on spoken word identification. These 

findings are consistent with the hypothesis that the effect of clustering coefficient is 

reflected in a task that emphasizes lexical processing of the spoken stimuli. This 

lends some support to the hypothesis that lack of lexical activation in the 

same-different task may have contributed to the failure to observe a significant 

influence of clustering coefficient on processing in Experiment 1. 

 More important, the results of the present experiments suggest that the 

clustering coefficient influences some aspect of spoken word recognition. In the 

perceptual identification task, words with fewer interconnected neighbors (i.e., a low 

clustering coefficient) were identified more accurately than words with the same 

number of neighbors, but with more of those neighbors being interconnected with 

each other (i.e., a high clustering coefficient). The present results support the 

hypothesis that listeners are sensitive to the clustering coefficient of target words, a 

measure derived from graph-theoretic analyses of phonological word-forms in the 

mental lexicon. This demonstrates the psychological validity of the clustering 

coefficient in the context of spoken word recognition.  

 In addition to the number of phonological neighbors, the present findings show 
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that the nature of the relationship among the neighbors also influences the 

processing of a target word. More specifically, not only the structural relationship 

between each of the phonological neighbors and the target word, but also the 

structural relationships among the neighbors of the target word influence the 

processing of the target word. This further demonstrates the importance of 

understanding how the structural organization of phonological word-forms in the 

lexicon can influence language processing.  

 

Experiment 3 

 Although Experiment 2 provided evidence on the nature of the effects of 

clustering coefficient in the recognition of spoken words, a final experiment was 

performed to place these findings on a firmer empirical foundation. The purpose of 

this experiment was to further examine the effects of the clustering coefficient on 

spoken word recognition by employing another task that emphasizes the activation 

of lexical representations in memory—the auditory lexical decision task. The 

auditory lexical decision task has been proven quite useful in examining the effect of 

many variables—including phonological neighborhood density, phonotactic 

probability, and neighborhood frequency—on spoken word processing (Luce & 

Pisoni, 1998; Vitevitch, 2002; Vitevitch & Luce, 1999).  

In the lexical decision task, participants are presented with either a word or a 

nonword (without any white noise) over a set of headphones. Participants are asked 

to decide as quickly and as accurately as possible whether the given stimulus is a 
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real word in English or a nonsense word. Thus, the lexical decision task uses stimuli 

that are not degraded (Luce & Pisoni, 1998). Although the degraded stimuli in the 

auditory perceptual identification task is close to the input we normally get in the 

real world (i.e., a signal produced by an interlocutor that is imbedded in background 

noise), it is important to demonstrate that the clustering coefficient effect could be 

generalized to stimuli that are not degraded in any way. The use of stimuli without 

degradation could minimize the possibility that the participants respond to the 

stimuli using some sort of sophisticated guessing strategy, which might occur in 

tasks using degraded stimuli (Catlin, 1969; Hasher & Zacks, 1984). Moreover, the 

lexical decision task allows reaction time data to be collected. Reaction times 

provide us with a means for investigating the time course of spoken word 

recognition, and may reveal an effect of the clustering coefficient on the temporal 

aspect of spoken word recognition. 

 It is predicted that the results of this experiment will replicate those of 

Experiment 2. That is, words with a high clustering coefficient should be responded 

to less accurately than words with a low clustering coefficient. Furthermore, it is 

predicted that words with a high clustering coefficient should be responded to more 

slowly than words with a low clustering coefficient.  

 

Method 

Participants: Forty-five native English speakers were recruited from the pool of 

Introductory Psychology students enrolled at the University of Kansas. The 
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participants received partial credit towards the completion of the course for their 

participation. All participants were right-handed with no reported history of speech 

or hearing disorders. None of the participants in the present experiment took part in 

Experiment 1 or 2.  

 

Materials: The same 76 word stimuli that were used in Experiment 1 were used in 

the present experiment. A list of 76 phonotactically legal nonwords with the same 

phoneme length as the word stimuli was constructed by replacing the first phoneme 

of a real word with another phoneme. For example, the nonword ‘baith’ /beθ/ was 

formed by replacing /f/ in ‘faith’/feθ/ with /b/. The base words from which the 

nonwords were created were not words in the stimulus list. The phonological 

transcriptions of the nonwords are listed in Appendix B. 

 The nonwords were recorded by the same male speaker in the same manner and 

at the same time as the real word stimuli that were used in Experiment 1. The same 

method for digitizing the word stimuli was used for the nonwords in the present 

experiment. This eliminated possible cues to lexical status of the stimuli that might 

be induced by different recording characteristics and procedures for the words and 

nonwords.  

 

Duration: The duration of stimulus sound files was equivalent between conditions. 

The mean overall duration of the sound files for the nonword stimuli was 536 ms 

(SEM = 10.28, F (1, 150) < 1). The stimulus duration, measured from the onset to 
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the offset of the stimulus excluding any silence before and after the stimulus in the 

sound files, had a mean value of 520 ms (SEM = 10) for the nonword stimuli. The 

word and nonword stimuli did not different in the stimulus duration, F (1, 150) = 

1.07, p < .05.  

 

Procedure: Participants were tested individually. Each participant was seated in front 

of an iMac computer connected to a New Micros response box. As in Experiment 1, 

PsyScope 1.2.2 was used to control the randomization and presentation of stimuli. 

The response box contains a dedicated timing board to provide millisecond accuracy 

for response collection. 

 In each trial, the word “READY” appeared on the computer screen for 500 ms. 

The participants then heard one of the randomly selected words or nonwords 

through a set of Beyerdynamic DT 100 headphones at a comfortable listening level. 

Each stimulus was presented only once. The participants were instructed to respond 

as quickly and as accurately as possible whether the item they heard was a real 

English word or a nonword. If the item was a word, they were to press the button 

labeled ‘WORD’ with their right (dominant) hand. If the item was not a word, they 

were to press the button labeled ‘NONWORD’ with their left hand. Reaction times 

were measured from the onset of the stimulus to the onset of the button press 

response. After the participant pressed a response button, the next trial began. The 

experiment lasted about 20 minutes. Prior to the experimental trials, each participant 

received ten practice trials to become familiar with the task. These practice trials 
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were not included in the data analyses. 

 

Results and Discussion 

 Reaction times and accuracy rates were the dependent variables of interest. 

Only accurate responses for the word stimuli were included in the analysis. Reaction 

times that were too rapid and too slow (i.e. below 500 ms and above 2000 ms) were 

considered to be outliners and were excluded from the analysis; this accounted for 

less than 1% of the data. Although item analyses may not be appropriate for the 

current experimental design, such analyses are reported to maintain the current 

convention of psycholinguistic research.  

 Repeated measures analysis of variance (ANOVA) was used for the reaction 

time and accuracy rate measure treating participants as a random factor. For the 

reaction times, the analyses showed that the clustering coefficient significantly 

influenced processing (F (1, 44) = 6.47, p = .015). The observed difference is 

considered an effect of small size (d = .142), but has a high probability of being 

replicated (prep = .938; Killeen, 2005). Words with a high clustering coefficient 

(mean = 900 ms, sd = 86.64) were responded to more slowly than words with a low 

clustering coefficient (mean = 888 ms, sd = 82.13). 

 An independent samples t-test was also used to analyze the data treating items 

as a random factor. The items in the high clustering coefficient condition had a mean 

reaction time of 908 ms (sd = 83), whereas items in the low clustering coefficient 

had a mean reaction time of 890 ms (sd = 93; t (74) = -.878, p = .383). Although the 



   28 

analysis treating items as a random factor is not statistically significant, it is 

important to note that the means in the items analysis are in the same direction as 

those in the analysis treating participants as a random variable.  

 

For the accuracy rates, the influence of clustering coefficient approached 

significance (F (1, 44) = 4.037, p = .051). Words with a high clustering coefficient 

were correctly responded to 91.6% of the time (sd = .057) whereas words with a low 

clustering coefficient were correctly responded to 93.3% of the time (sd = .042). In 

an analysis treating the items as a random variable, items in the high clustering 

coefficient condition had a mean accuracy rate of 91.6% (sd = .11), whereas items in 

the low clustering coefficient condition had a mean accuracy rate of 93.3% (sd 

= .10). The observed difference was not significant (t (74) = .748, p = .457), but is in 

the same direction as that observed in the analysis treating participants as a random 

variable. 

 The results of the present experiment revealed significant effects of clustering 

coefficient on lexical decision time. Words with more interconnected neighbors (i.e., 

a high clustering coefficient) were responded to more slowly than words with fewer 

interconnected neighbors (i.e., a low clustering coefficient). Although the effect of 

clustering coefficient was not significant in the accuracy rate of lexical decision in 

the present experiment, a trend in the predicted direction was observed. Words with 

fewer of their neighbors also being neighbors of each other tend to be recognized 

more accurately than words with many interconnected neighbors. In this task, the 
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lexical representation of the word in memory must be activated to make a lexical 

decision. Thus, this result from the lexical decision task supports the hypothesis 

made from Experiment 1 that the clustering coefficient influences processing of the 

lexical representations, but not of acoustic or sub-lexical representations. That may 

explain why a significant effect of clustering coefficient was not observed in the 

same-different task (in Experiment 1) in which lexical processing most likely was 

not involved. 

 Furthermore, the results of Experiment 3 suggest that clustering coefficient not 

only affects the accuracy of word recognition, but also the time-course of lexical 

access. This is important because accuracy rates only reflect the end product of the 

spoken word recognition process and could be biased by postperceptual guessing 

strategies (Marslen-Wilson, 1987). Instead, the lexical decision time is an immediate 

measure of processing activities, which may be less susceptible to postperceptual 

biases. Thus, the significant result on lexical decision time in this experiment shows 

that the effect of clustering coefficient is quite robust and could not be attributed to 

postperceptual biases. In addition, results from the present experiment showed that 

the effects of the clustering coefficient on spoken word recognition are not restricted 

to degraded stimuli. Therefore the influence of clustering coefficient on spoken 

word recognition is not likely to be due to participants’ simply using a sophisticated 

guessing strategy when presented with degraded stimuli. 

 

General Discussion 
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 The goal of the present study was to examine how the interconnective 

relationships among the phonological neighbors of the target words influence the 

recognition of the spoken target word. The clustering coefficient of the stimuli, 

which measures the proportion of phonological neighbors of a target word that are 

also neighbors of each other, was examined. It was hypothesized that if the 

clustering coefficient of the stimulus word influences spoken word recognition, then 

participants should differ in the speed and accuracy of their responses to words 

varying in the clustering coefficient.  

 In Experiment 1, a significant effect of clustering coefficient on the reaction 

time or accuracy rates of discriminating whether two stimulus words were the same 

or different was not found. It was hypothesized that the lack of an effect in this 

simple discrimination task could be due to the lack of lexical processing in the 

same-different task. In Experiment 2, an auditory perceptual identification task—a 

task that does require lexical processing—was used. In this case it was found that 

words with a low clustering coefficient (i.e., few interconnected neighbors) were 

more accurately identified than words with a high clustering coefficient (i.e., many 

interconnected neighbors). In Experiment 3, the effect of clustering coefficient was 

observed in a lexical decision task such that words with a low clustering coefficient 

were responded to more quickly than words with a high clustering coefficient. Thus, 

the clustering coefficient influences the accuracy as well as the speed of spoken 

word recognition.  
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The findings in the latter two experiments using tasks that require lexical 

processing of the stimuli supported the hypothesis that the effect of clustering 

coefficient may rely on the lexical level of processing during spoken word 

recognition. These results suggest that in addition to the number of phonological 

neighbors, the nature of the relationship among the neighbors also influences the 

processing of spoken words. Although current models of spoken word recognition 

can account for the influence of the number of phonological neighbors on processing, 

it is not clear if they can also account for the influence that the relationship among 

the neighbors (i.e., clustering coefficient) has on spoken word recognition.  

 The TRACE model of spoken word recognition was a connectionist model 

designed by McClelland & Elman (1986) to account for lexical effects on phoneme 

recognition and speech segmentation. In TRACE, there are several levels of nodes, 

or individual processing units, that represent features, phonemes, and words in a 

hierarchy. Nodes between adjacent levels are connected so that features nodes are 

connected to phonemes nodes, and phoneme nodes are connected to word nodes. 

Also, all the nodes at the same level are interconnected. Connections between levels 

are facilitatory and bidirectional, whereas connections within levels are inhibitory. 

TRACE is constructed within an interactive activation framework, so that nodes at 

different levels or within the same level influence each other in proportion to their 

activation levels and the strengths of their interconnectivity. When input is presented 

to TRACE, activation levels of consistent units increase through the excitatory 

connections between layers of nodes. Activation levels of competing units are 
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inhibited in proportion to the degree of overlap through the inhibitory connections 

within the same layer. The greater is the overlap, the greater is the inhibition. This 

competition among words results in the word with the highest activation winning 

out for recognition.  

 Based on the top-down feedback characteristic of TRACE, it appears to 

have the requisite architecture to account for the clustering coefficient effect. After 

the phonemes of the target word get activated from the auditory input, these target 

phonemes send activation to both the target and neighbor words in the word level. 

Thus, both target and neighbor words are activated and in turn they send excitatory 

feedbacks down to the corresponding phoneme nodes that they contain. Assuming 

that there are two target words with the same number of neighbors, but one has 

many of its neighbors interconnected, like cat (its neighbors include cap, sat, mat, 

rat, pat) and the other one has few of its neighbors interconnected, like dog (its 

neighbors include dig, dug, dot, fog, cog). Note that in reality, the word cat has 

many more neighbors than the word dog, but here it is assumed that they just have 

the neighbors listed in parentheses in order to illustrate how TRACE might account 

for the observed clustering coefficient effect. Figure 2 shows the interaction between 

the word and phoneme level of the two example words, cat and dog. For a word 

with a high clustering coefficient, some of the target phonemes are widely shared 

among the highly interconnected neighbors, like /æ/ and /t/ in cat being shared by 

the neighbors sat, mat, rat and pat. Note that the number under each target phoneme 

in Figure 2 reflects the number of words at the lexical level sharing that particular 
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phoneme. Thus, the widely shared phonemes (/æ/ and /t/ in the example) would get 

relatively more feedback activations from these interconnected neighbor words at 

the lexical level than those phonemes which are not widely shared (/k/ in the 

example). For a word with a low clustering coefficient, the target phonemes were 

more evenly shared by the neighbors. Activated phonemes again will send activation 

to the lexical level and the activation would bound to and fro between the word and 

the phoneme level. Therefore, the interconnected neighbors of a high clustering 

coefficient target word would receive a high level of activations compared to those 

neighbors of a low clustering coefficient word due to activation from those highly 

activated widely shared target phonemes. As a result, the high clustering coefficient 

target word would be recognized more slowly or less accurately against the noisy 

background activation of its neighbors. This prediction is consistent with the present 

findings. 

However, when the characteristic of inhibition within a level is taken into 

consideration, TRACE may predict a clustering coefficient effect in a direction 

opposite to the present findings— high clustering coefficient words are recognized 

faster and more accurately than low clustering coefficient words. Using the same 

example mentioned before, the target words cat and dog each is assumed to have 4 

phonological neighbors. Figure 3 showed the word level of these two words. In the 

word level, each target word would receive inhibition from the 4 neighbor words, 

which each share two phonemes with them, as shown by the black links between the 

target and the neighbors in Figure 3. However, there would be much more inhibition 
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among the neighbors of a target word with a high clustering coefficient compared to 

those of a target word with a low clustering coefficient. Therefore, there is more 

inhibition as shown by the red links in Figure 3 among just the neighbor words 

themselves in the case of cat than in the case of dog. The neighbors of a high 

clustering coefficient target word would have a relatively lower activation compared 

to those of a low clustering coefficient target word. With less competitive neighbors, 

high clustering coefficient target words would win out more easily than low 

clustering coefficient words. This prediction is in an opposite direction of the present 

findings. TRACE is a complex model and verbal exploration of its inner workings is 

not sufficient to test whether the feedback or inhibition mechanism would win out. 

Simulation is required to test which proposed mechanism is more tenable 

(Lewandowsky, 1993), and to determine if TRACE can account for the present 

findings. 

 

  Shortlist is another connectionist model of continuous speech recognition. 

It was designed by Norris (1994) to address the deficiencies of TRACE, including 

the over-emphasis on the importance of top-down feedback and time-shift 

invariance problems. Thus, Shortlist is very similar to TRACE except that it has an 

entirely bottom-up architecture with a recurrent network generating a set of 

candidate words which are roughly consistent with the bottom-up inputs (Norris, 

1994). As in TRACE, in the lexical level of Shortlist, overlapping words inhibit each 

other in proportion to the number of phonemes they have in common, and they 
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compete with each other for recognition. Likewise, in Shortlist, the neighbors of 

high clustering coefficient words would have relatively lower activations compared 

to the neighbors of low clustering coefficient words due to the mutual inhibition 

among themselves. Therefore, Shortlist predicts that high clustering coefficient 

words would be recognized faster and more accurately than low clustering 

coefficient words. This clustering coefficient effect is in the opposite direction from 

the present findings. The other proposed mechanism in TRACE that involves 

feedback from the word level is not possible in Shortlist as it has an entirely 

bottom-up architecture and top-down feedback is not allowed in the model. Thus, 

Shortlist probably could not account for the present findings. 

 

Luce and Pisoni (1998) developed the neighborhood activation model (NAM) 

to account for the influence of the structural organization of the representations in 

the mental lexicon on spoken word recognition. In NAM, spoken input activates a 

set of acoustic-phonetic patterns in memory according to the degree of similarity 

between the spoken input and the patterns. The more they are similar, the higher the 

level of activation is. Then the acoustic-phonetic patterns that correspond to words 

in memory activate a system of word decision units which monitor several sources 

of information including the acoustic-phonetic pattern activation to which the units 

correspond (i.e. activation of the target word), the overall level of activity in the 

system of units (activation of the target and all its neighbors), and higher levels of 

information (e.g., frequency of the target and neighbor words). As the processing of 
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spoken input continues, the decision units continuously compute decision values 

based on the neighborhood probability rule to determine the probability of 

identification of the stimulus word. Once the decision value surpasses the criterion, 

the word is recognized. The neighborhood probability rule (Equation 2) 

 (
∑+ )*()*(

*

jNjs

s

FreqNWPFreqSWP

FreqSWP
)      (2) 

takes into account the activation level of the acoustic-phonetic pattern (SWP), the 

sum of neighbor word probabilities (NWPjs, i.e., the overall level of activity in the 

decision system) and the frequency information. Neighborhood density and word 

frequency effects lay in the decision stage of processing in NAM via the 

neighborhood probability rule. When the input word has a high number of 

confusable and high frequency neighbors, the sum of neighbor word probabilities 

( )*(
jNj qFreNWP∑ ) would be high and thus the probability of recognizing the 

input word would be low. In contrast, when the input word has a small number of 

confusable and low frequency neighbors, the sum of neighbor word probabilities 

would be low and thus the probability of recognizing the input word would be high.  

 However, the neighborhood probability rule does not take the clustering 

coefficient into account. That is, there is no variable in Equation (2) that represents 

the interconnectivity among the neighbors. Like TRACE and Shortlist, NAM has a 

two stage process of activation and decision. However, in NAM, the competition 

among lexical candidates does not involve any inhibitory links among them. This 

means activation of one decision unit will not affect the activation of another 
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decision unit directly, but it will influence the output decision through its influence 

on the overall activation of the whole decision system. Thus, in order for NAM to 

account for the clustering coefficient effect found in this study, a variable 

representing the interconnectivity among the neighbors may need to be added to the 

sum of neighbor word probabilities ( )*(
jNj qFreNWP∑ ) in the neighborhood 

probability rule so that the total activation of the system would increase with higher 

interconnectivity among the neighbors. This will slow the time for the decision unit 

to reach criterion when the input stimulus has a high clustering coefficient. However, 

the detail of what variable to add in the rule and whether the modified NAM would 

be able to produce the results observed in the present study is at present unclear. 

 The results from the present study suggest that the clustering coefficient affects 

the time course and accuracy of spoken word recognition. This implies that in 

addition to the number of phonological neighbors a target word has, the 

interconnectivity among the phonological neighbors also exerts an influence on the 

processing of the target word. Current models of spoken word recognition, including 

TRACE, Shortlist and NAM, were considered. Based on the characteristics of 

feedback from word level and inhibition within level, simulation is required to find 

out whether TRACE could account for the present findings. Shortlist seems to fail to 

produce a clustering coefficient effect in the same direction as that observed in the 

present study due to the inhibitory links among the words on the lexical level. 

Another spoken word recognition model, NAM, does not take clustering coefficient 

into account in the decision rule. Modification of NAM may be required to account 



   38 

for the clustering coefficient effect observed in the present study. 
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APPENDIX A.1- High Clustering Coefficient Words 

 
Stimulus 

Word 

Clustering 

Coefficient 
Familiarity 

log Word 

Frequency 
ND log NF Pos. Seg. Freq. Biphone Freq. 

bash 0.163  6.50 0.00  24 1.82  0.138  0.0079  

bath 0.193  7.00 1.42  17 2.26  0.138  0.0069  

bib 0.172  6.83 0.30  13 2.25  0.173  0.0064  

bull 0.154  7.00 1.15  13 2.43  0.135  0.0031  

bug 0.151  7.00 0.60  26 1.80  0.108  0.0047  

dot 0.167  7.00 1.11  26 2.06  0.178  0.0050  

dig 0.178  6.92 1.00  17 2.19  0.166  0.0187  

dish 0.217  7.00 1.20  12 2.22  0.156  0.0164  

dug 0.175  7.00 1.20  22 1.83  0.109  0.0037  

feel 0.166  7.00 2.33  30 2.06  0.152  0.0046  

full 0.221  7.00 2.36  15 2.45  0.131  0.0026  

foul 0.196  7.00 0.70  17 2.00  0.130  0.0010  

gang 0.193  7.00 1.34  15 1.65  0.117  0.0070  

gain 0.180  7.00 1.87  25 2.22  0.151  0.0042  

gum 0.206  7.00 1.15  16 1.93  0.115  0.0067  

call 0.152  7.00 2.27  26 2.16  0.183  0.0060  

case 0.173  6.75 2.56  22 2.14  0.201  0.0050  

lag 0.152  6.58 0.48  27 1.73  0.131  0.0073  

leaf 0.189  7.00 1.08  25 1.90  0.086  0.0033  

leap 0.163  6.83 1.15  30 1.93  0.103  0.0039  

lease 0.166  6.92 1.00  27 2.02  0.145  0.0042  

leave 0.167  7.00 2.31  26 1.76  0.089  0.0038  

look 0.203  7.00 2.60  17 2.21  0.098  0.0013  

lose 0.160  6.50 1.76  17 2.00  0.076  0.0031  

lull 0.152  6.25 0.30  15 1.66  0.147  0.0064  

love 0.156  6.67 2.37  11 1.91  0.097  0.0030  

math 0.152  7.00 0.60  15 2.23  0.144  0.0111  

mall 0.152  7.00 0.48  24 2.27  0.147  0.0044  

meal 0.174  7.00 1.48  28 1.92  0.163  0.0047  

mouse 0.169  7.00 1.00  14 1.93  0.146  0.0017  

perk 0.150  6.83 0.00  22 1.72  0.163  0.0061  

pearl 0.153  7.00 0.95  21 1.98  0.183  0.0045  

ring 0.155  7.00 1.69  23 2.04  0.158  0.0203  

ripe 0.154  6.92 1.15  20 1.93  0.122  0.0034  

seal 0.166  7.00 1.23  31 2.20  0.208  0.0055  

size 0.152  7.00 2.14  12 2.29  0.157  0.0041  

weak 0.150  7.00 2.49  22 1.93  0.106  0.0030  

wire 0.173  7.00 1.62  22 1.86  0.133  0.0035  
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Note: ND is neighborhood density; NF is neighborhood frequency; Pos. Seg. Freq. 

is position segment frequency (a measure of phonotactic probability); 

Biphone Freq. is biphone frequency (a measure of phonotactic probability). 
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APPENDIX A.2- Low Clustering Coefficient Words 

 
Stimulus 

Word 
Clustering 

Coefficient 
Familiarity 

log Word 

Frequency 
ND log NF Pos. Seg. Freq. 

Biphone 

Freq. 

beach 0.127  7.00 1.83  18 2.04  0.091  0.0028  

bead 0.110  7.00 0.00  26 2.22  0.121  0.0044  

beat 0.117  7.00 1.83  33 2.28  0.149  0.0045  

bush 0.061  7.00 1.15  6 1.83  0.069  0.0015  

boot 0.118  7.00 1.11  32 1.91  0.139  0.0039  

dog 0.133  7.00 1.88  8 1.82  0.086  0.0016  

dead 0.133  7.00 2.24  24 2.25  0.163  0.0108  

deck 0.136  7.00 1.36  20 2.00  0.178  0.0142  

debt 0.129  7.00 1.11  28 2.36  0.191  0.0120  

fat 0.131  7.00 1.78  28 2.37  0.192  0.0093  

fell 0.131  6.83 1.96  30 2.29  0.193  0.0114  

fate 0.131  6.92 1.56  29 2.47  0.142  0.0049  

gas 0.122  7.00 1.99  19 1.86  0.184  0.0104  

goat 0.118  7.00 0.78  26 1.91  0.141  0.0056  

gull 0.111  6.67 0.00  21 1.75  0.139  0.0062  

cough 0.121  7.00 0.85  11 2.10  0.129  0.0031  

couch 0.092  7.00 1.08  9 1.62  0.110  0.0021  

lock 0.113  7.00 1.36  31 1.93  0.148  0.0052  

log 0.135  6.73 1.04  13 2.28  0.069  0.0024  

lose 0.108  7.00 1.93  19 2.14  0.129  0.0026  

ledge 0.114  6.83 0.78  18 1.82  0.118  0.0056  

lick 0.108  6.75 0.48  32 2.04  0.184  0.0148  

lip 0.122  7.00 1.26  29 1.81  0.167  0.0111  

live 0.124  7.00 2.25  15 1.94  0.154  0.0093  

lime 0.128  6.92 1.11  23 1.97  0.118  0.0047  

luck 0.122  7.00 1.67  26 1.88  0.127  0.0037  

miss 0.106  7.00 2.41  23 1.91  0.232  0.0251  

merge 0.113  6.92 1.00  11 1.65  0.093  0.0021  

mood 0.125  7.00 1.57  17 2.03  0.117  0.0024  

mile 0.135  6.75 1.68  28 1.95  0.165  0.0051  

pass 0.117  7.00 1.95  24 1.96  0.243  0.0158  

purse 0.117  7.00 1.15  19 1.96  0.188  0.0066  

rhyme 0.119  7.00 0.60  25 1.94  0.134  0.0031  

rise 0.135  7.00 2.01  21 2.05  0.105  0.0029  

sause 0.105  7.00 1.30  10 2.25  0.198  0.0022  

save 0.129  7.00 1.79  22 2.01  0.155  0.0033  

word 0.131  7.00 2.44  19 2.29  0.083  0.0030  

wide 0.130  7.00 2.10  26 2.06  0.093  0.0041  

Note: ND is neighborhood density; NF is neighborhood frequency; Pos. Seg. Freq. 
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is position segment frequency (a measure of phonotactic probability); 

Biphone Freq. is biphone frequency (a measure of phonotactic probability). 



   49 

APPENDIX A.3- Filler pairs used in Experiment 1 

 

bad bag 

back ban 

bud buff 

balm bar 

ball boss 

bell bet 

bait beige 

big bit 

bone boat 

booth boom 

duck dull 

dock doll 

deaf den 

ditch dill 

death deal 

dean deep 

dip dim 

doom dune 

fad fan 

fetch fame 

fig fill 

faith faze 

fin fit 

faille fight 

gag gap 

gun gush 

gone gauze 

gage Gael 

gait gaze 

goal give 

calf cap 

cache cat 

cod cock 

con cop 

lad laugh 

lac lamb 

lap lash 

lung lush 

lob lodge 

long lawn 

loop learn 

lead leg 

lake lame 

lain lace 

lid limb 

leak lean 

lied lit 

lobe load 

loaf loan 

loose loot 

like line 

lice light 

mad man 

mass mat 

moss moth 

made make 

mail main 

mil myth 

moon move 

mike mice 

pad pack 

pan pat 

pod pop 

par pot 

rash rat 

raid red 

rib rich 

ride writhe 

sake sane 

seat scene 

soak sol 

side cite 

wick win 

work worm 

wife wine 

wipe wise 
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APPENDIX B –International Phonetic Alphabet (IPA) Transcription of the Nonwords 

used in Experiment 3

 

bɛf faʤ laɪl mlp 

bɪm fam lot mlɹ 

bɛtʃ fɛd loɪz mɝs 

beθ fiɡ luz pʌm 

bɔz fætʃ lɑm pɑuθ 

blv ɡls lel pɛʃ 

bæf ɡaɪl loɹ pæf 

bem ɡaɪz lɛl ɹɑʤ 

bɔn ɡɑk lɝtʃ ɹæk 

bɝm ɡlk lɑuθ ɹoɪn 

dʊk ɡls lɝm ɹɑud 

det kɑun lɔk sʌd 

ditʃ kɝl llʃ sud 

dɝd kus lev saɪs 

dɝθ klʃ mɝl soɪz 

dɛs lɝv moɪn wʌd 

dɔz loɪl mɔn wed 

dis loɹ mem witʃ 

fɑt lɝʤ maɪf wɝtʃ 

 

 


