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INTRODUCTION

The advent of high strength steels and concretes, lightweight con-
crete, composite construction, and plastic design has reduced the mass
of concrete slab-steel beam floor systems. This reduction, coupled with
the use of lightweight hung ceilings, has occasionally created the problem
of transient vibrations set up by small impacts. Thus, the efficiently de-

signed modern floor system, having adequate static strength, may be
susceptible to vibration which can be annoying to human inhabitants.

Human perceptibility of vibration seems to depend on three factors:
frequency, initial amplitude, and duration (damping). The vibration of
older, less efficiently designed floors, is usually not within the range of
human perceptibility. In addition, older types of floor coverings (slate,
marble, etc.) and ceilings (plaster) together with extensive partitioning
sufficiently increases the damping of the structural system. Modern
building construction tends to change these factors in an adverse way.

Since 1959 a research program dealing with structural vibrations
of floor systems has been conducted at the University of Kansas. The {irst
phase of the program dealt with steel joist-concrete slab floor sys'cems,l
including an investigation of human sensitivity and the development of
mechanical dampers. The second phase has been limited to steel beam-
concrete slab floor systems,

The objectives of the research can be summarized as follows:

1. To determine what constitutes an annoying vibration. 2., To estab-
lish a mathematical model of the floor system which will accurately pre-
dict the response of the floor system to a given impact. 3. To develop

an analytical expression to be used as a design quide.



To accomplish these objectives each phase of the project was
divided into two parts: an experimental portion and a theoretical portion,
The experimental portion consisted of obtaining data (amplitude, frequency,
and subjective evaluation) on actual floors which had been built using
standard modern construction techniques, The theoretical portion consisted
of the development of mathmatical models and design criteria.

This report deals with the research to date (April, 1968) conducted

on the vibration of steel beam-concrete slab floor systems,



HUMAN SENSITIVITY

Human sensitivity to vibration seems to depend on three factors:
frequency, amplitude, and damping. During the steel joist-concrete
slab portion of the research project it was determined that a criterion for
establishing an annoying floor would be similar to that shown in Fig.
1 or Fig. 2. Figure 1l is from a paper by Reiher and Meister ,2 but the
vertical scale has been multiplied by a factor of ten. To obtain the original
plot, Relher and Meister subjected a group of standing people to steady
state vibrations (frequencies ranging from 3 to 70 cycles per second
with amplitudes ranging from 0.0004 to 0,40 inches) and recorded the
subjective reaction of the participants. The results were assessed in
varying levels of sensitivity from barely perceptible to intolerable severity,
Figure 2 is from a paper by Goldman 3 with the vertical scale multiplied
by ten. Goldman took all of the available data on steady state vibration
tests and summarized the results on the basis of the three fundamental
levels of subjective sensations: perceptible, unpleasant, intolerable.
Reference 4 is an excellent summary of the research done in this area.

Forty-six floors were tested during the steel joist phase of the
project, and the reaction of individuals in the test area was recorded.
When the field measurements were compared to the original plots it was
found that a majority of the floors were in the disturbing range. Yet,
in only three floors were there vibrations that were perceptible to the
occupants. It was then concluded that transient vibrations are much less
annoying than steady state vibrations. The plots were changed by a
factor of ten. Replotting of the field data resulted in consistent prediction

of human perceptibility to vibrations.



Initial Amplitude-Inches

10.0

1.0
|
very disturbing,
injurious
VI.
0 L ] 1
0.01 \
(‘0
perceptible \

0.001 L

1 10 100

Frequency-Cycles per Second

Figure 1. Domains of Various Strengths of Sensations
for Standing Persons Subject to Vertical
Vibration, Adjusted for Transient Vibrations,
After Reiher and Meister.



Initial Amplitude-Inches

10.0 ¢

, Perceptible
1 10 100

Frequency - Cycles per Second

Figure 2. Subjective Response of the Human Body to
Vibratory Motion, Adjusted for Transient Vibrations,
After Goldman.

L Intolerable

- Unpleasant l

1.0

0.1
0.01

I

0.001



It was also concluded that the main factor influencing the effect
of vibrations on the human was the damping in the system. A series of
tests was conducted on a steel joist laboratory floor system where fre-
quency, amplitude and damping could be varied. If the floor was damped
to a small amplitude prior to five cycles of vibration, the participant felt
only the initial impact, no vibration. If the vibration persisted after 12
cycles, the participant responded to the vibration just as to steady
state vibration, The response to vibration between these ranges was a
function of the number of cycles before the amplitude became negligible,
Negligible vibration being defined as the amplitude of that cycle being
less than one-fifth the initial amplitude,

Figure 3 is a plot of the number of cycles for 80% reduction in
amplitude versus percent of critical damping for a single degree of free-
dom system with viscous damping. From this plot, it can be concluded
that for a vibration to be perceptible to a human the damping in the floor
system must be less than 5% of critical. Thus the modified Reiher and
Meister curves are valid only when the damping in the system meets this
criterion,

Further, the effect of room partitions and dividers on the damping
of the floor system was observed,. Partitions or dividers which were
attached securely to the floor system at a minimum of three points signif-
icantly increased the damping of the system to a degree that annoying

vibrations are non-existent.
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EXPERIMENTAL APPROACH

Twenty buildings located throughout the northeastern quarter
of the United States were chosen to study the effect of as many variables
as possible. Included in this series of buildings were floor systems of

A. Composite construction

1. Solid Slab
2. Slab on steel deck
B. Non-composite construction
1. Solid slab
2. Slab on steel deck,
In addition two small floor systems were constructed in the laboratory.

The data was obtained by impacting the floors and permanently
recording the resulting oscillations on film, Each floor was impacted
by two different methods.,

The first method utilized a mechanical impactor specifically
designed for this purpose (Fig. 4). The impactor consists of a cylindrical
steel weight of 31.5 pounds and a vertical steel frame. The weight may
be dropped at any set height from 1.5 to 5.5 inches. A device included
on the impactor prevents the weight from striking the floor more than once.
This method of impacting was used since it was quite easy to repeat without
variation.

For the second method, the same member of the research team
executed a heel drop on each floor. This was accomplished by the researcher
assuming a natural stance with knees straight, then shifting his weight
to the balls of his feet and lifting his heels approximately two and one-half

inches off of the floor. A sudden relaxation allowed his body weight to



Figure 4. The Mcchanical Impactor
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essentially free fall to the floor, terminating in an impact. This method

of impacting was used to approximate the type of impact normally found
due to human occupancy.

The response of the floor to the impact was recorded on a portable
seismic recorder. The recorder produces three independent records of re-
sponse in three mutually perpendicular directions. The vibration is magnified
S0 times by an optical lever system within the instrument and recorded, along
with timing lines at 0.2 second intervals, on direct writing paper. This
photographic paper is exposed by high intensity incandescent light in the
recorder and is developed by exposure to fluorescent light. A permanent
record of the floor's motion was thereby obtained. Figure 5 shows several
typical records.

To obtain the shape of the load function produced by the two types
of impacts, a load cell was placed between the impacting system and two
widely varying floor systems. The output of the load cells was recorded
using a storage oscilloscope. To verify the reproducibility of the load
functions a series of five human impacts and five mechanical impacts was
recorded over a period of two months. The re sults were within sufficient
agreement to conclude that the impacting methods were reproducible.
Figure 6a and 6b are averaged plots of force versus time for mechanical
and human impacts. The forcing functions can be reasonably approximated
by the dashed lines in each plot. In each case the area under the appromi-
mate curve is equal to that under the actual curve,

As a check of the shape of the load function a simply supported
single beam (8WF31, length=12 feet) was subjected to the impacts and
the resulting response recorded. The solution of the differential equation

governing the motion of simply supported elastic beams, excited by a unit
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impulse at midspan, was integrated numerically using the actual shape of
the load function and the results compared. For the human impact, the

first maximum measured amplitude was 0.0079 inches and theoretical
0.0071 inches. For the mechanical impact the first measured amplitude was
0.0193 inches and the theoretical was 0.0198 inches. The reproducibility

of the impacts was again checked here and found to be satisfactory.



15

THEORETICAL APPROACH

Two theoretical models of the floor system were considered.
First, a single tee-beam, consisting of a portion of the concrete slab and
the steel beam, was treated as an elastic beam with simple end~supports
and free sides (Fig. 7). This model was chosen since it was hoped that
the form of the analytical solution could be conveniently used in a design
office. Second, the floor system was treated as an isotropic stiffened
thin plate. It was hoped that this more precise theoretical model would
justify the use of the tee~beam model.

Tee~Beam Model

The differential equation governing the motion of an elastic beam

is
4 2
EI 8y 4 8Y _ = plx,t) (1)
axd P ot

in which

x = the distance measured along the beam

y = y(x,t) = the vertical displacement of the neutral
axis of the beam from its static equilibrium
position

t =time

p = mass per unit length of the beam

p(x,t) = total force per unit length applied perpendicular

to the beam
B = modulus of elasticity

I = cross-sectional moment of inertia of the beam.

Solution of the associated homogeneous equation

4 2
Hoy , p2r— =9 (2)
4+ P 0
ox ot
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assuming simple supports at both ends of a beam of length, L, yields

the natural radian frequencies for the normal modes of vibration

2 4 4
w” =EL n7j n=1,2,3... (3)
P 1.4
and the modal characteristic shapes
¢n(x) = sin nTx (4)
L

The first natural frequency is tnen the familiar

f, =1.57 [gEI 1/2 (s)
w3
in which

W = the total weight of the beam in pounds,

Using Lagrange's equation the general solution for Eq.(5)is obtained S

L
ylx.t) = “2[£ Pl en0Iox ] 50) 4,60 (6

w2 fL 5 % (dax
(o]

pl(x) = the load distribution along the beam

in which

gp(t) = the normalized response for the equivalent one degree
of freedom system of the nth mode.
For a simply supported beam which is subjected to a concentrated

dynamic load of magnitude F at midspan

L
L Py(x) ¢,(x)dx =F ¢ (L/2)

=Fsin£1
apd L ” 1 ) 2
Jo tittax = [ wntngx -2

Equation (6) can then be written as

y(L/2,1) = g 2FL> (sm2 EJLL)g M. )
nt ik z /n
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For a suddenly applied constant load F of limited duration ty
(Fig. 8a) and no damping, the normalized response for the equivalent
one-degree of freedom system of the nth mode is
t t<td (8a)

gn(t) =1 -cosw n

gn(t) = cos wn(t-td) - cos wnt t>td (8b)

Since the maximum value of the normalized response is 2.0 and the value

of the sine terms in Eq. (7) are unity for odd modes, the modal contributions
are in proportion to 1/n4. The maximum modal deflections are then in pro-
portion to 1, 1/81, and 1/625 for the first, third and fifth modes respectively.
Thus, the higher modes contribute very little to the midspan deflection

and only the first mode will be considered. Equation (7) then becomes

= o3
y(L/2,1) %‘Lﬁ g, (1) (9)

The first maxdmum amplitude Ao is found by differentiating with
respect to "t", equating the result to zero and solving for the time t o’

then substituting this value into Eq. (9).

A, =y(l/2,t) = 141-:_13 atto =g <tg (10a)
7 EI “1
3
A =y0/2, t)=ARL g 1 ate) =g +ldse (on)
1T4EI 2 2w 1 2

For a suddenly applied load F which decreases linearly to zero
at time t; (Fig. 8b) and no damping, the normalized response for the

equivalent one-degree of freedom system of the nth mode is

gn(t) = 1-cosw,t + sin wt t t <ty (11a)
W ty
gn(t) =_1_|sin wt - sin wn(t—td)] - cosut t>t, (11b)

“’ntd
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if w t d?. 1 , the maximum modal deflections are, at most, in
proportion to l/n4 in Eq. (7). Therefore, as in the case of a rectangular
pulse load, only the first mode will be considered.

Proceeding in a similar manner the first maximum amplitude is found

to be

A =y(L/2, tg) = 251,3 2-Yo/tg) (12a)
EI
- -1
w

1

A =2FL3 1 -\/2(1— t, sin ant, ~ coswyt,) + ( t).§| (12b)
o “1ta w1ta wytg! * \wWytg
i1 | 91t

at to =_1 tan-l(l-cos ‘iltd ) 2t
sin wlt q4 wltd

The first results apply to the approximated mechanical forcing
function and the second to the approxdmated human forcing function,

Figures 9a and 9b are plots of normalized amplitude versus frequency
for mechanical and human impacts respectively. The curves marked "actual”
were obtained by numerically integrating over the actual load functions
(Pig. 6) the solution of Eq.(1)for a unit impulse, The curves marked
“rectangular" and “triangular” were obtained by using the first eleven
terms of Eq.(7)and the approximated load function of Fig. 6. The curves
marked “one term" were obtained using Eq.(10)and (12), In addition a
rectangular approximation was made for the human load function of Fig. 6b

and the resulting curve using Eq.(7)is shown in Fig. 9b.
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Plate Model

A study of a stiffened thin plate subjected to impacts can be
found in Ref, 6., This study determined the response of a beam-slab floor
to a periodic excitation by considering one bay of the floor system as a
stiffened, simply supported, rectangular plate, The study includes a
discussion of a series of test floors subjected to both mechanical and
human impact,

The results of these analytical and experimental investigations

indicate that a single tee-beam may not be an accurate model,
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RESULTS OF EXPERIMENTAL AND THEORETICAL STUDIES

Appendix A contains partial floor plans of all of the buildings
tested.* The locations of all impacts where the impactor and recorder
were at the center of the span and over a beam are noted, The tape records
for each of these impacts are also included, The vertical lines on these
records are timing lines at 0.2 second intervals. Since the tape drum runs
at a constant speed, the distance between timing lines varies depending
on the amount of paper tape on the drum., Because of the optical lever sys-
tem in the recorder, the actual deilection is 1/50th of that shown on the
tape records.

Table 1 is a summary of the structural components of the floor sys-
tems tested. For a measure of the damping in the system, the equivalent

critical viscous damping ratio, £ , was determined using the relat:lonships7

ve
]

5
12 03)
+§)

(47:2

_ Y
& —_l:_ In “Yofy_

* The floor system of Building 9 consists of deep trusses and is not
included in this report,



a5

ia which

logarithmic decrement

first amplitude

nth amplitude

U S -1 O»
= O‘<

critical damping ratio

and is included in the table, The number of cycles to one-fifth first
amplitude is also included,

A response noted "damped" in Table 1 is one where the response
was not of sufficient length to accurately determine the damping ratio.

The response of some of the floors was definitely a random vibration
and is noted as "noise". Figure 10 shows the types of decking indicated
in the table.

Table 2 is a summary of the beam and slab properties. Also
included is the weight per linear inch and the moment of inertia of the
composite tee-beam. Preliminary calculations indicated that, regard-
less of the actual type of construction, close agreement between the
measured frequency and that given by Eq. (5) was obtained only if the slab
was considered to act composite with the steel beam, It is thought that
the small deflections encountered are not sufficient to produce move-
ment between the two materials, and, therefore, acted as a composite
section. The effective width of the slab was considered: first, as the
sum of one-half the clear distances to the adjacent beams; second, as
the width allowed in the AISC Specification for the Design, Fabrication,
and Erection of Structural Steel for Buildings, 1963 revision.8 Finally
non-structural concrete (topping) in the floor system was considered to act
compositely with the structural floor slab and the steel beam, and is included
when computing the effective width using the AISC Specifications. An

explanation of the code in Table 2 follows:



; § § Type 1 § % Type 2

Type 3 Type 4

Figure 10. Types of Decking.
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A - Topping included; effective slab width taken as the
sum of one~half the distances to adjacent beams

B - Topping included; effective slab width as limited by
AISC Specification

C - Same as A except no topping
D - Same as B except no topping
1 - Cover plates on beam

2 - Castellated beam,

Table 3 is a summary of the theoretical and measured frequencies,
and of the theoretical and measured first amplitudes for both mechanical
and human impacts. The theoretical frequencies were obtained by using
the data from Table 2 and Eq. (5). The theoretical amplitudes were obtained
by using the data from Table 2 and Egs. (10) and (12). Only one tee-beam
was considered to act for these calculations, Also included in Table 3
is the ratio of the theoretical amplitude to the measured amplitude. Since
the theoretical amplitude is inversely proportional to the moment of inertia
of the section, this ratioc represents the number of tee-beams effective in
resisting the impacts.

A sample record and the procedure used to determine the measured
frequency, first amplitude, and damping ratio is shown in Appendix B,
Sample calculations for the theoretical frequency and amplitude for a

tee-beam are shown in Appendix C.
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3 » " wle = » " " N.R. N.R. |N.R.] N.R,
14 [|12wr27|" nie » " " - N. 6.8 N. 5
10 ligwrso| " | - " " - " 10.1 |N. 9
12 - - - L] ] " L] L] D. 6.4 1 7
19 |1 4 16831 | none 3}Reg. - -
20 3 2 - - 5"L.wW, " Type 4 7.8 8
3 2 L] L] - = L] L] L] 8.3 4
3 4 16WF36| * "o - - - D. 1
3 4 " " .. - .- N.T.
Comp, - Composite Construction
N.C. - Non-composite Construction
N.K. - Not Known
D. - Damped
W. - Noise
N.R. - No Record
L.W. - Light Weight Concrete
Reg. = Reagular Weight Concrete
TABLE 1. Floor Properties and Damping Characteristics
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Span % 14 b b t Yo &' W 1‘4

Blg. Floor lLoc. Code Boam ft. in in in, in, in. pcf psi 1b/in. in

1 2 1 C 16 B26|30.00| 7.65| 298.1 {12.83| 95.50 | 5.0 |110. 3000. | 32.57 | 1037.2
1 2 1 D 16 B26|30.00| 7.65| 298.1 |12.83| 85.50 | 5.0 [110.]3000. 32.57 | 1015.8
1 2 2 ] 16 B31]30.00| S.12} 372.5)12.92 (126,50 | 5.0 |110.{3000. ] 42.85 1262.1
1 2 2 D 16 B31{30.00| 9.12| 372.5}12.92 | 85.53}5.0 |110. 3000. | 42,85 1200.3
2 4 1 C 24WF684138.08| 24,71 | 2364.3 17.05 [312.,00 | 5.0 {110.[3000. |106.32 6684.9
2 4 1 D 24WF84138.08| 24.71 {2364.3 | 17.05] 89.00] 5.0 {110, |3000. 106.32 §382.8
3 R 2 Cl 16 B26]40.00}11.65] 480.6 |14.69 {120.00 | 4.0 | 150. [3000. | 44.98 2101.9
3 R 2 D1 16 B2640.00}11.65) 480.6 |14.69 | 69.50 | 4.0 | 150. |3000. 44.98 1896.5
3 R 1 Cc2 31WF68 |54.00| 16.52 | 3368.0 | 19,80 |120.00 | 4.0 [150. 3000. 46.36 7465.9
3 R 1 D2 | 31Wr68 |54.00|16.52 |3368.0 {19.80 | 72.96 | 4.0 }150. {3000. 46.36 6315.3
3 2 3 Cc2 31WF76 |54.00| 20.47 | 4266.3 | 21.77 |120.00 | 4.5 | 150. |3000. 52,69 [10230.5
3 2 3 D2 31WF76 |54.00| 20.47 {4266.3 | 21.77 | 80.99{ 4.5 | 150. |3000. $2.69 9569.8
3 2 4 C 16WF40130.00{11.77 | s15.5 |12.50 J120.00 | 4.5 [ 150. |3000. | 50.22 1658.7
3 2 4 D 16WF40 {30.0011.77 | 515.5 |12.50 | 87.00 | 4.5 | 150. |3000. | 50.22 1570.6
3 2 S (o)} 18WF45 |40.00|16.24 | 910.6 |15.13 {120.00 | 4.5 ] 150, 3000, | 51.49 3148.7
3 2 5 D1 18WF45 140.00| 16.24 | 910.6 | 15.13 | 79.48 | 4.5 | 150. |3000. | 51.49 2903.9
3 1 7 c2 3IWF76 |54.00| 20.47 |4266.3 | 21.77 1120.00 | 4.5 | 150. {3000. 52.69 ]10230.5
3 1 7 D2 31WF76 |54.00} 20.47 |4266.3 | 21,77 | 80.89 | 4.5 | 150. |3000. 52,69 | 9569.8
3 3 8 Cl 18WF45 |40.00}16.24 | 910.6 | 15,13 [120.00 | 4.5 }150. |3000. 51,49 3148.7
3 1 8 D1 18WF45 {40.00|16.24 | 910.6 |15.13 | 79.48 | 4.5 | 150. 3000, | 51.49 2908.9
4 2 2 C 16WF36 |30,00 | 10.59 | 446.3 |12,.43 |120.00 | 4.5 {110. 3000, | 37.38 1374.1
4 2 2 D 16WF36 [30.00]10.59 | 446.3 §12.43 | 78.99 | 4.5 |110. |3000. 37.38 1265.4
5 10 1 C 16WF36 |30.00} 10,59 | 446.3 |12.43 1120.00 | 4.5 {110. |3000. | 37.38 1374.1
S 10 1 D 16WF36 {30.00 10,59 | 446.3 |12.43 | 78.99 [ 4.5 {110, |3000, 37.38 | 1265.4
S 10 3 C 21WF55 [30.00|16.18 |1140.7 }14.90 {360.00 [ 4.5 | 110, [3000. [107.72 3610,7
5 10 3 D 21WF55 |30,00|16.18 |1140.7 | 14.90 | 80.22 | 4.5 | 110, 3000, |107.72 2779.5

Table 2, Tee-Bsam Properties
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Span A'z 1 : Yy b t Ye tc. w 1‘ 4
Blg. Floor Loc. Code Beam ft. in in in, in, in. pcf pst 1b/in. in
6 7 1 C 12 B19]25.00] s5.62 150.1 10.80}102,00} 4.0 | 110.] 3000.] 27.57 §34.5
6 7 1 D 12 B19}25.00] S5.62| 130.1 |10.80| 68.00} 4.0 | 110.] 3000. 27.57 494.3
6 7 2 o] 16Wr45125,42 13,24 583.3}12.06}300.00f 4.0 | 110.} 3000.] 60.1% 1860.1
6 7 2 D 16WF45)25.,42{13.24( $83.3}12.06{ 71,04 4.0 | 110.| 3000. 80.15 1423.7
7 1 1 C 24WF68}25.00 | 20.00 | 1614.5 | 15.86 | 300.00] 4.0 | 145. 3000.]106.37 5320.4
7 1 1 D 24WT6825.00} 20.00 |1814.5 ) 15.86 | 72.96| 4.0 | 145.] 3000. |106.37 | 4214.4
8 4 1 C 16 B26|28.50| 7.65| 298,1} 12.33| 120,00} 4.5 | 110.} 3000.| 36.55 | 1013.0
8 4 1 D 16 B26]28.50| 7.65| 298.1] 12,33| 77.50} 4.5 | 110.] 3000.| 36.55 936.0
8 4 3 C 186WF45(20,00113.24 | 704.5]13.43 342,00} 4.5 | 110.]| 3000.}101.73 2369.3
8 4 3 D 18WF45|20.00 | 13.24| 704.5 | 13.43) 79.48 4..5 110.| 3000. }101.73 1840.4
8 11 4 C 16 B26|20.00f 7.65| 298.1 |12.33}{114.00| 4.5 | 110.] 3000.| 34.83 1004.1
8 11 4 D 16 B26|20.,00| 7.65] 298.1 {12.33} 77.50] 4.5 | 110,] 3000.| 34.83 936.0
10 10 1 C 14 #22)] 7.50| 6.47 | 197.4}12.99] 45.00] 3.0 } 110.] 3000.| 10.43 717.3
10 10 1 D 14 R22| 7.50} 6.47| 197.4{12,99| 22.50} 3.0 { 110.] 3000.} 10.43 §67.2
10 | 10 2 (o] 16WF50{30.00 {14.71 | 800.6 | 15,13 ] 90.00} 3.0 { 110.[ 3000. | 21.37 | 2370.0
10 10 2 D 186WFS0{30.00 {14.71 | 800.6 {15.13 ] 55.50| 3.0 | 110.| 3000.] 21.37 2035.6
11 5 (o} 16WF45[28.00{13.24 | 583.3 |13,56 | 84.00| 2.5 | 110, 3750. 1 17.13 | 1716.6
11 S D 16WF45 128,00 113,24 | $83.3 }13,56| 47.48] 2.5 [110.] 3750. | 17.13 1428.7
12 6 1 C 16WFS50 [25.83 14.'70 655.4 | 13,62 |114.00} 2.5 | 110.] 3000, ] 22.32 1975.9
12 6 1 D 16WFS50 [25.83 | 14,70 | 655.4 [ 13.62 | 47.07 | 2.5 | 110.] 3000. 22,32 1481.6
13 4 1 (o} 21WF96 |25.50 | 28.21 |2088.9 {16.07 |102.00) 2.5 | 110.] 3000. | 24.24 4539.3
13 4 1 D 21WF96 }25.50 | 28.21 {2088,9 | 16.07 | 49.04| 2.5 | 110. 3000. | 24.24 3568.8
13 4 3 C 14WF30125.50 | B.81 | 289.6 | 12.43 {102.00] 2.5 | 110.] 3000. | 18.73 1043.0
13 4 3 D 14WF3025.50 ] 8.81 | 289.6 [12.43 | s54.73| 2.5 | 110. 3000, | 18.73 875.7
14 k) 1 A 21WF55 [38.67 |16.18 {1140.7 | 17.40 |116.00 ]| 2.5 | 145. 3000. | 62.16 | 4092.2
4.5 ] 110.] 3000.

Table 2. Tee-Beam Properties Continued
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Span 82 !: ¥b b t Y fo. w 1'4

Blg. Floor Loc. Code Beam ft. in in in. in. in. pcf psi 1b/in. in

14 31 1 B 21WF $5130.67(16.18| 1140.7 {17.40 | 80.22 | 2.5 | 145. 3000, | 62.16 | 3795.2
4.5 1 110.} 3000.

14 al S A 21WF 73138.67 | 21.46f 1600.3 {17.62 {116.00 }2.5 | 145.}3000. | 63.66 5318.0
4.5 | 110,] 3000,

14 31 5 B 21WF 7338.67 | 21.46} 1600.3 [ 17.62 | 80.30 | 2.5 | 145.] 3000. | 63.66 | 4902.1
4.5 1 110.] 3000,

15 7 1 (o] 16WF 36 {23.25]10.59| 446.3 |13.43 |112.00 |2.5 | 110.}3000. | 20.83 1486.4

15 7 1 D 16WF 36 {23,25|10.59| 446.3 |13.,43 | 46.99 |2.5 |110.]3000.} 20.83 1147.8

15 7 3 (o] 36WF300 {56.73 | 88.17}20290.0 23.86 |279.00 | 2.5 | 110.}3000. | 69.44 |36660.2

15 7 3 o) J6WF30056.73 | 88.17{20290.0 | 23.86 | 56.66 | 2.5 | 110.]3000. | 69.44 {24963.5

16 3 1 C | 21WF 62 }47.60| 24,23 1872,2 | 18,22 | 96.00 | 5.0 | 145.]3000. | 47.16 6071,5

16 3 1 D | 21WF 62 |47.60| 24,23 | 1872.2 | 18,22 68.24 [ 5.0 ) 145.13000. | 47.16 §95}.8

17 2 1 C 18WF 50 ]34.50]14.71| 800.6 |14.00 J112.00 {5.0 | 115.1{3000. 1 41.45 2340,.2

17 2 b D 18WF 50 |34.50]114.71| B800.6 | 214.00 { 87.50 | 5.0 | .115.{3000. | 41.45 2224,)

17 2 4 C 16 B 3l}|28.00} 9.12] 372.5[12.92 {112.00 |S5.0 | 115,]/3000. ) 239.86 | 1279.3

17 2 4 D 16 B 31|28.00] 9.12} 372.5|12.92 ] 85.53 {5.0 | 115,]3000. | 39.86 1216,2

17 2 7 C 24WF 68 28,00 20,00) 1814.5 | 16.85 |375,00 [ 5.0 | 115, 3000. |130,46 5731.4

17 2 7 D 2AWF 68128.00]20.00f 1814.5 |16.85 | 88.96 |S.0 |.uS,{3000. |130.46 4484.3

18 l A 18WF $040.50 | 20.7)} 1185.0 |19.26 }121.00 2.5 }145.}3000.| 82.03 5766.4
$.0 {145.}3000.

18 1 B 18WF 50 {40.50}20.71| 1185,0 |19.26 | 87.50 [2.5 ]| 145.]3000. 82,03 | S381.9
5.0 ]14s5.]3000.

18 4 A 12WF 27 }30.17 | 12.97] 333.1 [15.98 | 71.28 }2.5 |145.]3000. 48.54 2190.2
5.0 ] 145, 3000,

18 4 B 12WF 27 130,17} 12.97] 333.1 |15.,98 | 71.28 | 2.5 |145.]3000. 48.54 | 2190,2
5.0 | 145.3000.

Table 2, Tea=-Beam Properties Continued
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Span s 2 1'4 b b t ¥Ye ‘c. w h 4
Blg. Floor Loc, Code DBeam ft, in in in. in, in, pef psi 1b/in. in
19 1 4q C 16 B 31]32.00] 9.212 |372,5|11.42| 96.00 {3.5 }145.|3000.| 30.78 | 1092.4
19 1 4 D {16 B 31}32.00] 9.12 |372,5}11.42] 61.52 }3.5 [145.13000,) 30.79 1010.3
20 3 2 C 16 B 31|36.00 | 9.12 {372,5]12,92{144.00 |5.0 |110.|3000.| 48.42 1322.3
20 3 2 D |16 B 31}36.00} 9.12 |372.5}12,92| 85.52 |5.0 |110.|3000.| 48.42 1200.3
20 3 4 (o] 16WF 36)36.00 [10.59 |446.3|12.92 {144.00 |5.0 {110.{3000.| 4¢8.84 1508.3
20 3 4 D 16WF 36136.00 [10.59 [446.3]112.92| 86.99 |5.0 {110.}3000.] 48.84 1370.5

* Includes cover plate, if any.

Table 2, Teo~Beam Properties Continued
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Mech Human
Frequency Amplitude Amplitude Equivalent Bms
Blg. Floor Loc. Tape No. Code Beam Length Theor. }l":;:tua:! Theor. Actual Theor, Actual Mech Human
1 2 1 21-12M C 16 B26| 30,00 | 7.23 .01141 | ,0034} .01832 3.36
2 1 21-12M D 16 B26{ 30.00 | 7.15 .01153 | .0034| .01857 3.40
2 2 21-9 M C 16 B3| 30.00 | 7,03 .00891 | .0018] .01442 4,95
2 2 21-9 M D 16 B31] 30.00 | 6,78 .00925 | .0018] .01511 5.14
2 3 21-2 M} C 16 B31| 30,00 | 7,03 7.7 | .00831 ) .0010| .01442 {.0070| 8.9) | 2.06
2 3 21-3 L D 16 B31| 30.00 6.78 7.7 | .00925] ,0010] .01511 |.0070} 9.25 | 2.16
2 4 1 22-25M C 24WT84| 37.58 | 6.40 .00312 00516
4 1 22-25M D 24WF84| 37.58 } 5,66 .00312 .00538
3 R 2 32-2 L Cl | 16 B26| 40.00 | 4.93 6.3 | .00913 .01579 }{,0072 2,19
R 2 32-2 L Dl 16 B26| 40.00 4,68 6.3} .00962 .01673 | .0072 2,33
R 1 32-3 L C2 | 31Wr68| 54.00 | 5.02 4.6 ] .00644 01111 1.,0059 1.89
R 1 (32-3 L D2 | 31WF68| 54.00 | 4.83 4.6 | .00670 01161 |.0059 1.97
2 3 31-1 M} C2 | 31WF76] 54.00 | 5.51 .00516 | .0030) .,00878 }.0048)1.72 ] 1.83
2 3 [31-21L D2 | 31Wr76} 54.00 | 5.33 .00534 | ,0030] .00912 |,0048]1.78 | 1.90
2 4 31-12M C 16WF40} 30,00 | 7.36 9.9 | .00726 | ,0030) .01160 |.0052] 2.42 | 2.23
2 4 [31-13L D | 16WF40] 30.00 | 7.16 9.9} .00747 | .0030| .01202 |.0052| 2.49 | 2.31
2 s |31-8 M | C1 | 18wF4s{ 40.00 |5.64 [7.3 .00697 | .0028 { .01181 2,48
2 S 31-8 M Dl 18Wr45] 40.00 | 5.42 7.3 .00725 | ,0028{ ,01237 2.5%
2 6 |31-10L Cl | 18WFd45] 40.00 | 5.64 7.5 ] .00697 .01181 }.0052 2,27
2 6 [31-10L D1 | 18WF4S] 40.00 | 5.42 7.5 ] .00725 .01237 {.0052 2,38
tr]
Table 3, Summary of Theoretical and Measured Amplitudes and Frequencies



Mech Human
Frequancy Amplitude Amplitude Equivalent Bms
Blg. Floor Loc. Tape No., Cods Beam length Theor. ActualM i Theor. Actual Theor. Actual Mech Human
3 2 7 |32-6 M C2 | 31WFP76 |54.00 ] S.51 7.1 .00516| .0026 | .00878 | .0040}4 1.99 | 2.19
2 7 32-7 L D2 | 31WF76|54.00 ] 5.33 7.1} .00534] .0026} .00912| ,0040{ 2.05 | 2.28
2 8 32-12M Cl | 16WP45 {40,00 | S.64 .00697} .0024} .01181 | .0041] 2,90 | 2.88
2 8 32-13L D1 | 18Wr45 [40.00 | S.42 .00725} ,0024] .01237 | .0041] 3.02 | 3.02
4 2 1 41-6 M C 16wWr36 |30.00 | 7.77 | 10.0 00924} .0026| .01452 | ,0056} 3.55 { 2.59
2 1 41-7 L D 16WF36 (30.00 | 7.45 | 10.0 .00963 | .0026 ,01534| .0056)] 3,70 | 2.74
2 2 41~-1 M} C 16WF36 |30.00 | 7.77 8.6} 7.5 1 .00924| .0032§ .01452 | .0054] 2.89 | 2.69
2 2 41-2 M
2 2 41-3 L D 16WF36 130.00 | 7.45 8.6} 7.5 | .00963| ,0032}).01534| ,0054] 3.01 | 2.84
5 10 | 1 41-18M (o] 16WF36}31.00} 7.77 | 10.3|12.5 | .00924 | .0046 ] .01452 | .0060] 2.02 | 2.42
10 |1 |41-19L D | 16Wr36(31,00| 7.45 | 10.3|12,5 | .00963 | .0046 | .01534 | .0060] 2.09 | 2.5s
10 ]2 |41-20M | ¢ | 16wWF3s|31.00 | 7.77 .00924 | 0042 ,01452 2,20
10 {2 | 4a1-11L D | 16wr3s|31.00| 7.45 .00963 | .0042| ,01534 2.29
6 711 41-22M C 12 B19 |25.00 | 8.12 7.4} 7.5 | .01436| 0068 ] .02724 | .0090] 2.11 | 2.48
7 |1 | 41-23L D |12 B19§25.00 | 7.81 | 7.4}7.5| .01495] .0068|.02345 | .0030] 2.20 | 2.61
7 2 41-30M C 16WFr45/25.42 | 8.60 .00458 | ,0046 | .00696 | .0030] 1,00 | 2,32
7 112 41-31L D 16wP45|25.42 | 7.52 .00526 | .0046 | .00834 | .0030]1.14 | 2.78
7 1 1 42-2 L Cc 24WFP68}25.00 | 13,05 .00228 .,00284 | ,0014 2,03
111 j42-21 D 24WF68] 25.00 1 11.61 .00257 .00341 | .0014 2.44 -
o0

Table 3. Summary of Theoretical and Measured Amplitudes and Frequencies (Cant.)




Mech Human
Frequency Amplitude Amplitude Equivalent Bms
Blg. Floor Loc, Tape No. Code Beam Length Theor. Actual Theor. Actual Theor. Actual Mech Kuman
M H
8 4 1 42-5 M C 16 B26 |28.50 7.47 01035 | .0068 | ,01645 | .0070]1.52 2.3%5
4 1 42-6 L D 16 B26 |28.50 7.18 .01077 | .0C68 | ,01732 | .0070}1.58 2.48
4 2 42-3 M C 16 B26 | 28,50 7.56 10,8 | .00527 | .0054 |,00835 | .0062]| 0.98 { 1.35
4 2 42-3 L D 16 B26 §28,50 6.90 10.8 } .00529 | .0054 |,0094) | ,0062} 0.98 | 1.52
4 3 42-7 M C 186WF45120.001} 13,91 .00278 | .0010 |.00335 { .0028{ 2.78 | 1.20
4 3 42-8 1, D 18WF45(20,00{ 12,26 .00318 | .0010 |.00410 | .0028) 3.18 | 1.46
31 4 42-13M C 16 B26 }20.00] 15.48 .00725 | .0054 |.00820 | .0024} 1.34 | 3,42
11 4 42-14L D 16 B26 [20.00 | 14,94 .00752 | .0054 |.00870 | .0024} 1.39 | 3.62
101 10 1 62-6 M C 14 B22 | 7.50 169.98 .00229 |.0046 {.00082 | .0032) 0.50 | 0.26
10 1 62-7 L D 14 B22} 7.50 151,18 .00230 )} .0046 }.00103 | ,0032] 0.63 } 0,32
10 2 62-4 M C 18WF50 (30,00 | 13.49 .00912 | ,0046 |.01117 | .0058}1.98 { 1,93
10 2 62-5 L D 18WFS0[30.00} 12,51 .00988 {.0046 |,01261 | ,0058] 2.15 | 2.17
10 4 62-12M C 18WF50 |30,00 § 13.49 |11,2[12,5 |.00912 }.0050 }.01117 | .0068] 1.82 1.64
10 4 62-13L D 16WF50[30.00 j 12,51 {11,.2{12.,5 |,00988 |.0050 |.01261 .006811,98 | 1,86
11 3 63-4 M C 16WEF45 28,00 | 14,72 .01111 |.0050 {.01295 | ,0050] 2.22 | 2.59
3 63-5 L D 16WF45 [28.00 | 13.43 .01225 {.0050 }.01504 ] .0050] 2.45 } 3.00
5 |63-12M | C | 16wr45{28.00 | 14.72 .01111 |{.0042 |,01295 2.65
5 | 63-13L D | 16WF45 (28,00 | 13,43 .01225 {.0042 {.01504 2,92
12] 6 1 [63-16M | C 16WF50 | 25.83 | 16.26 .00830 |.0072 |.00913 | .0020|1.15 | 4,56
6 1 63-17L D 16WFS0 |25.83 | 14.08 .00369 |.0072 |.01159 | .0020}1.35 }5.79
]
Table 3. Summary of Theoretical and Measured Amplitudes and Frequencies (Cont.)




Mech Human
Frequency Amplitude Amplitude Equivalent Bms
Blg. Floor Lon. Tape No, Code Beam Length Theor. Actual Theor. Actual Theor, Actual Mech., Human
M H
13 4 1 | 63-20M (o] 21WF96 |25.50 | 24,26 .00491 | .0040| .00425 | ,0020} 1,22 | 2.13
4 1 63-211L D 21WFS6 |25,50 | 21,51 .00566) ,0040} .00526 | .0020( 1.41 | 2.63
4 3 | 64-5 M Cc 14WF30 |25.50 {13,23 | 14.7{15,2] ,01249¢ .0072| ,01547 {.0088] 1.73 | 1.76
4 3 64-6 L D 14WF30 [25,50 [12,12 | 14.7|15,2] ,01370| .0072|.01777 | .0088 1.90 | 2.02
14 3l 1 64-9 M A 21WFS5S |38.67 6.26 .00537 | 0010 .00893 |,0020} 5.37 | 4,47
a1 1 64-10L B 21WFSS |38,67 6,02 .00558| .0010 | .00934 | .0020) 5.58 | 4.67
31 5 64-19M A 21WF73 |38,67 7.05 .00465| ,0016 | .00751 | .0026} 2.91 | 2,89
1 S 65-1 L B 21Wr73 [38.67 | 6,77 .00484} ,0016 | .00791 | .0026] 3.03 [ 3.04
18 7 1 65-9 M (o] 16WF36 {23,25 |18,02 .00883 | .0040 | ,00913 |.0058] 2.21 | 1,57
7 1 | 65-10L D 16WF36 23,25 |15.83 .01017 | .0040 | .01136 |.0058] 2,54 | 1.96
7 3 65-21M (o} 16WF30056.73 8.23 .00248 | .0010 ] .00382 |.0016) 2,48 | 2.39
7 3 65-22L D 16WF30056,.73 6.79 .00301 § .0010}.00452 |,0016) 3,01 | 3.07
7 4 65-15M C 16WT36 [23.25 18.02 .00883 t ,0094 | .00913 |.0018| 0.94 | 5.07
7 4 | 65-16L D 16WF36 }23.25 {15.83 .01017 | .0084 | ,01136 |,0018] 1,08 | 6.30
16 3 1 71-1 M C 21WT62 |47.60 5.77 9.2} 8,4 .00624 | .0030{.01053 |.0070 2,08 | 1.51
3 1 | 71-2 L D 21WF62 |47.60 | 5.72 9.2 8.4] .00630 | .0030 | ,01065 |.0070| 2,10 | 1.53
3 3 |71-7M | G | 21WF62 [47.60 | 5.77 | 9.0f 8.0 .00624 | .0026 | .01053 |.0044| 2.40 | 2.39
3 3 |71-8 L D | 21wr62{47.60 | 5.72 | 9.0 8.0| 00630 .0026 | 01065 |.0044} 2,42 | 2.42
17 2 l | 11-9 M} (o] 18WFS50 [34.50 | 7.28 7.5 .00774 | .0038 | .01241 |.0054| 2.03 | 2.30
2 1 | 71-=10 b~
Table 3, Summary of Theoretical and Measured Amplitudes and Frequencies (Cont.)



Moch Human
Frequency Amplitude Amplitude Equivalent Bms
Blg. Floor Loc, Taps No, Code Beam Length Theor. l;:?tua}: Thear. Actual Theor, Actual Mech Human
17 2 1 |71-11L D 18WF50| 34.50 7.10 7.5 .00794 | ,0038 ] .01282 | ,0054} 2.09 | 2.38
2 3 |72-4 M C 16WTFS50] 34.50 7.28 .00774] .0042].,01241 | ,0040] 1.84 | 3.11
2 3 j72-5 L D 18WF50| 34.50 7.10 .00794 | ,0042 | ,01282 | ,0040) 1.89 | 3.21)
2 4 |172-6 M C 16 B31} 28,00 8.33 7.5|8.3} .00864| .0036],01326 | ,0038] 2.40 | 3.49
2 4 172-7 L D 16 B31} 28,00 8.12 7.5{8,3] .00887| .0036| .01373 | .0038]| 2.46 | 3.62
2 6 172-10M C 16 B3| 28,00 | 8.33 -008641 .0042| .01326 | ,0050)] 2.06 | 2.66
2 6 {72-11L D 16 B31} 28,00 8.12 .00887 | .0042|,01373 ] ,0050] 2.11 | 2.75
2 7 |72-12M C 24Wr68| 28.00 } 9.75 .00225 | ,0014; .00324 | ,0018| 1.61 | 1.80
2 7 172-13L D 24WF68] 28,00 8.62 .00255 | ,0014| ,00386 { ,0018]1.82 | 2.14
18 1 |72-14M A 18WFS0]| 40,50 5.89 .00413 | ,0054{ .00694 | .,0024] 0.76 | 2.89
1 |72-15L B 18WTS0} 40.50 5.69 ,00427 | ,0054] .00723 | .0024]0.29 | 3.01
3 |72-20M A 18WFS0| 40.50 5.89 .00413 | ,0004 ] ,006%4 | .0004{10.3 |17.3
3 |72-21L B 18WFS50] 40.50 5.69 .00427 | ,0004| .00723 | ,0004]10.7 |18.1
4 |72~-22M A 12wr 27} 30,20 8.51 9.8 .00645} ,0058] .00982 | ,0046] 1.11 | 2.14
4 |72-23L B 12wr27} 30,20 | 8.51 9.8 | .00645 | ,0058 | .00382 | .0046| 1.11| 2.14
10} 72-26M A 18WFS0} 40.50 5.89 7.1% .00413 { ,0022 | .00694 | .0038| .88 1.83
10{73-1 L B 18WTF 50| 40.50 5.69 7.15 .00427 | ,0022] .00723 ] ,0038] 1.94| 1.91
12173-6 M A 18WTF50f 40,50 5.89 6.9].00413 | ,0024| .006941 ,0036] 1.72| 1.93
12173-7 L B 18WFS0{ 40.50 5.69 6.9 | .00427 | ,0024 | .00723| .0035]1.78 | 2.01
19 1 4 C | 16 B31]| 32,00 | 6.71 -01221 .01999
4 D 16 B31] 32,00 | 6,45 .01270 .02098
é
Table 3, Summary of Theoretical and Measured Amplitudes and Frequencies (Cont.)




Mech Human
Frequency Amplitude Amplitude Equivalent Bms
Blg. Floor Loc, Tape No, Code Beam Length Theor, :’ctunl Theor. Theor. Actual Mech Human
H
20 2 |91-7 L (o] 16 B31 |36.00 | 4.65 5,0 | .00999 01739 | .0091 1.91
2 [91-15L D 16 B31 {36,00 | 4.43 5.0 | .01049 .,01836 | .0091 2,02
4 |91-11L c 16WF36[36.00 { 4.94 .00931 .01609 | .0062 2,539
4 191-16L D 16WF36}36.,00 | 4.71 .00977 .01698 | .0062 2,74
M -~ Mechanical Impact
L - Human Impact, Lenzen
A - Topping includod; effective slab width taken as the sum of one-half
the distonces to adjacent boams,
B - Topping included; effective slab width as limited by AISC specification.
C = Same as A except no topping.
D - Same as B except no topping.
1 = Cover plates on beam.
2 = Caastellated beam.
&=
©
Table 3,

Summary of Theoretical and Measured Amplitudes and Frequencies (Cont.)
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DISCUSSION OF RESULTS

It was possible to calculate a critical damping ratio for only
22 of the 49 locations tested. For most of these cases the number of
cycles necessary for the amplitude to reach one-fifth of the first amplitude
was less than five. (It is to be noted that damping percent as given by
Fig. 3 using the number of cycles to one~fifth initial amplitude shown
in Table 1 and that calculated by Eq. (13) and shown in Table 1 may
not agree. In calculating the damping ratio the portion of the response
record which produced the most consistent ratios of successive amplitudes
was used. This portion did not include the first amplitude in many instances.)

In the steel joist phase of the project, it was determined that a
human feels only the initial impact, no vibration, if the floor is damped
to a small amplitude prior to five cycles. The floors tested in building
19 and 20 are the only floors where the amplitude of the vibration was
significant after five cycles. Buildings 19 and 20 were the only buildings
in which the occupants had complained of annoying vibrations prior to the
tests, Comparison of the tapes of these buildings and any of the others
shows clearly the difference in the floor response. (Data was not taken
where the impactor and recorder were at midspan and over a beam for
Building 19. However, several tapes are included in Appendix A showing
the response for other locations.)

Of the buildings for which the fire-proofing method is known only
Buildings 3, 16, 19, and 20 used other than the spray-on method.
Comparison of the critical damping ratios, the number of cycles to one-

fifth first amplitude, and of the response records for these floors with
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the other floors indicates that spray-on fireproofing may be an im-
portant factor in damping considerations. Further studies in this area are
necessary before a final recommendation can be justified,

Comparison of the theoretical and measured frequencies indicates
that the effect of the different methods of calculating the moment of
inertia for the tee-beam section is negligible. It is recommended that
the effective slab width be taken as the sum of one half the distances to
adjacent beams for the moment of inertia term in Eq. (5). Calculating
the moment of inertia term in this manner will reflect the additional stiff-
ness obtained when using larger beam spacings. It is felt that shear lag
is not as important in vibration analysis as it is in static cases. It is
also recommended that any topping concrete be included in the composite
section.

Comparison of the theoretical and measured amplitudes indicates
that a single tee-beam model is not realistic for this calculation, As a
conservative estimate the number of tee~-beams effective in resisting the
impacts can be taken as two. It is thought that a more accurate method
for predicting the initial amplitude will result from the isotropic plate
study. The results of the tee-beam model analysis can then be used to
calculate the number of tee-beams effective in resisting the impacts.

Figure 11 is a plot of the number of effective tee-beams for
mechanical impact versus the number for human impact. Considering
the variation in the field conditions, it can be assumed that the number
of effective tee-beams is the same for both mechanical and human impacts,

The experimental data from Table 3 is plotted on the modified
Reiher and Meister curves of Fig. 12. The results are inconclusive. The

research team's attempt to subjectively rate each of the floors has been



No,. of Effective Tee beams~ Human Impact
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No. of Effective Tee beams- Mechanical Impact

Figure 11. Number of Effective Tee-Beams from Mechanical Impact Versus
the Number from Human Impact,
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discarded since it is felt that their ratings were coloraed by previous
experience with joist floors where the vibration is much more perceptible.
‘Therefore, a criteria for mathematically describing an annoying vibration
cannot be established from this study. However, a consgervative design
will result from the use of the modified Reiher and Meister curves if
sufficient damping is present.

Finally, comparison of the data taken from the various types of
floor construction tested failed to indicate any significant difference in

the vibrational characteristics of the floor systems.



follows:

l.
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SUMMARY OF CONCLUSIONS

The conclusion reached from this study can be summarized as

Human perceptibility to vibration is dependent on the duration of
the vibration, Damping in a structural system is, therefore, sig-
nificant,

For the types of construction considered in this report, spray-on
fire-proofing seems to provide sufficient damping to prevent annoy-
ing vibrations,

Room partitions and dividers securely attached to the floor slabs
are effective in preventing annoying vibrations mainly because of
increased damping.

It was not possible to discern any difference in the vibrational
characteristics of the various types of floor systems tested.

The single tee~beam model is sufficiently accurate to predict the
natural frequency of the system if (a) the structural slab and non-
structural topping are considered to act compositely with the steel
beam, (b) the effective slab width is taken as the sum of one-half
the distances to adjacent beams.

The tee~-beam model is not sufficiently accurate to predict the first
maximum aplitude of a floor system,

The number of tee-beams effective in resisting either the human or
mechanical impacts is the same,

The number of tee-beams effective can be conservatively taken

as two,
With the available data, a criterion cannot be estahlished to define

the limit of annoying vibrations, Howaever, if sufficient damping

is present the modified Reiher and Meister curves can be used for
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Partial Praming Plan - 7th Floor

Non-composite construction
2 1/2" Lightweight (110pcf) concrete slab

A36 Steel

Type 1 centering material
Spray-on fireproofing
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Type 4 centering material

No fireproofing

BUILDING 20.
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SAMPLE REDUCTION OF TAPE RECORD 110

0.27"

AAIA A4 —
VJV’V N

i
|

Building 4 Human Impact
Floor 2
Location 2

Erequency

f=_5_ =8.62 cycles/sec.
0.58

First Amplitude

A,=0.27 =0,0054 in.
50

Damping

g =é—— In (Aﬂ )
7 41/ avg

A1=0.23 A2=0.10 A3=0.04 A4=0.03

A
n+l avg 3
I’A:‘,’/A4 =1.3

=1n(2.0]1) x 100% = 11.1%
2
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SAMPLE THEORETICAL CALCULATIONS
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Sample Theoretical Calculations

Building 3 Floor 1 - Location 8 Code Dl
Span: L = 40,0 ft

Beam: 18 WF45 Cover Plate ;: 6" x1/2"
A=13.244n A= 3.00 in’
I=704.5 in
b=7.477 in

Slab: W, = 15016/%° £, = 3000 psi

Eff, Slab width = (16)(4.5) + 7.477 = 79,48 in.
79.48/8.8 = 9,02" From AC] 318-63

fo,r___r . - 29,000,000

- AL e AT w_1.5 )
*f.r_ SRl c (33),}fc'

. 18 WF 45 - 29,000,000 =58
0 1.5 .~ P
S (150)"*>(33) /3000

[ o8

‘g'i Cover plate 6" x 1/2"

[ ~]

Weight per inch for tee-beam:
total width = 120.0 in.

_ 45 10,2 | (120,0)(4,5)(12)(150) _
w=1 + 12 + 1728)012) = 51,50 1b/in

C.G.: A y Ay
Slab (4.5)(9.02) = 40.59 x 2.25 = 91.3
WF =13,24 x 13.43 =178,0
Plate (6)(0.5) = 3,00 x 22.61 = 67,8
z 56.83 337.1

¥= 337.1 _5 93 n.
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¢! -
1 Ad®
Slab (9.02)(4.5)3/12 = 68.4 (40.59)(5.93-2.25)% = 550.0
WF = 704.5 (13.24)(13.43-5.93)% = 744.5
2
Plate - (3.00)(22.61-5,93)“ = 834,0
> 772.9 2128.5
2128,5
1= 2901.4 in3
Frequency:
£ = 1,57 [gm“l vz 1.57 _ [(386)(29 x 105 (2901.4)| ¥/2
12 w 40)2144) 51.50
= §,42 cycles/second
Initial Amplitudes:
3 3 -
_:11,__ = - (40¥6{1728) = 1.348 x 10 S
7 EI 7 (29 x107)(2901.4)

a) Mechanical Impact - F = 794 1b ty = 0.0l sec.

o = —:-:I = .27(372—47)- = 0,0924 sec > 0,01 sec.

3 -
By = AEL. - (4)(794)(1.348 x 10 %) = 0.00726 in.
T ElL

b) Human Impact - F = 606 1b ty= 0.05 sec.

m.ltd = (27:')(5.42)(0.05) =1,703
-1 -1
= 2 t t 2 tan “(1.703)
I e W B 7= T o 7 B

= 0.061 sec > 0.05 sec.



3 ; 2
= ZEL __j{_ ; 2(l—mlt d)sin “’lt d-—comult q 7t (mlt d) ]
g EI | “1'da \

(2)(606) (t.348 x 10™°)

1 jZ (1-1.703)sin 1,703-cos 1,703 + (1.783}2}
1,703

®.01238 in,
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