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Abstract

Background: African American/Black adults have a disproportionate incidence of Alzheimer’s 

disease (AD) and are underrepresented in biomarker discovery efforts.

Objective: This study aimed to identify potential diagnostic biomarkers for AD using a 

combination of proteomics and machine learning approaches in a cohort that included African 

American/Black adults.

Methods: We conducted a discovery-based plasma proteomics study on plasma samples (N = 

113) obtained from clinically diagnosed AD and cognitively normal adults that were self-reported 

African American/Black or non-Hispanic White. Sets of differentially-expressed proteins were 

then classified using a support vector machine (SVM) to identify biomarker candidates.

Results: In total, 740 proteins were identified of which, 25 differentially-expressed proteins in 

AD came from comparisons within a single racial and ethnic background group. Six proteins 

were differentially-expressed in AD regardless of racial and ethnic background. Supervised 

classification by SVM yielded an area under the curve (AUC) of 0.91 and accuracy of 86% for 
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differentiating AD in samples from non-Hispanic White adults when trained with differentially-

expressed proteins unique to that group. However, the same model yielded an AUC of 0.49 and 

accuracy of 47% for differentiating AD in samples from African American/Black adults. Other 

covariates such as age, APOE4 status, sex, and years of education were found to improve the 

model mostly in the samples from non-Hispanic White adults for classifying AD.

Conclusion: These results demonstrate the importance of study designs in AD biomarker 

discovery, which must include diverse racial and ethnic groups such as African American/Black 

adults to develop effective biomarkers.
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INTRODUCTION

One of the fastest growing populations in the United States are ethnic minorities, such 

that Hispanics and African American/Blacks are estimated to account for 40% of older 

adults in 2050 [1–3]. This is critical for the field of Alzheimer’s disease (AD) which 

disproportionately impacts these populations and accounts for higher incidence rates of 

1.5 to 2x for African American/Black adults [4–6]. In addition to disparities in disease 

incidence, there is a disparate economic burden of AD costs and caregiving for African 

American/Black families [7, 8]. Racial and ethnic disparities in AD are multi-factorial and 

can include contributions from socioeconomic status [1, 5, 9, 10], quality and level of 

education [11–14], comorbidities [1, 15], genetic risk factors [15], environmental stressors 

[16, 17], healthcare access [1, 5], and systemic racism [18]. Disease pathology is similar 

in African American/Black and Hispanic adults with regards to what we have learned for 

decades about AD in non-Hispanic White populations [5, 19–23]. Although, understanding 

disease pathogenesis is complicated by higher frequency of mixed dementia cases and 

vascular comorbidities that are often found for example in African American/Black adults 

with AD [19, 21, 22].

Importantly, for better diagnosing AD in all communities and for developing effective 

therapies, better strategies are needed to increase research participation of African 

American/Black adults into AD and related dementia research [24]. Currently, African 

American/Black adults participate in clinical trials at a rate of <~5% and in AD research 

assessments at <~13% [25–27]. Recently, there have been reports that demonstrate that 

biomarker discovery efforts for AD need to be inclusive of African American/Black adults 

as the standard cerebrospinal fluid (CSF) biomarkers, total-tau and phosphorylated (p)-tau, 

have different concentration levels in a cohort of African American/Black adults when 

compared to non-Hispanic White adults [28–33]. Other circulatory proteins in plasma also 

have been reported to have differences in African American/Black AD patients such as 

interleukin-9 [34]. Examples of plasma biomarker studies that include or solely focus on 

African American/Black adults are few [35–37]. This is critical as plasma is a less-invasive 

biofluid to obtain than CSF, and more importantly, as diagnostic or prognostic biomarkers 

for AD need to be effective for all.

Khan et al. Page 2

J Alzheimers Dis. Author manuscript; available in PMC 2022 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Plasma proteomics is a growing field within AD biomarker discovery [38–45]. Many studies 

have conducted plasma proteomics analyses across the AD spectrum from cognitively 

normal (CN) to mild cognitively impaired to confirmed early and late-onset AD [46–64]. 

The most widely used biomarkers in plasma are amyloid-beta 40 (Aβ40) and 42 (Aβ42) 

peptides [38, 45, 65–67]. Other potential plasma protein biomarkers, a few of which have 

been validated within the same cohort [68] and few in independent cohorts [46, 48, 59, 69, 

70], also exist. A recent review of plasma biomarkers for AD [40] analyzed findings from 22 

previous discovery-based proteomics studies and found a lack of reproducibility across those 

studies. For example, the review reported alpha-2 macroglobulin as a biomarker candidate 

in six different studies, while pancreatic polypeptide was reported in five studies [40]. The 

remaining proteins reported in more than two studies included apolipoprotein A1, afamin, 

fibronectin, apolipoprotein A4, alpha −1- antitrypsin, fibrinogen-γ chain, insulin like growth 

factor binding protein-2, macrophage inflammatory protein 1-α, beta-2 glycoprotein, and 

complement factor B [40].

Few plasma biomarker studies utilized diverse cohorts that incorporated African American/

Black adults into the study design [35, 37, 71]. Plasma biomarkers for an amnestic 

MCI cohort of females from African American/Black, Hispanic, and non-Hispanic White 

backgrounds were identified as having levels unique to a given racial and ethnic group 

and highlight the importance of including diverse groups in biomarker studies [37]. Age 

was deemed a critical factor in mid-life plasma Aβ concentrations in a large cohort of 

European and African American/Black adults, whereby there were also different genes 

that had race-specific changes [35]. For example, cystathionine beta-synthase gene had 

genome-wide significant association with plasma homocysteine levels in African American/

Blacks and Yoruba cohorts, that are associated with African ancestry [71]. Inclusion of 

African American/Black adults in study designs is critical to ensure that specific biomarkers, 

combinations of biomarkers in a panel, or biomarker levels are able to accurately distinguish 

and diagnose disease in all groups.

Herein, we conducted a pilot study with plasma samples available from the University 

of Pittsburgh Alzheimer’s Disease Research Center (ADRC) that included self-reported 

African American/Black and non-Hispanic White adults that participated in ADRC research. 

Individual participants were either cognitively normal or had a clinically confirmed 

diagnosis of AD, and plasma was collected from a time point away from baseline that 

was coincident with clear disease pathology and clinical diagnosis. The samples (N = 

113) were randomly divided into two sets in order to accommodate a study design that 

would allow us to 1) conduct discovery-based proteomics to identify differentially-expressed 

proteins in a cohort that included African American/Black adults; 2) use the data generated 

from the discovery-based proteomics studies to determine the utility of the selected panel 

of proteins as diagnostic AD biomarkers using machine learning; and 3) determine the 

extent to which the model performance depended on the racial and ethnic background 

of the training set samples. Comprehensive plasma proteomics biomarker discovery was 

conducted using quantitative tandem mass tags of peptides from plasma immunodepletion, 

liquid chromatography (LC), and mass spectrometry (MS) workflows. Processed proteomics 

data along with machine learning was used to test whether the racial and ethnic background 

of the training set samples impacts the accuracy of the biomarker panels for AD. In this 
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approach, we divided the cohort into two sets: Set 1 (N = 73) was used to select the optimal 

protein features and Set 2 (N = 40) was used to validate the results.

METHODS

Plasma sample collection

Human plasma samples (N = 113) from African American/Black and non-Hispanic White 

individuals were obtained from the University of Pittsburgh Alzheimer’s Disease Research 

Center (ADRC). Detailed characteristics of the individuals are provided in Table 1. Approval 

for the participation of human subjects were obtained by the Institutional Review Boards of 

the University of Pittsburgh and Vanderbilt University. The Mini-Mental State Examination 

(MMSE) was performed, and disease individuals were clinically diagnosed with mild 

to moderate dementia at the time of blood draw according to the National Institute on 

Aging-Alzheimer’s Association and National Alzheimer’s Coordinating Center criteria. The 

samples were divided into two separate sample sets of N = 73 and N = 40, using a blinded 

study design. Plasma samples were obtained from participants at the most recent blood draw 

at the start of this study in December 2016, in order to analyze plasma that was close in 

chronological year and storage conditions and that corresponded to clear disease diagnosis.

Plasma depletion

Plasma samples were depleted of the top six most abundant proteins (albumin, IgG, IgA, 

α1-antitrypsin, transferrin, and haptoglobin) using the Multiple Affinity Removal System 

(MARS) Column Human 6 (Agilent, Santa Clara) according to manufacturer’s instructions. 

In brief, 30 μL of crude plasma sample was diluted 4 times using buffer A (Agilent, Santa 

Clara) and centrifuged at 16000 g for 1 min through a 0.22 μm spin filter to remove 

particulates. The sample was injected onto the MARS 6 column using a Waters Alliance 

2695 Separation module LC system and the resulting fractions were collected. The flow 

through fractions were concentrated using a 5kDa molecular weight cutoff concentrator 

at 4,695 g for 1.5 h followed by a bicinchoninic acid (BCA) assay to determine protein 

concentration. A pooled sample containing equal amounts of protein from each of the 

plasma samples was generated and used as quality control (QC) sample

Digestion

Samples were randomized into eight and four batches respectively, for Set 1 and Set 2 

with corresponding QC sample in each batch. In Set 1, in solution digestion was performed 

in 100 mM ammonium bicarbonate buffer. Proteins (100 μg) were reduced using 200 

mM dithiothreitol (DTT) for 45min at 55°C, while alkylation was performed using 200 

mM iodoacetamide (IAM) in the dark for 30 min. Finally, proteins were digested using 

trypsin/Lys-C mix (Promega, Madison) overnight at 37°C (1:50 enzyme:protein ratio). 

The digested samples were acidified with formic acid and desalted using HLB cartridges 

(Waters Corporation, Milford) per manufacturer’s instructions. For Set 2, the digestion 

was carried out using the filter assisted sample preparation (FASP) protocol [72]. In brief, 

proteins (100 μg) were transferred onto a 10 kDa molecular weight cutoff filter (Sartorius, 

Gloucestershire, UK) and reduced for 15 min with 20 mM DTT in 100 mM Tris with 8 

M urea. This was followed by centrifugation at 14000 rpm for 30 min and the resulting 
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filtrate was discarded. Proteins were then alkylated with 20 mM IAM in the dark for 

15 min followed by centrifugation to remove the excess reagents. Samples were washed 

using 100 mM Tris with 1 M urea in a centrifuge at 14000 rpm and trypsin/Lys-C 

mix (Promega, Madison) was added and digested for 8 h at 37°C (1:50 enzyme:protein 

ratio). After digestion, the peptides were acidified with formic acid and desalted using 

HLB cartridges. TMT 10-plex or 11-plex labeling (ThermoFisher Scientific, Waltham) was 

performed following manufacturer’s instruction with 25 μg of peptides. Labeled peptides 

were desalted and separated into 12 fraction using high pH (pH = 10) reversed-phase 

fractionation with acetonitrile (ACN(%)– 3, 5, 8, 10, 13, 18, 22, 30, 45, 60, 80, 95) on an 

HLB cartridge. Fractions were dried down and reconstituted in water with 0.1% formic acid.

LC-MS/MS and MS3 parameters

Peptides were analyzed using an Orbitrap Fusion Lumos (ThermoFisher Scientific, 

Waltham) in positive ionization mode. The samples were loaded onto a self-packed 

C18 (5 μm, 200Å, MICHROM Biore-sources Inc.) trap column (100 μM ID × 2.5 cm, 

IntegraFrit Capillary), and separation was performed on an in-house packed C18 (2.5 μm, 

100Å, XBridge BEH from Waters) capillary column (100 μM ID × 25 cm, Polymicro 

Technologies) at 300 nL/min using solvent A (water with 0.1 % formic acid) and solvent 

B (acetonitrile with 0.1% formic acid). The gradient was as follows: 0–7min, 10% B; 7–

67min, 10–30% B; 67–75min, 30–60% B; 75–77 min, 60–90% B; 77–82min, 90% B; 82–

83min, 90–10% B; and 83–100min, 10% B. Full MS scans were acquired over a mass range 

of m/z 375–1500 at a resolution of 120,000 with the automatic gain control (AGC) target set 

at 4×105 ions and maximum ion injection (IT) time of 50 ms. Data dependent acquisition 

(DDA) was used to acquire MS/MS spectra with a cycle time of 3 s. MS/MS fragmentation 

was performed using collision-induced dissociation (CID) with an NCE = 35%. The AGC 

was set at 1×104 using an isolation width of 0.7 m/z, maximum injection time of 100 ms, 

and a dynamic exclusion of 20 s. Synchronous precursor selection (SPS) mode was used 

for collecting MS3 spectra of the top 10 most intense ions from the MS/MS fragments. 

Higher-energy collisional dissociation (HCD) was used for MS3 with the following Orbitrap 

parameters: NCE = 55%, scan range = 100–400 m/z, resolution = 60,000, AGC = 5 × 104, 

maximum injection time = 18 ms and isolation width = 2 m/z. Each fraction was injected in 

duplicate and the injection order was randomized for each batch.

Data analysis

Raw files were analyzed using Proteome Discoverer software (version 2.2) and searched 

against the Uniprot human reviewed protein database (07/17/2018, 20289 sequences) using 

SEQUEST-HT. The following parameters were used: maximum two trypsin miscleavages, 

precursor mass tolerance 10 ppm, fragment mass tolerance 0.6 Da; dynamic modification of 

methionine oxidation (+15.995 Da), protein N-termini acetyl (42.011 Da), TMT 10 (229.163 

Da)/11 plex (229.169 Da) on peptide N-termini and lysine residue, static modification of 

cysteine carbamidomethyl (+57.02 Da). Decoy database searching was employed to generate 

high confidence peptides (FDR < 1%). TMT reporter ions (i.e., m/z 126 – 131) were 

identified with the following parameters: most confident centroid and 20 ppm reporter ion 

mass tolerance. Technical replicates and fractions from each batch were combined into one 
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result file. Finally, the individual batch data were combined together for further processing 

using an in-house Python script.

Protein filtering criteria included peptide spectral matches (PSMs)≥2, and reporter ion 

intensity values above the minimum threshold in at least 75% of the TMT channels 

(i.e., present in any 54 of 73 samples or 30 of 40 samples). The final list of proteins 

was normalized using a two-step internal reference scaling (IRS) method which has been 

described previously [73]. Briefly, in-batch normalization was performed by calculating a 

scaling factor (SF), which is the ratio of the sum of intensity of the pooled channel to 

the sum of each individual TMT channel, followed by multiplying the intensities by the 

SF for each individual batch. Next, across-batch normalization was applied by the use of 

SF from the geometric mean of the TMT intensity of pooled samples. Once normalized, 

differentially-expressed proteins (p < 0.05) were determined by student’s t-test’s between 

AD and CN sample groups within each sample set. We did not use Bonferroni or other 

multiple hypothesis testing to keep a less stringent initial set of data to feed into the 

machine learning algorithm [74, 75]. A fold change cut-off of 1.23 (Set 1) and 1.33 (Set 

2) was established based on biological and technical variation in the data [76]. The mass 

spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 

(http://proteomecentral.proteomexchange.org/) via the PRIDE [77] partner repository with 

the dataset identifier PXD022265.

Machine learning

Data preparation—Supervised classification was performed using RStudio, R version 

3.5.1. The data sets with at least 75% of the TMT channels filled were selected for further 

analysis. Models were built with two different approaches: 1) using only the protein data, 

and 2) using the protein data along with the variables of sex, age, years of education, and 

APOE status. In the models with combined data types, sex and APOE genotype status were 

converted to numeric variables. For APOE status, any patient with a 4/4 genotype was 

coded as a 4. Genotypes of 3/4 and 3/3 were coded as 3 and 2, respectively. All remaining 

patients, who had at least one APOE2 allele (2/3, 2/4 genotypes), were coded as 1. Prior 

to classification, differentially-expressed proteins were selected as the protein feature set. 

These were either combined or not combined with the clinical variables and then the matrix 

was scaled using the embedded scale function in R. After scaling, any missing values were 

replaced with the average value for the given feature in the dataset under consideration. 

Since the data had been scaled, the average value was zero in each case.

Classification—All supervised classification was performed with a support vector 

machine (SVM) using the R package, e1071 [78]. All area under the receiver-operator 

curve (AUC) values reported herein were calculated using the R package, pROC [79]. 

In order to ensure comparability from one experiment and one data set to the next, all 

of the SVM classifications were performed using identical parameters (i.e., leave-one-out 

cross-validation was performed in every case, and hyperparameters were not optimized). 

The reported accuracy was based on comparing the true class values to the probabilities 

generated in the model. The probabilities were also used in calculating the AUC.
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To account for class imbalance and the fact that the data sets had different proportions of 

cases versus controls, a random undersampling and aggregation technique was employed. 

During undersampling, a random set of training samples was selected for model building, 

with the number for each class being equal and determined by subtracting one from the 

smallest class of samples. (For example, if there were 39 AD patients and 34 controls, 

the number of samples in each class in the training set would be 33.) The test sample 

was always excluded from consideration, and then training samples from each class were 

randomly selected, based on the pre-set number of samples to be used in the model. 

The SVM classification commenced, and the probability of the sample being assigned to 

Group 1 was recorded. This process was repeated 300 times for each sample. The 300 

probabilities that resulted from the 300 classifications for each sample were averaged in 

order to determine a single probability for each sample. This algorithm maximally leverages 

all available data while not imparting a bias in the results based on the relative sizes of the 

two classes in the training set. Example code is provided in the Supplementary Material.

RESULTS

Plasma samples (N = 113) from four study groups, African American/Black cognitively 

normal (African American/Black CN, N = 26) and AD (African American/Black AD, N 
= 30), non-Hispanic White cognitively normal (non-Hispanic White CN, N = 28) and AD 

(non-Hispanic White AD, N = 29), were obtained from the University of Pittsburgh ADRC. 

Generally, there were twice as many females in each group and no significant differences 

were found in CN compared to AD groups with regards to sex, age, year of blood draw, 

and presence of other comorbidities (diabetes, hypercholesterolemia, hypertension). Each of 

the groups had an average 13 years of education, except the non-Hispanic White CN group 

which had ~16 years of education (Table 1). The average MMSE scores for the CN samples 

were above 27 while for the AD samples they were below 15. Each patient sample also 

had information about APOE genotypes, and we note that the African American/Black AD 

group had a higher percentage (i.e., 23%) of the 4/4 genotype compared to non-Hispanic 

White AD group. AD groups overall had higher percentages of individuals who carried a 

homozygous and/or heterozygous 3/4 or 4/4 genotypes compared to the CN group.

A general overview of the plasma proteomics workflow employed for both Set 1 and Set 

2 is shown in Fig. 1. For both experiments, all steps, except the digestion process were 

similar in order to simulate known variations in sample preparation study designs across 

proteomics laboratories. A total of 538 high confidence proteins (1% FDR, PSMs≥2) were 

identified in Set 1, and 596 proteins were identified in Set 2 yielding a total of 740 proteins 

from both sets (Fig. 2). Between Set 1 and Set 2, 395 proteins were identified in both sets. 

While this level of coverage is desirable, many of the proteins were identified in only a 

sub-population of the samples, so different filtering criteria were assessed to choose a data 

set size that balanced the competing needs of retaining many proteins in the data set while 

having quantitative data for as many samples as possible for each of the proteins. When 

considering only proteins with 50% of the TMT channels present, 285 and 380 proteins 

remained in Set 1 and Set 2, respectively. When considering only proteins with 75% of the 

TMT channels present, 249 and 314 proteins, respectively, were present in Set 1 and Set 

2, with > 95% of the proteins in Set 1 also appearing in Set 2. This filtering option results 
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in significantly better coverage for each protein while only minimally shrinking the size of 

the data set. We also considered filtering the data to include only proteins with 100% of the 

TMT channels present, which resulted in 189 proteins in Set 1, 257 proteins in Set 2, and 

183 proteins in common between the two sets. This filtering option would likely remove too 

many important but low-abundant proteins. We selected those proteins present in 75% of the 

patient samples for further analysis, as this data set best balanced the needs of retaining as 

many proteins as possible while providing quantitative data for as many samples as possible 

for each protein.

Differentially-expressed proteins in AD

Since only a small fraction of plasma proteins were expected to be differentially expressed 

between AD and CN groups, a robust process to select the optimal proteins for machine 

learning was needed. Thus, we focused on identifying differentially-expressed proteins in 

Set 1 (N = 34 CN, N = 39 AD) which had a larger number of samples compared to Set 

2 (N = 20 CN, N = 20 AD). For this initial analysis, we combined data from all of the 

CN individuals into one group and all with AD into a second group. Figure 3a displays a 

volcano plot distribution of protein TMT ratios of the AD compared to CN groups. Of the 

proteins with significant p-values in Set 1 (p < 0.05), four proteins had fold-changes that 

were > 1.18: beta-ala-his dipeptidase (FC = 0.73, p 0.0001), keratin type I cytoskeletal 9 (FC 

= 0.71, p 0.049), apolipoprotein L1 (FC = 0.84, p 0.03), and adiponectin (FC = 1.40, p 0.02). 

Beta-Ala-His dipeptidase, keratin type I cytoskeletal 9, and apolipoprotein L1 were all lower 

in AD comparedto CN, while adiponectin was higher in AD. These changes are consistent 

with literature reports [80–82]. Thus, these four proteins from Set 1 were selected as the 

protein feature to use in subsequent machine learning studies, and their utility for confirming 

AD was tested in both Set 1 and Set 2.

Using an SVM classifier and leave-one-out cross-validation, we determined the utility of the 

four selected proteins for confirming AD. Two models were tested: one included only the 

four proteins (beta-ala-his dipeptidase, keratin type I cytoskeletal 9, apolipoprotein L1, and 

adiponectin), and the second contained these proteins along with four additional variables: 

age, sex, years of education, and APOE status. These models were tested twice, using 

samples from either Set 1 or Set 2. The classification accuracies of the two models in Set 1 

and Set 2, are shown in Fig. 4.

Several significant outcomes are noted based on results in Fig. 4. In all four classifications, 

the non-Hispanic White adult samples had higher accuracy than the African American/

Blacks adult samples.

Additionally, in both Set 1 and Set 2, a higher overall accuracy was obtained when the other 

variables were included. However, the variables of age, sex, years of education, and APOE 
status, provided a bigger boost to the accuracy of the samples from non-Hispanic White 

adults compared to African American/Black adults. The fact that the two tested models were 

not as effective for the samples from African American/Black adults as they were for the 

samples from non-Hispanic White adults lead us to consider race-stratification of proteomics 

data prior to machine learning.
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Differentially-expressed proteins in AD in race-stratified groups

Differentially-expressed proteins between AD and CN groups for the African American/

Black and non-Hispanic White samples in Set 1, are shown using volcano plots in Fig. 3b 

and 3c. Nine proteins were differentially expressed for the non-Hispanic White samples. 

Most of these proteins were decreased in AD with serum amyloid A-1 protein having the 

largest change (FC = 0.5, p 0.02). The remaining proteins included: beta-ala-his dipeptidase 

(FC = 0.69, p 0.0009), dopamine beta-hydroxylase (FC = 0.69, p 0.03), apolipoprotein C3 

(FC = 0.74, p 0.001), serum amyloid A-4 protein (FC = 0.8, p 0.02), multimerin-2 (FC = 0.8, 

p 0.01), apolipoprotein E (FC = 0.81, p 0.045), and afamin (FC = 0.81, p 0.01). Adiponectin 

(FC = 1.61, p-value 0.02) was the only proteins that increased in non-Hispanic White AD 

samples.

Two proteins were differentially-expressed in samples from African American/Black 

adults in Set 1 (Fig. 3c): beta-ala-his dipeptidase (FC = 0.78, p 0.04) and keratin type 

II cytoskeletal 1(FC = 0.59, p 0.048). Only beta-ala-his dipeptidase was differentially-

expressed in AD for both African American/Black and non-Hispanic White samples. A 

list of differentially-expressed proteins with corresponding p- and fold-change values for Set 

1 and Set 2 are provided in Table 2 and Supplementary Table 1 respectively.

Supervised classification of differentially-expressed proteins

Eight unique classifications were performed using the differentially-expressed proteins 

selected from volcano plots in Fig. 3b and 3c. The first SVM classification used the set 

of nine proteins that were differentially expressed in the non-Hispanic White group from 

Set 1 (Fig. 3b) as a feature set, and the non-Hispanic White group data from Set 1 for 

training. Similarly, a second classification was conducted in the same way with Set 2 

samples. Two additional classifications were performed in which the nine proteins described 

above were combined with the four variables (age/sex/education/APOE status). In total, four 

classifications were performed using the proteins that were differentially expressed in the 

samples from non-Hispanic White AD adults in Set 1. A parallel set of four classifications 

was performed using the set of proteins that were differentially expressed in samples from 

African American/Black AD adults (Fig. 3c). These proteins were tested in Set 1 and Set 2, 

either on their own or with the four clinical variables. In every case where the feature set 

included proteins that had been differentially expressed in samples from African American/

Black adults, those samples from the set being tested, were used to train the model. Results 

for all eight classifications, separated by racial group, are shown in Table 3. It should be 

noted that Table 3 exclusively includes the accuracy for test data, not training data. Test 

samples were always left out when training the models (see Methods).

Overall, when differentially-expressed proteins from the non-Hispanic White group were 

used to classify AD in the samples, an effective model (i.e., AUC was 0.91 and the accuracy 

was 86%) was developed, but only for the samples from the non-Hispanic White adults. 

In contrast, the model performed noticeably worse (i.e., AUC of 0.49 and accuracy of 

47%) when classifying the data from samples of African American/Black adults. When 

other (age, sex, education, APOE status) variables were also included in the model, the 

classification accuracy (i.e., AUC was 0.61 and the accuracy was 56%) of the samples 
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from African American/Black adults improved, yet not to the level of accuracy what would 

be required for an effective biomarker assay. Incorporating (age, sex, education, APOE 
status) variables improved the accuracy from 0.91 to 0.97 for the non-Hispanic White group, 

demonstrating that these variables could be combined with protein data to generate a model 

that can effectively predict AD in this demographic. This desirable outcome, which did not 

happen when those variables were included for the African American/Black group, suggests 

that other variables are needed to improve the accuracy of a given model for the African 

American/Black adult samples in this study.

When SVM classifications were performed on Set 2, the overall findings from Set 1 were 

generally replicated. Using data from samples in only the African American/Black adult 

group did not result in accurate classification (i.e., maximum AUC was 0.43 and the 

accuracy was 45%), either with or without (age, sex, education, APOE status) variables 

included. In Set 2, samples from non-Hispanic White adults were best classified by 

combining protein data and (age, sex, education, APOE) variables (Table 3).

Differences between the two racial groups are readily apparent when the classification 

model is built using differentially-expressed proteins (N = 2, Table 2) from the African 

American/Black group and only samples from this group to train the model. The best overall 

outcome for samples from non-Hispanic White adults occurred when Set 1 was classified

Using the clinical variables (sex/age/education/APOE status) and the protein features. In 

this case, an AUC of 0.91 and accuracy of 84% was obtained. Using similar data from 

samples in the African American/Black groups, resulted in worse classification performance 

(i.e., AUC of 0.47 and accuracy of 47%). The best overall outcome for samples from 

African American/Black adults was observed when no clinical variables were used and 

when testing data in Set 2. In that case, an improved classification was obtained (i.e., AUC 

of 0.84 and an accuracy of 70%) demonstrating how critical it was to evaluate various 

parameters and testing approaches in finding the best classification for both racial groups. 

However, it is clear that the performance outcomes of the machine learning model is also 

dependent on the samples and protein data obtained in training and test sets. In all the tests 

where samples from African American/Black adults were used for model training, more 

accurate classification without the age/sex/education/APOE status variables was obtained. 

By contrast, in three out of the four classifications where these variables were included for 

samples from non-Hispanic White adults, the samples from that group were more accurately 

classified.

DISCUSSION

In this study we performed two independent plasma proteomics experiments between 

AD and CN samples collected from African American/Black and non-Hispanic White 

participants from the University of Pittsburgh ADRC. At the time of this study, there 

were only 56 African American/Black participants that had banked plasma sample meeting 

our criterion. We used the demographics of those participants, primarily age, sex, and AD 

diagnosis, to match a similar size of non-Hispanic White participants. The AD diagnosis was 

clinically confirmed, and we used the most recent blood draw for these plasma analyses. 
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Most characteristics that we evaluated of the participants were generally similar between 

African American/Black and non-Hispanic White groups.

We identified 740 proteins in total using TMT-based quantitative proteomics on an Orbitrap 

Fusion Lumos MS instrument, which is on par with recent plasma proteomics publications 

[83–90]. However, with substantial increases in high pH reversed-phase fractionation in 

the sample processing, higher numbers of plasma protein identifications could have been 

identified [91]. Additionally, we note that our MS data acquisition method used MS3 for 

TMT measurements in order to increase the quantitative accuracy of differentially-expressed 

proteins. However, using this approach is known to increase instrument duty cycle and result 

in lesser protein identifications. After applying stringent criteria for identification, presence 

of TMT reporter ion channels across samples, and fold-change and p-value cutoffs, we 

identified a total of 27 differentially-expressed proteins (see Methods) in AD. These proteins 

were either different in a specific racial group or in comparisons of both racial groups 

together. Several of these proteins had changes in AD that were previously reported [80, 

81, 90]. Notable in this study was the inclusion of samples from African American/Black 

ADRC participants. Based on our analyses, there was only one differentially-expressed 

protein (beta-Ala-His dipeptidase) in AD that was significant in both African American/

Black and non-Hispanic White groups. Lower expression of this protein in AD for both 

groups is consistent with previous reports [90].

One of the proteins that was only differentially expressed in non-Hispanic White samples 

included ApoE, which has been widely reported as potential plasma biomarker in AD. 

There have been contradictory reports of ApoE being higher in AD [92], while others 

have reported it as lower in AD [52]. In our study, in samples from non-Hispanic White 

adults, ApoE was lower in adults in AD, whereas it did not have a significant change 

in AD versus CN in samples from African American/Black adults. Other proteins that 

were lower in samples from non-Hispanic White AD included afamin, ApoC3, serum 

amyloid A1 protein, and serum amyloid A4 protein, all of which have been reported to 

change in previous studies. Direction of change in afamin, ApoC3, and adiponectin (Table 

2) were also consistent with literature reports [47, 49, 50, 80, 90, 93–95]. Some of the 

differentially-expressed proteins (i.e., serum amyloid A1 and serum amyloid A4 proteins) 

that we identified were observed in other studies; however, the direction of change in AD 

versus CN was not consistent [90]. Two novel findings in this work were the differential 

expression of dopamine beta-hydroxylase and multimerin-2 which were only different in the 

non-Hispanic White group.

The main outcome from our machine learning analyses is that samples from the 

African American/Black and non-Hispanic White participants had notable differences in 

performance outcomes. Proteomics data from non-Hispanic White adults was classified 

substantially more accurately than data from African American/Black adults when both 

racial groups were combined in the training data (Fig. 4) and when only the non-Hispanic 

White group was used as training data (Table 3). The other main difference observed 

is that samples from the non-Hispanic White group were typically best classified when 

(age, sex, education, and APOE status) variables were included in the model, while the 

classification of the African American/Black group benefitted less from including these 
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variables. In fact, including these variables was detrimental in both cases where samples 

only from the African American/Black group were used to train the model and using 

proteins differentially expressed only in the African American/Black group. Even in the case 

where samples from both African American/Black and non-Hispanic White groups were 

used to identify differentially-expressed proteins and to train the model (Fig. 4), including 

(age, sex, education, and APOE status) variables only improved the classification of the 

samples from African American/Black adults in test data sets.

Overall, these studies show how critical it is for biomarker discovery efforts to be inclusive 

of individuals from various racial and ethnic backgrounds as it can have a huge impact on 

effectiveness of machine learning models. These studies found overall that samples from the 

non-Hispanic White group were more accurately classified with SVM based on changes in 

plasma proteins from CN and AD adults. Also, the addition of age, sex, years of education, 

and APOE status as variables in the model disproportionally improved the classification 

accuracy of the non-Hispanic White group compared to the African American/Black group. 

It is not clear from our findings that the machine learning performance outcomes are 

simply just tied to the self-reported race as many factors such as life experiences, stress, 

age, education, mixed-dementia pathology are intermixed in the construct of race and can 

contribute to protein levels in plasma. These factors should be considered for the African 

American/Black group; however, are not easy to evaluate in terms of contributions to 

differential protein expressions in AD, which ultimately was used to feed proteins into the 

machine learning model. Achieving satisfactory outcomes with machine learning for AD 

with samples from African American/Black adults was possible in this study for one set 

of plasma proteins and without the use of covariates of age, sex, years of education, and 

APOE status variables. However, these studies clearly point to a need for increased plasma 

proteomics studies and number of plasma samples from African American/Black adults that 

are cognitively normal and with clinical diagnoses of AD in order to facilitate training of 

machine learning models and importantly, ensure favorable outcomes for African American/

Black adults in plasma proteomics biomarker discovery efforts.

Study strengths and limitations

One of the major strengths of our study is the inclusion of plasma samples from both 

African American/Black and non-Hispanic White individuals. The number of samples from 

each group was evenly distributed, with no significant differences due to sex, age, or 

comorbidities. Also, the AD samples having higher percentage of APOE4 allele present, as 

reported by previous studies [1] was maintained by the samples in this study. This is the 

first study of its kind to compare these two racial groups in plasma proteomics experiments 

and directly evaluate in machine learning models for AD biomarker discovery. The majority 

of the proteins we found to be differentially expressed have been previously reported to 

change in AD; yet a few findings, with regard to AD-related protein expression, are novel, 

particularly when considering the protein expression data specific to samples from African 

American/Black adults. These findings coupled with the fact that the number of studies 

involving samples from African American/Black adults are very limited, puts emphasis 

on the need for conducting more AD research including African American/Black patient 
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samples. This additional effort is necessary to both better understand disparities in disease 

incidence but also to ensure biomarker discovery efforts are effective for everyone.

We employed a randomized blinded study design and ensured samples from each study 

group were included in every TMT batch. This allowed us to minimize error due to 

sample preparation. Also, we performed MS3 quantification, which provides highly accurate 

quantitative information and thus enhances confidence in the fold-changes observed for AD. 

This choice is potentially critical for facilitating biomarker discovery by focusing on robust 

protein changes [96]. Despite the use of MS3, which requires a higher duty cycle, we were 

able to identify similar numbers of proteins compared to recent publications using MS/MS 

approaches [83–90].

Another strength is that we had enough plasma samples to establish two independent data 

sets so that the results obtained from a training set (Set 1) could be validated with a test set 

(Set 2). There was a high degree of overlap in terms of protein identifications in the training 

and test sets that could be considered for use in machine learning. Our study design allowed 

us to stratify our data post-analysis based on the self-reported racial and ethnic group of the 

participants. In this case, the machine learning model was able to differentiate AD samples 

with high accuracy for the non-Hispanic White group using a set of nine proteins that were 

selected based on volcano plot analysis. We believe it was a strength that our study design 

allowed us to test if self-reported race was a critical factor in the accuracy of potential 

biomarker candidates. The same protein set that produced high accuracy in the non-Hispanic 

White group performed poorly when applied to the African American/Black group in both 

data sets. This strongly indicates a need for more studies that have inclusive designs and 

for evaluation of whether self-reported race or other variables are critical for biomarker 

development.

A notable limitation of this study was that protein identifications were cut in half by filtering 

out proteins that were missing TMT values for at least 50% of the samples. We note that this 

loss is likely due to batch effects; for every additional TMT batch acquired, new proteins are 

observed while others can go undetected due to the stochastic nature of the data dependent 

acquisition [97]. Also, the use of MS3 could result in proteins being missed, as they may not 

have been selected for fragmentation in one TMT batch but were in another. DIA or targeted 

MRM methods could avoid this issue by only focusing on known protein identifications 

throughout the entire run.

While our sample size was a total of N = 113, which was on par with our similar studies 

involving AD [58, 63, 64, 90, 95, 98], we note that for biomarker discovery efforts this 

sample size is still small. Obtaining samples from African American/Black participants 

is challenging with limited availability in ADRCs; however, we will need to work with 

other ADRCs and focused studies [99, 100] to generate large sample sizes especially from 

available African American/Black participants. Sample size is especially critical as any 

racial and ethnic group is not homogenous and existing knowledge in plasma proteomics for 

AD is based mostly on participants from non-Hispanic White and European backgrounds. 

We believe our moderate sample size also limited our ability to identify an adequate number 

and set of differentially-expressed proteins that could be effective for the machine learning 
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classification of African American/Black adults. This is recognized by our study design 

to split samples into two sets for training and validation which reduced sample size in 

each group. However, our sample size was substantially higher than in other reported AD 

biomarker studies of African American/Black adults [37].

Finally, we note another limitation to this study was not including additional variables other 

than age/sex/education/APOE4 status that may have improved machine learning outcomes 

for samples from the African American/Black group. For example, it is recognized that 

biases in mini-mental state examination and other cognitive tests [101, 102] may result in 

inadequacies of generating similar types of participants and that quality of education may 

be a far more important factor than years of education to include in study designs [103]. 

Genetic ancestry could be included as an additional measure as well as the use of other 

types of genetic markers that have AD risk associated with African American/Black adults 

[104]. Stratification of groups based on self-reported race has limits also because it does 

not capture life-long experiences, such as discrimination and exposure to systemic racism 

[18], that have been shown to lead to inherent biases in healthcare and also impact plasma 

proteomic cytokine levels [105, 106].

CONCLUSIONS

Plasma proteomics analysis combined with classification by machine learning is a powerful 

strategy for identifying potential biomarker candidates that can be used for AD diagnosis. 

Plasma proteomics biomarker discovery efforts have largely excluded samples from African 

American/Black adults, and this study sought to include samples from this group to 

help facilitate biomarker discovery efforts for everyone. Our analyses demonstrated that 

potential biomarker candidates for AD diagnosis could be identified with high accuracy in 

plasma samples from non-Hispanic White adults that were cognitively normal or clinically 

diagnosed with AD, and that these same candidates were not effective in samples from 

African American/Black adults. Further improved machine learning outcomes for AD 

biomarker discovery were possible with the addition of variables such as age, sex, years 

of education, and APOE4 status in the training model; however, these specific variables do 

not appear to be as effective for classifying samples from African American/Black adults 

with plasma proteomics data. Thus, the search is on for a better set of plasma proteins and/or 

combined use of clinical/demographic variables which can be used to ensure biomarker 

discovery efforts in AD are effective for everyone, including African American/Black adults.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the plasma proteomics workflow. Samples from four study groups-African 

American/Black Alzheimer’s disease (AD) and cognitively normal (CN), non-Hispanic 

White AD and CN-were obtained from the University of Pittsburgh ADRC. Samples were 

divided into Set 1 (N = 73) and Set 2 (N = 40) for this study. Samples were randomized 

into eight batches for Set 1 and four batches for Set 2. There was one QC pool sample 

in each batch and representation of one sample from each study group in each batch. The 

samples were randomly assigned TMT channels for both experiments. The experimental 
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workflow was maintained the same except for the digestion step, where in solution digestion 

was used for Set 1, while FASP digestion was employed in Set 2. The plasma samples were 

immunodepleted of the six most abundant proteins, followed by proteolytic digestion. This 

was followed by isobaric tagging using either TMT 10/11 plex labels, followed by high 

pH reversed-phase fractionation. The resulting peptides were loaded into an Ultimate 3000 

RPLC system coupled to an Orbitrap Fusion Lumos mass spectrometer for LC-MS, MS/MS 

and MS3 analysis. Example representative MS3 reporter ion spectra for TMT-10 plex sample 

(Set 1) and TMT-11 plex sample (Set 2) is also provided, demonstrating analysis of multiple 

samples using a single injection.

Khan et al. Page 23

J Alzheimers Dis. Author manuscript; available in PMC 2022 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Summary of the number of identified proteins in both sample sets. On the left, are the 

number of high confidence identified proteins as a function of missing channels for TMT 

reporter ions. Values are provided for Set 1 and Set 2. On the right are Venn diagrams, 

displaying the overlap in common proteins at each level from Set 1 and Set 2.
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Fig. 3. 
Volcano plots of differentially-expressed proteins between Alzheimer’s disease (AD) and 

cognitively normal individuals (CN) for the entire set of samples in a) Set 1 (N = 39 AD, 

N = 34 CN); b) data from the non-Hispanic White group only, Set 1 (N = 19 AD, N = 18 

CN); and c) data from the African American/Black group only, Set 1 (N = 20 AD, N = 16 

CN). Red circles coincide with proteins higher in AD compared to CN, while green circles 

coincide with proteins lower in AD. CNDP1, Beta-Ala-His dipeptidase; KRT9, Keratin 

type I cytoskeletal 9; APOL1, Apolipoprotein L1; ADIPOQ, Adiponectin; KRT1, Keratin 

type II cytoskeletal 1; APOC3, Apolipoprotein C3; MMRN2, Multimerin-2; AFM, Afamin; 

SAA1, Serum amyloid A-1 protein; SAA4, Serum amyloid A-4 protein; DPH, Dopamine 

beta-hydroxylase; APOE, Apolipoprotein E.
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Fig. 4. 
Histogram displaying classification accuracy for predicting AD in Set 1: N = 73 samples and 

Set 2: N = 40 samples. Blue bars: Accuracy determined when only the four differentially 

expressed proteins (beta-ala-his dipeptidase, keratin type I cytoskeletal 9, apolipoprotein 

L1, and adiponectin) are included in the model. Orange bars: Additional improvement in 

accuracy when clinical variables (age, sex, education, and APOE) are also included in the 

model.
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