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Abstract

We present a unique strategy for the synthesis of vicinal amino alcohols. Ring opening of 

aziridines with pendant silanols is compatible with a range of substrates. To engage productively 

in ring opening, the aziridine must be at least mildly activated, and a variety of such N-substituents 

are tolerated. The utility of this methodology is highlighted in facile preparations of the natural 

products (±)-Clavaminol H, (±)-dihydrosphingosine, and (±)-N-hexanoyldihydrosphingosine as 

well as a natural product analogue (±)-des-acetyl-Clavaminol H.

Graphical Abstract

Corresponding Author: Shyam Sathyamoorthi – Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 
66045, United States; ssathyam@ku.edu. 

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.2c02496.
Experimental procedures, reasoning for structural assignments, NMR spectra, and crystallographic information. (PDF)

Accession Codes
CCDC 2177671–2177672 contain the supplementary crystallographic data for this paper. These data can be obtained free of 
charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge 
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.2c02496

The authors declare no competing financial interest.

HHS Public Access
Author manuscript
Org Lett. Author manuscript; available in PMC 2023 March 15.

Published in final edited form as:
Org Lett. 2022 August 26; 24(33): 6202–6207. doi:10.1021/acs.orglett.2c02496.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://pubs.acs.org/doi/10.1021/acs.orglett.2c02496?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.orglett.2c02496/suppl_file/ol2c02496_si_001.pdf
http://www.ccdc.cam.ac.uk/data_request/cif
https://pubs.acs.org/doi/10.1021/acs.orglett.2c02496?ref=pdf


Amino alcohols are important constituents of biologically active molecules1–3 and have 

inspired the invention of many elegant techniques for their construction (Scheme 1).4,5,59 

Pioneering efforts on syntheses of vicinal amino alcohols have focused on transition metal 

catalyzed processes to install both N- and O-moieties in a single transformation.6–8 A 

complementary approach is the ring opening of epoxides with N-nucleophiles and of 

aziridines with O-nucleophiles.9,10 This untethered approach11–16 is convenient from the 

perspective of step counts, but challenges with regiocontrol often result in intractable 

product mixtures. Temporary tethering using Lewis acid templates affords excellent 

regiocontrol with epoxides,17–22 but only one such report exists with aziridines.23 Our 

laboratory has a programmatic focus on the development of the di-tert-butyl-silanol auxiliary 

into a uniquely reactive functional handle.24–29 We envisioned a ring opening of aziridines 

by pendant di-tert-butyl silanol auxiliaries, which would afford protected amino alcohols in a 

single transformation. Here, we show our development of this reaction, and its application in 

the rapid assembly of select natural products and analogues.

Before we could begin work on our target reaction, we had to devise a way to access 

the starting materials (Scheme 2). There are many excellent protocols for the syntheses of 

aziridines.30,31 Fortunately, many of these are compatible with the alkenyl silanol (Scheme 

2A), and the majority of our substrates were prepared using the Sharpless,32 Sudalai,33 

Che,34,35 or Kürti reaction.36 We have also found that the combination of (t-Bu)2Si(OTf)2 

(1.5 equiv) and 2,6-lutidine (3 equiv) allows for silanol attachment to aziridine alcohols 

(Scheme 2B).

Our work on the ring opening of epoxides with pendant silanols25 informed our efforts 

with their aziridine relatives37 (Scheme 3). Optimization experiments were performed using 

di-tert-butyl(2-((2S*,3S*)-3-ethyl-1-tosylaziridin-2-yl)ethoxy)-silanol, prepared in one step 

using a Sharpless aziridination of (E)-di-tert-butyl(hex-3-en-1-yloxy)silanol. Treating this 

aziridine silanol with 10 mol % of Ph3C+BF4
− and 1 equiv of NaHCO3 afforded cyclized 

product in a 45% yield (Scheme 3, entry 1). Increasing the reaction time from 2 to 16 h 

did not lead to greater product formation (Scheme 3, entry 2), and decreasing the catalyst 

loading to 5 mol % was markedly deleterious (Scheme 3, entry 3). An increase in catalyst 

loading from 10 mol % to 20 mol % was not helpful (Scheme 3, entry 4). Switching 

to BINOL-phosphoric acid (loadings of 30 and 50 mol %) (Scheme 3, entries 5 and 6) 
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gave a modest boost to reaction performance. The best result came with using 1 equiv of 

BINOL-phosphoric acid in CH2Cl2 (Scheme 3, entry 7). Based on these studies, we chose 

two protocols [Protocol A: Ph3C+BF4
− (15 mol %)/NaHCO3 (1 equiv)/CH2Cl2 and Protocol 

B: BINOL-Phosphoric acid/CH2Cl2] to test with a range of aziridine silanols.

We wished to establish the effect of various aziridine N-substituents on the performance of 

the cyclization reaction (Scheme 4). With N–H aziridine 1 (Scheme 4, entry 1), no reaction 

was observed, either with Ph3C+BF4
− or with BINOL-phosphoric acid. In contrast, with 

N-phthalimido aziridine 2, cyclization afforded product in a 59% isolated yield (Scheme 4, 

entry 2). With more electron-withdrawing substituents, such as acetate (Scheme 4, entry 3) 

and tosylate (Scheme 4, entry 5) groups, cyclization markedly improved. Even appending 

naproxen, a remarkably bulky substituent, did not inhibit cyclization (Scheme 4, entry 

4). Interestingly, even though benzyloxycarbonyl groups (Cbz) activate aziridines for ring 

opening (Scheme 4, entry 6), the yield of our cyclization dropped with N-Cbz aziridine 

6. The yield of product was excellent, however, with phosphoramidate 7. Overall, a wide 

variety of N-substituents are tolerated by our cyclization protocol, but the aziridine must be 

at least somewhat activated to engage productively.

Many aziridine substrate classes were compatible with cyclization protocols A (Ph 

3C+BF4
−/NaHCO3) and B (BINOL-phosphoric acid), including trans-disubstituted aziridine 

silanols (Scheme 5, entries 1–5 and 8–9), cisdisubstituted aziridine silanols (Scheme 5, 

entries 6 and 7), and trisubstituted aziridine silanols (Scheme 5, entries 10–12). Many 

functionalities were tolerated, including aryl halides (Scheme 5, entries 3 and 8), CF3 groups 

(Scheme 5, entry 3), benzothiophene heterocycles (Scheme 5, entry 4), and alkyl ethers 

(Scheme 5, entry 11). Crystal structures of products 27 (Scheme 4) and 48 (Scheme 5) 

enabled us to confidently assign product identity and relative stereochemistry. In general, the 

best protocol for a substrate class was determined through empiric testing (as an example, 

see Scheme 5, entry 4). Thus, for substrates not shown here, we recommend unbiased 

evaluation of both protocols A and B.

Our success with the range of substrates shown in Schemes 4 and 5 prompted us to apply 

this reaction as a key step in the assembly of a variety of sphingosine-type natural products, 

a storied class whose members have demonstrated biological activity.38,39 Commercially 

available (E)-dodec-2-en-1-ol was converted into silanol 51 using our laboratory’s standard 

silylation protocol (Scheme 6A). A Kürti aziridination followed by acetylation gave 

cyclization precursor 53. Cyclization with Ph3C+BF4
−/NaHCO3 formed 54 in a 75% yield. 

TBAF removal of the silyl group yielded (±)-Clavaminol H40–44 which could be converted 

into (±)-des-acetyl-Clavaminol H45–47 upon heating with 6 M aqueous HCl solution. 

A similar strategy was applied for the synthesis of (±)-N-hexanoyldihydrosphingosine48 

(Scheme 6B). (±)-N-Hexanoyldihydrosphingosine is commercially available, but to our 

knowledge, ours is the first synthesis of this target. Protecting 56 with CbzCl followed by 

our BINOL-phosphoric acid promoted cyclization furnished key intermediate 60, which was 

then globally deprotected into (±)-Dihydrosphingosine (Scheme 6C).49–58

In summary, we present a unique strategy for the synthesis of vicinal amino alcohols. Ring 

opening of aziridines with pendant silanols is compatible with a variety of N-substituents 
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and alkyl chains. The utility of this methodology is demonstrated via facile preparations 

of (±)-Clavaminol H, (±)-Dihydrosphingosine, (±)-N-Hexanoyldihydrosphingosine, and (±)-

des-acetyl-Clavaminol H. Given the ubiquity of the vicinal amino alcohol motif in targets of 

value, this technology is a welcome addition to the synthetic armory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Approaches to Syntheses of vic-Amino Alcohols Juxtaposed with Our Work
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Scheme 2. 
Aziridine Silanols Can Be Prepared from (A) Alkenyl Silanols and (B) Aziridine Alcohols
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Scheme 3. 
Reaction Optimization
aYield estimated from 1H NMR Integration with 4-nltrotoluene as an internal standard. 
b(R)-(−)-1,1′-Binaphthyl-2,2′-diyl hydrogen phosphate, arbitrarily chosen.
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Scheme 4. 
Effect of the Aziridine N-Substituent
aCyciization was also attempted with (R)-BINOL Phosphoric Acid, and starting material 

was recovered. bAc = Acetyl; Ts = Tosyl; Cbz = benzyloxycarbonyl. aCCDC: 2177671.
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Scheme 5. 
Substrate Scope
aProtocol A. bProtocol B. cProtocol A but with 30 mol % Ph3C+BF4

− and reaction time of 

12 h
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Scheme 6. 
Assembly of Some Natural Amino Alcohols
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