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Abstract

The separation of RF signals from different angles of arrival is a key objective for a radar

receiver. A common approach to spatial separation relies on the measurement of a linear phase

progression across multiple receive antenna elements, where the rate of progression relates directly

to a spatial angle of arrival.

With a single antenna receiver, spatial separation can still be achieved using spatially diverse

emission structures. One such emission structure is the Frequency Diverse Array (FDA), which

transmits a frequency shifted version of a common waveform out of each element. Due to the

frequency shifts, the peak of the mainbeam sweeps across time and space.

With a careful choice of waveform and frequency shift, the waveforms transmitted from each

element can be identified and separated in delay, and only a single receiver antenna element is

needed to measure a phase progression across the waveform responses or "virtual array" in delay.

In this thesis, a Multiple Input Single Output (MISO) radar system capable of performing

range, Doppler, and spatial estimation will be presented and experimentally validated. The system

leverages key features of the LFMCW-FDA emission structure to achieve a single channel receiver

architecture which can realize the aforementioned performance and simultaneously remain compu-

tationally inexpensive. When compared to other spatially diverse emissions, the system is shown

to retain the unambiguous range and Doppler spaces. The potential for this type of emission struc-

ture to be used in a search radar context is also explored. Additionally, an adaptive processing

algorithm will be introduced along with simulated results showing an improved ability to separate

closely spaced scatterers in range and space.
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Chapter 1

Introduction

1.1 Motivation

The theory, analysis and results presented within this report were generated in support of a project

which aimed to demonstrate a radar system framework which could

1. Accomplish the goals of a search radar (efficient illumination and estimation of scattering

over a large area of space)

2. Maintain a low cost receiver architecture

To achieve this aim, a Multiple Input Single Output (MISO) system was designed, which lever-

ages the attributes of a Linear Frequency Modulated Continuous Wave Frequency Diverse Array

(LFMCW-FDA) transmission to accomplish spatial, range, and Doppler processing using a single

receive antenna element.

This MISO LFMCW-FDA implementation can be thought of effectively as the inverse of the

Ubiquitous radar concept [1], where instead of widebeam on transmit, a widebeam on receive,

and separability of the waveforms allows the ability to distinguish distinct scattering received from

different spatial locations.

The work presented in the following sections will detail theory, explore simulated results, and

demonstrate experimental validation of such a radar system. The system will be compared to other

spatially diverse emission structures. It will likewise be shown to have attractive features for use

as a low resolution search radar. Improvement in the separability of closely spaced scatterers in

range and spatial angle via an adaptive algorithm will also be introduced with simulated results
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supporting its use.

The remainder of this section introduces the basic radar concepts which are fundamental to the

theory of the LFMCW-FDA MISO system and receive processing.

1.2 Radar Fundamentals

Active radar systems can be classified as either CW or pulsed systems. A CW radar is one in which

the transmit antenna is always radiating, and the receive antenna is always receiving. In contrast, a

pulsed radar emits higher power energy (relative to the CW case) in short intervals, or pulses, and

then immediately after there is a receive time interval where the transmitter is not radiating.

The basic goal of any radar system is to estimate the scattering parameters of the reflecting

objects in a scene. Important parameters include the object’s distance or range away from the

platform, the speed of the object, and the spatial angle of the object relative to the "look" direction

of the radar. This spatial angle can extend to two dimensions - the horizontal axis, often called the

azimuth angle, and the vertical axis, the elevation angle. Together, these parameters can provide

an estimate of an object’s size and/or physical makeup, location, and bearing out in space.

1.2.1 Range Estimation & Pulse Compression

The simplest and most fundamental radar operation is that of determining the range of objects in a

scene. Consider the simple pulsed radar example. An antenna transmits a rectangular pulse of time

duration T - the pulse travels a distance R1 at the speed of light c - the pulse hits an object which

scatters or reflects RF energy - and a portion of the RF energy returns back to the same antenna

which now receives the reflection.
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R1 

Figure 1.1: Simple 1D Range Example

An example of what both the transmit pulse of length T and receive signal for time delay might

look like for a scatterer at delay τ1 is shown below:

Figure 1.2: Amplitude vs Time/Delay Example

The amount of time it takes for the RF energy to be emitted, reflect off the scatterer, and return

to the receiver is the delay τ , and has the following relationship with the range R1 of the scatterer:

3



τ1 =
2R1

c
(1.1)

Equation 1.1 is the two-way time delay for the scatterer a distance R1 away from the radar

platform. By measuring τ1, one can likewise estimate the scattering’s distance or range.

Measuring the time delay of a received signal isn’t the only way a range measurement can be

established. In fact, it is not an attractive means of doing so, in large part due to the issue of poor

range resolution, or the ability to discern between two closely spaced scatterers. To demonstrate

this issue, reconsider the setup from above in Figure 1.1. Now add a second scatterer, located

at a range R2. With this scenario depicted in Figure 1.3, consider 2 possible resulting receive

signals in Figure 1.4, which depend on how closely spaced the scatterers are relative to each other,

represented as ∆x:

ΔxR1 

R2

Figure 1.3: Amplitude vs Delay, Multiple Scatterers
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Figure 1.4: Simple 1D Range Example, Multiple Scatterers

In Figure 1.4, the top plot shows the response for two scatterers spaced adequately apart - it

can be clearly seen that two separate scatterers are present. The bottom plot shows two scatterers

placed too close together - no longer can the two scatterers be resolved; there appears to be only a

single, extended scatterer. Depending on the distance ∆x between the two scatterers, their resulting

responses might interfere with one another, which makes determining whether there is one or more

scatterers difficult.

In this simple case of the rectangular pulse, the ability to distinguish between two scatterers is

determined by the length of the pulse T . When scatterers are separated by a range corresponding

to the two-way time delay of T , two separate responses can be seen, and thus ranges can be esti-

mated for both. This determines the range resolution ∆R, and can be expressed by rearranging the

previous delay equation, and plugging in ∆R and T :
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∆R =
cT
2

(1.2)

In general an active pulsed radar system is designed for longer pulses, to achieve more energy

on target. However, longer pulses results in a poor ∆R. This directly motivates the need for a

technique to improve the ability to resolve closely spaced scatterers, like pulse compression.

Pulse compression is a technique which utilizes Frequency Modulated (FM) waveforms of

bandwidth B on transmit and a correlation procedure on receive to generate a range estimate. A

classic example of pulse compression involves transmitting a Linear Frequency Modulated (LFM)

waveform, or chirp. This technique results in a superior range resolution, which can be expressed

as:

∆R =
c

2B
(1.3)

In short terms, the pulse compression response effectively shortens, or compresses, the re-

sponse of a scatterer in delay, hence the name. Intuitively, if the response of a scatterer is short-

ened in delay, then it makes sense that the ability to distinguish between closely spaced scatterers

is improved. This transmission and filtering procedure can also be referred to as delay and/or range

compression.

The Pulse Repetition Interval (PRI) is the full time interval of transmit and receive before the

proceeding pulse is emitted. The PRI or TPRI sets the maximum possible unambiguous range Rua

as

Rua =
cTPRI

2
(1.4)

1.2.2 Doppler Processing

Another fundamental parameter radar systems are tasked with determining is how quickly a scat-

terer is moving towards or away from the radar platform. Traditionally, this is done by observation

6



of the Doppler effect on a received signal.

Consider the case where a scatterer is moving at a constant radial velocity vr. When a trans-

mitted signal of center frequency fc =
c

λc
hits this scatterer moving radially towards or away from

the radar platform, a Doppler frequency shift fd is imparted to the signal. The frequency shift is

proportional to the radial velocity of the moving scatterer and the center wavelength λc as

fd =
2vr

λc
(1.5)

The maximum observable Doppler shift is determined by the Pulse Repetition Frequency (PRF)

of the radar, which is the inverse of the PRI. Any shifts larger in magnitude than the max Doppler

shift will alias back into the observable Doppler space and thus an ambiguous Doppler shift will

appear. The maximum unambiguous Doppler shift fua is defined as

fua =
PRF

2
(1.6)

In most scenarios, many pulses are required to achieve a sufficient observation time of the

scene in order to have the ability to resolve Doppler frequency shifts in scattering responses. The

time over which a sufficient number of pulses can be collected which satisfies this requirement is

referred to as a Coherent Processing Interval (CPI), and will also be denoted at times as TCPI or

integration time within this work.

By collecting a CPI’s worth of pulses, Doppler shifts can be estimated by taking a Fourier

Transform at every delay bin across pulses. The Doppler resolution ∆ fd is related to the integration

time as

∆ fd =
1

TCPI
(1.7)
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1.2.3 The Uniform Linear Array and Spatial Estimation

The well known Uniform Linear Array (ULA) is the assumed transmit antenna array structure con-

sidered throughout the remainder of this work, and so will be defined here. The ULA is composed

of a collection of individual antenna elements arrayed along a single Cartesian dimension, with the

following properties:

• The array is comprised of M antenna elements

• Each element is identical and radiates isotropically (no directional gain)

• Each element emits RF energy at a center frequency fc, where wavelength λc =
c
fc

for speed

of light c

• The elements are spaced a uniform distance d = λc
2 apart from each other

• The time required for a signal to travel across the array is significantly smaller than the

inverse of the bandwidth of the signal (narrowband assumption)

An important assumption in this discussion of spatial estimation is that signals impinging on

the face of the ULA are in the far-field. Thus the incident signal is assumed to be a plane wave,

where the phase fronts wash over the array in a linear fashion.

The ULA with incident phase fronts can be visualized with the following figure:

8



Δr

d

θ

m = 0                 1                2                3    --------- M-1

Figure 1.5: Uniform Linear Array and Impinging Phase Fronts

For the ULA, spatial angle θ is referenced to the boresight angle, which is the axis of symmetry

of the array.

Note that individual elements are referenced with the script m, and that the reference indexing

begins with the reference element m = 0 (which is also called the "phase center") and continues

til the index M − 1. This convention is arbitrary - a different indexing could be chosen - all that

matters is that this convention is adhered to, and so this is the convention used in the rest of this

work, unless specifically stated otherwise.

To begin the discussion on spatial estimation, consider a plane wave incident on the face of the

ULA at angle θo. The physical distance between the phase front from one element to the next is

∆r, found using Figure 1.5 and trigonometry:

∆r = cos(θo −90)d = sin(θo)d

The phase progression associated with this physical distance can be found by multiplying ∆r by

the spatial frequency or wavenumber k = 2π

λc
. Due to the uniformity of the spacing of the elements,

9



the phase progression for the mth element referenced to the phase center is simply

m · k ·∆r = m
2π

λc
sin(θo)d

The signal ym(t) received at the mth element can be expressed in terms of the signal s(t) received

at the reference, along with added phase rotation to account for the physical distance away from

the phase center as:

ym(t) = s(t)e j 2π

λc
d sin(θo)m

Conceptually, the received signal ym(t) can be thought of as the signal s(t) offset in spatial

frequency by sin(θ), where the element index m is to spatial frequency what time t is to temporal

frequency f . With this in mind, the M spatial samples contain the same spatial frequency offset,

for different values of m. And just as the temporal frequency content of a signal can be revealed

through the Fourier transform of the signal, so can the spatial frequency content, via a similar

process, where instead of a transformation from time to frequency, it is a transformation from

element-space to spatial frequency. The form looks very similar to that of a Discrete Fourier

Transform. This transformation is also referred to as "standard beamforming", and the resulting

beamformed response Y (t,θ) can be expressed mathematically as follows:

Y (t,θ) =
M−1

∑
m=0

ym(t)e
− j 2π

λc
d sin(θ)m

Y (t,θ) =
M−1

∑
m=0

s(t)e j 2π

λc
d sin(θo)me− j 2π

λc
d sin(θ)m

(1.8)

From observation, the peak value of Y (t,θ) will occur when θ = θo. Thus, an estimate of the

incident angle θo can be achieved by beamforming across all possible spatial angles.

Recalling the Fourier transform of a rectangular pulse, a sinc function results with a peak to

null relationship dependent on the length of the pulse in time. As the rectangular pulse lengthens,

10



the peak to null length decreases, sharpening the response. Similarly, the ULA can be thought

of as a rectangular function in space, and with more elements in the ULA, the sharper the spatial

frequency response, which dictates the spatial resolution ∆θ . From [2], the spatial resolution for

an array of length L and center frequency λc is approximated as (in radians):

∆θ ≈ λc

L
(1.9)

For the ULA case, L can be expressed in terms of the number of elements M and element

spacing d as

L = (M−1)d

Plugging this into (1.9)

∆θ ≈ λc

(M−1)d
(1.10)

It is important to note that the same physical relationships hold for a ULA transmitting a signal

s(t) centered at fc, meaning the transmitted signal sm(t) from the mth element can be focused to

spatial direction θ ′
0 by applying the necessary phase rotation to each element on transmit:

sm(t) = s(t)e j 2π

λc
d sin(θ ′

o)m

1.3 Radar Waveforms

In the previous sections, the pulsed radar case with pulsed radar waveforms was considered, pri-

marily for convenience in introducing range and Doppler processing. The remainder of the work

deals with CW waveforms. The previous results for range and Doppler performance are still ap-

plicable, with one minor alteration. In CW, there is technically no PRI or PRF; however, since the

transmitted waveform repeats in CW, the waveform repetition interval T is now the effective PRI,

11



with the effective PRF being 1
T .

Proper choice of the transmit waveform depends on the objectives of the radar system and the

expected environment in which the system will operate, among many other practical considera-

tions. Multiple-Input Multiple-Output or MIMO waveforms take advantage of radar systems ca-

pable of both transmitting and receiving on independent channels. This capability is often viewed

in contrast to the phased array radar, wherein the same waveform is emitted from each element of

an array with an added element-wise phase progression for beamforming purposes, as previously

discussed.

There are two general classes of MIMO radars: Separated MIMO, where transmit and receive

antennas are separated by considerable distances and the signals received by array elements are

uncorrelated, and colocated MIMO, where the transmit and receive antennas are either the same

physical elements or are spaced closely enough that the incidence angle is treated as the same for

either transmit or receive array, and the received signal by array elements are highly correlated.

For the purposes of this work, the colocated case is assumed when referring to MIMO from here

on. For further description and context of colocated MIMO, see [3].

MIMO radar waveforms that can be distinctly differentiated from one another in a given domain

(time, Doppler, delay) are often referred to as spatially diverse emission structures. Two well

known spatially diverse MIMO structures are Doppler Division Multiple Access (DDMA) [4], [5]

and Time Division Multiple Acess (TDMA) [6].

1.3.1 Doppler Division Multiple Access

In DDMA, an element-wise frequency offset ∆F is added to each transmit waveform s(t), where

the waveform sm(t) emitted from the mth element can be expressed as:

sm(t) = s(t)e j2π∆Ftm (1.11)

As will be shown in the next section, this expression is identical to the FDA. The key difference
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between FDA and DDMA is in the choice of ∆F . In DDMA, this frequency offset is chosen

such that each waveform is effectively Doppler shifted by a uniform fraction of the unambiguous

Doppler space. For M FMCW waveforms, the unambiguous Doppler space is partitioned as 1
MT .

Rewriting (1.11):

sm(t) = s(t)e j2π
m

MT t (1.12)

Each sm(t) is distinguishable by the associated m
MT frequency shift, resulting in the ability to

separate individual waveforms in the Doppler domain. An example DDMA response for a scatterer

at zero delay and zero Doppler shift:

-40

-35

-30

-25

-20

-15

-10

-5

0

Figure 1.6: Example DDMA response, for M = 8 transmit antenna elements, LFMCW waveform

Note that in Figure 1.6, responses are offset from integer multiples of ∆F , and this is to avoid a

response occurring at zero Doppler, within the clutter region. Thus the choice of element indexing

is critical here. For an integer multiple indexing (such as 0:M-1), the element-wise frequency

offsets fm would need to be altered slightly as:

fm =

(
m− (M−1)

2

)
∆F (1.13)
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A key drawback to this emission is the reduction in the unambiguous velocity space. The new

unambiguous velocity fdua is now equivalent to frequency offset ∆F :

fdua = ∆F =
1

MT
(1.14)

1.3.2 Time Division Multiple Access

In TDMA, the waveform s(t) of duration T is transmitted individually by each element in a non-

overlapping sequence. A variant of this TDMA structure will be considered here, shown exper-

imentally in [6], where each element begins to transmit the waveform at staggered, overlapping

time intervals specified by a delay ∆T . This can be expressed as:

sm(t) = s(t −m∆T ) (1.15)

After pulse compression, waveform separability is achieved in the delay domain. An example

response for a scatterer at zero delay and zero Doppler:
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Figure 1.7: Example TDMA for M = 8 transmit antenna elements, LFMCW waveform

A key drawback here is a reduction in the unambiguous range Rua, which is now reduced by
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the time delay offsets T
M

Rua =
cT
2M

(1.16)

A third MIMO emission structure, which will be presented in detail in the next section, is

the Frequency Diverse Array (FDA). The first published discussion on the FDA concept was by

Antonik [7]. At a high level, the FDA applies an element-wise frequency offset to the waveform

emitted from each element of an array. As a result of this FDA structure, the peak of the mainbeam

"sweeps" across the spatial dimension over the transmission time interval. This sweeping nature

and more will be discussed in detail in the next section.

1.4 Search Radar

Traditional radar systems involved in search and track are pulsed systems that employ a scanning

pattern for search. A traditional search scan pattern involves the formation and steering of a pen-

cil beam across a desired spatial extent, where steering is accomplished either mechanically via

rotating platform, or electronically via phase shifting.

After detection, a systemized way of updating target tracks is required. Two such methods

considered in this analysis are Track-while-Scan (TWS) and Search-and-Track (SAT). The TWS

method does not alter the scan pattern to accommodate updates on target positions; target tracks

are updated at a constant scan rate across all spatial angles.

Conversely, the SAT method prioritizes certain spatial angles over others when detected targets

of interest are present, diverting resources away from the scan in order to fixate on a particular

direction. As a consequence, the update rate for other spatial angles suffers.

In comparison, the TWS method is best used in contexts where a constant update rate is ac-

ceptable. The SAT method is better suited for contexts where a priority based on perceived threat

will occur at some spatial angles relative to others.

While detection and tracking are not explored in this work, in the following section the LFMCW-
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FDA emission will be assessed in the context of a search radar, and revealed as an attractive emis-

sion structure which provides a constant revisit rate similar to that of TWS while also maintaining

the ability to vary the revisit rate similar to SAT.
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Chapter 2

LFMCW-FDA Emission

This section introduces the transmission structure which will be used in the system under consid-

eration. It will be shown that the combination of LFMCW waveforms and a FDA structure results

in a time-varying beampattern that sweeps the main beam across spatial angles over the chirp

time. This accomplishes persistent illumination of the radar scene without the need for mechanical

scanning or electronic scanning with phase shifters, an attractive feature for a search radar.

The FDA concept was formally introduced by Antonik in [7], and has been thoroughly in-

vestigated [8] [9]. The combination of FDA and LFM waveforms was explored in a follow-up

paper [10] by Antonik, addressing the possibilities of this combination for use in Moving Target

Indication (MTI) and Synthetic Aperature Radar (SAR) contexts.

A planar FDA concept has also been explored in [11], where the beam scanning nature extends

to both azimuth and elevation angles across time, increasing the spatial diversity. Although only the

1-D ULA case is explored in this work, the planar array geometry and associated spatial diversity

is an attractive topic for future exploration and potential extension of this work.

2.1 The Frequency Diverse Array (FDA)

Given a ULA of M elements spaced a distance d = λc
2 apart, with center frequency fc, and emitting

a waveform s(t) of duration T , a FDA introduces an element-wise frequency offset ∆F to the

waveform emitted by the mth antenna element sm(t), which can be written as:

sm(t) = s(t)e j2π∆Ftm (2.1)
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The complex far-field radiated emission pattern g(t,θ) describes the constructive/destructive

interference of the total emission, across time t and space θ . This can be expressed as the super-

position of the waveforms sm(t), along with the element-wise phase rotation associated with any

given spatial direction θ , and an added element-wise phase offset φo:

g(t,θ) =
1
M

M−1

∑
m=0

sm(t)e jπ sin(θ)m

=
1
M

M−1

∑
m=0

s(t)e j[2π∆Ft+π sin(θ)+φo]m

(2.2)

Where the division by M is used to normalize the expression to unity gain. Looking at the

element-wise phase function of the complex exponential in 2.2, the expression is dependent on

both time and space:

φm(t,θ) = [2π∆Ft +π sin(θ)+φo]m (2.3)

Thus, the FDA structure couples the space and time dimensions. A direct consequence of this

is the location of the coherent mainbeam of this emission. The peak of the mainbeam can be found

where the value of the phase function is equal to integer multiples of 2π , including zero:

φm(t,θ) = 2π · k (2.4)

k = 0,1, ...

Considering the consequence of (2.4), two things become clear when observing (2.3). First,

owing to the term involving frequency offset ∆F , the location of the peak is now a linear function

of time. Secondly, constant φo controls the spatial angle where the peak begins at time t = 0.
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2.2 MISO LFMCW-FDA Emission Structure

The waveform s(t) chosen for this system is an up-chirping FMCW waveform of bandwidth B and

chirp duration T which sweeps from −B
2 to B

2 , and for N chirps can be expressed as:

s(t) =
N−1

∑
n=0

u(t −nT ) (2.5)

Where

u(t) = e j2π( B
2T t2−B

2 t)

0 ≤ t ≤ T

The instantaneous frequency function f (t) is the time derivative of the phase function θ(t) for

the LFM:

f (t) =
dθ(t)

dt
1

2π
=

B
T

t − B
2

(2.6)
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Figure 2.1: s(t) and f(t)

Combining the LFMCW waveform of (2.5) with the FDA structure of (2.2), and choosing

∆F = 1/T , φo =−π yields the LFMCW-FDA emission structure:

g(t,θ) =
1
M

M−1

∑
m=0

N−1

∑
n=0

e j2π( B
2T (t−nT )2−B

2 (t−nT ))e j(2π
t
T +π sin(θ)−π)m (2.7)

The choice of ∆F ensures a full spatial sweep is equivalent to a full frequency sweep, and φo

was chosen to ensure that the mainbeam peaks at θ = 0◦ half-way through the sweep (t = T
2 ). This

results in the Time-Varying Beam Pattern (TVBP) expressed as |g(t,θ)|2 (for N = 1 sweep and

sinθ ):
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Figure 2.2: TVBP for the LFMCW-FDA emission, single sweep, φo =−π , ∆F = 1/T ,M = 8

The FDA couples space and time and the LFM waveform couples time and frequency. The

combination of the two results in a space-frequency coupling, which can be visualized by taking

the Fourier transform of g(t,θ) which results in a spatially varying energy spectral density.
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Figure 2.3: Energy Spectral Density for the LFMCW-FDA emission,φo =−π , ∆F = 1/T ,M = 8

Looking at Figure 2.3, it is important to note that the bandwidth transmitted in any given

spatial direction is reduced, which can be clearly observed by taking a spatial cut, at any angle,

across frequency.

Due to the sweeping nature across space for either time or frequency, the term sweep will from

here on refer to either, and likewise the term Sweep Repetition Frequency (SRF) will be used to

describe the rate of sweeping in either dimension:

SRF = ∆F =
1
T

(2.8)

2.3 LFMCW-FDA Emission For Search Radar

As previously discussed, a primary objective for a search radar is the illumination of a large spatial

extent. As seen in the previous section, the FDA structure inherently accomplishes this objective,
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without the need for phase shifters or mechanical steering. With this in mind, the LFMCW-FDA

presents an attractive emission structure for use in a search context. While not the primary focus of

this work, the potential of the LFMCW-FDA emission structure used for search and track is briefly

explored here, and could easily be a primary candidate for future application focused work.

Traditionally, search radars accomplish the illumination objective by employing a scanning

pattern, determined by dividing the extent of spatial coverage into sections using the beamwidth

of the transmit antenna. The beam is focused at a particular spatial angle for a period of time

sufficient to estimate scattering parameters. The beam is then focused to the next spatial angle and

the process repeats. In this sequential manner, the entire spatial extent is covered.

2.3.1 Revisit Rate

The rate at which scattering parameters are updated for a particular range, angle and Doppler bin is

referred to here as the revisit rate. Two approaches to the choice of this rate are under consideration,

sourced from [12].

The Track-while-Search (TWS) approach maintains a constant revisit rate for all spatial angles,

and thus does not deviate from the scan pattern employed. The Search-and-Track (SAT) approach

allows for the reallocation of radar resources to update the profile of a scatterer at a particular

spatial angle based on assessed threat along with other factors. For example, this could take the

form of interleaving an extra dwell or two at the last known scatterer spatial location within the

scan pattern itself. In this case, the revisit rate for the other spatial angles is reduced, as more time

is allocated to the particular spatial angle of interest. The effective ability to search the rest of the

spatial extent suffers. At the extreme, scatterer overload could diminish the ability to search the

entire volume of space in an adequate and timely manner.

Interestingly, the FDA emission essentially provides the TWS approach inherently, within the

fast-time. The FDA emission illuminates the entire spatial extent at the SRF, and so the revisit

rate for all spatial angles would be an integer multiple of the sweep rate. The time Trev between

measurements would thus be an integer multiple of the single sweep time 1/SRF :

23



TRev = N · 1
SRF

(2.9)

Where N is determined by the amount of sweeps necessary to achieve acceptable detection

performance.

One can imagine a scenario where the SRF can be changed on the fly, in which case the revisit

rate can be altered accordingly. Due to the sweeping structure, scattering from all angles are

updated at this increased rate simultaneously. Thus, a FDA emission could potentially accomplish

the two goals at once: increase the revisit rate when deemed necessary, while also maintaining

the ability to estimate parameters across the entire spatial extent simultaneously, effectively not

sacrificing the search for the track. Increasing the SRF comes with a reduction in the unambiguous

range from (1.4).

2.3.2 Swept Transmit Power

Due to the sweeping nature of the mainbeam across a fast-time interval T , the amount of RF energy

placed on a scatterer at any given spatial angle is reduced relative to an emission which stays

focused on a single spatial angle over the same time interval. Thus, it becomes important to know

the expected average transmit power in any one spatial direction for the FDA emission. While a

detector will not be discussed in this work, suffice it to say that the average power transmitted for

a single sweep informs the number of sweeps N required to achieve a desired probability of false

alarm for a later detection stage, directly informing achievable revisit rates from (2.9)

The average power transmitted over a single sweep and spatial direction is computed as follows.

To reduce terms for compactness, the transmission at boresight (θ = 0◦) will be considered. The

far-field signal transmitted in the boresight direction is thus (2.2) evaluated for θ = 0:

g(t,0) =
1
M

M−1

∑
m=0

s(t)e j[2π∆Ft+φ0]m (2.10)

The average power of a signal transmitted in a particular spatial direction θi can be found by:
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P =
1
T

∫ T

0
|g(t,θi)|2 dt (2.11)

By plugging (2.10) into (2.11), using |g(t)|2 = g(t) ·g∗(t), and expanding the summation:

PFDA =
1

T M2

∫ T

0
|s(t)|2[1+e j[2π∆Ft+φ0]+..+e j([2π∆Ft+φ0](M−1))][1+e− j[2π∆Ft+φ0]+..+e− j([2π∆Ft+φ0](M−1))]dt

This can be rewritten as (see Appendix B):

PFDA =
1

T M2

∫ T

0
|s(t)|2[M+

M

∑
m=2

2(m−1)cos([2π∆Ft +φ0][M−m+1])]dt

Assuming a constant amplitude of unity for the waveform, |s(t)|2 = 1. Integrating yields:

PFDA =
1

T M2 [M ·T +
M

∑
m=2

2(m−1)sin([2π∆FT +φ0][M−m+1])] (2.12)

For a given M, the resulting transmitted power is determined by the rate of sweeping ∆F and

phase offset φ0. For the LFMCW-FDA emission, ∆F = 1/T,φ0 =−π . Plugging these values into

(2.12), the phase values of the sin() term all become integer multiples of π , which results in the

whole summation term equating to zero. Thus,

PFDA =
1

T M2 [M ·T +0] =
1
M

Interpreting this result, M sweeps (and thus M ·T time intervals) will be required to achieve the

same amount of average power as the non-sweeping case (energy focused in one spatial direction).

Thus the tradeoff for persistent illumination within the fast-time is a reduced average transmit-

ted power in any given spatial direction. Depending on the context and desired performance, the

LFMCW-FDA emission could provide a beneficial alternative to traditional search radars. The

benefit of this structure lies within the ability to vary the revisit rate for all spatial locations simul-

taneously, provided the reduced average transmit power on a sweep to sweep basis is acceptable,

along with the varying unambiguous range resulting from varying the revisit rate.
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Chapter 3

Single Channel Receive Processing

3.1 Receive Signal Model

The receive signal y(t) for a receiver co-located with the transmit antenna can be modeled as a

time-delayed, Doppler shifted and complex scaled version of the emission g(t,θ), where the pth

point scatterer is located at a time delay τp, spatial angle θp, with Doppler frequency fDp and

complex scaling γp:

y(t) =
P−1

∑
p=0

γpg(t − τp,θp)e j2π fDp t (3.1)

To simplify, consider a single sweep (N = 1) for the case of a single, non-moving point-scatterer

(P = 1, fDo = 0). This simplifies 3.1 to

y(t) = γog(t − τo,θo) (3.2)

3.2 Correlation with Unshifted LFM

The receive signal y(t) is correlated with an unshifted LFM chirp s(t), where the correlation

response x̂(τ) can be expressed as:

x̂(τ) =
1
T

∫
∞

−∞

s∗(t − τ)y(t)dt (3.3)

Plugging in the expressions (2.2) and (3.2) and rearranging:
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x̂(τ) = γo

M−1

∑
m=0

e− jπme jπ sin(θo)m 1
T

∫
∞

−∞

s∗(t − τ)s(t − τo)e j2πm(t−τo)/T dt

As shown in Appendix A, the correlation response can likewise be expressed as a summation

of slices of the LFM-ambiguity function, evaluated across delay at particular frequency offsets:

x̂(τ) = γo

M−1

∑
m=0

A(τ − τo,
m
T
)e− jmπeπ sin(θo)m (3.4)

Where the ambiguity function is defined as

A(τ, fd) =
1
T

∫ T

0
s∗(t − τ)s(t)e j2π fdtdt

The expression of (3.4) can be simplified further, by noting that the delay-Doppler ridge of

the LFM’s ambiguity function can be approximated as delayed copies of the LFM autocorrelation

A(τ,0), along with additional phase rotation terms (see Appendix A for more on the added phase

rotation):

A(τ,
m
T
)≈ A

(
τ +

m
B
,0
)

e− jπ m2
BT e jπm (3.5)

Plugging (3.5) into (3.4), the correlation response can now be approximated as:

x̂(τ)≈ γo

M−1

∑
m=0

A
(

τ − τo +
m
B
,0
)

e− jπ m2
BT eπ sin(θo)m (3.6)

Due to the particular frequency offset spacing ∆F = 1/T , the correlation peak of one waveform

is separated in delay a distance of ±1/B from the adjacent peaks, and thus is in a null of all the

other responses, allowing the ability to separate each individual waveform. This structure is also

known as a virtual array, as all the reflected transmit waveforms are present and separable. The

orthogonality of the individual waveforms can be seen in the correlation response of Figure 3.1.

Analytically, evaluating (3.6) for τ = τo − k
B , the expression turns into:
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x̂(τo −
k
B
)≈ γo

M−1

∑
m=0

A
(

m− k
B

,0
)

e− jπ m2
BT eπ sin(θo)m (3.7)

For k ̸= m, the term A(m−k
B ,0) ≈ 0, so all summation terms other than the m = k term are

effectively zero. For the normalized ambiguity function, A(0,0) = 1. With this, the expression can

be rewritten:

x̂(τo −
k
B
)≈ γoe− jπ k2

BT e2π
Fc
c kd sin(θo) (3.8)

Looking at (3.8), the spatial information from the scatterer at θo imparted to the kth waveform

is present, along with the appropriate scaling γo and an additional undesired phase rotation term,

denoted as the "video phase", which will be explored momentarily.
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Figure 3.1: Ambiguity function slices (top) and example correlation response (bottom), with over-
sampling factor for display purposes

3.2.1 Formation of the Virtual Array in Delay

Figure 3.1 visually shows the expected structure of the virtual array in delay, for the particular

emission structure where an up-chirp and positive ∆F’s are transmitted, and the unshifted

LFM is used as the correlation filter. Depending on the combination of up/down-chirp and ±∆F ,

the virtual array could form on a different side of the zero delay point, and/or have the ordering of

the peaks change.

For the fixed element indexing of [0 : M−1], where M = 8, the possible combinations of ±∆F

and up/down-chirps are shown below, with the corresponding virtual array formed after correlating

with the unshifted LFM or m = 0 waveform.
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Figure 3.2: Differing combinations of positive ∆F with up/down chirps, and the resulting virtual
array structure. fm(t) is the instantaneous frequency function for the mth transmit waveform
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Figure 3.3: Differing combinations of negative ∆F with up/down chirps, and the resulting virtual
array structure. fm(t) is the instantaneous frequency function for the mth transmit waveform

3.2.2 Video Phase

As equation 3.8 shows, the kth peak has the kth element-wise phase rotation associated with a

scatterer at θo. However, alongside this term is an additional phase rotation, which is dependent

on BT and k. This term will be referred to as the video-phase term, named such with reference to

a similar term resulting from stretch processing [13].
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The impact of the video phase term on the estimate of θo is shown below in Figure 3.4.
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Figure 3.4: Beamforming of the video phase term, for differing M

By beamforming just this video phase term, an expected error can be seen from this response,

visually shown in the Figure 3.4. Note that for increasing BT , the expected video phase error is

reduced (for a constant M).

Because of the known structure of this video phase term, we can easily correct for it once the

correlation processing and virtual channel shaping has occurred, by simply applying the conjugate

phase term to the corresponding virtual channel:
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Figure 3.5: Beamforming responses, before and after correcting the video phase term
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3.3 Beamforming Virtual Channels

With the virtual array formed in the correlation response along the delay dimension, the response

can be reshaped to form M virtual channels, where the kth channel is formed by delaying the

correlation response by k
B , aligning each element of the virtual array over the scatterer delay τo.

These responses can then be beamformed, and the video phase term can be corrected by likewise

adding the conjugate of the term, to form the range-angle estimate x̂(τ,θ):

x̂(τ,θ) =
M−1

∑
k=0

x̂(τ − k
B
)e jπ k2

BT e jπ sin(θ)k (3.9)

The expected delay-angle response for a scatterer at θo = 0◦ can be seen in Figure 3.6:

Figure 3.6: LFMCW-FDA MISO Ambiguity Function

Taking a cut across the spatial dimension for zero delay, the expected spatial resolution can be
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visualized:

Figure 3.7: LFMCW-FDA MISO Spatial Resolution

From Figure 3.7, the peak to null beamwidth is about 0.266 in sinθ space. Calculating the

expected spatial resolution for a ULA of M = 8 elements spaced d = λc
2 , using (1.10)

∆θ ≈ 2
7
= 0.2857 rad (3.10)

Converting this to degrees and then sinθ , ∆sinθ = 0.2818. As the expression of (1.10) is an

approximation, this result shows that the beamwidth of the transmit antenna composed of M = 8

elements is effectively retained by the MISO LFMCW-FDA system.

Up to this point, continuous time models have been used to explicitly show the intricacies of

the math involved. In a real system, the continuous signal y(t) is sampled to form a vector y[n] at

sampling rate fs = B. While this looks like critical sampling, recall from Figure 2.3 that in any

given spatial direction the transmitted bandwidth is reduced by a factor of M.
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The data vector y[n] is correlated with the unshifted waveform to form the correlation response

x̂[l], shown in Figure 3.8.

Figure 3.8: Instantaneous frequency function chosen for the MISO LFMCW-FDA system (left)
and resulting virtual array structure (right), critically sampled

The sampled correlation response results in the peaks for each waveform response being sepa-

rated by a single sample. The kth virtual channel is thus formed by circ-shifting x̂[l] by k samples.

Figure 3.9: Formation of k virtual channels

The delay-compressed receive data for a single sweep is now in the form of an MxN data
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matrix.

3.3.1 Range and Doppler Performance

A full CPI’s worth of data is chopped up into individual sweeps, and the process of reshaping is

performed to achieve a data cube. From here, Doppler processing can be performed.

The unambiguous range Rua for LFMCW-FDA depends on the sweep time T , which also means

it can be related to the SRF from (2.8) as

Rua =
cT
2

=
c

2SRF
(3.11)

The range resolution ∆R for this emission is degraded due to the decreased bandwidth in any

one spatial direction, as seen in Figure 2.3. Further, the correlation responses for a single point

scatterer show clearly the extended response is a function of M waveforms, and so are factored in

as

∆R = M · c
2B

(3.12)

As mentioned in the first section, the FDA and DDMA emissions are similar, differing only by

∆F . Critically, in the LFMCW-FDA case the Doppler responses from each waveform wrap back

onto the Doppler response of the unshifted (m = 0) waveform, retaining the full unambiguous

Doppler space. Thus, fdua is simply tied to the SRF

fdua = SRF =
1
T

(3.13)

Finally, the Doppler resolution ∆ fd is dictated by the integration time TCPI as

∆ fd =
1

TCPI
(3.14)

Even though the transmit system is CW, a process similar to PRF staggering in pulsed systems
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can be implemented on this received data to increase the unambiguous range and Doppler spaces.

It has been shown in work using the same MISO LFMCW-FDA system that by altering the sweep

repetition frequency (SRF) on a CPI-to-CPI basis, ambiguous returns in range and Doppler can be

resolved. This work is not discussed here.

3.4 Simulation Results

To demonstrate the capabilities and limitations of the MISO LFMCW-FDA system, simulations

involving point scatterers at various range, Doppler and spatial angles were generated, and the

resulting receive processed parameter estimates are presented. Table 3.1 shows the operating pa-

rameters used for this simulation. These parameters mirror those used in the open-air data collected

and processed, with those results presented in the following section. DDMA and TDMA emissions

for the same scene and operating parameters are also shown, to demonstrate the advantages that

the MISO LFMCW-FDA system provides in comparison.

Note that the ADC rate here was based on the experimental system transceiver ADC. LFM

bandwidth B was chosen relative to this ADC rate, as ADC rate = 3B.

The expected range and Doppler performance metrics are summarized in Table 3.2, and can

be found easily by plugging the appropriate values from Table 3.1 into the appropriate metrics

equations of (3.11),(3.12),(3.13), and (3.14), from section 2 (see Appendix C for worked through

calculations). Frequency offset ∆F was chosen to purposely induce ambiguous returns in range,

and this is why the unambiguous velocity is comically large.

Metrics Summary
Metric Symbol Value

Range Resolution ∆R 14.65 m

Unambiguous Range Rua 732 m

Velocity Resolution ∆vd 4.55 m/s

Unambiguous Velocity vrua 9,309.1 m/s

Table 3.2: Summary of MISO LFMCW-FDA Metrics
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Table 3.1: Summary of Operating Parameters

Description Value

Center Frequency Fc 3.3 GHz

LFM Bandwidth B 81.92 MHz

Sweep time T 4.8828 µs

Frequency offset ∆F 204.8 kHz

CPI Duration TCPI 10 ms

Number of Sweeps 2048

ADC rate 245.76 MHz

DSP sampling rate Fs 81.92 MHz

Transmit Channels M 8

Receive Channels 1

For the simulation, constant velocity point scatterer models were used. Scattering RCS for all

scatterers were set equal and arbitrarily, with R4 losses included. White Gaussian noise was added

to the receive data, and a receive clutter notch was included in the Doppler processing to simulate

typical procedure. An oversampling factor on receive was used as well purely to make the resulting

figures more visually appealing to the reader. Doppler was converted to velocity in meters/second

to make the results more physically meaningful.

The simulation scene showing the true range, velocity and spatial angle of the 4 scatterers

placed in the scene are shown in Figure 3.10. Note that the two scatterers placed at 275 m and 300

m represent two typical scattering responses well within the unambiguous range of the radar. The

scatterer at 710 m was placed as such to show the full use of the unambiguous range space. The

scatterer at 850 m is placed outside of the unambiguous range and thus is expected to alias back

into the range-velocity map around 850 m - Rua = 118 m
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Figure 3.10: Simulation Ground Truth

3.4.1 Range & Doppler Processing

As described in the previous subsections, a full CPI’s worth of data is collected with the single

receive antenna. This data is correlated with an unshifted LFM, and the responses are chopped up

into individual sweeps to form a fast-time x slow-time data matrix. Taking the FFT across slow-

time results in a range-Doppler profile. Doppler is then converted to radial velocity via (1.5), and

the resulting response is shown in Figure 3.11.
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Figure 3.11: Range-velocity map from simulated data (pre-spatial processing)

Looking at Figure 3.11 and comparing with that of the simulation truth of Figure 3.10, scatter-

ing locations in range and velocity appear where expected. The scatterer at 850 m indeed aliases

back into the expected range area, and the scatterer at 710 m is not aliased, confirming the retention

of the unambiguous range for the MISO LFMCW-FDA system.
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Figure 3.12: Range-velocity maps. pre-spatial processing, in magnitude (left) and phase (right)

Focusing in on the scattering response at 275 m, the left subplot in Figure 3.12 shows the ex-

tended range response in magnitude. The last peak response appears at 275 m, and this is consistent

with the expected structure of the correlation response for the particular operating parameters of

up-chirp with +∆F from Figure 3.8 in the previous subsection. The subplot to the right shows the

calculated phase angle for the scattering response. The important takeaway from this subplot is the

near linear phase progression across the range response of the scatterer. This visually shows the

virtual array formed for the scattering after correlation. Zooming into the other scatterers is not

necessary as similar responses are seen clearly from Figure 3.11.

3.4.2 Spatial Estimation

After range-Doppler processing, virtual element channels are formed by shifting the correlation

responses in delay as previously explained. After forming the virtual channels, beamforming and

video phase correction is applied across the virtual channels. The resulting beamformed responses

shown are the responses evaluated at the range and velocity locations where the maximum magni-

tude values occur for each scatterer.
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Figure 3.13: Spatially processed response, scatterer aliased from 850 m and -18 m/s

Figure 3.14: Spatially processed response, scatterer at 710 m and 15 m/s
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Figure 3.15: Spatially processed response, scatterer at 275 m and 20 m/s

Figure 3.16: Spatially processed response, scatterer at 300 m and -20 m/s

Comparing these Figures to that of the true spatial locations in Figure 3.10, the largest estimate

deviation is from the aliased scatterer, with a deviation of 0.5◦ off of the true spatial location.

While not perfect, this performance could still be acceptable for a wide variety of contexts where

precise spatial estimation is not critical. Ultimately these results confirm the ability to perform
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spatial estimation for the MISO LFMCW-FDA system.

3.5 Comparison to DDMA

To compare the previous range, Doppler, and spatial performance to similar spatially diverse emis-

sion structures, both TDMA and DDMA emission structures were transmitted and receive pro-

cessed in simulation, using the same scene as in Figure 3.10. The main motivation behind this

comparison is to demonstrate the lack of versatility in these two emissions when it comes to the

unambiguous range and Doppler spaces.

Using the defined emission structure for DDMA from (1.12) and (1.13), the same LFMCW

waveform and operating parameters were used from Table 3.1 except that the TCPI was reduced to

1 ms, for visualization purposes, as the responses across the entire Doppler space become difficult

to see with that fine of a resolution. The degraded Doppler resolution is still sufficient to see the

main comparison point, which is the extended virtual array across the entire Doppler domain, and

contributing to the loss in unambiguous Doppler space.

The received data was correlated with the unshifted LFM and reshaped into fast-time x slow-

time data matrix, mirroring the correlation procedure previously outlined. The resulting range-

velocity map is shown in Figure 3.17.
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Figure 3.17: DDMA Range-Doppler plot, same scene as for the LFMCW-FDA simulation

As it can be seen from Figure 3.17, the expected virtual array for the DDMA response appears

for each scatterer at ranges which appear to agree with the ground truth. Estimating the velocities

by observation is less obvious.

Focusing in on the scatterer at 275 m, the Doppler/velocity response at that range bin can be

examined:
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Figure 3.18: DDMA velocity response at range bin of 275 m

The virtual array for the scatterer at 275 m is shown formed along the Doppler/velocity dimen-

sion in Figure 3.18. The peaks are separated by the DDMA frequency offset ∆F = 1
MT converted

to radial velocity, which is also the unambiguous velocity vua:

vua = ∆F

(
3x108

3.3x109

2

)
= 1,163.6m/s

In order to calculate the Doppler shift/radial velocity for each response, the measured velocity

from the mth peak is compared to the mth frequency shift fm.
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Figure 3.19: Calculating radial velocity of scatterer for DDMA. Blue line indicates the f4 fre-
quency shift and the red line is the peak of the response

Figure 3.19 shows the velocity response at 275 m zoomed in to the location of the m = 4

waveform response. For the m = 4 element, the frequency shift is calculated using (1.13)

f4 =

(
4− (8−1)

2

)(
1

(8)(4.8828x10−6

)
= 12.8 kHz

Converting this to radial velocity via (1.5)

v4 = f4

(
3x108

3.3x109

2

)
= 581.8 m/s

With the peak response occurring at 605.1 m/s, the estimated velocity would be 605.1 - 581.8 =

23.3 m/s. Due to the order of magnitude difference in integration time between the LFMCW-FDA
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results and this result, the lack of Doppler/velocity resolution could easily be deemed as the cause

for the 3.3 m/s deviation from the true velocity.

These results show that the DDMA emission with the chosen operating parameters performs

sufficiently well for estimating range responses, with the velocity estimating a slightly more in-

volved process. Due to the extreme unambiguous velocity from the high SRF, even when de-

graded, none of the movers alias. Nonetheless, the unambiguous Doppler space is still clearly

reduced, confirming that the LFMCW-FDA emission attains superior Doppler performance with

comparison of the unambiguous Doppler/velocity spaces.

3.6 Comparison to TDMA

Using the defined emission structure for TDMA from (1.15), the same LFMCW waveform and

operating parameters were used from Table 3.1. The delay offset ∆T was chosen as in [14] as

∆T =
T
M

= 0.61035 µ s (3.15)

After simulating the collection of a full CPI, the same receive processing was performed as for

the previous cases. The resulting range-velocity map is shown in Figure 3.20.
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Figure 3.20: TDMA Range-velocity plot, same scene as for the LFMCW-FDA simulation

Observation of Figure 3.20 clearly shows the drawback in using this emission structure for

range estimation. Due to the extended virtual array, the unambiguous range Rua is diminished

heavily, and is related to ∆T as

Rua =
c∆T

2
= 91.55 m (3.16)
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Figure 3.21: TDMA Range-velocity plot, same scene as for the LFMCW-FDA simulation, zoomed
in

Figure 3.21 zooms into the response to show what appears to be the scatterers on the negative

side of the velocity axis overlapping in nearby range cells, further diminishing the ability to resolve

the scatterers.

From these results, it is clear that in order for TDMA to be feasible for range estimation, the

waveform time T must be sufficiently large. The reduced unambiguous range for these results show

all the scatterers from the scenario aliasing in range. Comparing unambiguous range spaces for the

chosen operating parameters, the LFMCW-FDA emission clearly attains superior performance.

In summary, by compressing the virtual array into closely spaced delay bins, the LFMCW-FDA

emission retains both unambiguous Doppler and range spaces, attaining superior performance over

TDMA and DDMA in this manner. However, this also results in a diminished range resolution, and

so both TDMA and DDMA attain superior range resolution. An adaptive algorithm is presented

momentarily which aims to combat this loss in resolution.
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3.7 Experimental Results

In July of 2022, an open-air data collection was performed to validate the simulated results of the

LFMCW-FDA MISO system. The collection took place at Wright-Patterson Air Force Base, in

conjunction with the Air Force Research Lab (AFRL) and Wright State University (WSU).

An RF System-on-Chip (SoC) was used as the transceiver. This setup along with the transmit

and receive antennas are shown in the figures below.

Transmitter front end and antenna Receive Antenna

Figure 3.22: Transmit and receiver equipment

In the scene was a high RCS scatterer in the form of an all-terain vehicle with a top hat reflector

strapped on the back. The transmit array and receive antenna were placed in a quasi-monostatic

setup. The open-air scene along with representations of the scattering and radar platform geometry

is shown in Figure 3.23, with the white dashed line representing the boresight direction of the

transmit antenna.
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Testing setup visualAerial view of collection site

Figure 3.23: Scene of open-air data collection

With the mobile top hat scatterer in the scene, several collections were performed, using the

operating parameters summarized in the simulation section, from Table 3.1. The following results

are from a particular collection where the top hat was moving inbound towards the radar platform

at an angle off boresight.

Figure 3.24: Range-velocity map, before spatial processing

In Figure 3.24, the range-velocity map is zoomed in slightly on the dominant scatterer in the

scene, at roughly 314 m. The positive velocity shift shows a scatterer moving towards the radar
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platform, which we can confidently assume is the tophat scatterer. There also does appear to be

smaller responses from scatterers of opportunity in the area. These can be attributed to moving

cars on the street farther off in range, outside of the unambiguous range space of 732 m, which

have thus wrapped back into these range bins. Note that this response is oversampled for visual

effect only.

Figure 3.25: Zoomed in range-velocity map, magnitude (left) and phase angle (right)

Figure 3.25 shows the range-velocity map in both magnitude (right) and phase (left), zoomed

in on the tophat scatterer response. The right image plots the instantaneous phase value at each

range-Doppler bin, computed from the same range-Doppler data. Looking at the range-Doppler

bins wherein the scattering response is located, a near linear phase progression can be observed

across range. This is confirmation that the virtual array has formed along the delay dimension, as

expected from the analysis and simulated results in the previous sections.

Forming the M virtual channels by circ-shifting the correlation response, a spatial angle esti-

mate was made by beamforming the virtual channels at the range and velocity location with the

largest response.
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Figure 3.26: Beamforming response for scatterer, before and after video phase correction

The beamformer response to the left shows the estimate before video phase correction, and the

response to the right shows the estimate after. To determine whether or not this difference before

and after correction is reasonable, the video phase term was beamformed itself for this particular

M,B & T .
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BF Response

0°

BF Peak = -0.9987°

Figure 3.27: Expected video phase error

From Figure 3.27, what should be expected from this particular video phase error is about a

−1◦ deviation from the true spatial angle, which agrees with the before and after of Figure 3.26.

With a clear peak in space, the post-beamforming range-velocity map is shown, evaluated for

θ =−11.57◦
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Figure 3.28: Range-velocity map, after spatial processing
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Figure 3.29: Final estimate of top-hat scatterer
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Both Figures 3.28 and 3.29 are the final resulting data products, representing the range, veloc-

ity, and spatial estimates for the mobile top hat scatterer. Together, these experimentally validate

the performance of the MISO LFMCW-FDA system. Additional open air data collections could

be performed to capture more than one scatterer in the scene, particularly closely spaced in range

and/or space, but the presented collection sufficiently validates the theory.
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Chapter 4

Single Channel Adaptive Receive Processing

It was shown in the previous section that the range resolution for the LFMCW-FDA MISO system

is degraded by the amount of transmit waveforms M. Due to the degraded range resolution, scat-

terers which are spaced close to each other in range can appear as one larger extended response, as

opposed to two distinct responses. In this section, a modified version of the Single-Pulse Imaging

(SPI) technique from [15] is introduced, which forms joint space-range filters, similar to the Space-

Range Adaptive Processing (SRAP) approach as in [16]. Simulation results show the potential of

the modified MISO LFMCW-FDA SPI algorithm to achieve a super resolution for closely spaced

scatterers.

4.1 Single Pulse Imaging

The Single-Pulse Imaging (SPI) algorithm is based on the Reiterative Minimum Mean Square

Error (RRMSE) [17] formulation first developed for Adaptive Pulse Compression (APC), where

individual compression filters are adaptively formed for each delay bin. The filters are formed by

nulling the responses from other scatterers so as to suppress sidelobe interference. First proposed

in [18] with follow-up in [19], the SPI algorithm extends the adaptive nulling procedure to the

fast-time Doppler dimension, i.e. over a single pulse.

Briefly introducing the algorithm as presented in [15], SPI assumes that for each Doppler fre-

quency bin k, there exists a unique range profile xk(l), illuminated by a unique waveform s̃k

s̃k = s⊙pk
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Where ⊙ is the hadamard product, s is the discretized transmit waveform of length N and pk is

an N length Doppler phase progression vector for the θk Doppler shift, which can be expressed as:

pk = [1 e jθk ...e jθk(N−1)]T

θk =−π +
2π

K
(k−1),k = 1, ...,K

For receive sample index l, the receive signal can be modeled as a superposition of all K range

profiles convolved with all Doppler shifted waveforms:

y(l) =
K

∑
k=1

Skxk(l)+v(l) (4.1)

Where v(l) is assumed additive noise of dimension Nx1, Sk is a convolution matrix of di-

mension Nx2N-1, and xk(l) is a range profile vector of dimension 2N-1x1, with the following

structures:

Sk =



s̃k(N −1) s̃k(N −2) · · · s̃k(0) 0 · · · 0

0 s̃k(N −1) · · · s̃k(1) s̃k(0) · · · 0
...

... . . . ...
... . . . ...

0 0 s̃k(N −1) s̃k(N −2) · · · s̃k(0)



xk(l) = [xk(l −N +1)...xk(l +N −1)]T

The correlation filter wk(l) is used to estimate scattering at delay l for the kth Doppler profile:

x̂k(l) = wH
k (l)y(l) (4.2)

Non-adaptive estimates are generated from the familiar matched filter as
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wk(l) =
s̃k

||s̃k||2
(4.3)

To mitigate the range sidelobes which mask closely spaced scatterers, adaptive RMMSE-based

filters are constructed. The MMSE cost function is posed

J(l,θk) = E[|xk(l)−wH
k (l)y(l)|2]

Where xk(l) is the true scattering to be estimated, and E[·] is the expectation operator.

An initial scattering estimate is measured using (4.3), and from here, the adaptive filter is

constructed for both k and l from

wk,i(l) = p̂k,i(l)(Rs,i +Rz,i +Rv)
−1s̃k (4.4)

for iteration index i. The Rz,i term is included to account for model mismatch, but for the

purposes of proof of concept, this term is ignored. The power estimate for the current range-

Doppler cell is

p̂k,i(l) = |x̂k,i(l)|2

The structured signal covariance matrix is

Rs,i =
K

∑
k=1

SkPk,i(l)SH
k (4.5)

The source covariance matrix (for scatterers assumed to be uncorrelated)

Pk,i = [x̂k,i(l)x̂H
k,i(l)]⊙ I (4.6)

Where I is an NxN identity matrix. Assuming white Gaussian noise with power σ2
v , the noise

correlation matrix
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Rv = E[v(l)vH(l)] = σ
2
v I (4.7)

The algorithm in [15] is expanded further to include a beamspoiling for improved robustness.

This will also not be included in these results, but could be included in future work to improve

performance in a real system. For the purposes of this work, the formulations described above are

sufficient to show the potential of the algorithm used in the MISO LFMCW-FDA system.

4.2 Modified SPI for LFMCW-FDA

The single pulse, Doppler discretized receive signal model of SPI proves itself readily feasible

for modification to a discretized Spatial angle receive signal model. Using the analytic LFMCW-

FDA correlation model from (A.17), the expected structure for a single point scatterer from the kth

spatial angle of arrival is used as the new signal model:

x̂(τ,θk) = γo

M−1

∑
m=0

e jπ sin(θk)me j π

T m(τ−τo)

(
1− |τ − τo|

T

)
sinc

(
π (m+B(τ − τo))

(
1− |τ − τo|

T

))
(4.8)

Where θk is now treated as a spatial angle, as opposed to the Doppler shift phase progression

from the previous section. Since this model already has the compressed responses isolated to

delay bins uniformly distributed about the scattering delay τo, the dimensionality of the resulting

discretized signal model vector can be reduced from signal length N to the length of the virtual

array. In this work, the signal model used is the "critically" sampled case, where f s = B and so

the virtual array is of length M which is also the number of transmit antenna elements. For the

discretized version of (4.8) hk, the modified SPI signal model is

s̃k = hk (4.9)

Where hk contains only the samples of the virtual array formed from the correlation response
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to a scatterer arriving from the kth spatial angle. s̃k is now of dimension M, and the discrete index

k spans the full set of K spatial angles, from −90◦ : 90◦. Rewriting (4.1)

y(l) =
K

∑
k=1

Hkxk(l)+v(l) (4.10)

Here y(l) now models the pulse compressed response signal for the kth angle of arrival. Hk is

a convolution matrix with the same structure as Sk, with replacement of the waveforms with those

defined in (4.9), and so is now of dimension Mx(2M-1). xk(l) is likewise a reduced dimensionality

range profile vector of dimension (2M-1)x1.

With this modification to the signal model, the SPI algorithm now adaptively forms range-space

filters, with a reduced dimensionality which lowers the computation time required.

4.3 Simulation Results

To demonstrate the performance of the modified SPI algorithm for the LFMCW-FDA MISO sys-

tem, the same waveform and system operating parameters were used as in the previous simulations,

from Table 3.1 - except that only a single sweep was considered. The choice of 5 iterations of the

modified SPI algorithm was chosen purely from observation of adequate performance.

First, a simulation was constructed where two scatterers where placed at the same delay bin,

spaced a beamwidth apart from each other in space. The initial estimate x̂k,0(l) was formed using

(4.3) for the signal model of (4.9), which is also the non-adaptive estimate.
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Figure 4.1: 2 scatterers at the same delay (true locations are red dots), beamwidth apart in spatial
angle

The results from Figure 4.1 show a clear improvement in both space and range sidelobes,

producing two distinct peaks near the true scattering locations.
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Figure 4.2: 2 scatterers at the same delay, half-beamwidth apart in spatial angle

To further show the capabilities of the modified SPI algorithm, the scatterers were moved closer

in space, to half-beamwidth separation in space. The left subplot in Figure 4.2 shows the inability

of the non-adaptive case to distinguish between the two - the response appears to be a single point

scatterer. The right subplot meanwhile shows the adaptive response which once again clearly

shows two distinct and separable peaks.
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Figure 4.3: 2 scatterers at the same spatial angle, spaced 5 delay bins apart

Finally, two scatterers were placed at the same spatial angle, and spaced closely in delay, where

the two virtual arrays overlap. Figure 4.3 shows the comparative responses, and demonstrates the

capability to separate the two scatterers using the adaptive algorithm.

The results shown demonstrate the potential for the modified SPI algorithm to improve upon

the performance of the MISO LFMCW-FDA system. Further analysis and potential modifications,

such as addition of the model mismatch term and beamspoiling, are left for future work.
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Chapter 5

Conclusion

The work in this thesis presented an implementation of a MISO LFMCW-FDA system. The sys-

tem was shown to perform range, Doppler, and spatial estimation using a single receive antenna

element, by taking advantage of the known spatially diverse transmission structure and the result-

ing virtual array formed along the delay dimension after correlation processing. An open-air data

collection was performed where the expected performance was experimentally validated.

The MISO LFMCW-FDA emission structure and processing scheme was compared to two

traditional spatially diverse MIMO structures: DDMA and TDMA. In DDMA, waveform separa-

bility is achieved along the Doppler dimension, at the expense of a reduced usable unambiguous

Doppler space. In TDMA, waveform separability is achieved along the time dimension, at the ex-

pense of a reduced usable unambiguous range space. The proposed MISO LFMCW-FDA system

achieves separability in the delay dimension with closely spaced responses, thus retaining the full

unambigous range and Doppler spaces, at the expense of a reduced range resolution.

To combat the reduced range resolution, an adaptive correlation filter algorithm based on the

SPI approach was introduced. The SPI algorithm was modified for spatial angle of arrival as

opposed to fast-time Doppler. Using the analytical correlation model for the MISO LFMCW-FDA

system as the signal model, filters with the length of the virtual array are formed, as opposed to full

waveform length filters, reducing the overall dimensionality of covariance matrices being inverted,

and thus reducing the required computation time. Simulation results show the ability to resolve

scatterers with overlapping responses in both range and space. An open air data collection with

multiple closely spaced scatterers would be needed to experimentally validate these results, but

the preliminary simulation results show a promising adaptive technique to deal with the resolution
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degradation in the delay dimension inherent to this system.

The potential of the FDA emission structure in a search radar context was examined, where

the ability to increase the revisit rate for all spatial angles simultaneously introduces an attrac-

tive alternative to more traditional TWS or SAT approaches to search radar resource allocation.

This coupled with the full unambiguous spaces and reduced range resolution implies the potential

application as a low resolution search radar. The increased revisit rate comes with a reduced unam-

biguous range space however, and thus the ability to resolve ambiguous range returns is a source

of potential future work.

An attractive feature of this system as a whole is the consequential low cost nature of the

individual components. An LFMCW transmit array operates at a lower peak power than a pulsed

system, reducing the need for costly front-end hardware. LFMCW system architectures are also

generally not complex, and the frequency shifts for each element of the FDA can likewise be

implemented in a straight forward manner. A single receive antenna directly results in less data

handled, and the correlation processing presented in the non-adaptive receiver are made up of

FFT’s, which are likewise known to be computationally inexpensive. All of this together results

in the potential of a real-time system implementable in hardware relatively inexpensively while

achieving the performance demonstrated.

5.1 Future Work

Collected here is a summary of the key points of attack for future work and improvements to this

system.

• Process open-air data collected with multiple moving scatterers present

• Extend the MISO LFMCW-FDA system to a 2-D transmit array

• Simulate and analyze the performance of a full search and track radar, comparing the LFMCW-

FDA emission with the traditional scanning methods
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• Compare the computational complexity of the adaptive processing algorithm to the non-

adaptive processing scheme

• Experimentally validate the adaptive algorithm, to demonstrate the ability to improve sepa-

rability of closely spaced scatterers in range and angle.

• Demonstrate the ability to resolve ambiguous returns in range and Doppler
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Appendix A

Analytic Representation of Correlation Response

This derivation assumes a single non-moving point scatterer (no Doppler), over a single sweep.

The unshifted transmit waveform s(t) can be represented as:

s(t) = e j2πc2(
−B
2 t+ B

2T t2) (A.1)

Where c2 =±1 denotes clock-wise/counter-clock-wise sweep.

The far-field radiated emission model g(t,θ) can be represented as:

g(t,θ) = s(t)
M−1

∑
m=0

e j2πm c1
T te− jπc1me jπ sin(θ)m (A.2)

Where c1 =±1 denotes an up/down chirp.

For a single point scatterer at delay τo, spatial angle θo, and complex scattering γo(and fDo= 0),

the single channel receive signal y(t) can be represented as:

y(t) = γog(t − τo,θo)

y(t) = γos(t − τo)
M−1

∑
m=0

e j2πc1m(t−τo)/T e− jπc1me jπ sin(θo)m
(A.3)

The correlation response x̂(τ) is represented as:
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x̂(τ) =
1
T

∫
∞

−∞

s∗(t − τ)y(t)dt

x̂(τ) =
1
T

γo

∫
∞

−∞

s∗(t − τ)s(t − τo)
M−1

∑
m=0

e j2πc1m(t−τo)/T e− jπc1me jπ sin(θo)mdt

x̂(τ) = γo

M−1

∑
m=0

e− jπc1me jπ sin(θo)m 1
T

∫
∞

−∞

s∗(t − τ)s(t − τo)e j2πc1m(t−τo)/T dt

(A.4)

Isolating the integral portion:

1
T

∫
∞

−∞

s∗(t − τ)s(t − τo)e j2πc1m(t−τo)/T dt (A.5)

Performing a substitution of variables:

η = τ − τo

t̄ = t − τo

F =
c1m
T

(A.6)

Plugging this into the expression of (A.5):

1
T

∫
∞

−∞

s∗(t̄ −η)s(t̄)e j2πFt̄dt̄ (A.7)

Notice that the expression (A.7) is in the form of the delay-Doppler ambiguity function A(τ, fd)

[20] for delay η and frequency F :

A(η ,F) =
1
T

∫
∞

−∞

s∗(t̄ −η)s(t̄)e j2πFt̄dt̄ (A.8)

The ambiguity function form is useful in understanding intuitively why the correlation response

takes the shape it does, as discussed in section 3.

Continuing the derivation, plug in (A.1) into (A.7) and expand:
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1
T

∫
∞

−∞

e− j2πc2[−B
2 (t̄−η)+ B

2T (t̄−η)2]e j2πc2[−B
2 t̄+ B

2T t̄2]e j2πFt̄dt̄ (A.9)

Rearranging and isolating terms which are dependent on t̄ within the integral:

e− j2πc2[
B
2 η+ B

2T η2] 1
T

∫
∞

−∞

e j 2π

T [c1m+Bc2η ]t̄dt̄ (A.10)

Due to the finite time-support over which a single sweep is defined [0:T], integration bounds

differ for positive and negative delays τ .

For values of positive delays (τ ≥ 0) and setting aside the term outside the integral for now:

1
T

∫ T

η

e j 2π

T [c1m+Bc2η ]t̄dt̄ (A.11)

Evaluating the integral:

1
T
(

1
j 2π

T (c1m+Bc2η)
)[e j 2π

T (c1m+Bc2η)T − e j 2π

T (c1m+Bc2η)η ] (A.12)

This expression can be rewritten as a scaled and phase rotated sinc(·) function. To do this,

recall first

sinc(x) =
sin(x)

x

and from Euler’s that

2 j sin(x) = [e jx − e− jx]

With this in mind, we can rewrite (A.12) as

1
ja
[e ja − e jb]

Where
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a =
2π

T
(c1m+Bc2η)T

b =
2π

T
(c1m+Bc2η)η

Now, we can multiply by 1 = e jc

e jc and rearrange terms in this manner:

1
ja

e jc

e jc [e
ja − e jb] =

e− jc

ja
[e jd − e− jd] (A.13)

Using Euler’s identity as from above, rewrite this as:

e− jc

ja
[e jd − e− jd] =

e− jc

ja
j2sin(d)

Multiplying again by 1 = d
d and rearranging, now the expression can be written in the sinc form

with the necessary phase and scaling:

e− jc

a
[sinc(d)]2d

Now to find c and d in terms of variables a and b, set up a linear system of equations using

(A.13):

c+a = d

c+b =−d

Solving in terms of a and b:

c =−a+b
2

d =
a−b

2

Plugging in a and b from above:
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c =−
2π

T (c1m+Bc2η)(T +η)

2

d =
2π

T (c1m+Bc2η)(T −η)

2

Plugging in these values and simplifying, now (A.12) can be rewritten as:

e jπ(c1m+Bc2η)(1+η

T )(1− η

T
)sinc(π(c1m+Bc2η)(1− η

T
)) (A.14)

This results in (A.5) being rewritten as:

1
T

∫
∞

−∞

s∗(t − τ)s(t − τo)e j2πc1m(t−τo)/T dt =

e− j2πc2(
B
2 η+ B

2T η2)e jπ(c1m+Bc2η)(1+η

T )(1− η

T
)sinc(π(c1m+Bc2η)(1− η

T
)) (A.15)

The complex exponential terms in front of the sinc can be simplified ( recalling η = τ − τo):

e− j2πc2(
B
2 η+ B

2T η2)e jπ(c1m+Bc2η)(1+η

T ) = e jπc1me j π

T c1m(τ−τo)

And thus the whole correlation response (for τ > 0) can be written as:

x̂(τ) = γo

M−1

∑
m=0

e jπ sin(θo)me j π

T c1m(τ−τo)

(
1− τ − τo

T

)
sinc

(
π (c1m+Bc2(τ − τo))

(
1− τ − τo

T

))
(A.16)

By following the same process for τ < 0, the resulting response for |τ| can be expressed as:

x̂(τ)= γo

M−1

∑
m=0

e jπ sin(θo)me j π

T c1m(τ−τo)

(
1− |τ − τo|

T

)
sinc

(
π (c1m+Bc2(τ − τo))

(
1− |τ − τo|

T

))
(A.17)
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Appendix B

Average Power Simplification Derivation

To reduce terms for compactness, the transmission at boresight (θ = 0◦) will be considered. The

far-field signal transmitted in the boresight direction is thus (2.2) evaluated for θ = 0:

g(t,0) =
1
M

M−1

∑
m=0

s(t)e j[2π∆Ft+φ0]m (B.1)

The average power of a signal transmitted in a particular spatial direction θi can be found by:

P =
1
T

∫ T

0
|g(t,θi)|2 dt (B.2)

By plugging (B.1) into (B.2), using |g(t)|2 = g(t) ·g∗(t), and expanding the summation:

PFDA =
1

T M2

∫ T

0
|s(t)|2[1+e j[2π∆Ft+φ0]+..+e j([2π∆Ft+φ0](M−1))][1+e− j[2π∆Ft+φ0]+..+e− j([2π∆Ft+φ0](M−1))]dt

For compactness, choose α = 2π∆Ft +φ0 so that

PFDA =
1

T M2

∫ T

0
|s(t)|2[1+ e jα + ..+ e jα(M−1))][1+ e− jα + ..+ e− jα(M−1)]dt

Isolating the product of complex exponential terms, multiple possible values for M can be

plugged in and evaluated for, to find a pattern which can be described analytically. This process is

as follows:

For M = 2:

[1+ e jα ][1+ e− jα ] = 2+2cos(α)
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For M = 3:

[1+ e jα + e j2α ][1+ e− jα + e− j2α ] = 3+4cos(α)+2cos(2α)

For M = 4:

[1+ e jα + e j2α + e j3α ][1+ e− jα + e− j2α + e− j3α ] = 4+6cos(α)+4cos(2α)+2cos(3α)

From these results, the pattern can be generalized for M elements as:

M+
M

∑
m=2

2(m−1)cos(α[M−m+1])

And thus

[1+ e jα + ..+ e jα(M−1))][1+ e− jα + ..+ e− jα(M−1)] = M+
M

∑
m=2

2(m−1)cos(α[M−m+1])
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Appendix C

Calculation of Operating Parameters

For the following calculations, approximation of speed of light c = 3x108 m/s. Values for B, T , Fc,

SRF , M, TCPI taken from Table 3.1 in section 3.

∆R = M
c

2B
= (8)

3x108

2(81.92x106)
= 14.65 m

Rua =
cT
2

=
(3x108)(4.8828x10−6)

2
= 732 m

∆vd =
∆ fdλc

2
=

1
TCPI

· c
Fc

2
=

( 1
10x10−3 )(

3x108

3.3x109 )

2
= 4.55 m

vrua =
fuaλc

2
=

SRFλc

2
=

(204.8x103)( 3x108

3.3x109 )

2
= 9,309.1 m/s
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