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Discovery of associative patterns between workplace sound
level and physiological wellbeing using wearable devices and
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We conducted a field study using multiple wearable devices on 231 federal office workers to assess the impact of the indoor
environment on individual wellbeing. Past research has established that the workplace environment is closely tied to an individual's
wellbeing. Since sound is the most-reported environmental factor causing stress and discomfort, we focus on quantifying its
association with physiological wellbeing. Physiological wellbeing is represented as a latent variable in an empirical Bayes model
with heart rate variability measures—SDNN and normalized-HF as the observed outcomes and with exogenous factors including
sound level as inputs. We find that an individual’s physiological wellbeing is optimal when sound level in the workplace is at
50 dBA. At lower (<50dBA) and higher (>50dBA) amplitude ranges, a 10 dBA increase in sound level is related to a 5.4% increase
and 1.9% decrease in physiological wellbeing respectively. Age, body-mass-index, high blood pressure, anxiety, and computer use
intensive work are person-level factors contributing to heterogeneity in the sound-wellbeing association.
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INTRODUCTION

Wellbeing is the ability of the human body to cope with day-to-day
stress. On average, four out of ten employees in organizations in
the U.S. find their job and workplace stressful and that it adversely
affects their health’. Past studies have shown that the workplace
environment is closely tied to an office worker's wellbeing markers
including mental state, productivity, stress, and longevity>.. Among
environmental stressors, sound level is considered a significant
contributor to a variety of adverse health outcomes®. The World
Health Organization (WHO) has identified elevated sound level or
noise as the second leading environmental cause of health
problems after air quality, causing serious health effects including
stress, coronary heart disease, stroke, and disturbances in commu-
nication, rest and sleep®. While past research has focused on
industrial settings and environmental noise (e.g., aircraft and traffic),
research on the effect of more moderate levels of workplace sound
on our wellbeing has been lacking due to technological and study
design challenges®. We conduct a large-scale natural experiment in
a real office environment using multiple wearables and develop
explainable methods® to meticulously model the sound-wellbeing
association. By gaining insights into the association between
workplace sound level and physiological wellbeing, organizations
can make informed policy changes that impact the longevity,
morale, and productivity of its workers.

Our present study enquiring into the sound-wellbeing associa-
tion is part of the U.S. General Services Administration (GSA)'s

Wellbuilt-for-Wellbeing (WB2) program, an interdisciplinary
research collaboration” to assess the impact of workplace
environment on the wellbeing of white-collar office-workers.
Study participants wore two sensors for three days while carrying
out their day-to-day activities, a heart and physical activity
monitor, and a personal environment quality sensor-based
device. Preliminary data analysis using mixed-effects regression
models show a significant curvilinear association between sound
level and two heart rate variability (HRV) measures — SDNN and
normalized-HF. We develop an empirical Bayes model to
characterize physiological wellbeing as a function of SDNN and
normalized-HF and to quantify its functional relationship with
sound level and other predictors. Thereafter, we analyze the
heterogeneity in the effect of sound level across study
participants using a regularization-based method. We use
predictive power assessment to benchmark our methods against
alternative methods applicable for tackling the modeling
challenges of analyzing multiple outcomes simultaneously and
capturing heterogeneity in effects. We show that our proposed
methods have better predictive performance than existing
methods and are vital to the discovery of associative patterns
between workplace sound level and physiological wellbeing. Our
study can inform policies affecting the wellbeing of office workers
worldwide and contributes to literature in explainable methods
for analyzing wearables data.
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RESULTS
Participant information

A total of 248 office workers expressed interest in participating in
our study, representing approximately 12% of the workforce located
in areas of the office buildings where recruitment took place.
Pregnant women and those wearing pacemakers or insulin pumps
were excluded. Participants taking medication known to affect
cardiac activity were noted but not excluded. Due to scheduling
problems, sickness and exclusionary criteria, 17 office workers did
not participate, resulting in a total enrollment of 231 participants.
Due to unexpected changes in work schedules, 8 of the 231
participants were only observed for two, rather than the full three
days. The participant’s average age was 44.15 (SD = 12.22), 49.78%
female, with an average body mass index (BMI) of 27.60 (SD = 6.10).

Dataset description

Data was collected from participants using an intake survey, a
neck-worn environment sensing device, a chest-worn heart and
physical activity monitor, and experience sampling mobile surveys
recorded every two hours while participants were in the office
premises. After pre-processing, our dataset contained 31,557
observations aggregated at five-minute intervals and processed
approximately 200,000 min of wearable data streams from the 231
participants. More information about the data and variables can
be found in the WB2 program website” and a previous study?®.

Pilot analysis

We trained two independent multilevel regression models on our
data with SDNN and normalized-HF as respective outcomes.
Sound level was included as a fixed effect as well as a random
effect in the models. We found that the fixed effect of workplace
sound level was significant, both first order as well as second
order, in the two models, i.e., Bsouna sony = 0.1038 (p < 0.0001, 95%
Cl = 0.0448-0.1627, Cohen’s d = 0.23), Bsoung.sony = —0.0075
(p<0.0001, 95% Cl=—0.0096-—0.0054, Cohen’s d = 045),
Bsound normatized—tF = —0.0979 (p < 0.0001, 95% Cl = —0.1216 to
—0.0742, Cohen’s d = 0.53), and Bsouna? normatized—pe = 0-0013
(p=0.015 95% Cl = 0.0003-0.0023, Cohen’s d = 0.17).
Furthermore, the quality of fit measured by Akaike Information
Criteria (AIC)° for the curvilinear models were better than the
corresponding models with only linear effects of sound level. This
shows that sound level has a significant curvilinear effect on both
physiological wellbeing measures. Secondly, we also found that
including sound level as a random effect improves the quality of
fit of the models, implying that the association between sound
level and physiological wellbeing varies across individuals.

The curvilinear association can be further visualized through
a smooth function of sound level as a non-parametric input in a
Generalized additive mixed model (GAMM)'® with outcome as a
univariate transformation'' of SDNN and normalized-HF. Figure 1
shows the smooth function from GAMM for the sound-wellbeing
association having an extremum around 50 dBA. The point
estimate of 50 dBA as the optimal sound level was verified using
an optimization procedure’?.

Population-level sound-wellbeing association

We used an empirical hierarchical Bayes model to simultaneously
model the association of sound level with HRV measures — SDNN
and normalized-HF, which are common indicators of physiological
wellbeing’~'>, In the model, fixed effects were introduced for
inputs: sound level, physical activity level, time of day, day of week,
age group, BMI group and gender. Random effects were
introduced for sound level and physical activity. We standardized
the input (sound level) and outcomes (SDNN and normalized-HF)
to remove sensitivity and challenges in posterior estimation
convergence due to scale differences in units. The error variances

npj Digital Medicine (2023) 5

o L g
O. — ,;
=<
.0 .
2 =) .
s = -
2|
s)
g
v !
= \
Q \
< E
T T T T T T
30 40 50 60 70 80
Sound in dBA

Fig. 1 Component smooth function of sound level in GAMM for
physiological wellbeing as a bivariate function of SDNN and
normalized-HF. The solid line indicates how physiological wellbeing
varies as a function of sound level, while the dashed lines are
confidence intervals.

were assigned a diffused half-Cauchy prior, and all other
hyperparameters were assigned a diffused Normal prior'®. The
Hamiltonian Monte Carlo algorithm was used for sampling four
parallel chains'”. The R-hat statistic cutoff <1.1 and zero divergence
check were used as validation tests for posterior estimates of
parameters and assessing quality of fit'”,

The mean posterior distribution estimates and the 90% credible
intervals (between 5th and 95th percentile of the posterior
distribution) of the fixed effects coefficients of the empirical Bayes
model is given in Table 1. The posterior estimates of the fixed
effects indicates a significant association between sound level,
time of day, day of week, physical activity level, age, BMI, and
physiological wellbeing at workplace.

The fixed effect of sound level in the empirical Bayes model
represents the sound-wellbeing association on entire study
population after accounting for individual heterogeneity as random
effects coefficients. The coefficient for sound level indicates a
change in physiological wellbeing by a standard deviation (SD)
related to a unit standard deviation (SD) change in sound level as
both input and outcomes are standardized. Knowing that the SD of
sound level in the dataset is 8.79 dBA and the coefficients in Table 1
are standardized, we can compute the unstandardized coefficient
estimates to make the following inferences. For sound amplitudes
lower than 50 dBA, a 10 dBA increase in sound level is related to a
54% (0.95% Cl = 2.2-7.4%, Cohen's d =0.11) increase in physiolo-
gical wellbeing. For sound amplitudes higher than 50 dBA, a 10 dBA
increase in sound level is related to decrease in physiological
wellbeing by 1.9% (0.95% Cl = 0.5-3.8%, Cohen’s d = 0.09).

We compared the predictive performance of the empirical
Bayes model with the following three alternative methods that
can be used for simultaneously modeling two outcomes: (i) a
classical univariate transformation method'!, (i) a univariate
transformation method trained using a Bayesian approach, and
(iii) a classical multilevel structural equation modeling method®.
Models using the classical approach are trained using the R
packages lavaan'® and nlme?° in a 16 GB RAM, 2.7 GHz processor
PC, whereas the empirical Bayes model was written and executed
using Stan program through the RStan interface'’, in a high-
performance computer cluster with 28 nodes (192 GB RAM per
node, Intel Haswell v3 28 core processors). The predictions from
the models for SDNN and normalized-HF are compared with the
(actual) measured values of the two measures to compute Root
Mean Squared Error (RMSE) and Mean Absolute Percentage Error
(MAPE)?" (Table 2). Table 2 shows that the model trained using the
empirical Bayes model has the lowest RMSE and MAPE, indicating
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Table 1. Fixed effects of empirical Bayes model.
Coefficients Posterior estimate (mean) 90% Credible interval
Sound (dBA) <50 0.0471 (0.0199-0.0648)
>=50 —0.0167 (—0.0337 to —0.0042)
Physical Activity 0.2756 (0.2316-0.2932)
Time of day Morning Baseline
Afternoon —0.1479 (—0.1675 to —0.1277)
Evening —0.0939 (—0.1206 to —0.0690)
Day of week Monday Baseline
Tuesday —0.1301 (—0.2670-0.0092)
Wednesday —0.0571 (—0.0888 to —0.0108)
Thursday —0.0588 (—0.0886 to —0.0287)
Friday —0.0430 (—0.0836 to —0.0277)
Age (years) Below 30 Baseline
30-40 0.1361 (—0.1439 to -0.4115)
40-50 —0.1468 (—0.4495 to -0.1641)
50-60 —-0.3119 (—0.6235 to —0.0038)
Above 60 —0.4413 (—0.7475 to —0.0132)
BMI (kg/m?2) Below 25 Baseline
25-30 —0.2278 (—0.4281 to —0.0165)
30-35 —0.3619 (—0.6751 to —0.0896)
Above 35 —0.6169 (—0.9768 to —0.2363)
Gender Male Baseline
Female —0.0439 (—0.2278-0.1435)
Table 2. Comparing predictive performance of different simultaneous Table 3. Comparing predictive performance of machine learning
modeling methods. models with and without sound as an input.
Model SDNN Normalized-HF Model SDNN Normalized-HF
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE
Classical Univariate 20.12 34.13 10.98 54.36 Without Sound NN 23.77 45.00 12.56 84.20
Latent 23.71 44.78 11.22 57.10 CART 20.58 36.11 11.60 7543
Bayesian Univariate 21.50 37.39 10.04 52.64 MARS 19.85 35.04 11.04 73.57
Latent 17.06 26.56 8.90 44.36 RF 17.08 28.78 9.77 57.35
GBM 17.98 26.55 10.30 51.98
that our method is superior to other methods for simultaneous Our model 1750  27.80 942 5027
modeling of SDNN and normalized-HF. With Sound NN 23.77 45.00 12.56 84.20
Further, we compared the predictive performance of our CART 2058  36.11 11.60  75.43
’Iflayesilar,:l ;nod(le(l (\’:lvll\'lc? gve .feloptL.lIar Amzdl;ine IeayrninTg moszeAI;T—) MARS 1921 33.97 1083 7264
eural Networ , Classification And Regression Trees
and Multivariate Adaptive Regression Spliges (MARS), Random RF 16.96 28.48 958 >6.79
Forest (RF), and Gradient Boosting Machine (GBM)?'. We trained GBM 1705 2607 924 5135
these models on training data with and without sound level as an Our model 1706  26.56 890 4436

input variable to assess if sound level is a good predictor of SDNN
and normalized-HF. The results (Table 3) show that our model
outperforms NN, CART, MARS, and its performance is comparable
to ensemble learning methods RF and GBM. Except for NN and
CART, performance of all other models improves when sound level
is included as in input. This shows that sound level is predictive of
both the physiological wellbeing measures.

Heterogeneity in sound-wellbeing association

The heterogeneity in sound-wellbeing association across individuals
is accounted for by the random effects coefficients of sound level
inputs in the empirical Bayes model. Figure 2 shows a caterpillar plot
visualization of posterior estimates of random effects of sound level
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and their 60% credible interval (probability that sample from
posteriori distribution falls in given range) in the empirical Bayes
model. The vertical lines show the corresponding fixed effects
coefficients of sound level. The spread of mean values of posterior
estimates of the random effects indicates substantial heterogeneity
in the sound-wellbeing association across study participants.

We developed a regularization-based feature-selection method
to identify person-level variables contributing to heterogeneity.
The person-level variables input into the model were neuroticism,
noise sensitivity, age, BMI, presence of high blood pressure (BP),
anxiety, sleep problems, computer-use intensive (CUI) worktype,
managerial work, meeting intensive work, technical work, and

npj Digital Medicine (2023) 5
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Fig.2 Caterpillar plots of posterior estimates of varying coefficients of sound level and their 60% credible interval in the empirical Bayes
model. The vertical dashed line is the fixed effect coefficient while the horizontal blue lines indicate the random effects of sound level on
physiological wellbeing across participants. a Caterpillar plot for sound level <50 dBA, and b the plot for sound level >=50 dBA.

Table 4. Coefficients of person-level input variables contributing to heterogeneity.
Predictors Below 50 dBA Above 50 dBA
Lasso Elastic-net Adaptive lasso Lasso Elastic-net Adaptive lasso
Age (years) Below 30 baseline baseline baseline baseline baseline baseline
30-40 —0.0011 —0.0076 —0.0002
40-50
50-60 —0.0026 —0.0141 —0.0003
Above 60 —0.0047 —0.0224 —0.0007 0.0084 0.0160 0.0010
BMI (kg/m2) Below 25 baseline baseline baseline baseline baseline baseline
25-30 —0.0009 —0.0044 —0.0001 0.0004
30-35 —0.0001 —0.0096
Above 35 0.0076 0.0123 0.0011
HighBP Yes —0.0133 —0.0764 —0.0021 —0.0207 —0.0203 —0.0042
Anxiety Yes —0.0015 —0.0013 —0.0002 0.0060 0.0148 0.0007
Computer use intensive work Yes 0.0187 0.0881 0.0036
g\;(/iragﬁ dszlj/r::age:pg(s)z;ea Aeli(p?c?srj?:-lvev\gle Vg;l::(;esoﬁxcaep:ufvgee); Table 5. Performance comparison of models with different set of
completed by the participants at the beginning of the study. person-level factors as moderators.
We considered two subsets of the data, one with sound levels Moderators of sound level in empirical  SDNN Normalized-
<50 dBA (low sound levels) and the other with sound levels =50 Bayes model HF
dBA (high sound levels), to fit two independent sets of models. By
fitting two independent sets of models, we were able to make RMSE MAPE RMSE MAPE
independent.inferences abouF individual heterogeneity effects for No moderators 17.06 2656 890 4436
S:IZP::tics)Eerr;a(;:joe.lsg:: ir::c')l'?zllzir.]ts for the regularized feature All person-level variables 19.66 31.38 11.13 47.73
Table 4 ShOWS that Age, BM', ngh BP, Anxiety, and CUl Work—type Person-level variables identified in 16.65 24.97 8.41 43.23
are factors contributing to interpersonal variability in the sound- our study

wellbeing association. The blank cells show that coefficients of
corresponding variables have been shrunk to zero by the correspond-
ing feature selection method (i.e, lasso, adaptive lasso, elasticnet). For
all the person-level variables not listed in Table 4, all three feature
selection methods shrunk the corresponding coefficients to zero.
To evaluate the performance of our method, we compared the
predictive performance of the empirical Bayes model with three
sets of input variables: (i) inputs including no person-level variables
as moderators, (ii) inputs including all person-level variables as
moderators, and (i) inputs including person-level variables
identified by varying-coefficients modeling method as moderators.
Moderators were included as two-way interactions with fixed effect
of sound level. Table 5 shows the prediction errors of all three
models with respect to SDNN and normalized-HF. The model with
specific person-level variables identified using our regularization-
based method has the smallest (best) RMSE and MAPE values.
High BP and Computer-use intensive (CUI) worktype were the
person level factors that contributed most to the heterogeneity in
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sound-wellbeing association. Figure 3(a), (b) are plots showing the
change in outcome due to the interaction effects of High BP and CUI
worktype variables with the sound level fixed effect in the model.
Figure 3(a) shows that office-workers with high blood pressure are
more negatively affected than participants with normal blood
pressure. Figure 3(b) shows that office-workers involved in CUl work
have higher positive effects of sound levels on physiological
wellbeing at amplitudes less than 50 dBA, but they have higher
negative effects of sound levels on physiological wellbeing at
amplitudes over 50 dBA compared to other office-workers.

DISCUSSION

Workplaces can be designed to evoke positive emotions, stimulate
creativity and collaboration, and intensify engagement?2. On the
other hand, unsuitable workplace environments have a potential
to cause employee stress and health problems?3. Psychological

Published in partnership with Seoul National University Bundang Hospital
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Fig. 3 Interaction plots of the top two person-level variables moderating the sound-wellbeing association. a Green solid line: Normal
blood pressure. Red dashed line: High blood pressure. b Green solid line: Computer use intensive work. Red dashed line: Not computer use

intensive work.

wellbeing consists of positive relationships with others, personal
mastery, autonomy, a feeling of purpose and meaning in life, and
personal growth and development?*. On the other hand,
physiological wellbeing is associated with a dynamic, ever-
adapting balance in the human physiological system conditioned
by momentary demands?>.

Sources of sounds in offices include other people’s conversa-
tions, telephone-calls, and mechanical equipment. Favorable
worker perception of a workplace is tightly coupled with ambient
sound level exposure?®~28, Consequently, sound level is an
important workplace environmental factor that could impact
employee health and wellbeing?®. Sound amplitude has been
shown to not only affect mood and productivity, but also
physiological state of wellbeing?®. For example, sound levels
close to 70 dBA was observed to be optimal for creative
cognition3, while levels above 85 dBA appeared detrimental to
health®'. In terms of sound-wellbeing association, some studies
revealed a negative relationship between high sound levels (i.e.,
noise) and physiological wellbeing measures3?, while other studies
reported inconclusive results?>>3, It was also shown that the
sources and types of noise do not have a significant effect on
physiological wellbeing®**3®. Also, the effect of sound level on
physiological outcomes, if present, were observed to be consistent
for low as well as high sound frequencies®>3°, The nature of the
sound-wellbeing relationship has also been observed to be non-
monotonic®” and instantaneous>®. A table summarizing studies on
sound-wellbeing association has been provided in Supplementary
Table 1. Existing studies analyzing the sound-wellbeing associa-
tion suffer from three major limitations. First, the majority of the
studies in the past employed experiments with a limited set of
treatments, small sample sizes, and limited number of control
variables?9333>35, Consequently, the results from those studies
cannot be easily generalized to the real office workplaces. Second,
studies report results from multiple models corresponding to
different measures of physiological wellbeing®*=3> making it
difficult to generalize insights and take actions. Third, the
sound-wellbeing association has not been precisely quantified
using a model*”. Our present study seeks to address these
limitations by conducting a large-scale natural experiment in an
office environment using wearables and developing a set of
statistical methods to model the sound-wellbeing association.

HRV is the variability between heart beats and is considered as a
proxy measure for the physiological wellbeing of a person, i.e., the
higher the variability, the higher the wellbeing'>3°. It is a relatively
less intrusive and more reliable measure than recording alter-
native physiological wellbeing signals such as salivary cortisol and
skin conductance®. While many measures of HRV exist, each
serves as a slightly different lens to view the body’s physiological

Published in partnership with Seoul National University Bundang Hospital

stress response®'. The mean of standard deviation for all
successive R-R intervals (SDNN) is a global index of HRV and
reflects longer term circulation differences or the overall activity in
the autonomic nervous system (ANS)*2. The normalized high
frequency component (normalized-HF) of HRV is the ratio
between the absolute value of the High Frequency and the
difference between Total Power and Very Low Frequency bands in
the frequency domain power spectrum of heart rate that
emphasizes changes in parasympathetic nervous system (PNS)
regulation®?. SDNN and normalized-HF are indicators of temporal
stress and vagal/parasympathetic modulation respectively, and
high values of SDNN and normalized-HF have consistently been
found to indicate better health and wellbeing'*~'°. Since there is
no single unified measure of physiological wellbeing identified in
prior literature'>3%=%1, we take an empirical approach by defining
physiological wellbeing as a latent (i.e., hidden) variable (6) in a
Bayesian model, that captures the variations of SDNN and
normalized-HF simultaneously. Other measures of HRV such as
RMSSD, SDRR, HF, LF, normalized-LF, LF/HF, Poincare plots3® were
examined but not considered as outcomes since their variance
was either low in our data or their inclusion did not significantly
improve the quality of fit of our model.

Existing digital health studies analyzing multiple outcomes fit
an independent model for each outcome and report coefficients
for each of the models separately**-3>37, Interpretation and
communication of results from multiple models for decision-
making can be challenging. A statistical model with a single set of
coefficients for multiple outcomes, known as simultaneous
modeling, is suitable for this purpose''**%.  Simultaneous
modeling differs from multivariate modeling, where coefficients
are estimated for each outcome along with cross-correlation
parameters*>®, For example, for three outcomes and three inputs,
a simultaneous multiple regression model will contain three
coefficients (excluding the intercept), whereas a multivariate
regression modeling procedure will estimate nine coefficients
(excluding the intercepts for outcomes) and corresponding
covariance between the coefficients. One approach for simulta-
neous modeling involves carrying out a univariate transformation
of multiple outcomes after accounting for heterogeneity in error
variances'"**47_In this univariate transformation method, even
though different outcomes have different error variances in the
model, the effects of input variables are assumed to be uniform
across outcomes. Latent variable modeling is another approach
for simultaneous modeling of multiple outcomes*®. However,
classical latent variable modeling approaches such as structural
equation modeling requires individual items of the latent
construct(s) to be theoretically related and to have construct
validity*®. Moreover, the estimation procedure becomes complex

npj Digital Medicine (2023) 5
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with longitudinal data such as that of wearables®'. Our proposes
an empirical hierarchical Bayesian modeling method to overcome
these challenges related to simultaneous modeling of multiple
outcomes. While it is useful to understand the population-level
effects of input(s) on outcome(s), insights regarding how and why
effects differ across individuals can be valuable. The random
effects in a multilevel model indicate the presence of individual
heterogeneity in input effects®®. A simple approach to identify
factors contributing to individual heterogeneity is to introduce
each factor in an interaction term with the input variable and test
its significance. This is known as slopes-as-outcomes modeling®°.
However, this approach is sensitive to noise in longitudinal data
and becomes cumbersome as the number of potential factors
increases®® such as in our case. Therefore, we propose the
heterogeneity modeling method to identify person-level factors
moderating the sound-wellbeing relationship.

Predictive modeling and explanatory modeling go hand in hand
as the former predicts the future using existing data, focusing on
questions of “What will be”, while the latter illuminates hidden
patterns and tells us about “What is”" with respect to a
phenomenon®'. Both are important for creating value using data
generated from digital sources such as wearables. As wearable
technology-based applications increase in the future, the amount
of available data to analyze will exponentially increase and
warrant more advancements in explanatory modeling for mean-
ingful pattern interpretations. While machine learning methods
such as ensemble learners and neural networks can predict
outcomes, their ability to explain the functional relationship(s)
between input(s) and outcome(s) is limited?'. Therefore, in this
study, we develop new explainable methods for digital data
generated from wearables and apply them to explore the sound-
wellbeing association. Our study allows researchers and practi-
tioners to not only reconcile some of the differences in past work
on the effect of sound on wellbeing, but to also separate out
factors that should be controlled for in future work (e.g., blood
pressure and nature of work). As wearable technology becomes
widely available, personalized measurement is feasible and allows
understanding the impact of our surroundings at an individual
level. This can improve workplace design, personalized and
targeted medicine, and also provide individuals with knowledge
to make personal choices to maximize wellbeing. These in turn,
improve our ability to function at our best in the workplace.

Our study has the following assumptions and limitations. We
focused on modeling the effects of workplace sound levels on the
physiological wellbeing of office workers, but we have not
collected information about the sound types (e.g., conversation,
mechanical background noise, etc.) and frequencies (e.g., low
frequency, speech tones, high frequency, etc.) due to individual
privacy concerns and sensor technology limitations. However,
since prior research has shown that office sound type and
frequency do not moderate the effects of sound level on
physiological wellbeing outcomes3?35, we believe our findings
will still hold when controlling for the type and frequency of
ambient sounds. Secondly, we have aggregated the sound level
and other level-1 variables at 5-min intervals to match the grain of
short-term physiological wellbeing HRV measures — SDNN and
normalized-HF following clinical guidelines®?°3, Therefore, the
lasting effects of spikes in sound level due to sudden events (e.g.,
shouting, objects falling or breaking, etc.) or sound level variance
within a short timeframe have not been investigated, which can
be examined in future research. Nevertheless, the effects of events
repeated multiple times as well as background noises consistent
across the five-minute interval are accounted for in our models.
Next, we hypothesized that SDNN is capable of tracking temporal
stress and normalized-HF is capable of tracking vagal/parasympa-
thetic modulation of stress response and their combination is a
proxy of physiological wellbeing as both these measures have
been shown to be related to physical health and wellness'3~">,
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Possible HRVs' combination both on temporal and spectral
domains are an ongoing effort within the research communities.
Other combinations of physiological wellbeing indicators can be
examined using our method for other scenarios as future research
(e.g., LF and HF as physiological wellbeing indicators in a factory
setting). Finally, data from each of the 231 participants was
collected for a maximum of 3 days, thus our study does not make
any inference related to long term effects of sound on
physiological wellbeing. Future studies can examine data for a
larger study population for a longer period to report long-term
effects of workplace sound level on wellbeing.

METHODS
Study design

The Wellbuilt-for-Wellbeing (WB2)” consisted of a sixteen-month
multi-phase field study funded by the U.S. General Services
Administration to understand the impact of workplace environ-
ment on the wellbeing of white-collar office-workers. In the study,
self-described healthy adult workers involved in a variety of office-
based roles for the U.S. government were recruited across four
federal office buildings across the country. Buildings were selected
for their representation of common office workstation types
across the U.S. General Services Administration’s portfolio of office
space which houses over one million employees. Staff in sections
of each office building, from organizations with leadership
approval, were offered the opportunity to participate. After giving
written informed consent, participants completed an intake survey
consisting of demographic questions. Participants wore two
sensors for three days while carrying out their day-to-day
activities, a heart and physical activity monitor, and a personal
environment quality sensor-based device. The study also included
experience sampling mobile surveys to collect individuals’
perceived psychological responses at periodic intervals of one to
two hours. Our study was approved by the University of Arizona
Institutional Review Board.

The HRV measures—SDNN and normalized-HF were calculated
using guidelines of the European Society of Cardiology and the
North American Society of Pacing and Electrophysiology>2. Physical
activity levels were assessed in g (i.e, 1 unit of gravitational force)
from the EcgMove3's triaxial accelerometer sensor*®. Sound levels
were aggregated at 5-min intervals to be integrated with
physiological wellbeing measures SDNN and normalized-HF, assum-
ing no lagged effects®®. Only observations with both outcome
values present were considered in the analysis. Observations with
outcome values above the 99.5th percentile were discarded. Age
and BMI were discretized to five and four levels, respectively, for
ease of interpretation. Data of participants with less than one hour of
recorded data were excluded from analysis. Missing values in input
variables were imputed using mean values. Apart from sound level
as the input variable and SDNN and normalized-HF as the outcomes,
person-level variables (e.g., age group, BMI group, gender, etc.),
temporal indicators (time of day, day of the week), and physical
activity levels were included as covariates in the statistical models.
Observations from day 1 and day 2 of participation of all participants
were considered as the training dataset, and day 3 observations
were used as the holdout sample (i.e., test dataset) for evaluating the
predictive performance of models. The input variables and person-
level variables were collected based on prior literature on
environment-wellbeing modeling’3”>>*6 and domain knowledge.
Post stepwise feature selection, only significant inputs were
considered in the final model and reported. Summary statistics of
the input variables is given in Supplementary Table 2.

Empirical Bayes model

As mentioned earlier, there is no single theoretical construct that
unifies multiple measures of physical wellbeing though there are
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numerous independent indicators of physiological wellbeing'>4*>7,

SDNN and normalized-HF as HRV measures are differently related to
the sympathetic and parasympathetic activities of the autonomous
nervous system (ANS)*2, Instead of analyzing their associations with
sound-level separately using two models, an empirical Bayes model
makes it possible to combine the two outcomes into a single latent
construct of physiological wellbeing which can then be modeled as
a function of sound level and other exogenous variables. Following
Merkle and Wang (2018)°%, we define a Bayesian model with a latent

variable combining multiple outcomes Y = {y1,¥a, ... ,¥h, --. ,¥u}
as follows:
J/h|9i7Vh;)\h70h NN(“PMO%) M

m
Up =V + Z}\hkek, where ek ~ Nm(07 (D)
k=1

In Eq. (1), N(up,0%) is a normal distribution with a non-
informative prior for variance oﬁ, Yy, is the intercept for outcome h,
and 6y is the k™ latent factor value. ® and Ay are other hyper-
parameters to be estimated. In our study, we set m = 1 as we have
physiological wellbeing as the single latent variable that combines
two outcomes SDNN (y;) and normalized-HF (y,). We express the
above equation at an observation-level for longitudinal wearables
data by adding subscripts i and j corresponding to the i
observation for the j individual as shown below:

yijh‘efj7yha/\h7o-h ~ N(H;”O'/%) 2)
Up = Vh + M6, where B ~ N(0, ©)

The latent variable 6; is expressed as an outcome of a mixed-
effects model as shown below:

K M
eij - 130 + YOj + Z ﬂkxkij + Z ijzmij + fij (3)
k=1 m=1

Yoj ~ N<O,o§0>,ymj ~ N(O,oim)ﬁij ~ N(0,02)

Upon centering the outcomes and dropping the outcome
intercept parameter y,, we can combine the within-individual
level error variances (e, 03 and o3). The resultant model is
represented as follows:

K M
Yhij — m = (BO + VOj + ZBkaij =+ Z ijzmij> . )\h + ggjm (4)
k=1 m=1

h
Yoj ~ N<070)2/O>7ij ~ N<070-)2/m):€§j )~ N(O> 0i27)

The empirical Bayes model shown in Eq. (4) can be used for
modeling the sound-wellbeing association. The factor loadings, Ap,
automatically assign different weights to each outcome (i.e., A
and A;). Alternatively, a latent variable model can be developed
using the classical (i.e., frequentist) approach as well, known as a
hierarchical Structural Equation Model (SEM). Software such as
Mplus, LISREL, EQS, lavaan, OpenMx can fit a two-level SEM with
random intercepts®®. In the two-level SEM model, each outcome
i is split into a within and a between component as follows:

Vvi=i—%)+y=yw+ys (5)

In Eq. (5), both the within and between covariance components
are treated as orthogonal and additive latent variables®®. The
maximum likelihood estimate for parameters is derived by
minimizing the overall loglikelihood which is the sum of likelihood
of data from J groups. The latent variable model using the classical
approach offers less flexibility than its Bayesian counterpart, for it
solicits more data-related assumptions and its basic formulation
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7
does not account for random effects®®. Detailed explanations on

multilevel modeling using classical statistical modeling and Hier-
archical Bayesian modeling is included in the following sub-section.

Multilevel model inference using classical and Bayesian
approaches

Multilevel or hierarchical levels of grouped data are a commonly
occurring phenomenon’. For example, in organizational studies,
information about firms as well as workers are available such that
there exists a hierarchical structured data of individual workers
nested within multiple firms. Multilevel models (also called as
hierarchical linear models, random coefficients models, mixed-
effects models) are statistical models with parameters that capture
variability across multiple levels of data.

In the classical or frequentist approach, multilevel models can
be considered as an extension of an ordinary least squares (OLS)
regression model used to analyze variance in the outcome
variables when the predictor variables are at varying hierarchical
levels. A two-level hierarchical linear model can be mathematically
expressed as follows:

K
Level T: Y = By + Z BiiVii + ri 6)
k=1
M
Level 2 : By; = yio + Z Vi Wy + Uk @)
m=1

In Eq. (6), Yj is the outcome, ,Bkj are the level-1 coefficients, Vi;
are level-1 input variables, r; are level-1 residuals, y,,, are level-2
coefficients, W, are level-2 input variables and uy; are level-2
variables for iobservation of j individual for k € Zx and
m € Zu. The assumptions for the model are as follows:

] 7
Ugj

(8)

E(ry) = O;var(ry) = 0% E(uyg) = 0; cov(uy, rj) = OVi,j, k; {u”

In Eq. (8), T is the level-2 variance covariance component that
model the inter-relationship between level-2 errors. Combining
Egs. (1) and (2), we can represent hierarchical linear models as
follows:

K M

Vi = Bo+ Yo+ D _BeXii + Y VmgZmis + €5 ©)
k=1 m=1
In Eq. 9), B = {Bo, B, --- , By} are fixed effects coefficients, y =

{yoj,yu, ,yMj} are random-effects coefficients for J groups
j € Z,, and ¢ is the sum of fixed-effects error and random-effects
error components. In matrix notation, the above equation is
represented as follows:

Y=a+XB+2Zy+e (10)

In Eqg. (10), X is a matrix of fixed effects and Z is a matrix of
random effects. Conditional to the above assumptions, the
parameters in the model can be estimation by maximizing the
likelihood function y as shown below:

y ~N(a+XB,0% +Z'72) an

The significance of the fixed effects and random effects are
tested using Wald test, Likelihood Ratio Test, F-test, parametric
bootstrap or MCMC methods'. Model fit can be compared using
AIC, deviance and R-squared approximations?.

Bayesians, on the other in-hand describe their beliefs about the
unknows in a hierarchical linear model before observing data with
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prior distributions and the following likelihood function:

y ~ N(a+ XB + 2Zb,0*]) (12)

A single level regression disregards between-group heterogene-
ity is called model with complete pooling and can yield parameter
estimates that are wrong if there is between-group heterogeneity.
On the other hand, regression models for each group of the level-2
data independently are called modeling with no pooling and result
in imprecise parameter estimates, for they ignore common variance
across groups. Hierarchical linear models are considered as a subset
of Hierarchical Bayesian models that are models with partial
pooling®. Parameters are allowed to vary by group at lower levels of
the hierarchy while estimating common parameters at higher
levels. Note that the level-2 and higher effects are not part of the
error variance as in the classical/frequentist approach but modeled
as parameters themselves (also called varying coefficients). The
varying parameters have hyper-parameters that are estimated
based on level-2 and higher order grouping in the data. The
estimated posterior distribution of parameters for a hierarchical
linear model with normally distributed error and identity link
function has the following form:

p(a,ﬁ,Y,OY,OHY7X,Z,U)(X (13)

J N

H H N(Y|By + voj + BX +v,Z,0%) HN(yoj, Y| ao + aU, o§>

Jj=1i=1 i=1

-

MCMC estimation approaches such as Metropolis Hastings,
Gibbs Sampling, and Hamiltonian Monte Carlo families of methods
are used to estimate the posterior probability given the prior
distribution of all parameters and likelihood of given data'®.
Comparison of implementations and general purpose software
packages for classical and Bayesian multilevel modeling is done in
West and Galecki®®, Mai and Zhang®*, respectively.

Heterogeneity modeling

As discussed earlier, insights regarding how and why effects differ
across individuals can be valuable. We develop a two-step method
to find person-level variables explaining the heterogeneity in
sound-wellbeing association across individuals. In the first step, we
fit an empirical Bayes model with all input variables with random
effects coefficients having normal priors with non-zero means.
Person-level variables (e.g., age, BMI, gender, etc.) are not included
in the model since their value is constant for each individual (i.e.,
the random effects coefficients for person-level variables have a

« wearables: sound, activity
 person-level: BMI, gender, age
« temporal: time of day, day of the week

Fixed-effects Random-effects

* wearables: sound,

s
Random-effects

distribution with zero variance). The empirical Bayes model for
step 1 is shown below:

M
Yhij = <V0j + ijzm”) ey (4
i

=1

oy ~ Nk 02, ) Vg ~ N (1, .02, ),
m € Zu, e} ~ N(0,0%)

The mean values u, and y, in Eq. (14) are analogous to the
model intercept and the corresponding fixed effects coefficients
of the m' variable in the empirical Bayesian model shown in
Eg. (4). In the second step, we formulate the random effects
coefficients of sound level as an outcome of a linear model with
person-level variables as the input variables as follows:

P
Vi = Bo + ZBpoj + €j, € ~ N(O, O'?) (15)
p=1

In Eq. (15), Ty ={Vn:Vr2,---,¥y} are the random effects
coefficients for the input in the empirical Bayes model from step
1, {X1.,X2., ... ,xp.} are P person-level variables, and ¢; is a normally
distributed residual error varying across J individuals.

The problem of identifying person-level factors contributing
to individual heterogeneity effects is presented as a variable
selection problem in our linear model. Traditional stepwise feature
selection methods for regression models are ridden with
challenges such as sensitivity to changes in data and low external
validity?'. These challenges are particularly relevant in our
problem, where there are multiple person-level variables that
could be factors contributing to heterogeneity in the sound
effects on wellbeing across individuals. Therefore, we choose
three regularization-based methods, lasso, elasticnet, and adaptive
lasso®' to determine significant inputs in the linear model shown
in Eq. (15). The lasso uses an I-1 penalty to shrink coefficients of
insignificant inputs to zero?'. The elasticnet and adaptive lasso
methods are improvements over the lasso feature selection
method and account for correlated features and possess oracle
properties. The hyperparameters for the penalty functions of these
models are determined using a grid-search procedure?'. The initial
adaptive weights are set as inverse of the absolute values of
coefficients of a vanilla regression as proposed by Zou®'. The
person-level variables that have non-zero coefficients in all three
regularized models are chosen as the final set of factors
contributing to individual heterogeneity effects>2.

activity

normalized-HF

Physiological

Linear model ; :
i R L
i ‘ |

. Linear model
coefficients of | —
Yy =g €
| v
Empirical Bayes Regularization
model without -based feature F---
person-level inputs selection

wellbeing as a
latent variable

®

SDNN

Empirical Bayes model H

Inference on population-level
sound-wellbeing association

Heterogeneity modeling !

v
Inference on heterogeneity of sound-
wellbeing iation across populati

Fig. 4 Explanatory modeling framework consisting of an empirical Bayes model and heterogeneity modeling method for identifying

population-level and interpersonal sound-wellbeing association.
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Table 6. Post-hoc group comparisons across sound level ranges.

Sub-population Mean adjusted wellbeing score'™
Sound 45 dBA < Sound Sound
<=45 dBA <=55 dBA >55 dBA
Complete dataset 0.0054 0.0174 —0.0203
High BP* —0.1395 —0.1600 —0.1884
Normal BP 0.0120 0.0302 —0.0081
Intensive —0.0407 —0.0186 —0.0985
computer use
Regular 0.0229 0.0333 0.0144

computer use

*Repeated measures MANOVA shows significant differences across sound
level ranges for each sub-population except high BP.

*Mean value of wellbeing is adjusted for random effects using estimated
marginal means procedure®?.

Figure 4 shows an illustration of our overall explanatory modeling
framework consisting of two novel methods for capturing
population-level and interpersonal associations between sound
levels and physiological wellbeing.

Experiments

To validate the presence of optimal sound level for physiological
wellbeing at 50 dBA and the influence of blood pressure and
work involving intensive computer use in moderating the sound-
wellbeing relationship, we conducted post-hoc comparison of
wellbeing across different stratified populations for three sound
level conditions: sound level less than 45 dBA, sound level
between 45 dBA and 55 dBA, and sound level greater than
55 dBA. Table 6 shows the post-hoc comparisons of mean
wellbeing score adjusted for random effects for the three sound
level ranges for different sub-populations in our data. In support
of our finding that 50 dBA is an optimal sound level at workplace,
we find that sound level range 45-55 dBA has the highest mean
adjusted wellbeing score across the complete population, when
compared to low and high sound level ranges. However, for
individuals with high blood pressure, the lowest sound level
range (i.e, sound level < = 45 dBA) is optimal, which is different
from individuals with normal blood pressure. Finally, individuals
with computer use intensive work have a lower mean adjusted
wellbeing score for low as well as high sound level ranges (i.e.,
sound level <=45 dBA and sound level >55 dBA), when
compared to individuals with regular computer use at work. In
other words, this group benefits more (than the average
individual) from both (a) an increase in sound level at the lower
range and (b) a decrease in sound level in the higher range.
These post-analysis group comparison findings validate the
findings based on our proposed methods.

Reporting summary

Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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