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Abstract

We describe the development of the first ring opening of epoxides using pendant sulfamates and 

sulfamides. These reactions are promoted by a base and proceed under mild conditions to afford 

oxathiazinanes and cyclic sulfamides with excellent diastereoselectivity and regiocontrol. The 

reactions scale well, and the products serve as synthons for ring-opening reactions.
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The precise construction of polyfunctional molecules remains a topic of great interest.1,2 

Many targets of value are densely functionalized and comprise several contiguous 

stereocenters. The ring opening of epoxides is an attractive method for the assembly of 

alcohol-containing stereoarrays.3–7 Our laboratory has a programmatic focus on the use of 

unusual nucleophiles for the ring opening of both transient8–13 and stable electrophiles.14,15 

As part of this line of inquiry, it occurred to us that a ring opening of epoxides by pendant 

sulfamates and sulfamides would offer predictable access to vicinal amino alcohols and 

would complement our previous efforts with intramolecular cleavage of aziridines by di-tert-
butylsilanol auxiliaries.14

There is no shortage of interesting amino-alcohols, and new methods for their construction 

are valuable.16–20 Unfortunately, a simple intermolecular aminolysis of epoxides often 

leads to intractable mixtures of regioisomeric products (Scheme 1A).21–24 Many creative 

investigators have developed “temporary tethering” approaches for the regioselective 

opening of epoxides with N-nucleophiles (Scheme 1B).25–29 Nevertheless, even with 

chelating Lewis acids, depending on the substrate, a mixture of regioisomers can still 

result. Covalent tethering offers a complementary approach (Scheme 1C). While a synthetic 

step must be expended to attach the tether, the subsequent cyclization is often highly 

regioselective and diastereoselective. To our surprise, cleaving epoxides with covalently 

tethered N-nucleophiles has not been extensively investigated. Sporadic reports exist with 

carbamate30–37 and acetamidate nucleophiles.38 Here, we detail our efforts to develop the 

first cleavage of epoxides by pendant sulfamates and sulfamides.

A methodology campaign cannot continue without access to the requisite test substrates. 

Fortunately, for homoallylic sulfamates, allylic sulfamides, and homoallylic sulfamides, 

standard Prilezhaev oxidation conditions39 allowed for reliable access to the desired 

epoxides (Scheme 2A). Allylic sulfamates are not stable to synthesis and isolation. Thus, 

allylic alcohols were first converted into the corresponding epoxides, and the sulfamate 

auxiliary was subsequently appended using the Johnson−Magolan protocol (Scheme 2B).40

Our first attempts at tethered ring opening with a pendant sulfamate were informed by 

our previous work with di-tertbutylsilanol auxiliaries.14,15 In sharp contrast to our past 

experience, treatment of sulfamate A with either Lewis acids (Table 1, entries 1 and 2) or 

with 10-CSA, a strong Bronsted acid (Table 1, entry 3), was met with unproductive substrate 

decomposition. With 0.3 equiv of NaOH (as a 1 M aqueous solution) in CH2Cl2, we were 

pleased to observe 54% of desired oxathiazinane B (Table 1, entry 4). Switching solvents 

from CH2Cl2 to Et2O increased the yield to 60% (Table 1, entry 5); we hypothesize that the 

increased miscibility of Et2Owith H2O contributes to this positive effect. A further increase 

in yield came from using a full equivalent of NaOH (1 M aqueous solution) in Et2O (Table 

1, entry 6). Using KOH orLiOH in place of NaOH did not help the reaction performance 

(Table 1, entries 7 and 8), but product formation was excellent with Bu4NOH in a biphasic 

solvent mixture of CF3-toluene and H2O (Table 1, entry 9). Interestingly, there was no 

reaction when sulfamate A was stirred with 1 equiv of KOtBu in THF (Table 1, entry 10).

We were next interested in exploring the effects of various N-substituents on reaction 

performance (Scheme 3). Our optimized protocol of 1 equiv of Bu4NOH in a biphasic 
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solvent mixture of CF3-toluene/H2O worked nicely with NH2-sulfamate 1 and N-Me-

sulfamate 3 (Scheme 3, entries 1 and 2). With N-Et-sulfamate 5, the reaction time had to be 

extended to 48 h for full consumption of the starting material (Scheme 3, entry 3). Bulkier 

substituents on the sulfamate nitrogen (Scheme 3, entries 4 and 5) required us to abandon 

NBu4OH in favor of 1 M aqueous NaOH. With N-Bn-sulfamate 7, an extended reaction 

time of 48 h was required for optimal product formation using 1 M aqueous NaOH in 

Et2O (Scheme 3, entry 4). With N-p-methoxyphenyl-sulfamate 9, optimal product formation 

occurred with 1 M aqueous NaOH in CF3-toluene at an elevated reaction temperature of 

45 °C. Finally, the reaction invariably failed with N-cyclohexyl-sulfamate 11 over a range 

of conditions. From this series of experiments, we conclude that the cyclization is quite 

sensitive to substituents on the sulfamate nitrogen. In addition, as the steric bulk increases, 

switching from Bu4NOH to NaOH is required, and elevating the reaction temperature is 

beneficial in some cases.

Our optimized biphasic protocol (1 equiv of Bu4NOH, CF3-toluene/H2O, 23 °C) worked 

well with a range of sulfamate and sulfamide epoxide substrates (Scheme 4). In general, 

substrates cyclize cleanly and without observable side products. The mass balance of 

the reactions is good and generally comprises product and small amounts of unreacted 

starting material. Several functional groups are compatible with the reaction conditions, 

including aryl halides (Scheme 4, entries 1 and 8), aryl ethers (Scheme 4, entry 1), benzyl 

ethers (Scheme 4, entry 2), and pendant sulfamates (Scheme 4, entry 3). Both trans- and 

cis-sulfamate epoxides (Scheme 4, entry 5) cyclized efficiently. While six-membered rings 

were preferred in most cases, through judicious choice of the epoxide, five-membered 

heterocycles could be forced to form (Scheme 4, entry 6). Products 13 (CCDC 2231586), 

27 (CCDC 2231587), and 31 (CCDC 2231588) were crystalline solids, and their X-ray 

structures allowed us to confidently assign product identity and relative stereochemistry (see 

Supporting Information for full crystallographic details and additional structural proof).

Over the course of our survey, certain substrates behaved a bit differently than expected 

(Scheme 5A). With sulfamate epoxide 36, seven-membered ring 37 was the major product, 

forming in a 70% isolated yield. Here, the epoxide carbon attached to the aryl ring is 

highly activated for SN2 attack, and this likely underlies the formation of an unusual seven-

membered ring in good yield. With tosylate substrate 39, tandem nucleophilic attacks took 

place to form pyrrolidine 40 in a single transformation.

No method is compatible with all substrates (Scheme 5B). Subjecting tert-butyldimethylsilyl 

ether substrate 41 to our reaction conditions was met with unproductive decomposition. We 

hypothesize that the instability of the TBS group to the strongly basic reaction conditions 

led to substrate failure. Substrates 42 and 43 also failed to provide product cleanly. In both 

cases, unproductive competition between exo and endo modes of nucleophilic attack likely 

led to substrate decomposition.

We were able to scale the cyclization reaction with sulfamate epoxide 1 from 0.2 to 5.1 

mmol without loss of yield or selectivity (Scheme 6A). The hydroxy group of 2 was 

converted into the corresponding TBS ether, and the oxathiazinane ring was activated41 
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by appending a Cbz group (Scheme 6B). 45 served as a very effective synthon for 

oxathiazinane ring opening by sulfur, nitrogen, and oxygen nucleophiles (Scheme 6B).

In summary, we have developed of the first ring opening of epoxides using pendant 

sulfamates and sulfamides.42 These reactions are promoted by a base and proceed 

under mild conditions to afford oxathiazinanes and cyclic sulfamides with excellent 

diastereoselectivity and regiocontrol. The reactions scale well, and the products serve as 

synthons for ring-opening reactions. Given the ubiquity of stereochemical arrays in targets 

of value, we expect that this technology will be valuable to both academic and industrial 

organic chemists.

Supplementary Material
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Scheme 1. 
Previous Efforts with Aminolysis of Epoxides Inspire Our Tethered Ring-Opening Approach
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Scheme 2. 
Synthesis of Epoxide Substrates

Nagamalla et al. Page 8

Org Lett. Author manuscript; available in PMC 2023 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 3. 
Structure–Reactivity Relationship with Various Sulfamate Esters
aNumbers in parenthesis indicate (substrate number, product number). Note: only relative 

stereochemistry is depicted.
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Scheme 4. 
Substrate Scope with Sulfamates and Sulfamides
aReaction conditions: Bu4NOH·30H2O (1 equiv), CF3-toluene/H2O, 23 °C, 24–48 h. 
bSubstrate number, product number. Note: only relative stereochemistry is depicted.
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Scheme 5. 
(A) Interesting and (B) Problematic Substrates
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Scheme 6. 
(A) Ring Opening Scales Successfully and (B) Some Fun with the Product
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Table 1.

Optimization of Epoxide Opening by a Pendent Sulfamate

Reagents Solvent, °C Time B/A
a

1 Ph3C+BF4
− (15%)

NaHCO3 (1 equiv.)
CH2Cl2, 23 °C 21 h Decomp.

2 Sc(OTf)3 (10%)
NaHCO3 (1 equiv.)

CH2Cl2, 0 °C to 23 °C 2 h 0/50%

3 10-CSA (10%) CH2Cl2, 23 °C 21 h 0/50%

4 1M aq. NaOH (0.3 equiv.) CH2Cl2, 23 °C 18 h 54%/2%

5 1M aq. NaOH (0.3 equiv.) Et2O, 23 °C 18 h 60%/9%

6 1M aq. NaOH (1 equiv.) Et2O, 23 °C 18 h 72%/0

7 1M aq. KOH (1 equiv.) Et2O, 23 °C 18 h 67%/4%

8 1M aq. LiOH (1 equiv.) Et2O, 23 °C 18 h 65%/3%

9 Bu4NOH•30H2O (1 equiv.) CFs-toluene/H2O, 23 °C 18 h 82%/0%

10 KOtBu (1 equiv.) THF 18 h 0/50%

a
Yield estimated from 1H NMR integration with 4-nitrotoluene as an internal standard.
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