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Abstract: Oxidation represents a major pathway for the chemical degradation of pharmaceutical
formulations. Few specific details are available on the mechanisms that trigger oxidation reactions
in these formulations, specifically with respect to the formation of free radicals. Hence, these
mechanisms must be formulated based on information on impurities and stress factors resulting
from manufacturing, transportation and storage. In more detail, this article focusses on autoxidation,
metal-catalyzed oxidation, photo-degradation and radicals generated from cavitation as a result of
mechanical stress. Emphasis is placed on probable rather than theoretically possible pathways.
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1. Introduction

The advent of biotechnology has enabled the production of recombinant proteins for
therapeutic applications. A recent review of the globally highest-selling drugs in 2019
showed that out of ten drug products, seven were proteins [1]. Despite the therapeutic and
commercial success of protein therapeutics, the development of stable protein formulations
can present challenges [2–7]. Proteins are subject to physical and chemical degradation,
potentially compromising the efficacy and safety of drug products. The physical degrada-
tion of proteins is often associated with processes such as surface adsorption, aggregation,
particle formation and precipitation, while chemical degradation describes the covalent
modification of amino acids. Frequently, the physical and chemical degradation of proteins
are connected, where, for example, chemical modifications may trigger aggregation or
conformational transitions of proteins may facilitate the accrual of chemical modifications.

Oxidation represents a major pathway for the chemical degradation of proteins, which
can be carried out by a range of reactive oxygen and nitrogen species, including free
radicals [8,9]. The field of redox biology presents many examples of proteins that are subject
to oxidative modification in vivo under conditions of oxidative stress. These oxidative
modifications may either result in no change in activity, or promote loss or gain of function,
depending on the nature of the modifications and the specific proteins. Whether some
of these oxidative modifications may be useful as clinical biomarkers will depend on the
type, stability and location of the modifications and the pathologies of concern [10–12].
For example, commonly measured protein oxidation products such as protein carbonyls,
methionine sulfoxide (MetSO) and some tyrosine-derivatives were poor biomarkers in the
biological fluids of rats for either carbon tetrachloride (CCl4)- or ozone-induced oxidative
stress [13,14]. In contrast, some lipid-derived oxidation products, such as malondialdehyde
(MDA) or isoprostanes, appeared to be viable biomarkers for CCl4-induced oxidative stress
in rats [13].

Many of the protein oxidation products that have been characterized in vivo can also
form as a result of oxidative processes in therapeutic protein formulations in vitro [15].
In addition, these oxidation processes can generate a range of oxidation products from
excipients, e.g., from amino acids, especially histidine (His) [16–19], and surfactants [18–24],
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and likely also carbohydrates. Some of these oxidation products in vitro may correlate with
important characteristics of their respective drug products, and are referred to as critical
quality attributes (CQAs). For example, oxidation products may have consequences for the
shelf-life, bioavailability or immunogenicity of drug products.

The exact nature and sources of oxidants in protein formulations are generally less
well defined. For comparison, the biological mechanisms of oxidant production frequently
rely on relatively well-characterized enzymes such as xanthine oxidase [25], nitric oxide
synthase [26], myeloperoxidase [27] or NADPH oxidase [28]. In contrast, oxidation re-
actions in therapeutic protein formulations in vitro rely predominantly on adventitious
processes promoted by, e.g., mechanical stress, impurities and/or exposure to elevated
temperature, light or ionizing radiation. Details on the primary processes that lead to free
radical formation and oxidation in pharmaceutical formulations would be highly valuable
for the development of mitigation strategies. It is possible to outline the mechanisms of
free radical generation in pharmaceutical formulations based on information on impurities
and known stress factors that are relevant to pharmaceutical manufacturing, transportation
and storage. This is the purpose of this article.

2. Composition of Pharmaceutical Formulations of Therapeutic Proteins

The pharmaceutical formulations of therapeutic proteins display a range of com-
positions for liquid, frozen and lyophilized forms. Relevant to the potential formation
mechanisms of radicals is the fact that these formulations can generally contain several
classes of compounds in addition to the protein, such as buffers, surfactants, amino acids,
cryoprotectants, chelators and additional tonicifiers [1,29]. Besides the intended functions
in the formulations, each of these respective components may play a role in free radical
generation through its chemical properties and/or impurities, which may be introduced
via chemical synthesis, purification and/or storage.

3. Pathways of Free Radical Formation That Are Relevant to
Pharmaceutical Formulations

The following sections will discuss specific pathways of free radical generation with
respect to the potential role of impurities and stress factors.

3.1. Autoxidation

Miller et al. define true autoxidation “as the spontaneous oxidation in air of a substance
not requiring catalysts” [30]. Hence, autoxidation can be represented by the general
reaction (1), where D− and O2

•− represent an electron donor and superoxide, respectively,
and k1 and k−1 are the rate constants for forward and reverse electron transfer.

D− + O2 
 D• + O2
•− (1)

A plot of log k1 vs. log K1 (where K1 represents the equilibrium constant for redox
equilibrium 1) yields a curve that can be fitted to the Marcus equation, where D− represents
a series of phenolates, indophenolates and other electron donors [31]. This relationship
allows us to make an estimate of the sensitivity of amino acid side chains towards autoxi-
dation on the basis of their reduction potentials. Such an estimate suggests that at most
cysteine in its deprotonated form, with Eo

2 ≈ 0.75 V for redox equilibrium 2 [32,33], would
be susceptible to autoxidation at pH values generally selected for protein formulations.

RS• + e−
 RS− (2)

This would limit autoxidation processes to proteins that contain free cysteine residues.
Monoclonal antibodies do not contain free cysteine residues, except for small quantities of
incompletely folded proteins, implying that autoxidation should be a negligible problem
for pharmaceutical formulations containing monoclonal antibodies.
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A second target for potential autoxidation would be surfactants [34], especially polysor-
bate 80, which contains oleic, linoleic and linolenic acid [35,36]. It is possible that autoxida-
tion contributes to the generation of polysorbate radicals [37] and polysorbate oxidation
products, including peroxides, in neat polysorbate [38]. However, it is equally likely that
oxidation in neat polysorbate is triggered by the homolytic decomposition of reactive
fatty acid:oxygen copolymers of the general structure 1 (Figure 1, where residues Rn, n
= 1–6, depict moieties of fatty acids that have undergone successive peroxyl radical and
oxygen addition to double bonds) [39,40], containing α,β-diperoxide repeats analogous
to styrene:oxygen copolymers [41]. Such fatty acid:oxygen copolymers may be generated
during polysorbate synthesis and storage.
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Morita and Tokita reported that fatty acid:oxygen copolymers are stronger initiators
of lipid peroxidation in model experiments compared to simple hydroperoxides [39]. How-
ever, the fact that Bensaid et al. [42] observed that iron levels as low as 20 ppb accelerated
polysorbate oxidation in aqueous formulations suggests that, at least in pharmaceutical
formulations, metal-catalyzed reactions of hydroperoxides may be kinetically more sig-
nificant for the formation of free radicals compared to metal-independent decomposition
reactions of fatty acid:oxygen copolymers or autoxidation. This is also consistent with
data showing the accelerated decomposition of polysorbate when in contact with stainless
steel surfaces [19,43]. It is, therefore, unlikely that true autoxidation processes contribute
significantly to free radical formation in pharmaceutical formulations.

3.2. Fenton and Fenton-like Reactions between Metals and Peroxides

Fenton and Fenton-like reactions represent important pathways for free radical gen-
eration. Peroxides can be introduced into formulations through excipients [44], primarily
surfactants [38,44,45], and/or as a result of sterilization procedures [46]. Before presenting
a detailed discussion of the potential radical-generating reactions of metals and peroxides
in pharmaceutical formulations, we need to evaluate which metals and which reactions are
most relevant to pharmaceutical formulations. The International Council for Harmoniza-
tion (ICH) Q3D(R2) guidelines define three classes of elemental impurities based on “their
toxicity (PDE) and likelihood of occurrence in the drug product” [47] (PDE = permitted
daily exposure). Several elemental impurities in these classes are redox-active and/or
catalyze oxidation reactions, such as Co, Ni and V (in class 2A); Ir, Os, Rh and Ru (in
class 2B); and Cr, Cu and Mo (in class 3). The ICH Q3D(R2) guidelines list additional
elemental impurities “for which PDE values have not been established due to their low
inherent toxicity and/or differences in regional regulations” [47]. Of these, Fe, Mn and W
are redox-active and/or catalyze oxidation reactions (as, perhaps, does Al [48]; here, AlIII

does not change its oxidation state but promotes the disproportionation reaction of two
complexed H2O2 molecules). A representative quantitative analysis of the elemental impu-
rities listed in class 1 and 2A in several formulation components predicts that their levels in
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therapeutic protein drug products will be significantly below the PDE [49]. These elemental
impurities will likely present no toxicological problems; however, even at levels below the
PDE, some of these elemental impurities may promote radical formation and/or catalyze
oxidation reactions. Therefore, we need to narrow down a selection of metals for further
consideration in this article via other means. Class 2B elements “have a reduced probability
of occurence in drug product” [47] and will, therefore, not be considered further. Lloyd
et al. reported DNA oxidation in the presence of H2O2 for Cr(III), Fe(II), V(III) and Cu(II),
indicating Fenton or Fenton-like reactivities of these metals [50]. However, no efficient DNA
oxidation was observed for Co(II) and Ni(II) in the presence of H2O2 [50]. Anipsitakis and
Dionysiou surveyed the formation of radicals from the reaction of three oxidants, including
hydrogen peroxide (H2O2), potassium persulfate (K2S2O8) and potassium peroxomono-
sulfate (KHSO5), with nine metals, including Fe(II), Fe(III), Co(II), Ru(III), Ag(I), Ce(III),
V(III), Mn(II) and Ni(II) [51]. Of these, only Fe(II), Fe(III) and Ru(III) generated significant
levels of hydroxyl radicals (HO•) upon reaction with H2O2 [51]. The other metals formed
significant yields of inorganic radicals (SO4

•−) only upon reaction with K2S2O8 and/or
KHSO5, oxidants that are likely not present in pharmaceutical formulations. In contrast,
Stadtman et al. advocate for the formation of “caged” HO• radicals during the reaction of
Mn(II) with H2O2, available for the oxidation of substrates [52–54]. The data are consistent
with respect to Co(II) and Ni(II), which we do not need to consider further as a source of
radicals in pharmaceutical formulations. We will also not further consider any reactions
of Mo(IV) as it functions as a co-catalyst in Fe-dependent Fenton reactions [55,56], for
example, reducing Fe(III) to Fe(II) [55]. The formation and detection of HO• radicals during
reactions of V(III) and Mn(II) with H2O2 may depend on the experimental conditions; in a
first approximation, the redox reactions of V(III) and Mn(II) with H2O2 would be rather
comparable to the reactions of the Fe(II)/Fe(III) redox couple with H2O2. Hence, a more
detailed description of the reaction mechanisms of Fe(II) and Fe(III) would serve as a model
for analogous reactions of V(III) and Mn(II), and also of Cr(III) and Cu(II). Therefore, the
following will entirely focus on processes of Fe-dependent radical generation through the
Fenton reaction that are relevant to pharmaceutical formulations.

Reactions of Ferrous and Ferric Iron

In pharmaceutical formulations of therapeutic proteins, iron impurities can come from
multiple sources, including the cell culture medium, manufacturing equipment, containers,
proteins and excipients. Iron levels as high as 1–9 µM have been reported for some protein
formulations [57,58].

In general, it can be assumed that iron impurities in pharmaceutical formulations will
be present as ferric iron, FeIII, coordinated with iron-binding ligands, L [59]. These ligands
can originate from the protein as well as excipients such as amino acids and carbohydrates.
Based on the formulation composition, it is likely that FeIII may be present in a variety of
mixed ligand complexes, i.e., that complexes of FeIII show some heterogeneity. FeIII reacts
with H2O2 according to equilibrium 3 [60,61].

LxFeIII + H2O2 
 LxFeIII(−O2H) + H+ (3)

Rate constants of k3 = 69 M−1s−1 and k−3 = 0.11 s−1 have been reported for equilibrium
3 in acidic aqueous solution with pH 2.0 (where L = H2O) [61]. Based on the standard
reduction potentials for the couples FeIII/FeII (0.77 V vs. NHE) [62] and HO2/HO2

−

(0.79 V), the reduction of FeIII by HO2
− is feasible [63], so equilibrium 4 is reasonable,

where the resulting hydroperoxyl radical is characterized by pKa = 4.8 for equilibrium 5 [64].
The superoxide radical anion (O2

•−) can subsequently reduce an additional equivalent of
LxFeIII (reaction 6) [62,65].

LxFeIII(−O2H) 
 LxFeII + HOO• (4)



Biomolecules 2023, 13, 1142 5 of 15

HOO•
 H+ + O2
•− (5)

LxFeIII + O2
•−
 LxFeII + O2 (6)

However, it has been pointed out that, specifically, the reduction potential for the
couple FeIII/FeII is very sensitive to pH [59] and the nature and concentration of the
ligands [62,63], so the potential reduction of LxFeIII to LxFeII by HO2

− must be carefully
discussed with respect to these parameters. Specifically, for Lx = EDTA, the reduction
potential of FeIII/FeII decreases to 0.12 V [62], suggesting that the reduction of (EDTA)FeIII

by HO2
− may not be a major pathway of FeII formation [63] (for Lx = DTPA, the reduction

potential decreases even further to 0.03 V [66]). However, this prediction must be compared
to experimental results that show that the reaction of H2O2 with (EDTA)FeIII yields an
oxidant that converts the dipeptide Met-Met (Met = methionine) to products that are
also generated via the exposure of Met-Met to a Fenton system, (EDTA)FeII/H2O2 [67],
suggesting the formation of free or complexed hydroxyl radicals (HO•) or higher-valent
iron-oxo species such as FeIV=O [61]. In this respect, the results of Bensaid et al. [42] are
important, which show that the levels of iron impurities (20 ppb vs. <2 ppb) in formulations
containing a monoclonal antibody, His, sucrose and polysorbate 80 control polysorbate
oxidation, which correlates with the oxidation of Met255 on the monoclonal antibody. In
these formulations, it is likely that HO• and/or LxFeIV=O are generated via the reaction
of LxFeIII with hydrogen peroxide (reactions 3, 4, 7 and 8) and RO• and/or LxFeIV=O via
the reaction of LxFeII with organic hydroperoxide impurities (reactions 10 and 11). Here,
LxFeIV=O (Eo′

pH 7.0 ≈ 1.00 V) is the less powerful and more selective oxidant compared to
HO• (Eo′

pH 7.0 = 2.18 V) [68].

LxFeII + H2O2 → LxFeIII + HO• + HO− (7)

LxFeII + H2O2 → LxFeIV=O + H2O (8)

LxFeIII(−O2R) 
 LxFeII + ROO• (9)

LxFeII + HOOR→ LxFeIII + RO• + HO− (10)

LxFeII + HOOR→ LxFeIV=O + ROH (11)

In this regard, the initial reaction (reaction 3) of LxFeIII with H2O2 may become
important, as its product, LxFeIII(−O2H), reacts significantly more efficiently with LxFeII

(k12 = 7.7 × 105 M−1s−1; L = H2O, pH 1.0) compared to H2O2 (k ≈ 50 M−1s−1) [61].

LxFeIII(−O2H) + LxFeII → LxFeIII + [LxFeIII + HO•]/LxFeIV=O (12)

Ultimately, the resulting oxidizing species, HO• and/or LxFeIV=O, will have the
opportunity to react with formulation constituents such as protein and excipients, generat-
ing a plethora of oxidation products and secondary oxidizing species including peroxyl
radicals, alkoxyl radicals and peroxides. The initial oxidation reactions of HO• and/or
LxFeIV=O may occur preferentially with the ligands L, coordinating either FeII or FeIII [61].
Peroxyl and alkoxyl radicals, as well as peroxides, will be generated via the reaction of
HO• and/or LxFeIV=O with the organic constituents of the formulation. An alternative
oxidant, the carbonate radical anion (•CO3

−), may be generated if the formulation contains
low amounts of bicarbonate (introduced through atmospheric CO2), which can generate
LxFeII(CO3) [69]. In such complexes, the initial oxidants, HO• and/or Lx(CO3)FeIV=O,
may oxidize the Fe-bound carbonate to •CO3

− [69,70], which itself is a powerful yet more
selective oxidant.
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An important question is that of whether metal chelators can prevent the formation of
oxidizing species during the reaction of peroxides with LxFeIII and LxFeII. Walling et al. [71]
demonstrated the oxidation of a variety of organic substrates by (EDTA)FeIII/H2O2, provid-
ing evidence that oxidation reactions prevail in the presence of EDTA. Likewise, Graf et al.
showed that EDTA did not prevent the oxidation of dimethylsulfoxide (DMSO) (ultimately
to formaldehyde) induced by LxFeIII and hypoxanthine/xanthine oxidase [72]. However,
DTPA prevented the oxidation of DMSO, providing evidence that the chelator structure
plays an important role in the efficiency of preventing substrate oxidation. These findings
can, in part, be rationalized by the complex geometries of (EDTA)FeII and (EDTA)FeIII,
where crystal structures demonstrate a distortion from octahedral geometry, resulting in
the availability of a seventh binding site for a reaction to take place [73,74]. In aqueous
solution, this seventh binding site generally coordinates with water [73,74], also indicated
by a dissociable proton of (EDTA)FeIII(H2O) with pKa ≈ 7.6 [75,76]. The bound water can
be replaced by H2O2 [65,71,77] and, in case of (EDTA)FeII, also by molecular oxygen [78].
In fact, (EDTA)FeII efficiently reacts with H2O2, with k > 3 × 103 M−1s−1 [79,80].

3.3. Photochemical Generation of Radicals

Depending on the manufacturing environment and clinical use, protein formulations
can be exposed to UVA and/or visible light [81], and an increasing number of studies
show visible- or ambient-light-induced degradation of therapeutic proteins [58,82–92].
In particular, visible light photo-degradation is not easily rationalized with the known
absorption characteristics of individual amino acids. This presents a challenge for the mech-
anistic analysis of processes leading to photo-degradation under visible light exposure,
which is addressed in a recent review [93]. It is generally possible that photo-sensitizers
are generated from the oxidative degradation of proteins and/or excipients, i.e., protein
di-tyrosine from Tyr [94], 6a-hydroxy-2-oxo-octahydropyrollo[2,3-d]imidazole-5-carboxylic
acid from His [17], advanced glycation end-products (AGEs) from the breakdown of
carbohydrates [95], and cross-links between amino acids and lipid peroxidation prod-
ucts [96]. In addition, certain constituents or impurities present in cell culture media that
co-purify with the protein may act as photo-sensitizers, e.g., riboflavin [97–99] or pterin
derivatives [100–102]. These photo-sensitizers can generate radicals in pharmaceutical
formulations via a type I process, which represents an electron transfer reaction by a photo-
sensitizer, subsequent to which a radical intermediate reacts with oxygen [103] (in contrast,
a type II process entails the generation of singlet oxygen, 1O2 [103]).

Tryptophan residues can form cation-π complexes [104–106], which absorb visible
light [107,108]. In such complexes, the electron density is shared between the Trp π-system
and the cation, resulting in spectroscopic properties reminiscent of Trp• radicals [108].
Hence, Trp cation-π complexes may serve as chromophores suitable for the initiation of
photo-degradation by visible light, a possibility that should be tested experimentally.

In view of the discussion of FeIII-dependent oxidation reactions in pharmaceutical
formulations (see Section 3.2 above), the possibility of photo-Fenton reactions as a source of
free radicals is a viable option. Pharmaceutical buffers (e.g., acetate, succinate, citrate) and
amino acids contain carboxylate groups, where FeIII-carboxylate complexes are character-
ized by broad absorption bands in the UVA and visible regions. Under light exposure, these
FeIII-carboxylate complexes can undergo ligand-to-metal-charge transfer (LMCT), reducing
FeIII to FeII, and oxidizing the carboxylate ligand, which subsequently decarboxylates
reactions (13) and (14) [109–113].

RCO2
−-FeIII → RCO2

•-FeII (13)

RCO2
•-FeII → R• + CO2 + FeII (14)

The resulting carbon-centered radical R• will add oxygen to yield a peroxyl radical,
ROO•, unless R• is •CO2

− (see below), while FeII reduces O2 to O2
•− [65] and H2O2 [114].

With respect to the necessary concentrations of FeIII, basal levels of FeIII in 10 mM citrate
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buffer, pH 6.0, were sufficient to promote the photo-oxidation of Met-enkephalin during
near-UV photo-irradiation with a light dose of 25.2 Whm−2 [115], i.e., ca. 1/8 of the
light dose required according the ICH Q1B guidelines for photostability studies [116]. In
these experiments, various lots of citrate were tested, and the photo-oxidation yields from
Met-enkephalin correlated with the basal FeIII levels [115]. An important detail is the
formation of •CO2

− during the photo-irradiation of citrate-FeIII with either near-UV or
visible light, detected via spin-trapping with DMPO [115,117]. The •CO2

− radical is a
powerful reductant (Eo(CO2/•CO2

−) ≈ 1.93 ± 0.22 V vs. NHE [118]) that reduces FeIII to
FeII [119], O2 to O2

•− [119,120] and disulfide (RSSR) to a thiyl radical (RS•) and thiolate
(RS−) [121–123].

Mechanistic studies suggest that the formation of •CO2
− from citrate involves LMCT

from the (deprotonated) citrate hydroxyl group rather than the citrate carboxyl groups,
generating an intermediary alkoxyl radical (RO•), which undergoes α-β cleavage of the
central carboxylate group (Scheme 1; reactions 15 and 16) [117]. In reaction 15, the ini-
tial citrate-FeIII complex is drawn with reference to the crystal structure of mononuclear
(citrate)2FeIII [124], which shows that the hydroxyl group is deprotonated.
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Scheme 1. Formation mechanism of •CO2
− from citrate-FeIII [117].

A similar mechanism was recently observed for a monoclonal antibody (IgG1) in the
presence of FeIII and His buffer. In this case, photo-induced LMCT from a deprotonated Thr
residue, Thr259, led to an intermediary Thr side chain alkoxyl radical (Scheme 2, reaction 17),
which underwent α-β cleavage, triggering side chain cleavage (Scheme 2, reaction 18) and,
ultimately, backbone fragmentation [92].
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3.4. Generation of Radicals via Mechanical Stress

Protein formulations are exposed to various types of mechanical stress during manu-
facturing and transportation. Under certain circumstances, high shear stresses [125,126],
mixing, pumping, filling [127–129] and mechanical shock [130–132] may lead to cavita-
tion [133], a process that can cause the formation of HO• radicals and even O atoms [134].
Hence, mechanical stresses have the potential to trigger the formation of highly oxidizing
radicals, which can subsequently react with formulation constituents.

4. Protein Formulations Containing Additional Excipients
4.1. Formulations Containing Antimicrobial Preservatives

In order to ensure sterility, multidose formulations contain antimicrobial preservatives
(APs) such as, e.g., phenol, m-cresol, benzyl alcohol, thimerosal or chlorobutanol [135,136]
(for a summary of antimicrobial preservative-containing peptide and protein formulations
listed in the Physicians’ Desk Reference, PDR, see [135]). Some of the common antimicrobial
preservatives are susceptible to oxidative degradation, potentially generating radicals in
pharmaceutical formulations.

The exposure of benzyl alcohol to air leads to the slow formation of benzaldehyde, Ph-
CHO [136]. Benzaldehyde spontaneously oxidizes to benzoic acid [137]. The latter pathway
involves the formation of an intermediary benzoylperoxyl radical, Ph-C(O)OO• (reactions
19 and 20), where In• represents an initiating radical [137]. However, the presence of benzyl
alcohol can suppress benzoic acid formation via the reaction of the benzoylperoxyl radical
with benzylalcohol to generate peroxybenzoic acid, Ph-C(O)OOH, and an α-hydroxybenzyl
radical, Ph-C•H-OH (reaction 21) [137]. The reaction of the α-hydroxybenzyl radical with
molecular oxygen will ultimately generate benzaldehyde and superoxide (reaction 22).

Ph-CHO + In• → InH + Ph-•C(O) (19)

Ph-•C(O) + O2 → Ph-C(O)OO• (20)

Ph-C(O)OO• + Ph-CH2OH→ Ph-C(O)OOH + Ph-C•H-OH (21)

Ph-C•H-OH + O2 → Ph-CHO + H+/O2
•− (22)

Therefore, formulations containing benzyl alcohol bear a potential risk for the forma-
tion of oxygen-centered radicals (peroxyl radicals, superoxide) and peroxides (peroxyben-
zoic acid).

The potential exposure of phenol and m-cresol to hydroxyl radicals (such as those
generated by Fenton-type reactions; see Section 3.2 above) will lead to hydroxylation,
preferentially in the ortho- or para-position with regard to the existing hydroxy sub-
stituent(s) [138–140]. Such hydroxylation reactions generate catechol derivatives, which
can further promote Fenton-type reactions through redox cycling [141,142]. During redox
cycling, a catechol derivative reduces LxFeIII to LxFeII, generating a semiquinone radical
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(Scheme 3; equilibrium 23), which can further reduce O2 to O2
•− (equilibrium 24), generat-

ing a quinone derivative. The latter can comproportionate with a catechol to regenerate
semiquinone derivatives (equilibrium 25) [142]. The dismutation of O2

•− will generate
H2O2, which will regenerate LxFeIII through a reaction with LxFeII, generating HO• radicals
(see Section 3.2).
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4.2. Formulations Containing Zn(II)

Specifically, insulin formulations, e.g., Humulin R® or Humalog®, contain Zn(II),
generally in the form of ZnO (see package inserts for Humulin N® and Humalog®), which
releases Zn2+ [143]. ZnO confers antimicrobial activity [143], but the released Zn2+ ions
also support the formation of a native insulin hexamer [144]. Both Humulin N® and
Humalog® also contain m-cresol and phenol, which are susceptible to hydroxylation and,
subsequently, redox cycling (see Section 4.1). It was demonstrated that Zn2+ increased total
phenol oxidation (monitored as total organic carbon, TOC) during the Fenton oxidation of
phenols, which has been rationalized by a more persistent semiquinone radical as a result
of Zn2+ complexation, generating more HO• radicals [142]. Hence, the combination of
phenols and Zn2+ may increase the susceptibility of a formulation to Fenton oxidation.

An alternative mechanism by which ZnO, specifically, may promote oxidation reac-
tions is photo-degradation. ZnO is a semiconductor with a band gap of 3.2–3.7 eV [145],
which would require light with wavelengths of λ = 387–335 nm to excite an electron from
the valence band to the conduction band. Generally, the conduction band electron can
reduce adsorbed O2 to O2

•−, while the remaining positive hole, h+, in the valence band
can oxidize adsorbed H2O/HO− to the HO• radical [145,146]. ZnO was tested as a photo-
catalyst under light exposure with λ > 300 nm on a coated glass plate [147], showing
greater activity than WO3, an activity comparable to that of brookite (TiO2), but an activity
lower than that of anatase (TiO2). However, ZnO was more active than anatase in the
photocatalytic degradation of humic acid in aqueous solution with pH 7.88 [148].

5. IV Enzyme Formulations for Enzyme Replacement Therapy

A review of IV formulations for enzyme replacement therapy [149,150] reveals that
these formulations generally do not contain unusual excipients (for example, see package
inserts for Aldurazyme®, Elaprase®, Vimizim®, Naglazyme®, Mepsevii®, VPRIVTM or
NexviazymeTM). However, inspection of the active sites of the some of the relevant enzymes
shows the presence of Cys residues, e.g., in N-acetylgalactosamine-6-sulfatase [151] and
iduronate-2-sulfatase [152]. These Cys residues are post-translationally modified to Cα-
formylglycine (FGly) and, therefore, are not amenable to Cys oxidation.
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6. Conclusions

Based on information on impurities and stress factors that affect pharmaceutical for-
mulations, a series of mechanisms are formulated that could be responsible for free radical
formation in pharmaceutical formulations. The focus of this article is on highly probable
reactions; additional pathways may be possible in isolated cases when pharmaceutical
formulations contain high levels of specific impurities that are not generally present. With
respect to the design of stress tests for pharmaceutical formulations, highly probable reac-
tions should be kept in mind. For example, it may be questionable whether the addition
of FeII to a pharmaceutical formulation may generate information about the kinetics of
iron-dependent oxidation degradation reactions under storage conditions, as iron impuri-
ties will likely be present as FeIII. However, the addition of FeII may lead to mechanistic
information that can be used to predict certain degradation pathways in cases whereby FeIII

is converted to FeII, for example, through reaction with H2O2 or hydroperoxides. A limita-
tion of mechanistic investigations of radical-induced oxidation reactions in pharmaceutical
formulations will always be that the precise quantity and nature of the radicals specifically
generated under storage conditions are usually unknown. Even the monounsaturated
oleic acid, the main component of polysorbate 80 fatty acid esters [35,36], can generate a
number of different peroxyl radicals [40]. It is unknown to what extent the nature of these
different peroxyl radicals would affect the kinetics of chain propagation within polysorbate
80 micelles. This question may be addressed through the quantification of specific reaction
products that are representative of individual oxidation pathways, a task that may require
the modification or improvement of analytical methodology, potentially supported by
artificial intelligence.
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