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Abstract 

We develop a game theoretic model for managing prime time on-air ad inventory in the television industry. 

The ad inventory in this industry is priced based on rating points or the number of viewers that watch a 

commercial.  The rating points are sold through two distinct processes: the upfront, which occurs before 

the broadcast season, and the scatter, which occurs throughout during the broadcast season.  Television 

networks need to allocate their total rating points inventory to these two markets before knowing either 

the performance rating of their shows or the scatter market price, both of which are ex ante uncertain. The 

television networks offer performance guarantees on the inventory that is sold in the upfront market while 

such guarantees are not offered in the scatter market. We consider the inventory competition between two 

television networks under such a setting. To the best of our knowledge, ours is the first paper to consider 

competition in media revenue management. We establish the existence of unique Nash equilibrium under 

quantity competition and describe the sensitivity of the equilibrium outcome with respect to various 

problem parameters. We show that choosing quantity over price during the upfront is a dominant strategy 

for a television network. We compare our competitive model with a centralized system and discuss the 

managerial implications for our work. 
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1. INTRODUCTION 

The television networks, similar to other media outlets, derive their revenue almost entirely from 

advertising. Total television ad spending in the USA for the year 2016 was estimated at $63 billion, 

excluding special events such as the Olympics and election spending (Flint and Vranica, 2016). As a result, 

managing the inventory of advertising spaces optimally is of immense importance to a television network. 

Yet, revenue management in the television industry has received relatively little attention in the operations 

management literature. There are only a handful of studies that describe revenue management in this 
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industry for a single-firm (Bollapragada and Mallik, 2008; Araman and Popescu, 2010). Our objective in 

this paper is to develop a competitive model of managing the inventory of on-air advertising time in 

broadcast television industry.   

The process of selling on-air advertising time (or commercial time) in the television industry 

exhibits many interesting features. The pricing of commercial time is based on show performances, or the 

actual number of people watching a show, as measured ex-post by the media rating agencies such as A.C. 

Nielsen. This performance measure often goes by different names, including rating points, eyeballs, and 

viewership. Throughout this paper, we will use term rating points to denote the number of people watching 

a show.  As described below, commercial time could be sold based either on rating points (e.g., price per 

thousand rating points/impressions) or on time slots (e.g., price for a 30-second slot) at different times 

during a year and may or may not come with a guarantee on deliverable rating points.  

The standard practice in the broadcast television industry, which has subsequently been adopted by 

the cable television industry as well, is to sell the inventory of commercial times through two distinct 

processes: the upfront selling and the scatter selling. A broadcast year in network television in the United 

States begins in the third week of September and runs until the following summer.  The upfront typically 

occurs during the month of May, much before the start of the actual broadcast season.  At this time, all 

television networks unveil their upcoming fall prime-time program schedule and tempt the big advertisers 

and media buyers to buy airtime in bulk for the entire broadcast year.  The upfront market lasts for about 

two weeks. Since the show performances for the upcoming broadcast year are unknown at the time of the 

upfront, the television networks price sales contracts based on the guaranteed deliverable rating points using 

a negotiated price per rating point. An upfront contract for a customer specifies two things: (a) the 

guaranteed amount of rating points to be delivered at the contracted price, and (b) a minimum number of 

30-second slots for the customer.  

Because of the performance uncertainties of shows, if a television network is unable to deliver the 

guaranteed rating points in the in committed number of slots, it has to provide additional commercial slots 

until the agreed upon rating points are delivered. On the other hand, if the shows of a television network 

perform better than expected, it might be able to deliver the committed ratings points using fewer than the 

committed slots. Under such a scenario the television network still needs to air commercials for the 

customer for the committed number of slots, resulting in over delivering on the guaranteed rating points 

and loss of revenue. In summary, while the price of an upfront contract depends only on the deliverable 

rating points, both the deliverable amount of rating points and the committed number of slots are sacrosanct. 

The remaining inventory after the upfront is available for sale in the scatter market, which occurs throughout 

the broadcast season. Unlike the upfront, the commercial time is typically sold on a per-slot basis during 

the scatter season and that no rating point guarantee is offered. A commercial slot during a popular show, 
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nevertheless, commands a higher scatter price than a slot during a less popular show. The scatter price is 

unknown during the upfront season as the uncertainties associated with the show performances are not 

resolved until the broadcast year begins. The scatter market is typically used by smaller advertisers who are 

unwilling or unable to make large commitments during the upfront, as well by larger advertisers who desire 

commercial times in excess of their upfront commitments (Phillips and Young, 2012). Selling commercial 

times through upfront and scatter markets has been the standard practice in the network television industry 

since the 1950s. Cable television industry also adopted this practice starting in the 1990s. Total upfront 

commitment during the 2015-2016 broadcast year in the US was $8.36 billion and $9.45 billion respectively 

for the network television and the cable television industries (Friedman, 2015). The total upfront 

commitment in the network television industry is estimated at $8.75 billion for the 2016-2017 broadcast 

year (Shields, 2016). 

Under the scenario described above, a television network often faces the following decision 

problem: how many rating points to sell during the upfront market in the presence of competing networks?  

We propose a game theoretic model to accomplish this. We consider two competing networks, each making 

a strategic decision about how to allocate the inventory of rating points between the upfront and scatter 

markets.  Our model explicitly incorporates the performance uncertainty of the television shows as well as 

the price uncertainty of the scatter market. We establish unique Nash equilibrium of the Cournot game 

where each network chooses the amount of rating points. We show that upfront inventories of two networks 

are strategic substitutes and describe the sensitivity of the equilibrium outcome with respect to various 

problem parameters. We show that deliberately exaggerating the show performance information to its 

upfront customers is an optimal strategy for a television network. We find that setting quantity over price 

in the upfront market is a dominant strategy for each television network. We consider three extensions to 

our basic model to include client-level allocation of the upfront inventory, availability-and-performance-

dependent scatter market pricing, and information asymmetry. 

While there is an extensive literature on scheduling strategies for new programs in Television, the 

literature on media revenue management is relatively sparse.  Unlike the traditional revenue management 

problem where the available supply (e.g., the number of seats in an airplane or the number of rooms in a 

hotel) is deterministic, media revenue management problems are characterized by random supply as the 

show performances are unknown ex-ante. Bollapragada and Mallik (2008) and Araman and Popescu (2010) 

consider such problems in a single-firm setting. We make important contribution to the operations 

management literature by extending the media revenue management framework to a competitive setting, a 

first to the best of our knowledge.  While there is little transparency in practice to show that the television 

networks engage in quantity competition, we have shown that the dominant strategy of a television network 

is to choose quantity (i.e., rating points) irrespective of the action of its competitor. Our work, thus, provides 
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a theoretical validation for making quantity the key decision variable in media revenue management 

problems. Such theoretical validation is not provided by earlier works. Our work shows that the negotiated 

expected rating points of a show plays an important role in the upfront inventory decisions of a network. 

We show that a network has incentive to deliberately inflate the show performances as its expected revenue 

is increasing in the negotiated expected rating points. While extending our analyses to multiple client 

upfront planning, we show that there is a simple additive relationship of the equilibrium upfront inventories 

between the multiple client inventory planning and the aggregate inventory planning. 

The remainder of this paper is organized as follows.  The next section provides a review of the 

related literature.  Section 3 describes our model. Our results are presented in Section 4. Section 5 describes 

two extensions of our basic model. We describe the managerial implications and conclude the paper in 

Section 6. Proofs of all of our analytical results are provided in the Appendix. 

 

2. LITERATURE REVIEW 

Our work is related to two streams of research: the revenue management (more specifically, the 

media revenue management), and the supply chain and/or marketing literature where capacity and/or 

inventory is sold through two-stage processes (e.g. both futures and spot markets). We provide a brief 

review of these two streams of literature in this section.  
 

2.1 Revenue Management Literature 

The vast literature on revenue management typically focuses on perishable assets such as seats in a 

commercial airplane or rooms in a hotel. Researchers have extensively studied both pricing and capacity 

management as the levers for revenue management. We refer an interested reader to the excellent reviews 

by Talluri and van Ryzin (2004) and Bitran and Caldentey (2003).  

The key feature that distinguishes media revenue management problems from other revenue 

management problems is the uncertain supply. Unlike a hotel or an airline company, the amount of supply 

of rating points during a broadcast year (or the gross rating points GRP) is ex ante unknown to a television 

network and is realized only after the end of the broadcast year and/or after a show has been aired.  

The literature on media revenue management looks at both scheduling of shows and inventory 

management of ad times as the levers of maximizing revenue. Majority of the model-based literature deals 

with scheduling strategies for television shows to maximize show ratings, and hence, the revenues, of a 

television network. Some examples of early work in this area include Goodhardt et al. (1975), Headen et 

al. (1979), Henry and Rinne (1984), Webster (1985), Rust and Echambadi (1989), and Reddy et al. (1998). 

More recently, both sales planning and scheduling of television commercials have been studied by 

Bollapragada et al. (2002), Bollapragada and Garbiras (2004), and Bollapragada, Bussieck, and Mallik 

(2004). Gaur, Krishnamurti, and Kohli (2009) consider an extension of Bollapragada, Bussieck, and Mallik 



5 
 

(2004) to include differential weighting of conflicts between pairs of commercials; while Garcia-Villoria 

and Salhi (2015) extend the framework of Bollapragada, Bussieck, and Mallik (2004) to include target 

rating point requirements. Alaei and Ghassemi-Tari (2011) consider the prime-time scheduling problem of 

a television network to maximize its revenue where the advertisers submit bids for time units, and propose 

a genetic algorithm based solutions. A generalization of this work has been considered by Ghassemi-Tari 

and Alaei (2013). Guerriero, Miglionico, and Olivito (2016) consider the scheduling problem of an Italian 

television network where the network decides whether to accept the scheduling requests of clients with both 

rating points and budget requirements, and propose several heuristics to solve the resulting problem.  

A related stream of literature deals with scheduling movies in movie theaters to maximize revenues. 

Typical examples of such work are Swami, Eliashberg, and Weinberg (1999), Eliashberg et al. (2001), 

Somlo, Rajaram, and Ahmadi (2010), etc. We, however, note that scheduling is not the focus of our work. 

As a result we differ from this stream of literature in terms of both problem considered and the solution 

methodology employed. 

The media revenue management literature on managing the inventory of rating points and/or slots 

for commercials is relatively sparse. Talluri and van Ryzin (2004) provide a brief account of the problem, 

while Phillips and Young (2012) provide a detailed practitioner-focused description of the problem 

summarizing the management challenges associated with the problem. Jones and Koehler (2002) are 

probably the first to formally study the upfront inventory allocation problem to maximize the revenue of a 

television network. They propose an auction mechanism where multiple buyers compete for the ad slots in 

the upfront market by submitting bids.  They propose a heuristic solution to the resulting mixed integer 

program that provides a satisfactory solution within a short computation time. Both Bollapragada and 

Mallik (2008) and Araman and Popescu (2010) consider the inventory allocation problem between the 

upfront and the scatter markets. Bollapragada and Mallik (2008) consider the problem of a single, risk-

averse, network that seeks to determine optimal amount of rating points to sell in the upfront to maximize 

its expected revenue subject to a chance constraint that revenue meets or exceeds a target value with a given 

probability. They describe sensitivity of the optimal solution with respect to the audience parameters and 

provide an explanation for the widely observed industry practice of selling 60-80% of the available 

inventory in upfront. Araman and Popescu (2010) consider a single network model as well where the 

network is risk neutral and maximizes the expected revenue by choosing the upfront rating points. They 

provide further operationalization of the problem by quantifying how the aggregate upfront rating points 

can be translated into customer level allocations under a multiplicative audience performance model.  

While both Bollapragada and Mallik (2008) and Araman and Popescu (2010) study the single firm 

problem, our objective in this paper is to provide a competitive generalization of these two works by 

considering two television networks that compete in the upfront market. Our model, thus, is able to capture 
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the strategic interaction between the two networks, and establish the unique Nash equilibrium. To the best 

of our knowledge, our paper is the first to consider competition in television revenue management problems. 
 

2.2 Supply Chain/Marketing Literature 

Our work has synergy with the research in supply chain and/or marketing where capacity and/or 

inventory is sold through two-stage processes (e.g., both futures and spot markets). Xie and Shugan (2001) 

are one of the firsts to comprehensively study the phenomenon of advance selling, where a seller allows 

buyers to purchase a good both before and during the consumption periods. The key assumption in their 

work is that the buyers are uncertain about the valuations of the product when they purchase it in advance, 

and that this valuation uncertainty is not resolved until the second period (consumption period). They show 

that this valuation uncertainty is the key driver of advance selling. They provide conditions under which a 

seller should advance sell and determine the optimal prices. Several papers have considered 

variations/extensions of Xie and Shugan (2001). For example, partially-refundable advance selling has been 

studied by Xie and Gerstner (2007), Guo (2009), and Gallego and Sahin (2010). The focus of these studies 

is how much refund, if any, should a firm offer to the customers. Advance selling under capacity constraint 

has been studied by Degraba (1995) and Yu et al. (2015). Advance selling under competition has been 

studied by Shugan and Xie (2005) and Cachon and Feldman (2017). 

It is important to note that our work has fundamental differences with the cited works on advance 

selling. First, under advance selling, the buyers face an uncertain valuation of a product/service by 

purchasing it in advance. Such a scenario does not arise in our paper as the rating points sold during the 

upfront are guaranteed by the sellers. Second, under advance selling, the buys face uncertainty of valuations. 

In contrast, in our paper, the sellers face uncertainty about show performance, resulting in over- and under-

delivery of rating points. Third, and unlike the literature on advance selling, the available capacity in our 

paper (i.e., the available rating points) is random. Finally, the focus of the papers on advance selling is 

whether and when advance selling is profitable/optimal for a seller. We, in contrast, take the current 

processes in the television industry as given, and seek to develop managerial insights about the process and 

the key decision variables. As a result our modeling approach and the resulting intuitions differ vastly from 

those in the advance selling literature.  

Several researchers have studied advance booking discounts (ABD) in supply chains. The ABD 

contract between a retailer and a supplier typically has two wholesale prices, a discounted price for the 

inventory purchased before the selling season, and a regular price for replenishments during the selling 

season. Both Weng and Parlar (1999) and Tang et al. (2004) study the single-firm ABD problem while 

McCardle, Rajaram, and Tang (2004) provide a game theoretic model that provides a competitive 

generalization for the single-firm models. Chintapalli et al. (2017) explore the issue of coordinating supply 

chins through ABD contracts. Kleindorfer and Wu (2003) provide a survey of inventory management under 
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such settings. Wu and Kleindorfer (2005) develop a two-stage model that integrates spot market 

transactions with supply chain contracting. 

The cited works in two-stage inventory management typically consider demand uncertainty and 

seek to study supply contracts. The literature on ABD, similarly, considers demand uncertainty but ignores 

supply uncertainty. We differ from these works by considering both demand uncertainty (by letting the 

scatter market revenue be a function of random variables), supply uncertainty (by considering the 

performance uncertainty of the television shows). The audience uncertainty associated with our model is 

similar to yield uncertainty of the random yield literature. However, unlike the single-period random yield 

models, our work allows both over- and under-delivery on the rating points sold in upfront market. A reader 

is referred to Yano and Lee (1995) and Grosfeld-Nir and Gerchak (2004) for reviews of the random yield 

literature. 

In summary, and to the best of our knowledge, this paper is the first to provide a game theoretic 

model of television revenue management. Our paper captures the strategic interactions between two 

television networks by explicitly modeling the uncertainties associated with show performances as well as 

with scatter market prices. 

3. THE MODEL 

Consider two competing television networks (henceforth referred simply as “networks”), i and j, 

(i=1, 2; j=3-i), each interested in determining 𝑋𝑋𝑖𝑖, the aggregate amount of rating points inventory to sell in 

the upfront market to all customers. Table 1 at the end of Section 3 provides a summary of all notations 

used in the paper. The two networks (players) act non-cooperatively. The rating points of a particular show, 

and hence that of a commercial aired in a 30-second slot, on network i, i = 1,2, is modeled ex ante as a 

positive random variable iε  defined over the interval [Ai, Bi] with Bi ≥ Ai ≥ 0. Let fi(.) and Fi(.) denote the 

probability density function and the cumulative distribution function of iε  respectively. We assume Fi(.) 

to be continuously differentiable. Let μi and σi denote the mean and the standard deviation of  iε  

respectively.  Inventory is assumed to be homogeneous, i.e., different ads of a network capture similar 

audiences. This assumption allows us to write the total rating points generated by network i in ni  slots 

simply as iin ε . Araman and Popescu (2010) make an identical assumption to model the total audience and 

note that this multiplicative model corresponds to the stochastically proportional yield models used in 

random yield problems. Its main advantage is that it is simple to work with and is fairly general (see Yano 

and Lee, 1995). As explained in Section 1, in addition to choosing 𝑋𝑋𝑖𝑖, each network commits to airing 

commercials in ni slots out of the available Ni  slots during the broadcast year. Consistent with the practice 

that a television network does not change the number of commercial pods per hour of programming based 

on show performances, we assume Ni, 𝑖𝑖 = 1,2, to be known and exogenous. The upfront contract of each 
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network guarantees the delivery of the promised rating points Xi as well as the number of committed slots, 

ni. The number of committed slots, ni, is determined based on the agreed upon expected rating points of 

shows that a television network and its customers negotiate on. We let vi denote the agreed upon expected 

rating points of a single slot for network i. Therefore, ni=Xi/vi. Note that vi is not necessarily equal to µi, 

the expected value of 𝜀𝜀𝑖𝑖. 

Any available rating point inventory not sold during the upfront is sold during the scatter market, 

which occurs throughout the broadcast season. The scatter price of network i, denoted by psi, is unknown 

ex ante. A network with hit shows, nevertheless, commands a higher scatter price compared to a network 

without hit shows. We model the scatter price of network i as linearly increasing in the show performance 

𝜀𝜀𝑖𝑖, i.e., 𝑝𝑝𝑠𝑠𝑠𝑠 = 𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖, where θi  > 0 and is a given constant. Section 5.2 of our paper describes a generalization 

where we let the scatter price depend on the availability in the scatter market (thus, making psi explicitly 

dependent on Xi). Recall from Section 1 that unlike the upfront market, no performance guarantee is offered 

by the networks during the scatter market and that the commercial time is sold on a per 30-second-slot 

basis. Thus, psi in our model represents the price of a 30-second slot for network i. While a network can air 

ads that can be of either 15-second or 30-second long, the 30-second is considered to be the standard unit 

for pricing, and that a 15-second slot is assumed to command half the price of a 30-second slot 

(Bollapragada and Mallik 2008). A network pays a penalty when the total realized rating points through the 

entire season, iiN ε , is not sufficient to meet the contracted rating points during the upfront market 𝑋𝑋𝑖𝑖. Let 

gi ≥0 be the penalty per rating point for not meeting the upfront commitments. To avoid a trivial solution, 

we will assume gi ≥ θi, i.e., the penalty for each unfilled rating point is greater than the price coefficient of 

the rating points in the scatter market. The scatter market revenue of network i, siπ , is given by: 


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When ii v≥ε , network i is able to meet the upfront rating points commitment using fewer than 𝑛𝑛𝑖𝑖 = 𝑋𝑋𝑖𝑖/𝑣𝑣𝑖𝑖 

slots. However, it must still offer the promised ni slots to customers, resulting in delivering more than 

promised. Thus, it will have only (𝑁𝑁𝑖𝑖 − 𝑛𝑛𝑖𝑖 ) or (𝑁𝑁𝑖𝑖 − 𝑋𝑋𝑖𝑖/𝑣𝑣𝑖𝑖 ) slots to sell in the scatter market. When 

iiii vNX ≤≤ ε/ , network i is unable to meet the upfront rating points commitment using the promised ni 

slots. Therefore, it must schedule additional slots (known as “make good” allocation in the industry) to 

meet the upfront commitment. It will then have )/( iii XN ε−  slots available for the scatter market. When 
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iii NX /<ε , network i must pay a penalty as the total rating points generated during the entire broadcast 

year is not enough to satisfy its upfront commitments.  

 We use Cournot competition to model the competition between the two television networks in the 

upfront market. We later show in Section 4.1 that choosing quantity is a dominant strategy for each network 

over choosing price. The two players choose their respective guaranteed rating points X1 and X2 

simultaneously.  Given X1 and X2, the price is set to clear the market. We use linear price functions of the 

following form:  

𝑝𝑝1 = 𝛼𝛼1 − 𝛽𝛽1𝑋𝑋1 − 𝛾𝛾𝑋𝑋2,         (2a) 

𝑝𝑝2 = 𝛼𝛼2 − 𝛾𝛾𝑋𝑋1 − 𝛽𝛽2𝑋𝑋2,         (2b) 

where αi ≥ 0 represents the maximum price clients are willing to pay network i for one unit of rating point;  

βi, ≥ 0 represents the price reduction for one additional unit of network i’s rating points supply; and γ ≥ 0 

captures the substitutability of rating points between the two networks. When 𝛼𝛼1 = 𝛼𝛼2 and 𝛽𝛽1 = 𝛽𝛽2 = 𝛾𝛾, 

the rating points of the two networks are perfect substitutes. We assume 𝛽𝛽1𝛽𝛽2 − 𝛾𝛾2 > 0 and 𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗 − 𝛼𝛼𝑗𝑗𝛾𝛾 >

0, for i ≠ j, i=1, 2.  By equations (2a) and (2b), the upfront price for network i is inversely related to its as 

well as its competitor’s rating points guarantee.  Similar price functions are common in literature (see for 

example, Tsay and Agrawal 2000; Singh and Vives 1984). Our choice of Cournot competition to model the 

competition in the upfront market is consistent with literature. Both Bollapragada and Mallik (2008) and 

Araman and Popescu (2010) use quantity as the decision variable. In practice, television networks price 

upfront contracts based on the guaranteed deliverable rating points with a specified price per rating point 

(Bollapragada and Mallik 2008).  Although both price and guaranteed rating points are specified in the 

contract, the guaranteed rating points are usually the starting point that networks need to commit and 

deliver-on first. Quantity competition, thus, is the appropriate choice to model competition in the upfront 

market. We, nevertheless, compare quantity strategy with price strategy in Section 4.2 and show that setting 

quantity indeed is a dominant strategy for each network.  

 Note that our formulation for upfront prices in equation (2a) and (2b) allow us to capture the 

relatively recent phenomena of time shifting and/or cord-cutting. Time shifting is said to occur when a 

viewer records a television show through a recording device (a DVR, for example) and watches at a later 

time; while cord-cutting refers to watching a television show using a streaming device over the internet. 

Whether to include the rating points generated through such activities towards counting the total rating 

points of a show is a hotly debated topic between a network and its customers (Steinberg 2016c). Steinberg 

(2017) further notes that television networks such as CBS in the United States has agreed to price 2017 

upfront contracts using “total content ratings” specified by Nielsen Media Research, which includes live-

television rating points, internet streaming, and time-shifted rating points for a period of 7 days after the 

airing of a show. The upfront price is still quoted in terms of price per thousand rating points; the only 
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feature that changes is how the rating points are counted. Our modeling framework is general enough to 

accommodate these phenomena of time shifting and/or cord-cutting. Recall that the random variable 𝜀𝜀𝑖𝑖 in 

our model denotes the GRP or the total rating points generated by a network during a broadcast year; while 

our decision variable 𝑋𝑋𝑖𝑖 represents the amount of rating points to sell in the upfront. In order to account for 

time-shifting and/or internet stream in our model, we will simply interpret  𝜀𝜀𝑖𝑖 and 𝑋𝑋𝑖𝑖 to include time-shifted 

and internet-streamed rating points in our rating point counts. 

The expected revenue of a network is the sum of upfront revenue and the expected scatter revenue. 

The networks choose respective upfront guaranteed rating points simultaneously and non-cooperatively. 

Thus, the expected revenue maximization problem of network i, i = 1, 2, is given by: 

Max
𝑋𝑋𝑖𝑖

𝜋𝜋𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑋𝑋𝑖𝑖 + 𝐸𝐸[𝜋𝜋𝑠𝑠𝑠𝑠] 

= 𝑝𝑝𝑖𝑖𝑋𝑋𝑖𝑖 + 

   ∫ 𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖(𝑁𝑁𝑖𝑖 − 𝑋𝑋𝑖𝑖/𝑣𝑣𝑖𝑖)𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖
𝐵𝐵𝑖𝑖
𝑣𝑣𝑖𝑖

+ ∫ 𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖(𝑁𝑁𝑖𝑖 − 𝑋𝑋𝑖𝑖/𝜀𝜀𝑖𝑖)𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖
𝑣𝑣𝑖𝑖
𝑋𝑋𝑖𝑖/𝑁𝑁𝑖𝑖

− 𝑔𝑔𝑖𝑖 ∫ (𝑋𝑋𝑖𝑖 − 𝑁𝑁𝑖𝑖𝜀𝜀𝑖𝑖)𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖
𝑋𝑋𝑖𝑖/𝑁𝑁𝑖𝑖
𝐴𝐴𝑖𝑖

, 

            (3) 

where, p1, and p2 are given by equations (2a) and (2b) respectively. Our formulation in equation (3) can 

easily incorporate a discount factor for the scatter market profit by simply scaling the parameters 𝜃𝜃𝑖𝑖 and 𝑔𝑔𝑖𝑖 

appropriately. Note that the inherent uncertainty of the show performances gives rise to the strategic 

behavior among the television networks (advertisers prefer to buy ad time on a network with hit shows). 

This uncertainty is highly significant in the upfront market but gets resolved rather quickly at the start of 

the scatter market. As a result, our formulation assumes competition in the upfront market but not in the 

scatter market. Using equation (3) and by setting 𝜕𝜕𝜋𝜋𝑖𝑖/𝜕𝜕𝑋𝑋𝑖𝑖=0, Xi is found to satisfy the following first order 

conditions for a given Xj, j≠i: 

𝛼𝛼𝑖𝑖 − 2𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 − 𝛾𝛾𝑋𝑋𝑗𝑗 − 𝜃𝜃𝑖𝑖′ − (𝑔𝑔𝑖𝑖 − 𝜃𝜃𝑖𝑖)𝐹𝐹𝑖𝑖(𝑋𝑋𝑖𝑖/𝑁𝑁𝑖𝑖) = 0,               (4) 

where, 𝜃𝜃𝑖𝑖′ = 𝜃𝜃𝑖𝑖𝐹𝐹𝑖𝑖(𝑣𝑣𝑖𝑖) + 𝜃𝜃𝑖𝑖
𝑣𝑣𝑖𝑖
∫ 𝜀𝜀𝑖𝑖𝑓𝑓𝑖𝑖
𝐵𝐵𝑖𝑖
𝑣𝑣𝑖𝑖

(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖 = 𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑖𝑖
𝑣𝑣𝑖𝑖
∫ (1 − 𝐹𝐹𝑖𝑖
𝐵𝐵𝑖𝑖
𝑣𝑣𝑖𝑖

(𝜀𝜀𝑖𝑖))𝑑𝑑𝜀𝜀𝑖𝑖 ≥ 𝜃𝜃𝑖𝑖.  (5) 

The quantity 𝜃𝜃𝑖𝑖′, in equations (4) and (5), is a constant that represents the expected loss of revenue in the 

scatter market from the unit increase of the upfront inventory Xi. When Xi increases by one unit, the number 

of committed slots in the upfront increases by (1/vi) units, which also tends to reduce the slots in the scatter 

market by (1/vi) units and the scatter revenue by (θi/vi) units. In addition, when rating is actually higher 

than vi, the network cannot garner additional revenue from better performance, which is an additional 

opportunity cost to network i. Therefore, 𝜃𝜃𝑖𝑖′ is greater than θi.  Replacing the terms 𝛼𝛼𝑖𝑖 − 2𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 − 𝛾𝛾𝑋𝑋𝑗𝑗  in 

equation (4) by pi (per equations 2a, 2b), we note that Xi satisfies Fi(
𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖

)=𝑝𝑝𝑖𝑖−𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖−𝜃𝜃𝑖𝑖
′

𝑔𝑔𝑖𝑖−𝜃𝜃𝑖𝑖
, which has a similar 

structure as that of the classic newsvendor solution.   
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It is also worth noting that our model formulation in (1) and (3) assume that 𝑋𝑋𝑖𝑖 ≤ 𝑁𝑁𝑖𝑖𝑣𝑣𝑖𝑖. Recall that 

𝑣𝑣𝑖𝑖 is the agreed upon expected rating points for a slot between a network and its customers. Thus, 𝑋𝑋𝑖𝑖 ≤

𝑁𝑁𝑖𝑖𝑣𝑣𝑖𝑖 simply implies that the amount of rating points sold by network i in the upfront market does not exceed 

the total rating points it might generate during the entire broadcast season based on agreed upon rating 

points per slot. While it is mathematically possible to have 𝑋𝑋𝑖𝑖 > 𝑁𝑁𝑖𝑖𝑣𝑣𝑖𝑖, a rational network, in practice, will 

not choose to commit all available slots during the upfront. Bollapragada and Mallik (2008) report that it 

has been a common practice in the industry to sell about 60-80% of expected inventory during the upfront. 

Furthermore, we will later show that network i has an incentive to specify a large vi, which makes the 

relation 𝑋𝑋𝑖𝑖 ≤ 𝑁𝑁𝑖𝑖𝑣𝑣𝑖𝑖 easier to hold mathematically. It could also be shown that  𝛼𝛼𝑖𝑖 − 2𝛽𝛽𝑖𝑖𝑁𝑁𝑖𝑖𝑣𝑣𝑖𝑖 − 𝜃𝜃𝑖𝑖′ − (𝑔𝑔𝑖𝑖 −

𝜃𝜃𝑖𝑖)𝐹𝐹𝑖𝑖(𝑣𝑣𝑖𝑖) ≤ 0 is a sufficient condition for 𝑋𝑋𝑖𝑖 ≤ 𝑁𝑁𝑖𝑖𝑣𝑣𝑖𝑖 to hold. Therefore, for the remainder of the paper we 

will assume that the condition 𝑋𝑋𝑖𝑖 ≤ 𝑁𝑁𝑖𝑖𝑣𝑣𝑖𝑖 holds. 

 

Table 1: Summary of Notations 

Notation Explanation 

𝑖𝑖, 𝑗𝑗 Index on the television networks, 𝑖𝑖, 𝑗𝑗 = 1,2; 𝑗𝑗 ≠ 𝑖𝑖 

𝜀𝜀𝑖𝑖 Random variable denoting rating point of a single advertising slot of network i, 

𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖: mean and standard deviation of 𝜀𝜀𝑖𝑖 

𝐹𝐹𝑖𝑖: CDF of 𝜀𝜀𝑖𝑖 

𝑋𝑋𝑖𝑖 Upfront inventory choice of network i (decision variable) 

𝑝𝑝𝑖𝑖 ,𝑝𝑝𝑠𝑠𝑠𝑠 Upfront and scatter prices, respectively, of network i 

𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖, 𝛾𝛾,𝜃𝜃𝑖𝑖 Demand function parameters; 𝑝𝑝𝑖𝑖 = 𝛼𝛼𝑖𝑖 − 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 − 𝛾𝛾𝑋𝑋𝑗𝑗; 𝑝𝑝𝑠𝑠𝑠𝑠 = 𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖 

𝑣𝑣𝑖𝑖 Agreed upon rating point of a slot for network i,  

𝑛𝑛𝑖𝑖 Number of slots committed by network i during the upfront, 𝑛𝑛𝑖𝑖 = 𝑋𝑋𝑖𝑖/𝑣𝑣𝑖𝑖 

𝑁𝑁𝑖𝑖 Total number of available slots for network i  

𝑔𝑔𝑖𝑖 Penalty per rating point for not delivering on upfront commitments for network 

i 

 

  

4. RESULTS AND INSIGHTS 

 This section describes our results and insights. We first prove the existence of the unique Nash 

equilibrium and then proceed to develop insights about the equilibrium outcome. The following lemma 

describes our first result. 
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Lemma 1: The best response function of network i, 𝑋𝑋𝑖𝑖∗(𝑋𝑋𝑗𝑗), decreases in Xj. 
 

The proofs of all results are included in the Appendix. Lemma 1 indicates that the upfront inventories of 

the two networks, Xi and Xj, are strategic substitutes. i.e., given one network commits more rating points 

during the upfront, the other network should commit less. This substitutability is captured by the parameter 

γ in equations (2a) and (2b).  
 

Proposition 1: There exists a unique Nash equilibrium to the upfront inventory game under Cournot 

competition.  
  

Media revenue management is a highly complex problem and that the literature on media revenue 

management is relatively sparse. We are not aware of any work that studies competition in media/television 

revenue management. Planning for the overall upfront capacity (Xi in our model) is the most strategic 

decision a television network makes. Proposition 1 ensures the existence of unique equilibrium in this game. 

In addition to providing the theoretical basis for additional analyses, this result assures a rational network 

of the feasibility of scientific revenue management provided the other network is also rational. 
 

Proposition 2: 

(a) Network i’s equilibrium upfront inventory  𝑋𝑋𝑖𝑖∗ increases in the parameters αi, βj, θj, gj, vi, and Ni, and 

decreases in the parameters αj, βi, θi, gi, vj, and Nj, for 𝑖𝑖 = 1, 2;  𝑗𝑗 ≠ 𝑖𝑖. 

(b) In particular, when the two networks are symmetric in parameters, the equilibrium upfront inventory 

𝑋𝑋𝑖𝑖∗ increases in α, v, and N, and decreases in the parameters β, θ, g, and γ. 
 

Proposition 2 describes the sensitivities of the equilibrium solution with respect to various problem 

parameters. The parameter αi in our model (see equations 2a, 2b) represents customers’ maximum 

willingness to pay. Per Proposition 2, the equilibrium upfront inventory of a network is increasing in its 

own parameter αi and is decreasing in its competitor’s. A customer’s maximum willingness to pay in the 

upfront is often dictated by the potential viewership of a network’s shows. Thus, a network with a strong 

lineup of shows (this might happen when a network has a stable lineup of hit shows for the upcoming 

broadcast season) should sell more in the upfront market while the competing network should sell less in 

the upfront. Per Bollapragada and Mallik (2008), NBC seems to be following this strategy. Our work, thus 

provides a theoretical validation for this strategy. The parameter βi represents the price sensitivity of the 

customers. Expectedly, the equilibrium upfront inventory of a network decreases in the price sensitivity 

parameter of its own customers and increases in the price sensitivity parameter of its competitor’s 

customers. The scatter price in our model is dependent on show performance of a network. The parameter 

θi represents the scaling parameter for the scatter price. As θi increases, all else being equal, the scatter 
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market becomes more attractive to network i. As a result, it reduces its equilibrium upfront inventory 𝑋𝑋𝑖𝑖∗. 

However, as elaborated in Lemma 1, the upfront inventories of the two networks are strategic substitutes. 

Therefore, as 𝑋𝑋𝑖𝑖∗decreases, 𝑋𝑋𝑗𝑗∗increases, implying 𝑋𝑋𝑗𝑗∗increases with θi. The scatter market price coefficient 

of one network, thus, influences the upfront inventory choice of both networks. Finally, it is intuitive that 

the equilibrium upfront inventory of a network is increasing in its total number of slots Ni and the agreed 

upon expected rating points of a slot vi. 

 Proposition 2(b) describes the sensitivities of the equilibrium outcome when the two television 

networks are symmetric in parameters. The sensitivity with respect to the maximum willingness to pay 

parameter α merits a discussion. A common practice in the television industry is to sell more in a “strong” 

upfront. Examples of such practices involving all major broadcast television networks have been reported 

by Chunovic (2003), while Steinberg (2005) reports a similar practice at ABC. Formally, upfront “A” is 

stronger than upfront “B” when 𝑝𝑝𝑖𝑖𝐴𝐴�𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗� ≥ 𝑝𝑝𝑖𝑖𝐵𝐵�𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗�, for any given 𝑋𝑋𝑖𝑖,𝑋𝑋𝑗𝑗 , 𝑖𝑖 ≠ 𝑗𝑗 . Under symmetric 

parameters, a strong upfront will be characterized by a higher value of the parameter α. Per Proposition 

2(b), selling more in a strong upfront is indeed an optimal practice. Our result, thus, is able to explain the 

observed practice. Interestingly, while studying a single firm problem, Bollapragada & Mallik (2008) 

conclude that a network should sell less in a strong upfront for most realistic values of the problem 

parameters and that selling more in a strong upfront cannot be an optimal strategy. While our objective 

function is different from theirs, our competitive model is able to explain the observed practice under 

relatively mild assumption of symmetric parameters. 

 The effect of the parameter 𝛾𝛾 on the equilibrium upfront inventory 𝑋𝑋𝑖𝑖∗ is ambiguous. However, 

Proposition 2(b) indicates that under the assumption of symmetric parameters, the equilibrium upfront 

inventory of a firm decreases in the parameter γ. A higher positive value of the parameter γ represents higher 

substitution effect. Thus, as the inventory becomes more homogeneous, the equilibrium upfront price falls. 

A rational network responds to this by reducing the upfront inventory. Similarly, it could be shown that 

when that parameters of the two networks are symmetric, the equilibrium upfront inventory 𝑋𝑋𝑖𝑖∗ is increasing 

in total number of available slots N. 
 

Proposition 3: Network i’s equilibrium expected profit is increasing in vi, and is decreasing in vj, i.e., 

𝜋𝜋𝑖𝑖(𝑋𝑋𝑖𝑖∗,𝑋𝑋𝑗𝑗∗ )/𝜕𝜕𝑣𝑣𝑖𝑖 ≥ 0, and  𝜕𝜕𝜋𝜋𝑖𝑖(𝑋𝑋𝑖𝑖∗,𝑋𝑋𝑗𝑗∗ )/𝜕𝜕𝑣𝑣𝑗𝑗 ≤ 0, for 𝑖𝑖 = 1, 2;  𝑗𝑗 ≠ 𝑖𝑖. 
 

Recall that vi is the agreed upon expected rating points for a slot, which is not necessarily the same as 𝜇𝜇𝑖𝑖, 

the mean of the rating points distribution. Proposition 3 indicates that a network has incentive to exaggerate 

rating points of its shows, as the equilibrium expected profit is increasing in vi. Why does this happen? As 

elaborated in Section 1, the upfront contract, while priced exclusively based on deliverable rating points, 
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promises a certain number of slots as well. When the shows of a network perform better than expected, the 

promised number of rating points will likely be met by fewer than the promised number of slots. The 

network, however, is contractually obligated to offer its customers the promised number of slots. This 

results in a loss of revenue as the network over-delivers on the rating points without any additional revenue. 

Exaggerating show performances results in fewer number of promised slots. This reduces the probability 

of over-delivery and that any shortfall in rating points can be made up using “make good” allocations. 

 Shows performing better than expected are not uncommon in the television business. During the 

2014-2015 broadcast year, both “Gotham” on FOX and “Scorpion” on CBS have reportedly performed 

much better than expected (Collins, 2014). Similarly, “Apprentice” on NBC or “Desperate Housewives” 

on ABC performed much better than expected during their respective opening seasons, resulting in a loss 

of revenue. It is indeed a well-established practice to inflate the show performances in the television 

industry. Proposition 3, thus, provides an explanation for the observed practice. Note, however, that per 

Proposition 2, as vi increases, so does the equilibrium rating points guarantee 𝑋𝑋𝑖𝑖∗. As a result, exaggeration 

of show performances has only limited potential for reducing the probability of over-delivery and/or 

improving equilibrium profit.  

We study the effect of variance of show performance on the equilibrium upfront inventory next. 

To accomplish this, we define a new random variable 𝜀𝜀𝜏𝜏𝜏𝜏 = (1 − 𝜏𝜏𝑖𝑖)𝜇𝜇𝑖𝑖 + 𝜏𝜏𝑖𝑖𝜀𝜀𝑖𝑖 , where 0 ≤ 𝜏𝜏𝑖𝑖 ≤ 1 is a 

constant, to replace the random variable εi representing the show performances. Note that by definition,  

𝜀𝜀𝜏𝜏𝜏𝜏 = 𝜇𝜇𝑖𝑖 when τi = 0, and 𝜀𝜀𝜏𝜏𝜏𝜏 = 𝜀𝜀𝑖𝑖 when τi =1; and that 𝐸𝐸(𝜀𝜀𝜏𝜏𝜏𝜏) = 𝜇𝜇𝑖𝑖 ,𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝜏𝜏𝜏𝜏) = 𝜏𝜏2𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖). Thus, εi is a 

special case of the new random variable ετi, and that the variance of 𝜀𝜀𝜏𝜏𝜏𝜏 increases as τi increases. Therefore, 

the parameter τi is an indicator of variability of show performances. The purpose of defining 𝜀𝜀𝜏𝜏𝜏𝜏  is to 

parameterize the uncertainty effect of show performances while preserving the mean effect of that 

uncertainty. As Gerchak and Mossman (1992) point out, the benefit of adopting this mean-preserving 

parameterization is that it provides a mechanism for exploring changes resulting from exogenous changes 

in uncertainty.  A similar parameterization can also be found in Li and Atkins (2002) and in Song et al. 

(2008). The following proposition describes our result. 
  

Proposition 4:  If 𝑣𝑣𝑖𝑖 ≥ 𝜇𝜇𝑖𝑖  and 𝛼𝛼𝑖𝑖 − 2𝛽𝛽𝑖𝑖𝜇𝜇𝑖𝑖𝑁𝑁𝑖𝑖 − 𝜏𝜏𝑖𝑖𝜃𝜃𝑖𝑖′ − (𝑔𝑔𝑖𝑖 − 𝜃𝜃𝑖𝑖)𝐹𝐹𝑖𝑖(𝜇𝜇𝑖𝑖) ≤ 0, then 𝑋𝑋𝑖𝑖∗ decreases in τi and 

increases in  τj, i,j=1,2.    
 

Under a set of sufficient conditions, the equilibrium upfront inventory of a network is decreasing in its 

variance of shows, and is increasing in its competitor’s show variance. The sufficient conditions in the 

proposition ensures that 𝑋𝑋𝑖𝑖∗ ≤ 𝑁𝑁𝑖𝑖𝜇𝜇𝑖𝑖, or the equilibrium upfront inventory choice of a network cannot exceed 

the total expected rating points for the entire season. In our numerical experimentation we find that a wide 
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range of parameters that satisfy the condition  𝑋𝑋𝑖𝑖∗ ≤ 𝑁𝑁𝑖𝑖𝜇𝜇𝑖𝑖.  The uncertainty of the show performance is 

likely to be high when a network starts a new broadcast year with many new shows. In practice, many 

television shows run across multiple seasons. In fact there are examples in recent years when one network 

has entered a broadcast year with few new shows while other networks have had new shows. Under such a 

scenario, per Proposition 4, the network with new shows should sell less in the upfront, while a network 

with a relatively stable lineup should sell more in the upfront as its inventory is a strategic substitute of the 

inventory of the other network. The result is intuitive. When show uncertainties are high, saving inventory 

for the scatter allows a network to reduce the chances of over-delivery or paying a penalty on the promised 

upfront rating points. 

 We next turn to a numerical study to derive insights about how other parameters of our model affect 

the equilibrium upfront inventory as well as the equilibrium expected profit.  

 

Numerical Study 1 

We conduct numerical experiments involving a symmetric game with two competing television 

networks. The baseline parameters for the numerical study, for 𝑖𝑖 = 1, 2, are as follows: 𝑁𝑁𝑖𝑖 = 18,000; 𝛼𝛼𝑖𝑖 =

$100 per one thousand rating points; 𝛽𝛽𝑖𝑖 = $10−12 per rating point; 𝛾𝛾 = $0.60 × 10−12 per rating point; 

𝜃𝜃𝑖𝑖 = $0.03 per one thousand rating points; 𝑔𝑔𝑖𝑖 = $80 per one thousand rating points. The random variable 

𝜀𝜀𝑖𝑖, denoting the show performance, is assumed to follow normal distribution with baseline parameters 𝜇𝜇𝑖𝑖 =

1500,000 and 𝜎𝜎𝑖𝑖 = 450,000 rating points. Phillips and Young (2012), in Tables 11.1 and 11.2 of their 

work, provide estimates of upfront prices for thousand rating points for several television networks, 

including ABC, CBS, FOX, and NBC. Our baseline parameter values are chosen to be consistent with those 

provided by Phillips and Young (2012). 

 

           
Figure 1(a): Plot of equilibrium upfront guarantee (X*) Figure 1(b): Plot of equilibrium expected profit                                                               
vs. the mean of 𝜀𝜀𝑖𝑖 (normal distribution)   vs. the mean of 𝜀𝜀𝑖𝑖 (normal distribution)        
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Figure 2(a): Plot of equilibrium upfront guarantee (X*) Figure 2(b): Plot of equilibrium expected profit                                                               
vs. the mean of 𝜀𝜀𝑖𝑖 (uniform distribution)   vs. the mean 𝜀𝜀𝑖𝑖 (uniform distribution)        
Figure 1(a) above shows how the equilibrium upfront inventory (or the guaranteed rating points) changes 

with respect to the mean of the show performances 𝜇𝜇𝑖𝑖 for different values of the substitutability parameter 

γ, while Figure 1(b) shows how the expected profit of a network changes with respect to 𝜇𝜇𝑖𝑖. The random 

variable for show performance is assumed to be normal for these plots with parameter values set at their 

respective baseline values. Per Figure 1(a), the equilibrium upfront inventory increases with the mean, for 

a given standard deviation. The result is intuitive: a higher mean of show performance allows a network to 

offer more inventory in the upfront. Figure 1(a) also shows that for a given mean of show performance, the 

upfront inventory is decreasing in γ. This is consistent with Proposition 2(b) as the upfront inventories of 

the two networks are strategic substitutes. Per Figure 1(b), for relatively low value of γ, the equilibrium 

expected profit of a network is non-decreasing in the mean of show performances. However, a similar claim 

cannot be made when γ is relatively high (for γ = 0.6 or 0.9). As the mean of show performance increases, 

so does the equilibrium upfront inventory, and the upfront price falls consequently. The price reductions 

become significant at relatively higher values of γ, resulting in a lower expected profit. 

 To study the sensitivity of the results in Figures 1(a) and 1(b) with respect to the normal distribution 

assumption, we have repeated our numerical study under the uniform distribution assumption of show 

performances.  Figures 2(a) and 2(b) describe our results. To vary the mean of the uniform distribution 

while keeping the variance constant, we have varied the range of the uniform distributions. For example, to 

obtain a mean of 1500000, we have considered the uniform distribution over the range [1400000, 1600000]; 

while to obtain a mean of 1600000, we have considered the uniform distribution over the range [1500000, 

1700000]; etc. Figures 2(a) and 2(b) are qualitatively similar to Figures 1(a) and 1(b) respectively. Finally, 

it is worthwhile to mention that qualitative nature of the plots in the Figures 1(a) and 1(b) remain unchanged 

when plotted for different values of the parameter vi, the agreed upon expected rating of a show. 

Under a set of sufficient conditions, Proposition 4 describes the sensitivity of the equilibrium 

upfront inventory with respect to 𝜏𝜏𝑖𝑖 , which is a measure of the variability of show performances. We 

conclude Numerical Study 1 with a discussion about how 𝜎𝜎, the standard deviation of show performance, 

might affect the equilibrium upfront inventory and the expected profit of a network. Figures 3(a) and 4(a) 
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below describe the sensitivity of the equilibrium upfront inventory with respect to the standard deviation of 

the show performance for normal and uniform distributions respectively. The results are intuitive and are 

consistent with Proposition 4: a higher variably of show performance induces a network to reduce the 

upfront inventory. Figures 3(b) and 4(b) below describe the sensitivity of the equilibrium expected profit 

with respect to the standard deviation of the show performance for normal and uniform distributions 

respectively. The plots show that an increase in the variability of the show performance reduces the 

equilibrium expected profit; and that for a given standard deviation, the expected profits are lower when 

the shows of the two networks are close substitutes (higher values of γ). 

                
Figure 3(a): Plot of equilibrium upfront guarantee (X*) Figure 3(b): Plot of equilibrium expected profit                                                               
vs. the standard deviation of 𝜀𝜀𝑖𝑖 (normal distribution)  vs. the standard deviation of 𝜀𝜀𝑖𝑖 (normal distribution)        
 
 

       
Figure 4(a): Plot of equilibrium upfront guarantee (X*) Figure 4(b): Plot of equilibrium expected profit                                                               
vs. the standard deviation of 𝜀𝜀𝑖𝑖 (uniform distribution)  vs. the standard deviation of 𝜀𝜀𝑖𝑖 (uniform distribution)        
 

 

4.1 Lack of Transparency, Quantity Competition, and Price Competition 

 Consistent with the literature, our analysis so far assumes a Cournot competition, where each 

network sets a quantity (i.e., the upfront rating points inventory) and the price is determined endogenously 

to clear the market. In reality, the upfront inventory allocation is a highly complex process that often lacks 

transparency (Vranica 2006). Vranica (2006) further states, “Networks keep advertisers in the dark about 

demand, leaving media buyers to pick up scraps of information as they bargain. Prices are often based on 

what an advertiser has paid in the past, rather than purely on demand.” Numerous articles in the popular 
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business press confirm this reality for the 2016 upfront as well (see, for example, Shields, 2016). Under 

such an environment a pure quantity competition model may not be a completely realistic representation of 

the upfront market. Our objective in this paper is to develop as much insight as possible about the 

competitive upfront inventory allocation problem. As a result, we consider following four possible models 

in this subsection: 

• Model Q, where network 1 chooses quantity (rating points), while network 2 chooses price; 

• Model P, where network 1 chooses price, while network 2 chooses quantity (rating points); 

• Model B, where both networks choose price (the Bertrand model); and 

• Model C, where both networks choose quantity (the Cournot model). 

Our discussions so far have focused on Model C above, or on the Cournot model. If the networks are 

involved in a Bertrand competition (Model B), then each firm will maximize their expected profit by 

choosing the upfront prices p1 and p2. Using equations (2a) and (2b), the resulting upfront inventories (or 

the guaranteed rating points) are as follows: 

𝑋𝑋1 = 𝑎𝑎1 − 𝑏𝑏1𝑝𝑝1 + 𝑐𝑐𝑝𝑝2,         (6) 

𝑋𝑋2 = 𝑎𝑎2 − 𝑏𝑏2𝑝𝑝2 + 𝑐𝑐𝑝𝑝1,          (7) 

where, 𝑎𝑎𝑖𝑖 = (𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗 − 𝛼𝛼𝑗𝑗𝛾𝛾)/(𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗 − 𝛾𝛾2), 𝑏𝑏𝑖𝑖 = 𝛽𝛽𝑖𝑖/(𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗 − 𝛾𝛾2), and 𝑐𝑐 = 𝛾𝛾/(𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗 − 𝛾𝛾2).  

The formulations for other two models, P and Q, are similar. For example, in model P, network 1 maximizes 

its expected profit by determining price p1 given networks 2’s decision of X2. By rewriting equation (2a), 

Network 1’s inventory, consequently, is given by  

𝑋𝑋1 = (𝛼𝛼1 − 𝛾𝛾𝑋𝑋2 − 𝑝𝑝1)/𝛽𝛽1.        (8) 

Network 2 maximizes its expected profit by determining X2 given network 1’s decision of p1. By rewriting 

equation (7), Network 2’s price p2 is given by 

𝑝𝑝2 = (𝑎𝑎2 + 𝑐𝑐𝑝𝑝1 − 𝑋𝑋2)/𝑏𝑏2.         (9) 

Following an approach similar to that of the proof of Proposition 1, it could be shown that unique Nash 

equilibrium exists for each of three games described by models Q, P, and B. The proofs of these existence 

and uniqueness results are available from the authors upon request. The existence of unique equilibrium for 

all four models allows us to prove the following result. 
 

Proposition 5:  

(a) Choosing quantity in the upfront market is the dominant strategy of a network irrespective of its 

competitor’s actions, i.e., the Cournot game is equilibrium outcome when the networks are free to choose 

either price or quantity. 

(b) When the two networks are symmetric in parameters, the Cournot game results in less upfront inventory, 

higher upfront prices, and higher expected profit than the Bertrand game. 
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Per Proposition 5, setting quantity is the dominant strategy for each network. As a result, the Cournot game 

is the dominant equilibrium outcome. A television network, thus, is better off choosing quantity (or the 

rating points inventory) independent of the choice of its competitor. Interestingly, this is always not the 

case in practice. There are reported instances where a television network has had negotiated prices with its 

clients. A recent article in the Variety magazine (Steinberg, 2016b) about the 2016 upfront notes the 

following. 

Indeed, the networks and ad buyers have been at loggerheads for several weeks over the rate of 

increase that ought to be paid. Initial bids from the networks called for double-digit CPM 

increases – some as much as 15% or higher, according to ad buyers. Advertisers, meanwhile, 

have expressed a desire to pay CPM increases of just 4% to 5%. Many buying executives have 

made a hard point of not wanting to agree to increases of more than 9%, though one of the people 

familiar with discussions said that CBS pressed for some agreements that call for hikes in the low 

double-digit percentage range. 

The above statements seem to suggest that the networks are engaging in a price competition, rather than a 

quantity competition. Per Proposition 5, this cannot be an optimal strategy for either network. A network 

will be better off choosing quantity irrespective of its competitor’s choice. In fact, as Proposition 5(b) states, 

under the assumption of symmetric parameters, both networks will command higher prices and higher 

expected profits in quantity competition than in price competition. Our work, thus, can serve as a useful 

prescriptive guideline to practitioners planning the upfront strategy of a network. 

 Another practice that seems to be prevalent among the networks is to engage in intense price 

negotiation during the upfront that follows a strong show performance of a network during the previous 

year. The CW network, following a strong performance of its sci-fi and superhero shows during the 2014-

2015 broadcast year, and stable lineup for the shows in the following year, reportedly was successful in 

negotiating a higher price hike than any other broadcast network during the 2015 upfront (Steinberg 2016a). 

CBS reportedly followed a similar course following strong performance of its “CSI” franchise during 2004 

(Lafayette and Friedman, 2004). Our work, admittedly, does not consider multiple time periods. However, 

strong performance and a stable line-up of shows can be mapped into our modeling framework by 

considering high mean and low variance of the random variable 𝜀𝜀𝑖𝑖, representing the show performance. 

Note, that the result in Proposition 5 is independent of the parameters representing show performance. The 

advantage of setting quantity over price is inherent in its structure, rather than the choice of the problem 

parameters. In fact, Singh and Vives (1984) proves a similar result in a stylized economic model involving 

deterministic demand. Our work, thus, provides the following guideline to a practitioner: independent of 

the expectations of show performances, a network is better off choosing quantity over price. Proposition 5 
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justifies our choice of Cournot competition as the framework for this paper. We will, for the remainder of 

this paper, consider only Cournot competition.  

 

4.2 Comparison with a Centralized/Single Firm Case 

As elaborated earlier, the key contribution of our work is to consider competition in television 

revenue management. Our work thus far considers a non-cooperative game where each network maximizes 

its own expected revenue. We now compare our results with a centralized/single firm scenario. To make 

our results directly comparable with a single-firm scenario, we will assume that an imaginary central 

planner maximizes the total expected profit of the two networks, i and j, by jointly determining Xi and Xj, 

i.e., ][][
, sjjjsiiiXX

EXpEXpMax
ji

πππ +++= . All parameters, notations, and assumptions developed 

thus far will continue to remain valid. Additionally, we will let 𝑋𝑋𝑖𝑖0,𝑋𝑋𝑗𝑗0, and πo denote the optimal upfront 

inventories and the optimal profit, respectively, in the single firm scenario. The following proposition 

describes our result.  
 

Proposition 6: When the parameters of the two network are symmetric, 

(a) the single firm scenario delivers fewer rating points in the upfront market than the Cournot game, i.e., 

𝑋𝑋𝑖𝑖0 < 𝑋𝑋𝑖𝑖∗, 𝑖𝑖 = 1, 2. 

(b) when the distribution of show performances 𝜀𝜀𝑖𝑖 is uniformly distributed or is normally distributed with 

𝛾𝛾 > 𝑔𝑔−𝜃𝜃
√2𝜋𝜋𝑁𝑁𝑁𝑁

 , the rating points difference (𝑋𝑋𝑖𝑖∗ − 𝑋𝑋𝑖𝑖0) increases in the parameters v, α, γ and decreases 

in the parameters 𝛽𝛽 and g. 
 

Note that our construct of centralized/single firm case can also be viewed as a cooperative game between 

the two networks. Proposition 6 indicates that competition, expectedly, results in delivery of a higher 

upfront inventory than the centralized case. With mild restrictions on some common distributions, we 

further find that the difference between the upfront inventories of the competitive and centralized cases 

increases in the parameters v, α, γ, and decreases in the parameters β and g. As v increases, the equilibrium 

upfront inventory 𝑋𝑋𝑖𝑖∗ , per Proposition 2(b), also increases. It could be shown that the optimal upfront 

inventory 𝑋𝑋𝑖𝑖0 under the centralized case also increases in the parameter v. However, the rate of increase of 

the former is higher than that of the latter, resulting in a higher (𝑋𝑋𝑖𝑖∗ − 𝑋𝑋𝑖𝑖0). A similar intuition holds for the 

sensitivity result with respect to the parameter α. As the unit penalty g increases, the upfront market 

becomes potentially less attractive and that the equilibrium upfront inventory decreases under both 

centralized and competitive settings. However, the centralized system, per Proposition 6(a), offers less 

upfront inventory to start with. Therefore, the inventory reduction in the centralized system is lower 
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compared to the competitive setting for an identical increase in the unit penalty cost. The net effect of this 

is a reduction in (𝑋𝑋𝑖𝑖∗ − 𝑋𝑋𝑖𝑖0). The price sensitivity parameter β has a similar effect. 

 To develop additional insights about the centralized and the competitive models we conduct a 

numerical study next.  

 

Numerical Study 2 

Our objective in this numerical study is to develop insights about sensitivities of (𝑋𝑋𝑖𝑖∗ − 𝑋𝑋𝑖𝑖0), the 

difference in equilibrium upfront inventory, and 𝜋𝜋0 − (𝜋𝜋𝑖𝑖∗ + 𝜋𝜋𝑗𝑗∗), the difference in equilibrium profit, with 

respect to the mean and the standard deviation of the show performance. The numerical values of the 

problem parameters used in this study are identical to those of Numerical study 1. Figures 5(a) and 5(b) 

plot, respectively, (𝑋𝑋𝑖𝑖∗ − 𝑋𝑋𝑖𝑖0) and 𝜋𝜋0 − (𝜋𝜋𝑖𝑖∗ + 𝜋𝜋𝑗𝑗∗) against the mean of show performance under normal 

distribution assumption, while Figures 6(a) and 6(b) plot the same quantities under the assumption of 

uniform distribution. The sensitivities of (𝑋𝑋𝑖𝑖∗ − 𝑋𝑋𝑖𝑖0 ) and 𝜋𝜋0 − (𝜋𝜋𝑖𝑖∗ + 𝜋𝜋𝑗𝑗∗) with respect to the standard 

deviation of show performance, under normal and uniform distribution assumptions, are described in 

Figures 7(a), 7(b), 8(a), and 8(b) respectively. We note that the qualitative nature of the plots remain 

unchanged between the normal and the uniform distribution, indicating that our findings are quite robust. 

As the mean or the standard deviation of the show increases, both (𝑋𝑋𝑖𝑖∗ − 𝑋𝑋𝑖𝑖0) and 𝜋𝜋0 − (𝜋𝜋𝑖𝑖∗ + 𝜋𝜋𝑗𝑗∗) increase. 

However, for a given mean of show performance, the inventory and profit differences between the two 

models are higher for higher values of the substitutability parameter γ. This indicates that the benefit of 

coordination is higher when the shows of the two networks are closer substitutes. 

 

                 
Figure 5(a): Plot of (X*- X0) vs. the mean of 𝜀𝜀𝑖𝑖  Figure 5(b): Plot of 𝜋𝜋0 − (𝜋𝜋𝑖𝑖∗ + 𝜋𝜋𝑗𝑗∗) vs. the                                                            
(normal distribution)                               mean of 𝜀𝜀𝑖𝑖 (normal distribution)        
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Figure 6(a): Plot of (X*- X0) vs. the mean of 𝜀𝜀𝑖𝑖  Figure 6(b): Plot of 𝜋𝜋0 − (𝜋𝜋𝑖𝑖∗ + 𝜋𝜋𝑗𝑗∗) vs. the                                                            
 (uniform distribution)                                 mean of 𝜀𝜀𝑖𝑖 (uniform distribution)        
    

 

 

              
Figure 7(a): Plot of (X*- X0) vs. the standard deviation of 𝜀𝜀𝑖𝑖  Figure 7(b): Plot of 𝜋𝜋0 − (𝜋𝜋𝑖𝑖∗ + 𝜋𝜋𝑗𝑗∗) vs. 
the (normal distribution)                                          standard deviation of 𝜀𝜀𝑖𝑖 (normal distribution)        
 

 

               
Figure 8(a): Plot of (X*- X0) vs. the    Figure 8(b): Plot of 𝜋𝜋0 − (𝜋𝜋𝑖𝑖∗ + 𝜋𝜋𝑗𝑗∗) vs.                                                          
vs. standard deviation of 𝜀𝜀𝑖𝑖 (uniform distribution)  standard deviation of 𝜀𝜀𝑖𝑖 (uniform distribution)        
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Our analyses so far describes the high level decision facing a television network: how much 

inventory to sell during the upfront on an aggregate basis to all its clients (or customers). We describe three 

extensions of our basic model in this section. The first extends our analyses to individual client level, the 

second models availability-dependent scatter market price, while the final extension models information 

asymmetry between the two television networks. These three extensions are described in Sections 5.1, 5.2, 

and 5.3 respectively. We note that the three extensions are independent of each other, i.e., our analyses of 

multiple clients do not assume availability-dependent scatter price or information asymmetry, etc. 

 

5.1 Multiple Clients Analysis 

Our model so far considered the most strategic decision in media revenue management: planning 

for the aggregate capacity in the upfront market. This section extends the analysis to multi-client setting. 

During the upfront market, multiple clients approach each network around the same time (usually over a 

short time period of 2-3 weeks), and contracts are negotiated in parallel. Suppose there are K clients, and 

let Xki (k = 1, 2, …, K; i = 1, 2) be the network i’s rating points guarantee for the kth client. Assume that the 

upfront price per rating point charged by network i is given by: 𝑝𝑝𝑘𝑘𝑘𝑘 = 𝛼𝛼𝑘𝑘𝑘𝑘 − 𝛽𝛽𝑘𝑘𝑘𝑘𝑋𝑋𝑘𝑘𝑘𝑘 − 𝛾𝛾𝑘𝑘𝑋𝑋𝑘𝑘𝑘𝑘. Our price 

function assumes that the maximum willingness to pay 𝛼𝛼𝑘𝑘𝑘𝑘 and the sensitivity parameter βki varies across 

the clients of a network, while the substitutability parameter 𝛾𝛾𝑘𝑘  does not.  To ensure that the demand 

function of the multiple clients case matches that of the aggregate case discussed thus far, we assume 
∑ 𝛼𝛼𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1
𝐾𝐾

= 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑘𝑘𝑘𝑘 = 𝐾𝐾𝛽𝛽𝑖𝑖, and 𝛾𝛾𝑘𝑘 = 𝐾𝐾𝐾𝐾. The assumption ∑ 𝛼𝛼𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1
𝐾𝐾

= 𝛼𝛼𝑖𝑖 implies that the clients’ maximum 

willingness to pay in the aggregate planning problem is the average of each individual client’s maximum 

willing to pay. Consistent with the practice, our formulation allows a network to charge different prices to 

different clients. The assumptions 𝛽𝛽𝑘𝑘𝑘𝑘 = 𝐾𝐾𝛽𝛽𝑖𝑖  and 𝛾𝛾𝑘𝑘 = 𝐾𝐾𝐾𝐾 indicate that the impact of an additional unit of 

supply for one client on price in the multi-client case is equivalent to that of K additional units of supply in 

the aggregate planning problem. For the ease of exposition and to facilitate the comparison with the 

aggregate planning results, we assume other parameters gi, vi, θi, are the same across the clients of a 

network, and are identical to those of the aggregate planning problem described in Section 3 of the paper. 

The expected revenue maximization problem of network i, i = 1, 2, is as follows:  

max
𝑋𝑋1𝑖𝑖,𝑥𝑥2𝑖𝑖,…,𝑥𝑥𝑘𝑘𝑘𝑘

𝜋𝜋𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑀𝑀�𝜋𝜋𝑘𝑘𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 

                       = ∑ 𝑝𝑝𝑘𝑘𝑘𝑘𝑋𝑋𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1 + ∫ 𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖 �𝑁𝑁𝑖𝑖 −

∑ 𝑋𝑋𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1
𝑣𝑣𝑖𝑖

� 𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖
𝐵𝐵𝑖𝑖
𝑣𝑣𝑖𝑖

+ ∫ 𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖 �𝑁𝑁𝑖𝑖 −
∑ 𝑋𝑋𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1
𝜀𝜀𝑖𝑖

� 𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖
𝑣𝑣𝑖𝑖
∑𝑋𝑋𝑘𝑘𝑘𝑘
𝑁𝑁𝑖𝑖

 

                            −𝑔𝑔𝑖𝑖 ∫ (∑ 𝑋𝑋𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1 − 𝑁𝑁𝑖𝑖𝜀𝜀𝑖𝑖)𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖

∑𝑋𝑋𝑘𝑘𝑘𝑘
𝑁𝑁𝑖𝑖

𝐴𝐴𝑖𝑖
, for i =1, 2.     (10) 
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Following a procedure similar to those described in the proofs of Lemma 1 and Proposition 1, it could be 

shown that a unique Nash equilibrium exists in the multi-client revenue management game.   
 

Proposition 7: The total equilibrium upfront inventory under multiple clients scenario equals the 

equilibrium upfront inventory under aggregate planning, i.e., 𝑋𝑋𝑖𝑖∗ = ∑ 𝑋𝑋𝑘𝑘𝑘𝑘∗𝐾𝐾
𝑘𝑘=1  

 

In practice, a television network often quotes a different upfront price to each client. There could be several 

reasons behind this, including, the lack of transparency, the size of client’s ad budget, etc. Per Proposition 

7, even when each client is charged a different price, a television network can simply add the optimal client-

level upfront inventory allocations to obtain the aggregate upfront inventory and still be assured of the 

highest expected profit. Alternatively, a television network can, ex ante, solve aggregate planning problem 

by simply assuming that one large client will buy the entire upfront capacity paying a price that equals the 

average per rating point paid by its clients. Proposition 7, thus, allows a network to simplify its upfront 

planning problem considerably. What drives this result? Under multiple client upfront problem, a television 

network bears the risk of over-delivery or penalty for each client separately. This eliminates the possibility 

of risk pooling across clients, i.e., the scenario where the excess from one client could have been used to 

compensate the penalty for another client. It is worthwhile to mention that Araman and Popescu (2010) 

concludes that (see their Proposition 4) a single television network should divide its aggregate upfront 

capacity equally across all its clients to achieve optimal allocation. They ascribe this result to their 

assumption of uniform penalty cost across clients. While our work is not directly comparable to theirs 

because of differing model setup and assumptions, Proposition 7 can still be viewed as a generalization of 

the corresponding result of Araman and Popescu (2010). Unlike theirs, we allow a television network to 

charge different prices to different clients, and to allocate different amounts of inventory to each client. Our 

work also considers competition between two networks. Yet, we find a simple and intuitive relationship 

between the inventories of the aggregate problem and the multiple client problem. 

 

5.2 Availability-Dependent Scatter Price  

Our analyses in Sections 3 and 4 assume that the scatter price depends on show performances but 

is independent of the availability of slots (recall that scatter price is based on per 30-second slot). In this 

sub-section, we relax this assumption and allow the scatter price to depend on the availability of advertising 

slots (or simply the capacity) as well as on the show performances. The capacity available for network i, i 

=1, 2, during the scatter market is given by:  
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The first part of equation (11) represents the scenario where the committed number of slots committed in 

upfront is sufficient to meet the upfront rating points commitments as well; while the second part represents 

the opposite scenario where a network needs make good allocation of slots to deliver on the upfront rating 

points commitments. The third part of (11) represents the situation where the network pays a penalty as it 

is unable to deliver on the upfront rating points commitments. We consider two demand functions for the 

scatter market: 

𝑝𝑝𝑠𝑠𝑠𝑠 = 𝜀𝜀𝑖𝑖(𝜃𝜃𝑐𝑐𝑐𝑐 − 𝜂𝜂𝑖𝑖𝐶𝐶𝑖𝑖), 𝜂𝜂𝑖𝑖 > 0, and       (12a) 

𝑝𝑝𝑠𝑠𝑠𝑠 = 𝜃𝜃𝑐𝑐𝑐𝑐𝜀𝜀𝑖𝑖𝐶𝐶𝑖𝑖
−𝜂𝜂𝑖𝑖, 𝜂𝜂𝑖𝑖 < 1, 𝜃𝜃𝑐𝑐𝑐𝑐 ≥ 0.       (12b) 

The demand functions in equations (12a) and (12b), respectively, are additive and multiplicative in capacity.  

The parameter ηi captures the price elasticity of capacity. To avoid trivial solutions, we will assume the 

unit penalty 𝑔𝑔𝑖𝑖 > 𝜃𝜃𝑐𝑐𝑐𝑐  in demand function (12a). The resulting prices of both demand functions are 

increasing in show performances. In particular, (12b) is similar to the multiplicative model adopted by 

Araman and Popescu (2010). 
 

Proposition 8:  

(a) There exists a unique equilibrium to the Cournot game with capacity-dependent scatter price under 

both additive and multiplicative demand functions. 

(b) The equilibrium upfront inventory of network i, 𝑋𝑋𝑖𝑖∗ , is increasing in the parameter ηi under both 

additive and multiplicative demand functions. 
 

The existence of unique equilibrium assures us about the feasibility of the scenario being studied in this 

sub-section. In fact, it could be shown that the sensitivity results described in Section 4 of the paper continue 

to hold even under capacity-dependent scatter price. It could also be shown that the equilibrium expected 

profit is increasing in vi, the negotiated expected rating point of a slot. This suggest that exaggerating show 

performances remains a good strategy for a network under many different scenarios. Proposition 8(b) 

indicates that as the elasticity parameter ηi increase so does the equilibrium upfront inventory. As ηi 

increases, the scatter price decreases, making the scatter market less attractive to a network. Upfront 

inventory, consequently, goes up. Numerical experiments similar to Numerical Study 1 and 2 confirm that 

equilibrium upfront guarantee, 𝑋𝑋𝑖𝑖∗, increases with the mean of show performances and decreases with the 

variance of show performances. These observations are similar to those from Figures 1 through 4 and are 
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omitted for the reasons of brevity. Availability-dependent scatter price, thus, does not fundamentally change 

the dynamics of upfront inventory allocation problem. 

 

5.3 Information Asymmetry  

Our analyses in Sections 4 assumes that the each network knows the distribution of its rating point 

as well as that of its competitor’s.  It is a valid assumption when there are few new shows from either 

network during the broadcast year. However, when there are many new shows during the broadcast year, a 

network might have better information about its show performance than that of its competitor’s.  In this 

section, we extend our analysis to information asymmetry to model such scenarios. Cournot competition 

under incomplete information of production cost has been well-studied in economics literature (Basar and 

Ho 1974, Li 1985, Shapiro 1986, Vives 2002).  The standard technique is to find Bayesian Nash equilibrium 

which requires that each network maximizes its profits in expectation, assuming the other network does the 

same. 

We characterize network 𝑖𝑖 by its type, parameterized by 𝑙𝑙𝑖𝑖 (𝑖𝑖 = 1,2). We assume 𝑙𝑙𝑖𝑖 to be the private 

information of network 𝑖𝑖. Network j’s prior on 𝑙𝑙𝑖𝑖 (𝑖𝑖, 𝑗𝑗 = 1,2; 𝑗𝑗 ≠ 𝑖𝑖) is drawn randomly from a continuous 

distribution with cumulative distribution function 𝐹𝐹𝑙𝑙(.), which is common knowledge to both networks.  We 

assume 𝐹𝐹𝑙𝑙 (.) to be continuously differentiable. Let 𝑋𝑋𝑗𝑗(𝑙𝑙𝑗𝑗 ) be network 𝑗𝑗’s upfront inventory response to 

𝑋𝑋𝑖𝑖  given its knowledge of 𝑙𝑙𝑗𝑗 and the common prior 𝐹𝐹𝑙𝑙(.). Network 𝑖𝑖’s expected profit, then, is given by: 

=iX i

Maxπ ∫(𝑝𝑝𝑖𝑖 𝑋𝑋𝑖𝑖 + 𝐸𝐸[𝜋𝜋𝑠𝑠𝑠𝑠])𝑑𝑑𝐹𝐹𝑙𝑙(𝑙𝑙𝑗𝑗),  𝑖𝑖, 𝑗𝑗 = 1,2; 𝑗𝑗 ≠ 𝑖𝑖, where,     (13a)  

 𝑝𝑝𝑖𝑖 = 𝛼𝛼𝑖𝑖 − 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 −  𝛾𝛾𝑋𝑋𝑗𝑗(𝑙𝑙𝑗𝑗).        (13b) 

Substituting (13b) into (13a) and taking derivatives, we get, 

𝜕𝜕𝜋𝜋𝑖𝑖/𝜕𝜕𝑋𝑋𝑖𝑖 =𝛼𝛼𝑖𝑖 − 2𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 − 𝛾𝛾 ∫𝑋𝑋𝑗𝑗�𝑙𝑙𝑗𝑗�𝑑𝑑𝐹𝐹𝑙𝑙( 𝑙𝑙𝑗𝑗) − 𝜃𝜃𝑖𝑖′ − (𝑔𝑔𝑖𝑖 − 𝜃𝜃𝑖𝑖)𝐹𝐹𝑖𝑖(𝑋𝑋𝑖𝑖/𝑁𝑁𝑖𝑖)   (14) 

It is well known that in a Bayesian game with continuous strategy spaces and continuous types, if strategy 

sets and type sets are compact, payoff functions are continuous and concave in a player’s own strategies, 

then a pure strategy Bayesian Nash equilibrium exists. Given our profit functions in (13a) and (13b), our 

assumptions about the finite support of the random variable representing show performances and the 

differentiability of the respective CDFs, and that the player types are drawn randomly from a continuous 

distribution, all of the conditions of existence of pure strategy Nash equilibrium are satisfied. Therefore, a 

pure strategy Bayesian Nash equilibrium exists under information asymmetry. 

 Following an approach similar to the proof of proposition 2(a), it is easy to verify that Proposition 

2 still holds under the Bayesian equilibrium. This suggests that the sensitivity analyses described in 

Proposition 2 are robust and continue to hold under information asymmetry.  



27 
 

Given the complexity of the problem, characterizing the equilibrium upfront inventory 𝑋𝑋𝑖𝑖∗ under 

information asymmetry for arbitrary general distributions of show performances and the common prior is 

rather difficult. Thus, to gain additional insights about the problem we make specific distributional 

assumptions. We assume 𝜀𝜀𝑖𝑖 , the random variable denoting the show performance, follows a uniform 

distribution over [𝜇𝜇 − 𝑙𝑙𝑖𝑖, 𝜇𝜇 + 𝑙𝑙𝑖𝑖], 𝑖𝑖 = 1,2, where, 𝑙𝑙𝑖𝑖 is private information of network 𝑖𝑖, while 𝜇𝜇 is common 

knowledge. We further assume that the distribution of common prior of the player types also follows a 

uniform over [0,𝑑𝑑]. As the following proposition states, it is, indeed, possible to show that under certain 

conditions, the equilibrium upfront inventory of each network is increasing in the parameter d. 
 

Proposition 9: Assume that the two networks are symmetric in parameters and that the relation 𝑣𝑣 ≥ 𝜇𝜇 

holds. Then if 𝛼𝛼 − 2𝛽𝛽𝛽𝛽𝛽𝛽 − 𝑔𝑔
2
− 𝜃𝜃(𝜇𝜇𝑖𝑖+𝑙𝑙𝑖𝑖)

2𝑣𝑣
≤ 0, 𝑖𝑖 = 1,2,  then the equilibrium upfront inventory of each 

network increases in the parameter d.   
 

The parameter d in our formulation is a measure of the uncertainty of the show performance as well as the 

accuracy of the prior. A higher value of the parameter d indicates that network i conjectures a high 

variability in the show performance of network j, and hence, a lower upfront inventory choice from network 

j.  Thus, its own equilibrium upfront inventory choice increases. The findings of Proposition 9 is similar to 

the findings from Proposition 4, where we showed that under full information, a network’s equilibrium 

choice increases as the variability of the show performance of its competitor increases. The key difference 

between the two results is as follows. Under full information, the uncertainty that network i associates with 

network j is solely due to the uncertainty of show performance. Under information asymmetry, this 

uncertainty arises because of combination of uncertainties of show performance and the accuracy of the 

prior. Thus, when the prior information is perfect, Proposition 9 reduces to Proposition 4. 

 
6. SUMMARY AND CONCLUSION 

Allocating the inventory of rating points between the upfront and the scatter markets is one of the 

most strategic decisions a television network makes. In this paper, we develop a game theoretic model to 

accomplish this. Our work considers two television networks whose rating points inventories could be 

substitutes; and explicitly accounts for the randomness of show performances as well as the scatter market 

prices. We have established unique Nash equilibrium of the Cournot game where each network chooses the 

amount of rating points inventory. We show that upfront inventories of two networks are strategic 

substitutes and describe the sensitivity of the equilibrium outcome with respect to various problem 

parameters. We show that choosing quantity over price is a dominant strategy for a network irrespective of 

the choice of its competitor. We compare our competitive model with a centralized one and describe the 

sensitivity of the equilibrium profit differential between the centralized and the competitive model with 
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respect to the problem parameters. Finally, we consider three extensions to our basic model to include 

client-level allocation of the upfront inventory, availability-and-performance-dependent scatter market 

pricing, and information asymmetry. 

Our work adds to the growing stream of literature studying various operational/supply chain 

uncertainties and makes the following important contributions to the operations management literature. 

First, to the best of our knowledge, ours is the first to study the media revenue management problem using 

a competitive setting. In addition, we are aware of only two papers (Bollapragada and Mallik, 2008; Araman 

and Popescu, 2010) that study the single-firm media revenue management problem using the upfront and 

the scatter markets. Our work can be viewed as a competitive generalization of these two papers that allows 

us to model the strategic interaction between the two television networks. Second, while there is little 

transparency in practice to show that the television networks engage in quantity competition, we have 

shown that the dominant strategy of a television network is to choose quantity (i.e., rating points) 

irrespective of the action of its competitor. Our work, thus, provides a theoretical validation for making 

quantity the key decision variable in media revenue management problems. Such theoretical validation is 

not provided by earlier works. Third, our work shows that the negotiated expected rating points v plays an 

important role in the upfront inventory decisions of a network. We show that a network has incentive to 

deliberately inflate the show performances as its expected revenue is increasing in v. Furthermore, as v 

increases, the deviation between expected revenues from the centralized and the competitive model 

decreases. Fourth, while extending our analyses to multiple client upfront planning, we show that there is 

a simple additive relationship of the equilibrium upfront inventories between the multiple client inventory 

planning and the aggregate inventory planning. Finally, our work has the following prescriptive and 

descriptive implications for a practicing manager. 

• Proposition 5 of our paper indicates that a television network is better off deciding the inventory of 

rating points during the upfront market rather than deciding the price. This result continues to hold 

irrespective of the decision of its competitor, or the show performances of either network. The current 

practice in the industry shows that consistent decision rules (on price vs. quantity) are seldom followed 

by the decision makers. Media reports also suggest that managers tend to negotiate price first when the 

shows are expected to perform strongly. Our work, thus, provides an important prescriptive guideline 

for the practitioners. 

• Proposition 2(b) of our papers shows that selling more in a strong upfront is, indeed, an optimal strategy 

for a network. This practice is widely followed by both broadcast and cable networks. Our work, thus 

provides an explanation for the observed practices. Proposition 4 also provides an important qualitative 

guiding principle to a manager: a network with highly uncertain show performances (for example, when 

there are many new shows) should sell less inventory during the upfront.  
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• Lemma 1 is also useful to a practitioner as it provides insights about how to react to a competitor’s 

inventory decisions and tells a manager that the upfront inventories of the two networks are strategic 

substitutes. Finally, the sensitivity analyses presented in the paper are important guiding tools for a 

practitioner as well. 

• Even when a television network charges different upfront prices to each customer, per Proposition 7, it 

can still obtain the optimal aggregate upfront inventory simply by adding the optimal inventory for each 

customer. This simple and intuitive insight, we believe, is rather valuable to a practitioner planning the 

upfront strategy for a television network.  

• We show in Section 5.3 that presence of information asymmetry does not alter our sensitivity analyses 

results. This assures a practitioner about the robustness of our results. 

Like any other work in operations management, our work is not free from assumptions. Ours is a 

single period model. Extending our results to multiple periods will allow us to capture the strategic 

interactions between the networks over a period of time. It will also allow us to capture such effects as a 

strong scatter price during a year results in a higher upfront demand during the following year and vice 

versa, and the effect of running a show over multiple time periods. Our work assumes risk neutrality where 

the television networks are expected revenue maximizers. While this assumption is standard in operations 

management literature, it will be useful to extend our analyses to risk-averse utility functions of the 

networks and/or to the framework adopted by Bollapragada and Mallik (2008) where a network maximizes 

its expected revenue subject to a chance constraint that the revenue exceeds a target value with a given 

probability. Our model assumes all ad slots of a network are homogenous in the sense that they capture 

identical rating points. Relaxing this assumption is also a valuable extension of our model. 
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PROOFS OF ALL RESULTS  

 

 

Proof of Lemma 1: 
From equation (3), 𝜕𝜕

2𝜋𝜋𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖

2 = −2𝛽𝛽𝑖𝑖 − �(𝑔𝑔𝑖𝑖−𝜃𝜃𝑖𝑖)
𝑁𝑁𝑖𝑖

� 𝑓𝑓𝑖𝑖 �
𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖
� ≤ 0; 𝜕𝜕

2𝜋𝜋𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗

= −𝛾𝛾 ≤ 0. 

 
Therefore, 𝑑𝑑𝑋𝑋𝑖𝑖(𝑋𝑋𝑗𝑗)

𝑑𝑑𝑋𝑋𝑗𝑗
= −( 𝜕𝜕2𝜋𝜋𝑖𝑖

𝜕𝜕𝑋𝑋𝑖𝑖𝜕𝜕𝑋𝑋𝑗𝑗
)/(𝜕𝜕

2𝜋𝜋𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖

2 ) ≤ 0. 

 
Proof of Proposition 1:  
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Therefore there exists a unique Nash equilibrium (see Moulin 1986).  
 
Proof of Proposition 2(a):  
Let 𝐿𝐿1 = 𝜕𝜕𝜋𝜋1

𝜕𝜕𝑋𝑋1
= 𝛼𝛼1 − 2𝛽𝛽1𝑋𝑋1 − 𝛾𝛾𝑋𝑋2 − 𝜃𝜃1 − �𝜃𝜃1

𝑣𝑣1
� ∫ (1𝐵𝐵1

𝑣𝑣1
− 𝐹𝐹1(𝜀𝜀1)𝑑𝑑𝜀𝜀1 − (𝑔𝑔1 − 𝜃𝜃1)𝐹𝐹1(𝑋𝑋1/𝑁𝑁1). 

By Theorem 9 in Cachon and Netessine (2004), 

𝑑𝑑𝑋𝑋1
𝑑𝑑𝛼𝛼1

= −
𝜕𝜕2𝜋𝜋1

𝜕𝜕𝑋𝑋1𝜕𝜕𝛼𝛼1
𝜕𝜕2𝜋𝜋2
𝜕𝜕𝑋𝑋2

2 −
𝜕𝜕2𝜋𝜋2

𝜕𝜕𝑋𝑋1𝜕𝜕𝑋𝑋2
𝜕𝜕2𝜋𝜋2

𝜕𝜕𝑋𝑋2𝜕𝜕𝛼𝛼1

|𝐻𝐻| , where, 

 |H|=�

𝜕𝜕2𝜋𝜋1
𝜕𝜕𝑋𝑋12

𝜕𝜕2𝜋𝜋1
𝜕𝜕𝑋𝑋1𝜕𝜕𝑋𝑋2

𝜕𝜕2𝜋𝜋1
𝜕𝜕𝑋𝑋1𝜕𝜕𝑋𝑋2

𝜕𝜕2𝜋𝜋2
𝜕𝜕𝑋𝑋22

� > 0, and 𝜕𝜕2𝜋𝜋2
𝜕𝜕𝑋𝑋2𝜕𝜕𝛼𝛼1

= 0, 𝜕𝜕
2𝜋𝜋2
𝜕𝜕𝑋𝑋22

≤ 0. 

Therefore, sign of (𝑑𝑑𝑋𝑋1
𝑑𝑑𝛼𝛼1

) = sign of ( 𝜕𝜕2𝜋𝜋1
𝜕𝜕𝑋𝑋1𝜕𝜕𝛼𝛼1

) = sign of  (𝜕𝜕𝐿𝐿1
𝜕𝜕𝛼𝛼1

) ≥ 0.   
The proofs for sensitivity results with respect to the parameters β, g, v, and N are similar, and hence are 
omitted. We provide the proof of sensitivity result with respect to θ i next.  



2 
 

 𝜕𝜕𝐿𝐿1
𝜕𝜕𝜃𝜃1

= −（1 − 𝐹𝐹1(𝑋𝑋1/𝑁𝑁1)- � 1
𝑣𝑣1
� ∫ (1𝐵𝐵1

𝑣𝑣1
− 𝐹𝐹1(𝜀𝜀1)𝑑𝑑𝜀𝜀1≤ 0.  

 𝜕𝜕𝐿𝐿1
𝜕𝜕𝑣𝑣1

= −𝜃𝜃1[−  ∫ (1 − 𝐹𝐹1
𝐵𝐵1
𝑣𝑣1

(𝜀𝜀1))𝑑𝑑𝜀𝜀1-(1 −F1(v1))𝑣𝑣1]/𝑣𝑣12 ≥ 0. 
 
Proof of Proposition 2(b): 
For the symmetric game, the FOC of the expected profit function in equation (3) becomes: 
 𝛼𝛼 − (2𝛽𝛽 + 𝛾𝛾)𝑋𝑋 − 𝜃𝜃′ − (𝑔𝑔 − 𝜃𝜃)𝐹𝐹 �𝑋𝑋

𝑁𝑁
� = 0. 

The LHS of the above expression is decreasing in γ. Therefore, ∂X*/∂γ<0.  

Or sign of (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

) = -sign of ( 𝜕𝜕
2𝜋𝜋1

𝜕𝜕𝑋𝑋1𝜕𝜕𝛾𝛾
𝜕𝜕2𝜋𝜋2
𝜕𝜕𝑋𝑋2

2 −
𝜕𝜕2𝜋𝜋2
𝜕𝜕𝑋𝑋1𝜕𝜕𝑋𝑋2

𝜕𝜕2𝜋𝜋2
𝜕𝜕𝑋𝑋2𝜕𝜕𝛾𝛾

) = sign of  ((2𝛽𝛽 − 𝑟𝑟)𝑋𝑋+ (𝑔𝑔 − 𝜃𝜃)𝑓𝑓(𝑋𝑋𝑁𝑁)/𝑁𝑁) ≥ 0.   

The proofs for other results are similar. 
 
Proof of Proposition 3: 
𝑑𝑑𝜋𝜋𝑖𝑖(𝑋𝑋𝑖𝑖

∗,𝑋𝑋𝑗𝑗
∗ )  

𝑑𝑑𝑑𝑑𝑑𝑑
=

𝜕𝜕𝜋𝜋𝑖𝑖(𝑋𝑋𝑖𝑖
∗,𝑋𝑋𝑗𝑗

∗ )  
𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑋𝑋𝑖𝑖
∗

𝜕𝜕𝑣𝑣𝑖𝑖
+
𝜕𝜕𝜋𝜋𝑖𝑖(𝑋𝑋𝑖𝑖

∗,𝑋𝑋𝑗𝑗
∗ )  

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋𝑗𝑗

∗

𝜕𝜕𝑣𝑣𝑖𝑖
+

𝜕𝜕𝜋𝜋𝑖𝑖(𝑋𝑋𝑖𝑖
∗,𝑋𝑋𝑗𝑗

∗ )  
𝜕𝜕𝜕𝜕𝜕𝜕

, where, 
𝜕𝜕𝜋𝜋𝑖𝑖(𝑋𝑋𝑖𝑖

∗,𝑋𝑋𝑗𝑗
∗ )  

𝜕𝜕𝜕𝜕𝜕𝜕
= ∫ 𝑋𝑋𝑖𝑖

𝐵𝐵𝑖𝑖
𝑣𝑣𝑖𝑖

/𝑣𝑣𝑖𝑖2𝜃𝜃𝑖𝑖𝜀𝜀𝑖𝑖𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖,)d𝜀𝜀𝑖𝑖 ≥ 0, 

 
𝜕𝜕𝜋𝜋𝑖𝑖(𝑋𝑋𝑖𝑖

∗,𝑋𝑋𝑗𝑗
∗ )  

𝜕𝜕𝜕𝜕𝜕𝜕
 =0 at (𝑋𝑋𝑖𝑖∗,𝑋𝑋𝑗𝑗∗ ), 

 
𝜕𝜕𝜋𝜋𝑖𝑖(𝑋𝑋𝑖𝑖

∗,𝑋𝑋𝑗𝑗
∗ )  

𝜕𝜕𝜕𝜕𝜕𝜕
= −𝛾𝛾𝑋𝑋𝑖𝑖 ≤ 0, and, 

𝜕𝜕𝑋𝑋𝑗𝑗
∗

𝜕𝜕𝑣𝑣𝑖𝑖
≤ 0. 

By Proposition 2, therefore, 
𝑑𝑑𝜋𝜋𝑖𝑖(𝑋𝑋𝑖𝑖

∗,𝑋𝑋𝑗𝑗
∗ )  

𝑑𝑑𝑑𝑑𝑑𝑑
≥ 0.  

Similarly, 𝑑𝑑𝑑𝑑𝑖𝑖(𝑋𝑋𝑖𝑖∗,𝑋𝑋𝑗𝑗∗ )/𝑑𝑑𝑣𝑣𝑗𝑗 =
𝜕𝜕𝜋𝜋𝑖𝑖(𝑋𝑋𝑖𝑖

∗,𝑋𝑋𝑗𝑗
∗ )  

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋𝑖𝑖

∗

𝜕𝜕𝑣𝑣𝑗𝑗
+
𝜕𝜕𝜋𝜋𝑖𝑖(𝑋𝑋𝑖𝑖

∗,𝑋𝑋𝑗𝑗
∗ )  

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋𝑗𝑗

∗

𝜕𝜕𝑣𝑣𝑗𝑗
+

𝜕𝜕𝜋𝜋𝑖𝑖(𝑋𝑋𝑖𝑖
∗,𝑋𝑋𝑗𝑗

∗ )  
𝜕𝜕𝜕𝜕𝜕𝜕

≤ 0. 

 
Proof of Proposition 4:  
𝜕𝜕𝜋𝜋𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖

= 𝛼𝛼𝑖𝑖 − 2𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 − 𝛾𝛾𝑋𝑋𝑗𝑗 − �
𝜃𝜃𝑖𝑖
𝑣𝑣𝑖𝑖

𝐵𝐵𝑖𝑖

𝑣𝑣𝑖𝑖
�(1 − 𝜏𝜏𝑖𝑖)𝜇𝜇𝑖𝑖 + 𝜏𝜏𝑖𝑖𝜀𝜀𝑖𝑖�𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖 − 𝜃𝜃𝑖𝑖𝐹𝐹𝑖𝑖(𝑣𝑣𝑖𝑖) − (𝑔𝑔𝑖𝑖 − 𝜃𝜃𝑖𝑖)𝐹𝐹𝑖𝑖 �

𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖
� 

           −(𝑔𝑔𝑖𝑖 − 𝜃𝜃𝑖𝑖)(1 − 𝜏𝜏𝑖𝑖) �
𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖
− 𝜇𝜇𝑖𝑖� 𝑓𝑓𝑖𝑖 �

𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖
� = 0. 

It can be shown that sign of (𝜕𝜕𝑋𝑋𝑖𝑖/𝜕𝜕𝜏𝜏𝑖𝑖) =sign of (𝜕𝜕2𝜋𝜋𝑖𝑖/𝜕𝜕𝑋𝑋𝑖𝑖𝜕𝜕𝜏𝜏𝑖𝑖), where, 

 𝜕𝜕2𝜋𝜋𝑖𝑖/𝜕𝜕𝑋𝑋𝑖𝑖𝜕𝜕𝜏𝜏𝑖𝑖 = ∫ 𝜃𝜃𝑖𝑖
𝑣𝑣𝑖𝑖

𝐵𝐵𝑖𝑖
𝑣𝑣𝑖𝑖

(𝜇𝜇𝑖𝑖 − 𝜀𝜀𝑖𝑖)𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖 − (𝑔𝑔𝑖𝑖 − 𝜃𝜃𝑖𝑖)(𝜇𝜇𝑖𝑖 −
𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖

)𝑓𝑓𝑖𝑖(
𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖

),  

which is negative when 𝑣𝑣𝑖𝑖 ≥ 𝜇𝜇𝑖𝑖 ≥ 𝑋𝑋𝑖𝑖/𝑁𝑁𝑖𝑖.  

Next, we find a sufficient condition for 𝜇𝜇𝑖𝑖 ≥ 𝑋𝑋𝑖𝑖/𝑁𝑁𝑖𝑖 , or equivalently, 𝑋𝑋𝑖𝑖 ≤ 𝑁𝑁𝑖𝑖𝜇𝜇𝑖𝑖. Note that: 

𝜕𝜕𝜋𝜋𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖

< 𝛼𝛼𝑖𝑖 − 2𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 − 𝜏𝜏𝑖𝑖 �
𝜃𝜃𝑖𝑖
𝑣𝑣𝑖𝑖
∫ 𝜀𝜀𝑖𝑖
𝐵𝐵𝑖𝑖
𝑣𝑣𝑖𝑖

𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖) + 𝜃𝜃𝑖𝑖𝐹𝐹𝑖𝑖(𝑣𝑣𝑖𝑖)� − (𝑔𝑔𝑖𝑖 − 𝜃𝜃𝑖𝑖)𝐹𝐹𝑖𝑖 �
𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖
�.  

The RHS of the above inequality decreases in Xi.  

If at 𝑋𝑋𝑖𝑖 = 𝑁𝑁𝑖𝑖𝜇𝜇𝑖𝑖, 𝛼𝛼𝑖𝑖 − 2𝛽𝛽𝑖𝑖𝑁𝑁𝑖𝑖𝜇𝜇𝑖𝑖 − 𝜏𝜏𝑖𝑖 �
𝜃𝜃𝑖𝑖
𝑣𝑣𝑖𝑖
∫ 𝜀𝜀𝑖𝑖
𝐵𝐵𝑖𝑖
𝑣𝑣𝑖𝑖

𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖) + 𝜃𝜃𝑖𝑖𝐹𝐹𝑖𝑖(𝑣𝑣𝑖𝑖)� − (𝑔𝑔𝑖𝑖 − 𝜃𝜃𝑖𝑖)𝐹𝐹𝑖𝑖(𝜇𝜇𝑖𝑖) ≤ 0,  

then Xi that satisfies 𝜕𝜕𝜋𝜋𝑖𝑖/𝜕𝜕𝑋𝑋𝑖𝑖 = 0 must be less than 𝑁𝑁𝑖𝑖𝜇𝜇𝑖𝑖 as well.  

It can be shown that sign of (𝜕𝜕𝑋𝑋𝑖𝑖/𝜕𝜕𝜏𝜏𝑗𝑗) = −sign of (𝜕𝜕2𝜋𝜋𝑗𝑗/𝜕𝜕𝑋𝑋𝑗𝑗𝜕𝜕𝜏𝜏𝑗𝑗) ≥ 0. 

 
Proof of Proposition 5(a):  



3 
 

The proof of Proposition 5 is rather tedious. As a result, we divide the proofs into four lemmas, labeled 
Lemma A1 through Lemma A4. The proof of this proposition follows directly from the proofs of these 
four lemmas. To facilitate the exposition, we will use superscripts to denote a model (Q, P, B, and C) and 
subscripts to denote a television network (1 and 2). For example,  𝑋𝑋1𝑃𝑃 is the quantity of network 1 in 
model P, and 𝑋𝑋2𝑃𝑃 is the quantity of network 2 in model P. 
 
Lemma A1. 𝑋𝑋2𝐶𝐶≤𝑋𝑋2𝑃𝑃.  
Proof: From FOC of model C,  

𝛼𝛼1 − 2𝛽𝛽1𝑋𝑋1 − 𝛾𝛾𝑋𝑋2 − 𝜃𝜃1′ − (𝑔𝑔1 − 𝜃𝜃1)𝐹𝐹1(𝑋𝑋1/𝑁𝑁1) = 0,     (A1) 
𝛼𝛼2 − 2𝛽𝛽2𝑋𝑋2 − 𝛾𝛾𝑋𝑋1 − 𝜃𝜃2′ − (𝑔𝑔2 − 𝜃𝜃2)𝐹𝐹2(𝑋𝑋2/𝑁𝑁2) = 0.     (A2) 

Solving for X1 From (A2), we get, 𝑋𝑋1 = �𝛼𝛼2 − 2𝛽𝛽2𝑋𝑋2 − 𝜃𝜃2′ − (𝑔𝑔2 − 𝜃𝜃2)𝐹𝐹2 �
𝑋𝑋2
𝑁𝑁2
�� /𝛾𝛾. 

Plugging the above expression of X1 into (A1), we get 

𝛼𝛼1 −
2𝛽𝛽1
𝛾𝛾 �𝛼𝛼2 − 2𝛽𝛽2𝑋𝑋2 − 𝜃𝜃2′ − (𝑔𝑔2 − 𝜃𝜃2)𝐹𝐹2 �

𝑋𝑋2
𝑁𝑁2
�� − 𝛾𝛾𝑋𝑋2 − 𝜃𝜃1′  

−(𝑔𝑔1 − 𝜃𝜃1)𝐹𝐹1 �
𝛼𝛼2−2𝛽𝛽2𝑋𝑋2−𝜃𝜃2′−(𝑔𝑔2−𝜃𝜃2)𝐹𝐹2�

𝑋𝑋2
𝑁𝑁2
�

𝛾𝛾𝑁𝑁1
� = 0.   (A3)  

 
The LHS of (A3) is increasing in X2 since (4β1β2-γ) > 0.   
The FOC of model P, given X2, is: 

11 / p∂∂π = 𝛼𝛼1−𝛾𝛾𝑋𝑋2−2𝑝𝑝1
𝛽𝛽1

+ 𝜃𝜃1′ +
(𝑔𝑔1−𝜃𝜃1)𝐹𝐹1�

𝑋𝑋1
𝑁𝑁1
�

𝛽𝛽1
= 0. 

Substituting 𝑝𝑝1 = 𝛼𝛼1 − 𝛽𝛽1𝑋𝑋1 − 𝛾𝛾𝑋𝑋2, from equation (2a), into the above expression, we get, 
 𝜕𝜕𝜋𝜋1
𝜕𝜕𝑝𝑝1

=  𝛼𝛼1 − 2𝛽𝛽1 𝑋𝑋1 − 𝛾𝛾𝑋𝑋2 − 𝜃𝜃1′ − (𝑔𝑔1 − 𝜃𝜃1)𝐹𝐹1 �
𝑋𝑋1
𝑁𝑁1
� = 0, which identical to equation (A1).    

On the other hand, given 𝑝𝑝1, 
22 / X∂∂π =𝑎𝑎2+𝑐𝑐𝑝𝑝1−2𝑋𝑋2

𝑏𝑏2
− 𝜃𝜃2′ − (𝑔𝑔2 − 𝜃𝜃2)𝐹𝐹2 �

𝑋𝑋2
𝑁𝑁2
� = 0. 

Using equation 2(a), and 𝑎𝑎𝑖𝑖 = (𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗 − 𝛼𝛼𝑗𝑗𝛾𝛾)/(𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗 − 𝛾𝛾2), 𝑏𝑏𝑖𝑖 = 𝛽𝛽𝑖𝑖/(𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗 − 𝛾𝛾2), and 𝑐𝑐 = 𝛾𝛾/(𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗 − 𝛾𝛾2), 
the above expression of 𝜕𝜕𝜋𝜋2

𝜕𝜕𝑋𝑋2
 can be written as:                                          

𝜕𝜕𝜋𝜋2
𝜕𝜕𝑋𝑋2

= 𝛼𝛼2 − �2𝛽𝛽2 −
𝛾𝛾2

𝛽𝛽1
�𝑋𝑋2 − 𝛾𝛾𝑋𝑋1 − 𝜃𝜃2′  − (𝑔𝑔2 − 𝜃𝜃2 )𝐹𝐹2 �

𝑋𝑋2
𝑁𝑁2
� = 0. 

 Solving for 𝑋𝑋1 from the above equation, we get, 𝑋𝑋1 =
𝛼𝛼2−�2𝛽𝛽2−

𝑟𝑟2

𝛽𝛽1
 �𝑋𝑋2−𝜃𝜃2′−(𝑔𝑔2−𝜃𝜃2)𝐹𝐹2(𝑋𝑋2𝑁𝑁2

)

𝛾𝛾
. 

Hence 
11 / p∂∂π =0 can be re-written as  

𝛼𝛼1 −
2𝛽𝛽1
𝛾𝛾
�𝛼𝛼2 − �2𝛽𝛽2 −

𝛾𝛾2

𝛽𝛽1
�𝑋𝑋2 − 𝜃𝜃2′ − (𝑔𝑔2 − 𝜃𝜃2)𝐹𝐹2 �

𝑋𝑋2
𝑁𝑁2
�� − 𝛾𝛾𝑋𝑋2 − 𝜃𝜃1′  

−(𝑔𝑔1 − 𝜃𝜃1)𝐹𝐹1(
𝛼𝛼2−�2𝛽𝛽2−

𝛾𝛾2
𝛽𝛽1
�𝑋𝑋2−𝜃𝜃2

′−(𝑔𝑔2−𝜃𝜃2)𝐹𝐹2(𝑋𝑋2𝑁𝑁2
)

𝛾𝛾𝑁𝑁1
) =0,     (A4) 

which is increasing in X2 since (4β1β2-γ-2γ2)>0.   
𝑋𝑋2𝐶𝐶  is, therefore, the solution to (A3) and that  𝑋𝑋2𝑃𝑃 is the solution to (A4). Compare (A3) and (A4), we get 
𝑋𝑋2𝐶𝐶≤𝑋𝑋2𝑃𝑃. 
 
Lemma A2. Setting quantity dominates setting price given the other firm sets quantity, i.e.,  𝜋𝜋1𝐶𝐶≥𝜋𝜋1𝑃𝑃.  
Proof:  𝜋𝜋1

𝑝𝑝 = 𝜋𝜋1(𝑋𝑋1
𝑝𝑝, 𝑋𝑋2

𝑝𝑝 )≤ 𝜋𝜋1(𝑋𝑋1
𝑝𝑝, 𝑋𝑋2𝐶𝐶  ), as 𝑋𝑋2𝐶𝐶≤𝑋𝑋2𝑃𝑃 and 0/),( 2211 ≤−=∂∂ γπ XXX ), 

                             ≤ 𝜋𝜋1(𝑋𝑋1𝐶𝐶, 𝑋𝑋2𝐶𝐶  ), as 𝑋𝑋1𝐶𝐶  is the best response to 𝑋𝑋2𝐶𝐶 .       
                
Lemma A3. 𝑋𝑋1

𝑄𝑄≥𝑋𝑋1𝐵𝐵; 𝑝𝑝1
𝑄𝑄≥𝑝𝑝1𝐵𝐵; 𝑝𝑝2

𝑄𝑄≥𝑝𝑝2𝐵𝐵. 
Proof: From the FOCs of model B, 0/ 11 =∂∂ pπ  and 0/ 22 =∂∂ pπ , respectively, we get  
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)]/)(()([2 12111111
'

112111 NcppbaFgbcppba +−−+++− θθ = 0, and                   (A5) 
)]/)(()([2 21222222

'
221222 NcppbaFgbcppba +−−+++− θθ = 0.                 (A6) 

Equation (A5) above can be re-written as:  
𝛼𝛼1 − �2𝛽𝛽1 −

𝛾𝛾2

𝛽𝛽2
�𝑋𝑋1 − 𝛾𝛾𝑋𝑋2 − 𝜃𝜃1′ − (𝑔𝑔1 − 𝜃𝜃1)𝐹𝐹1 �

𝑋𝑋1
𝑁𝑁1
� = 0;         (A7) 

while equation (A6) can be re-written  as: 
𝛼𝛼2 − �2𝛽𝛽2 −

𝛾𝛾2

𝛽𝛽1
�𝑋𝑋2 − 𝛾𝛾𝑋𝑋1 − 𝜃𝜃2′ − (𝑔𝑔2 − 𝜃𝜃2)𝐹𝐹1 �

𝑋𝑋2
𝑁𝑁2
� = 0.                        (A8) 

For model Q, the FOC 0/ 11 =∂∂ Xπ is identical to equation (A7) above. The FOC 0/ 22 =∂∂ pπ  can be 
written as: 
𝛼𝛼2 − 2𝛽𝛽2𝑋𝑋2 − 𝛾𝛾𝑋𝑋1 − 𝜃𝜃2′ − (𝑔𝑔2 − 𝜃𝜃2)𝐹𝐹1 �

𝑋𝑋2
𝑁𝑁2
� = 0.            (A9) 

Let (𝑋𝑋1𝐵𝐵,𝑋𝑋2𝐵𝐵) is the solution to equation (A7) and (A8), while (𝑋𝑋1
𝑄𝑄,𝑋𝑋2

𝑄𝑄) is the solution to (A7) and (A9). 
Following a logic similar to the proof of Lemma (A1) and assuming (2β2-γ2/β1)(2β1-γ2/β2)-γ2 ≥ 0, we get 
𝑋𝑋1
𝑄𝑄≥𝑋𝑋1𝐵𝐵. This proves the first part of Lemma A3. 

Next, equation (A9) can be re-written as  

0)]/)(()([)2(
2122222

'
222

21

2
2

2122221 =+−−++
−

++− NcpbpaFgb
cbb

pcbcppbabb θθ .               (A10) 

Let (𝑝𝑝2𝐵𝐵,𝑝𝑝2𝐵𝐵) is the solution to (A5) and (A6), while (𝑝𝑝1
𝑄𝑄 ,𝑝𝑝2

𝑄𝑄)is the solution to (A5) and (A10).  It is easy 
to verify that LHS of (A6) and (A10) are decreasing in p2 for a given p1. Therefore, by implicit function 
theory,  𝑝𝑝2

𝑄𝑄(𝑝𝑝1) and  𝑝𝑝2𝐵𝐵(𝑝𝑝1) increases in p1. Moreover, LHS of (A10) is greater than LHS of (A6), 
therefore, 𝑝𝑝2

𝑄𝑄(𝑝𝑝1)≥ 𝑝𝑝2𝐵𝐵(𝑝𝑝1) given the same p1.  Further, (A5) can be re-written as  

))()((
1

111
'

11111
1

N
FgbpbX Xθθ −++− = 0.            (A11) 

Since 𝑋𝑋1
𝑄𝑄≥𝑋𝑋1𝐵𝐵, and LHS of (A11) increases in X1 and decreases in p1, 𝑝𝑝1

𝑄𝑄≥𝑝𝑝1𝐵𝐵.   
Therefore, 𝑝𝑝2

𝑄𝑄=𝑝𝑝2
𝑄𝑄(𝑝𝑝1

𝑄𝑄)≥ 𝑝𝑝2
𝑄𝑄(𝑝𝑝1

𝑄𝑄)≥ 𝑝𝑝2𝐵𝐵(𝑝𝑝1
𝑄𝑄)≥ 𝑝𝑝2𝐵𝐵(𝑝𝑝1𝐵𝐵)= 𝑝𝑝2𝐵𝐵 

 
Lemma A4. Setting quantity dominates setting price given the other firm sets price, i.e., 𝜋𝜋1

𝑄𝑄≥𝜋𝜋1𝐵𝐵. 
Proof: 𝜋𝜋1

𝑄𝑄 = 𝜋𝜋1(𝑋𝑋1
𝑄𝑄, 𝑋𝑋2

𝑄𝑄 ) = 𝜋𝜋1(𝑝𝑝1
𝑄𝑄, 𝑝𝑝2

𝑄𝑄 ) ≥ 𝜋𝜋1(𝑝𝑝1𝐵𝐵, 𝑝𝑝2
𝑄𝑄 ) ≥ 𝜋𝜋1(𝑝𝑝1𝐵𝐵, 𝑝𝑝2𝐵𝐵 ) = 𝜋𝜋1𝐵𝐵 

Note that 𝜋𝜋1(𝑝𝑝1
𝑄𝑄, 𝑝𝑝2

𝑄𝑄) ≥ 𝜋𝜋1(𝑝𝑝1𝐵𝐵, 𝑝𝑝2
𝑄𝑄 ). Given 𝑝𝑝2

𝑄𝑄, network 1’s best quantity response, when written in p-
space, is the same as the best price response function in model B, i.e, 𝑝𝑝1

𝑄𝑄 is the best price response to 𝑝𝑝2
𝑄𝑄.  

Note also that 𝜋𝜋1(𝑝𝑝1𝐵𝐵, 𝑝𝑝2
𝑄𝑄 ) ≥ 𝜋𝜋1(𝑝𝑝1𝐵𝐵, 𝑝𝑝2𝐵𝐵 ) as 2211 /),( ppp ∂∂π ≥0.   To see this, observe that:  

)]/()([/),( 11111
'

112211 NXFgpcppp θθπ −−−=∂∂ , and from (A5),                       
)]/()([ 11111

'
11121111 NXFgpbcppbaX θθ −−−=+−= ≥ 0. 

 
Proof of Proposition 5(b):  
If parameters are symmetric, 𝑋𝑋1𝐶𝐶=𝑋𝑋2𝐶𝐶=𝑋𝑋𝐶𝐶 , 𝑋𝑋1𝐵𝐵=𝑋𝑋2𝐵𝐵=𝑋𝑋𝐵𝐵. By (A1), 𝑋𝑋𝐶𝐶  satisfies: 
𝛼𝛼 − (2𝛽𝛽 + 𝛾𝛾)𝑋𝑋𝐶𝐶 − 𝜃𝜃′ − (𝑔𝑔 − 𝜃𝜃)𝐹𝐹(𝑋𝑋𝐶𝐶/𝑁𝑁) = 0.  By (A7), 𝑋𝑋𝐵𝐵 satisfies: 
𝛼𝛼 − (2𝛽𝛽 + 𝑟𝑟2/𝛽𝛽)𝑋𝑋𝐵𝐵 − 𝜃𝜃′ − (𝑔𝑔 − 𝜃𝜃)𝐹𝐹(𝑋𝑋𝐶𝐶/𝑁𝑁) = 0.  
By assumption 𝛽𝛽1𝛽𝛽2=𝛽𝛽2>𝑟𝑟2, 𝛽𝛽 > 𝛾𝛾.Thus 𝛾𝛾 >𝑟𝑟2/𝛽𝛽. 
Comparing the above two equations, 𝑋𝑋𝐶𝐶< 𝑋𝑋𝐵𝐵.  Utilizing the price function 2(a) or 2(b),  
 𝑝𝑝𝐶𝐶 = 𝛼𝛼 − (𝛽𝛽 + 𝛾𝛾)𝑋𝑋𝐶𝐶> 𝛼𝛼 − (𝛽𝛽 + 𝛾𝛾)𝑋𝑋𝐵𝐵 = 𝑝𝑝𝐵𝐵.    
To compare expected profit, consider the profit function (3) at 𝑋𝑋1 = 𝑋𝑋2 . That is, 𝜋𝜋(𝑋𝑋) = (𝛼𝛼 −
(𝛽𝛽 + 𝛾𝛾)𝑋𝑋)𝑋𝑋 + 𝐸𝐸(𝜋𝜋𝑠𝑠), which is concave in 𝑋𝑋.  From FOC, its optimal solution 𝑋𝑋# satisfies: 𝛼𝛼 − (2𝛽𝛽 +
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2𝑟𝑟)𝑋𝑋# − 𝜃𝜃′ − (𝑔𝑔 − 𝜃𝜃)𝐹𝐹�𝑋𝑋#/𝑁𝑁� = 0.  Thus 𝑋𝑋# < 𝑋𝑋𝐶𝐶< 𝑋𝑋𝐵𝐵.  Note the Cournot expected profit is 𝜋𝜋(𝑋𝑋𝐶𝐶), 
and the Bertrand expected profit is 𝜋𝜋(𝑋𝑋𝐵𝐵), thus 𝜋𝜋(𝑋𝑋#) > 𝜋𝜋(𝑋𝑋𝐶𝐶)>𝜋𝜋(𝑋𝑋𝐵𝐵). 
 
Proof of Proposition 6:  
(a) The FOC of the cooperative and symmetric game is: 𝛼𝛼 − (2𝛽𝛽 + 2𝛾𝛾)𝑋𝑋0 − 𝜃𝜃′ − (𝑔𝑔 − 𝜃𝜃)𝐹𝐹 �𝑋𝑋

0

𝑁𝑁
� ≡ 𝐿𝐿0. 

The FOC of the Cournot game is: 𝛼𝛼 − (2𝛽𝛽 + 𝛾𝛾)𝑋𝑋∗ − 𝜃𝜃′ − (𝑔𝑔 − 𝜃𝜃)𝐹𝐹 �𝑋𝑋
∗

𝑁𝑁
� ≡ 𝐿𝐿∗. 

Comparing Lo = 0 with L*= 0, it is easy to see that Xo < X*
.  

 

(b) 𝜕𝜕(𝑋𝑋∗−𝑋𝑋𝑜𝑜)
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑋𝑋∗

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑋𝑋𝑜𝑜

𝜕𝜕𝜕𝜕
= −

𝜕𝜕𝐿𝐿∗

𝜕𝜕𝜕𝜕
𝜕𝜕𝐿𝐿∗
𝜕𝜕𝜕𝜕

− (−
𝜕𝜕𝐿𝐿𝑜𝑜

𝜕𝜕𝜕𝜕
𝜕𝜕𝐿𝐿𝑜𝑜
𝜕𝜕𝜕𝜕

), where, 

 𝜕𝜕𝐿𝐿
∗

𝜕𝜕𝜕𝜕
= 𝜕𝜕𝐿𝐿𝑜𝑜

𝜕𝜕𝜕𝜕
= 𝜃𝜃

𝑣𝑣2
(𝑣𝑣(1 − 𝐹𝐹(𝑣𝑣) + ∫ (1 − 𝐹𝐹(𝑥𝑥)𝑑𝑑𝑑𝑑)𝐵𝐵

𝑣𝑣 >0, 

 𝜕𝜕𝐿𝐿
∗

𝜕𝜕𝜕𝜕
= − 1

(2𝛽𝛽+𝛾𝛾)+(𝑔𝑔−𝜃𝜃)/𝑁𝑁𝑁𝑁(𝑋𝑋
∗
𝑁𝑁 )

, and, 

 𝜕𝜕𝐿𝐿
𝑜𝑜

𝜕𝜕𝜕𝜕
= − 1

(2𝛽𝛽+2𝛾𝛾)+(𝑔𝑔−𝜃𝜃)/𝑁𝑁𝑁𝑁(𝑋𝑋
𝑜𝑜
𝑁𝑁 )

. 

If 𝑓𝑓′(𝑥𝑥) ≤ 0, and 𝑓𝑓(𝑋𝑋∗/𝑁𝑁) ≤ 𝑓𝑓(𝑋𝑋0/𝑁𝑁), then  𝜕𝜕(𝑋𝑋∗−𝑋𝑋𝑜𝑜)
𝜕𝜕𝜕𝜕

≥ 0. 

For normal distribution, max |𝑓𝑓 �𝑋𝑋
𝑜𝑜

𝑁𝑁
� −  𝑓𝑓 �𝑋𝑋

∗

𝑁𝑁
�|=f(μ)=1/(√2𝜋𝜋𝜎𝜎).  

If γ ≥ (g-θ)/(N√2𝜋𝜋𝜎𝜎), then 𝜕𝜕(𝑋𝑋∗−𝑋𝑋𝑜𝑜)
𝜕𝜕𝜕𝜕

≥0.  
Similarly,    

𝜕𝜕(𝑋𝑋∗−𝑋𝑋𝑜𝑜)
𝜕𝜕𝜕𝜕

= −(
𝐹𝐹�𝑋𝑋

∗

𝑁𝑁 �

(2𝛽𝛽+𝛾𝛾)+ 𝑔𝑔−𝜃𝜃

𝑁𝑁𝑁𝑁�𝑋𝑋
∗
𝑁𝑁 �

−
𝐹𝐹(𝑋𝑋

0

𝑁𝑁 )

(2𝛽𝛽+2𝛾𝛾)+(𝑔𝑔−𝜃𝜃)/𝑁𝑁𝑁𝑁(𝑋𝑋
0
𝑁𝑁 )

) ≤ 0, when the condition holds.   

𝜕𝜕(𝑋𝑋∗−𝑋𝑋𝑜𝑜)
𝜕𝜕𝜕𝜕

= −( 1

(2𝛽𝛽+𝛾𝛾)+ 𝑔𝑔−𝜃𝜃

𝑁𝑁𝑁𝑁�𝑋𝑋
∗
𝑁𝑁 �

− 2

(2𝛽𝛽+2𝛾𝛾)+ 𝑔𝑔−𝜃𝜃

𝑁𝑁𝑁𝑁�𝑋𝑋
0
𝑁𝑁 �

)  

              = −( 1

(2𝛽𝛽+𝛾𝛾)+ 𝑔𝑔−𝜃𝜃

𝑁𝑁𝑁𝑁�𝑋𝑋
∗
𝑁𝑁 �

− 1

(𝛽𝛽+𝛾𝛾)+(𝑔𝑔−𝜃𝜃)/(2𝑁𝑁)𝑓𝑓(𝑋𝑋
0
𝑁𝑁 )

) ≥ 0, when the condition holds.   

 
𝜕𝜕(𝑋𝑋∗−𝑋𝑋𝑜𝑜)

𝜕𝜕𝜕𝜕
= (

𝐹𝐹�𝑋𝑋
∗

𝑁𝑁 �

(2𝛽𝛽+𝛾𝛾)+ 𝑔𝑔−𝜃𝜃

𝑁𝑁𝑁𝑁�𝑋𝑋
∗
𝑁𝑁 �

−
𝐹𝐹(𝑋𝑋

0

𝑁𝑁 )

(2𝛽𝛽+2𝛾𝛾)+(𝑔𝑔−𝜃𝜃)/𝑁𝑁𝑁𝑁(𝑋𝑋
0
𝑁𝑁 )

) ≥ 0, when the condition holds.   

 
Proof of Proposition 7:  
For network i, 𝜕𝜕𝜋𝜋𝑖𝑖

𝜕𝜕𝑋𝑋𝑘𝑘𝑘𝑘
= 𝛼𝛼𝑘𝑘𝑘𝑘 − 2𝐾𝐾𝛽𝛽𝑖𝑖𝑋𝑋𝑘𝑘𝑘𝑘 − 𝐾𝐾𝐾𝐾𝑋𝑋𝑘𝑘𝑘𝑘 − (𝑔𝑔𝑖𝑖 − 𝜃𝜃𝑖𝑖)𝐹𝐹𝑖𝑖 �∑

𝑋𝑋𝑘𝑘𝑘𝑘
𝑁𝑁𝑖𝑖

𝐾𝐾
𝑘𝑘−1 � − 𝜃𝜃𝑖𝑖′ = 0,𝑘𝑘 = 1, … ,𝐾𝐾.  

Adding the K  FOCs, we get: 
 ∑ 𝛼𝛼𝑘𝑘𝑘𝑘𝐾𝐾

𝑘𝑘=1 − 2𝐾𝐾𝛽𝛽𝑖𝑖 ∑ 𝑋𝑋𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1 − 𝐾𝐾𝐾𝐾 ∑ 𝑋𝑋𝑘𝑘𝑘𝑘𝐾𝐾

𝑘𝑘=1 − 𝐾𝐾𝜃𝜃𝑖𝑖′ − 𝐾𝐾(𝑔𝑔𝑖𝑖 − 𝜃𝜃𝑖𝑖)𝐹𝐹𝑖𝑖(∑ 𝑋𝑋𝑘𝑘𝑘𝑘/𝑁𝑁𝑖𝑖𝐾𝐾
𝑘𝑘−1 ) = 0, i=1, 2.    

Comparing the above with FOC of aggregate planning, 𝛼𝛼𝑖𝑖 − (2𝛽𝛽𝑖𝑖 + 𝛾𝛾)𝑋𝑋𝑖𝑖 − 𝜃𝜃𝑖𝑖′ − (𝑔𝑔𝑖𝑖 − 𝜃𝜃𝑖𝑖)𝐹𝐹𝑖𝑖 �
𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖
� = 0, 

i=1, 2, we get  X*=∑ 𝑋𝑋𝑘𝑘𝑘𝑘∗𝐾𝐾
𝑘𝑘=1  . 

 

Proof of Proposition 8:  

(a) Consider the additive demand function, 𝑝𝑝𝑠𝑠𝑠𝑠 = 𝜀𝜀𝑖𝑖(𝜃𝜃𝑐𝑐𝑐𝑐 − 𝜂𝜂𝑖𝑖𝐶𝐶𝑖𝑖), (𝜂𝜂𝑖𝑖 > 0), first. Here, 
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𝑝𝑝𝑠𝑠𝑠𝑠 =

⎩
⎨

⎧ 𝜃𝜃𝑐𝑐𝑐𝑐𝜀𝜀𝑖𝑖 − 𝜂𝜂𝑖𝑖𝜀𝜀𝑖𝑖 �𝑁𝑁𝑖𝑖 −
𝑋𝑋𝑖𝑖
𝑣𝑣𝑖𝑖
� , when 𝜀𝜀𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 ,

𝜃𝜃𝑐𝑐𝑐𝑐𝜀𝜀𝑖𝑖 − 𝜂𝜂𝑖𝑖𝜀𝜀𝑖𝑖 �𝑁𝑁𝑖𝑖 −
𝑋𝑋𝑖𝑖
𝜀𝜀𝑖𝑖
� , when  

𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖

≤ 𝜀𝜀𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖 .
 

Therefore, 
𝜕𝜕𝜋𝜋𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖

= 𝛼𝛼𝑖𝑖 − 2𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 − 𝛾𝛾𝑋𝑋𝑗𝑗 − 𝜃𝜃𝑐𝑐𝑐𝑐′ − (𝑔𝑔𝑖𝑖 − 𝜃𝜃𝑐𝑐𝑐𝑐)𝐹𝐹𝑖𝑖 �
𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖
� + ∫

2𝜂𝜂𝑖𝑖�𝑁𝑁𝑖𝑖−
𝑋𝑋𝑖𝑖
𝑣𝑣𝑖𝑖
�𝜀𝜀𝑖𝑖

𝑣𝑣𝑖𝑖

𝐵𝐵𝑖𝑖
𝑣𝑣𝑖𝑖

𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖 + ∫ 2𝜂𝜂𝑖𝑖 �𝑁𝑁𝑖𝑖 −
𝑋𝑋𝑖𝑖
𝜀𝜀𝑖𝑖
� 𝜀𝜀𝑖𝑖

𝑣𝑣𝑖𝑖
𝑋𝑋𝑖𝑖/𝑁𝑁𝑖𝑖

𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖, 
 
𝜕𝜕2𝜋𝜋𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖

2 = −2𝛽𝛽𝑖𝑖 − �(𝑔𝑔𝑖𝑖−𝜃𝜃𝑖𝑖)
𝑁𝑁𝑖𝑖

� 𝑓𝑓𝑖𝑖 �
𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖
� − ∫ 2𝜂𝜂𝑖𝑖𝜀𝜀𝑖𝑖𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)

𝑣𝑣𝑖𝑖
2

𝐵𝐵𝑖𝑖
𝑣𝑣𝑖𝑖

𝑑𝑑𝜀𝜀𝑖𝑖 − ∫ 2𝑣𝑣𝑖𝑖
𝑋𝑋𝑖𝑖/𝑁𝑁𝑖𝑖

𝜂𝜂𝑖𝑖𝜀𝜀𝑖𝑖𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖 < 0, 
𝜕𝜕2𝜋𝜋𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗

= −𝛾𝛾. 

Consider the multiplicative demand function, 𝑝𝑝𝑠𝑠𝑠𝑠 = 𝜃𝜃𝑐𝑐𝑐𝑐𝜀𝜀𝑖𝑖𝐶𝐶𝑖𝑖
−𝜂𝜂𝑖𝑖 (𝜂𝜂𝑖𝑖 < 1, 𝜃𝜃𝑐𝑐𝑐𝑐 ≥ 0), next. Here, 

𝑝𝑝𝑠𝑠𝑠𝑠 =

⎩
⎨

⎧ 𝜃𝜃𝑐𝑐𝑐𝑐𝜀𝜀𝑖𝑖(𝑁𝑁𝑖𝑖 −
𝑋𝑋𝑖𝑖
𝑣𝑣𝑖𝑖

)−𝜂𝜂𝑖𝑖 , when 𝜀𝜀𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 ,

𝜃𝜃𝑐𝑐𝑐𝑐𝜀𝜀𝑖𝑖(𝑁𝑁𝑖𝑖 −
𝑋𝑋𝑖𝑖
𝜀𝜀

)−𝜂𝜂𝑖𝑖 , when  
𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖
≤ 𝜀𝜀𝑖𝑖 ≤ 𝑣𝑣𝑖𝑖 .

 

Therefore, 
𝜕𝜕𝜋𝜋𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖

= 𝛼𝛼𝑖𝑖 − 2𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 − 𝛾𝛾𝑋𝑋𝑗𝑗 − 𝑔𝑔𝑖𝑖𝐹𝐹𝑖𝑖 �
𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖
� − �

�1− 𝜂𝜂𝑖𝑖�
𝑣𝑣𝑖𝑖

𝐵𝐵𝑖𝑖

𝑣𝑣𝑖𝑖
�𝑁𝑁𝑖𝑖 −

𝑋𝑋𝑖𝑖
𝑣𝑣𝑖𝑖
�
−𝜂𝜂𝑖𝑖

𝜃𝜃𝑐𝑐𝑐𝑐𝜀𝜀𝑖𝑖𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖 

                  −∫ (1 − 𝜂𝜂𝑖𝑖) �𝑁𝑁𝑖𝑖 −
𝑋𝑋𝑖𝑖
𝜀𝜀𝑖𝑖
�
−𝜂𝜂𝑖𝑖

𝜃𝜃𝑐𝑐𝑐𝑐𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖
𝑣𝑣𝑖𝑖
𝑋𝑋𝑖𝑖/𝑁𝑁𝑖𝑖

, 
 
𝜕𝜕2𝜋𝜋𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖2

= −2𝛽𝛽𝑖𝑖 − �
𝑔𝑔𝑖𝑖
𝑁𝑁𝑖𝑖
� 𝑓𝑓𝑖𝑖 �

𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖
� − �

𝜂𝜂𝑖𝑖�1 − 𝜂𝜂𝑖𝑖�
𝑣𝑣𝑖𝑖2

𝐵𝐵𝑖𝑖

𝑣𝑣𝑖𝑖
�𝑁𝑁𝑖𝑖 −

𝑋𝑋𝑖𝑖
𝑣𝑣𝑖𝑖
�
−𝜂𝜂𝑖𝑖−1

𝜃𝜃𝑐𝑐𝑐𝑐𝜀𝜀𝑖𝑖𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖 

                        −∫ 𝜂𝜂𝑖𝑖(1−𝜂𝜂𝑖𝑖)
𝜀𝜀𝑖𝑖

𝑣𝑣𝑖𝑖
𝑋𝑋𝑖𝑖/𝑁𝑁𝑖𝑖

�𝑁𝑁𝑖𝑖 −
𝑋𝑋𝑖𝑖
𝜀𝜀𝑖𝑖
�
−𝜂𝜂𝑖𝑖−1

𝜃𝜃𝑐𝑐𝑐𝑐𝑓𝑓𝑖𝑖(𝜀𝜀𝑖𝑖)𝑑𝑑𝜀𝜀𝑖𝑖, 
𝜕𝜕2𝜋𝜋𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗

= −𝛾𝛾.  

The remainder of the proof is similar to that of Proposition 1. 
 
(b) The proof is similar to the proof of Proposition 2. It is easy to verify that 

sign of (𝜕𝜕𝑋𝑋𝑖𝑖/𝜕𝜕𝜂𝜂𝑖𝑖) = sign of (𝜕𝜕2𝜋𝜋𝑖𝑖/𝜕𝜕𝑋𝑋𝑖𝑖𝜕𝜕𝜂𝜂𝑖𝑖) ≥ 0. 
 
 
Proof of Proposition 9:  
With uniform distribution, equation (14) becomes: 
𝜕𝜕𝜋𝜋𝑖𝑖
𝜕𝜕𝑋𝑋𝑖𝑖

= 𝛼𝛼𝑖𝑖 − 2𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖 − 𝛾𝛾 ∫ 𝑋𝑋𝑗𝑗�𝑙𝑙𝑗𝑗�𝑑𝑑𝐹𝐹𝑙𝑙
𝑑𝑑
0 (𝑙𝑙𝑗𝑗) − 𝜃𝜃𝑖𝑖 −

𝜃𝜃𝑖𝑖
𝑣𝑣𝑖𝑖

(𝜇𝜇+𝑙𝑙𝑖𝑖−𝑣𝑣𝑖𝑖)2

4𝑙𝑙𝑖𝑖
− (𝑔𝑔𝑖𝑖 − 𝜃𝜃𝑖𝑖)(

𝑋𝑋𝑖𝑖
𝑁𝑁𝑖𝑖
−(𝜇𝜇−𝑙𝑙𝑖𝑖)

2𝑙𝑙𝑖𝑖
) .  

Thus, 𝑋𝑋𝑖𝑖(𝑙𝑙𝑖𝑖)=
𝛼𝛼𝑖𝑖−𝛾𝛾∫ 𝑋𝑋𝑗𝑗�𝑙𝑙𝑗𝑗�𝑑𝑑𝐹𝐹𝑙𝑙

𝑑𝑑
0 (𝑙𝑙𝑗𝑗)−𝜃𝜃𝑖𝑖−

𝜃𝜃𝑖𝑖�𝜇𝜇+𝑙𝑙𝑖𝑖−𝑣𝑣𝑖𝑖�
2

4𝑣𝑣𝑖𝑖𝑙𝑙𝑖𝑖
+(𝑔𝑔𝑖𝑖−𝜃𝜃𝑖𝑖)(𝜇𝜇−𝑙𝑙𝑖𝑖)

2𝑙𝑙𝑖𝑖

2𝛽𝛽𝑖𝑖+
(𝑔𝑔𝑖𝑖−𝜃𝜃𝑖𝑖)
2𝑁𝑁𝑖𝑖𝑙𝑙𝑖𝑖

 .                  (A12) 

Let ∫ 𝑋𝑋𝑖𝑖(𝑙𝑙𝑖𝑖)𝑑𝑑𝐹𝐹𝑙𝑙
𝑑𝑑
0 (𝑙𝑙𝑖𝑖) = 𝑊𝑊𝑖𝑖. Taking the expectations of both sides of (A12) and utilizing the symmetry of 

parameters of the two networks, we get,  

𝑊𝑊 = 𝑊𝑊𝑖𝑖 =
∫

𝛼𝛼−𝜃𝜃−𝜃𝜃
(𝜇𝜇+𝑙𝑙−𝑣𝑣)2
4𝑣𝑣𝑣𝑣 +(𝑔𝑔−𝜃𝜃)(𝜇𝜇−𝑙𝑙)

2𝑙𝑙
2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑𝑑𝑑
0

𝑑𝑑+𝛾𝛾 ∫ 1

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁
𝑑𝑑𝑑𝑑𝑑𝑑

0
 .                                                          (A13) 
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Plugging (A13) into (A12), we have 
                                                      

 𝑋𝑋𝑖𝑖(𝑙𝑙𝑖𝑖)=
𝛼𝛼−𝛾𝛾𝛾𝛾−𝜃𝜃−𝜃𝜃�𝜇𝜇+𝑙𝑙𝑖𝑖−𝑣𝑣�

2

4𝑣𝑣𝑣𝑣 +(𝑔𝑔−𝜃𝜃)(𝜇𝜇−𝑙𝑙𝑖𝑖)
2𝑙𝑙𝑖𝑖

2𝛽𝛽+(𝑔𝑔−𝜃𝜃)
2𝑁𝑁𝑙𝑙𝑖𝑖

 .  

Therefore, sign of (𝜕𝜕𝑋𝑋𝑖𝑖
𝜕𝜕𝜕𝜕

) = - sign of (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

).           (A14) 
 
Taking derivatives of (A13) w.r.t. 𝑑𝑑,   
sign of (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
)    

= sign of { 
𝛼𝛼−𝜃𝜃−𝜃𝜃(𝜇𝜇+𝑑𝑑−𝑣𝑣)2

4𝑣𝑣𝑣𝑣 +(𝑔𝑔−𝜃𝜃)(𝜇𝜇−𝑑𝑑)
2𝑑𝑑

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁

𝑑𝑑 �1 + 𝛾𝛾
𝑑𝑑 ∫

1

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁

𝑑𝑑
0 𝑑𝑑𝑑𝑑� − (1 + 𝑟𝑟

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁

) ∫
𝛼𝛼−𝜃𝜃−𝜃𝜃(𝜇𝜇+𝑙𝑙−𝑣𝑣)2

4𝑣𝑣𝑣𝑣 +(𝑔𝑔−𝜃𝜃)(𝜇𝜇−𝑙𝑙)
2𝑙𝑙

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑𝑑𝑑
0 }.  

 
Since 1

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁

 increases in 𝑙𝑙, ∫ 1

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁

𝑑𝑑
0 𝑑𝑑𝑑𝑑< 𝑑𝑑

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁

, so 1 + 𝛾𝛾
𝑑𝑑 ∫

1

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑙𝑙

𝑑𝑑
0 𝑑𝑑𝑑𝑑<1 + 𝑟𝑟

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁

 . 

  

If 
𝛼𝛼−𝜃𝜃−𝜃𝜃(𝜇𝜇+𝑙𝑙−𝑣𝑣)2

4𝑣𝑣𝑣𝑣 +(𝑔𝑔−𝜃𝜃)(𝜇𝜇−𝑙𝑙)
2𝑙𝑙

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁

 decreases in 𝑙𝑙, then: 

 
𝛼𝛼−𝜃𝜃−𝜃𝜃(𝜇𝜇+𝑑𝑑−𝑣𝑣)2

4𝑣𝑣𝑣𝑣 +(𝑔𝑔−𝜃𝜃)(𝜇𝜇−𝑑𝑑)
2𝑑𝑑

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁

𝑑𝑑 < ∫
𝛼𝛼−𝜃𝜃−𝜃𝜃(𝜇𝜇+𝑙𝑙−𝑣𝑣)2

4𝑣𝑣𝑣𝑣 +(𝑔𝑔−𝜃𝜃)(𝜇𝜇−𝑙𝑙)
2𝑙𝑙

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁

𝑑𝑑𝑑𝑑𝑑𝑑
0 , which will make sign of (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
) negative. 

To find a sufficient condition for  
𝛼𝛼−𝜃𝜃−𝜃𝜃(𝜇𝜇+𝑙𝑙−𝑣𝑣)2

4𝑣𝑣𝑣𝑣 +(𝑔𝑔−𝜃𝜃)(𝜇𝜇−𝑙𝑙)
2𝑙𝑙

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁

 to decreases in 𝑙𝑙, note that  

𝛼𝛼−𝜃𝜃−𝜃𝜃(𝜇𝜇+𝑙𝑙−𝑣𝑣)2

4𝑣𝑣𝑣𝑣 +(𝑔𝑔−𝜃𝜃)(𝜇𝜇−𝑙𝑙)
2𝑙𝑙

2𝛽𝛽+𝑔𝑔−𝜃𝜃2𝑁𝑁𝑁𝑁

 = 
2𝑁𝑁𝑁𝑁(𝛼𝛼−𝜃𝜃)−𝜃𝜃𝑁𝑁(𝜇𝜇+𝑙𝑙−𝑣𝑣)2

2𝑣𝑣 +(𝑔𝑔−𝜃𝜃)𝑁𝑁(𝜇𝜇−𝑙𝑙)

4𝛽𝛽𝛽𝛽𝛽𝛽+𝑔𝑔−𝜃𝜃
.  

Taking its derivative w.r.t. 𝑙𝑙,  

sign of 𝜕𝜕(
2𝑁𝑁𝑁𝑁(𝛼𝛼−𝜃𝜃)−𝜃𝜃𝑁𝑁(𝜇𝜇+𝑙𝑙−𝑣𝑣)2

2𝑣𝑣 +(𝑔𝑔−𝜃𝜃)𝑁𝑁(𝜇𝜇−𝑙𝑙)

4𝛽𝛽𝛽𝛽𝛽𝛽+𝑔𝑔−𝜃𝜃
)/𝜕𝜕𝜕𝜕 

=sign of [2𝛽𝛽𝛽𝛽𝑁𝑁
2

𝑣𝑣
(𝜇𝜇 + 𝑙𝑙 − 𝑣𝑣)(𝜇𝜇 − 𝑙𝑙 − 𝑣𝑣) +𝑁𝑁(𝑔𝑔 − 𝜃𝜃)(2𝛼𝛼 − 𝑔𝑔 − 𝜃𝜃

𝑣𝑣
(𝜇𝜇 + 𝑙𝑙) − 4𝛽𝛽𝛽𝛽𝛽𝛽)]. 

 
Note that when 𝑣𝑣 ≥ 𝜇𝜇, (𝜇𝜇 + 𝑙𝑙 − 𝑣𝑣)(𝜇𝜇 − 𝑙𝑙 − 𝑣𝑣) < 0.  
Therefore, if 2𝛼𝛼 − 𝑔𝑔 − 𝜃𝜃

𝑣𝑣
(𝜇𝜇 + 𝑙𝑙) − 4𝛽𝛽𝛽𝛽𝛽𝛽 ≤ 0, then 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
≤ 0; and hence, by (A14),  𝜕𝜕𝑋𝑋𝑖𝑖

𝜕𝜕𝜕𝜕
≥ 0. 
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