
Promise Land
Proving Correctness with Strongly Typed Javascript-Style Promises

©2022

Andrei Elliott

Submitted to the graduate degree program in Electrical Engineering and Computer Science and
the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the

degree of Master of Science.

Committee members

Matt Moore, Chair

Perry Alexander

Drew Davidson

Date defended: Friday May 6, 2022



The Project Report Committee for Andrei Elliott certifies
that this is the approved version of the following project report :

Promise Land
Proving Correctness with Strongly Typed Javascript-Style Promises

Matt Moore, Chair

Date approved: Friday May 6, 2022

ii



Abstract

Code that can run asynchronously is important in a wide variety of situations, from user interfaces

to communication over networks, to the use of concurrency for performance gains. One widely-

used method of specifying asynchronous control flow is the Promise model as used in Javascript.

Promises are powerful, but can be confusing and hard to debug. This problem is exacerbated by

Javascript’s permissive type system, where erroneous code is likely to fail silently, with values

being implicitly coerced into unexpected types at runtime.

The work presented here implements Javascript-style Promises in Haskell, translating the model

to a strongly typed framework where we can use the type system to rule out some classes of bugs.

Common errors — such as failure to call one of the callbacks of an executor, which would, in

Javascript, leave the Promise in an eternally-pending deadlock state — can be detected for free by

the type system at compile time and corrected without even needing to run the code.

Along the way, we demonstrate that Promises form a monad, providing a monad instance that

allows code using Promises to be written using Haskell’s do notation.

iii



Introduction

One widely-used model of concurrency is Javascript’s Promises, initially proposed in Friedman &

Wise (1978). A promise works in some ways like a lazy value, in that it will at some point contain

the result of a computation, but does not stop flow of control in the current thread to compute that

value. Unlike a value with lazy semantics, a promise can immediately begin computation in a

separate thread as opposed to waiting for the result to be requested by some other computation.

Promises are composable: using then and catch, we can chain a promise onto the end of a

different one creating a new promise that continues computation after the first has succeeded or

failed respectively. Additionally, Promises can be combined in parallel, with a variety of distinct

semantics such as waiting for the first success or for the first completion irrespective of success or

failure.

Madsen et al. (2017) notes that programmers often make mistakes when writing code involving

Promises and Javascript provides no static checks to detect these errors. By implementing the

Promise interface in Haskell, we create a Promise library the success and failure types associated

with a given Promise value are tracked in the type system so that mismatches can be detected

by the type checker at compile time rather than causing errors at run time. By carefully choosing

the type of the function creates new Promise values, we can cause the type checker to also reject

programs containing bugs of the type Madsen et al. (2017) classified as “Dead Promise”.

Additionally, we provide typeclass instances, including Monad for our Promise type, allowing

it to be easily used with existing Haskell code.

In the following section, we discuss the basics of Haskell and of the Promise model. Next,

we walk through the implementation of our Promise library in detail. Finally, we discuss what

guarantees we gain by using our strongly typed system; which classes of errors would be caught

by it and how common they are. Appendix A contains our complete source code.

1



Background

Haskell

We will refer to types in Haskell syntax. We may say that a value v has type T and write this as

v :: T. Specific types are capitalized, e.g. 3 :: Integer, while type variables are written in

lowercase and are usually a single character. Some types are paramterized by other types. For

instance, Haskell lists are linked lists of values that share a type. A list containing values of type T

will itself have the type [T], that is, list-of-T. Perhaps the most common variety of parameterized

type to see in Haskell type signatures is the function, written with an ASCII arrow (->). Functions

are parameterized by the types of both their input and output; a function that counts the lengths

of Strings could have the type String -> Integer. The syntax for calling functions is simple

juxtoposition: the expression f x means the function f applied to x. Functions with more than

one argument are curried, for example a two argument function that takes an A and a B as input to

produce a C is written with the type A -> B -> C, i.e., a function that accepts an A and returns

another function that accepts a B and returns a C1.

Generalized Algebraic Data Type, or GADT, syntax allows us to specify our own types and

give the name and type for each constructor function that can create a value of that type. We will

write one defining the type Promise f p which will represent a Promise that yields a result with

the type p if it succeeds or one of type f on failure.

We will discuss what types various objects should have and will, at times, need a convention

to refer to a parameterized type when we haven’t yet decided what the parameter will be. In

these cases, ? is a metavariable representing some concrete type yet to be decided, rather than

real syntax. Integer -> ? -> ? means a two-argument function accepting an Integer and

1-> associates to the right to facilitate writing curried functions without parentheses

2



some type we will decide later that returns another value of the same type. This is distinct from

Integer -> a -> a using type variables because the latter is a function accepting an Integer

and any value whatsoever, returning a value of the same type as the input.

Values in Haskell are referentially transparent, meaning that if an expression evaluates to a

value, it can be replaced by that value with no change to the program’s semantics. This makes it

easier to reason about and prove properties of programs, but comes with a few challenges. For

instance, a print statement should not be replaced with a value without executing. Haskell solves

this problem with the IO monad. A value of type IO T can be thought of as an action that will

result in a value of type T, but may also have side effects. An action that is performed solely for

its side effects and has no useful result value is conventionally given the type IO (). The type (),

pronounced “unit” is the type of tuples holding no objects. There is only one value of this type,

also written (). The contents of IO values can only be interacted with through the interface of

the monad typeclass. In particular, there is no way to convert an IO T into a T; you cannot get

a value out of IO. The do notation provides a friendly, imperative-looking syntax for interacting

with monadic values. In code like the following, the expression ioThing returns a value wrapped

in a monad.

do

x <- ioThing

. . .

The arrow (<-) binds the value so wrapped to the variable x and in the region of the code marked

by elipses (. . .), x can be treated as a normal non-monadic value. However, at the end of the block,

the final expression must be re-encapsulated into the monad. The simplest way to do this is the

function return. return x simply puts the value x into a default context in the monad.

In order to implement Promises, we need asynchronous action. To accomplish this in Haskell,

we will use forkIO and MVars. The function forkIO :: IO () -> IO ThreadId accepts an

IO () action and runs it in a separate thread. In order to communicate between threads, we use

MVars. A value of type MVar T is a thread-safe place to store up to one value of type T. We interact

3



with MVars with three functions:

• newEmptyMVar :: IO (MVar a)

Creates an MVar with no contents. The type variable a will usually be inferred by what type

we try to add later.

• putMVar :: MVar a -> a -> IO ()

Accepts a value of type a and stores it in the MVar. If the MVar already contains a value, the

thread running putMVar will block until the MVar is empty.

• takeMVar :: MVar a -> IO a

Reads an IO a from the MVar, leaving it empty, and will block, if necessary, until there is a

value in the MVar to be read before doing so.

Promises

A Promise represents a unit of computation to be performed asynchronously. When one is created,

the work to be done is specified as a function to be executed. This computation occurs without

interrupting the control flow at the site that created the Promise. Since the work represented by a

Promise may not have been completed yet, any values that result can’t be used directly. Instead,

we can chain Promises by using then to schedule code that depends on the result, creating a new

Promise representing the initial work followed by the additional code. A Promise that succeeds

will execute code chained after it with then; one that fail will execute any that was chained after it

with catch. In either case, this will happen one the initial Promise has finished running and then

or catch has been called, regarless of which order those two events happen in.

Promises can be in one of three states: pending, fulfilled, or rejected. The pending state repre-

sents a Promise that is still running. A Promise that has completed with a success value is in the

fulfilled state; the process of moving from pending to fulfilled is referred to as the Promise resolv-

ing. The state for a failed Promise is called rejected and to reject a Promise is to move it from the

4



Pending

Fulfilled

Rejected

Settled States

resolve

reject

Figure 1: States and Transitions.

pending state to the rejected state. For a Promise to settle, it moves from pending to either fulfilled

or rejected. Figure 1 summarizes this terminology.

5



Haskell Implementation

Making a Promise

Javascript’s Promise() constructor builds a new promise object from an ‘executor’ function. The

executor accepts two callback functions: resolutionFunc and rejectionFunc, one to call in the case

of successful resolution and the other for failure. The executor will, on a success or failure, call

resolutionFunc or rejectionFunc, respectively, passing in the value of or reason for the suc-

cess or failure. Let’s assume we want a promise with type Promise f p, i.e. one where success

results in a value of type p and failure gives a reason with type f. To build such a Promise,

resolutionFunc will need to accept a value of type p. Since calling resolutionFunc will

settle the promise and therefore have effects elsewhere in the promise chain, its return type will

have to be something wrapped in IO, so we know resolutionFunc :: p -> IO ?. Similarly,

rejectionFunc must accept a f, and calling it will also settle the promise, so rejectionFunc

:: f -> IO ?. The executor function should accept resolutionFunc and rejectionFunc

as parameters and is expected to end by calling exactly one of them, so we will expect it to

have a proper tail call to one of the parameters. This means its return type matches that of

resolutionFunc and rejectionFunc, i.e.

executor :: (p -> IO ?) -> (p -> IO ?) -> IO ?

For now, let’s use () as ?, so that the callbacks have a return type of IO (), the conventional

Haskell type for IO actions that only have an effect (here, setting the Promise from Pending

state to one of the settled states) instead of containing a useful value. Our function for building a

Promise object needs to accept a function with the type of executor and give back a Promise

value, which must be contained in IO because it has the side effect of running the executor in

another thread. It thus has the type:

6



newPromise :: ((p -> IO ()) -> (f -> IO ()) -> IO ()) -> IO (Promise f p)

We can represent a Promise f p by an MVar (Either f p). Once the computation for the

Promise is complete, it can be written to with an Either f p value, i.e. Left reason for a

failure or Right result in the case of success. newPromise will also need to fork a thread that

will run the executor and set up communication so that the final Promise object will be updated

with the results once they are available. In total, we need to: create an MVar which we’ll call

state, then fork a thread that calls the executor, passing it callback functions that write the results

to state, and finally, return state as a Promise value.

newPromise :: ((p -> IO ()) -> (f -> IO ()) -> IO ())

-> IO (Promise f p)

newPromise k = do

state <- newEmptyMVar

forkIO $ k (putMVar state . Right) (putMVar state . Left)

return (Pending state)

Since the constructor here is used to create Promises that are in the pending state, we’ll call it

Pending. We could, in principle, use this same constructor to build Promise values that we know

have already succeeded or failed. To get a promise that always succeeds with a value of s, say, we

could simply call newPromise with an executor that immediately calls successFunc, like so:

newPromise (\ succeed fail -> succeed s)

This is inefficient, though, because it spawns an entire new thread in order to do absolutely nothing

with it. Instead, it is easy enough to define a constructor that marks a value as known to be the

result of a sucessful computation (and a parallel one declaring a value to be the known reason

for a failed computation). These correspond to the promise being in the state fulfilled or rejected,

repectively, so we will uses those terms as the names the constructors. At this point, the Promise

type has the following form, in GADT syntax:

7



data Promise :: * -> * -> * where

Pending :: MVar (Either f p) -> Promise f p

Fulfilled :: p -> Promise f p

Rejected :: f -> Promise f p

What happens if we use a type other than () in place of ? in the newPromise function? Say we

use the type τ . The executor function passed in must evaluate to an IO τ . If the executor ends

in a call to either resolutionFunc or rejectionFunc, it will work exactly the same no matter

what type τ represents. When using newPromise, we can use the same code we did before in the

τ =() case. When executor doesn’t contain a tail-call to one of its argument functions, the type

τ matters for whether newPromise executor typechecks; in particular, it will be accepted if and

only if whatever executor is doing other than calling one of its callbacks yields the result type

IO τ . In this situation, the resulting Promise will never settle and any further actions chained

to it will never run. Unintentionally causing this state of affairs in that manner was the cause of

multiple errors in the case study from Madsen et al. (2017). If we were to select a type τ that

doesn’t appear as the result of normal code, we could have Haskell’s type system automatically

detect this entire class of bugs at compile time. One option would be Haskell’s Void type, which

has no constructors. But there may be cases where we legitimately need a Promise that will never

resolve (for example, the Javascript standard specifes that the result of calling Promise.race()

on the empty list results in such a Promise). Furthermore, we need to create a value of type IO τ

when implementing newPromise. Therefore, instead of using Void, we create a new type unused

anywhere else. We name this type Token because its only value is that you need one to write

an executor function. We can provide a value hangForever :: IO Token representing the

behavior of remaining in the pending state indefinitely and never resolving. This allows the user

who wants that behavior to specify it while making it unlikely to occur by accident.

8



data Token = MkToken

hangForever :: IO Token

hangForever = return MkToken

Using Token, our newPromise code now needs to use fmap to convert resolutionFunc and

rejectionFunc to the correct types and again to convert the argument to forkIO from IO Token

to IO ():

newPromise :: ((p -> IO Token) -> (f -> IO Token) -> IO Token)

-> IO (Promise f p)

newPromise k = do

state <- newEmptyMVar

forkIO $ fmap (const ()) $ k (fmap (const MkToken)

. putMVar state . Right)

(fmap (const MkToken)

. putMVar state . Left)

return (Pending state)

What Then?

Now that we can create Promise values, the next step is to allow them to chain together. Javascript’s

Promise.then() is used to set a handler function to run after a promise completes. Specifically,

p1.then(f) results in a new promise that will wait for the Promise p1 to complete. If p1 suc-

ceeds and resolves to a value v, it will then call f(v). The result of running the callback should

be another Promise, p2; when it settles, the new Promise will also settle, to the same state and

9



value2. In our system in Haskell, pThen accepts pr, a Promise f p along with a callback that

expects a value of type p, the type contained in a sucessful Promise f p. pThen will return a

Promise (in IO because we need to be able to read the state MVar), which must have the same

failure type as pr because if pr is Rejected, the result will be as well, with the same value. The

result type can have a different sucess type, though, so it’s overall type is IO (Promise f p’).

The callback returns a new Promise in IO, which must match pThen’s return type, so in total

pThen :: Promise f p

-> (p -> IO (Promise f p’))

-> IO (Promise f p’)

pThen (Pending state) k = do

result <- readMVar state

case result of

Left x -> return $ reject x

Right x -> k x

pThen (Fulfilled x) k = k x

pThen (Rejected x) k = return $ reject x

Note that the type signature for pThen looks extremely similar to the type (»=) would have if

it were to be specialized to Promise f.

(>>=) :: Promise f a -> (a -> Promise f b) -> Promise f b

The difference is that pThen is entangled in the IO monad.

Promise.catch() works the same way as .then() except that the handler is set to run only if

and when the Promise it is being chained to fails, rather then when it succeeds. Our translation to

2Javascript also allows the callback to return a non-Promise value, in which case p1.then(f) resolves to that
value as soon as it’s computed. We won’t implement this functionality directly as allowing differing argument types
would not work in Haskell’s type system unless we made separate then functions for the two variants. However, we
can get to the same result by enclosing the value we would like to return in an always-successful Promise. Once we
define a monad instance for Promise f, we can even do so by writing return v (where v is the value for the final
promise to resolve to), which should look familiar to anyone used to the Javascript syntax!

10



Haskell, pCatch, is very much like pThen except that the code for a failed promise and a successful

one have swapped places. Its type is

pCatch :: Promise f p

-> (f -> IO (Promise f’ p))

-> IO (Promise f’ p)

which is the same as that for pThen except that it operates on the type f, the type of failure cases,

instead of p, the type of success cases.

pCatch (Pending state) k = do

result <- readMVar state

case result of

Left x -> k x

Right x -> return $ resolve x

pCatch (Fulfilled x) k = return $ resolve x

pCatch (Rejected x) k = k x

pCatch is dual to pThen in that it is identical to a pThen that operates on Promises with reversed

semantics for which type argument represents success and which represents failure.

pThen and pCatch both share the same central function of waiting, if necessary, for a Promise

to settle, then branching on whether the result was a success or a failure. We can generalize this

behavior by writing a single function that accepts arguments specifying what to do in either case.

The action yes, to do in the case of success can depend on the particular value the promise resolved

with, so it should be a function accepting values of type p. The overall result of runPromise must

be contained in the IO monad because we can only compute it with the side effect of waiting for

the Promise to settle. The return type of yes should match that of runPromise, so yes :: p ->

IO ?. There are no other restrictions on ?, so we can choose yes :: p -> IO a. The function

no must also match return types so no :: f -> IO a.

11



runPromise :: (p -> IO a) -> (f -> IO a) -> Promise f p -> IO a

runPromise yes no (Pending state) = do

result <- readMVar state

case result of

Left x -> no x

Right x -> yes x

runPromise yes _ (Fulfilled x) = yes x

runPromise _ no (Rejected x) = no x

Now we can avoid code duplication by rewriting pThen and pCatch in terms of runPromise, as

follows:

pThen p k = runPromise k (return . reject) p

pCatch p k = runPromise (return . resolve) k p

runPromise has the semantics of the two argument form of Javascript’s Promise.then(), adding

to the chain in both the success case and the failure case.

Similarly to Javascript’s Promise.finally(), the function pFinally runs a Promise, then

chains to the Promise passed as its argument regardless of how the former settles. We can im-

plement it by generating the function const k which ignores its input and always returns k, the

Promise to chain to. We then pass this constant function as both the yes and no arguments to

runPromise.

pFinally :: Promise f p

-> IO (Promise f’ p’)

-> IO (Promise f’ p’)

pFinally p k = runPromise (const k) (const k) p

It is sometimes helpful to run a Promise to completion to yield a non-Promise value storing

the results. A function to do so has the type Promise f p -> IO (Either f p). The result

12



must be in IO and is either a Left f representing failure with the given reason or a Right p

representing success with the given value. Implementing such a helper function is as simple as

calling runPromise and passing in a yes that wraps its input in Right and IO and a no that

wraps in Left and IO. We call this function await in analogy to the await keyword in Javascript.

Similarities include that it converts from a Promise to a non-Promise value by waiting for it to

complete and that it can only be used inside the appropriate context; either the IO monad or an

async function, as appropriate.

Instances

We noted earlier that pThen had a form reminiscent of a monadic bind operation; it is now time

to demonstrate the connection more directly by writing a Monad instance for Promises. This

will, among other things, allow us to use do notation with code employing Promises. The Monad

typeclass operates on types of kind * -> *, i.e. type “containers” that are parameterized by exactly

one other type. But Promise takes two type parameters, having kind * -> * -> *. We can fix this

mismatch by defining an instance for the partially applied type Promise f that has already taken

one type parameter. Because f is fixed in the instance, a given invocation of a function from one

of our instances will need to keep the type of the failure value constant, even if it changes the

type of the success value.3 To define a Monad instance for Promise f, we begin with Functor

and Applicative instances. For Functor (Promise f), we must define fmap with type (a ->

b) -> Promise f a -> Promise f b. fmap must accept a function, g, and a Promise, pr, as

input and apply the g to the success value of pr if there is such a value, to yield a new Promise

(fmap will have no effect on a Promise that fails; we wouldn’t be able to apply g to the failure

value since it has the wrong type). It is simple enough to run pr and then either apply g to the

result on a success or not on a failure, like so:
3This is the reason the failure type is specified before the success type in Promise f p: it is more straightforward

to write instances where the first parameter is held constant and being able to change the success type with fmap is
more useful.

13



fmap’ :: (a - > b) -> Promise f a -> IO (Promise f b)

fmap’ g pr = runPromise (return . resolve . g) (return . reject) pr

But we have a problem: computing fmap’ has a side effect - it waits until pr has settled. This side

effect shows up in the type as we can see that fmap’ generates an IO (Promise f b) instead of a

Promise f b. When declaring a Functor instance, the type of fmap is specified exactly. fmap’

isn’t good enough - Functors can be mapped over anywhere, not just inside the IO monad. What

we can do instead is store g, so we can wait to apply it until we are instructed to run pr. We can

store g by defining another constructor for Promise f p. We now know that there is another way

to make a Promise object: take an existing Promise and store along with it a function to map

over it. We add a new line to the Promise GADT, which now reads:

data Promise :: * -> * -> * where

Pending :: MVar (Either f p) -> Promise f p

Fulfilled :: p -> Promise f p

Rejected :: f -> Promise f p

PromiseMap :: (a -> b) -> Promise f a -> Promise f b

At this point declaring the instance is as simple as telling Haskell to convert fmap to our

PromiseMap constructor:

instance Functor (Promise f) where

fmap g pr = PromiseMap g pr

If that seemed too easy, that’s because it was; we still need something like fmap’ to actually apply g

when it needs to be applied. Our definition for runPromise needs to say what to do when we try to

run a PromiseMap. For this case, we can pattern match to runPromise yes no (PromiseMap

g pr). Unlike when defining fmap, at this point, we are returning an IO Promise so we can

wait for the contained promise pr to settle and decide whether or not to apply g. We can make a

recursive call to runPromise on pr; we know this will terminate because pr is structurally smaller

14



than PromiseMap g pr 4. The no function is unchanged since mapping over a failed Promise

has no effect, but in the case of a successful one, we need to call g before we give the result to yes.

This means the success function for the recursive call will be yes . g, the composition of yes

and g, that applies g, then gives the result directly to yes.

runPromise yes no (PromiseMap g pr) = runPromise (yes . g) no pr

To define the Applicative instance Applicative (Promise f), we need to be able to put an

arbitrary value into a Promise f and to map a function that is itself the result of a Promise f

over the (successful) result of another Promise f. The first function we must provide is pure ::

a -> Promise f a. pure should put its argument into the context of a Promise ‘containing’

nothing else, which is precisely what resolve does. The other function to define for the Applica-

tive instance is (<*>) :: Promise f (a -> b) -> Promise f a -> Promise f b, which

is like fmap except that the function is also inside a Promise. Directly running the Promises to

get their results to combine can’t happen outside IO, so we will again need to encode the map into a

new constructor for Promise and unpack it in runPromise to avoid the extraneous IO in the type.

Rather than encoding (<*>) directly, we can instead use the equivalent liftA2 construction that

maps a two-argument function over two instances of the applicative. Specialized to Applicative

(Promise f), liftA2 has the type (a -> b -> c) -> Promise f a -> Promise f c ->

Promise f c. Given such a function, we can implement (<*>) as f <*> x = liftA2 ($) f

x, where ($) is the application function that accepts a function and an argument and applies one

to the other. Our new constructor is called PromiseMap2 because it maps over two arguments, and

we add it to the GADT for Promise:

PromiseMap2 :: (a -> b -> c) -> Promise f a -> Promise f b -> Promise f c

and we define the instance as follows:
4for this to fail to terminate, we would need to be trying to run a Promise with an infinite number of functions

mapped over it

15



instance Applicative (Promise f) where

pure x = resolve x

f <*> x = PromiseMap2 ($) f x

The new case to runPromise for mapping a function g across two Promises creates a Promise

chain that waits for both arguments to resolve, then yields the value of g applied to the results.

runPromise yes no (PromiseMap2 g prA prB) = do

pr’ <- pThen prA $ \a ->

pThen prB $ \b -> return $ resolve $ g a b

runPromise yes no pr’

Note that, while using a do block here may look circular since we haven’t yet defined the monad

instance for Promise f, this do is in the IO monad rather than Promise.

The instance for Monad (Promise f) requires return :: a -> Promise f a that puts a

value into a neutral context; this can be the same as pure from Applicative. The other func-

tion required to declare a Monad instance is (»=) (pronounced “bind”) and, when specialized to

Promise f, has the type Promise f a -> (a -> Promise f b) -> Promise f b. That is,

it accepts a Promise, p, as well as a function, k, that converts from a plain value of the type of

a sucessful result from p. Then, (»=) applies k to p as though p were a plain value instead of a

Promise. The type of (»=) is exactly that of pThen except that it references unadorned Promises

in the places where pThen had IO Promises. As will be familiar by now, we must add a new

Promise constructor so we can delay execution until runPromise. In this case, we can add

PromiseJoin :: Promise f (Promise f a) -> Promise f a

which collapses a two-layer Promise into a single layer. Join is an equivalent characterization to

(»=) as we can write

p >>= k = PromiseJoin (fmap k p)

using fmap to apply k to p before returning to a single layer of Promise with join.

16



To implement pJoin, we need to squash a double-decker Promise, pp :: Promise f (Promise

f a), down to a single layer. We can do this with pThen. Normally, pThen expects the function

argument, k, to be a function that adds a layer of Promiseness to the input (as well as an IO

wrapper): after all, it has the type p -> IO (Promise f p’). But what if we instead only wrap

k’s input in IO? Here k x = return x, with the type b -> IO b, but k also has to match the

type p -> IO (Promise f p’), and we know that pp :: Promise f p, so p ∼ Promise f

a. Because both expressions for k have to match for the result to typecheck, Promise f a ->

IO (Promise f p’) ∼ b -> IO b meaning a ∼ p’. Since the return type is IO (Promise

f p’), we get out an IO-wrapped single-layer Promise. In effect we have “tricked” pThen into

unwrapping a layer of Promise by failing to add a layer in a place where it expected us to.

pJoin :: Promise f (Promise f p) -> IO (Promise f p)

pJoin pp = pThen pp return

Then we can exend runPromise like so:

runPromise yes no (PromiseJoin pp) = do

p <- pJoin pp

runPromise yes no p

While we are adding constructors, let’s include one for a dual Promise, one that swaps its

success and failure types. We can use this if we ever need to fmap or »= over the failure value of a

Promise rather than the success value.

PromiseInvert :: Promise p f -> Promise f p

The new case to runPromise merely swaps the positions of the yes and no functions so they

apply to the correct arguments:

runPromise yes no (PromiseInvert pr) = runPromise no yes pr

17



Parallel Combiners

The Javascript standard library has several ways to combine promises in parallel in addition to the

sequential combination provided by then and catch.

The simplest of the parallel combiners is Promise.allSettled(iterable), which com-

bines all of its input promises into a single Promise that runs them in parallel and resolves

to a list of each individual result once they are all complete. In Haskell, we can implement

pAllSettled :: [Promise f p] -> IO (Promise f’ [Either f p]). This function ac-

cepts a list of Promise f p (these Promises must have the same success and failure types to fit

into a Haskell list) and results in an IO Promise object containing a list of the results of each

of the Promises from the input list. The failure type of the resulting Promise is unconstrained

because the result of pAllSettled is guaranteed to succeed; even if every individual input fails,

the result will be a (successful) list of each of the failures. We implement this function recursively

as follows. Combining an empty list yields a Promise that immediately resolves to the empty list.

Otherwise, we run the first list element in parallel with recursing. To do so, we first create an MVar

for cross-thread communication, then we fork off a thread to await the result of the first element

and write that to the MVar. Next, we recurse, getting a Promise holding the results of each of the

Promises from the tail of the list. At this point, we can read the MVar, which will block until the

other thread has written to it. Finally, we combine the results into a single promise using pThen.

Since the Promise we are pThening to is the result of a call to pAllSettled, it is guaranteed to

succeed so our code to prepend the new result will always run.

18



pAllSettled :: [Promise f p] -> IO (Promise f’ [Either f p])

pAllSettled [] = return $ resolve []

pAllSettled (x:xs) = do v <- newEmptyMVar

forkIO $ await x >>= putMVar v

prs <- pAllSettled xs

a <- takeMVar v

pThen prs $ return . resolve . (a:)

Javascript also provides Promise.race(iterable), which runs all of the input promises si-

multaneously in different threads, settling with the result of whichever completes first. In our

system this should have type signature pRace :: [Promise f p] -> IO (Promise f p). To

implement this function, let’s begin with a binary variant that works for exactly two promises.

pRace2 :: Promise f p -> Promise f p -> IO (Promise f p). This function works sim-

ilarly to the race function used to define amb, the amiguous choice operator, in Elliott (2009). We

can use an MVar to accept a result from the first thread to finish. Since we must differentiate be-

tween whether the result is a success or failure, we want the MVar to hold an Either f p. We create

an empty MVar, then fork off a pair of threads, each of which runs one of the input promises and

writes the result to the MVar. Next, takeMVar waits for either thread to finish and give it a result,

after which we can kill both threads since they are no longer needed.

19



pRace2 :: Promise f p -> Promise f p -> IO (Promise f p)

pRace2 prA prB = do v <- newEmptyMVar

ta <- forkIO $ await prA >>= putMVar v

tb <- forkIO $ await prB >>= putMVar v

x <- takeMVar v

killThread ta

killThread tb

return $ case x of

Left f -> reject f

Right p -> resolve p

The n-ary version of pRace operates by a sort of monadic fold over the list of input promises:

we pRace2 the first promise in the list against the result of pRaceing the rest of the list, with the

result that we will settle to whichever out of any of the inputs settles first. The Javascript standard

specifies that race()ing an empty iterable returns a forever-pending promise that never resolves

or rejects. This is convenient for our implementation because such a promise is the identity for

pRace2 so we can use it directly as the base case to our fold. We can generate an eternally pending

promise by passing newPromise a function that fails to call either the success or failure handle,

like so: newPromise (\s f -> hangForever), so the final pRace function is as follows:

pRace :: [Promise f p] -> IO (Promise f p)

pRace [] = newPromise (\s f -> hangForever)

pRace (x:xs) = do

prs <- pRace xs

pRace2 x prs

Yet another way to combine any number of promises in parallel by executing each simultane-

ously is Promise.any(iterable). The result is a promise that immediately resolves to the value

of the first input promise to successfully complete. If all of the given promises fail, it gives a list of

20



every failure value. To implement this, let’s again start with a binary version that combines exactly

two promises in this way. The type signature for the binary variation is pAny2 :: Promise f p

-> Promise f’ p -> IO (Promise (f, f’) p). This type signature is slightly more general

than will be allowed by the n-ary version; in particular, the failure types of the two Promises can

be different here, where in pAny they will need to be the same so they can be contained in the

same Haskell list. The success types must still be identical as the resulting Promise must have a

value of that type to succeed and it could come from either input Promise. We still need an MVar,

v, to store the value of a success from either promise A or promise B, but dealing with a failure

is somewhat more complicated since one failure isn’t enough to end the computation, but we still

need to track it so that we know to end if both branches end in failure. We need communication

between the forked threads that doesn’t interfere with v, hence a second MVar that the main thread

doesn’t touch at all. One fork, if it fails, writes to the error MVar, while the other waits to read

from it after a failure. This ensures that it won’t attempt to write a failure value into the result MVar

unless both forks have failed. The main thread waits to read a value from v, then kills both threads

since the remaing thread does not need to continue if we have had a success. Since v must be able

to hold the value of a success or two failures, it needs to have the type MVar (Either (f, f’)

p).

21



pAny2 :: Promise f p -> Promise f’ p -> IO (Promise (f, f’) p)

pAny2 prA prB = do v <- newEmptyMVar

errA <- newEmptyMVar

ta <- forkIO $ runPromise (putMVar v . Right)

(putMVar errA) prA

tb <- forkIO $ runPromise (putMVar v . Right)

(\b -> do a <- takeMVar errA

putMVar v $ Left (a, b)) prB

x <- takeMVar v

killThread ta

killThread tb

return $ case x of

Left (a, b) -> reject (a, b)

Right p -> resolve p

The base case of n-ary pAny is that a an empty list yields a failed Promise with an empty list

of reasons since we don’t have a successful result to show. In the recursive case, we call pAny

on the tail of the list, then pAny2 the head of the input list to the result. At this point, we have a

Promise (f, [f]) p, so we need a way to cons together the pieces of the list of failure reasons

in the failure case. Since we only need to touch the result if we have a failure, pCatch suffices.

pAny :: [Promise f p] -> IO (Promise [f] p)

pAny [] = return $ reject []

pAny (x:xs) = do

prs <- pAny xs

pr <- pAny2 x prs

pCatch pr (return . reject . uncurry (:))

The last of the parallel combiners is Promise.all(iterable). It is a mirror image to

22



Promise.any, in that it immediately rejects whenever it encounters the first failure and only suc-

ceeds when all of its inputs succeed. pAll2 and pAll are dual to pAny2 and pAny; we can imple-

ment them either by duplicating the code and inverting all the tests or by using PromiseInvert

to switch the true and false cases of the input promises, then switching back after running them

through the dual function.

pAll2 :: Promise f p -> Promise f p’ -> IO (Promise f (p, p’))

pAll2 prA prB = fmap PromiseInvert

(pAny2 (PromiseInvert prA) (PromiseInvert prB))

pAll :: [Promise f p] -> IO (Promise f [p])

pAll [] = return $ resolve []

pAll (x:xs) = do

prs <- pAll xs

pr <- pAll2 x prs

pThen pr (return . resolve . uncurry (:))

23



Conclusions and Future Work

Madsen et al. (2017) performed a case study of recent questions posted to the forum StackOverflow

about Javascript Promises. Out of 21 questions included in the analysis, six were identified as

having a root cause of an unintentional return of undefined. A type mismtach of this sort, between

what is being returned by a function and what is expected elsewhere, is detected at compile time

in Haskell, without even needing to run the code and compare actual output to expected output. A

further three questions are classified with a bug type of “Dead Promise” meaning that a Promise

was neither resolved nor rejected, in one case on only some code paths. Our system detects these

problems, again statically at compile time, unless the user explicity creates a Token value, perhaps

by calling hangForever.

One useful extension to this work would be to encode more information into the type system

in a way that could detect additional classes of errors. The case study from Madsen et al. (2017)

includes multiple instances of a programmer attempting to resolve a Promise multiple times, which

would not be detected by our system at compile time. This class of error could in principle be

detected with linear types.

Another potential improvement would be to rearchitect the system so that Promise is less

strongly coupled to IO.

24



Bibliography

Elliott, C. M. (2009). Push-pull functional reactive programming. In Proceedings of the 2nd ACM

SIGPLAN symposium on Haskell - Haskell ’09 (pp.2̃5). Edinburgh, Scotland: ACM Press.

Friedman & Wise (1978). Aspects of Applicative Programming for Parallel Processing. IEEE

Transactions on Computers, C-27(4), 289–296.

Madsen, M., Lhoták, O., & Tip, F. (2017). A model for reasoning about JavaScript promises.

Proceedings of the ACM on Programming Languages, 1(OOPSLA), 1–24.

25



Appendix A

Promise.hs

1 {-# Language GADTs, KindSignatures #-}

2

3 module Promise where

4

5 import Control.Concurrent

6 import Control.Monad

7 import Data.Function

8

9 data Promise :: * -> * -> * where

10 Pending :: MVar (Either f p) -> Promise f p

11 Fulfilled :: p -> Promise f p

12 Rejected :: f -> Promise f p

13 PromiseMap :: (a -> b) -> Promise f a -> Promise f b

14 PromiseMap2 :: (a -> b -> c) -> Promise f a -> Promise f b

15 -> Promise f c

16 PromiseJoin :: Promise f (Promise f a) -> Promise f a

17 PromiseInvert :: Promise p f -> Promise f p

18

19 -- newPromise :: ((SuccessFun) -> (FailFun) -> ExecutorBody)

20 -- -> IO (Promise f p)

26



21 newPromise :: ((p -> IO Token) -> (f -> IO Token) -> IO Token)

22 -> IO (Promise f p)

23 newPromise k = do

24 state <- newEmptyMVar

25 forkIO $ fmap (const ()) $ k (fmap (const MkToken)

26 . putMVar state . Right)

27 (fmap (const MkToken)

28 . putMVar state . Left)

29 return (Pending state)

30

31 -- dummy return type for promise callbacks

32 -- generally, you should not manually construct one

33 data Token = MkToken

34

35 -- remain Pending forever by never calling either the success handler

36 -- or the failure handler

37 hangForever :: IO Token

38 hangForever = return MkToken

39

40 resolve :: p -> Promise f p

41 resolve x = Fulfilled x

42

43 reject :: f -> Promise f p

44 reject x = Rejected x

45

46 pThen :: Promise f p

47 -> (p -> IO (Promise f p’))

27



48 -> IO (Promise f p’)

49 pThen p k = runPromise k (return . reject) p

50

51

52 bimapPromise :: Promise f p -> (f -> f’) -> (p -> p’)

53 -> IO (Promise f’ p’)

54 bimapPromise pr f g = runPromise (return . resolve . g)

55 (return . reject . f) pr

56

57 pCatch :: Promise f p

58 -> (f -> IO (Promise f’ p))

59 -> IO (Promise f’ p)

60 pCatch p k = runPromise (return . resolve) k p

61

62 pFinally :: Promise f p

63 -> IO (Promise f’ p’)

64 -> IO (Promise f’ p’)

65 pFinally p k = runPromise (const k) (const k) p

66

67 pJoin :: Promise f (Promise f p) -> IO (Promise f p)

68 pJoin pp = pThen pp return

69

70

71 runPromise :: (p -> IO a) -> (f -> IO a) -> Promise f p -> IO a

72 runPromise yes no (Pending state) = do

73 result <- readMVar state

74 case result of

28



75 Left x -> no x

76 Right x -> yes x

77 runPromise yes _ (Fulfilled x) = yes x

78 runPromise _ no (Rejected x) = no x

79 runPromise yes no (PromiseMap g pr) = runPromise (yes . g) no pr

80 runPromise yes no (PromiseMap2 g prA prB) = do

81 pr’ <- pThen prA $ \a ->

82 pThen prB $ \b -> return $ resolve $ g a b

83 runPromise yes no pr’

84 runPromise yes no (PromiseJoin pp) = do

85 p <- pJoin pp

86 runPromise yes no p

87 runPromise yes no (PromiseInvert pr) = runPromise no yes pr

88

89 await :: Promise f p -> IO (Either f p)

90 await = runPromise (return . Right) (return . Left)

91

92

93 pAll2 :: Promise f p -> Promise f p’ -> IO (Promise f (p, p’))

94 pAll2 prA prB = fmap PromiseInvert

95 (pAny2 (PromiseInvert prA) (PromiseInvert prB))

96

97 pAll :: [Promise f p] -> IO (Promise f [p])

98 pAll [] = return $ resolve []

99 pAll (x:xs) = do

100 prs <- pAll xs

101 pr <- pAll2 x prs

29



102 pThen pr (return . resolve . uncurry (:))

103

104 pAny2 :: Promise f p -> Promise f’ p -> IO (Promise (f, f’) p)

105 pAny2 prA prB = do v <- newEmptyMVar

106 errA <- newEmptyMVar

107 ta <- forkIO $ runPromise (putMVar v . Right)

108 (putMVar errA) prA

109 tb <- forkIO $ runPromise (putMVar v . Right)

110 (\b -> do a <- takeMVar errA

111 putMVar v $ Left (a, b)) prB

112 x <- takeMVar v

113 killThread ta

114 killThread tb

115 return $ case x of

116 Left (a, b) -> reject (a, b)

117 Right p -> resolve p

118

119 pAny :: [Promise f p] -> IO (Promise [f] p)

120 pAny [] = return $ reject []

121 pAny (x:xs) = do

122 prs <- pAny xs

123 pr <- pAny2 x prs

124 pCatch pr (return . reject . uncurry (:))

125

126 pAllSettled :: [Promise f p] -> IO (Promise f’ [Either f p])

127 pAllSettled [] = return $ resolve []

128 pAllSettled (x:xs) = do v <- newEmptyMVar

30



129 forkIO $ await x >>= putMVar v

130 prs <- pAllSettled xs

131 a <- takeMVar v

132 pThen prs $ return . resolve . (a:)

133

134 pRace2 :: Promise f p -> Promise f p -> IO (Promise f p)

135 pRace2 prA prB = do v <- newEmptyMVar

136 ta <- forkIO $ await prA >>= putMVar v

137 tb <- forkIO $ await prB >>= putMVar v

138 x <- takeMVar v

139 killThread ta

140 killThread tb

141 return $ case x of

142 Left f -> reject f

143 Right p -> resolve p

144

145 pRace :: [Promise f p] -> IO (Promise f p)

146 pRace [] = newPromise (\s f -> hangForever)

147 pRace (x:xs) = do

148 prs <- pRace xs

149 pRace2 x prs

150

151

152 instance Functor (Promise f) where

153 fmap f pr = PromiseMap f pr

154

155 instance Applicative (Promise f) where

31



156 pure x = resolve x

157 f <*> x = PromiseMap2 ($) f x

158

159 instance Monad (Promise f) where

160 return = pure

161 p >>= k = PromiseJoin (fmap k p)

32


	

