Cite this: RSC Adv., 2020, 10, 44183

Received 22nd October 2020
Accepted 5th December 2020
DOI: 10.1039/d0ra09014j
rsc.li/rsc-advances

Facile assembly of 1,5-diazocan-2-ones via cyclization of tethered sulfonamides to cyclopropenes \dagger

Jonathon P. Matheny, ${ }^{\text {a }}$ Pavel M. Yamanushkin, ${ }^{\text {a }}$ Peter A. Petillo ${ }^{\text {b }}$ and Michael Rubin (1) *ac

Abstract

The sulfonamide moiety was evaluated as an activating and stabilizing functional group in the metaltemplated strain release-driven intramolecular nucleophilic addition of amines to cyclopropenes to generate 1,5-diazocan-2-ones.

Introduction

Compounds containing the 1,5 -diazocin-2-one moiety are scarce in nature, ${ }^{1}$ with the best known examples occurring in the Homalium alkaloid family (1a-d, Fig. 1). The four known naturally-occurring Homalium alkaloids isolated from the leaves of Homalium pronyense Guillaum. are biogenically-derived from spermine and the appropriate α, β-unsaturated fatty or cinnamic

1
$\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph},(-)-(S, S)$-homaline (1a); $\mathbf{R}^{1}=n-\mathrm{C}_{5} \mathrm{H}_{11} ; \mathbf{R}^{2}=n-\mathrm{C}_{7} \mathrm{H}_{15} ;(-)-(R, R)$-hopromine (1b); $\mathrm{R}^{1}=n-\mathrm{C}_{5} \mathrm{H}_{11} ; \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{5} \mathrm{H}_{11} ;(-)-(R, R, R)$-hoprominol (1c); $\mathbf{R}^{1}=\mathrm{Ph} ; \mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{5} \mathrm{H}_{11} ;(-)-\left(4^{\prime} \mathrm{S}, 4^{\prime \prime} R, 2^{\prime \prime \prime} R\right)$-hopromalinol (1d);

Fig. 1 Biologically active 1,5-diazocan-2-ones.

[^0]acids. ${ }^{1,2}$ These unique bis-azalactams have been the targets of a number of synthetic efforts over the past three decades. ${ }^{1}$

The 1,5-diazocin-2-one core has recently been exploited in new therapeutic agents (Fig. 1). For example, diazocan peptomimetic BDBM50171126 (2) exhibits high levels of activity as a selective caspase- 1 inhibitor. Compounds in this class has shown promising anti-inflammatory and analgesic activity in animal models for the treatment of rheumatoid arthritis. ${ }^{3,4}$ Compound SM-337 (3) belongs to a family of conformationallyconstrained mimetics of the endogenous IAP antagonist Smac. Over the past decade, Smac mimetics have garnered increasing attention showing great potential as a new class of antitumor drugs. ${ }^{5,6}$

It is known that medium-sized 8-membered rings are difficult to assemble via conventional methods of cyclization, ${ }^{7}$ largely due to the enthalpic cost incurred in the transition state as well as the decreased entropy of the cyclic products relative to their linear precursors. ${ }^{8}$ Several alternative synthetic approaches to the eight-membered 1,5-diazocin-2-one core have been developed, including Beckman rearrangement, ${ }^{9}$ fragmentation of 1,5-diazabicyclo[3.3.1]nonan-2-ones, ${ }^{10}$ reductive $\mathrm{N}-\mathrm{N}$ scission of tetrahydro- $1 \mathrm{H}, 5 \mathrm{H}$-pyrazolo[1,2- a]pyrazol-1-ones, ${ }^{\text {11-14 }}$ as well as various ring closures, exploiting intramolecular versions of reductive amination, ${ }^{15-18}$ amine acylation, ${ }^{7,19-22}$ strain release-driven transamidation, ${ }^{23-25}$ and $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ reactions. ${ }^{26}$ Herein, we disclose a new application of metal-templated intramolecular 8-exo-trig cyclization involving nucleophilic addition of sulfonamides tethered to a cyclopropene moiety.

Results and discussion

We have recently reported on the key role of potassium cations in the chelation-controlled cyclization of cyclopropenes 4 linked to nucleophilic alkoxide moieties. ${ }^{27-29}$ This innovative approach allows for a highly efficient and diastereoselective assembly of cyclic ethers 5 with ring sizes 7 to 10 (Scheme 1). ${ }^{27-29}$ These bicyclic structures produced new, highly selective anti-

Scheme 1
mycobacterial agents. ${ }^{29}$ Closely related diazepinones and diazecanones 7 demonstrated antitumor activity. These species could be accessed via the potassium-templated cyclization of cyclopropenes 6 with tethered carbamates (Scheme 1). ${ }^{30}$

In order to carry out more focused and complete SAR studies, we wanted to gain access to analogs within scaffold 7 by replacing the Boc protecting group with a range of substituents. This study is focused on the synthesis of sulfonamides 9 , which give rise to three points of diversity. It should be pointed out, that a scope of substituents R^{1} and R^{2} as well as ring size in such bicyclic scaffolds was already previously investigated. ${ }^{29,30}$ The current study is focused on evaluating the activating properties of different sulfonyl protecting groups. We also briefly examined the use of these sulfonamides as chiral auxiliaries.

The diversity-oriented approach to 9 was to rely on the latestage functionalization of cyclic secondary amine 10, which was to be accessible via simple acid-assisted deprotection of routinely available carbamates $\mathbf{7 b}$ (Scheme 2). Removal of the Boc group moderating the electronic density at the $\mathrm{N}-2$ resulted in intermediate cyclopropane $\mathbf{1 0}$ undergoing facile ring cleavage
and subsequent decomposition via cyclic imine 11 (Scheme 2). The intermolecular version of this small ring cleavage reaction allowed for the expeditious access of GABA amides. ${ }^{31}$ Based on the decomposition of $\mathbf{1 0}$ via $\mathbf{1 1}$ to other species, the access of sulfonamides 9 , ultimately required the installation of the sulfonyl group prior to the cyclization step.

Primary amine hydrochloride $\mathbf{1 5}$ was envisioned to serve as a common precursor to the linear sulfonamides series 8 . To this end, readily available cyclopropene-3-carboxylic acid $12^{32,33}$ was employed in acylation of tert-butyl (3-(benzylamino)propyl) carbamate hydrochloride (13) ${ }^{34}$ to afford amide 14. The carbamate protecting group in the latter was removed via treatment with anhydrous HCl in dichloromethane to provide the desired salt 15 in good overall yield (Scheme 3). Next, the series of sulfonamides $\mathbf{8 a - h}$ was prepared by treating $\mathbf{1 5}$ with the corresponding sulfonyl chlorides in the presence of base. These reactions proceeded uneventfully, affording moderate to good yields (Scheme 3). It should be pointed out that the signals of the two different rotamers present in NMR spectra of all amides 8 complicated spectral analysis. However, all these materials were chromatographically pure and perfectly suitable for further transformation. Subsequently, sulfonamides 8 were treated with freshly ground powdered KOH in anhydrous THF at $50^{\circ} \mathrm{C}$, as these reaction conditions were previously shown to be optimal for the cyclization of carbamates. ${ }^{30}$ Gratifyingly, most of sulfonamides tested ($\mathbf{8 a}-\mathbf{f}$) underwent the reaction smoothly affording the corresponding products 9a-f in high yields. The reaction seems to be very tolerant to steric hindrance at the sulfonyl group. Indeed, only minor reduction in yield was observed in the formation of product 9c bearing the bulky 2,5xylyl group. An attempt to employ sulfonamides bearing electron-withdrawing substituents revealed a somewhat more serious limitation of this methodology. As expected, the $\mathrm{N}-\mathrm{H}$ bond in these sulfonamides is much more acidic, but the corresponding conjugate base is significantly less nucleophilic. Such negative trend between acidity of the nucleophilic reagents and their effective nucleophilicity was previously demonstrated for a related base-assisted reaction of cyclopropenes with phenols. ${ }^{35,36}$ Evidently, the same tendency exists

10

$11 \downarrow \downarrow$
decomposition

Scheme 2

15, 79\%

16a, 8a: $R=M e, 59 \% ;$
$16 b, 8 b: R=4-M e C_{6} H_{4}, 88 \% ;$
$16 c, 8 c: R=2,5-M e_{2} \mathrm{C}_{6} \mathrm{H}_{3}, 57 \% ;$
16d, $8 \mathrm{~d}: \mathrm{R}=2$-naphthyl, $67 \% ;$

16e, 8e: $\mathrm{R}=3,4-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}, 60 \%$;
16f, 8f: R = 4-BrC ${ }_{6} \mathrm{H}_{4}, 55 \%$;
$16 \mathrm{~g}, 8 \mathrm{~g}: \mathrm{R}=4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, 88 \%$;
16h, 8h: $\mathrm{R}=10$-(1S,4R)-camphoryl, 57%

Scheme 3

Scheme 4
for the reaction of sulfonamides. Indeed, a notable reduction of the yield of bicyclic product $9 \mathbf{f}$ was observed in cyclization of N brosylate $\mathbf{8 f}$, whereas nosylate $\mathbf{8 g}$ reacted very sluggishly, and the corresponding product 9 g was formed only in marginal yield (Scheme 4).

Also, the possibility to carry out diastereoselective cyclization employing the $10-(4 S, 1 R)$-camphorsulfonyl group as a chiral auxiliary was evaluated. To this end, camphorsulfonamide $\mathbf{8 h}$ was cyclized under the standard reaction conditions. The reaction proceeded smoothly, affording a 1:1 mixture of diastereomeric products 9 . Evidently, asymmetric induction in this case was highly inefficient.

Conclusion

The utilization of various sulfonyls as activating groups in the cation-templated 8 -exo-trig nucleophilic additions of amines across the $\mathrm{C}=\mathrm{C}$ bond of cyclopropenes was assessed. We demonstrated that most of the sulfonyls provide excellent yields of the corresponding eight-membered cyclic products. Electrondeficient sulfonamides, such as nosylate, afforded reduced
yields, showing a consistent limitation of the featured methodology. The possibility to carry out diastereoselective cyclization employing $10-(4 S, 1 R)$-camphorsulfonyl as a chiral auxiliary was evaluated. This reaction, however, afforded a $1: 1$ mixture of diastereomeric cyclic product, demonstrating the total inefficiency of such an approach.

Experimental part

General information

NMR spectra were recorded on a Bruker Avance DRX-500 (500 MHz) with a dual carbon/proton cryoprobe (CPDUL). ${ }^{13} \mathrm{C}$ NMR spectra were registered with broadband decoupling. The (+) and $(-)$ designations represent positive and negative intensities of signals in ${ }^{13} \mathrm{C}$ DEPT- 135 experiments. IR spectra were measured on a ThermoFisher Nicolet ${ }^{\text {TM }}$ iS $^{\text {TM }} 5$ FT-IR Spectrometer. HRMS was carried out on an LCT Premier (Micromass Technologies) instrument employing ESI TOF detection techniques. Glassware used in moisture-free syntheses was flame-dried under vacuum prior to use. Column chromatography was carried out on silica gel (Sorbent Technologies, 40-63 $\mu \mathrm{m}$). Pre-coated silica gel plates (Sorbent Technologies Silica XG $200 \mu \mathrm{~m}$) were used for TLC analysis. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF, and triethylamine were each prepared by refluxing commercially available solvent over CaH_{2} followed by distillation under a stream of dry nitrogen at ambient pressure and stored over $3 \AA$ molecular sieves under dry nitrogen. Anhydrous DMSO and DMF were prepared by stirring commercial solvents over CaH_{2} at $100{ }^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$, respectively, followed by distillation under reduced pressure. Thus, obtained dry solvents were stored over $3 \AA$ molecular sieves under dry nitrogen. All other reagents, unless otherwise specified, were used in their commercially-available forms and purities. All manipulations of powdered KOH were conducted under inert atmosphere ($<8 \mathrm{ppm}$ residual oxygen and moisture) using a combination of glovebox and standard Schlenk techniques.

tert-Butyl (3-(N-benzyl-1-phenylcycloprop-2-ene-1-

 carboxamido)propyl)carbamate (14)A flame-dried round bottom flask was charged with 1-phenylcycloprop-2-ene-1-carboxylic acid (12) (760 mg, $4.74 \mathrm{mmol}, 1.00$ equiv.), anhydrous dichloromethane (21 mL), and DMF (3 drops) under nitrogen atmosphere. Oxalyl chloride ($623 \mu \mathrm{~L}, 903 \mathrm{mg}, 7.12 \mathrm{mmol}, 1.50$ equiv.) was then added dropwise and the mixture was stirred at room temperature for 2 h . Volatiles were removed under reduced pressure to provide the crude acyl chloride. To a flame-dried flask containing tertbutyl (3-(benzylamino)propyl)carbamate hydrochloride (13) $(1.65 \mathrm{~g}, 5.48 \mathrm{mmol}, 1.16$ equiv.), triethylamine ($2.00 \mathrm{~mL}, 1.44 \mathrm{~g}$, $14.2 \mathrm{mmol}, 3.00$ equiv.), and anhydrous dichloromethane (9.2 mL) was added dropwise a solution of the crude acyl chloride in anhydrous dichloromethane (6.1 mL). The reaction mixture was stirred for 16 hours at RT. The mixture was diluted with dichloromethane $(40 \mathrm{~mL})$ and washed with $1 \mathrm{~N} \mathrm{HCl}(3 \times 30 \mathrm{~mL})$. The combined aqueous layers were back-extracted with dichloromethane $(1 \times 30 \mathrm{~mL})$. The combined organic layers
were then washed with brine $(1 \times 20 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The product was purified by column chromatography on silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(7: 1)$ to afford the title compound as a pale yellow oil ($1.83 \mathrm{~g}, 4.50 \mathrm{mmol}, 95 \%$); $R_{\mathrm{f}} 0.36\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right.$, $7: 1$); NMR spectra indicate the presence of two rotamers (ratio of $2.6: 1):{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}[7.35(\mathrm{~s}) \& 7.33-7.12$ $(\mathrm{m}) \& 7.13(\mathrm{~d}, J=7.1 \mathrm{~Hz}) \& 7.09(\mathrm{~s}) \& 6.94(\mathrm{~d}, J=6.9 \mathrm{~Hz}), \Sigma 12 \mathrm{H}]$, [5.45 (t, J=6.3 Hz) \& $4.61(\mathrm{~s}) \& 4.49(\mathrm{~s}) \& 4.27(\mathrm{~m}), \Sigma 3 \mathrm{H}],[3.37(\mathrm{t}, J$ $=6.7 \mathrm{~Hz}) \& 3.23(\mathrm{~m}), \Sigma 2 \mathrm{H}],[3.13(\mathrm{q}, J=6.3 \mathrm{~Hz}) \& 2.79(\mathrm{q}, J=6.5$ $\mathrm{Hz}), \Sigma 2 \mathrm{H}],[1.66(\mathrm{p}, J=6.5 \mathrm{~Hz}) \& 1.41(\mathrm{~m}), \Sigma 11 \mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz} \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 175.1,174.4,156.2,155.9,143.3,143.0$, 137.6, 137.0, $128.9(+), 128.8(+), 128.7(+), 128.6(+), 128.3(+)$, $127.7(+), 127.5(+), 126.9(+), 126.8(+), 126.7(+), 126.4(+), 126.0$ $(+), 110.4(+), 109.9(+), 79.4,79.1,51.3(-), 47.6(-), 44.6(-)$, $42.1(-), 38.0(-), 37.7(-), 32.3,32.1,28.6(+), 28.5(+), 28.5(-)$, 27.6 (-); FT-IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3334, 3085, 3061, 3028, 2976, 2931, 1708, 1623, 1514, 1495, 1452, 1425, 1365, 1273, 1250, 1171, 997, 737, 700, 654, 605; HRMS (TOF ES): found 429.2149, calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 429.2154$ (1.2 ppm).

3-(N-Benzyl-1-phenylcycloprop-2-ene-1-carboxamido)propan-1-aminium chloride (15)

Gaseous hydrogen chloride was bubbled through a solution of (3-(N-benzyl-1-phenylcycloprop-2-ene-1-carboxamido)propyl) carbamate (14) ($589 \mathrm{mg}, 1.45 \mathrm{mmol}$) in dichloromethane (25 mL) while stirring at rt . The reaction was allowed to proceed until TLC analysis indicated consumption of the protected amine (45 min). Volatiles were removed under reduced pressure. The resultant solid was triturated with diethyl ether and collected via vacuum filtration to afford the title compound as a white crystalline solid ($390 \mathrm{mg}, 1.14 \mathrm{mmol}, 79 \%$); mp $89.1^{\circ} \mathrm{C}$ (decomposed); NMR spectra indicate the presence of two rotamers (ratio of $1.4: 1$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta[7.93$ (s) \& $7.89(\mathrm{~s}) \& 7.62(\mathrm{~s}), \Sigma 5 \mathrm{H}],[7.38-7.17(\mathrm{~m}) \& 7.12-7.05(\mathrm{~m}) \&$ $7.01-6.98(\mathrm{~m}), \Sigma 10 \mathrm{H}],[4.54(\mathrm{~s}) \& 4.52(\mathrm{~s}), \Sigma 2 \mathrm{H}],[3.26(\mathrm{t}, J=7.9$ $\mathrm{Hz}) \& 3.21(\mathrm{t}, J=7.2 \mathrm{~Hz}), \Sigma 2 \mathrm{H}],[2.71(\mathrm{q}, J=6.6 \mathrm{~Hz}) \& 2.54(\mathrm{q}, J=$ $6.4 \mathrm{~Hz}), \Sigma 2 \mathrm{H}],[1.78(\mathrm{p}, J=7.4 \mathrm{~Hz}) \& 1.72-1.64(\mathrm{~m}), \Sigma 2 \mathrm{H}]$; FT-IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right): 3122,3084,2817,2788,2712,1590,1531,1441$, 1430, 1367, 1242, 738, 709, 696, 662, 537; HRMS (TOF ES): found 307.1827, calculated for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}\right) 307.1810$ (5.5 ppm).

N-Benzyl-N-(3-((3,4-dimethoxyphenyl)sulfonamido)propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8e): typical procedure 1

An oven-dried 5 mL V-Vial equipped with a magnetic spin vane was charged with 3 -(N-benzyl-1-phenylcycloprop-2-ene-1-carboxamido) propan-1-aminium chloride (15) ($94 \mathrm{mg}, 0.274 \mathrm{mmol}, 1.00$ equiv.), dichloromethane (1.5 mL), and triethylamine ($115 \mu \mathrm{~L}$, $83 \mathrm{mg}, 0.822 \mathrm{mmol}, 3.00$ equiv.). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and 3,4-dimethoxybenzenesulfonyl chloride (16e) (68.0 mg , $0.287 \mathrm{mmol}, 1.05$ equiv.) was added in a single portion. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 hours. The reaction mixture was then stirred for an additional 16 hours at RT. The reaction mixture was diluted with dichloromethane $(20 \mathrm{~mL})$ and washed successively with $1 \mathrm{M} \mathrm{HCl}(2 \times 6 \mathrm{~mL}), 5 \% \mathrm{NaHCO}_{3}(2 \times 6$ $\mathrm{mL})$, water $(2 \times 6 \mathrm{~mL})$, and brine $(1 \times 8 \mathrm{~mL})$. The organic layer was
dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The product was purified by column chromatography on silica gel eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(3: 1)$ to afford the title compound as a thick, colorless oil ($83 \mathrm{mg}, 0.164 \mathrm{mmol}, 60 \%$); $R_{\mathrm{f}}=$ $0.26\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 3: 1\right)$; NMR spectra indicate the presence of two rotamers (ratio of $8: 1$): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}$ $[7.52(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}) \& 7.39(\mathrm{~d}, J=2.1 \mathrm{~Hz}) \& 7.38-7.17(\mathrm{~m}) \&$ $7.09(\mathrm{~s}) \& 6.97(\mathrm{dd}, J=6.9,2.8 \mathrm{~Hz}) \& 6.93-6.88(\mathrm{~m}), \Sigma 15 \mathrm{H}],[6.08(\mathrm{t}, J$ $=5.5 \mathrm{~Hz}) \& 4.59(\mathrm{~s}) \& 4.44(\mathrm{~s}), 3.94(\mathrm{~s}) \& 3.93(\mathrm{~s}) \& 3.90(\mathrm{~s}) \& 3.60(\mathrm{t}, J$ $=5.9 \mathrm{~Hz}), \Sigma 9 \mathrm{H}],[3.37(\mathrm{t}, J=6.2 \mathrm{~Hz}) \& 3.33-3.23(\mathrm{~m}), \Sigma 2 \mathrm{H}],[2.92(\mathrm{q}$, $J=5.8 \mathrm{~Hz}) \& 2.55(\mathrm{q}, J=6.3 \mathrm{~Hz}), \Sigma 2 \mathrm{H}],[1.62(\mathrm{p}, J=6.2 \mathrm{~Hz}) \& 1.37-$ $1.32(\mathrm{~m}), \Sigma 2 \mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR (126 MHz CDCl 3) $\delta \mathrm{ppm} 175.6,152.4$, 149.2, 142.7, 136.4, 132.3, $129.0(+), 128.8(+), 128.7(+), 128.2(+)$, $127.9(+), 126.9(+), 126.9(+), 126.7(+), 126.0(+), 121.1(+), 110.6(+)$, $110.1(+), 109.9(+), 100.1,56.4(+), 56.3(+), 51.2(-), 47.7(-), 44.4$ $(-), 41.4(-), 40.1(-), 32.0,29.9(+), 27.3(+)$. FT-IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3269, 3148, 3103, 3061, 2934, 2856, 1613, 1509, 1443, 1325, 1262, 1237, 1182, 1153, 1095, 1021, 765, 701, 578; HRMS (TOF ES): found 529.1759, calculated for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 529.1773$ (2.6 ppm).

N-Benzyl- N-(3-(methylsulfonamido)propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8a)

The compound was prepared according to typical procedure 1 employing 3 -(N-benzyl-1-phenylcycloprop-2-ene-1-carboxamido) propan-1-aminium chloride (15) ($167 \mathrm{mg}, 0.487 \mathrm{mmol}, 1.00$ equiv.), triethylamine ($204 \mu \mathrm{~L}, 148 \mathrm{mg}, 1.46 \mathrm{mmol}, 3$ equiv.), and methanesulfonyl chloride (16a) ($40 \mu \mathrm{~L}, 57 \mathrm{mg}, 0.511 \mathrm{mmol}, 1.05$ equiv.) to yield the title compound as a thick, colorless oil (110 mg , $0.286 \mathrm{mmol}, 59 \%) ; R_{\mathrm{f}}=0.29\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 2: 3\right)$; NMR spectra indicate the presence of two rotamers (ratio of $6.9: 1$): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[7.42(\mathrm{~s}) \& 7.39-7.22(\mathrm{~m}), \Sigma 8 \mathrm{H}],[7.17-7.12(\mathrm{~m}) \&$ 6.99-6.94 (m), 23 H$],[5.85(\mathrm{~s}) \& 4.65(\mathrm{~s}) \& 4.55(\mathrm{~s}), \Sigma 3 \mathrm{H}],[3.54(\mathrm{t}, \mathrm{J}=$ $6.1 \mathrm{~Hz}) \& 3.47(\mathrm{t}, J=6.2 \mathrm{~Hz}) \& 3.38-3.32(\mathrm{~m}) \& 3.15(\mathrm{t}, J=6.1 \mathrm{~Hz})$, $\Sigma 4 \mathrm{H}],[3.07-3.01(\mathrm{~m}) \& 2.97(\mathrm{~s}) \& 2.80(\mathrm{~s}) \& 2.77-2.71(\mathrm{~m}), \Sigma 3 \mathrm{H}]$, $[1.73(\mathrm{p}, J=6.1 \mathrm{~Hz}) \& 1.46(\mathrm{p}, J=6.8 \mathrm{~Hz}), \Sigma 2 \mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.6,174.4,143.2,142.7,137.4,136.3,129.2(+)$, $128.9(+), 128.8(+), 128.7(+), 128.6(+), 128.1(+), 127.8(+), 126.9(+)$, $126.8(+), 126.6(+), 126.3(+), 125.9(+), 110.3(+), 110.0(+), 51.4(-)$, $47.6(-), 44.3(-), 41.6(-), 40.5(-), 40.4(+), 40.2(-), 40.0(+), 32.2$, 31.9, $28.4(-), 28.0(-)$; FT-IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3259, 3062, 3030, 2932, 1721, 1623, 1453, 1319, 1150, 1079, 975, 735, 702, 521; HRMS (TOF ES): found 407.1414, calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 407.1405 (2.2 ppm).

N-Benzyl- N-(3-((4-methylphenyl)sulfonamido)propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8b)

The compound was prepared according to typical procedure 1 employing 3 -(N-benzyl-1-phenylcycloprop-2-ene-1-carboxamido) propan-1-aminium chloride (15) ($163 \mathrm{mg}, 0.475 \mathrm{mmol}, 1.00$ equiv.), triethylamine ($199 \mu \mathrm{~L}, 144 \mathrm{mg}, 1.43 \mathrm{mmol}, 3.00$ equiv.), and 4-methylbenzenesulfonyl chloride (16b) $(95 \mathrm{mg}, 0.499 \mathrm{mmol}$, 1.05 equiv.) to yield the title compound as a thick, colorless oil ($193 \mathrm{mg}, 0.419 \mathrm{mmol}, 88 \%$). $R_{\mathrm{f}}=0.32\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 6: 1\right)$; NMR spectra indicate the presence of two rotamers (ratio of 5.6:1): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}[7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}) \& 7.61(\mathrm{~d}, J=8.0$
$\mathrm{Hz}), \Sigma 2 \mathrm{H}],[4.78(\mathrm{~s}) \& 7.32-7.16(\mathrm{~m}) \& 7.11(\mathrm{~s}) \& 7.01-6.95(\mathrm{~m}) \& 6.90$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}) \& 6.06(\mathrm{t}, J=6.6 \mathrm{~Hz}), \Sigma 14 \mathrm{H}],[6.06(\mathrm{t}, J=6.6 \mathrm{~Hz}) \&$ $4.57(\mathrm{~s}) \& 4.43(\mathrm{~s}) \& 3.74(\mathrm{t}, J=6.2 \mathrm{~Hz}), \Sigma 3 \mathrm{H}],[3.36(\mathrm{t}, J=6.2 \mathrm{~Hz}) \&$ $3.26(\mathrm{~m}), \Sigma 2 \mathrm{H}],[2.91(\mathrm{q}, J=6.3 \mathrm{~Hz}) \& 2.54(\mathrm{q}, J=6.2 \mathrm{~Hz}), \Sigma 2 \mathrm{H}]$, [2.42 (s), $2.40(\mathrm{~s}), 1.60(\mathrm{p}, J=6.1 \mathrm{~Hz}) \& 1.34(\mathrm{p}, J=6.7 \mathrm{~Hz}), \Sigma 2 \mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz} \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 175.6,143.1,142.8,129.9(+), 129.8$ (+), 129.0 (+), $128.8(+), 128.7(+), 128.7(+), 128.2(+), 127.9(+), 127.5$ (+), 127.3 (+), 127.1 (+), $127.0(+), 126.8(+), 126.7(+), 126.6(+), 126.0$ $(+), 110.4(+), 110.2(+), 51.2(-), 47.6(-), 44.4(-), 41.4(-), 40.5$ $(-), 40.1(-), 32.0(-), 28.0(-), 27.3(-), 21.6(+) ;$ FT-IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3147,3103,3061,3028,2925,2869,1612,1445$, 1426, 1207, 1152, 1093, 815, 738, 700, 658, 551; HRMS (TOF ES): found 483.1736, calculated for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 483.1718$ (3.7 ppm).

N-Benzyl- N-(3-((2,5-dimethylphenyl)sulfonamido)propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8c)

The compound was prepared according to typical procedure 1 employing 3 -(N-benzyl-1-phenylcycloprop-2-ene-1-carboxamido) propan-1-aminium chloride (15) ($115 \mathrm{mg}, 0.274 \mathrm{mmol}, 1.00$ equiv.), triethylamine ($114 \mu \mathrm{~L}, 83 \mathrm{mg}, 0.821 \mathrm{mmol}, 3.00$ equiv.), and 2,5-dimethylbenzenesulfonyl chloride (16c) $(59 \mathrm{mg}$, $0.287 \mathrm{mmol}, 1.05$ equiv.) to yield the title compound as a thick, colorless oil ($73.9 \mathrm{mg}, 0.156 \mathrm{mmol}, 57 \%$); $R_{\mathrm{f}}=0.35$ ($6: 1, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ EtOAc); NMR spectra indicate the presence of two rotamers (ratio of $5.9: 1$): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[7.79(\mathrm{~d}, J=1.9 \mathrm{~Hz}) \& 7.67$ $(\mathrm{s}), \Sigma 1 \mathrm{H}],[7.36(\mathrm{~s}) \& 7.32-7.15(\mathrm{~m}) \& 7.13(\mathrm{~s}) \& 7.07-7.03(\mathrm{~m}) \& 6.93-$ $6.89(\mathrm{~m}), \Sigma 14 \mathrm{H}],[6.09(\mathrm{t}, J=6.8 \mathrm{~Hz}) \& 4.58(\mathrm{~s}) \& 4.44(\mathrm{~s}) \& 3.77(\mathrm{t}, J=$ $6.3 \mathrm{~Hz}), \Sigma 3 \mathrm{H}],[3.38(\mathrm{t}, J=6.2 \mathrm{~Hz}) \& 3.30-3.23(\mathrm{~m}), \Sigma 2 \mathrm{H}],[2.94(\mathrm{q}, J$ $=6.3 \mathrm{~Hz}) \& 2.67(\mathrm{~s}) \& 2.51(\mathrm{q}, J=6.5 \mathrm{~Hz}) \& 2.47(\mathrm{~s}) \& 2.36(\mathrm{~s}), \Sigma 8 \mathrm{H}]$, $[1.57(\mathrm{p}, J=6.1 \mathrm{~Hz}) \& 1.33(\mathrm{p}, J=6.7 \mathrm{~Hz}), \Sigma 2 \mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.6,174.5,142.8,138.4,136.5,136.3,136.0,135.5$, 134.2, 133.7 (+), $133.2(+), 132.6(2 \mathrm{C},(+)), 130.1(+), 129.8(+), 129.6$, $129.0(+), 128.8(2 \mathrm{C},(+)), 128.7(+), 128.2(+), 127.9(+), 127.5(+)$, $127.0(+), 126.9(+), 126.8(+), 126.7(+), 126.1(+), 110.4(+), 110.2(+)$, $51.2(-), 47.6(-), 44.4(-), 41.4(-), 40.3(-), 39.9(-), 32.4,32.1$, $28.0(-), 27.6(-), 21.0(+), 20.0(+), 19.9(+) ;$ FT-IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3142, 3100, 3053, 3028, 2927, 2869, 1614, 1451, 1427, 1207, 1151, 1095, 816, 738, 701, 682, 655, 594; HRMS (TOF ES): found 497.1872, calculated for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 497.1875$ (0.6 ppm).

N-Benzyl- N-(3-(naphthalene-2-sulfonamido)propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8d)

The compound was prepared according to typical procedure 1 employing 3 -(N-benzyl-1-phenylcycloprop-2-ene-1-carboxamido) propan-1-aminium chloride (15) ($115 \mathrm{mg}, 0.335 \mathrm{mmol}, 1.00$ equiv.), triethylamine ($140 \mu \mathrm{~L}, 102 \mathrm{mg}, 1.00 \mathrm{mmol}, 3.00$ equiv.), and naphthalene-2-sulfonyl chloride (16d) ($84 \mathrm{mg}, 0.369 \mathrm{mmol}$, 1.05 equiv.) to yield the title compound as a thick, colorless oil ($112 \mathrm{mg}, 226 \mathrm{mmol}, 67 \%$). $R_{\mathrm{f}}=0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 6: 1\right)$; NMR spectra indicate the presence of two rotamers (ratio of $5.6: 1$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ [8.46 (s) \& $\left.8.32(\mathrm{~s}), \mathrm{\Sigma} 2 \mathrm{H}\right],[7.97-7.86(\mathrm{~m}) \&$ 7.71-7.54 (m), 66 H$],[7.34-7.21$ (m) \& 7.19-6.99 (m) \& 6.95-6.92 (m) \& $6.87(\mathrm{dd}, J=7.4,2.1 \mathrm{~Hz}), \Sigma 12 \mathrm{H}],[6.30(\mathrm{t}, J=6.7 \mathrm{~Hz}) 4.56(\mathrm{~s}) \& 4.40$ $(\mathrm{s}) \& 3.83(\mathrm{t}, J=6.5 \mathrm{~Hz}), \Sigma 3 \mathrm{H}],[3.37(\mathrm{t}, J=6.2 \mathrm{~Hz}) \& 3.28-3.22(\mathrm{~m})$,
$\Sigma 2 \mathrm{H}],[2.95(\mathrm{q}, J=6.0 \mathrm{~Hz}) \& 2.57(\mathrm{q}, J=6.4 \mathrm{~Hz}), \Sigma 2 \mathrm{H}],[1.59(\mathrm{p}, J=$ $6.1 \mathrm{~Hz}) \& 1.34(\mathrm{p}, J=6.7 \mathrm{~Hz}), \Sigma 2 \mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.7,142.6,137.5,136.4,134.9,132.4,129.7(+), 129.5(+), 129.4$ (+), 129.3 (+), $129.2(+), 129.1(+), 129.0(+), 128.9(+), 128.7(2 \mathrm{C},(+))$, $128.6(+), 128.5(+), 128.3(+), 128.3(+), 128.2(+), 128.0(+), 127.9(+)$, $127.5(+), 127.1(+), 127.0(+), 126.8(+), 126.7(+), 126.4(+), 126.0(+)$, $122.8(+), 122.3(+), 110.4(+), 110.2(+), 51.2(-), 47.6(-), 44.4(-)$, $41.4(-), 40.6(-), 40.1(-), 32.4,32.0,28.0(-), 27.3(-) ;$ FT-IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3276, 3149, 3105, 3058, 3029, 2935, 2872, 1611, 1494, 1425, 1328, 1267, 1157, 1131, 1076, 818, 735, 700, 616, 550, 478; HRMS (TOF ES): found 519.1734, calculated for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}-$ $\mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 519.1718$ (3.1 ppm).

N-Benzyl- N-(3-((4-bromophenyl)sulfonamido)propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8f)

The compound was prepared according to typical procedure 1 employing 3 -(N-benzyl-1-phenylcycloprop-2-ene-1-carboxamido) propan-1-aminium chloride (15) ($122 \mathrm{mg}, 0.356 \mathrm{mmol}, 1.00$ equiv.), triethylamine ($149 \mu \mathrm{~L}, 108 \mathrm{mg}, 1.07 \mathrm{mmol}, 3.00$ equiv.), and 4 -bromobenzenesulfonyl chloride ($\mathbf{1 6 f}$) ($95 \mathrm{mg}, 0.374 \mathrm{mmol}$, 1.05 equiv.) to yield the title compound as a colorless oil (102 mg , $0.194 \mathrm{mmol}, 55 \%$); $R_{\mathrm{f}}=0.28$ (hexanes/EtOAc/MeOH, $7: 2: 1$); NMR spectra indicate the presence of two rotamers (ratio of 7.9 : 1): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}[7.77-7.73(\mathrm{~m}) \& 7.63-$ $7.55(\mathrm{~m}), \Sigma 4 \mathrm{H}],[7.36(\mathrm{~s}) \& 7.32-7.14(\mathrm{~m}) \& 7.11(\mathrm{~s}) \& 7.01-6.96(\mathrm{~m}) \&$ $6.91-6.87(\mathrm{~m}), \Sigma 12 \mathrm{H}],[6.37(\mathrm{t}, J=6.6 \mathrm{~Hz}) \& 4.57(\mathrm{~s}) \& 4.45(\mathrm{~s}) \& 4.19$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}), \Sigma 3 \mathrm{H}],[3.36(\mathrm{t}, J=6.2 \mathrm{~Hz}) \& 3.30-3.23(\mathrm{~m}), \Sigma 2 \mathrm{H}]$, [2.90(q, $J=6.1 \mathrm{~Hz}) \& 2.53(\mathrm{q}, J=6.3 \mathrm{~Hz}), \Sigma 2 \mathrm{H}],[1.60(\mathrm{p}, J=6.1 \mathrm{~Hz})$ \& $1.37(\mathrm{p}, J=6.6 \mathrm{~Hz}), \Sigma 2 \mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR (126 MHz CDCl 3) $\delta \mathrm{ppm}$ 175.9, 174.9, 143.1, 142.5, 139.6, 138.8, 137.2, 136.1, 132.5 (+), 132.4 (+), $129.0(+), 128.9(+), 128.8(+), 128.8(+), 128.7(+), 128.6(+), 128.2$ (+), $128.0(+), 127.6(+), 127.0(+), 126.8(+), 126.6(+), 125.9(+), 110.3$ (+), 110.1 (+), $51.4(-), 47.7(-), 44.4(-), 41.6(-), 40.5(-), 40.1(-)$, 32.2, 31.9, $27.9(-), 27.3(-) ;$ FT-IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3262, 3149, 3105, 3062, 3029, 2933, 2872, 1612, 1576, 1494, 1426, 1357, 1163, 1010, 823, 736, 700, 654, 605, 562; HRMS (TOF ES): found 547.0645, calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 547.0667$ (4.0 ppm).

N-Benzyl- N-(3-((4-nitrophenyl)sulfonamido)propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8g)

The compound was prepared according to typical procedure 1 employing 3 -(N-benzyl-1-phenylcycloprop-2-ene-1-carboxamido) propan-1-aminium chloride (15) ($94 \mathrm{mg}, 0.274 \mathrm{mmol}, 1.00$ equiv.), triethylamine ($115 \mu \mathrm{~L}, 83 \mathrm{mg}, 0.822 \mathrm{mmol}, 3.00$ equiv.), and 4-nitrobenzenesulfonyl chloride $(\mathbf{1 6 g})(64 \mathrm{mg}, 0.288 \mathrm{mmol}$, 1.05 equiv.) to yield the title compound as a thick, colorless oil ($112 \mathrm{mg}, 0.228 \mathrm{mmol}, 83 \%$); $R_{\mathrm{f}}=0.29\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 6: 1\right)$; NMR spectra indicate the presence of two rotamers (ratio of $14.5: 1$): ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta[8.29(\mathrm{~d}, J=8.9 \mathrm{~Hz}) \& 8.08(\mathrm{~d}, J=8.8 \mathrm{~Hz})$ \& $7.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}), \Sigma 4 \mathrm{H}],[7.38(\mathrm{~s}) \& 7.32-7.26(\mathrm{~m}) \& 7.25-7.17$ $(\mathrm{m}) \& 7.12(\mathrm{~s}) \& 6.98(\mathrm{dd}, J=7.5,2.1 \mathrm{~Hz}) \& 6.91-6.88(\mathrm{~m}) \& 6.82(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}) \& \Sigma 15 \mathrm{H}],[4.59(\mathrm{~s}) \& 4.47(\mathrm{~s}), \Sigma 2 \mathrm{H}],[3.39(\mathrm{t}, J=6.1 \mathrm{~Hz}) \&$ $3.32-3.27(\mathrm{~m}), \Sigma 2 \mathrm{H}],[2.96(\mathrm{q}, J=6.1 \mathrm{~Hz}) \& 2.64-2.54(\mathrm{~m}), \Sigma 2 \mathrm{H}]$, $[1.61(\mathrm{p}, J=6.1 \mathrm{~Hz}) \& 1.44-1.37(\mathrm{~m}), \Sigma 2 \mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.0,150.0,146.6,142.5,136.0,129.1(+), 128.8(+), 128.5$ $(+), 128.1(+), 127.0(+), 127.0(+), 125.8(+), 124.3(+), 110.1(+), 51.5$
$(-), 41.4(-), 40.2(-), 31.9,27.4(-) ;$ FT-IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3145, 3103, 3064, 3029, 2933, 2866, 1608, 1529, 1445, 1426, 1207, 1152, 1093, 855, 737, 700, 610, 554; HRMS (TOF ES): found 514.1413, calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 514.1418$ (1.0 ppm).

N-Benzyl- N-(3-((((1S,4R)-7,7-dimethyl-2-oxobicyclo[2.2.1] heptan-1-yl)methyl)sulfonamido)propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8h)

The compound was prepared according to typical procedure 1 employing 3-(N-benzyl-1-phenylcycloprop-2-ene-1-carboxamido) propan-1-aminium chloride (15) ($250 \mathrm{mg}, 0.729 \mathrm{mmol}, 1$ equiv.), triethylamine ($305 \mu \mathrm{~L}, 221 \mathrm{mg}, 2.19 \mathrm{mmol}, 3.00$ equiv.), and (1S)-$(+)-10$-camphorsulfonyl chloride ($\mathbf{1 6 h}$) ($201 \mathrm{mg}, 0.802 \mathrm{mmol}, 1.10$ equiv.) to yield the title compound as a thick, pale yellow oil $(215 \mathrm{mg}, 0.413 \mathrm{mmol}, 57 \%) ; R_{\mathrm{f}}=0.31\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ EtOAc, $\left.3: 1\right)$; NMR spectra indicate the presence of two rotamers (ratio of $3: 1$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta[7.41(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.23(\mathrm{~m})$, $7.20(\mathrm{dd}, J=9.2,5.0 \mathrm{~Hz}), 7.17-7.09(\mathrm{~m}), 6.98-6.94(\mathrm{~m}), \Sigma 12 \mathrm{H}],[5.82$ $(\mathrm{t}, J=6.5 \mathrm{~Hz}), 4.74(\mathrm{t}, J=6.2 \mathrm{~Hz}), 4.69-4.57(\mathrm{~m}), 4.52(\mathrm{~m}), \Sigma 3 \mathrm{H}],[\delta$ $3.52-3.27(\mathrm{~m}), 3.23(\mathrm{~d}, J=15.2 \mathrm{~Hz}), 3.18(\mathrm{q}, J=6.4 \mathrm{~Hz}), 2.91(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}), 2.86-2.73(\mathrm{~m}), 2.40(\mathrm{p}, J=3.3,2.9 \mathrm{~Hz}), 2.36(\mathrm{t}, J=3.8 \mathrm{~Hz})$, $2.22-2.12(\mathrm{~m}), 2.11(\mathrm{t}, J=4.6 \mathrm{~Hz}), 2.04(\mathrm{tq}, J=12.2,4.2 \mathrm{~Hz}), 1.92(\mathrm{~d}$, $J=18.6 \mathrm{~Hz}$), 1.84 (ddd, $J=14.3,9.4,4.8 \mathrm{~Hz}$), 1.76 (tt, $J=10.6,5.2$ Hz), 1.46 (dddd, $J=29.4,13.0,7.8,3.7 \mathrm{~Hz}$), $\Sigma 15 \mathrm{H}],[1.07$ (s), 1.00 (s), $\Sigma 3 \mathrm{H}],[0.89(\mathrm{~s}), 0.88(\mathrm{~s}), \Sigma 3 \mathrm{H}] ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 217.3$, 216.5, 175.3, 174.6, 143.3, 143.0, 137.6, 136.8, 129.0 (+), 128.8 (+), 128.7 (+), 128.7 (+), 128.3 (+), $127.8(+), 127.5(+), 127.0(+), 126.8(+)$, $126.7(+), 126.6(+), 126.1(+), 110.8(+), 110.2(+), 110.0(+), 109.9(+)$, 59.3, 59.0, 51.5 (-), 49.3 (-), 49.2 (-), 49.0, 48.6, 47.7 (-), 44.6 (-), 43.1 (-), 43.0 (-), 42.9 (+), $42.0(-), 41.2(-), 40.9(-), 32.3,32.1$, $29.8(-), 28.6(-), 28.2(-), 27.2(-), 26.7(-), 25.9(-), 20.0(+), 20.0$ $(+), 19.9(+), 19.6(+)$. FT-IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3281, 3205, 3148, 3103, 3060, 3028, 2958, 2887, 1743, 1645, 1618, 1446, 1424, 1329, 1146, 1067, 736, 700, 607, 567; HRMS (TOF ES): found 543.2292, calculated for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 543.2294$ (0.4 ppm).
($1 S^{*}, 8 S^{*}$)-6-Benzyl-2-((3,4-dimethoxyphenyl)sulfonyl)-8-phenyl-2,6-diazabicyclo[6.1.0]nonan-7-one (9e): typical procedure 2
A 5 mL oven-dried V-Vial equipped with a magnetic spin vane was charged with N-benzyl- N-(3-((4-methylphenyl)sulfonamido) propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8e) (19.5 mg , $0.038 \mathrm{mmol}, 1.00$ equiv.), freshly-ground potassium hydroxide ($4.3 \mathrm{mg}, 0.077 \mathrm{mmol}, 2.00$ equiv.), and dry THF ($800 \mu \mathrm{~L}$). The reaction mixture was stirred for 14 h at $50^{\circ} \mathrm{C}$. Then, the reaction mixture was cooled to room temperature and passed through a short plug of silica eluting with EtOAc. The filtrate was concentrated in vacuum. The resulting crude product was purified by column chromatography on silica gel eluting with hexanes/EtOAc ($2: 3$) to afford the title compound as a colorless solid ($18.1 \mathrm{mg}, 0.036 \mathrm{mmol}, 93 \%$); $R_{\mathrm{f}} 0.35$ (hexanes/EtOAc, $2: 3$); mp 194-198 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.47$ (dd, $J=$ 8.4, 2.1 Hz, 1H), 7.34-7.17 (m, 9H), 7.12 (dd, 7.2, $1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dt}, J=$ $14.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}$, $3 \mathrm{H}), 3.68(\mathrm{dd}, J=15.7,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=15.6,6.3 \mathrm{~Hz}$,

1H), 2.77-2.65 (m, 3H), 1.95 (dtd, $J=15.8,11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.60-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{p}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 169.3,153.9,149.3,138.7,137.5,129.5,129.0(+)$, 128.7 (+), $128.4(+), 127.6(+), 127.2(+), 125.5(+), 121.7(+), 110.9$ (+), $110.4(+), 56.5(+), 56.4(+), 53.5(-), 49.3(-), 46.6(+), 46.0$ $(-), 28.3(-), 23.9(-) ;$ FT-IR ($\left.\mathrm{NaCl}, \mathrm{cm}^{-1}\right): 3060,3027,2965$, 2934, 2848, 1641, 1587, 1509, 1441, 1346, 1263, 1140, 1020, 733, 702, 573 ; HRMS (TOF ES): found 529.1778, calculated for $\mathrm{C}_{28^{-}}$ $\mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 529.1773$ (0.9 ppm).

($1 S^{*}, 8 S^{*}$)-6-Benzyl-2-(methylsulfonyl)-8-phenyl-2,6-diazabicyclo[6.1.0]nonan-7-one (9a)

The compound was prepared according to typical procedure 2 employing $\quad N$-benzyl- N-(3-(methylsulfonamido)propyl)-1-phenylcycloprop-2-ene-1-carboxamide ($8 \mathbf{8 a}$) ($32.7 \mathrm{mg}, 0.085 \mathrm{mmol}$, 1.00 equiv.) and freshly-ground potassium hydroxide (9.5 mg , $0.170 \mathrm{mmol}, 2.00$ equiv.) to yield the title compound as a colorless crystalline solid ($30.2 \mathrm{mg}, 0.079 \mathrm{mmol}, 92 \%$). $R_{\mathrm{f}} 0.23$ (hexane/ EtOAc/MeOH, $6: 3: 1,0.2 \% \mathrm{TFA}$); mp 129-131 ${ }^{\circ} \mathrm{C}$ (decomposed); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.23(\mathrm{~m}, 8 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H})$, $5.28(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dt}, J=14.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=15.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.11(\mathrm{~m}, 2 \mathrm{H})$, 3.05 (ddd, $J=15.0,12.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{dd}, J=7.1$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.0, 138.2, 137.0, 129.2 (+), 128.9 (+), 128.6 (+), 127.9 (+), $127.4(+), 125.4(+), 52.9(-), 49.6$ $(-), 46.6(+), 46.3(-), 38.2(+), 36.6,28.2(-), 23.4(-) ;$ FT-IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3083, 3060, 2923, 2907, 2850, 1701, 1638, 1446, 1350, 1167, 823, 745, 700, 614, 580, 542; HRMS (TOF ES): found 407.1388, calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 407.1405$ (4.2 ppm).

(1 $S^{*}, 8 S^{*}$)-6-Benzyl-8-phenyl-2-tosyl-2,6-diazabicyclo[6.1.0] nonan-7-one (9b)

The compound was prepared according to typical procedure 2 employing $\quad N$-benzyl- N-(3-((2,5-dimethylphenyl)sulfonamido) propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8b) 25.0 mg , $0.054 \mathrm{mmol}, 1.00$ equiv.) and freshly-ground potassium hydroxide freshly-ground potassium hydroxide (6.1 mg , $0.109 \mathrm{mmol}, 2.00$ equiv.) to yield the title compound as a white solid ($22.8 \mathrm{mg}, 0.049 \mathrm{mmol}, 91 \%$); $R_{\mathrm{f}} 0.36$ (hexanes/EtOAc, $3: 2$); mp 172-174 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.74(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.16(\mathrm{~m}, 8 \mathrm{H}), 7.12(\mathrm{dd}$, $J=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dt}, J=13.9$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=15.6,11.0 \mathrm{~Hz}$, 1 H), 3.06 (dd, $J=15.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74-2.62 (m, 3H), 2.46 (s, 2 H), 1.97 (dtd, $J=15.7,11.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.55$ (ddt, $J=14.8,5.6$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{dd}, J=7.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.3,144.1,138.8,137.6,134.8,130.1(+), 129.0(+)$, $128.8(+), 128.5(+), 127.9(+), 127.7(+), 127.2(+), 125.6(+), 53.6$ (-), $49.4(-), 46.8(+), 46.1,36.7,28.4(-), 23.9(-), 21.8(+) ;$ FTIR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3061, 3030, 2961, 2924, 2855, 1641, 1598, 1495, 1479, 1442, 1425, 1380, 1344, 1165, 1129, 1090, 816, 734, 712, 699, 563, 551, 541; HRMS (TOF ES): found 483.1721, calculated for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 483.1718$ (0.6 ppm).

(1S ${ }^{*}, 8 S^{*}$)-6-Benzyl-2-((2,5-dimethylphenyl)sulfonyl)-8-phenyl-2,6-diazabicyclo[6.1.0]nonan-7-one (9c)

The compound was prepared according to typical procedure 2 employing $\quad N$-benzyl- N-(3-((2,5-dimethylphenyl)sulfonamido) propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8c) 28.3 mg , $0.060 \mathrm{mmol}, 1.00$ equiv.) and freshly-ground potassium hydroxide ($6.7 \mathrm{mg}, 119 \mathrm{mmol}, 2.00$ equiv.) to yield the title compound as a colorless crystalline solid ($24.7 \mathrm{mg}, 0.052 \mathrm{mmol}$, 87%); $R_{\mathrm{f}} 0.33$ (hexanes/EtOAc/MeOH, $7: 2: 1$); mp $182-185{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm} 7.86(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-$ $7.19(\mathrm{~m}, 10 \mathrm{H}), 7.16(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.43(\mathrm{~d}, J=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37(\mathrm{dt}, J=14.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (dd, $J=15.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (dd, $J=8.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-$ $2.99(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.68-$ $1.58(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{dd}, J=8.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 169.4,138.6,137.3,136.6,136.2,135.3,134.4(+)$, $133.0(+), 131.1(+), 129.0(+), 128.8(+), 128.5(+), 127.7(+), 127.1$ (+), 125.5 (+), $51.7(-), 48.9(-), 46.3(+), 45.7(-), 36.5,28.0(-)$, 23.3 (-), $21.0(+), 19.9(+) ;$ FT-IR (NaCl, cm ${ }^{-1}$): 3060, 3029, 2923, 1641, 1494, 1441, 1323, 1156, 821, 735, 713, 701, 588; HRMS (TOF ES): found 497.1876, calculated for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}$ [M + $\mathrm{Na}]^{+} 497.1875$ (0.2 ppm).

($1 S^{*}, 8 S^{*}$)-6-Benzyl-2-(naphthalen-1-ylsulfonyl)-8-phenyl-2,6-diazabicyclo[6.1.0]nonan-7-one (9d)

The compound was prepared according to typical procedure 2 employing N-benzyl- N-(3-(naphthalene-2-sulfonamido)propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8d) $\quad(26.7 \mathrm{mg}$, $0.054 \mathrm{mmol}, 1.00$ equiv.) and freshly-ground potassium hydroxide ($6.0 \mathrm{mg}, 0.108 \mathrm{mmol}, 2.00$ equiv.) to yield the title compound as a colorless crystalline solid ($23.9 \mathrm{mg}, 0.048 \mathrm{mmol}$, 90%); $R_{\mathrm{f}} 0.38$ (hexanes/EtOAc/MeOH, $7: 2: 1$); mp 185-190 ${ }^{\circ} \mathrm{C}$ (decomposed); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34$ (d, $J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.75$ (dd, $J=8.7$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.57 (dddd, $J=19.9,8.0,6.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.24-7.05$ $(\mathrm{m}, 8 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.22(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dt}, J=$ $14.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=15.7$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=15.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.54(\mathrm{~m}, 3 \mathrm{H})$, $1.99-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{dd}, J=7.9,6.6 \mathrm{~Hz}$, 1H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.2,138.6,137.5,135.1$, 134.8, 132.4, $129.6(+), 129.5(+), 129.2(+), 129.2(+), 129.0(+)$, $128.8(+), 128.5(+), 128.2(+), 127.9(+), 127.6(+), 127.2(+), 125.5$ $(+), 122.9(+), 53.7(-), 49.3(-), 46.7(+), 46.0(-), 36.8,28.4(-)$, 23.9 (-); FT-IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3060, 3041, 2965, 2855, 1641, 1598, 1447, 1442, 1425, 1360, 1344, 1165, 1090, 816, 734, 712, 699, $655,563,551,541 ;$ HRMS (TOF ES): found 519.1748, calculated for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 519.1718$ (5.8 ppm).

(1S** $8 S^{*}$)-6-Benzyl-2-((4-bromophenyl)sulfonyl)-8-phenyl-2,6-diazabicyclo[6.1.0]nonan-7-one (9f)

The compound was prepared according to typical procedure 2 employing N-benzyl- N-(3-((4-bromophenyl)sulfonamido) propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8f) $(27.9 \mathrm{mg}$, $0.053 \mathrm{mmol}, 1.00$ equiv.) and freshly-ground potassium hydroxide ($6.0 \mathrm{mg}, 0.11 \mathrm{mmol}, 2.00$ equiv.) to yield the title
compound as a colorless crystalline solid ($22.0 \mathrm{mg}, 0.042 \mathrm{mmol}$, 79\%); $R_{\mathrm{f}} 0.25$ (hexanes/EtOAc/MeOH, 7:2:1); mp $151{ }^{\circ} \mathrm{C}$ (decomposed); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77-7.67(\mathrm{~m}, 4 \mathrm{H})$, 7.35-7.18 (m, 8H), 7.14-7.10 (m, 2H), $5.29(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.18-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=15.7$, $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=15.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 1 \mathrm{H})$, 2.71-2.65 (m, 2H), 2.03-1.93 (m, 1H), 1.61-1.54 (m, 1H), 1.37 (dd, $J=6.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3$, 138.3, 137.3, 136.8, 132.7 (+), 129.3 (+), 129.1 (+), $128.8(+), 128.5$ (+), 128.4, $127.7(+), 127.3(+), 125.5(+), 53.6(-), 49.4(-), 46.5$ $(-), 46.0(-), 36.8,29.9,28.3(-), 23.7(-) ;$ FT-IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right)$: 3087, 3061, 2920, 2850, 1703, 1640, 1445, 1349, 1167, 822, 745, 700, 609, 561; HRMS (TOF ES): found 547.0660, calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 547.0667$ (1.3 ppm).

($1 S^{*}, 8 S^{*}$)-6-Benzyl-2-((4-nitrophenyl)sulfonyl)-8-phenyl-2,6-diazabicyclo[6.1.0]nonan-7-one (9 g)

The compound was prepared according typical procedure 2 employing N-benzyl- N-(3-((4-nitrophenyl)sulfonamido)propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8g) $\quad(26.2 \quad \mathrm{mg}$, $0.053 \mathrm{mmol}, 1.00$ equiv.) and freshly-ground potassium hydroxide ($6.0 \mathrm{mg}, 0.107 \mathrm{mmol}, 2.00$ equiv.). The reaction mixture was stirred for 24 hours at $50^{\circ} \mathrm{C}$. The target compound was obtained as a white crystalline solid $(8.2 \mathrm{mg}, 0.016 \mathrm{mmol}$, 31%); $R_{\mathrm{f}} 0.26$ (hexanes/EtOAc/MeOH, 6:3:1) mp $145{ }^{\circ} \mathrm{C}$ (decomposed); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 8.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.18(\mathrm{~m}, 8 \mathrm{H}), 7.17-7.08(\mathrm{~m}$, $2 \mathrm{H}), 5.25(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.16(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=15.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=15.7$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.91(\mathrm{~m}$, $1 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,150.6,143.9,138.2,137.3,129.1(+), 129.0$ $(+), 128.8(+), 128.5(+), 127.7(+), 127.5(+), 125.5(+), 124.7(+)$, $53.6(-), 49.6(-), 46.3,46.0(-), 37.0,28.4(-), 23.5(-) ;$ FT-IR $\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right): 3052,2926,2852,1701,1640,1530,1446,1377$, 1350, 1163, 853, 737, 700, 609, 591; HRMS (TOF ES): found 514.1422, calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 514.1413$ (1.8 ppm).

$\left(1 S^{*}, 8 S^{*}\right)$-6-Benzyl-2-((() $\left.1 S, 4 R\right)$-7,7-dimethyl-2-oxobicyclo [2.2.1]heptan-1-yl)methyl)sulfonyl)-8-phenyl-2,6-diazabicyclo [6.1.0]nonan-7-one (9h)

The compound was prepared according to typical procedure 2 employing $\quad N$-benzyl- N-(3-((3,4-dimethoxyphenyl)sulfonamido) propyl)-1-phenylcycloprop-2-ene-1-carboxamide (8 h) (32.9 mg , $0.063 \mathrm{mmol}, 1.00$ equiv.) and freshly-ground potassium hydroxide ($7.1 \mathrm{mg}, 0.126 \mathrm{mmol}, 2.00$ equiv.) to afford the title compound as an inseparable mixture of diastereomers ($\sim 1: 1$) as a colorless solid ($29.5 \mathrm{mg}, 0.057 \mathrm{mmol}, 90 \%$); $R_{\mathrm{f}} 0.25$ (hexanes/EtOAc/MeOH, $6: 3: 1$); mp 92-103 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.10(\mathrm{~m}, 20 \mathrm{H}), 5.21(\mathrm{dd}, J=22.0,14.7 \mathrm{~Hz}$, 2 H), 4.10 (ddt, $J=19.2,16.6,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.97$ (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{ddd}, J=15.5,10.9,4.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.41(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J$ $=8.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=8.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{ddd}, J=$ $15.0,12.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.97(\mathrm{~m}, 3 \mathrm{H}), 2.90(\mathrm{~d}, J=14.6 \mathrm{~Hz}$,

1H), 2.76 (d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (dd, $J=6.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ (dd, $J=7.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 (dddd, $J=21.6,14.8,11.8,4.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.35(\mathrm{q}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{q}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{q}, J=$ $4.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{tq}, J=12.2,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.87(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.62$ (dddd, $J=14.0,9.3,7.1,4.7 \mathrm{~Hz}$, 4 H), 1.50 (dddd, $J=11.3,8.6,6.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 4 \mathrm{H})$, $1.09(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.8,215.8,169.5,169.3,138.8,138.8,137.6$, 137.5, $129.0(+), 128.7(2 \mathrm{C},(+)), 128.5(+), 127.6(2 \mathrm{C},(+)), 127.1$ $(+), 125.5(+), 125.4(+), 58.8,58.7,53.7(-), 53.1(-), 49.4(-)$, 49.1 (-), 48.4, 48.1, 46.7 (-), 46.6 (+), 46.3 (+), $46.2(-), 46.0(-)$, $43.0(+), 42.9(+), 42.8(-), 36.7,36.5,28.6(-), 28.3(-), 27.1(2 C$, $(-)), 25.5(2 \mathrm{C},(-)), 23.6(-), 23.3(-), 20.2(+), 20.1(+), 20.0(+) ;$ FT-IR ($\mathrm{NaCl}, \mathrm{cm}^{-1}$): 3060, 3028, 2961, 1745, 1640, 1496, 1480, 1342, 1052, $757,699,562,526$. HRMS (TOF ES): found 543.2291, calculated for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 543.2294$ (0.6 ppm).

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was financed by the grant from the Ministry of Education and Science of the Russian Federation (grant \#0795-2020-0031).

Notes and references

1 S. G. Davies and J. E. Thomson, Alkaloids: Chem. Biol. Perspect., 2015, 74, 121-158.
2 L. Crombie, R. C. F. Jones and D. Haigh, Tetrahedron Lett., 1986, 27, 5147-5150.
3 K. A. Oppong, C. D. Ellis, M. C. Laufersweiler, S. V. O'Neil, Y. Wang, D. L. Soper, M. W. Baize, J. A. Wos, B. De, G. K. Bosch, A. N. Fancher, W. Lu, M. K. Suchanek, R. L. Wang and T. P. Demuth, Bioorg. Med. Chem. Lett., 2005, 15, 4291-4294.
4 K. Rudolphi, N. Gerwin, N. Verzijl, d. K. P. van and d. B. W. van, Osteoarthritis Cartilage, 2003, 11, 738-746.

5 Y. Peng, H. Sun, Z. Nikolovska-Coleska, S. Qiu, C.-Y. Yang, J. Lu, Q. Cai, H. Yi, S. Kang, D. Yang and S. Wang, J. Med. Chem., 2008, 51, 8158-8162.
6 R. Sheng, H. Sun, L. Liu, J. Lu, D. McEachern, G. Wang, J. Wen, P. Min, Z. Du, H. Lu, S. Kang, M. Guo, D. Yang and S. Wang, J. Med. Chem., 2013, 56, 3969-3979.

7 G. Illuminati and L. Mandolini, Acc. Chem. Res., 1981, 14, 95102.

8 L. Mandolini, Adv. Phys. Org. Chem., 1986, 22, 1-111.
9 P. Pigeon and B. Decroix, J. Heterocycl. Chem., 1997, 34, 375380.

10 M. Denzer and H. Ott, J. Org. Chem., 1969, 34, 183-187.
11 J. A. Martinez-Perez, M. A. Pickel, E. Caroff and W.-D. Waggon, Synlett, 1999, 1875-1878.

12 R. G. Sherrill, Tetrahedron Lett., 2007, 48, 7053-7056.

13 M. Yoshida, N. Sassa, T. Kato, S. Fujinami, T. Soeta, K. Inomata and Y. Ukaji, Chem.-Eur. J., 2014, 20, 2058-2064. 14 T. M. T. Tong, T. Soeta, T. Suga, K. Kawamoto, Y. Hayashi and Y. Ukaji, J. Org. Chem., 2017, 82, 1969-1976.
15 Y. Peng, H. Sun and S. Wang, Tetrahedron Lett., 2006, 47, 4769-4770.
16 Q. Cai, H. Sun, Y. Peng, J. Lu, Z. Nikolovska-Coleska, D. McEachern, L. Liu, S. Qiu, C.-Y. Yang, R. Miller, H. Yi, T. Zhang, D. Sun, S. Kang, M. Guo, L. Leopold, D. Yang and S. Wang, J. Med. Chem., 2011, 54, 2714-2726.
17 Y. Peng, H. Sun, J. Lu, L. Liu, Q. Cai, R. Shen, C.-Y. Yang, H. Yi and S. Wang, J. Med. Chem., 2012, 55, 106-114.

18 H. Sun, J. Lu, L. Liu, C.-Y. Yang and S. Wang, ACS Chem. Biol., 2014, 9, 994-1002.
19 Y. Hirokawa, H. Yamazaki and S. Kato, J. Heterocycl. Chem., 2002, 39, 727-731.
20 C. Ensch and M. Hesse, Helv. Chim. Acta, 2002, 85, 16591673.

21 E. Aiello, G. Dattolo, G. Cirrincione, A. M. Almerico and I. D'Asdia, J. Heterocycl. Chem., 1981, 18, 1153-1155.

22 I. Stansfield, C. Ercolani, A. Mackay, I. Conte, M. Pompei, U. Koch, N. Gennari, C. Giuliano, M. Rowley and F. Narjes, Bioorg. Med. Chem. Lett., 2009, 19, 627-632.
23 L. Crombie, R. C. F. Jones and D. Haigh, Tetrahedron Lett., 1986, 27, 5151-5154.
24 L. Crombie, D. Haigh, R. C. F. Jones and A. R. Mat-Zin, J. Chem. Soc., Perkin Trans. 1, 1993, 2047-2054.
25 L. Crombie, D. Haigh, R. C. F. Jones and A. R. Mat-Zin, J. Chem. Soc., Perkin Trans. 1, 1993, 2055-2068.
26 S. Seto, A. Tanioka, M. Ikeda and S. Izawa, Bioorg. Med. Chem., 2005, 13, 5717-5732.
27 B. K. Alnasleh, M. Rubina and M. Rubin, Chem. Commun., 2016, 52, 7494-7496.
28 P. Ryabchuk, J. P. Matheny, M. Rubina and M. Rubin, Org. Lett., 2016, 18, 6272-6275.
29 V. A. Maslivetc, D. N. Turner, K. N. McNair, L. Frolova, S. Rogelj, A. A. Maslivetc, N. A. Aksenov, M. Rubina and M. Rubin, J. Org. Chem., 2018, 83, 5650-5664.

30 V. A. Maslivetc, L. V. Frolova, S. Rogelj, A. A. Maslivetc, M. Rubina and M. Rubin, J. Org. Chem., 2018, 83, 1374313753.

31 V. A. Maslivetc, M. Rubina and M. Rubin, Org. Biomol. Chem., 2015, 13, 8993-8995.
32 A. Edwards, M. Rubina and M. Rubin, Chem.-Eur. J., 2018, 24, 1394-1403.
33 L.-a. Liao, N. Yan and J. M. Fox, Org. Lett., 2004, 6, 49374939.

34 P. Thanigaimalai, K.-C. Lee, S.-C. Bang, J.-H. Lee, C.-Y. Yun, E. Roh, B.-Y. Hwang, Y. Kim and S.-H. Jung, Bioorg. Med. Chem., 2010, 18, 1135-1142.
35 J. E. Banning, A. R. Prosser, B. K. Alnasleh, J. Smarker, M. Rubina and M. Rubin, J. Org. Chem., 2011, 76, 3968-3986.

36 J. E. Banning, A. R. Prosser and M. Rubin, Org. Lett., 2010, 12, 1488-1491.

[^0]: ${ }^{a}$ Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS 66045-7582, USA. E-mail: mrubin@ku.edu; Fax: +1-785-864-5396; Tel: +1-785-8645071
 ${ }^{b}$ Design-Zyme LLC, 4950 Research Park Way, Lawrence, KS 66047, USA
 ${ }^{c}$ Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation. E-mail: alexaks05@rambler.ru
 \dagger Electronic supplementary information (ESI) available. See DOI: 10.1039/d0ra09014j

